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Kapitza resistance (Rg) is the thermal boundary resistance which occurs at the interface when heat flows from a
solid into liquid helium. This review attempts a comprehensive presentation of experimental and theoretical knowledge
since the discovery of Kapitza resistance in 1941. The experiments discussed and data presented include measurements
of Rk at interfaces between liquid “He and: copper, lead, mercury, tin, indium, nickel, constantan, gold, silver, platinum,
tungsten, silicon, quartz, lithium fluoride, and sapphire. The experiments between solids and liquid 3He are also discussed.
The treatments include discussion of the dependence of Rx on these variables: temperature, pressure, surface structure
and preparation, and elastic properties of the solid. The principal experimental problems are associated with the surface
properties, so these are discussed in detail. The principal theoretical discussion is of the acoustic impedance theory,
following Khalatnikov and Mazo and Onsager, and the results are compared with the experiments. Modifications of
the theory connected with improved matching at the interface, due, for example, to condensed He are also considered.
When the theory is applied to interfaces between metals and liquid He, then it must be modified to take into account
phonon electron interactions. The theory gives a temperature dependence Rgoc T3, which is approximately what is
experimentally, observed. However, the observed Rx’s are usually an order of magnitude or more smaller than theoretical
values. The source of the disagreement lies either in a lack of knowledge of the surface physics or in another, dominant,
mechanism for thermal energy exchange across the interface. Evidence for each possibility and some suggestions aimed

at resolving the discrepancies are offered.
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I. INTRODUCTION

When heat is conducted from a solid into a liquid,
the temperature is not continuous at the boundary.
Instead there is a small temperature difference (AT)
across the interface. If the heat flow (Q) is small, the
temperature difference is proportional to it. The ratio,
AT/Q, is eﬁectlvely a thermal resistance for the
boundary, and it is inversely proportional to the
interfacial area A. Kapitza resistance (Rg) is the
thermal boundary resistance between a solid and liquid
helium. It is defined as

Rg=AAT/Q(cm?°K/W). (1)

The units shown are those most commonly used.
Thermal boundary resistance is probably associated

* Work supported in part by the U.S. Atomic Energy Com-
mission.

with heat flow across all solid-solid as well as all
solid-liquid interfaces, but Kapitza resistance is an
extremely interesting special case. Generally, thermal
boundary resistances are smaller, less well defined, and
more difficult to measure than for interfaces between
solids and liquid helium.

The study of Kapitza resistance is about 30 years old.
Interest in the subject has been quickened recently for
two reasons: First is for its fundamental interest in the
study of the physics of solids, surfaces, and liquid
helium. Second is for its application to recent experi-
ments to attain temperatures of a few millidegrees
Kelvin and below.

The phenomenon was discovered by Kapitza in 19411
during his classic experimental investigation of super-
fluidity of He II, the superfluid phase of liquid *He. In
an effort to understand why the apparent thermal
conductivity of HeII in capillaries could be much
larger than the thermal conductivity of bulk He II,
Kapitza measured the temperature distribution in the
neighborhood of heated metal surfaces freely suspended
in He II. He observed, in the range between 1.6°K and
T, the lambda point temperature 2.1720°K, a tempera-
ture jump between the solid and the He II of the order
of 2m°K for each milliwatt/cm? of thermal flux
crossing the interface. This thermal boundary resistance
decreased with increasing temperature approximately
as 772 From these measurements and from study of the
behavior of the discontinuity when the surfaces were
surrounded with emery powder, Kapitza deduced that
the discontinuity took place within a few hundredths
of a millimeter of the interface and not in the bulk
helium.

In practice, the Kapitza resistance depends not only
on temperature but also on the pressure and on the
solid itself. It is also expected to be especially sensitive
to the nature of the carriers of thermal energy in the



solid, the elastic properties of the solid, and the structure
of the surface as well as to the properties of liquid
helium. We shall find in this study that the observed
dependence of Kapitza resistance on most of these
variables is surprisingly poorly understood.

This article is intended as a comprehensive review of
experimental and theoretical work on Kapitza resistance
since its discovery. In order to make the article useful
to those with a general as well as those with a special
interest in the problem, we have included background
material as well as detailed presentation of techniques
and results. The first question to be investigated is:
Why is Kapitza resistance not better understood? We
shall see that the experiments have been carried out on
a wide variety of solids: metals, both normal and super-
conducting, a semiconductor, and insulators, so that
the energy in the solids has been carried by phonons,
by electrons, by quasiparticles, etc. The character of
these excitations in solids can be studied experimentally
and theoretically in a great variety of independent
ways, and the behavior of excitations in solids at low
temperature is now understood in some detail. The
energy in the solids is then transferred across an
interface into liquid helium, usually He II, another
system in which structure and thermal energy transport
have been fairly well studied. We shall see that in spite
of these advantages, theoretical and experimental values
of Rx are generally in disagreement by as much as one
and sometimes two orders of magnitude. We will find
that the observed Rg’s are always less than expected
from theory, i.e., there is more energy exchange across
the interface than can be presently accounted for.

There is evidence that the heart of the difficulty is
in the physics of the interface. Kapitza resistance has
been found to vary with the roughness, crystal structure
gas adsorption, and surface oxidation of the interface.
The interface between a solid and He II is experi-
mentally interesting because intimate thermal contact
may be established without strain, the temperature of
the liquid may be conveniently measured, and a
hydrodynamic pressure may be applied at the interface.
For these reasons Kapitza resistance provides a proto-
type study in surface physics.

The study of Kapitza resistance has, in addition, an
important practical application in reaching low tem-
peratures. Most techniques for cooling liquid He below
1°K involve first cooling some solid (for example, a
paramagnetic salt or a metal) and then exchanging
heat between the solid and, say, liquid He II. This flow
of thermal energy from the liquid to the solid is impeded
by Kapitza resistance just as the inverse flow would be,
so that the He II is, during cooling, a little warmer than
the cold solid. The He IT may then be put in thermal
contact with another solid in order to cool it. This flow
of thermal energy is also impeded by Kapitza resistance,
so that the second solid is a little warmer than the He II
as long as there is thermal flux from the solid to the
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liquid. Improved understanding of Kapitza resistance
would help in manipulating these low temperatures. In
this context, a more general problem occurs when a solid
is to be cooled by putting it in thermal contact with
another, cooler, solid. This flow of energy across the
solid-solid interface is also impeded by a thermal
boundary resistance, similar in many ways to Kapitza
resistance. This phenomenon is quantitatively better
understood than Kapitza resistance, but the experi-
mental situation is not as clear. In the solid—solid case
surface problems are compounded and the problem of
establishing intimate thermal contact between the solids
without introducing local strains is important. We shall
restrict our discussion to interfaces between solids and
liquid helium.

The article is organized this way: Following the
Introduction there is a detailed presentation of the
experimental work (Sec. II), first for the case of solids
and ‘He and then for solids and liquid *He. In this
section emphasis has been placed on problems of the
surface structure, treatment, and purity. These prob-
lems are still at the forefront of present-day research
on Kapitza resistance. Section III then treats the theory
of Kapitza resistance and its ramifications. In it
emphasis has been placed on the interconnections
between the theories in an attempt to unite them. This
is natural since the theoretical work is, after all, almost
all based on Khalatnikov’s? original theory of Kapitza
resistance and relies heavily on his assumptions and
results. The main problems at the forefront of present-
day theoretical research on Kapitza resistance are either
to extend this theory so that it gives an adequate
account of the experiments, or else to discover supple-
mentary sources of thermal energy transfer across the
boundaries. The final section (Sec. IV) presents the
principal conclusions.

Before beginning detailed discussion of the experi-
ments in Sec. IT, we shall briefly introduce the main
elements of the theories of Kapitza resistance.

The modern theoretical understanding of Kapitza
resistance is that it is the result of a large impedance to
passage of thermal phonons across the interface between
a solid and liquid He. The important quantities in
determining the reflection and transmission of phonons
at the interface are the acoustic impedances of the two
sides, i.e., the product of the density and the sound
velocity. A typical solid may have density 5 g/cm? and
sound velocity 5X10° cm/sec. Liquid He at ordinary
pressures has a density of 1/7 g/cm? and a (first) sound
velocity of 2.4X10* cm/sec. This means that the
acoustic impedance of the solid may be more than two
or three orders of magnitude greater than that of .
liquid He. As a result of this acoustic mismatch, a large
fraction of the phonons impinging on the interface from
both sides cannot pass through.

Consider a solid in equilibrium with liquid He; both
are at the same temperature and there is no net flow of
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heat. If the solid is now heated, the distribution of
phonon energies in the entire solid changes and this
results in changes in the thermal oscillations of the
surface. The energy flux transferred across the interface,
i.e., Q/4 of Eq. (1), is determined by the efficiency with
which the component of surface oscillations in the
direction normal to the interface transmits energy into
the liquid He. In examining the normal surface oscil-
lations of the solid it will be necessary to consider their
excitation by three possible sources. These are: longi-
tudinal lattice waves, transverse lattice waves, and
surface (Rayleigh) waves. These components of the
normal oscillations and their contributions to the
energy flux will each be considered in detail in Sec.
I11.B.1.

Another contribution to the energy flux across the
interface comes from collision of excitations of the
liquid He with the oscillating wall. The idea is that the
excitations, principally phonons and rotons, collide with
the wall, pick up energv, and then distribute that
energy among the liquid’s excitations. This is usually
not an important source of energy transfer as we shall
see in Sec. IIL.B.1.

One of our conclusions will be that the amount of
energy flux which can be accounted for by this theory is
smaller than the energy flux that is actually observed,
usually by an order of magnitude or more. In terms of
Kapitza resistance this means that observed Rg’s are
much smaller than calculated Rg’s. A good deal of
theoretical work has therefore been aimed at improving
the acoustic match between the solid and liquid He.
One important proposed source of this improved
matching is in a dense layer of He adsorbed from the
liquid, i.e., a layer of intermediate acoustic impedance.
Another proposed source of improved matching is in
the diffusion of He atoms into the solid. These refine-
ments on the acoustic mismatch theory are discussed in
detail in Sec. I11.B.2.

The theory of Kapitza resistance in metals involves
the interesting feature, in addition to the above, that
the electrons may take part in the thermal energy
transfer across the interface. An important possible
contribution of electrons, for example, is that the
electron—-phonon interactions may increase the energy
transport from surface waves into the bulk solid. Such
surface waves are produced by phonons impinging from
the liquid onto the interface, so that this may be an
important source of energy transfer. Another important
contribution that electrons may make is through direct

interactions with the phonons of the liquid. These and
other theoretical problems special to the Kapitza
resistance between metals and liquid He are considered
in Sec. III.B.3.

Unfortunately the review literature on Kapitza
resistance is not as rich as the subject deserves. There
are, however, several discussions that are particularly
interesting of some aspects of Kapitza resistance. These
works are all discussed in order in the body of the text,
but a short guide to the existing literature may be
helpful as introduction. An interesting early review of
liquid He with a page-long summary of boundary
resistance has been given by Daunt and Smith (Ref. 67)
A good quantitative discussion of the theory, above
1°K, may be found in an experimental paper by
Johnson and Little (Ref. 8) and, below 1°K, in an
experimental paper by Anderson, Connolly, and
Wheatley (Ref. 7). A more general treatment appears
in a recent article by Frederking (Ref. 14), whose paper
gives special discussion of thermal boundary resistance
at large heat currents. A brief and clear general treat-
ment, to 1965, is included in Wilks’s recent book (Ref.
66) on liquid and solid helium.

II. EXPERIMENTS ON KAPITZA RESISTANCE

A. Interfaces between Solids and Liquid He II and
other Phases of ‘He

A typical apparatus for determining Rx is shown
schematically in Fig. 1. In equilibrium the heater
supplies thermal power @ through the solid, across the
interface area A4, to the helium bath at the right. Loss
of thermal energy through the sides is minimized by
surrounding the solid with a material of low thermal
conductivity. Small resistance thermometers are used
to measure the temperature profile along the solid, so
that the temperature on the solid side of the interface
can be obtained by a short extrapolation. Since He II
will not support temperature gradients (except at very
low temperatures), the temperature on the liquid side
of the interface may be measured anywhere in the
He II. Rx is then found straightforwardly from Eq. (1)
with AT =T,—T1.

Some interesting properties of Kapitza resistance are
its dependences on temperature, pressure, elastic prop-
erties of the solid and Liquid, and details of the excita-
tion spectrum of the phonons and electrons in the solid.
The most detailed theory of the effect is due to Khalat-
nikov,? who gives the result

15k%pscd

Ry= ,
K= 6ntkbpciF (cifc.) T

(2)

in which pgs and p are, respectively, the densities of the
solid and liquid; ¢; and ¢, are, respectively, the velocities
of longitudinal and transverse waves in the solid, 7' is



a specified function of ¢;/¢; whose value is usually 1.5-2,
and ¢; is the velocity of (first) sound in the liquid.

Equation (2) shows that Rg’s principal dependence
on the properties of the solid is in the product psc.
This may be related to the atomic mass (M) and the
Debye temperature (Op) of the solid by the usual
relation

psciropsE = (4nk®/31%) MOy,

in which ¢ is a special average velocity of transverse
and longitudinal waves. Thus Eq. (2) shows that
Rg < MOp? is a reexpression of the theoretical depend-
ence of Rg on the elastic properties of the solid, i.e., on
pscsd, according to the acoustic mismatch theory.

1. Surface Properties

It will become clear in the experimental discussion
that there are severe difficulties in obtaining repro-
ducible data on Kapitza resistance. These difficulties
are associated with properties of the surface of the
solids. Solid samples which have the same purities and
bulk properties may have very different surface
properties and may therefore give different Kapitza
resistances in essentially identical experiments. It is
our lack of knowledge, of how to reproducibly prepare
clean, flat surfaces which have properties characteristic
of the pure bulk materials, which answers the question:
Why is Kapitza resistance not better understood?

We should like here to give a brief qualitative
discussion of some of the problems and - techniques
associated with surfaces in Kapitza resistance problems.

Kapitza resistance is determined experimentally with
Eq. (1), and this means that A and AT near the
interface must both be measured. The measurement of
A involves controlling such surface properties as general
roughness and asperities. If the phonon mean free paths
and wavelengths satisfy certain conditions, to be
discussed in detail later, then the area across which
thermal energy is exchanged may be much larger than
the macroscopic surface area. This will make the
measured Rx much smaller than the actual Rg. The
measurement of AT involves the thermal conductivity
and the geometry near the surface. If the surface has
been strained, say during cutting to expose a fresh
surface, or if impurities are concentrated near the
surface then the thermal conductivity may be different
from the bulk material, and the measurement of AT
may be in error. If there is an oxide layer on the surface,
as frequently happens on exposure to air, or if impurities
have become adsorbed on the interface, then there are
two thermal boundary resistances in series between the
bulk material and the liquid He, and these must each
be separately accounted for. For nonisotropic solids
there are also questions of whether the sample is a
monocrystal and of its orientation. On the other hand
if the grain size is small, or if the density of impurities
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or other defects is large, then the thermal conductivity
may be anomalously small due to phonon scattering.

Kapitza resistance is calculated theoretically with
Eq. (2), and this shows that pg and ¢, near the interface
must both be known. These also depend sensitively on
the details of the surface. For example: A surface which
has been strained, or the oxide layer on a surface, or a
surface with adsorbed impurities, all have locally very
different elastic properties from those of the pure bulk
material. These must be known and accounted for if the
calculation is to correspond to an actual experiment.

The fact is, of course, that all of these factors are
never taken into account. The most practical procedure
is to make measurements on an experimental sample
which has been prepared as carefully as possible, and to
compare these measurements with the theory for a
periect surface.

Good present-day experiments start with material
that is as pure as possible, say with impurities of 1
part in 10°. Material of this kind may be prepared, for
example, by zone refining a casting. The clean surface is
then exposed by cutting or, if possible, by cleaving the
pure sample. An improved variation of this technique
is to cleave a monocrystalline sample under liquid He
so that no impurities have access to the surface between
preparation and experiment. Actually, as we shall
discuss in detail in Sec. III.B.2, even the layers of He
adsorbed on such a sample may have an important effect
on RK.

An ordinary cut sample must be annealed so that the
surface material may recrystallize and the strains be
removed. This is not difficult and involves the sample
being held at elevated temperatures for several hours.
Samples with low melting points may even anneal at
room temperatures. The surface is then made smooth
by careful polishing. In modern experiments this is
usually electropolishing. This is intended to minimize
the roughness and asperities, and to remove any further
impurity layers from the surface. In the most repro-
ducible experiments, to be discussed in Sec. I1.A.2, the
electropolishing was followed by ion bombardment of
the surface to remove residual impurities.

In our subsequent discussions of experiments the
actual procedures are to be compared to the ideal ones.
However critical intercomparison of these experiments
is frequently difficult. The principal sources of the
difficulty are that there are large differences in the
techniques of preparation of the samples by various
experimenters and even larger differences in the detail
with which these techniques are described in the original
papers themselves. The next difficulty is that the theory
is not of significant help in choosing among experiments
which ones give the best results. We have attempted,
using the general criteria outlined above, to pick out
those results which are most characteristic of ideal
surfaces, wherever the Rx for a material has been
measured more than once.
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Fic. 2. (a) Experimental data on Kapitza resistance for Cu—-He II interfaces from 0° to 1.2°K. These data are taken from Refs.
3,4,and 7. (b) Experimental data on Kapitza resistance for Cu—He II interfaces from 1.0°K to 7). These data are taken from Refs.
1,4,8,9, 12, 13, and 17. The data of Challis include measurements on surfaces of work hardened Cu ([1), and of annealed Cu (J).
The data of Challis, Dransfeld, and Wilks include measurements on polished Cu (A) and on surface-etched Cu (A). The solid curves
labeled 1, 2, 3 are from Kapitza’s original experiments. Curve 1 is for polished Cu, curve 2 is for Cu with a surface layer of varnish,
and curve 3 is for Cu surrounded by emery powder. The solid curve labeled 4 is from measurements of Johnson and Little on an oxidized

Cu surface.

2. Copper

The solid whose Kapitza resistance has been most
thoroughly investigated is copper. The high thermal
conductivity of Cu allows the extrapolation to deter-
mine temperature on the solid side of the interface to
be short and accurate. Results of much of the exper-
mental work on Cu are shown on Figs. 2(a) and 2(b);
data on Rg from about 1.2°K and below are on Fig.
2(a), and data from 1°K to I’ are on Fig. 2(b).
Kapitza resistance rises rapidly with decreasing tem-
perature, usually approximately as 7% However, there
are other observed effects of surface structure and
purity, so that in the range between 0.10°K and T
experimental values for Rx range over six orders of
magnitude. In Khalatnikov’s theory of XKapitza
resistance,2 Rg is expected to vary as 73 at low
temperatures, as Eq. (2) shows.

The earliest experimental data of Rg for Cu-He II
interfaces in the region below 1°K come from the
measurements of thermal conductivity of He IT of

Fairbank and Wilks.? Below 0.6°K, liquid helium has
negligible roton concentration and it behaves like a
low-temperature Debye solid whose phonons may
scatter only from the boundaries. These workers took
concurrent dynamic measurements of thermal con-
ductivity and Rg in a slowly warming system between
0.2° and 1.0°K. Although they did observe a change,
due to the increasing roton concentration, in the
temperature dependence of thermal conductivity near
0.6°K, there was no corresponding change in Rg. This
means that the rotons in the excitation spectrum of
HeII do not have an important role in the thermal
energy exchange at the interface. Their results shown
on Fig. 2(a) correspond to Rg=45.0/T? cm? °K/W.
The principal uncertainty stems from determining the
actual area of Cu in contact with He II, which is
characteristic of Kapitza resistance measurements. A
tight fit between the Cu and the German silver tube of
low thermal conductivity surrounding it was used to
keep He II out of contact with the sides of the specimen
(see Fig. 1 for example). If the real contact area is



larger than the assumed area, then experimental values
for Rg will be too small. The data are in satisfactory
agreement with the two other sets of experiments in
the lower temperature range, as shown on Fig. 2(a).
Here, Rk is apparently rather insensitive to surface
details.

Figures 2(a) and 2(b) show the results for Cu-He II
interfaces of Wey-Yen’s* thorough experimental study
of Kapitza resistance from about 0.6° to 2.1°K. These
data correspond to Rg=20.87-2601 cm?°K/W and
were taken with thermal fluxes in the range 0.25 to 1.0
mW/cm?. In this range AT is still proportional to @,
i.e., Rg is not a function of Q. Wey-Yen also observed
a reverse Kapitza resistance in these experiments. He
measured heat transfer from relatively warm He IT to
cooler Cu to still cooler He II. From the two AT’s, he
obtained the result that at both interfaces AT was
proportional to @ and for both interfaces Ry o< 72303
although the proportionality constants were different.
This means that, in some sense, the phenomenon is
reversible. Beenakker et al.® earlier reported a pre-
liminary observation that the Kapitza resistance was
reversible, but a subsequent search for this reversibility
by Andronikashvili and Mirskaia® was not successful.
Beenakker et alb studied Rk at interfaces between Cu
and He II from 1.24°K to T) as part of a study of
thermal conduction in *He-*He mixtures. The Rx they
measured was proportional to 72¢4, but this also
includes some thermal resistance of the bulk copper in
the wall which varies as 7.

The measurements at lowest temperature and highest
Kapitza resistances are those reported by Anderson,
Connolly, and Wheatley” on 99.9999, pure, electro-
polished Cu from about 0.08° to 0.90°K as a function of
temperature and pressure. Their measurements of Rg
on interfaces with He II at zero pressure, shown on
Fig. 2(a), have a temperature dependence of 7* to
T35, All the data shown on Fig. 2(a) are in agreement
to within about a factor of 3, which represents satis-
factory agreement.

Critical comparison of the data on Kapitza resistance
for Cu displayed on Fig. 2(a) is comparatively easy.
It is fair to say that the results of Anderson, Connolly,
and Wheatley” are probably the best in this tempera-
ture region owing to the high purity and the surface
smoothness of their Cu samples. The results of Fairbank
and Wilks® have the inherent uncertainties associated
with dynamic measurements as well as the difficulties,
described above, with determining the contact area.
Although their Cu is described as high purity, the
surface structure was not clearly determined. Wey-Yen*
unfortunately does not give details of his surface
treatment of the Cu and its purity is low by present-
day standards.

Data on Rg for Cu-HeII interfaces in the range
from 1.0°K to T) are shown on Fig. 2(b); the data from
Kapitza’s original work! appear as the solid curves
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labeled 1, 2, and 3. Kapitza studied the temperature
distribution around a heated Cu surface in He IT using
two closely juxtaposed heater thermometers. Curve 1
is for annealed, pure, Cu whose surface had been
polished, and curve 2 is for the same surface after it had
been varnished. Curve 3 is for a Cu surface immersed in
fine emery powder. Since this profoundly influences the
hydrodynamics of the surrounding bulk HeII and
since the energy exchange was not correspondingly
altered compared to the earlier measurements, Kapitza
concluded that the temperature difference took place
very close to the interface. Further investigation has
supported this conclusion.

Although Kapitza observed that disturbing the clean
surface increased Rg [[compare curves 1 and 2 on Fig.
2(b)], the general rule for Cu-He II interfaces is that
etching, oxidizing, or otherwise disturbing the surface
decreases the observed Kapitza resistance, as evidenced
on Fig. 2(b). Varnishing probably makes the surface
smoother, i.e., decreases the interface area; this may
account for the increased Rx, as Kapitza suggested.
For Pb, Rx has recently been characterized better than
for Cu. The lowest Rg for Pb-He II interfaces is ob-
served for the cleanest surfaces, just the reverse of the
result for Cu.

Johnson and Little® and Challis, Dransfeld, and
Wilks®? have observed that clean copper surfaces have
larger Rg’s than, respectively, oxidized and etched
surfaces. Curve 4 of Fig. 2(b) represents data® on an
oxidized Cu surface. It follows the equation Rg =772
cm?°K/W; the corresponding result for a clean Cu
surface was Rg=197-36 cm? °K/W. This latter
expression would fall roughly between the open squares
and the filled triangles of Fig. 2(b) but has not been
plotted. The data points of Challis ef al.? on polished
Cu are shown in Fig. 2(b) as open triangles, and their
data on surface-etched Cu are shown as filled triangles.
Although these two sets of data disagree by about
40% on clean surfaces and by somewhat more on
oxidized and etched surfaces, the results on clean sur-
faces are rather distinct from and higher than the
results on oxidized or etched surfaces. There is over-
lap only near 7). Unfortunately, the effect on inter-
facial surface area of etching, oxidizing, or varnishing
the interfaces is not known quantitatively, although
the dependence of Rx on 4 is important.

Challis’s measurements'®?** on polished, spectro-
scopically pure, Cu interfaces with He II support the
same conclusion i.e., that undamaged surfaces have the
highest Kapitza resistances. He found that Rx for a
work-hardened, hammered Cu specimen was slightly
smaller than the Rx for the specimen after it had been
annealed. The data are shown on Fig. 2(b), respectively,
as open and filled squares. White, Gonzales, and
Johnston!® were led to an early investigation of Rx on
Cu-He IT interfaces in an analysis of thermal con-
ductivity data for He II. Since there can be a significant
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change in temperature due to Kapitza resistance at
the surface of heaters and thermometers in such
experiments, the actual thermal gradient applied across
the He II during measurement of thermal conductivity
may be less than the measured one. Their data, which
represent the highest Rx for these surfaces, are shown
on Fig. 2(b) and correspond to Rg < T2,

Frederking'* has recently reviewed the problem of
thermal transport at liquid-He IT temperatures with
particular emphasis on the difficulties of heat transport
across interfaces. This work includes interesting dis-
cussions of Kapitza resistance, of solid-solid interfaces,
and of local destruction of superfluidity of He II by
large heat currents. He has included an interesting plot,
analogous to Fig. 2(b) above, of experimental values
of the product of Kapitza conductance (kx=Rx™)
and 7-* as a function of temperature between 1.2°K
and T for copper (Fig. 3 of Ref. 14). On such a figure,
deviations from Khalatnikov’s expected proportionality
between kg and 73, or Rk and 72, become more readily
apparent.

In another determination of thermal conductivity,
Challis and Wilks,"® observed indirectly that Rx just
above T, was apparently about three to six times
greater than just below 7. However it is now known
that this estimate was wrongly based and that their
results indicated that Rx undergoes no abrupt change
at 7. The measurement of Rx at the interface between
a solid and He I is difficult since the temperatures on
both sides of the interface must be extrapolated and
convection in He I may make it difficult to accurately
measure the conducted heat. One expects from theory
no substantial change in Rg in going through 7.

Ambler'® has investigated Rx for Cu-He IT surfaces
in connection with the problem of cooling by contact
at temperatures below 1°K. He calculates that at
1°-2°K; Kapitza resistance gives the effect of a surface
layer of He I about 5XX10~* cm thick, in agreement with
a similar calculation of White ef al.* However, when
extrapolated to very low temperatures, the thermal
impedance can become equivalent to a layer >8 mm
thick. There has been support for the idea that a
condensed surface layer of helium is in immediate
contact with the metal. This is discussed in Sec. II1.B.2
below.

All of the measurements of Rg discussed so far have
been taken at essentially steady-state heat flows with
constant AT’s of the order of millidegrees Kelvin or
larger. Brow and Osborne” have measured Rg for
Cu-He II interfaces for alternating heat flows of 500
Hz and 2 kHz with temperature differences as small as
4 uCK. These workers examined the coupling between
two second-sound resonators which were separated by
a thin Cu foil. Second sound is the thermal wave
motion through which thermal energy is transported in
liquid He II. The coupling between the chambers was
small because of the Kapitza resistance on both sides.

The Cu foil was sufficiently thin and thermally diffusive
so as to offer no thermal obstacle itself. The condition
that must obtain for the thermal boundary resistance
to exceed the bulk thermal resistance of the solid is that
the solid’s thickness be much smaller than the product
of its thermal conductivity (As) and Rg,? i.e.,

thickness<<A sRxk.

The results of this experiment, shown on Fig. 2(b),
represent the lowest measured values of Rx for Cu.
Since the AT’s were so small, Rg is measured in a region
where properties of liquid He are linear and turbulence
effects are minimal. These authors suggest that the
higher Rx’s observed by others may be due to nonlinear
and turbulence effects which become important for large
temperature gradients in He II. However, the problem
of the magnitude of ac thermal boundary resistances as
measured by transmission of second sound through
foils is still open. Challis and Sherlock!® have made a
measurement on copper, using a technique similar to
Brow and Osborne’s,” but did not observe such a low
Rg.

An earlier, more qualitative, study of Rg using
second-sound pulses is due to Osborne.’* Transmission
of second sound in He IT is analogous to electrical wave
propagation on transmission lines?: §/A4 corresponds
to current, AT corresponds to voltage, and bulk liquid
He II has a characteristic impedance (pCcz)~?, where C
is the specific heat per unit mass and ¢, is the second-
sound velocity. Osborne observed evidence for the
existence of Rx as a thermal resistance to second-sound
pulses at the interface between the solid and He II.
From the failure of second-sound pulses to propagate
through thin Cu foils, taking into account thermal
diffusion in the Cu foil itself as well as the thermal
boundary resistance, he concluded that a lower limit
for Rx was 0.1 cm? °K/W at 1.2°K. The acoustic
mismatch theory for the passage of second sound
across metal plates has been given by Khalatnikov.?

From measurements of the surface absorption of
second sound a quantitative estimate of Rx has been
obtained in later work of Zinoveva.? The absorption
coefficient for second sound impinging on a solid may be
expressed, neglecting edge effects, as the sum of two
terms, a large term due to viscosity of liquid He IT and
a smaller term due to thermal conduction of all kinds at
the solid wall. The presence of a Kapitza resistance at
the wall leads to a reduction in the thermal conduction
losses. The viscosity contribution is the same at all
interfaces between liquid He IT and nonporous solids.
However, the contribution due to thermal conduction
varies with the nature of the solid. This latter term is
proportional to [ (Rx/4)+ (2/psCshsw)/*174,2" in which
Cy is the specific heat per unit mass of the solid, Ag is
the thermal conductivity of the solid, and w is the
second-sound angular frequency.



Zinoveva used this expression to analyze data on
absorption of second sound at walls of glass and of
copper resonators at frequencies between 20 Hz and
2.5 kHz and at temperatures from 1.0° to 2.1°K. The
thermal conductivity of glass is so low that the contri-
bution of Rk to the absorption is entirely negligible and
indeed viscosity effects alone made up 989, of the
absorption of second sound at the glass walls. When
second sound impinges on copper, however, the term in
Rg/4 dominates the denominator of the thermal
conduction term. Zinoveva found that the absorption
coefficient of second sound on copper walls was 1.5 to
2 times greater than on glass, and the supplementary
absorption of copper over that of glass is then due to
Kapitza resistance at the interface between Cu and
He II. Thus, Zinoveva found that Rx=307"3 cm?
°K/W which, as may be seen by comparison with Fig.
2(b), is well within the range of other experiments.

There is convincing experimental evidence that a
Kapitza resistance also exists between the superfluid
(Rollin) He film and its substrate. Investigation of this
point relies on a related experiment which we describe
first. Sydoriak and Sherman,” in a study of vapor
pressure thermometry, observed that the temperature
of the liquid in a “He vapor pressure bulb thermometer
could be 10 m°K higher than the temperature of the
walls of the bulb. Their explanation of this is that the
He film which climbs up the inside walls of the bulb ther-
mometer evaporates when it reaches the warmer upper
reaches and then recondenses into the bulb. This steady
influx of heat gives rise to a thermal flow @ between
the liquid in the bulb and the walls and hence to an
associated AT. (It is now known that this difficulty can
be obviated by use of an exchange gas between ther-
mometer and bath.)

It is difficult to determine whether an Ry exists
between the He film and its substrate because there is
normally negligible thermal energy flow between the
film and the substrate. Montgomery and Matthew?
have indirectly observed the Rx between the film and
a Cu substrate by ingeniously using the thermal energy
of the recondensing warm vapor just described as a
source of Q. In their experiment heat flows from a
‘He-filled bulb into an outside bath via two paths:
First, there is thermal flow from the film to the Cu wall
to the colder “He bath, and second, there is a parallel
thermal flow from bulk helium to wall to bath. From
experiments in which flow through the second path
is replaced by flow through the first as the amount of
liquid in the bulb is decreased, the Rx between the film
and wall was found equal to the Rg between bulk
helium and the wall to within 5%. The largest uncer-
tainty in the experiment is in the difficulty of controlling
Q, which is 1 mW or less. The values obtained, Rx =14.8
cm?°K/W at 1.53°K and Rx=11.5 cm2°K/W at 1.61°K,
are high but within the range of the other data shown on
Fig. 2(b). It is interesting that in these experiments
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the heat flow is from warm liquid ‘He film to cold wall,
i.e., in the opposite direction from the usual case.

In a related experiment Fokkens, Taconis, and de
Bruyn Ouboter* have obtained data on Rx between
the copper walls of an adsorption vessel and un-
saturated but still superfluid “He films, between about
0.8° and 1.7°K. They observed that Rx was proportional
to 7724 Typical results are: at 1.00°K, Rx=>53 cm?
°K/W and at 1.51°K, Rx=19 cm? °K/W. These results
are in comparatively satisfactory agreement with those
of Montgomery and Matthew.? The combined data
imply that Rg may be larger between a solid wall and
a He II film than between the wall and bulk He II.

In a recent experiment, Mate and Sawyer,?* found
evidence for a thermal boundary resistance at the
interface between Cu and layers of *He adsorbed from
the gas. They measured the temperature difference
between two blocks of copper whose interfaces were
separated by a gap of 1072 mm while heat flowed from
one block into the other through the gap. The gap was
filled with helium gas at pressures from 0.01 to 350 Torr.
They report data from 1.5° to 4.5°K on the total
thermal resistance between the interfaces. At each
pressure, measurements were taken down to the
saturation temperature.

The total thermal resistance between the Cu inter-
faces may be written as the sum of three contributions:

R(total) = R(gas)+2R(Knudsen)
~+2R(Cu-adsorbed-*He interface).

The first term which is the bulk resistance of the gas is
known from other experiments. The second term is the
Knudsen gas-kinetic temperature jump expected be-
tween an adsorbed layer of “He at each side of the cell
and the gas from which it was adsorbed; this term can
be calculated and is negligible at the higher pressures.
The difference between the observed total resistance
and these first two terms is assumed to be associated
with the interfaces between the Cu and the adsorbed
‘He layers. Mate and Sawer?®?2 found evidence for a
Kapitza-like resistance; their inferred Rg’s were
essentially pressure independent, and the magnitude
was Rg707T2 cm? °K/W. This value is rather high
compared to the results shown on Fig. 2(b) for Cu-
liquid-He IT interfaces, but it is within an order of
magnitude of the other results. This is a difficult
experiment since the width of the gap must be known
very well to get a good value for the difference resistance
2R(Cu—adsorbed-*He interface) =2Rg. In addition, it
is important to know more about the adsorbed ‘He
layer.

The spread in the observed values of Rx shown in
Fig. 2(b) extends over a factor of about 20, even though
the individual estimated experimental errors are only
209 or less. The large deviations among the data are
probably due to differences in Cu surface structure at
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Fic. 3. Experimental data on Kapitza resistance for Pb-He IT
interfaces and for Hg-He II interfaces. These data are taken
from Refs. 4, 9, 29, and 30. The data of Challis and Cheeke
represent measurements on normal (@) and superconducting
(O), annealed, electropolished, and ion bombarded Pb. The
data of Challis, Dransfeld, and Wilks are for normal, surface-
etched Pb. The data of Kuang Wey-Yen are for superconducting
Pb after electropolishing. The data of Neeper, Pearce, and Dil-
linger are for Hg with 5 ppm impurity.

the interface. Theory supports the idea that surface
structure should strongly influence Rg. To anticipate
the discussion in Sec. IIT, Kapitza resistance is essenti-
ally a measure of the efficiency with which the excess
thermal energy of the solid is transmitted to the liquid.
In Cu and other metals the energy resides in phonons
and electrons and these must interact with the He
across the interface to generate phonons in the liquid
He II. This interaction depends, for example, on the
acoustic impedance on both sides of the interface. For
surfaces which are oxidized, work hardened, varnished,
etc., the acoustic impedance may be very different from
that for perfect Cu surfaces.

We have seen in the preceding descriptions of the
individual experiments that there are great differences
in the surface treatments and in the purities of the Cu
samples used. For this reason and also because of the
differences in the detail with which these techniques
are described by the original researchers, further

critical intercomparison of the data is difficult. However,
it is important to know which of the data on Fig. 2(b)
are the most characteristic of pure Cu with ideal
surfaces in the temperature range above 1°K. The most
reliable data for this purpose are probably the results of
Challis'®*? on polished, spectroscopically pure, un-
damaged Cu surfaces, i.e., the data shown by the filled
squares. The results of Kapitza! for pure, annealed
polished Cu probably also give good values for Rg in
this range, even though the AT was not measured by
the extrapolation technique common to present-day
experiments. Thus, Curve 1 is a practical experimental
lower bound on Rg. The data of Challis ef al.,? shown as
open triangles corresponding to measurements on
polished Cu, represent a practical upper bound.

3. Lead and Mercury

Lead has received the second most attention in
studies of Kapitza resistance at interfaces between
solids and He II. Representative data on the tem-
perature dependence of Rx for Pb-He II interfaces are
shown on Fig. 3, together with data on Hg. Pb serves
as serves as a prototype for study of the effect of surface
imperfections on Rx and of the effects of the super-
conducting transition on Rg. The theories of the effect
of superconductivity on Rx will be treated quanti-
tatively later. We shall here discuss some qualitative
aspects as introduction.

Lead (6p~2110°K) and Hg (6p~s80°K), compared
to other elemental superconductors, have low Debye
temperatures and large ratios of 7./0p, where T, is the
critical temperature for superconductivity. Thus, in
the temperature range of the experiments on Rg, the
lattice, rather than the electrons, dominates the
thermal properties. Kapitza resistance is expected to
be larger for substances with high Debye temperatures
than for those with low Debye temperatures, according
to the acoustic mismatch theories. Pb and Hg behave
differently from other superconductors in important
respects; in particular the ratio of the electronic specific
heat in the superconducting state to that in the normal
state is largest for these substances. These two elements
must be treated with strong-coupling theory while the
other superconducting elements with which we shall be
concerned, i.e., tin and indium, can be described with
weak-coupling theory.

Thermal energy in any metal is carried by the
electrons or by the elementary excitations, mainly
phonons, quasiparticles, and plasmons.” Any change
in Rg as the metal goes through a superconducting
transition is due to a change in the properties of the
electrons or the excitations of the metal which interact
with the elementary excitations of the liquid He IT at
the interface.?® Since there are fewer conduction
electrons available for interaction at the interface in
the superconducting state than in the normal state, the



Kapitza resistance is expected to be larger in the
superconducting state. This is indeed generally ob-
served. More precisely, it is the scarcity of quasi-
particles, either thermally excited or excited by phonons
incident from the liquid and of collective modes in a
superconductor that is the cause of the increased Rx.®
The problem is discussed in more detail in Sec. III.B.3.

The changes in the elementary excitations upon
transition are much less marked.” Plasmons have
energies of the order of 10 eV, so that they are not
usually excited in these experiments and play only an
indirect role. The phonons have mean energies of the
order of 102 eV. Although many phonons are excited
at these temperatures, their energies are changed very
little upon the transition from the normal to the super-
conducting state. For our purposes the most important
difference between the excitations in the two states is
in the elementary quasiparticles, which may be pictured
as electrons above and holes below the Fermi surface.
In our subsequent discussion of Rx in superconductors
and normal metals, we shall therefore be principally
interested in interactions of the electrons and the
quasiparticles.®

The only data on Kapitza resistance of Hg-He II
interfaces are from the recent work of Neeper, Pearce,
and Wasilik.?® They measured Rg between 1.1° and
2.1°K for both superconducting and normal Hg on
several pure samples. The nominal impurity was only
1 part in 108, and the normal state was obtained at
these temperatures by application of a 500-Oe magnetic
field. Their results for both states of one of their samples
is shown in Fig. 3. The curve for superconducting Hg
falls close to but above the curve for normal Hg, as
expected. Comparison with the Cu curves on Fig. 2(b)
shows that the Rg for Hg is only about 1/5 as large as
the average for Cu. This is qualitativelyas expected from
acoustic mismatch theory since for Cu, 0p~2343°K and
is much larger than ©p for Hg. Strong-coupling super-
conductors show a rapid decrease in thermal conductiv-
ity below T, so there are rather large uncertainties on
the curve for superconducting Hg. The extrapolation
to determine the Hg interface temperature is much
larger and more uncertain in the superconducting than
in the normal state.

The variation of Rx among the different samples was
much larger than the uncertainties shown on the Hg
curves in Fig. 3; the observed limits on Rg were
2.2/T?<Rg<6.3/T% cm?°K/W. This is not surprising
since the samples probably had different grain sizes,
orientations, impurities dissolved during the experiment,
etc. However, the net effect that Rg is different for the
two states and larger for the superconducting state is
reproducible and, therefore, probably real. These data
indicate that electronic processes contribute about 309,
to the energy exchange at an Hg-He IT surface.

Until recently, uncontrolled effects of impurities and
surface imperfections have made it very difficult to get
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reproducible data for the temperature dependence of
Kapitza resistance of Pb-HeII interfaces. A far-
reaching study of some of these effects in Pb has been
reported by Challis.*2 He measured Rg(I) of
normally conducting Pb, in an 800-Oe magnetic field
between 1.2° and 2°K, for samples of slightly different
purities, near 99.995%. His data showed that Rg varied
by a factor of 4 among the samples independent of the
purity of the samples. Challis also studied the effect on
Rk of the superconducting transition for his purest Pb
specimen. He found that Rx was considerably higher
and had a stronger temperature dependence for the
superconducting state than for the normal state, as
expected. A rather sizable correction must be made in
determining the interface temperature for super-
conducting Pb, just as in superconducting Hg, because
of the low thermal conductivity.

These earlier values are considerably higher than the
more reproducible later determinations of Rx for Pb of
Challis and Cheeke® shown on Fig. 3. The more recent
work on Pb has shown that as samples are made purer,
annealed, and given cleaner surfaces by electropolishing
and ion bombardment, their Rx decreases. It is interest-
ing to notice that this is the opposite of the case for Cu
in which, as we have seen, making the surfaces cleaner
generally increases Rg. This brings these experimental
Rg’s further from theoretical values. Also in support of
these ideas is an interesting study by Challis'? of Rg(T)
curves of Pb as a function of time of exposure of the
surfaces to the atmosphere (i.e., surface oxidation).
This showed that Rg inceased by a factor of about 4
for the normal state over several months of exposure
to the atmosphere.

Also plotted on Fig. 3 are the data points obtained by
Challis, Dransfeld, and Wilks® for an interface between
surface-etched Pb in the normal state and He II. The
observed temperature variation is slightly stronger than
T-3. These authors studied Rx(T) curves for several
solids in an investigation of whether the theoretical
prediction of the acoustic mismatch theory that
Rx o< MOp3, where M is the molecular weight, was
quantitatively correct. According to this result, the
Kapitza resistance for Cu should be about 13 times
larger than for Pb. The ratio found experimentally
using Challis and Cheeke’s® data for Pb, is about 7. A
comparison of the Debye temperatures and atomic
weights of Pb and Hg shows that the Kapitza resistance
for Pb is expected to be about 2% times greater than for
Hg. Actually, as Fig. 3 shows, the experimental un-
certainties are too great to permit even a qualitative
comparison.

To see whether the applied magnetic field of 1 kG
would significantly affect the Kapitza resistance of
normal Pb, Challis ef al.? studied Rx for Cu in fields up
to 4 kG. Although they observed no effect on Cu,
Challis®® 2 has observed a magnetic field dependence
of Rx in Pb. This will be discussed below.
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Wey-Yen’s work* includes an experimental study of
the effects of surface roughness, adsorbed gas, and
deformed surface layers on the Kapitza resistance of
metals. His result, Rx=9.097"2 cm? °K/W, for pure
(>99.9997%), electroplished, superconducting Pb is
shown on Fig. 3. The same surface before electropolish-
ing had a Kapitza resistance about one-third larger than
this, and when the electropolished surface was sub-
sequently covered with a thick oxide film, its Rg
increased again, all in general agreement with other
experiments on Pb.

Wey-Yen* concludes that the principal cause of the
large disagreement between observed and theoretical
Rg’s is an amorphous surface layer about 10—% cm thick
in the solids. This thickness is of the order of magnitude
of the wavelength of the acoustic phonons in the
experiments. Such a surface layer is formed on metals
upon cold working. The deformation disappears
gradually as the surface layers recrystallize during
annealing; electropolishing also removes the deformed
layers.

In support of this conclusion, Wey-Yen? showed that
Rg for pure Pb could be varied from a maximum of
41.77-32 cm? °K/W for a sample which had been
freshly cold worked under the liquid-helium surface, to
Rg=9.43T-% cm? °’K/W for the same sample after it
had been left to anneal at room temperature for four
months. These effects of annealing and cold working
were reproducible. The latter result for Rg is smaller
than and closer to theoretical predictions than the
former which is greater than theoretical predictions.
His idea is that the freshly worked sample has a deep
and amorphous deformed surface layer, while the
annealed surface is largely recrystallized and hence has
acoustic matching properties closer to the bulk material.
This recrystallization at room temperature is expected
to be rapid in Pb compared to other metals since its
melting temperature (601°K) is comparatively low.

Challis and Cheeke® have continued and extended
the work of Wey-Yen to normal, as well as super-
conducting, Pb and have succeeded in obtaining repro-
ducible results for Rx for different Pb samples of the
same purity but of different initial condition. Typical
data of these workers are shown on Fig. 3 as open and
closed circles for, superconducting and normal Pb,
respectively, in the range 1.3°K-7). These curves
probably represent the best results currently available
for comparison with theory. The temperature depend-
ence for Rg in both states is about 73%, and the ratio
of Rx in the superconducting to that in the normal
state is about 4/3. This compares with a ratio of 3
reported by Barnes and Dillinger® as an incidental
result of their study of thermal resistances at solid-
solid boundaries.

The surface treatment Challis and Cheeke® have
developed, which leaves Pb specimens with surfaces that
are reproducibly characteristic of the bulk material is

to: anneal, then lightly electropolish, and finally,
heavily bombard the surfaces with argon ions. Electro-
polishing can result in a surface layer that is chemically
distinct from the bulk material. The ion bombardment
is aimed at removing this and any oxide layer that may
have formed during accidental exposure. Experiments
in the important direction of determining the effects of
purity, surface structure, and annealing on the Rx for
normal and superconducting Pb have been continued
by Cheeke.?

These workers!2% have also studied the dependence
of Rk for Pb on applied magnetic fields up to 7 kOe.
Typically, if the specimen is initially in the supercon-
ducting state at zero field, Rx stays unchanged until
the field reaches H,/2, where H, is the critical field. As
the applied field increases from H./2 to H ., Rg rapidly
falls to the value characteristic of the normal state. In
the normal state, there is a small, negative magneto-
boundary resistance. A new feature in these data is an
interesting hysteretic effect: When the applied field is
subsequently decreased to zero, Rg of the superconduct-
ing state is about 159, less than originally.

4. Other Metals

Experiments on Rgx for metals in their supercon-
ducting and normal states provide tests of a theory of
Little?® dealing with the coupling between the electrons
of the metal and the phonons of the He. The experi-
mental results qualitatively support Little’s conclusion
that the Rg for the superconducting state should be
greater than for the normal state. The idea is that the
interaction with the phonons occurs through the quasi-
particles in the superconductor, and the energy gap
limits the number of quasiparticles. Little’s theories of
Kapitza resistance will be discussed in Sec. ITI.B.3 of
this paper.

Figure 4 shows experimental results of Kapitza
resistance as a function of temperature for two weak-
coupling superconductors, tin and indium, and also for
nickel and constantan. The curves labeled 1-Sn and
1-In are results of Gittleman and Bozowski®* fitted
to the theoretical expression Rx=aT2. They obtained
for superconducting and normal Sn, respectively,
2¢=6.03 and 5.48 cm? °K*/W and for superconducting
and normal In, respectively, ¢=10.1 and 9.54 cm?
°K*4/W. The difference between the Kapitza resistance
of the superconducting and normal states is small in
both cases; in Sn the observed difference is only about
10%, and in In only 6%. This compares with the
difference of about 289, observed by Challis and
Cheeke in Pb.%0

As part of a recent determination of the thermal
boundary resistance at the solid-solid interface between
indium and sapphire, Neeper and Dillinger® also
measured the Kapitza resistance at the interface
between In and He II between 1.1°K and 7). Although



the In had been zone refined during casting and was
spectroscopically pure, these workers found that the
observed Rx was quite irreproducible. Their results on
two samples, Rgk =67 and 2072 cm °K/W, hold for
both normal and superconducting In and bracket the
earlier results®:* shown on Fig. 4.

Also shown on Fig. 4 are Wey-Yen’s results? for
Kapitza resistance of normal and superconducting,
99.9997%, pure, Sn: Rg=12.37"29%01 cm? °K/W. He
found the Kapitza resistance of the two states to be
indistinguishable within the 29, uncertainty of his data,
although his results differ considerably from Gittleman
and Bozowski*. There is insufficient information to
tell whether the disagreement is due to different
purities, magnetic fields, or surface properties. Wey-Yen
observed, however, that electropolishing a Sn surface
has no observable effect on Rg. This is presumably
because Sn oxidizes slowly and has no significant
amorphous surface layer. He also observed that the
heat transfer at the Sn—He IT boundary was unchanged
when the liquid helium was rotated up to 400 rpm.

The result Rx« MOp* shows that, according to the
acoustic mismatch theory, Rx for Sn should be about
six times larger than Rk for In. The data of Fig. 4 show
roughly, due to the disagreement for Sn, that the
Kapitza resistances of Sn and In actually differ by less
than a factor of two and may even be the same. This
theoretical proportionality also shows that the ratio of
Rg for Ni to Rg for In is expected to be about 36, but
the data show that the observed ratio is less than 2.

We should like to ask then: Which represents the
critically best values for Rx between Sn and liquid
He II? The answer is that it is not possible to choose
between the data of Wey-Yen* and Gittleman and
Bozowski.* This is because of differences in surface
treatments and differences in the detail with which
these are described. However, as may be seen from
Fig. 4 the results differ only by a factor of 2. As we
have come to understand, this is a comparatively minor
disagreement.

A result of Wey-Yen? that Rg(7T)=16.172901
cm?®°K/W for 99.999, pure unelectropolished Ni
between 1.4° and 2.1°K| is also shown on Fig. 4. Upon
electropolishing he found a dramatic increase and
change in temperature dependence to Rg=70.4 718
cm? °K/W. Wey-Yen suggests that electropolishing
may leave the surface with cracks which limit the local
flow of He IT at the surface, but the situation is unclear.

The data that Andronikashivili and Mirskaia® have
obtained in an unusually interesting experiment are
plotted on Fig. 4. This curve represents a lower limit
on the Kapitza resistance for constantan; the geometry
of the experiment prevented an absolute determination.
Their results show that below 1.6°K the dependence of
the surface temperature discontinuity, and hence of R,
is as 773, and between 1.6° and 2.1°K the dependence
is as 774 The minimum near 2.1°K shown in their data
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F16. 4. Experimental data on Kapitza resistance for normal
and superconducting Sn~He II interfaces, normal and super-
conducting In-He II interfaces, and for constantan-He II and
Ni-He II interfaces. The solid and broken curves labeled 1 In
are taken from data of Ref. 34 on, respectively, normal and
superconducting In. The solid and broken curves labeled 1 Sn
are taken from data of Ref. 34 on, respectively, normal and super-
conducting Sn. The curve labeled 2 Sn is taken from data of
Ref. 4 on both normal and superconducting Sn. The curve which
gives Rg(T) for Ni is taken from data of Ref. 4, and the curve
for constantan is taken from data of Ref. 6.

on Fig. 4 may be due to superheating of He II above
T. Indeed these workers showed that at the thermal
fluxes used in these measurements (about 1 mW/cm?),
superheating could be observed in liquid He II, an
interesting result.

Platinum, the original metal used by Kapitza! to
investigate thermal boundary resistance, is especially
suited to measurements of this kind because its surface
does not corrode easily. The original data points are
shown on Fig. 5. In the range of Kapitza’s observations
Rk was proportional to 7%, Results of a later inves-
tigation of Wey-Yen? on technical-purity (99.909%,) Pt
between about 1.2° and 2.1°K are also shown on Fig. 5.
His results follow the curve Rg =21.37-2-30-1 cm2°K /W
and fall considerably higher than Kapitza’s. Unfortu-
nately, because of the comparative impurity of Wey-
Yen’s Pt sample, it may have had a large thermal
resistance in series with the boundary resistance. This
makes comparison between the two sets of data difficult.
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F16. 5. Experimental data on Kapitza resistance for Pt-He II,
Au-He II, W-He II, and Ag-He II interfaces. The data are taken
from Refs. 1, 4, 8, and 37.

A critical evaluation of the data on Pt is again
difficult. Kapitza,! unfortunately, does not describe
surface treatment of his Pt. Wey-Yen’s* Pt specimen
was cut from a foil and then annealed at only 500°C, a
glass annealing temperature. This means that his sur-
faces were probably far from ideal. It would be very
useful for an experimental determination of Rk to be
made on a well-annealed, electropolished, and perhaps
ion-bombarded sample of Pt. Present-day standards of
Pt purity are such that samples of 99.999%, purity are
obtainable, i.e., two orders of magnitude purer than
Wey-Yen* used.

Platinum has been used by Gittleman and Bozowski?
to test the idea of Bloch and Little® that energy can
be transferred across the interface by coupling between
the phonons of liquid helium and those parts of the
electronic wave functions that reach into the liquid
helium while decaying. The experiment was to apply a
10%-V/cm peak-to-peak ac electric field at the surface
of the specimen and search for a corresponding ac
component in the thermal flow across the boundary. To
within 1 part in 107, no such component could be
observed. As Gittleman and Bozowski* note, Pt has a
high work function (5.29 €V), and the effect would be
small in Pt in any case.

Figure 5 also shows the experimental Kapitza
resistances of polycrystalline gold (99.99%, pure) and
tungsten (99.95% pure) as determined by Johnson and
Little.! For W the function Rg=397T3%5 cm?°K/W is
plotted, and for Au the function Rg =8.073 cm? °K/W,
a mean value, is plotted. In both cases the estimated
uncertainty is 73%. Au is a particularly interesting
metal to study because, like Pt, Au forms no stable
oxides and its surface is likely to be clean. Therefore, if
electron-phonon interactions in the vicinity of the
surface are important in determining Rg, the effects

should be manifest in Au. W is an interesting metal
because according to the acoustic mismatch theory, it
is expected to have a very large Rgx by virtue of its
large M©Op®. In addition, the electron-phonon inter-
action in W is much stronger than in Au or Cu. The
ratio of the Rx’s of W and Au is expected to be 13
by the acoustic mismatch theory, and the data show
that the actual ratio is about 4.

Clement and Frederking®+4 have studied the Kapitza
resistance of silver from 1.40° to 2.10°K for large heat
currents. Their data, connected by a smooth curve, are
included on Fig. 5. In these experiments AT was taken
from about 0.15 to 1.3 K°. Thus, AT is commensurate
with T'; the usual condition AT<KT does not obtain.
For higher AT, the thermal flux /4 is no longer
proportional to AT, i.e., Rg itself becomes a function
of AT. The data points on Fig. 5 were obtained by an
extrapolation which gives Rg for small A7”s (of about
0.1 K°).

The behavior of thermal boundary resistance between
solids and liquid He IT as AT increases has important
technical applications. Particularly interesting from a
fundamental view are the boundary resistance when
AT is so large that the solid’s surface temperature is
above T, and the boundary resistance for AT near the
vaporization limit. Particularly interesting for cryogenic
technology is the maximum amount of heat that may
be transported across the boundary. Work on these
problems has been well reviewed recently by Fre-
derking.!

5. Silicon and Insulators

Figure 6 shows experimental results on the tempera-
ture dependence of Kapitza resistance for silicon and
for the dielectrics lithium fluoride, sapphire, and quartz.
The data on Si® were taken on polished and etched (111)
interfaces of very pure single crystals. An advantage of
studying Si is that samples with different known
dislocation densities may be obtained. The curve shown
for Si, Rg=35T"*% cm? °K/W, is in fact the value
obtained for two such samples with surface dislocation
densities which differed by a factor of 10%. This curve
may be taken as characteristic of almost perfect Si
crystals.

Some of the data of Figs. 4, 5, and 6 have been
plotted by Frederking,' in a recent review, in the form
hxT—3 versus T from about 1.2°K to T’ (Fig. 2 of Ref.
14). Included on this plot are data of Wey-Yen* for Ni
both before and after electropolishing.

The results shown on Fig. 6 for LiF,? Rg=23T"3%7"
cm? °K/W were taken on a characteristically smooth,
(100) cleavage plane for a single-crystal sample. LiF
is a good insulator and provides a solid in which, at the
temperatures of these experiments, thermal energy in
the solid resides entirely in the lattice and not in charge
carriers. The estimated experimental uncertainty in both
Si and LiF is about 73%.



Johnson® has reported a measurement of Kapitza
resistance of KCl taken on a crystal which was cleaved
under liquid He. This is an effective technique for
avoiding surface contamination. His result for a (100)
crystal-plane interface was Rg=12732% cm? °K/W in
the range 1.2° to 2.1°K.

There are many interesting problems associated with
thermal boundary resistance at interfaces between
insulators and liquid He II. Besides alkali halides, the
rare-gas solids seem especially well suited for such
experiments because they are molecular solids with
comparatively well understood intermolecular forces
and properties.®® The essential advantage of studying
Kapitza resistance at insulator interfaces is that the
absence of electrons simplifies the theory (Sec. III).
The essential disadvantages of insulators for these pur-
poses are the difficulties in measuring well-defined
temperature distributions in the solid when the thermal
conductivity is low or, at low temperatures, when the
phonon mean free paths are very long. Some insulators
may support second-sound® (i.e., phonon-density)
waves. In that case Rg might be measured by a method
analogous to Zinoveva’s but with the phonons impinging
on the solid side of the interface.

Gittleman and Bozowski** have measured Kapitza
resistance between 1.3° and 2°K for a single-crystal
sapphire rod, another substance with essentially no
free electrons at these temperatures. Their result,
Rx=44.1/T% cm?°K/W plotted on Fig. 6, compares
with a theoretically expected value of nearly 10%/73
cm? °K /W .3

Two experimental curves for Rg(T") of quartz are also
shown on Fig. 6. The higher values are data points of
Challis, Dransfeld, and Wilks® taken between about
1.4°-2.1°K on surface ground quartz. Their results are
from 25%, to 65% higher than the results of the experi-
ments of Wey-Yen? taken on ground and polished
quartz. His result for quartz, Rg=17.5773602 cm?
°K/W, is also plotted on Fig. 6 for comparison. As may
be seen from Fig. 6, the agreement between the two
sets of data is good, so that these results may probably
be taken as characteristic of quartz with ideal surfaces.
More recent experiments on surface properties of
dielectrics® use the technique of cleaving the specimen
under liquid He. This is a technique that might be
profitably applied to quartz also. Quartz is a dielectric
with a large thermal conductivity, so that the extra-
polation to get the temperature on the solid side of the
interface is short and convenient. According to the
acoustic mismatch theory, the Rg for quartz (0p=
470°K) should be about two and a half times that for
copper. A comparison with Fig. 2(b) shows that the
Rg’s for these substances are approximately equal,
taking account of the uncertainty of the data.

Brodie and Mate* have reported evidence for a sur-
face thermal boundary resistance between alumina
powder and gaseous helium during a study of heat

GERALD L. Porrack Kapitza Resistance 61

20 L B B B B B
- —=a— Challis, Dransfeld, 8 Wilks —
—— Gittleman & Bozowski
=\ e Johnson & Little
L —-— Wey-Yen -
16 |— ]
14— 3|' —
< \
S .
¥ \
NE 12 — \ —
= \
& \ .
w 3 .
S0 __\ LI‘F |
s \ \
% \
n Foov oA -
AN
< 81— —
2 \
o -
s\
6 f— |
L Sapphire
\
N\
4 |—
2 NS
- Quartz ~"~—._|
ol v 1y 1oy oy
110 1.20 140 160 1.80 2.00 220

TEMPERATURE T (°K)

Fi1c. 6. Experimental data on Kapitza resistance for Quartz—
He II, LiF-He II, Si-He II, and Sapphire-He II interfaces. The
data are from Refs. 4, 8, 9, and 34.

transfer, at helium temperatures, in gas-filled powders
as a function of gas pressure, temperature, particle size,
and load supported by the powder. They found that at
high pressures, say from 1-100 Torr, there was a
residual thermal resistance which could not be explained
as thermal contact resistance between the particles or
as resistance of the interstitial gas. This resistance has
features which suggest that it might be a Kapitza-like
resistance at the interfaces between the solid and the
gas. For example, the resistance is dependent on the
size of the particles as a boundary resistance should be,
its estimated temperature variation is T "(1<n<2),
and it is independent of pressure. The magnitude of the
resistance is given as 2.5:£0.5 cm? °K/W at 4.2°K.
The Kapitza resistance of a paramagnetic solid has
recently been measured by Glittli.#2 For our purposes,
a paramagnetic crystal may be considered as a combina-
tion of two communicating thermal reservoirs: the spin
system and the lattice phonons. Each of these systems
can be thermally excited and each has a specific heat,
respectively, Cspin and Clasice. The rates at which these
systems interchange energy with each other and with
a bath in which the crystal is immersed may be char-
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F16. 7. Experimental data on Kapitza resistance for Cu-He 1T
interfaces at 20 atm pressure. The data are from Refs. 4 and 7.
Other experiments on Kapitza resistance at high pressures are
reported in Refs. 6, 9, and 46.

acterized by relaxation times in the usual way. If the
bath has a spin system of its own, as liquid *He does,
then it may be possible for energy to be efficiently
exchanged across the solid-liquid interface between the
two spin systems (see Sec. II.B). Thus, the thermal
boundary resistance associated with this energy flux is
small. If the bath is liquid He II, then excess energy in
the spin system goes first into the lattice and then into
the bath by interaction, across the interface, of the
lattice phonons and the liquid’s phonons. With this
phonon energy exchange an ordinary Kapitza resistance
is expected.

Glittli? has used these ideas to measure Rx between
cerium ethylsulfate (CeES), a paramagnetic solid, and
liquid He II. In this solid Cspin>>Clattice, and there is a
very strong spin-lattice interaction (i.e., 7y is small).
Under these conditions the spin and lattice systems
attain equilibrium in a time very short compared to the
relaxation time between the lattice phonons and the
bath. When excess energy is put into the spin system
therefore, temperature equilibrium with the lattice is
established rapidly; then, both reservoirs lose energy
together to the He II bath via phonon—-phonon inter-
action across the interface. The relaxation for this
process is exponential and slow, compared to the usual
spin-lattice relaxation, and the relaxation time 7 is a
few milliseconds. This time 7 is simply related to Rg

in solids, such as CeES, in which Cepin>>Crattice and in
which the spin-lattice interaction is strong. The
relation is

7=Rg (heat capacity of solid)/(interface area).

Glittli*? measured 7 as a function of temperature and
magnetic field by exciting the spin system to excess
temperatures of only about 2 m°K with microwave
pulses. Since the spins and lattice are effectively in
equilibrium with each other, the spin temperature could
be used as the temperature of the lattice as well. The
spin temperature was determined sensitively by
measurement of the Faraday rotation of the plane of
polarization of visible light. This is a measurement of
solid temperature that can be made without explicit
recourse to the usual temperature extrapolation at the
interface. The data for CeES give Rg=307"%4 cm?
°K/W, between 1.4°K and 7). At 1.48°K, Rx was
found to be independent of magnetic field, at least up
to 7 kOe.

There are also measurements, by Griffiths,®® of the
temperature and magnetic field dependence of 7 for
PrES, a rare-earth ethylsulfate with related properties.
Using the model described and these measurements,
Glattli*? has calculated that RgRs347-24 cm? °K/W
for PrES at 6 kOe for temperatures between 1.4°K and
7. Comparison with experimental value of Rk for other
insulators on Fig. 6 shows that these values fall within
the right range. A related theoretical analysis of the
experimental data for PrES has also been given recently
by Atsarkin.*

Vilches and Wheatley® have estimated the thermal
boundary resistances between crystals of two magnetic
salts, CrK alum and FeNH, alum, and liquid *He at
very low temperatures. The estimates were made from
specific heat data on these salts. Their result is Rg~s
5073 cm? °K/W for CrK alum in the range 0.017°K <
T<0.035°K and also the same Ry for higher-tempera-
ture points of FeNH; alum in the range 0.023°K<T<
0.044°K.

6. Pressure Dependence

Figure 7 contains data on the Kapitza resistance of
Cu-He II interfaces at a pressure of 20 atm. According
to the acoustic mismatch theory,? the pressure depend-
ence of R is principally in the input acoustic impedance
of the liquid helium, p¢;. If p is the liquid-helium density
and ¢ is the velocity of first sound, then Rg o« (pcy)~.
Measurements have been reported of Rg as a function of
pressure up to 28 atm and from 0.3° to 2.0°K. According
to theory, the ratio Rx (at saturated vapor pressure) /Rx
(at 20 atm pressure)~21.7 in this temperature range.
We shall use this ratio as a convenient measure of how
well the experiments agree with theory.

The three lowest-temperature data points on Fig.
7 are measurements of Anderson, Connolly, and
Wheatley.” The data correspond to ratios of Rg from



1.11 to 1.06 in the range 0.7° to 0.9°K. A smooth curve
connects these data with the higher-temperature data
of Wey-Yen,* also shown on Fig. 7. Wey-Yen’s results
also reveal a much weaker pressure variation of Rg
than that predicted by theory, in agreement with the
lower-temperature data; some typical results for this
ratio are 1.14 at 1.20°K, 1.08 at 1.6°K, and 1.33 at
1.94°K.

These data are all in substantial qualitative agree-
ment with those of a thorough study of the pressure
variation of Rg between about 0.3° and 2.0°K of
Challis, Dransfeld, and Wilks.>4 Their results are not
plotted on Fig. 7 since Rx’s were obtained in arbitrary
units owing to uncertainty in calculating the interface
area. Typical values for the ratio of Rx’s from their
data® are 1.2 at 0.5°K, 1.05 at 1.1°K, and 1.0 at 2°K.
In general, then, all of the experimental data give
ratios of Rx significantly lower than the theoretically
expected value of 1.7.

The essential reason for the theoretically expected
sensitivity of Rx to pressure is that in liquid helium
the elastic properties, in particular the first sound
velocity, change rapidly with pressure. If the energy
exchange across the interface is principally through
phonon-phonon interaction, then the experimental
results show that the input impedance of the liquid
helium is not changing under pressure as much as
expected. This has led Challis, Dransfeld, and Wilks?
to propose that the input impedance presented to the
phonons of the solid is not that characteristic of bulk
helium, but rather characteristic of the more dense
helium layers near the interface. Recalculation of
Kapitza resistance using the new input impedance does
indeed lower the theoretical pressure dependence of Rx
so as to bring theory and experiment more in agreement.
This theory is discussed in more detail in Sec. IT1.B.2.

Andronikashvili and Mirskaia® have examined the
Kapitza resistance at a constantan-liquid-helium inter-
face at 8 atm from 1.6°K to just above the lambda
transition. They observed below T} that the Rg at this
pressure is 10-20 times smaller than Rx at the saturated
vapor pressure. No explanation as to why these results
differ so sharply from other experimental results is
available.

Equation (2) shows that in the acoustic mismatch
theory the principal dependence of Rx on elastic
properties of the solid appears in the product psc?. We
have already examined the temperature and pressure
dependence of experimental Rx’s in some detail. We
have also studied the dependence of Rx on elastic prop-
erties of the solid by examining the proportionality
Rg o« MOp? for several materials.

We have shown several examples of the poor agree-
ment between experimental measurements of Rx and
the prediction, of the Khalatnikov acoustic mismatch
theory, that Rg should be proportional to 6p% In a
recent letter, Challis¥ has shown by analysis of existing
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experimental data that Rx has approximately linear
proportionality to ©p. An important difficulty in finding
the dependence of Rx on Op, or on any other property,
in this manner is the very wide spread in observed
values of Rx for each material. Challis¥ chose the
highest observed values of Kapitza conductance iz,
i.e., the lowest values of Rg="%x!, as most representa-
tive of the value for the pure material. His plot of
log kx versus log ©p for 14 substances, metals and
nonmetals, at 1.5°K showed that the data could be
fitted approximately by the curve Rx=6p"%/80 cm?
°K/W. There was no significant difference between
metals and nonmetals. This suggests again that there
is some mechanism for energy exchange across the
interface which predominates over the usual acoustic
mismatch energy exchange.

Neeper® has similarly examined experimental values
of Rg, extrapolated to 1°K, as a function of M6p® for
several solids. Comparison with the acoustic mismatch
theory shows that the Rg of Eq. (2) comes closest to
experimental values at low M0p?, e.g., for Hg, In, and
Pb. Even in this region the agreement is only to within
an order of magnitude.

It is important to understand, however, that the
quantitative dependence of Rx on Op is still not certain.
Frederking! has plotted values of 4xT~? as a function
of Op for several metals and for silicon. The range of
Op is from about 70° to 660°K. For each substance, i.e.,
for each Op, there is wide variation in Rk so that any
fit of the data is necessarily approximate. Frederking
found that a curve of the form Rg=5X10"'0p?T*
cm? °K/W gave an order-of-magnitude fit to the data.
However, a curve of the form Rg=10773, i.e., entirely
independent of Op, could fit the given data as well
(Fig. 4 of Ref. 14).

It is also possible to examine the dependence of Rx
on elastic properties directly by comparing Rx and
pscd for several materials. If we write Rg=aT"° we
expect that e=pgc?, so that a plot of experimental
values of a! as taken from Rx data versus pscd as
known for crystals of each of the materials investigated
should give a hyperbola of the form (a7)(pscs) =
const, if the theory is correct. Wey-Yen* has done
essentially this. He has written Rx=a7" and plotted
aY versus pscd for his data on Pb, Sn, Pt, Cu, quartz,
and Ni, and for Kapitza’s! data on Pt. His study shows
that over a factor of 20 in pgc?, &' is experimentally
found to be essentially independent of pgcs. This
disagreement with theory is somewhat offset by allow-
ing for the difference in elastic constants between the
experimental materials and perfect crystals, especially
since their surfaces may be deformed. Indeed, Wey-
Yen* showed that the values of a* obtained for electro-
polished Pb and Ni do fall closer to the theoretical
hyperbola.

Grassman and Karagounis® have studied what
happens at the interface between a metal wire and He I
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F16. 8. (a) Experimental data on Kapitza resistance for: Cu-liquid-*He, Cu-solid-*He, Epibond 100-A-liquid-*He, and Formex-
insulated-Cu-wire-liquid-*He, interfaces. The data on Cu-liquid-8He and Cu-solid-8He interfaces are taken from Ref. 7, the data on
the Epibond 100-A-liquid-*He interface are taken from Ref. 58, and the data on the Formex-insulated-Cu-wire-Liquid-? He interface
are taken from Ref. 60. The curve for theory comes from Eq. (3) applied to a Cu-liquid-*He interface, as calculated in Ref. 7. It is

discussed in Sec. ITI.C.

(b) Experimental data on Kapitza resistance for Cu-liquid-*He and Cu-solid-*He interfaces. The data re-

presented by the unbroken curves are taken from Ref. 7. The points marked X are data points of Refs. 53 and 54 on Cu-liquid-*He
interfaces, and the broken curve is a rough fit to these data. The curve for theory comes from Eq. (2) applied to a Cu-liquid-*He
interface, as calculated in Ref. 7. It is discussed in Sec. ITI.C. [Notice that (a) and (b) are drawn to different scales.]

when the A7”s and thermal power fluxes become large.
For AT <0.6°K, heat is carried away from the metal
surface by free convection of He I. In this convection
region @ is proportional to AT over most of the range
of AT, and the effective heat transfer resistance across
the boundary is 1-10 cm? °K/W. For AT’s somewhat
larger than this a transition region is observed between
free convection and film boiling. In the transition region
boiling is nucleated at the surface of the wire, and the
heat transfer becomes much more efficient than for both
smaller or larger AT”s. Since nucleated boiling is such
an efficient way to transfer energy, the transition region
has the lowest effective thermal boundary resistance.
For very high AT, i.e., 10°<AT<720°K, the wire is
entirely covered by a film of vapor, the heat transferred
is limited by the thermal conductivity of the vapor,
and @ is again proportional to AT. The effective
boundary resistance here is of the same order of magni-
tude as in the convection region.

A more recent study of the maximum dissipation
rates of wires immersed in liquid helium has been
performed by Frederking and Haben.®® These workers

report details of the experiments and results and give
further references to work on related problems.

B. Interfaces Between Solids and Liquid *He

The first observation of thermal boundary resistance
was at an interface between a solid and liquid He IT, i.e
superfluid “He. The early theories of the effect were
based on the two-fluid model and superfluid hydro-
dynamics of He II. In 1957, Challis and Wilks' were
led by an experiment to suggest that a thermal boundary
resistance of the same kind might exist at the interface
between a solid and liquid *He. These workers measured
the thermal conductivity of liquid *He between 1.3°
and 3.0°K in an apparatus in which the bulk thermal
resistance of the *He was measured in series with two
interfaces between Cu and liquid *He. They noticed
that their results®® fell about 109, below thermal
conductivity measurements of Lee, Donnelly, and
Fairbank® which would have been unaffected by
boundary resistance and suggested that the discrepancy
was due to thermal resistance at the interfaces of the
Cu and liquid *He.



It is now known that there is a thermal boundary
resistance at the interface between a solid and liquid
SHe of the same order of magnitude as that at the
interface between a solid and liquid He II. Both are
defined by Eq. (1) and both will be called Rg here.
The results of experiments on the temperature and
pressure dependence of Rg between liquid 3He and some
solids are shown on Figs. 8(a) and 8(b).

Later theories of Kapitza resistance, in particular
those of Khalatnikov,2 and Bekarevich and Khalat-
nikov,’ relate the temperature discontinuity to the
acoustic mismatch between the two sides of the inter-
face. In this model a thermal resistance should be found
at the boundary between any two substances, in partic-
ular at interfaces between solids and liquid *He and at
solid-solid interfaces. Application of this theory to
interfaces between solids and liquid *He at sufficiently
low temperatures gives the result®

_ Sh¥pscim 3)
8wk ppd aF (c1/cr) +b®(c1/c) IT?

In this equation, p is the density of liquid 3He, # is the
atomic mass of *He, p, is the momentum of the excita-
tions at the surface of the Fermi sphere, & is a function
of the ratio of the velocities of longitudinal and trans-
verse waves in the solid, and ¢ and & are constants.
Notice that Eq. (3) is very similar to Eq. (2) except
that ¢, of Eq. (2) is replaced by p./m, the Fermi
velocity. Equation (3) is derived using the Fermi liquid
theory of *He and may be expected to hold only for
T'<0.2°K. In this region the thermal energy enters the
SHe as zero sound.®? At higher temperatures the thermal
energy is transferred across the interface by phonons,
in liquid *He as well as in liquid “He, the energy exchange
is limited by acoustic mismatch, and the boundary
resistance is given by Eq. (2) for both substances.

In this section we shall discuss the experimental
work which has been done on thermal boundary
resistance in liquid ®He. The relevant theories will be
discussed in more detail in Sec. III.C.

The experiments and theories must both be carried
through in different ways and give rather different
results depending on whether liquid He IT or liquid
He is involved. The principal experimental difficulty
is that liquid *He itself has a thermal resistance due
to its finite thermal conductivity, at least at all tem-
peratures investigated so far. This thermal resistance
is inevitably in series with the Rg. A typical meas-
urement of Rg in liquid ®He therefore involves an
apparatus different from that in Fig. 1; the steady-
state temperature gradient in the liquid must be
measured with two or more thermometers, and the
interface temperature on the liquid side must be
extrapolated. Since liquid *He has both a high specific
heat and a low thermal conductivity, the time re-
quired to attain equilibrium is long. In addition, the
low thermal conductivity of liquid *He allows some

Rg
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of the thermal energy to flow down the sides of the
tube which encloses it, thus changing the thermal
gradient and effective interface area. The thermal
conductivity of liquid ®He is proportional to 71!
below about 0.2°K so that this correction becomes
unimportant at low enough temperatures.

The first measurement of thermal boundary resist-
ance for interfaces between a solid and liquid 3He is
that of Fairbank and Lee.%5 These workers measured
Rg(T) for Cu-liquid-*He interfaces from 0.26° to
1.7°K. Their data are plotted on Fig. 8(b) along
with the smooth curve Rg=130/T2 cm? °K/W which
they obtained as a rough, order-of-magnitude fit. The
large scatter in the data points gives an indication
of the difficulty of the experiment and the associated
uncertainties.

These measurements have been criticized by Jeener
and Seidel® on the grounds that a large fraction of
the heat would flow from the Cu interface down the
wall of the containing tube before flowing into the ‘He.
Since Fairbank and Lee%% used only two thermom-
eters, both in thermal contact with the tube, and
since there is also a Kapitza resistance between the
tube and the %He, the temperature distribution in
the *He may be different from that measured. Jeener
and Seidel® calculated what the temperature distri-
bution in the liquid would be with their corrections
and concluded that Fairbank and Lee®% had under-
estimated Rx by a factor of 3 to 4 at 1°K and 7 to 14
at 0.25°K, and that the actual temperature depend-
ence may be close to 73, in agreement with theory,
instead of 72. Challis" has pointed up the importance
of thermal boundary resistance and the associated
temperature discontinuity at the soldered interface
between the Cu plug and the containing tube. In-
cluding this temperature discontinuity in Jeener and
Seidel’s’™ analysis is difficult, and it is now thought
that its inclusion makes their correction small.

A thorough investigation of the temperature and
pressure dependence of Rgx at interfaces between
99.9999%, pure, annealed, electropolished Cu and liquid
SHe has been carried through by Anderson, Connolly,
and Wheatley” as part of a search for zero sound.
Their curve on Fig. 8(b) represents the best experi-
mental data in this region and is to be compared to
the theoretical curve. Their experiment includes many
important and interesting features. For example, their
measurements are not open to the earlier criticism®
since the *He came in thermal contact only with Cu
and a nylon post which has negligible thermal con-
ductivity. The interface area was well defined and
the AT’s generally were small, about 2 m °K. For
these AT”s, the thermal boundary resistance was
found to be independent of . Several of the results
of this investigation are shown as smooth curves on
Figs. 8(a) and 8(b).

The curve on Figs. 8(a) and 8(b) showing Rx(7T')
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measured’ for the interface between Cu and liquid
*He at 1 psi has several interesting properties: below
about 0.11°K, Rgo< T to within the experimental
uncertainty, shown by the error bar. Above 0.11°K,
Rk falls off more rapidly than 7% with increasing
temperature. In these experiments, Rx was measured
in series with a very thin (=0.01 cm) layer of liquid
‘He, whose bulk thermal resistivity becomes signifi-
cant for these measurements above 0.35°K. The curve
at 1 psi was corrected for this effect, but the other
curves could not be so corrected; thus, the results
for Rx become imprecise in the neighborhood of, say,
0.50°K. Comparison of the 1-psi curve with the data
points of Fairbank and Lee®® on Fig. 8(b) shows
that the agreement is satisfactory from about 0.3°
to 0.5°K. Above 0.5°K, the latter Rg’s are larger.

The temperature dependence of Rx between Cu
and liquid *He at 96 psi was determined’ from about
0.055° to 0.12°K, and the results are shown on
Fig. 8(a). To within the experimental uncertainty,
about the same as at 1 psi, Rg« 73 throughout the
range investigated. The temperature dependence of Rx
between Cu and liquid *He at 395 psi was measured
in the same experiment’ from about 0.07° to 0.6°K.
A smooth curve extending up to 0.40°K through the
uncorrected data is shown on Figs. 8(a) and 8(b).

Figures 8(a) and 8(b) also show Rg(T) from
0.07°K measured’ for the interface between Cu and
solid *He. The solid *He was formed at 645 psi and
was in the bcc phase. Qualitative observations of Ry
for liquid and solid *He under pressure were reported
earlier® as part of a study of the specific heat of *He
under pressure.

Examination of these curves shows that Rg(7T) at
the interfaces is proportional to 7 from 0.055° to
0.11°K, independent of pressure. This agrees with
the theoretical temperature dependence of Egs. (2)
and (3). An abrupt change in this temperature de-
pendence occurs above 0.11°K. However, this change
is probably not associated with production of zero
sound.

Although the temperature dependence is in some
agreement with theory, the magnitude of Rgx for
liquid *He is in poor agreement with theory. The
experimental Rg’s determined in these experiments
for interfaces between Cu and liquid *He are about
10 times smaller in the low-temperature region than
given by Eq. (3) and 60 times smaller in the high-
temperature region than given by Eq. (2). Thus, the
theories of Khalatnikov? and Bekarevich and Kha-
latnikov® appear to describe the experimental situation
better as the temperature decreases.

Just as in the case of liquid He II, the theories
predict more pressure dependence of thermal boundary
resistance than is actually found. Theory, both in
the low- and high-temperature regions, gives a ratio
of Rg at 1 psi to Rx at 395 psi of about 3, but the
experimental ratio is close to 1.6 (Sec. III.C).

In these experiments Anderson ef al” also found
an irreversible pressure effect in Rx for liquid 3He
similar to the one reported in their measurements
on liquid ‘He. When the pressure over the liquid
SHe was raised from 1 psi to 395 psi, the Rx decreased.
But when the pressure was returned to 1 psi from
395 psi, Rg did not return to quite its original value.
The effect was undetectable below 0.3°K in liquid
SHe and is probably associated with some irreversible
change in the surface.

To the extent that acoustic mismatch theories are
correct, studies of Rx give a measure of the acoustic
impedance of liquid *He to thermal phonons. An
interesting experimental determination of the imped-
ance of liquid *He to acoustic phonons of 1000 Mc/sec
has been reported by Keen, Matthews, and Wilks 5
also as part of an attempt to detect zero sound. This
frequency is of the order of magnitude of the fre-
quency of thermal phonons at 0.02°K. These workers
measured the reflection coefficient for such phonons
impinging on the quartz side of a quartz-liquid-*He
interface. Since the reflection coefficient » is simply
related to the ratio of acoustic impedances by
(1—7)/(147) =Zge/ Zquarts, they were able to deter-
mine Zg. in their experimental temperature range
from 0.03° to 0.6°K. Their data show that Zg./p is
about 183 m/sec above 0.09°K with an abrupt rise
to about 202 m/sec below 0.09°K.

Included on Fig. 8(a) are curves showing the
results of two lower-temperature measurements of Rg
at interfaces between solids and liquid *He. In these
experiments the solids were not so well characterized
but in both cases Rxo<7—® was in agreement with
the other low-temperature findings and with theory.
Anderson, Salinger, Steyert, and Wheatley®® have
measured Rg(7T) from about 0.01° to 0.40°K for an
epoxy resin, Epibond 100-A, cell wall in contact with
liquid ®He. In this experiment, measurements were
taken upon cooling and warming the cell, i.e., the
heat flux went both ways, from ’He into the solid
and from the solid into ®He. They observed that the
rate of heat transfer was proportional to the difference
in the fourth powers of the temperatures; this means
Rg T3 From their data we calculate that Rg=
34.7/T% cm? °K/W for this interface. This is the
equation for the curve of their results plotted on
Fig. 8(a). Epibond 100-A has a density of 1.17 g/cm3
and the velocity of sound in it may be estimated
as 3X10° cm/sec.’®

Another study of Rx between liquid *He and Epi-
bond 100-A has been described by Salinger,”® who
measured the total thermal resistance extending across
three interfaces in series between liquid *He and
chrome alum. By estimating two solid-solid boundary
resistances, i.e., R (Epibond 100-A to Cu) and R (Cu
to chrome alum), he was able to get an indirect meas-
ure of Rx between liquid *He and Epibond 100-A
at 0.03°K, as a function of pressure up to 32 atm.



Typical results (from Fig. 16 of Ref. 59) are: For
P=0 atm, Rg=20/T%cm? °K/W, for P=16 atm,
Rxg=17/T3%, and for P=32 atm, Rg=7/T% These
values are subject to uncertainties due to the estima-
tion as well as to experimental scatter. As part of
the same study, the boundary resistance between solid
%He and Epibond 100-A was estimated as Rx=s2/T*
cm? °K/W near 0.03°K.

The results of measurements of Anderson, Salinger,
and Wheatley® on Rx(7") from about 0.026° to 0.04°K
for interfaces between Formex-insulated Cu wires and
liquid ®He are also shown on Fig. 8(a). The result
is plotted as Rxg=67/T% cm? °K/W.

There have been important qualitative data ob-
tained by Wheatley® and Abel et al.,®? of an anom-
alously low thermal boundary resistance between
cerium- magnesium nitrate (CMN) and pure liquid
SHe, in experiments between about 2 and 15 m°K.
These workers noticed that the thermal relaxation
time of a mixture of powdered CMN and liquid *He
was anomalously short and the temperature depend-
ence was different from the 75 or 72, depending
on temperature, which is expected if the usual Rg o 73
were present at the boundaries. The Rx they obtained
for this interface is only qualitative since it involves
an estimate of the total interface area, etc.? The
value at 2 m°K is about 200 times smaller than the
extrapolated value of Rx for an epoxy-liquid *He
interface shown on Fig. 8(a). This anomalously low
boundary resistance has far reaching practical con-
sequences for low-temperature experiments, and there
is much interest in understanding why this Rx is so
small. A conjectured answer is that the resistance is
so low because energy may be rapidly transferred
across the interface between the spin system of the
liquid *He and the spin system of the CMN.% This
is reasonable for this case for special reasons: First,
the heat capacity of CMN at these temperatures
results from spin interactions. In addition, recent
theories which treat liquid *He as a nearly ferromag-
netic Fermi liquid and in which persistent spin fluc-
tuations in the SHe are important give good quali-
tative explanations relating to transport properties
of liquid *He.%:64

III. THEORIES OF KAPITZA RESISTANCE

A. Theories Based on the Two-Fluid Model of He II

The first theoretical approaches to the problem of
Kapitza resistance were in terms of the two-fluid
model of He II, since the first measurements! of the
effect were made between solids and He II. This
model had successfully quantitatively explained many
other phenomena in He II, such as the Fountain
effect and first and second sound.® It is still a re-
markably accurate model, based on quantum-mechan-
ical first principles, for study of properties of He I1.%
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These theories of Kapitza resistance are therefore of
interest for themselves as well as historically, even
though they are rather qualitative and do not explain
the experiments. They were discussed by Daunt and
Smith in an interesting early review of liquid-helium
problems.%”

Since the observation of Kapitza resistance between
solids and liquid ®He% it has become clear that
the special two-fluid properties of He II play only
a small or negligible part in Kapitza resistance in
He II. A comparison of Rx between copper and He II
and between copper and liquid *He in the temperature
range from about 0.1° to 0.6°K at low pressure may
be obtained from examination of Figs. 2(a) and 2(b)
with Figs. 8(a) and 8(b). This comparison shows
that the Rg’s for the two cases are the same to well
within the experimental uncertainties in this tem-
perature range. Unfortunately, the ‘He data are not
sufficiently precise to afford good comparison at higher
temperatures. It is from measurements at higher tem-
peratures, say above 1.2°K, that more direct knowl-
edge of the two-fluid model contribution can be ob-
tained. Although He IT is in a sense pure superfluid
below 0.6°K, the long mean free paths for excitations
control its thermal conductivity, and the superfluid
properties are just not manifest in the same way as
at the higher temperatures.

Another good test of the importance of two-fluid
effects is an experimental study of the temperature
dependence of Rx from below T3 to above it. In this
range the superfluid properties of liquid *He change
dramatically, but the acoustic impedance changes
only slightly except in the immediate region of the
lambda transition. Precise experimental data of this
kind are very difficult to obtain since in He I thermal
conductivity, as well as convection currents, must be
considered in measuring AT

The theory of Gorter, Taconis, and Beenakker®® is
an analysis of thermal boundary resistance in terms
of the two-fluid model under these three assumptions:
(1) Thermal energy flow into liquid He II from
a heated solid wall can be described as Q/4=—AVT,
in which X\ is a thermal conductivity of bulk He II,
(2) temperature is continuous at the boundary be-
tween the solid and He II, and (3) the interconver-
sion of normal fluid and superfluid components takes
place at a finite rate. The idea was that in the steady
state some thermal flux @/4 enters the He II from
the wall which is at temperature T+A7T, compared
to the temperature 7T, of the bulk He IT far away
from the wall. Near the wall superfluid is being con-
verted to normal fluid at a finite rate so that the
temperature falls off exponentially, in distance, from
T0+AT to T 0.

The situation is described by two equations. If nor-
mal fluid of relatively density p,/p in equilibrium at
T, flows into a region where the temperature is T,
and the rate of increase in p,/p is taken as a(T—TY),
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then the equation for conservation of normal-fluid
density in the steady state may be written

(V+paVn/p) +a(T—To) =0. (4)

In this equation « is a rate constant and v, is the
normal-fluid velocity. The equation for conservation
of energy for the two-fluid model under these assump-
tions may be written

pTSv,—\VT = const. (5)

The term p7'Sv, is the energy flux associated with
convective flow of the two fluids, and § is the en-
tropy per gram of bulk He II. Actually the formula-
tion of Gorter et al.%® is in terms of the Gibbs free
energy G(p, T, pn/p), and in that case the energy
conservation equation involves derivatives of G. Equa-
tion (5) has been simplified by using®

¥G_____as (pu/p)3S
3(pn/p)0T  3(pu/p) dpa/p)

In the case of heat flow from a plane solid surface
into a He IT bath, Egs. (4) and (5) are just one-
dimensional equations. Let z be the coordinate per-
pendicular to the wall; then differentiating Eq. (5)
with respect to 2, neglecting higher-order terms, and
eliminating dv,/dz from Eqgs. (4) and (5) gives

Md*T/dz) + (»*T Sat/pn) (T —To) =O0.

(6)

The solution for 7'(z), the steady-state temperature
distribution, is then given approximately by

T(2) —To=AT exp (—2z/9), N
with
8= (pa\/ T Scr)*2. (8)

The T which appears in Eq. (8) is to be taken as
an average temperature between 7, and To+AT.
According to this model, Egs. (7) and (8) show that
the temperature difference falls off exponentially with
a characteristic length § which depends on A and «.

The XKapitza resistance at a boundary between
a solid wall and He II as defined by Eq. (1) becomes

- =l ()T )
T —A(dT/dz) ey N \p*TSo

and depends on the product aA.

It is now known that the assumptions on which
this model is based do not describe the real physical
situation. Liquid He IT in the temperature range of
interest will not support a temperature gradient, and
heat flow in it normally takes place through second-
sound waves instead of by thermal conduction. This
means that the thermal conductivity A cannot be
defined in the usual sense.® It is also now thought
that the temperature is discontinuous at the boundary
because of acoustic mismatch between the solid and
He II, as we shall discuss in Sec. III.B. In addition,

Rx

modern experiments?®?* show that the Kapitza resist-
ance between a solid wall and a He II film is about
the same as for bulk He II, so that any characteristic
length & would have to be smaller than the film thick-
nesses. Starting with Kapitza’s original work,! direct
experimental attempts to find a surface layer in bulk
He IT in which the temperature difference takes place
have not been successful.

The theory of Kronig, Thellung, and Woldringh™:"
is an analysis of thermal boundary resistance which
depends on the viscosity of the normal fluid as well
as its thermal conductivity. In the earlier work Kronig
and Thellung™ showed that according to the two-fluid
equations, liquid helium could support four kinds of
waves near material boundaries. Starting from the
equations of motion of normal fluid and of super-
fluid and the equations of conservation of mass and
energy, expressions for the four complex wavenumbers
k(w) could be found as functions of frequency and
properties of He II. The first two wave modes were
first and second sound, respectively, and the fourth
mode is a viscosity wave that is also found in ordinary
liquids. However, their third wave mode becomes
important near boundaries and interests us here.

In the very-low-frequency limit and at temperatures
for which neither pgyper DOr p, are too small, the
square of the wavenumber of this interesting mode
becomes [Eqgs. (42) and (43) of Ref. 70]

k2Kr—Th% _'Pnp2c22cV/ Psupernnxnn ( 10)
In this expression Cy is the specific heat per unit
mass at constant volume of bulk He II; A\, and %,
are, respectively, the thermal conductivity and the
viscosity of the normal fluid component; psuper is the
superfluid density. The wavenumber for this case,
kxr—Tn, is large in magnitude and pure imaginary,
so that any excitation of the mode damps out in
a distance of 107% or 1078 cm.

Waves in the mode described by Eq. (10) are
essentially a surface phenomenon and would be a nat-
ural energy sink near interfaces. Indeed in subsequent
work, Kronig” showed that excitation in this mode
could be responsible for a temperature discontinuity
at the interface when thermal energy at vanishing
frequency flows from a solid into He II.

Kronig et al™* generalized this treatment to take
account of the finite conversion rate between normal
fluid and superfluid of Gorter et al.® Their work
includes the combined effects of viscosity, thermal
conductivity, and a finite relaxation time = which
characterizes the conversion. Since the two-fluid equa-
tions in this formulation are in terms of the Gibbs
function G, this relaxation time may be elegantly
included. However, the new expression corresponding
to Eq. (10) for A’k,_rn includes partial derivatives
of G which must be estimated [Eq. (75) of Ref. 71].

The result for the temperature distribution near



the interface is the same as Eq. (7) except that there
is a new expression for the characteristic decay length.
In the result of this treatment,” § of Eq. (7) is re-
placed by (82-+42)12, where

°G 2
o2 T
VARGl FIPWASTTY (D
and
17 82G
) 2=-—-)\,.1/p(6—T2> T. (12)

The contribution of 8’ is due to the excitation of
Kronig and Thellung’s™ wave mode of Eq. (10), and
the contribution of 8/, which is proportional to 7!/2,
arises from the finite relaxation time. From meas-
urements of the frequency and temperature depend-
ence of first-sound velocity and attenuation, 7 was
estimated to be less than 1072 sec.”

B. The Acoustic Impedance Theory for Liquid ‘He
1. The Work of Khalatwikov and of Mazo and Onsager

The theories which come closest to quantitatively
explaining the experimental measurements of Kapitza
resistance, discussed in Sec. II, are those based on
the acoustic impedance or acoustic mismatch theory.
This explanation was first put forth by Khalatnikov?
and later, independently, by Mazo and Onsager.”
It is important to keep in mind that values of Rg
calculated from this theory are characteristically
higher than experimental Rg’s, usually by an order
of magnitude.

The idea is easy to explain qualitatively.”® In a typ-
ical solid the velocity of sound is an order of mag-
nitude higher than in liquid He. Therefore, the phonon
momenta are very different in the solid from in the
liquid He at the same temperature. Phonons imping-
ing on the interface cannot pass freely across since
energy and momentum cannot be conserved at arbi-
trary angles of incidence. The transfer of phonon
energy across the interface is thus impeded, and this
impedance is reflected in a temperature jump at the
interface whenever thermal energy is transported
across it. Khalatnikov’s original paper? is a clear and
elegant analysis of this idea, so we examine it in
some detail.

Khalatnikov? considered a solid at temperature 7
in contact with liquid He II at a slightly lower tem-
perature 7'. Heat exchange between the two can be
effected in two ways: (a) Emission of energy of lat-
tice vibrations from the surface of the solid, i.e.,
radiation of phonons and rotons and (b) transfer
of energy upon collision of phonons and rotons with
the solid wall. First the energy flux and Kapitza
resistance associated with radiation are considered.
This part of the problem has also been treated in
essentially the same way by Mazo.”
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Suppose that the interface is the plane z=0, that
2>0 is filled with liquid He IT and 2<0 with some
isotropic solid. If the solid surface undergoes small
oscillations whose displacement may be described as
#,(w), i.e., oscillations perpendicular to the interface
and of frequency w, the rate at which energy will be
radiated into the liquid He II is given by*™

W, 1) =pe [ l0a0) Pa4,  (13)
the integration is over the interface area. Equation (13)
applies when the wavelengths of the emitted excita-
tions are small compared to the dimensions of the
solid. The corresponding energy flux for a sufficiently
large plane interface is then

W(w, T) /A =per | te(w) . (14)

The oscillations of the solid surface %,(w) are mani-
festations of normal lattice vibrations of the solid
(Debye waves) or phonons which are excited in
a broad range of frequencies. At these low tempera-
tures we shall be especially interested in long-wave-
length phonons.

The net energy flux from the solid to the liquid
radiated over all frequencies, Q:aa/4, can be calcu-
lated directly. Direct calculation of the energy ra-
diated by the liquid into the solid is more difficult
but, since the two fluxes are equal at equilibrium
(when T=T"), we may take the latter flux to be
the same function of temperature as the former.

For T=T'?

Qrad/A=W(TI)/A—W(T)/A
- / (—W—%—Q) [a(T") —n(T) Jdra, (15)

where the integration is over frequency space, and
n(T) =[exp (fiw/kT) —1] is the Bose—Einstein dis-
tribution function for phonons. Equation (15) is in
the form of a difference, i.e., energy flux radiated
over all frequencies from the solid into the liquid,
W(T")/A, minus energy flux radiated from the liquid
to the solid, W(T)/A. Since the radiated fluxes are
the same function of temperature, we shall have to
calculate the function only once.

The major problem in finding how much energy is
radiated into the liquid is then to find the motion
of the interface due to lattice vibrations. Khalatni-
kov? and Mazo™ consider normal oscillations of the
surface resulting from three kinds of lattice waves:
longitudinal waves impinging on the surface from the
solid (which give a displacement u.;), transverse
waves with displacement #,,, and surface waves with
displacement #,,. Each of these contribution is dis-
cussed briefly. Each |4, |* gives a contribution in the
form of the integral in Eq. (15), and from the net
thermal flux the Rx may be calculated. We shall be
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concerned here only with radiation of phonons and
neglect radiation of rotons, because the excitation of
a roton requires a minimum energy A/k=8.7°K.%
At He II temperatures, phonons energetic enough to
excite rotons are rare.

First, the effect on the solid surface of a longi-
tudinal displacement plane wave which impinges on
it from below is considered. In general, both a longi-
tudinal and a transverse plane wave will be produced
upon reflection from the surface. If the x—z plane is
the plane of incidence, then it is also the plane of
reflection and the plane in which the longitudinal
and transverse oscillations take place. The full dis-
placement vector of the incident and reflected waves
in the solid may be written?

u(r, £) =[Aong exp (tko+1r) +4:n;
X exp (ik;-r)+4,(n,xe,)
X exp (ik; 1) Jexp (—iwt). (16)

The coefficients 4o, A;, and 4, are amplitudes, re-
spectively, of the incident longitudinal wave, the
reflected longitudinal wave, and the reflected trans-
verse wave. The vectors ng, n;, n, and ko, k;, k; are
correspondingly unit vectors in the propagation di-
rections and wave vectors. The magnitudes of these
wave vectors and the associated angles of incidence
(60) and reflection (6; and ;) are determined by the
elastic properties of the solid. If ¢; and ¢, are defined
as the velocities of longitudinal and transverse waves,
ke=ki=w/ci;, ki=w/c, and

Go=0;, 17)

¢, sin fp=c; sin 6,.

Since ¢; is usually smaller than ¢; the transverse
wave is reflected closer to the normal than the lon-
gitudinal wave.

The ratios A;/A4o and A,/A, are now determined
from the boundary conditions. Since liquid He IT
has a small density (p=~1/7 g/cm?) compared to sol-
ids, the appropriate boundary conditions may be
taken as those for a stress-free interface between
a solid and a vacuum. These are that the normal
component of displacement and the normal compo-
nents of the stress are continuous at the interface.”™

Expressed in terms of the stress tensor o4, the
stress boundary conditions are o1 =0. For our prob-
lem this becomes ¢,,=0,,=02 When the boundary
conditions are applied to Egs. (16) and (17), the
amplitudes of the reflected longitudinal and trans-
verse waves become?

¢ sin 26, sin 20p—c2 cos? 26,

A=A
P02 sin 26, sin 260+c22 cos? 20,

(18)

2¢:ic; sin 26, cos 26,

A,=—4 .
¢ 0 ¢ sin 20, sin 20p-+c? cos? 260,

(19)

Mazo™ has used somewhat different boundary con-

ditions. There is a normal stress at the boundary
equaling the reaction of the liquid to compression,
ie., if x is the compressibility of the liquid and AV/V
is the relative volume change of the compressed liquid,
then o.,=—x1(AV/V). In this formulation the liquid
is characterized by its density, compressibility, and
velocity of sound waves. The equations of motion of
the longitudinal and transverse displacements in the
solid then become elegant connections between the
displacement vector and the stress and strain tensors.
Equations analogous to (18) and (19) are then de-
rived by considering solutions to the equations of
motion.

If Egs. (18) and (19) are substituted back into
Eq. (16) to find the normal displacement #,; at the
surface, 2=0, the result is

uzz(w)
2¢? cos Oy cos 20,

=4 . ol
0 ¢ sin 20, sin 20p-+c? cos? 20, xp (—iwt)

(20)

To make the connection from lattice waves to
phonons, Khalatnikov? sets the total energy (i.e.,
twice the kinetic energy) of the incoming plane wave
equal to 7w, the phonon energy. Then,

/ps[uz]2st=ps|Ao|2w2Vs=ﬁw, (21)

from which

| 4o| = (/pswVs)', (22)

where the integral is taken over the solid volume.™

Finally we have for |, (w) |, the absolute mag-
nitude of the normal surface velocity due to longi-
tudinal waves,?

qul(w) l
_ ( fiw )1/2 2¢ cos Oy cos 20,
N osVs ¢ sin 20, sin 260+c2 cos?® 26, |

When substitued into Eq. (14), this will give the
contribution of longitudinal waves in the solid to
W(w, T)/A.

Transverse displacement plane waves in the solid
may be treated in an analogous manner. Since we
are concerned only with oscillations in the z direction
of the interface, we may confine our interest to trans-
verse waves whose displacements are in the x—z plane,
the plane of incidence. As before, we call the am-
plitude of the incident transverse wave A4, and the
angle of incidence 6. Upon reflection there will be
generated a longitudinal wave with amplitude 4; at
angle 6; and a reflected transverse wave with am-
plitude 4, at angle 6,. The connections between the
angles for the incident transverse wave case are

0():05,

(23)

¢; sin §;=c; sin 6o, (24)

analogous to Eq. (17). Since generally ¢.<c;, Eq. (24)



may give sin8;>1 for some sin f,, and hence cos 6,
becomes imaginary. This means that the reflected
longitudinal wave travels along the interface and is
exponentially attenuated. Just as in the longitudinal
case, the boundary conditions make determination of
Ai/Ao and A,/A, possible. From these, the displace-
ment at the surface due to transverse waves, #.:(w),
may be calculated. After quantization in the manner
described above we have?

I uzt(‘*’) |

( e \12
- PsVs)

The third source of excitations in the solid for
radiation of phonons into the liquid is surface dis-
placement waves, i.e., Rayleigh waves. Associated
with these are surface displacements in both the
longitudinal and transverse directions, i.e., #,, and 2.,
a velocity csurt=£(ci/c1) ¢ in which £(c./c1) s a func-
tion of the velocity ratio,” and a wavenumber ke:s=
o/ csurs. The displacement vectors and the propagation
properties of these waves have been discussed in
detail™ so we shall confine our interest to the quan-
titative results needed to calculate Rg.

The quantization condition for these waves, cor-
responding to a total energy %w, becomes

2¢2 cos 6 sin 20,
¢ sin 26 sin 20-+c2? sin? 26, |

(25)

/ " 05|t [ - | s [1) Adz =T (26)
0

The boundary conditions are the same as before,
cam=0, and the resultant |, (w) |, the magnitude
of the normal surface velocity due to surface waves, is?

[t (@) | = [(Rsuri— ) /2ksurt] (Fo/psAf) M2, (27)

In Eq. (27) ki=0(c %ut—ci2)? and f is a known
function of ksurt, ¢1, and ¢, [cf. Eq. (1.24) of Ref. 27.

The effect of surface waves on thermal radiation
from a solid into liquid He IT has been reexamined
by Little,”® who observed that these make no im-
portant contribution, except in special cases. He ob-
served that there are no matrix elements coupling
the phonons of a semi-infinite solid to the quantized
surface waves of Egs. (26) and (27) (which he calls
epiphonons) when the anharmonicity in the solid is
small. When anharmonicity was considered, the con-
tribution of surface waves to the thermal flux was
still small.”® According to this, the term for surface
waves in Eq. (28) below should be omitted; the
calculated W (T) -is therefore reduced by about 30%,.
In Sec. III.B.3 we shall discuss the coupling between
the phonons and surface waves through electrons in
normal metals. .

To find the net thermal flux @/4 from the solid
to the liquid, three integrals of the form Eq. (15)
must be calculated; in each W(w, T)/A4 is given by
Fq. (14) with the appropriate displacement velocities:
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|#a(w) | from Eq. (23), |%.(w) | from Eq. (25),
and | %,(w) | from Eq. (27). The resultant expression
must then be integrated over solid angles to account
for all possible angles of incidence 8, of longitudinal
and transverse waves. As remarked above, we need
only do this for one part of Eq. (15). Then for
W(T)/A=[[W(w, T)/A]n(T)drdQ,

W (T
’%‘) - / par[exp (fuw/kT) —1]de
. 2w2Vsd9
)(I:/quz[ 2(2mey)?
L Vsd2 o 2med
+ [kt o] o

The terms in [ ] are contributions to the emitted
energy, respectively, of longitudinal, transverse, and
surface waves, and dQ =27 sin 6ydf,.

The integrations over dQ are difficult and the net
result for the emitted energy may be written

w(T) _ 47r5p61(kT)4F(_0_z)
A4 15ps(he)®  \ei”

F(ci/c;) is a known but rather complicated integral
expression which is always of order one.’” Khalat-
nikov? has calculated for glass and platinum that
Falass(ci/c;=1.71)2.5 and Fr(ci/c,=2.22)~2.0;
however, his ¢;/c; for Pt is too high.

Equation (29) shows that the energy radiated from
one body to the other is proportional to the fourth
power of the absolute temperature, an interesting and
important result. If the temperature difference 7V—T
is small, then for the net thermal flux from the solid
to the liquid He II?

Q W) W)  16x%pk(kT)?
A4 T A 15ps(hey)?
X F(Cl/ct) (T'-T)

Equation (30) shows that when the direction of
energy flow is reversed, the magnitude of Q/A4 stays
essentially the same. This means that the Kapitza
boundary resistance is quantitatively reversible in
this model.

Finally, the Kapitza resistance due to radiation of
phonons is, from Egs. (1) and (30),?

— 15K pscst
K 167k4pciF (c1/c) T8

(29)

(30)

(2)

This is, in fact, the most important source of Rx
according to the acoustic mismatch theory.
Equations (30) and (2) are surprisingly insensitive
to the properties of the liquid. The only liquid prop-
erty that appears is the product pc;, and this is not
strongly dependent on temperature. The radiated
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energy and hence the Rx associated with radiation
depends very little on the liquid because, for one
reason, all the |#.[* contributions have been cal-
culated for a stress-free interface, i.e., an interface
between a solid and a vacuum.? Actually, Mazo™
allowed a normal stress to appear at the interface.
His result for Rg is similar to Eq. (2) but does not
depend on ¢ [cf. Eq. (1.31) of Ref. 73].

Another reason is that the liquid was only intro-
duced into the problem with Egs. (13) and (14), in
which it was assumed that the oscillating solid sur-
face forces oscillations in the liquid.>”® The product
pci in Egs. (30) and (2) comes directly from Egs. (13)
and (14). A last reason is to be found in the discus-
sion preceding Eq. (15): It has not been necessary
to find the energy radiated from the liquid to the
solid in terms of the properties of the liquid because
of the equilibrium condition. The energy radiated
will not change severely as we go through 7). If ra-
diated energy were the only contribution to Rg, then
we would expect that the same would be true of Rg.
The theoretical situation is not clear, however, because
there is a contribution to the energy flux due to col-
lisions of the liquid He II excitations with the walls.
Above T this contribution is much more difficult to
assess because of the more complicated nature of
excitations in liquid He I.

In Eqgs. (30) and (2) the principal pressure de-
pendence of @/A4 and of Rx is also contained in the
product pc; since liquid He is so much more com-
pressible than typical solids. Therefore, to a good
approximation,

Rk (at saturated vapor pressure)/Rx (at 20 atm
pressure) = (pc1) 20 atm/ (p¢1) s.v.p.=1.7.

This ratio has been used in Sec. IL.A.6 for comparisons
with Fig. 7 and related data.

We turn now, still following Khalatnikov,? to the
contribution to the energy flux due to collisions of
excitations in the liquid He IT with the solid wall.
The source of energy transfer which is second in
importance to Eq. (30) is @pnon/4, the energy flux
due to phonons colliding with the oscillating solid
which itself produces a phonon field. When phonons
and rotons are reflected from the wall, both energy
and the component of momentum parallel to the
interface are conserved. Since the velocity of sound
in the solid is much larger than in liquidgHe II, for
phonons of the same energy the momentum of a phonon
in the solid may be neglected compared to the mo-
mentum of the incident and reflected He II phonons.
Rotons have momenta near po=2X10"2 g-cm/sec,®
i.e., larger than liquid-He II phonon momenta, so the
solid phonon momenta may also be neglected com-
pared to the roton momenta. This simplifies the
calculation.

This calculation of the interaction of phonons and

rotons with the oscillating wall holds, strictly speak-
ing, only for the case that the excitation wavelength
is large compared to the interatomic spacing in the
solid.? If this condition is satisfied, then the interface
appears locally smooth to the phonons and the angles
of incidence and reflection are well defined. If we
calculate a typical phonon wavelength in liquid he-
lium as A=/hc/3kT, with ¢;=238 m/sec,® we obtain
A=38 A at 1°K and A=380 A& at 0.1°K as wave-
lengths for phonons important in heat exchange at
these temperatures. Making the same calculation for
Cu with sound velocity 5000 m/sec, we obtain A=
800 A at 1°K and A=8000 & at 0.1°K.” These wave-
lengths are all large compared to the lattice spacing.
However, typical roton wavelengths are of the order
of #/po=3 A, which is commensurate with the lat-
tice spacing, so care must be used in interpreting
the calculation of the interaction of rotons with the
phonon field of the wall, as Khalatnikov has
pointed out.?

The results of Montgomery and Matthew® on Rx
between Cu and liquid-He IT films are consistent with
the acoustic mismatch model in this sense: The Ry
between a Cu wall and the film is about the same
as for bulk He Il because the important phonon
wavelengths in He IT at the temperature of their
experiment (25 & at 1.5°K) are small compared to
the experimental film thickness (300 A).28 The mean
free path for phonons is about 1000 A at 1.5°KS®
so the explanation is not clearcut.

There is also the question, mentioned earlier, of
the effect of macroscopic irregularities on the surface.
Anderson et al estimated that electropolished Cu
surfaces have asperities of several hundred angstroms.
Little™® has quantitatively discussed the effect of
surface roughness on thermal boundary resistance
between two solids, a closely related problem. There
are two important cases: If the mean free path of
excitations is comparable to the amplitude of the
roughness, then the area across which energy is ex-
changed depends on the energy. For phonons whose
wavelengths are large compared to the roughness, the
effective area is just the macroscopic interface area.
However, for phonons whose wavelenghts are small
compared to the roughness, the effective area is the
larger microscopic area. Therefore, the area for energy
exchange increases with increasing energy,” and rough-
ness of the interface may appreciably affect the
thermal exchange.

If the mean free path for phonons is greater than
the amplitude of the roughness of the interface between
a solid and liquid He, then the effect of the rough-
ness on Ry is small. Little’s® analysis of this problem,
for phonons of wavelength comparable to the rough-
ness, takes account of the roughness by modifying
the phase of the impinging phonons appropriately.
He showed that only those phonons incident upon
the solid from the liquid He which are scattered into



a critical cone about the local normal can transmit
energy across the interface. It is because this cone
is so narrow, the sine of its half-angle is ¢i/c;, that
the thermal exchange is so little affected by roughness
for this case.

An excitation in the liquid He IT which finds itself
in the phonon field of the oscillating solid wall can
absorb energy and undergo transition to a higher
energy state? The transition probability for this is

w=2n/%) | Hy . (31)
In Eq. (31),

H,‘f——- ./°° 1[//V|P1d2
0

is the matrix element for the transition between the
initial and final states under the operator

V =—3(putup)

for the interaction of the excitation with the phonon
field.

Choosing suitably normalized ¢ functions for the
phonon case,2™ Khalatnikov obtained the transition
probability of a phonon incident on the solid from
the liquid with momentum p at angle 6 to a phonon
reflected with p; at 6,(p sin 6=p, sin 6y)

(32)

w=32p* cos® 0 | . (w) [/ (p2—p?)%:* cos by (33)
In order to get the net energy flux from the transi-
tion probability, Eq. (33) must be multiplied by the
field phonon energy 7w and integrated over all in-
cident momenta and angles and over all oscillation
frequencies for the wall; careful account must be
taken of the distribution functions for the incident
and reflected phonons in the liquid and for the trans-
mitted phonon in the solid. The result must be
obtained for each of the three contributions | %,(w) |2
corresponding to Egs. (23), (25), and (27). The net
result for the energy flux from the solid to the liquid
due to phonon collisions with the wall is?

Qphon 256w (RT)® (cz)
= F(=) Gopon(T'—=T), (34
A WosclicitT c phon ) (34

in which Gphon is an integral whose value is approxi-
mately 7!/2. The disturbance due to a reflected
phonon extends into the solid to a distance of about
one-tenth of the phonon wavelength. Surface struc-
ture and lattice imperfections this close to the inter-
face will affect the energy exchange.’™

The ratio of the contribution to energy flux due
to phonon radiation [Eq. (30)] to the phonon col-
lision contribution [Eq. (34)] is

(Qphon/ A)

Thus, the radiation contribution is some three times

A 50T, (35)
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larger than the phonon contribution at 7%, and the
ratio increases rapidly with decreasing temperatures.

By choosing suitably normalized wave functions for
roton states, Khalatnikov® calculated the transition
probability from Egs. (31) and (32) for an incident
roton of momentum p, velocity », at angle 6 to a re-
flected roton of pi, v;, and 6;. The transition proba-
bility for rotons, analogous to Eq. (33) for phonons, is

we 329°ps cos 0 cos 6y | 4, (w) 2

(b —1*)vm '

The net energy flux due to roton collisions with

the walls is obtained, analogously with the phonon

case, by multiplication by 7w, integration over p, 6,

and w, use of the appropriate distribution functions,

and the summation of contributions due to %.s, .,
and . The result is?

Qrot _ 16mk(T)*ps* exp (—A/kT)

Y| HpscdT

X F(Cl/ct)Grot(T"—T)’

(36)

(37)

in which Grot is an integral whose value is approxi-
mately 50.

The ratio of the contribution to energy flux due
to phonon collisions [Eq. (34)] to the roton collisions
contribution [Eq. (37)] is

(Q.f)hon/ A)
(Qtot/ A)

Examination shows that the phonon and roton con-
tributions are approximately equally important at 2°K,
but the ratio increases to 10 at 1°K.

We conclude then that according to the acoustic
mismatch theory, the energy exchange between a solid
body and liquid He II is principally the result of
radiation (and absorption) of phonons at the inter-
face. The thermal flux given by Eq. (30) is propor-
tional to the temperature difference, in agreement
with experiment. Rx of Eq. (2) is therefore the
Kapitza resistance according to Khalatnikov’s acous-
tic mismatch theory. According to Eq. (2) Rge T3,
in substantial agreement with experimental tempera-
ture dependences.

On Fig. 9, Rg given by Eq. (2) is plotted for
several solids using appropriate values of ¢, ¢;, pg,
and F(ci/cy).

Comparison of the theoretically predicted Rx’s of
Fig. 9 with the experimentally determined Rx’s of
Figs. 2(a) through (6) shows that the agreement is
only qualitative. The theoretical Rg’s are about an
order of magnitude or more larger than measured
Rg’s. For Pb the disagreement is less than this, as
discussed in Sec. II.A.3 and Ref. 30.

There are several possible sources of error in the
experiments, e.g., surface roughness, parasitic thermal
fluxes, and the unknown elastic properties of surface

A 8X10~T  exp (A/RT).  (38)
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F16. 9. Theoretical curves for Kapitza resistance as a function
of temperature for interfaces of Pb, Sn, Pt, Cu, fused silica, and
Ni, with He II. The solid curves are Rg(7T) from Eq. (2) for
the acoustic mismatch theory. The corresponding curve for Au,
not shown, lies slightly below the Sn curve. Values of pg and ¢
were obtained from Tables 3f-1 and 3f-2 of the American Institute
of Physics Handbook, D. E. Gray, Coordinating Ed. (McGraw-
Hill Book Co., New York, 1963) and are taken as temperature
independent. Values of p and ¢; were obtained from Ref. 66. For
Pb, Au, Sn, fused silica, and Ni, F{c;/c;) has been taken as 1.5
followmg Refs. 8, 9, and 11. For Pt, F(ci/ce) =2.0 following Ref.
2 and for Cu, F (c;/c.) =1.6 followmg Ref. 7. The broken curves
are RgCPW(T) from Eq. (39) for the acoustic mismatch theory
as modified by Challis ef al. (Ref. 9). The curve for Cu is taken
from Ref. 9 and the curve for Au is taken from work of Johnson
and Little (Ref. 8).

layers, and all cause differences between the measure
boundary resistance and the ideal boundary resistance.
Near 7’ the effects of phonon and roton collisions
with the solid wall may become important enough
to increase the thermal flux 1.5 to 2 times.? However,
it is difficult to avoid the conclusion that some other
energy exchange process is also present and unac-
counted for.

2. Improved Calculations of Acoustic Impedance

The evidence is, to anticipate some of our con-
clusions, that if phonon radiation and acoustic im-
pendance are the determining factors of thermal
energy transfer and the associated Rg, then some
important modifying effects must be present. The

acoustic impedance theory of Sec. IIL.B.1 predicts
an Rg that is much too large and too pressure de-
pendent to explain the experiments described in
Sec. IL.A. The theoretical Rx also does not agree
with the observed dependence on the elastic prop-
erties of the solid (Sec. II.A.6).

Khalatnikov?™ treated the interface as a plane
with acoustic impendances of p¢; on the liquid-He II
side and psc; on the solid side. This large acoustic
mismatch in the theory gives rise to the large cal-
culated Rg. Challis, Dransfeld, and Wilks®® have
refined the calculation of the acoustic impedance
between the liquid and the solid by smoothing out
this discontinuity. They took account of the im-
proved matching due to increased density of liquid
He IT near solid walls. The existence of solid layers
of He in films adsorbed on cold walls has recently
been reviewed by Manchester,®® who concluded that
the evidence in favor is not strong. However, the
question is still open and the requirements of the
theory of Challis et a8 are not too stringent.

The two main ideas are®:?: (1) The dense layer
has an impedance intermediate between that of liquid
He IT and the solid; this will result in a better acous-
tic matching and hence a decrease in Rg. (2) The
properties of the dense layer will be comparatively
independent of pressure; this will result in an Ry
that is itself also less pressure dependent.

Challis ef al.®® calculated the complex input im-
pendance Z;=X;+i¥; from the solid into liquid He II
at 0°K through a lossless condensed interface region
which extends out about 15 A. The condensed He
layer has a characteristic impedance Zy(z), which is
a function of the distance z from the wall since both
the density and sound velocity are functions of z.
The calculation of Z; when the condensed region is
terminated at z=15 A by bulk liguid proceeds by
the usual techniques of electromagnetic transmission
line theory applied to thermal energy transfer in
liquid He II.20

To get Zo(z), Challis et al8® first calculated p(z)
from a knowledge of the force between a He atom
and the wall.® The He density at the interface, 2=0,
is taken as about twice the bulk density; then with
increasing z, it decreases continuously to the bulk
value at z=15 A. The characteristic impedance Zy(z)
may then be calculated from p(z) and experimental
values of ¢ as a function of p. It varies by a factor
of 7 over these 15 A. For the condensed region to be
lossless its thickness must be less than the phonon
mean-free path, and for the region to provide ap-
preciable matching its thickness must be an appre-
ciable fraction of a phonon wavelength. In the present
case these conditions are satisfied. A numerical com-
puter calculation of the real part of the acoustic
input impedance, X;(7") was carried out by dividing
the condensed He layer into about 20 sections. The
result is given on Table I of Ref. 9.



To modify Khalatnikov’s model with the present
one, X;(T) replaces pc; in Eq. (29) for W(T)/A.
The net thermal flux is obtained, as in Eq. (30), as
Q/A={d[W(T)A']/dT}AT, and the Kapitza resist-
ance then becomes

15/%0scs®
475k (A+mSPW) X (T) F (cr/ci) T3’

in which m®®W=¢d1n X;(T)/d In T. Equation (39) is
to be compared with Eq. (2). In the case that X;(T) =
pc, the equations are the same.

A plot of RgPW taken from Fig. 9 of Ref. 9 for
the interface between Cu and He II is shown on
Fig. 9. Also shown is a plot of RgCPW=47 T*2 cm?
°K/W obtained by Johnson and Little? for Au. Com-
parison of these broken curves, respectively, with
Figs. 2(b) and (5) shows that Rx®PV is much closer
in magnitude to the observed Kapitza resistance than
is Rx of Eq. (2). Johnson and Little® have also cal-
culated Rg®W for a Si crystal and a LiF crystal.
In both of these cases the calculated magnitudes are
in better agreement with experiment than the Rg
calculated from Eq. (2).

The resistance RgPW given in Eq. (39) also shows a
pressure dependence that is closer to observed values
(Sec. IL.A.6), as expected. The ratio Rxg®PW (at satu-
rated vapor pressure) /Rx°PW (at 20 atm pressure) is a
smooth function of temperature and is about 1.1 at
2°K, 1.25 at 1°K, and rises more steeply with de-
creasing temperatures to 1.64 at 0°K.

The improved agreement with experiment of the
magnitude and pressure dependence of Rx®®W sup-
ports the existence of a condensed He layer, as pro-
posed by Challis et al.,® or some other improved
acoustic matching at the interface. However, Rg°PW
of Eq. (39) has a characteristic temperature depend-
ence of about 72 above 1°K. This is considerably
stronger than the experimentally observed temperature
dependence, except for some qualitative similarity to
observations of Anderson et al.’

Improvements in this model depend on better
understanding of the interaction between liquid He
and solid walls, a fundamental problem with interest-
ing ramifications in the physics of liquid-helium
films 3.8

Recently, Abbe® has examined the effect on the
acoustic mismatch theory of diffusion, or other pene-
tration at the interface, of He atoms into the solid.
The idea is that this interface region also would have
elastic properties intermediate between those of the
liquid and solid and, if thick enough, could signifi-
cantly improve the acoustic match. This would de-
crease calculated Rg’s in analogous fashion to the
model of Challis et @f.81:9

Abbe¥® calculated the phonon transport across the
solid interface region by application of simple kinetic
theory, using a Debye model of the mixed solid to
estimate the specific heat. In this model, calculation

RxCOW =

(39)
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of Rk depends on several quantities which are difficult
to obtain, e.g., the thermal conductivity, sound ve-
locity, temperature, and phonon mean-free path all
as functions of position in the solid. The calculated
Rg has the characteristic 7—* dependence, in agree-
ment with experiment, and is linearly proportional to
the quotient Lo/Apnon, Where Lo is a penetration depth
of He atoms into the solid and Appon is the mean-free
path of phonons in the interface region. Using Lo/Aphon
as an adjustable parameter, Abbe was able to fit
experimental data on Rg for Cu, Au, and Pb; the
respective values are Lo/Aphon =32, 42, and 116.

The theory in its present form is difficult to eval-
uate since very little is known about Lo and MAphon.
However, the basic idea that Rk is influenced by the
change in structure at the interface due to penetra-
tion of He atoms into the solid is a good one. Whether
the effect is large enough to explain the experiments
can be better judged after further investigation.

3. Applications to Interfaces between Metals
and Liquid He II

At the interface between a metal and liquid He II,
the electrons may also aid in thermal energy transfer.
In the discussion in Sec. II.A.3 and in Figs. 3 and 4,
it was shown that there is a decrease in Rx in going
from the superconducting to the normal state. This
is the most direct evidence for interactions between
the electrons of the normal metal and the phonons
of the liquid. There have been several mechanisms
proposed for this electron—phonon interaction and the
theoretical conclusions depend on whether strong or
weak coupling is assumed, the nature of the model
assumed for the metal, the relative magnitudes of the
electron mean free path and the phonon wavelength,
and the relative magnitudes of the electron relaxation
time and the phonon period. Most of the theories
have been lucidly unified and quantitatively com-
pared in a recent study of Challis and Cheeke¥ so
that a detailed account is not necessary here, but we
shall briefly describe and compare the main theories
and their results.

The most important effect of electrons on the
acoustic mismatch theory (Sec. IIL.B.1) is that elec-
trons may interact with the surface waves and make
possible absorption of surface wave energy into the
bulk solid. The terms of interest appear in the ex-
pression for 1,,(w) of Eq. (27) and the corresponding
surface wave contribution to the thermal flux, W(T") /4
of Eq. (28). We recall that in general™™ these sur-
face waves cannot interact with the phonons of the
solid and therefore make no contribution to the
thermal flux; this is the case for interfaces between
liquid He II and dielectrics or superconducting metals.
In a normal metal, however, thermal energy in the
surface waves may be transported to the phonon
system through interaction with normal electrons.
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We consider the function F(ci/c;) of Egs. (29)
and (30) as having two parts, in the manner of
Challis and Cheeke®:

F(ci/cr) =Fi(cifc)) +Faci/co) ; (40)

F; represents the contribution to thermal energy flow
across the interface of longitudinal and transverse
phonons in the solid, and F, is the surface wave
contribution. Khalatmkov s calculation for Q/A4 of
Eq. (30), with F(ci/c;) =F1+F,, assumes that the
surface wave energy is strongly coupled to the bulk
solid and therefore quickly absorbed into the phonon
system. If this were the case for a normal metal,
then the ratio of Rgx in the superconducting state
to Rk in the normal state would be (Fi+F,)/Fi.
Challis and Cheeke® have calculated F; and F, as
functions of ¢;/c;, and their results are displayed on
Table 1 of Ref. 87. For Pb (ci/c;=2.84), the ratio
(F1+F,)/F1=24, is the maximum ratio. If all the
surface wave energy is not absorbed, then the theo-
retical ratio of the Rg’s becomes closer to unity.
We shall see below that this is indeed what happens
in the general theoretical case.

Little™ first suggested that electron-phonon inter-
actions might contribute to the thermal flow between
a metal and liquid He II, as part of a detailed con-
sideration of heat transport across solid-solid inter-
faces. The energy transport arises this way?:%: Because
of the large acoustic mismatch between liquid He IT
and solids, almost all phonons incident on the inter-
face from the liquid are reflected. Actually, only
those phonons whose angle of incidence is less than
sin™! ¢;/c; can be transmitted into the solid.®"8 Pho-
nons with larger incident angles excite surface waves
at the interface but are ordinarily totally reflected,
since the surface waves cannot generally exchange
energy with the phonon system of the solid. In a nor-
mal metal, however, the surface waves may interact
with the electrons which may then exchange energy
with the phonons.

Little® considered phonons incident on the inter-
face from the liquid in terms of the scalar displace-
ment potential of quantized plane waves in the liquid.
The scalar and vector potentials of the quantized
plane waves produced in the solid are obtained by
application of boundary conditions such as Mazo’s™
on the displacements and stresses at the interface.
For a large range of angles of incidence no wave is
propagated into the solid, but rather the potentials
correspond to surface waves which decay exponen-
tially in the normal direction into the solid. Little
treated the solid as a Sommerfeld metal in whose
ionic lattice the displacement waves produced density
changes. These could be treated as perturbations of
the electron Hamiltonian, and the new eigenstates
for the electrons were calculated in this way.

To obtain the actual transfer of thermal energy
across the interface, time-dependent perturbation

theory is used to calculate matrix elements for proc-
esses such as an electron scattered and a phonon
created or destroyed. Challis and Cheeke® have shown
that Little’s calculation®® is carried out, implicitly,
for the condition wphonTer>>1, Where wphon is the pho-
non angular frequency and 7e is the electron relaxa-
tion time. We shall consider the inverse case below.
In Little’s calculation only electrons in characteristic
regions of the Fermi surface contribute to the energy
flow. The associated integrations are somewhat sim-
plified since electrons near the Fermi surface have
energies much greater than the phonon energies and
by geometrical considerations, but they are still
difficult.

The resultant net thermal flux from the metal to
the liquid He IT contains two terms according to
these calculations; the first term is proportional to
T3AT; the second term is proportional to 7°A7 and
is much smaller at helium temperatures.®% The gen-
eral expressions for Q/A appear as Egs. (3.12) and
(3.15) of Ref. 28. Little has evaluated the result for
a solid whose properties are close to those of Pb
and obtained Q/A=5.4X10"*T3AT W/cm? as the
principal contribution. This corresponds to a very
large effective Rg for this process, about 1850 I'3
cm? °K/W. This contribution to @/4 is small, and
the associated Rgx is large, compared to the acoustic-
mismatch calculated values and the observed values
of net flux and Rgk. This means that in the wphonTer>>1
limit, and for the model assumed, electron~phonon
interactions make only a small contribution to the
thermal flux, i.e., the energy of surface waves is only
weakly coupled into the bulk solid.

Andreev® has also calculated the effect of conduc-
tion electrons in transferring thermal energy from
surface waves into the bulk solid in an elegant way.
Near the interface the solid may be expected to be
rich in strains, impurities, and other defects so that
the electron relaxation time is short. Andreev cal-
culated the effect for the condition wpponTer<K1 for
this reason. This calculation finds the amplitude for
surface and lattice displacements, which are produced
when a plane sound wave is incident on the interface
from the liquid side, by considering suitable scalar
and vector potentials for the velocity fields. Although
similar to Little’s® approach, Andreev’s calculation
is essentially classical. It is divided into two parts
depending on the relative values of the electron mean
free path and the wavelength of sound.

When the electron mean free path is much less
than the phonon wavelength, and wpnen7er<K1, Andreevs®
showed, by using the concept of electron viscosity,
that the fraction of energy transmitted from the sur-
face wave to the solid was small. The fraction is
itself approximately the same as the ratio of the
electron mean free path to the phonon wavelength
so that the electrons have a negligible effect on Rk.

In the case that the electron mean free path is



much larger than the phonon wavelength and
wphonTe1<K1, Andreev® found the interaction classically
by very elegantly solving the Boltzmann equation
for the electron distribution function in the presence
of the electric field produced by a longitudinal and
transverse sound field in the solid. The force on the
boundary due to the electrons may be calculated
from the distribution function, and then the reflec-
tion and transmission coefficients for incident sound
waves may be obtained. Under the present formula-
tion and assumptions it can be made manifest, as
in Eq. (23) of Ref. 88, that the reflection coefficient
for phonons incident on the solid is less than unity
for all angles of incidence. That is, the thermal energy
in the surface waves excited by phonons incident
outside the critical cone is absorbed into the solid
and contributes something to the net thermal flux.

The expression Andreev® obtained for the addi-
tional net thermal flux due to electron interactions,
as re-expressed by Challis and Cheeke,¥ is

Q  167%c,k(FT)3AT B P (c,)

A 1505(hc)®  B+1" "\e*
In Eq. (41), B is a function of the Fermi energy,
velocity, and momentum for the metal considered,
and also depends on several integrals which are them-
selves functions of ¢i/¢,. In the strong-coupling limit,
B>1 and Q/A4 of Eq. (41) becomes the same as the
contribution of surface waves to Khalatnikov’s net
thermal flux given in Eq. (30).% Therefore Khalat-
nikov’s calculation? which assumes strong coupling of
the surface waves to the bulk solid, gives the same
result as Andreev’s® treatment in this limit.

Challis and Cheeke® have evaluated and tabulated
the relevant functions for B and have obtained B~
0.06 for a monovalent metal, and B~0.13 for Pb.
These values correspond to weak coupling and give
a ratio of Rg for superconducting Pb to Rg for normal
Pb of [Fi+B(B+1)"'F;]/Fi=~1.2. This means that
the contribution due to electron-phonon coupling is
small in the limit wphon7er<K1 investigated by An-
dreev¥ ® for the electron mean free path much larger
than, as well as much smaller than, the phonon wave-
length. Andreev has estimated that B~1. The dis-
agreement apparently depends on the integrals in B,
which have been evaluated by Challis and Cheeke.”

In their recent examination and synthesis of theories
of Rg in metals, Challis and Cheeke® have extended
Andreev’s® classical approach from the wpnenTa<K1
region into the region of Little’s?® quantum-mechanical
calculation, wpnonTer>1. They have shown that these two
calculations are in essential agreement and give similar
answers in this region. They have also re-expressed
the equations for Q/4 of these workers and of Kha-
latnikov? so that all may be quantitatively inter-
compared by use of an interesting and complete table
of relevant functions (Table 1 of Ref. 87). In the
wphonTeL>1 region, the calculated thermal flux is shown

(41)
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to be smaller by a factor of (¢./c;)* than the thermal
flux for wphonter<K1, and the electron mean free path
large compared to the phonon wavelength. This is
the result of certain cancellations which depend on
the details of the electron phonon interaction. Although
it is still too soon, due to experimental uncertainties,
for a critical comparison between these theories and
experimental data, the agreement among the different
theories in their common regions of application strongly
supports them.

Johnson and Little® have examined their experi-
mental data on Rx for Au, Cu, and W for evidence
of the electron-phonon interaction calculated by
Little.?® According to this calculation, the part of Rx
due to the interaction should be approximately pro-
portional to psci,#/p (Fermi energy)?. However, the
data do not show ordering of this kind, as expected,
since the electron—phonon contribution to the net
thermal flux is small in the theory.

There have been several other interesting sugges-
tions and calculations of interactions between liquid-
helium phonons and electrons in the metal. Little?8:
has noticed that an impinging phonon interacts with
the electrons not only by changing the ionic density
in the bulk metal, but also through the periodic
surface oscillations. Since the potential at the inter-
face must vanish, oscillations of the surface modulate
the potential in the region of the interface. The con-
tribution to /A4 of this interaction is proportional
to AT and has been calculated®® to be of the order
of 2X103 7% W/cm? °K. However, more detailed
knowledge of the interactions in the solid are neces-
sary for improved evaluation of the importance of
this mechanism.

An especially interesting and possibly very large
contribution to the thermal flux between liquid He II
and metals has been suggested by Bloch.?3¢ The idea
is that the electron wave functions extend a short
distance beyond the metal surface and may in this
region interact directly with phonons in the liquid.
The resultant thermal flux is expected to be pro-
portional to the product (Fermi energy)3X (Fermi
velocity) X (work function)=® T2 The ratio of Q/A4
due to this mechanism to the @/4 calculated from
the acoustic mismatch theory is about 1072, so that
the effect is potentially very important and, if present,
should be observable as a 7% dependence in experi-
mental Rg’s. No such 7% dependence was observed
by Johnson and Little® or other workers, however,
and a special attempt by Gittleman and Bozowski%
to observe evidence for Bloch’s mechanism in Pt was
not successful (Sec. II.A.4). Electron tunneling de-
pends critically on the structure of the surface and
it may be that the effect -exists but has escaped de-
tection so far because of surface imperfections and
impurities.

There has been an interesting”suggestion by Johnson
and Little® that understanding of the problem may be
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improved by considering the energy exchange across
the interface associated with adsorption and sub-
sequent desorption of He atoms at the solid surface.
A calculation of the size of the effect and importance
of this mechanism would be very interesting.

C. The Acoustic Impedance Theory for Liquid *He

The theory of Kapitza resistance at interfaces be-
tween solids and liquid ®He is due to Bekarevich
and Khalatnikov®® and is based on the acoustic-
mismatch approach of Khalatnikov,? discussed in
Sec. III.B.1. However, several interesting changes
must be made to take account of the properties of
liquid *He as a Fermi fluid.® The relevant experi-
mental data have been discussed in Sec. II.B and
displayed on Figs. 8(a) and 8(b). In this section
we outline the main features of the theory and com-
pare them with experimental results, principally on Cu.
We shall see that the modifications that must be
made in the theory are far reaching in principle, but
the theoretically predicted 7 dependence, as well
as several other features, is retained.

To find the thermal boundary resistance at an
interface between liquid *He and a solid, Bekarevich
and Khalatnikov® proceed in the familiar way by
finding the work done by the thermally vibrating
solid against the pressure of the liquid *He as a func-
tion of the temperature and the frequency of vibra-
tion. If the solid surface has velocity components
1:(«), then the rate at which work is being done
and energy radiated is

W, T)=—%2, / Iits(w) d4, (42)

1

in which the integration is taken over the interface.
The factor of % in Eq. (42) takes account of a time
average of W over a period of vibration of the wall.5
In a recent rederivation of some of these results,
Gavoret” has suggested that this factor should be
unity instead. .

The role of liquid *He as a Fermi liquid comes
into the problem with calculation of the tensor of
momentum flux in the liquid, II;;, in terms of the
distribution function, excitation energies, and other
Fermi fluid properties.®® These considerations will be
made later but we shall anticipate the result now.
Calculating IT; from the Landau theory of Fermi
fluids and applying suitable boundary conditions, the
magnitude of the energy flow from the solid into the
liquid becomes, from Eq. (42),%

|W(a, T) =392 [ (2l du(e) P+o | ala) 1) d,

(43)

analogous to Eqg. (13) of the liquid-*He case. In
Eq. (43) p and m are the density and atomic mass

for liquid ®He, and p, is the momentum of excita-
tions at the Fermi surface, as in Eq. (3). The char-
acteristic constants ¢ and & are obtained from the
boundary conditions. The calculation of radiated
energy and IL; in this way, and the associated energy
flux [Eq. (44)] and Rgx [Eq. (3)] holds only for
T<0.2°K, the temperature region in which the spec-
ific heat of liquid ®He is approximately propor-
tional to 7.

From Eq. (43) we see that oscillations in both
the normal and tangential directions contribute to
the energy flow into the liquid. As expected from
our earlier considerations, these contributions must
be taken for three kinds of oscillations: longitudinal,
transverse, and surface wave modes in the solid, with
due account taken of the distribution function for
the phonons in the solid. When this is done and the
energy flow is integrated over all frequencies and
solid angles and Khalatnikov’s® earlier results for
quantization of the surface vibrations are applied,
Bekarevich and Khalatnikov obtain, for the energy
flux from the solid to liquid *He,®

0 2 () ()

In Eq. (44), ®(ci/cy) 1s, like F(ci/c;), a characteristic
function of the ratio of velocities of longitudinal and
transverse waves in the solid.

The net flux /A4 from the solid into the liquid
for small temperature differences is calculated by the
methods used earlier for Egs. (29) and (30), so that
the result for the Kapitza boundary resistance be-
tween a solid and liquid ®He at low temperatures
becomes®

_ Sh?’psctsm
8wkippLaF (c1/c;) +b®(ci/c) T3

At higher temperatures, say 7>0.2°K, the detailed
Fermi fluid properties of liquid “He do not play an
important role in the energy radiated from the solid
into the liquid. As for the ‘He problem, the energy
is radiated principally as phonons? and @/4 is given
by Eq. (30) with the product pc; now understood
to be the acoustic impedance for liquid °He, i.e.,
the product of the density of liquid ®He and the
velocity of sound in liquid *He. The Rx for an inter-
face between a solid and liquid *He for 77>0.2°K is
given by Eq. (2) with the same replacement of
acoustic impedances.®® Thus, the ratio of Kapitza
resistances in this region is

Rx(*He) / Rk (*He) = (pc1) g/ (p01) 35,2,

independent of the solid.

Since liquid *He is a Fermi liquid, its interaction
with the solid wall in the low-temperature region
(T'<0.2°K) must be analyzed in detail in terms of
a suitable distribution function and excitation energy.

(3)



The Landau theory of Fermi liquids has been applied
to liquid *He by Abrikosov and Khalatnikov,® and
a thorough discussion of the relevant functions, and
their definitions and interconnections, can be found
in their work. Liquid ®He is thus characterized by
a distribution function of excitations, which is itself
a function of momentum, position, and time, and
an excitation energy, which is in turm a functional
of the distribution function. The distribution func-
tion and the excitation energy are connected together
by the usual kinetic equation.®:® In our problem for
the low-temperature case, the product of the angular
frequency of the solid’s oscillations wexe and the mean
collision time for excitations in the liquid 7ex, satisfies
the condition wexeTexe>1, i.e., collisions are not im-
portant here.®® This makes the collision integral simple,
and the kinetic equation is therefore more tractable.

Bekarevich and Khalatnikov® found Rx for the
Fermi liquid *He by solving this appropriate form of
the kinetic equation, subject to the boundary con-
ditions that apply when the excitations collide with
the wall and are scattered, and relating the resultant
distribution function to II; of Eq. (42). The cal-
culation is mathematically difficult and we refer back
to the original work for the details. The idea is to
linearize the kinetic equation by considering the dif-
ference between the real distribution function and
that of a Fermi liquid at 0°K. After a judicious suc-
cession of physical arguments, changes of variable,
expansion in a series of spherical functions, and re-
linearjzation, the kinetic equation may be re-expres-
sed as an integral equation for the part of the dis-
tribution function which determines II,;.52:8%:%

The boundary conditions that obtain at the inter-
face are conservation of energy and momentum and
the additional condition that the number of incident
excitations must equal the number of reflected excita-
tions. The interaction of the excitations with the wall
also depends on the nature of the reflection, i.e.,
whether diffuse or specular, and on the kinds of
oscillation undergone by the wall. Bekarevich and
Khalatnikov® found the radiated energy assuming:
(a) completely diffuse reflection, for both transverse
and longitudinal wall oscillatiors, using a Wiener—
Hopf technique to solve the integral equation, and
(b) completely specular reflection, using a Fourier
integral technique. One of their results is that II,
and hence Rk, depends only weakly on the nature
of the reflections.

In the wexcrexc>1 region, the only kind of sound
that may be propagated in liquid *He is zero sound,®
and indeed Bekarevich and Khalatnikov® showed
that this was the nature of the collective oscillations
in liquid ®He which were excited under conditions of
specular reflection and of diffuse reflection with lon-
gitudinal wall oscillations. Gavoret® has developed
a simpler rederivation of the Rg for interfaces between
solids and liquid *He based on the earlier work.?
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We have already noticed that the resultant energy
transfer depends only weakly on the nature of the
reflections of excitations. Gavoret solved the problem
by showing that a plane wave of zero sound emitted
into liquid *He by the oscillating wall could satisfy
both specular and diffuse reflection boundary con-
ditions. The motion of the oscillating solid surface is
taken after Khalatnikov’s result,?> described in Sec.
IT1.B.1; the work done by the solid against the liquid
is the product II..., as in Eq. (42) without the
factor of . This work produces the zero sound wave
which is considered to carry an appropriate increment
in free energy away from the solid at the zero sound
velocity.

The results of Gavoret™ for Rx are essentially the
same as those of Bekarevich and Khalatnikov®? except
for the factor of 2 mentioned above. In the low-
temperature region Gavoret’s theoretical Rg’s are
smaller by this factor.

Comparison of the theoretical Rg for liquid *He,
as given by Eq. (3) for the low-temperature region
(T'<0.2°K) and by Eq. (2) with pc; the acoustic
impedance of liquid *He for higher temperatures,
may be made with the data of Figs. 8(a) and 8(b).
Theory shows that Rg should vary as 72 in both
regions, but with different coefficients. The ratio of
the coefficients Rx (low T, 3He) /Rx (high 7', *He) has
been estimated as about 2 or 375 and, more recently,
as about 0.9.

This implies that near 0.2°K, there should be some
transition region in which Rgx changes magnitude.
Applying Eq. (3) to the interface between liquid *He
and Cu, Anderson ef al.” obtained Rg=2400 7" cm?
°K/W using ®=1, ¢=0.38, and 5=0.05. This theo-
retical curve has been plotted on Fig. 8(a). Com-
parison with the low-pressure, low-temperature ex-
perimental results for Cu shows that although the
T3 dependence is correct for all the Rx curves shown,
the magnitude of the theoretical Rx is 12 times larger
than the relevant experimental one. The acoustic
mismatch theory thus predicts the correct tempera-
ture dependence for all the interfaces at low 7, but
this is as far as the quantitative agreement with
experiment extends.

The higher-temperature experimental Rx’s are no
longer proportional to 7 so that the ratio of ex-
perimental Rg’s at low and high 7 is temperature
dependent and not constant as expected from theory.
We have plotted on Fig. 8(b) Rg=1200 7 cm? °K/W
as given by Eq. (2) for a liquid-*He interface with
Cu at low pressure and high temperatures.” The
theoretical Rg’s of Eq. (2) for the high-temperature
region are about 60 times higher than experimental
values of Anderson et al” at 0.8°K, so that the dis-
agreement here is even greater than at low tempera-
tures. These experiments did reveal an abrupt transi-
tion at 0.11°K, independent of pressure, in the tem-
perature dependence for Rg for liquid *He (Sec. IL.B).
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It is not clear whether this is to be associated with
the theoretical transition at 0.2°K, because of the
anomalous behaviour of Rx on the high-temperature
side of the transition.

A further test of Bekarevich and Khalatnikov’s®
theory is obtained by comparing the theoretical pres-
sure dependence with the observed one. For the low-
temperature region, an increase in pressure from 1 psi
to 395 psi decreases the theoretical Rx of Eq. (3)
by a factor of about 3. The observed’ decrease in Rg
for this same pressure increase below 0.1°K is a factor
of only 1.58 for liquid *He in contact with Cu walls
or epoxy resin walls. In the high-temperature region,
Eq. (2) gives about the same ratio of the low pres-
sure to high pressure Rx as at low temperatures, but
the observed decrease in Rx near 0.4°K is only 1.3.7
These results are similar to the pressure dependence
of Rg for the “He case. There, too, the pressure de-
pendence of Rg is observed to be less than theo-
retically expected.

IV. CONCLUSIONS

Kapitza resistance, in conclusion, is a phenomenon
which is understood only qualitatively at best. The
experiments show that the energy exchange across
the interface between a solid and liquid He generally
takes place an order of magnitude more efficiently
than theories predict. The problem is: How does this
energy exchange occur? There are many directions
in which solutions to the difficulties may lie. Probably
the best indicators are the results of previous work,
and we have tried to point some of these out in
the text.

There are two possibilities: The first is that the
acoustic-mismatch idea and associated theory are at
the heart of the thermal energy exchange, i.e., there
is no other dominant mechanism. The second possibility
is that some other, more important mechanism is also
present. In support of the first idea are the observed
T3 temperature dependence of Rx and the generally
improved agreement between theory and experiment
that results when the acoustic mismatch theory is
modified. The problem is a difficult one but, in bal-
ance, this seems to be the more likely possibility.
There is much evidence for the large variations in
surface structure in solids, and we think that most
of the disagreement between theory and experiment
will be resolved by use of better characterized surfaces
and by better understanding of the surface physics.

To examine this problem, improvements in both
theory and experiment are needed. For example:
A better knowledge of the structure of liquid He near
the interface is important. Further experiments in
the manner of Challis and Cheeke on Pb® would be
helpful on other metals, especially well-oriented single
crystals. Can surface treatments of this kind be found
which will give reproducible results on clean surfaces
of Cu, Hg, Sn, Ni, and other solids? Since the surface

structure, as we have noted, is likely to be more
disordered than the bulk, perhaps the extrapolation
in measuring the surface temperature, even in good
conductors, can be improved. Can the temperature
profile in the solid near the interface, say within
microns, be measured in more detail? A clearcut
experiment on whether Rx is quantitatively reversible
would also be helpful: Is the thermal boundary re-
sistance for energy flow from the liquid He into the
solid the same as from the solid into the liquid He?

It would also be interesting to study the thermal
boundary resistance as a function of frequency, perhaps
in an experiment similar to Brow and Osborne’s” or
Zinoveva’s.?l We might then be able to test whether
the theoretical microscopic understanding of the inter-
action between the surface and an impinging phonon
of well-defined frequency and direction is correct.
There are several important diagreements between
the theoretical and experimental dependence of Rk
on elastic properties of the solids, e.g., the recent
observation that Rg is closely proportional to ©p,
rather than to ©p®.% These suggest that some new
mechanism is present.

The second possibility is that some other mechanism,
not yet accounted for, dominates over acoustic mis-
match. Examination of this problem awaits better
and deeper understanding of solids and of liquid
helium.
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