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I

The present work is an attempt to re-evaluate the nuclear corrections to the energy levels of hydrogen by using an
eftective potential approach. The basic idea is to infer from electron —proton scattering a potential which may then be
applied to the bound-state problem. In lowest order, the potential is chosen from the first-order Feynman diagram for
the scattering. With this choice the Breit equation is obtained. It is then solved in an approximate way, in the non-

relativistic limit of the proton, to obtain wave functions which are accurate enough for use in evaluating the effects of
perturbations of the potential. The reduced mass corrections to the 6ne structure and the hyper6ne structure levels
are readily found. The effect on the hyper6ne splitting of the distribution of the proton charge and magnetic moment,

is obtained by correcting the lowest-order potential to include the proton form factors. A further modi6cation is needed
in evaluating additional recoil corrections, of relative order nni/hf, to the fs and the hfs. This additional term accounts
for the failure of the iteration of the lowest-order potential to reproduce the scattering obtained from the second-order
Feynman diagrams. The n'ni/hf contribution to the state-dependent mass corrections to the hfs is also analyzed within

the context of this approach. .All the corrections found are in complete agreement with previous results obtained by
the Bethe-Salpeter (BS) equation, but the present method has the virtue of conceptual simplicity.
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I. INTRODUCTION

During the past few years, discrepancies between
theory and experiment on the hyperfine splitting
(hfs)" and the Lamb shift' ' of atomic hydrogen
have led to renewed interest in the nuclear corrections
to the energy levels.

Previous calculations of nuclear corrections have
been carried out mainly within the framework of a
completely relativistic formalism such as that pro-
vided by the Bethe-Salpeter (BS) equation. r Although
the need for a rigorous covariant formulation of the

*Work supported in part by the U.S.Once of Naval Research.
t Present address.

two-body problem is clear, it is equally clear that
the BS approach is extremely complicated. Therefore,
it seemed worthwhile to recalculate the corrections
by using a straightforward semirelativistic approach
rather than the more formal methods of the 8S
equation.

A re-evaluation of the nuclear corrections serves
two useful purposes. First, it provides a substantial
check of previous work. This is particularly important
in the case of the hfs of hydrogen, where a discrepancy
of 45 ppm

' (parts per million) has provided a serious
challenge to theorists for some time. ' Second, it at-
tempts to present a self-contained unified treatment
in a single article. A systematic, simple presentation
of these corrections is not currently available in the
literature.

Our approach is basically an "eBective potential
model, " in which the system is described by a mod-
ified Dirac equation with a potential inferred from
scattering theory. It should be stressed at the start
that this work should be understood as a model rather
than a rigorous development from first principles.

In Sec. II the lowest-order potential is handled.
Most of the contents of this section are a repetition
of previous work recently published by us."In Sec. III
we present a treatment of the nuclear corrections to
the hyperfine splitting of hydrogen within the con-
text of the effective potential approach. The results
are in agreement with those obtained by fully co-
variant techniques. Section IV contains an evaluation
of the recoil corrections to the 6ne structure of hy-
drogen; confirmation of previous results is obtained.
Finally, in Sec. V we discuss the recent status of the
nuclear corrections and the latest situation with regard
to the discrepancies previously mentioned.
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II. EFFECTIVE POTENTIAL MODEL

A. Method

In relativistic physics the problem of defining a
meaningful Schrodinger-type equation for two inter-
acting particles is a nontrivial matter. In fact, a re-
alistic analog of the Dirac equation to describe the
two-body problem does not exist. One usually resorts
to a covariant Geld-theoretic description of the system
in order to provide a rigorous foundation.

Our approach is an attempt to use a Schrodinger-
type equation in which the potential is inferred from
scattering theory. Logunov and Tavkhelidze" have
done some work along similar lines. In addition, a
paper by Faustov" on the hyperfine splitting of
hydrogen treats the problem in a similar way.

Let us assume, at Grst, that the electron —proton
scattering may be approximately predicted by using
a local potential V(x,—x„) which "efFectively" re-
places the interactions between the particles via the
quantized radiation field. Wee use as a starting point
the equation*

IE—&(x.) —& (x )3f(x. x )
= V(x,—x„)P(x„x,). (2.1)

Using the Lippmann —Schwinger equations, '4 one may
obtain the scattering predicted by Eq. (2.1). The
S matrix becomes (fbi)

—23ri8(Et+Es —E3—E4) Qr I
V

I f;+), (2.2)

where Ej and Eg are the incoming energies of the
electron and proton, respectively, and E3 and E4 are
the corresponding outgoing energies. An eigenstate of
the free Hamiltonian representing an outgoing state
is given by (pf I, whereas

I
f~+} is an eigenstate of

the full Hamiltonian having incoming plane waves

I P;) and outgoing scattered waves. We have

I 0')+11/(E' —&r-.+i0)jV
I 0"), (2 3)

where the +i0 indicates that the denominator has
a very small positive imaginary part. In the Grst
Born approximation, the scattering amplitude in mo-
mentum space is

—(2~) '&~4(pr+Ps —P3—P4)

X (msM3/ErE3E3E4) 'u (p3 $3) u„t(P4, s4)

X V(pt —ps) u(pt, sr) u~(ps, ss), (2.4)

where u(p;, s;) is the Dirac spinor for a particle of
momentum p; and spin projection s,, and &4 is a four-
dimensional 8 function for energy and momentum
conservation. This may now be compared to the
lowest-order amplitude, given in Fig. 1(a), for the

*Variables referring to the proton will usually contain a sub-
script p, whereas variables which involve the electron will either
have a subscript e or no subscript at all. The free Hamiltonian for
the electron is e-y, +pm, whereas for the proton it is e„y„+PM.

-P

Pj -P
f P)

(b)

-p
I

FIG. 1. One-photon-exchange amplitude for e-p scat tering.
(a) Point proton. (b) Finite-size proton with an anomalous
moment.

3. Lowest Order and the Modified Dirac Equation

The Gne structure and the hyperfine structure are
relativistic corrections to the atomic binding, and
therefore the electron should be treated as a rela-
tivistic particle. However, the nuclear corrections in

*W'e are using the Coulomb gauge. Therefore many vectors
will be transverse to the photon's momentum. The symbol & is
used to denote transversality. For example, in (2.5) ez=a, —
(n.kk)/k', with k= pg —p3.

relativistic scattering in the center-of-mass system of
an electron and a proton. The amplitude is*

'~(2 )'& (P+P P P)— —
X (3333M3/E1E2E3E4) "sut(ps, ss) u„t(P4, s&)

X L1/(p& —ps)'j(1 —a3 ar)u(p&, st)u„(ps, ss). (2.5)
A comparison of (2.4) and (2.5) indicates that the
lowest-order potential may be defined as

v(pt —ps) =——
I e'/(pt —ps)'j(1 —a3 a„). (2.6)

The potential of (2.6) is the sum of the Coulomb
and Breit potentials. With the use of (2.6) as the
potential, Eq. (2.1) is known as the Breit equation. '3

There are a number of corrections to (2.6) which
must be made to obtain a more realistic potential.
First of all, the proton is not a point Dirac particle
like the electron, and therefore its finite size must be
accounted for. Second, the anomalous magnetic mo-
ment of the proton, which is presumably due to its
pion cloud, makes it necessary to include a Pauli
interaction. Third, the potential in (2.6) was chosen
from the scattering amplitude on the energy shell.
Although there is no unique way of describing the
departure from the energy shell, we will find it
convenient to choose the oQ'-the-energy-shell behavior
in such a way as to minimize the importance of
further corrections to the potential. This brings us
to the fourth correction, one which is chosen so as
to rectify the failure of the iteration of the lowest-
order potential to match the two-photon exchange.
All these corrections will be discussed in detail in
due course.
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lowest order may be obtained by treating the proton
nonrelativistically, since the characteristic momenta
involved are much smaller than the proton mass.
Therefore, instead of using Eq. (2.1) as a starting
point, we will use the nonrelativistic reduction of (2.1)
for the proton variables.

In the center-of-mass system, the free Hamilto-
nian is

space the potential V,«&" is readily found to be

V+f e V/2M VI+(1/4M)Ce u, Cu', IVlj (29)
where V= a—/r and W= er. —

Using the free Hamiltonian of (2.7) and the effec-
tive potential of (2.9) we arrive at a modi6ed Dirac
equation

a„,.= e p+P~+ (p'/2M). (2 7)

If the interaction between the electron and the pro-
ton is expressed by Eq. (2.6), the evaluation of this
potential to order M ' between free proton spinors
gives

V n&"+««"'= ——1+e'
I

t'pi+ps
q2 I, 2M

Z 8—e (qxd„), (2.8)2' q'

where q stands for the momentum transfer (pq —p3)
from the electron to the proton; d„ is the (2X2)
Pauli spinor of the proton. For the time being, we
will use (2.8) as the lowest-order potential; correc-
tions will be added later in order that the potential
correspond to Fig. 1(b) rather than Fig. 1(a).

Equation (2.8) is the momentum-space representa-
tion of the potential which will be used in a modified
Dirac equation to describe a wave function which
depends on the relative coordinate of the electron
and proton. This wave function is a four-component
spinor for the electron and a two-component constant
spinor for the proton.

It should be recognized that on the energy shell,
the scattering amplitude is not changed by replacing
ei in (2.8) by e; the difference vanishes in the center-
of-mass frame. This illustrates a general ambiguity
inherent in the eGective potential approach; one may
add to the eGective potential terms whose matrix
elements vanish for real scattering. Such terms will

not vanish in higher order nor will they vanish for
bound states. This ambiguity suggests that the selec-
tion of the potential should be made in such a way
as to minimize the importance of corrections to the
potential. In other words, our choice should be gov-
erned by a desire to obtain as much as possible of
the scattering from the initial choice of the potential.
The use of e& rather than e seems to be an optimum
one from this point of view. Furthermore, it is not
dificult to show that had we omitted the trans-
versality condition, the usual Dirac degeneracy in
hydrogen would be split by an amount of order
(m/M) fs rather than (em/M) fs. This would have
to be corrected later.

The proton spin-dependent part of the potential
(EV,ff&@) of (2.8) will at first be discarded; it will

be handled later by perturbation theory. In position

+, ep, vpi1 —p —
i

m ( m&

where

mpV' L1—p(m/M) j'
2M f1-( /M)y

K= e p+p~+V~ . (2.12)
t'1 —p(m M
I, 1 —(yP/M2)

In obtaining (2.11) we have made use of the fol-
lowing identities:

f e, )I=0; p'/2M=(1/2M) (e p)'
(1/2M) (V'+-', LV, Lp', i'P'gj) =0.

The term involving lF in the last relation arises from
the difference between e~ and e in (2.6); if it were
not there, the Dirac degeneracy in hydrogen would
be removed to order (m/M) fs.

+(4M)-'Le u, f u', Wjj lk(r) =Z4(r). (2.10)
)

Note that in the limit 3I~~, this reduces to the
ordinary Dirac equation with a Coulomb potential.
The corresponding BS equation does not have this
property since a positive energy projection operator
occurs to the left of V; this difference is of course
compensated by higher terms in the BS equation.

C. Solutions of the Modi6ed Dirac Equation

We notice that some of the terms appearing in
Eq. (2.10) are contained in the square of e p+
pm+V. For example, the square would have a y'
and an f e p, VI; these terms appear in (2.10) but
divided by 2M. This suggests a rearrangement of
(2.10) in terms of a simpler Hamiltonian whose solu-
tions may readily be found.

The rearrangement is governed a posteriori by our
desire to obtain the exact reduced mass correction to
the nonrelativistic binding. For relativistic corrections
to the energy it suflices to obtain mass corrections
in terms of a power series in m/M; actually only ome

power is usually needed.
We And that the Hamiltonian may be rewritten as

B=Hg+ +(4M) '(II') tp' JFjj
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At this point, B may be approximated by

Hg+((Hp —m2)/2M)+ (1/4M) } Hz, Lp', W$). (2.13)

The error in the energy introduced by this approxi-
mation is negligible fOt (m/M)'n41}, and the error
in the wave function is also too small to be of any
consequence.

If the solutions of H)f)=E(f~ can be determined,
then the solutions of Hf=Ef are easily seen to be
approximately

f=XI 1 (1/4—M)Lp' W'j}fy, (2.14)

where E is a normalization constant. The wave func-
tion f is correct to order M in the relativistic cor-
rections to it.

For P& we have the equation

~1—P(m/M)
n p+Pm+V ~, , P(=E(4'). (2 15)

),1—m2 M2

Let p( ——(1+pX)f„where X is a constant to be chosen
in such a way that the equation for i/0 will not con-
tain a term pV. Substituting p& into Eq. (2.15),
multiplying on the left by 1+PA, and dividing by
1—X' we obtain& with X= (M/m) I 1—} 1—(m/M) ']»'}

1—(E(/M) l V

t'1—(m, '/M') y'y $1—(m'/M') O'I'

The above equation is a Dirac equation for a par-
ticle of mass

1—(Eg/M)

in the Geld of a Coulomb potential

.} 1—(mn/M~) g»'
Since E(=m+0(mn'), we find that

$1 (m/M) —l'I'
&1+(m/M)

Using this value of m' in Eq. (2.16) we obtain an
equation whose solutions are well-known Dirac wave
functions fo„(,; (m'n'r, n')." Furthermore, with the
approximate value of ns', we have

I I

1 (m/M)

If the wave function $0 is normalized to unity, the
normalization condition on p leads to a value of E
equal to (1+&) ' with an error of order (m/M)n'.
The contribution to f from the term (1/4M) Lp~, W$g')
Lace (2.14)$ is ignored since it is roughly ODm/M) n'jfc
for values of r near the Bohr radius. It should be

pointed out that this term, if retained, would lead
to a logarithmic divergence in the hyperGne splitting.
If structure is included, as it must be, this contribu-
tion is Gnite and is not important.

Therefore, to the desired accuracy, the solution of
Eq. (2.10) is

0= L(1+P) )/(1+l) )3A

where $0 is the Dirac wave function for an electron
of mass m' acted upon by a Coulomb potential whose
strength is determined by 0.'.

D. Some Corrections to the Potential of Eq. (2.8)

As previously mentioned, the potential of Eq. (2.8)
was selected on the basis of Fig. 1(a). However, the
scattering is determined from Fig. 1(b), which in-
cludes the proton form factor and the anomalous
moment, rather than from Fig. 1(a). Therefore Eq.
(2.8) must be corrected.

The proton vertex (p„) is replaced by

I'„=F),(—q') p„+F2(—q') (ip/2M) o„„q", (2.17)

where Ii» and P2 are the Dirac and Pauli form factors,
and p is the anomalous moment of the proton; and
o»= 2ify—»y„j. The form factors F~ and F2 are re-
lated to the experimentally determined electric and
magnetic form factors G~ and G~.* In the region of
momentum transfer of interest to us (} q'

} «4M'),
P» and F2 are approximately equal to Gz, where»~

G (—q') =PA'/(A' —q')g' 8=0.91M.
Therefore, we replace Eq. (2.6) by V(')(p&—p,),

where

V"(pi —pa)
—=—(~/q') (~ol'o)

+("/q') '(VoI'). (2.»)
Here I'0 and F are, respectively, the time and spatial
parts of I'„. For simplicity, we will call G& above F.
If (2.18) is evaluated between free proton spinors to
order M ', we obtain the replacement for (2.8),
V,(((8)(2)+g V (((I)(2)

p(+ pl')

q' 2M j
Z

g' 2' (1+~)n (q «.)F(q') (2 19)

In obtaining (2.19) from (2.18) we have rejected all
terms explicitly containing more than one inverse
power of the proton mass. It may be shown that
such terms do not contribute to the desired order of
(nm/M) hfs and (nm/M) fs.

Equation (2.19) does not contain contributions
from qo diGerent from zero since we have assumed

*Gs= I'~ (a'/4M')v~~, ~~= ~a+)—&s.
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thus far that oG-the-energy-shell eGects can be ig-
nored. However, in the next section we will correct
(2.19) by including some dependence off the energy
shell. This correction will be chosen so as to minimize
further corrections which arise from the failure of the
iteration to match the two-photon exchange am-
plitude.

III. THE HYPERFINE STRUCTURE OP
HYDROGEN

The hyperfine splitting of the ground state of hy-
drogen has been measured by Crampton, Kleppner,
and Ramsey' to be

v.„pu= 1420.405751800&28X 10 ' MHz

by constructing a hydrogen maser which operates
between the levels of interest. Theorists can hardly
hope to compete with the precision of the above
results, but they have, over the years, refined the
calculations so that the level of uncertainty of the
known contributions is believed to be only a few
parts per million relative to the Fermi splitting. Un-
fortunately, there are additional contributions from
the internal dynamics of the proton which have not
yet been reliably calculated; it would be surprising
if these contributions turned out to be more than
10 ppm.

The theoretical splitting between the triplet and
singlet states of the ground state of hydrogen is con-
veniently written in the form

&theoret =

&& ~p{1+-p~'—~p(p2 —ln 2)

Ck+ —(ap ln' o,+ag ln a+ a2) —cpmnRp,

fmn mn—c)
I +p»} (3 1)

The constants factored outside the braces ({ }) are
arranged in such a way as to make optimum use of
the best-known fundamental constants. The first two
terms in braces contain the Fermi splitting" and the
Breit relativistic correction" as well as the reduced
mass correction to the hfs. The additional corrections
of order 0.' and 0.' are those residual radiative cor-
rections which do not alter the magnetic moment of
the electron. The coefFicient ~

—ln 2 was evaluated
by Kroll and Pollock. '0 and by Karplus, Klein, and
Schwinger. " The quantities ~ and a~ were obtained
by Layzer" and by Zwanziger' and were also veri-
fied in a recent article by Brodsky and Erickson'4
on radiative level shifts. In the latter article the
authors also estimate the value of a2.

The last three terms of Eq. (3.1) represent nuclear
corrections. The calculation of these terms [we refer

to them as the nonrelativistic (NR) size correction
which depends on the electromagnetic radius of the
proton (Z~,), the recoil correction given by c&, and
the proton polarization correction given by X~,&g

requires specific knowledge of proton form factors
and dynamical structure. The NR size term was de-
rived by Zemach, ' whereas the recoil plus size cor-
rection (not separated into two contributions) was
first obtained by Iddings and Platzman. ' It is the
proton polarization correction which has only been
estimated with various models.

In this section we will rederive (3.1) except for the
radiative corrections. %e divide the section into four
parts:

A. Hyperfine splitting and reduced mass corrections;
B. Nonrelativistic size contribution;
C. Additional recoil terms;
D. Discussion.

A. Hyper6ne Splitting and Reduced Mass
Corrections

The interaction V,fg@& [Eq. (2.8)j was previously
put aside in Sec. II. B. This part of the potential
gives rise to the hyperfine splitting, which we now
proceed to calculate by first-order perturbation theory.

If we include the anomalous magnetic moment of
the proton, then in the momentum representation
the perturbing potential is given by

~V. "'=—('/2~) .L"/(p~ —pp)'j [(p~—pp)

(3.2)
In position space it may be written as

AV ff&'&= (p/2M)p„[n ~p, n/r$ d (3 3)
For the first part of the calculation, it will be con-
venient to work in position space where the wave
function is approximately given by

e( ) =
l (1+~1)/(1+1 )3S.() (3.4)

Using (3.4) and the value of X given above, we find
that the large and small components of the wave
function are, respectively,

(1—(m/3f) )'~'
4'L(r) =Ppz(r) and &8(r) =

I I p»(r)
&1+(m/M) j

(3.5)
Since the interaction couples the large and small

components of the wave function, the energy change
may be calculated as

ip„n 1—(m/cV) '~'
d'rA'(r) [«p, 1/r] &Ap(r),

(3.6)
where we have used the wave function Pp rather
than f. If the proton had infinite mass, the above
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integral would be"
—-',i(nsn) '4n(1+-'n') (a, u.) (3.7)

but our wave functions depend on m„qo, and on 0.'

rather than mn and n, respectively; the result for
6nite mass must therefore be

—-'i ~m n~' 4
L1—(m'/M') ]"'

CPx I&1+-;, (,/, )&I(. ,). (3.g)

When (3.8) is combined with the numerical factors
appearing in front of the integral sign in (3.6), the
result obtained is

We see, therefore, that the Fermi splitting Eg between
the triplet and singlet states is modified to

z,'=z,
l l l1, , l. (3.10)

In this simple way we have obtained the reduced
mass correction to the Fermi formula. The modifica-
tion of the Breit correction (,'n') d—ue to mass cor-
rections should be ignored since terms of comparable
magnitude were also considered to be too small.

B. Nonrelativistic Size Correction

The erst estimate of the contribution to the hyper-
Qne splitting due to the 6nite size of the proton was
made in 1949 by Brown and Arfken, " who assumed
for simplicity that the proton consists of a shell of
charge. Although this assumption is crude, it does
give a rough estimate of the correction.

A more sophisticated calculation for an arbitrary
distribution of the proton charge and magnetic mo-
ment was done by Zemach in 1956.25 This calcula-
tion, in which the nonrelativistic approximation to
the wave function was used, has withstood the test
of time and gives the bulk. of the proton structure
correction.

It is by no means obvious that the nonrelativistic
approximation to the wave function su%.ces to obtain
the major part of the structure correction. In fact,
for the electron to see the proton structure it must
interact with the proton in such a way as to exchange
high enough momentum for the form factors to be
appreciably diGerent from unity. The occurrence of
these high-momentum processes indicates that the
electron will be relativistic.

In spite of the fact that the electron will be re-
lativistic, the use of the noDrelativistic wave function
can be justified. '~ A detailed examination of the inte-
grals shows that the large components of the wave
function are needed only for relatively small momenta

(p ma), where the nonrelativistic approximation is
valid for them. Even though the small components
are needed for rather large values of momentum
(M& p»m), it turns out (surprisingly) that they are
very well approximated there by the corresponding
NR ones (see Appendix 3).

In this paper, when we say that a particular ap-
proximation is valid or that a term is negligible, we
have specifically estimated the term by obtaining its
order of magnitude in terms of such small quantities
as n or m/M. The reader is referred to the paper
of Erickson and Yennie' for a discussion of "rules
of order" in estimating integrals.

The correction which we obtain in this section in-
volves the ratio of a nuclear radius to the Bohr radius
(next~, ). Since this is already quite small, we may
evaluate it in the limit of infinite proton mass. The
wave functions are therefore Coulomb wave func-
tions, except that a two-component spinor for the
proton is included. Let us denote the Coulomb wave
function by P, in coordinate space and by P, in mo-
mentum space. The distribution of the proton charge
will modify these to f,&' and P.&', where the super-
script (s) is used to indicate that structure is in-
cluded.

The modification of the potential due to the proton
structure is indicated in Eq. (2.19). In addition to
the change of the wave function brought about by
the distribution of electric charge, we must also con-
sider the modidcation of the perturbation due to the
distribution of the magnetic moment. Although we
have previously assumed that the form factors will
be denoted by F, it is convenient in what follows
to distinguish between G~ and G~, even though these
are both equal to F (i.e., for l

g'
l «4M'). The cor-

rection to the hfs due to size eQects is therefore

2M pi —p~
'

& & G~ f(p|—p~) 'j4."(pr) d'p~d'p~

(-&u~l
4.'(p~) I,M"I,~. (pi—p~)

pl p3

x d&, (pg) d'Pjd'p3. (3.11)

As mentioned previously, we will evaluate (3.11) by
using the NR approximation to the wave function.
To denote the NR approximation of a function p,
we use g; to indicate the usual spin-independent
factor in the NR wave function, we use p. Therefore,
the wave functions are written

Xe
A(p~) =i.(p~)x. I,( dpg2mx,

e."(p)=e."(p)x. l l (3»)
d pg 2m x,j
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9,"'(r) 9.(O) —pmd. (O) f 1
u —r

I pp(u)d'u. (3.19)
4 (P~) = —Le—(P2'/2m)] '

(2 )'(pi —p')' '
When (3.19) is substituted into (3.16) and use is
made of the condition

and, to a suKciently good approximation,

d'p' e'
P. '(p) =i.(p ) —[—(p"/2m)]-'

(2~)' p~
—p' '

the result obtained is
X [Ge [(Pi—p')'] —1}4.(P'), (3.14)

(a/6m') &~, a,) IA(O) Pwhere e is the NR binding energy.
Using (3.11) and (3.12) we obtain a contribution

to the hyperfine structure given by
g2

6m'

X —
2muf ) u —r) pp(u)pu(r)drud'r . (329)

This is exactly the Zemach correction to the hfs.
It is equal to

where x, and x„are two-component spinors for the Approximating )p, (r) by p, (0) (1—m()r), we obtain
electron and proton;

X P.P) (ur) dPPrd'Pr fd '(up)—9 (9r.) 3'Prd'P. r (3»)

In coordinate space, (3.15) may be written as

—2mnRp, Xhfs,

Epg= Q—X p~ Q pg X' (Pgd f

(3.21)

(3.22)

(a..a„) g. t& ) (r) p))r (r) )P & ) (r) d3r —
~
)P.(0) ~',6'

(3.16)
where

pd(r(r) = exp (i(I r) G~(tl').
tPg

(2x) '

From (3.16) it is clear that we need a good approxi-
mation for 21'd,(p)(r) only for small values of r. This
permits us to mak. e some simplifying approximations
in the following paragraph.

In the p' integration of (3.14) only small values
of p' (p'~ma) are emphasized. Therefore ())),&'& and g,
can differ appreciably only for large values of pz.
This means that we may neglect p' compared to p&

in the integrand of (3.14) to obtain

P. '(pi) =i.(p~) —[e—(p~'/2m) ] '(e'/p~')

X [Gs (pP) —1][$.(0) /(22r) ']. (3.17)

Moreover, for large values of p& (pQ)mn), we may
certainly neglect ~; for small p), the second term of
(3.17) is negligible compared to the 6rst, and there-
fore it is clear that we may set a=0 for all pz. With
these approximations, the Fourier transform of (()p,

(p) (pq)
becomes

2)|,(u) (r)~)p, (r) +2m(p (0)
e2 d3p

X exp —
ipse

X' —6@ pq2 —1
pg' (22r) '

=j.(r)+m rj,(0)-~,(0)

is an appropriate proton radius. The derivation of
this result for the specific case of a shell of electric
charge and a point magnetic moment is presented
in Appendix C using a diGerent method.

The experimental determination of proton form
factors, obtained from electron —proton scattering, in-
dicates that the exponential fit provides a good de-
scription of both the electric and magnetic form
factors. ' We will therefore use

pg(r) =p))r(r) = (A'/82r) e
—~",

where A.=0.91M. We obtain

JRpx — X pE~ I d f (3.23)

with

ppu(r) = f pp(r u) pu(u)d'u—
= (1/642r) A~e ~r [1+2().r+ ~~(Ar) '] (3.24)

Evaluating (3.23) we 6nd that

R,= (35/8) (1/A) =1.02 F.
Since the relative correction is 2mn E~—„we obtain
a nonrelativistic size eGect of

—38.2 ppm. (3.25)

This simple result, obtained in terms of a suitable
proton radius, represents most of the contribution
due to the structure of the proton.

C. Additional Recoil Corrections

Q—1 p@ Q dQ. (3.18) Thus far we have treated corrections to the hyper-
Gne splitting coming from the finite size and Gnite
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mass of the proton by considering the potential in
(2.19). There are, however, fur ther corrections of
relative order rrm/M. These are not contained in the
potential of (2.19), but must be found by first ob-
taining a suitable modification of the potential. Before
going on to evaluate the eBect of this modification,
let us briefly review the work of others.

Some 15 to 20 years ago, Breit and his co-workers
attempted an approximately relativistic treatment of
nuclear motion corrections. ""Although their results
contained the correct reduced-mass corrections, they
did not contain relative corrections of order nm/M
for either the fine structure or the hyperfine structure.
The difhculty with their approach, as discussed by
Salpeter, '8 was that it corresponded to single-particle
theory rather than to hole theory (so far our ap-
proach has the same Qaw, but this is remedied by
further corrections to the potential).

In the early 1950's Arnowitt" and Newcomb and
Salpeter'0 independently calculated these additional
recoil corrections to the hyperfine splitting by corn-

pletely covariant techniques, the former based on a
method developed by Karplus, Klein, and Schwinger, "
and the latter based on the Bethe —Salpeter equation. '
Unfortunately, these calculations are logarithmically
divergent since they are done for a point proton with
an anomalous magnetic moment; the nonrenormal-
izability of the Pauli interaction is responsible for
the divergence.

In 1958 Iddings and Platzman' took into account
the form factors of the proton in obtaining the cor-
rections due to structure and recoil. Their result is
not obviously separable into a part which may be
attributed to a proton size Las the Zemach result
in (3.25)j and a part which may be interpreted as
a recoil correction. Such a separation is desirable
since it clarifies the diGerence between the results of
Iddings and Platzman andthose of Zemach.

The method which we employ yields the same
numerical answer as that of Iddings and Platzman,
but it does make the separation referred to above.

The selection of an eGective potential is made
under the assumption that one which accounts for
the observed electron —proton scattering will be ad-
equate for use in the bound-state problem. Although
this statement seems plausible, it is by no means
obvious since the choice of a potential is not unique.
Our particular choice is guided by maximum sim-

plicity. The lowest-order potential in (2.19) predicts
the first-order scattering; other choices could do just
as well. However, we will modify (2.19) so as to
obtain a potential which not only gives the first-order
scattering but also gives a good portion of the second-
order scattering. This new potential will thereby
minimize the corrections which arise due to the failure
of the iteration in a Lippmann —Schwinger formalism
to match higher-order scattering. Let us call this new
potential V ff (')&')

Pg, Pii -P -P-P
i

~eQ

-P
l

(a) (b& (c)

Fro. 2. Two-photon-exchange graphs. (a) Complete two-
photon amplitude. (b) and (c) Approximations to (a) using on-
the-mass-shell form factors and excluding excited states of the
nucleon.

The second iteration of V,ff'&'~&'& does not correspond
exactly to the scattering obtained from the graph of
Fig. 2(a). This situation may be remedied by adding
an additional term (AV, rr&'&&'&) which represents the
diBerence between the two-photon exchange and the
iteration. The new potential will have the property
that its first and second iterations give the correct
scattering to order 0,'.

Although it is quite clear that hV, «&@&') is smaller
by one power of n than the lowest-order potential
(it is also smaller by m/M), it does not follow a priori
that its expectatioo value in the bound state will be
smaller by one power of o. than the energy splitting
induced by the lowest-order potential. The reason for
this is due to the dependence of the wave functions
on the fine-structure constant. Difhculties of this sort
do not arise for the hyperfine structure, but are
present for the fine structure.

Needless to say, the two-photon-exchange Feynrnan
graph of Fig. 2(a) is not calculable since it involves
the strong interactions. It may, however, be evaluated
approximately by neglecting excited-state contribu-
tions and off-the-mass-shell, form-factor eBects. By
definition, these neglected contributions are called the
proton polarization correction and are denoted by
X~,& in (3.1). The diagrams actually used are shown
in Figs. 2(b) and 2(c). In subtracting the iteration
of the lowest-order potential, we do not include the
magnetic (spin —spin) interaction of (2.19) twice. The
magnetic interaction was treated only by first-order
perturbation theory to obtain the hfs, and it would
not be consistent to include two magnetic interactions
in the iteration. Such interactions will arise from
the two-photon graphs and may be handled in this
way rather than from second-order perturbation theory
with EV,ff&@&'.

In the interest of simplicity, let us first assume
that the proton is a Dirac particle. We would like
to demonstrate that the iteration of the lowest-order
potential is contained in the two-photon graphs, but
that there are residual terms which contribute to the
recoil corrections. The actual calculation for a more
realistic proton will be accomplished in a diGerent
way than that suggested by the work which follows.
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Fxo. 3. The",'E' planelrlocating the poles of the integrand of
{S.S4a) (not drawn to scale). The symbols indicate proton (pr),
electron {el),ror, form-factor (ff) poles.

++0,&(» L~&) +&»+C+(».s3
Qs ql +z

+D&(».s P-&(»,&)+&o.&(»jE1/(qs'+ i0) 3 (1/tlt')

+D~&»,«» LL«», &(»+C&&»,«» j
X (qss+i0) '(qts+i0) 'I (3.26)

chere

qa=p -p3, qi=p~-p,

D„s=u(ps) p. $1/(p' —rN+i0) 7»N(p&), (3.27a)

I; s=u„(P4)y. $1/(ps p'+ pt—+M+i 0) j»N, (ps),

(3.27b)
alld

C.. =,(P.)7.L1/(p.+p'-p -M+ 0)3~,(p.).
(3.27c)

The notation used is rather cumbersome due to the
use of the Coulomb gauge. The number in parentheses
associated with the symbol J indicates the Inomentum
to which the gamma matrix is transverse and also
serves to indicate which vectors are dotted into each
other (see Appendix A on notation).

As mentioned earlier, part of the amplitude of
(3.26) is predicted by the second iteration of the
lowest-order potential. To see this, let us look at the
term involving Do, &g)Lo,~g~. This represents a process
in which a transverse photon is exchanged, followed

by a Coulomb interaction. The integral over p&)' may
easily be done by contour methods, picking up the
residues at the various poles. If we close the contour
in the upper half of the complex ps' plane, we obtain
a contribution from the proton pole located at Et+

In the Coulomb gauge, the two-photon amplitude is

(4x.a)'
(2x)'

d'p'ID.

ohio.

o+C,oJ(1/e') (1/e')

Es—(p"+M') '/'+i0 .We obtain

—(4x.&r) 'i
d'p't&(ps) &o

X LEt+Es—{p'+M ) a—p' —~no+ ai&»N{

y, (y"+M') '/s+y y'+Ml
X u, (p4) vs . „M,,„, I y~(»N, (ps)

X
1

(3.28)
(p~ ps)2 LEs (p 2+Ms)1/s)s (pt p )2

In the NR limit for the proton this simplifies to
d'p' e'

(2 )'(y' —p)'
X EE—(y s/2M) —~ p' —&~3-)~.„,N(p, )

e2

X4
(y —p')' —E(y '/2M) —(p"/2M) 1'

M 2M
p +pt

2M

where E=Et+Es—M.
This is almost exactly the scattering predicted by

part of the iteration of (2.19) (with F= 1 and p=0);
the only diGerence is due to the presence of some
terms involving the proton kinetic energy

L(yt'/2M) —(p"l2M) j'.
We note, however, that the second term in (2.18)
should really have in the denominator &ls—qss (in
lowest order, qs ——0). Therefore we interpret this q&)

as the difference in proton energies I i.e.,

q (y s+M2) 1/s (p 2+Ms) I/2j

We now modify (2.19) so that the new lowest-order
potential is

I/', &((»(~)+pi/' (r(»(~) — F( q&)
q2

pt+ps')+ &rJ. ' IF(-q')
q2 2M )

e z+ —, (1+ ) &1 d„F{ q'). (3.30)—
q2 2M

Let us stress that this modi6cation does not aGect
the lowest-order scattering; it does, however, acct
higher-order scattering and bound states. In (3.30)
we have prescribed a behavior oG the energy shell.
Our choice is consistent with our desire to include
in the lowest-order potential as much as possible
with regard to the scattering. The iteration of (3.30)
(with F=1 and p=0) now gives exactly the same
scattering as does (3.29).

It would seem that the most logical way of pro-
ceeding to the recoil corrections is as follows: (1) First
evaluate the correction to the hfs due to the diGerence
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between (3.30) and (2.19). This means that all of
(3.29) has already been accounted for. (2) Obtain
the corrections due to the other poles in (3.26) (e.g. ,
electron and photon poles). However, it turns out
that the most logical method is rather de.cult since
it does not lead us to simple integrals. In fact, when
form factors are included, matters become hopelessly
complicated.

It may be shown, however, that the contributions
from other poles Lmentioned in (2) above] can be
evaluated by neglecting the external momenta in com-
parison to p'. '~ Furthermore, if we simply ignore the
difference between (3.30) and (2.19) and. instead
treat the difference between (3.29) and the iteration
of (2.19) as a perturbation (in the limit of ignoring
external momenta), we obtain essentially the same
result as if we followed prescription (1) above. These
statements are not obvious, but the proof is given
elsewhere. '~ The upshot of these remarks may be
summarized. The two-photon-exchange contains the
iteration of the lowest-order potential of (2.19), but
the residual terms may all be calculated by assuming
that the external momenta can be ignored compared
to the internal momentum p'. Although we have
only discussed the case with F=1 and @=0, the

same conclusions apply in the more general problem.
As mentioned previously, in these considerations we
always bear in mind that errors can be estimated,
and shown to be of higher order, in a standard way
(see Ref. 3).

The method suggested above for calculating recoil
corrections involves a separation into various pole
terms. This procedure was used for a point proton
and gave exactly the Newcomb and Salpeter cor-
rection. We will not include this calculation since we

prefer to treat the more general problem of an ex-
tended proton. However, we adopt a diGerent pro-
cedure in order to make the integrals more man-
ageable.

We have found that after the iteration of the po-
tential is subtracted out, it is justihable to set the
external momenta equal to zero and to ignore bind-

ing. Therefore, we may set the external momenta to
zero in the two-photon amplitude and subtract the
iteration, in the same approximation. The details of
these approximations are discussed elsewhere. '~ All of
the integrals become much simpler if this procedure
is foBowed.

The two-photon-exchange amplitude, including form
factors and the Pauli interaction, is

(4~a)'
(2~)4

~'p'{Dop{:L'o.0+C'o.0] L1/(p' —y~)'] L1/(y~ —p')']

+ Do. o& LL'0. (»+C' (»,0] {:1/(y'—p )'] L(p~—p')'+i0] '

+ DL(», p EL s(»,0+C 0,&(»] { (p —p3) +~0]—' L1/(y& —p')']

+ D~(».~(» { L'.(».~& &+C'.(»..(»] L(p' —p, )2+iO]-~ [(p,—p')2+io] }, (3.31)

where D„(, is given in (3.27a) and L'„&, C'„(& are given by replacing p, and p(, of (3.27b) and (3.27c) by I',

1'(»= Ev.+ (i /2M) &. e"]F( e'). — (332)

From (3.31) and the iteration of the lowest order potential of (2.19) we may infer a correction to the po-

&&.n(4&('& =B(+B,+Bn+B(,+B„—6—lp, (3.33)

where pq, ps are neglected compared to p'. The expressions for the B's are obtained from (3.31). The erst
two correspond to contributions to the hfs in which one magnetic interaction has occurred, either with the
Dirac or the anomalous moment of the proton. The next three involve double magnetic interactions of various

types. Finally the terms I& and I„correspond to the iteration of the lowest-order potential and are therefore
subtracted. We 6nd

(47ro() '8, , F'{y"—(E'—m)']
B& = —id, d„d4p'

(2+)' 3 {(E'—m)'+2m(E' —m) —p"+i0} {{(E'—m)' —y"+i0]'—4M'(E' —m)'} ' 3.34a

8 (4&ro.) ' .B„=
& Bg+ —

&(( ia. a„4dp( E'—m)'
3 (2~)'

F'{y"- (E'-~)']
X

{L(E' m)' y"—+i05'—4&N'(E' —m)'} {{(—E —&I)'—p"+i0]'—4M'(E' —m)'} ' (3.34b)

(4~~)'4, , (E'—~)'F'{y"—(E'—»(')'] 1
Bn= —id, d~ (fp

(2g)4 3 {L(E'—~)'—p"+i0]'—4'(E' —tN)'} {L(E'—&I)'—P"+iQ]'—4M'(E' —tn)'}

(3.34c)

(3.34d)
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and

—~sM'p" (E'—r&s) '+ 2 f(E'—m) '—y"j'+-'p" f (E'—tw)' —y"J'&(. . . . , , , (3.34e)
{f(E'—r&s)' —p"+i0j'—4m'(E' —m)'} {f(E'—its)' —p"+iOj' —4M'(E' —m)'}

The I's turn out to be~

4 (4wcr)', , F'(p")
(3.35a)

and
Ip= pI& (3.35b)

The evaluation of b V,ff&"&'~ is a straightforward but arduous task. It should be noted that By, B„,Ij, and I„
are all divergent quantities but that the divergences cancel in Bj—I& and B„—I„.We shall not discuss at great
length the integrations of (3.34) and (3.35) but shall merely indicate the method.

The poles in the E' plane for the integral of Bj are located as shown in Fig. 3. The contour which we have
drawn does not enclose any poles of the integrand, regardless of the value of p'. Therefore, using Cauchy's
theorem, we obtain~ ~

f(E' m)dE'—=i ff i(E' —tN) jd—E', (3.36)

where f is the integrand; f could also be any other function of E'—m which confines its poles as in Fig. 3 and
which vanishes fast enough at in6nity.

Using (3.36) and replacing E' rN by E' (ch—ange of variable of integration), we find that

8 (4&rrr)' (E"+p")F'(E"+p")
3 (2w) 4 ~

{(E&2+P&2)2+4Ns2EI2} {(E~s+y~s) 2+4M2E~2} (3.37)

In obtaining (3.37) we have discarded a term which is odd in E' and would therefore integrate to zero. The
advantage achieved in transforming (3.34a) to (3.3'7) is that we may now work in a four-dimensional, Euclidean
space. As previously mentioned, (3.37) has a divergence at small values of p' which will be canceled by a cor-
responding divergence in Ii. Let us therefore impose a small cutoG X on the p' integrals of (3.37) and (3.35a).
Later we may let )~0.

If we now transform to coordinates K and f as determined by

B~ becomes

E"=Ks coss f and y's=K' sin'P, (3.38)

32m (4&ra) s " sins fdPKdKF (K')
Bx= d, ' dy

3 (2&r) &, a&a-&i&,~x& (K +4rprs coss f) (Ks+4Ms cos' P)
'

and (3.35a) becomes (here K= p')

(4&rn) ' ~ dK F'(K')
(2&r)s &,

K' m+M

(3.39)

(3.40)

It is a straightforward exercise to show that the integral on f may be extended to zero without obtaining an

*The iteration of the potential is

r , ~P(y' —i&)'j &+a &3&
~ 2~ ~

Ã —(i&"/2~) —a i&'—P~?'~ q~ ~~(
QF)(i» p')'je (p&

——p') X @~+reverse ordering. (a)

If we take its expectation value using the wave functions @ of Sec. II, we find that it is the same as the expectation value of

~'P' /t P&
—s' —~E(i&'—i&~)'0, , /t+P& i

,) (i ~~)1 " ~ )
~ t+~~ 2~" (

+reverse ordering, (b)

where E„=rn ——,&a„s'il. This latter expression gives I& and I„ in the appropriate limit. The former (a) is dificult to work with
because of a spurious pole in the propagator occurring at high momentum,
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additional contribution in the limit X~O. The integral over 1P in (3.39) lnay readily be done, thus giving

41m ' dX ~2 ~ay.

(22r) ' 1 E2 & 4M' k 4m' j
(3.41)

The difference Bl—Il is quite well behaved in the limit X—40. The integrals in (3.40) and (3.41) may readily
be evaluated with the help of standard integral tables.

The result is

4 (4/rn) 2 Op(A2) (M—m) (1 m2 '/' A ( A2
Bg—Ig——— a, a„-',~I I

—
I

——— ln —+I,—1
3 (22r) 2 M' m' —

& A j &4 A2 2m &4m2

(M' 11'/2 ( jl.2 'i'/2

(3.42)
4j E 4M2j

where op(h. )g(jl2) =—413.'I 8'/8(A ) )(1/iP)g(A2) for any function g. This expression applies for 4m2&A2&4M2,
but in going to the limit h.-+~ @re must make the replacement

(M' 1)'/' ( A2 )'/2 (1 M') h. ( A'

4 cV j 2M (4M2 j ~

All of the integrals may be evaluated in a similar way. The complete results are

(4~n)2 4 (M m(1 —m')'/' h. t' A2
Bl Il+B11= ' ' op(j') —:~l —I- ——

I
» +I

(22r)2 3 M2—m' k4 cVj 2m &4m2

(M2 1)1/2 /l2 )1/2
sin ' 1—

E&2 4j 4M'j

(42m)2 4 d. dl,'-'+" "(2) 3M- ""'
(M' 1&'/2 . (

sin 'I 1—
(h.2 4j E 4M'j

g2 ( /1 4M2 1/2 ( P2 )1/2
ln —— —1 sin ' 1—

16M'
~

M A2 I, 4M'j

4m'/ » —+ I

—1
I I, (3 43a)

m2 m ( A2 j 2m (4m2 j )
(M—m) (1 m')"' —+Ij ~4 h.2j 2m E4m2

A2 ( A. (4M'
4M2 I( M I( ~2

—
jI

~
I( 4M, jl

( 4m' '/'
» —+ —1

I I, (3 43b)
m ~ X2 2m 4m' j

(4~n) 2 1 g y ( 6/l2 /1 (4M2 )1/2 ( g2 )1/2"""(2) 24M —m M M I, ~' j I, 4M'j

2ie (M' ) & ( 4m')' ' & ( ~' )' ' ~'(M' m')+ I

—+2I» ——I1—
I

» +I —1I +M' I, m2 j m &
A2 j 2m &4m2 j 2m4M'

h. ( 4m2&"' & ( ~2
m'+2m'ln ——A'ln —+h.

I
1—

I
ln +

I

—1
I

I. (3.43c)
m m & &2 j 2m Hm2 j )

3.6 ppm (3.44)

for the hfs of hydrogen. This may be interpreted as

The correction to the potential therefore leads to
an energy change of

I g.(0) I2 (EV,21&41&'&), where the
expectation value is over the appropriate spin states.
The evaluation of this leads to a relative correction of

a recoil correction I 0(mn/M hfs)) suitably modified
by the proton form factors. When this correction is
added to the much larger nonrelativistic size correc-
tion of (3.25) (—38.2 ppm), we obtain a total of

—34.6 ppm. (3.45)

This is in complete agreement with the correction
obtained by Iddings and Platzman. '
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PIQ. 4. Approximation of virtual Compton scattering off a proton.

In the limit of a point proton, the correction
becomes

M f 15 9 A&
&( —3(1—sp') ln ——ps! + —+ —ln —

! . (3.46)
m I, 16 4 Mj

This expression does not agree with the corresponding
result of Newcomb and Salpeter, " which is

mn

M
— --Ep[7r(1+@,)j '

—3(1—sps) ln ——p'! ——+ —ln !, (3.47)
8 4 Mj

where A.
' is a cutoG. As pointed out by Guerin, "

who also obtains (3.46), the difference between (3.46)
and (3.47) is due to the noncovariant introduction
of a cutoG A.', which is allowed to approach in6nity
whenever this would not cause a divergence.

D Des cuss&on

Aside from reduced mass corrections, the nuclear
corrections to the hfs may be separated into three
types:

(1) A size correction, erst obtained by Zemach,
of —38.2 ppm.

(2) A seoul/ recoil correction of 3.6 ppm, calculated
for an extended proton. In the limit llf—+~ this term
vanishes, but in the limit h~~ a logarithmic di-
vergence appears.

(3) The proton polarization corrections, which have
not yet been completely calculated.

In this paper our concern has been only with the
Grst two terms. The separation into these two terms
is useful since the diGerence between the results of
Zemach and of Iddings and Platzman is exactly the
3.6ppm which we have calculated. It is important
to emphasize that the bulk of the correction is the—38.2 ppm above and that the calculation of this is
quite simple. On the other hand, the additional small
contribution of 3.6ppm is much more difBcult to
obtain.

Now we should like to describe brieQy the situation
with respect to the remaining contributions which
have been lumped together as proton polarization
corrections. These have been entirely ignored in this
paper but have been discussed by many authors.

First of all, there is the problem of excited-state
contributions to the virtual Compton diagram. In our
work, these have been avoided by approximating the
diagram as illustrated in Fig. 4. Various authors have
studied the excited-state contributions to the hfs and
have estimated these at less than 1ppm. 32 " More
recently, Drell and Sullivan" have re-examined the
polarizability corrections with several nonrelativistic
models and 6nd contributions of several parts per
million. They conclude that our uncertainty of proton
dynamics is such that one cannot rule out the pos-
sibility of fairly sizeable corrections.

A second problem concerns the use of the usual
on-the-mass-shell form factors to describe the vertex
functions which arise when the intermediate state is
a virtual proton. However, we have seen that most
of the nuclear contribution which we have obtained
comes from the nonrelativistic size term, in which
the proton is on its mass shell. Therefore, we might
hope that oG-the-mass-shell eGects will be unimportant
since they would aGect only the recoil correction of
3.6ppm which is quite small already. In any case,
a correct and complete calculation of the proton
polarizability would include these eGects.

IV. NUCLEAR MOTION CORRECTIONS TO
THE FINE STRUCTURE

A. Reduced Mass Corrections

The nuclear motion corrections to the 6ne structure
levels are of two types:

(1) Reduced mass corrections.
(2) Additional recoil terms of order (nm/M) fs.

The reduced mass corrections were originally com-
puted by Breit and Brown. " In this section we will
recalculate this correction in a diGerent way; this
calculation also appears in a recent article which we
have written. "

From (2.13) it is easily shown that the eigenvalue
E is related to Ej by

a=Z,+[(Z, —~')/2M(. (4.1)

The energy E& may be found by solving the equation*

E,[1—(ms/EtM) ]
[1—(np/Ms) ]"s

m [1—(Et/M) j f
[1—(nP/M'))" &

' ' [1—(m'/M') 1'Isj!fl N, J,

*The function f(e, j, u) is given by

f(~i i ~) = C&+(~/l~ —
& j+2)+E(j+i)'—~'0"'I)'& '"
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This relation, obtained from Eq. (2.16), is a con-
sequence of the fact that we are dealing with+the
Dirac equation for a Coulomb potential.

The value of E~ is

mf+ (m'/M)

1+(m/M) f '

and therefore

m( j'—1) L1—(ms/Ms) )
1+(m/M) f

(4.2)

(b)

Fro. 5. Double Coulomb scattering from a nonstatic proton. (a)
Ladder graph. (b) Crossed graph.

ms L1—(m/M) j L
—1—(3m/M) 32

2M L1+ (m/M) ]s

Using

n
'~"'L-1-(./M)g"&~

'= 1 A

2' 1—(m'/M')

(4.4)

ns & I 1 3l
X 1+u- (, ((. , ——)yo(~),

we obtain

t'ms n41 (ms ) (mns+ 0
I

——I+ 0
I

f~ I+ 0
I

——
f~) . (4.5)

&Mu4i &Ms I EMrSs

It should be mentioned that the term

m«+(m/M) j-'Pf(u, j, rr) —1j
contains some terms of the same magnitude as those
which were discarded. For practical purposes these
may be discarded also, but since they are very small
it does no harm to retain them. For example, terms
like (m/M)s fs are still too small to measure in the
hydrogen atom.

Equation (4.5) contains the fine-structure levels as
well as the reduced mass correction to these levels.

3. Additional Recoil Corrections

Salpeter" originally derived additional recoil cor-
rections (beyond reduced mass) by using the Bethe-
Salpeter equation. As mentioned earlier, the work of
Breit, Brown, and Arfken" did not obtain terms of
the type (um/M) fs; the absence of such terms is
associated with use of single-particle theory rather
than hole theory. The results of Salpeter were later
con6rmed by Fulton and Martin, '~ who employed the

m' «—(m/M) g'—1' . 43
2M Li+ (m/M) fg'

Expanding in powers of f 1 to—second order we
obtain

m(f—1) «—(m'/M') j
1+( /M)

methods of Schwinger, of Karplus and Klein, and of
Fulton and Karplus. '~'

The recoil corrections referred to above are also
calculable by the effective potential approach. The
contributions are of three types. The Grst involves
corrections to the exchange of two Coulomb photons.
The second is obtained by considering recoil when
one transverse photon is transferred. The third and
last takes into account processes in which two trans-
verse photons are present.

These three contributions will be evaluated for the
25 state of hydrogen. Contributions for other states
may be obtained in a similar way.

1. Coulomb Correction, hE„
The lowest-order potential contains an instantaneous

Coulomb interaction. The iteration of this part of the
potential,

r
dsp es

(2~)' (y' —ys)'

XLE—(y's/2M) —n. yf —Pm) r fes/(yt —y') sj (4.6)

describes double Coulomb interactions and should
account for part of the scattering obtained from the
second-order Feynman diagrams, Figs. 5(a) and 5(b).
The use of slanted lines for Fig. 5(b) should not be
misunderstood. In the crossed graph the interactions
are really instantaneous, and if we decomposed this
graph into time-ordered graphs, the lines would be
horizontal. The intermediate states would involve a
proton, two electrons, and a positron or an electron,
two protons, and an antiproton. The dashed notation
tells us to use a yo at the vertices and photon prop-
agators containing only three-momentum transfer.

The diagrams of Fig. 5(b) symbolize the amplitude

(4rrof)'

(2s)4
d4p't4(ps) ys(p' —m+so) —

'ysu(pr) t4, (p4) off

X P(Ps —P'+P, M+sO) &+ (P,+P' P, —M+ 'O) &-j——-
X ~su. (ps) (1/(yr —y')'j «/(y' —ys)'j. (4.7)

If we set E&+Es—M equal to E, the contribution
to the ladder graph of (4.7) from the proton pole
in the upper half of the complex E' plane corresponds
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to the scattering predicted by (4.6), provided we
treat the proton nonrelativistically. The relativistic
region of the proton is unimportant in evaluating
the correction. Furthermore, the proton pole of the
crossed graph, which is located at E'& —2', also
does not contribute to order M '.

The only remaining pole in the upper-half plane
comes from the electron propagator. When this pole
is taken into account and the contribution evaluated
to order 3f ' and the external proton lines are as-
sumed on the mass shell, we obtain an addition to
the potential

—(4m n) '
(2s)'

—(p"+eP) "'yo —p' y+m
yp2M—2(p&2+m2)1/2 (p& pa)2 (pl p~)2

X
—2p '—2p~'pa —2p ' (p~+1//)

I [m+ (p"+m') '"]'+2M[m+ (p"+m') '"]}{[m+ (p"+m') "']' 2M—[m+ (p"+m') "']} (4.8)

In obtaining (4.8) we have approximated E& by the
mass of the electron. The bound-state wave functions
will tend to emphasize values of pq and p3 near the
Bohr momentum when (4.8) is treated as a per-
turbation. The values of p' which are important are
much larger, and therefore the leading contribution
may be obtained by setting p& and p3 equal to zero
as compared to p'. With these approximations, (4.8)
leads to a contribution of
—4n~ p"dp'

(p~2+m2) 1/2 [m+ (p~2+m2) 1/2]8ly„,,(0) I

(4.9)

The integral in (4.9) is easily done, and the result
for the 2S state is

hE„=—x(n'/mM)
~
fns(0) ~', (4 10)

in complete agreement with that obtained by Fulton
and Martin. l It should be pointed out that the result
quoted in Salpeter's paper [see Eq. (3.6) of Salpe-
ter"7 should be multiplied by a factor of 2. This
error has been noted in the past (see Footnote 1,
page 102 of Bethe and Salpeter').

Z. Single-Transverse-Photon-Correction, bhp

The recoil correction to the fine-structure levels
involving a single transverse photon requires special
treatment. Since there are contributions of order
(am/M) fs arising from very small values of mo-
menta (p~mn), it is not possible to ignore atomic
binding in the atom; for the hfs it was possible to
set the binding energy equal to zero in evaluating
the small corrections, because the important values
of momenta were much larger than binding eBects.

This illustrates a serious problem one faces in
dealing with the Feynman graphs in the bound-state

problem; the expansion in terms of the fine-structure
constant is often not simple since many Feynman
graphs may be needed. In fact, in the present situa-
tion, the need for binding corrections suggests the
necessity of considering all Coulomb exchanges oc-
curring during the time interval between the emission
and the absorption of the transverse photon. It is
quite clear that one cannot easily perform the sum
over all the required graphs, and therefore an alter-
native method is needed.

Previous calculations of this correction have been
done by separating the energy of the transverse
photon into a low- and a high-frequency part. Three-
dimensional perturbation theory was used for the
low-frequency part, whereas the high-frequency part
was treated by four-dimensional methods. Actually,
Salpeter also handled the high-frequency part by
a three-dimensional method.

Our calculation is very similar to previous ones
except that we do not invoke a separation into low-
and high-frequency parts. We also use only three-
dimensional perturbation theory. The perturbation
Hamiltonian H responsible for emission and absorp-
tion of transverse photons is

d'k

{2k)"'
X {~. [ai(k) exp (ik x,)+ai'(k) exp (—ik x,)]

—e„[ai(k) exp (ik x~)+ai"(k) exp ( ik—x~)]. }

(4.11)

where a~(k) and an't(k) are the usual destruction
and creation operators for a transverse photon of
momentum k. The second-order perturbation of the
energy corresponding to an exchanged transverse
photon is therefore

—2e' d'k (e } n,~ exp (ik x,) ~
m) ~ (m ( e,i exp (—ik x„) ( e)

(2s)' 2k E„—E —k
(4.12)

where E and E„are the energies of the intermediate and initial unperturbed atomic states. The factor of 2
in front of the integral accounts for the two ways in which emission and subsequent absorption can occur.
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of AE» is accom lished by using
the Bethe logarithm. 4' After oin
in (4.16a), we obtain

E —„.(4.17)e i m) ~ (magpie)ln iA/(E„ E„) [xZ p

r n and we1 rying function, ana slow y var
'

The logarithm is
e it by an av erage valuetherefore replace

'

ln
~
~/(E„—E„),.(.

(4.21)

and g

r
1 4j&(kr) 4

unction. In term s ofhe ical Bessel func
(4.22) may be nel functionsordinary Bess

Jg)g (kr) 1s'
0 h ~ 0

4.21) is quite straight-ral over k inThe angular integr
forward



366 REvIEws 07 MoDERN PHYsIcs ~ APRIL 1969

The integral over r may be done using the aid of
a good set of integral tables (e.g. , Ryshik and Grad-
stein"). We obtain

~ dk (1 5 —k')
32 ' —(3mn) ' FI-, 1;—;

I

—1, (424)
k

where Ii is a hypergeometric function. The remaining
integration may be accomplished most readily by
using an integral representation of the hypergeometric
function.

The Anal result, after taking the indicated deriva-
tives in (4.21), is

AEr2 (8(2.'/3m——M) I As(0) I' 1-g—ln (A/m(2. )j. (4.25)

Combining (4.25) with (4.18) we obtain DEz for the
2S state. We have

DEr= (Sn'/3mM) I As(&) I'

X (~s+ ln
I ~/(E, —E„),.I). (4.26)

Note that the dependence on A. is now gone. This
result is in complete agreement with that previously
obtained. "'~

3. Two-Transverse-Photon Correction, DER z

The recoil corrections of interest here contain only
one inverse power of the proton mass. The proton
pole terms arising from the diagrams in which two
transverse photons are exchanged are of order 3f 2

and are therefore discarded (they also reproduce ap-
propriate terms in the iteration).

1+(q& q&)'/qPqa'=1+ cos'sp„„ (4.28)

where qq
——y2

—p' and q8
——y' —yl. For values of p'

much larger than P2 and Pl, cos 8„92 will be replaced

by unity.
The integral over E' in (4.27) is most easily ac-

complished by contour methods. The poles in the
upper half-plane arise from the vanishing of each of
the three denominators. We obtain

We may therefore approximate Lto O(M ') j the
addition to the potential as

ia (E m) d—2. (2)
' d J.(())

2r'M E" p—" m—'+i0

x L(p' —p )'+ 01-'
I (p —p')'+'03-' (4.27)

In obtaining (4.27) we have evaluated the proton
factors to order M ' between free spinors, and we
assume a coupling only to the large components of
the electron wave function. It may be shown that
coupling to the small components introduces addi-
tional powers of the Gne-structure constant.

The addition to the potential (4.27) corresponds
to the so-called "seagull graph" shown in I"ig. 6.
In fact, this graph is equivalent to the contact term
s'A2. '/2M which arises from the usual "minimal"
coupling, when the proton is treated nonrelativistically.

In evaluating di(~~, di(3) we retain only the part
which is spin independent since we are looking for
fine-structure corrections in 8 states. The spin-inde-
pendent part is

2(22 fm+ (p/2+ m2) 2/2

'9 ( + ', ,) l „,m ) (2m'+2m(p"+m')m —pP+2p, p'] '

X /2m'+2m(p'2+m')'I~ yp+2—p3 p'p'+ L2(q3+q2) p2
28$—gq

—
ge

) , (4.29)
& (—2mq3+ q3' —p") (—2mq2+ q2' —p")

where qi=
I q& I

and qa
——

I ql I. There are no factors
of the external momenta in the numerator which
would tend to emphasize large values of p), or ps
(i.e., ))mn). This does not imply that we may set
p), or pa equal to zero in all places since there are
contributions coming from small values of p'. How-
ever, we may simplify (4.29) considerably by letting
p2 and p()—)0 in those integrals which emphasize
large p'. We then have

2'
dp (1+cos aqua)

mM

The various terms of (4.30) are separately divergent
for large p' but these divergences all cancel. At this

stage it is quite clear that the first two terms of
(4.30) come from values of p' much larger than the
Bohr momentum, and therefore we may set

cos Og1gg,
= j..

However, the third term of (4.30) clearly has a con-

1
X

8m'(p"+m') ' ' pm+ (p"+m') 'I'5 Sm q q

1
(4.30)

4mq2qa (q&+ qa)

FIG. 6. Seagull graph.
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2m.mM q~q2(q2+q2)

The correction to the energy levels is therefore

~&rr= d'p~d'p2e'(y2) ~V»(yi, y2)4 (y~) (432)

The evaluation of AE+z is most readily accomplished
by separating the p' integral into the regions p'(8
and p')8, where 8 is much larger than m. and
also much smaller than m. The contribution from
p')8 is

IA.(0) I2xmM

dp
(y~2+ m2) I/2 p&

2CL 28
I As(0) I2 ln —.

mM m
(4.33)

In obtaining (4.33) we have neglected 8 compared
to m in certain terms which appear in the logarithms
which arise.

In the region from p'=0 to p'=8 the contribution
to dV&z& is quite small. Therefore, to the desired
accuracy, the contribution comes entirely from EV~~2
and ls

aErr& — d2p, d2p2d2p' jt (y2)
2~mM

(y~). (4 34)
qiq2(qi+q2)

This is exactly the integral which appears in (4.27)
of Fulton and Martin. '~ It has been evaluated in an
exact way by these authors and in an approximate
way by Salpeter. '8 Therefore we merely quote the
result and refer the reader to the article of Fulton
and Martin for a brief discussion of the manner in
which this integral may be handled. We have

+2n2
~~res =

I As(o) I2
mM

@so. 7 4
ln + —+ —(1—ln 2) . (4.35)

28 4 3

When this is combined with (4.33) we obtain

+2n2, 7 4
I As(&) I' »~+ —+ —(1—ln2)

mM 4 3

(4.36)

tribution from small p'. Therefore (4.30) may be
rewritten as AVrr=AVrrj+AVrr2, with

A
EVrry= d'p'

i i (4.31a)
22rmM y" y"+m2 '~2

and

for the correction due to the exchange of two trans-
verse photons.

When (4.36) is combined with (4.26) and (4.10)
we obtain the complete recoil correction of order
(n222/M) fs for the 2S state of atomic hydrogen. Our
result is in total agreement with the work of Salpeter
and of Fulton and Martin. The contribution of the
recoil corrections to the 2E state has not been given
here, but it may be found in a similar way. It is
quite small by co~parison to the 25 correction. Our
results provide a partial con6rmation of the part of
the splitting 2S~~2—2/~~2 due to recoil corrections to
the Qne structure. This correction is certainly involved
in the theoretical and experimental determination of
the Lamb shift.

V. DISCUSSION

The principal aim of the present work has been
to provide a conceptually simple, united treatment
of the recoil and 6nite size corrections to the hyper-
6ne and Gne structure of hydrogen. Our results are
in agreement with earlier calculations which have
been based mainly on covariant perturbation theory
using the Bethe —Salpeter equation. Aside from the
recent work of Guerin22 (which treats the hyperfine
splitting), there has not been a complete treatment
of these problems in any one paper; and it was not
self-evident to the present authors that there might
not be some small error due to a mismatch when
the various pieces of the calculation are put together.
In particular, some authors used the Coulomb gauge
and others used the covariant gauge.

In any approximation scheme it is always valuable
to include as much as possible in the initial part
which can be treated completely. If one approximates
at too early a stage, the number of small correction
terms multiplies and the chance for a subtle error
increases. In the present work, this has been accom-
plished at the expense of using a formalism which,
while plausible, does not start with a correct bound-
state equation. However, we can adopt the following
philosophy. One can always use the solution to our
equation (including Rnite size effects) as the starting
approximation for a solution to the Bethe —Salpeter
equation. This would replace the usual approach of
using the solution of the Breit equation with the
transverse-photon term omitted. The corrections to
this initial approximation would then turn out to be
very small, and one could bypass the detailed treat-
ment of terms of intermediate size. Independently,
our initial equation has been derived from the Bethe-
Salpeter equation by Gross~ using an approximation
in which only the dominant pole in the contour in-

tegration over the internal energy is retained. This
pole is the proton positive energy pole, so that the
equation which remains after the energy integration
is a Dirac equation for the electron with an effective
potential.
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TABLE I. Fine-structure-constant discrepancy (the nature of the
uncertainty is indicated in parentheses) .

Fine structure'

Solid state

Muonium'

Electron~ g—2

Hyperfine structure'

nf, '=137.0388+0.0012 (exptl)

n„ i= 137.0359&0.0008
(exptl —two std. dev. )

a~«n«~ '=137.0383&0.0026 (exptl)

n«s& '=137.0382&0.0064 (exptl)

nzi, '=137.0338&0.0002 (known
theory) & (unknown
theory)

~ Reference SO.
Reference 10.' W. E. Cleland, J. M. Bailey, M. E. Eckhause, V. W. Hughes, R. M.

Mobley, R. Prepost, and J. E. Rothberg, Phys. Rev. Letters 13, 202
(1964).

~ D. T. Wilkinson and H. R. Crane, Phys. Rev. 130, SS2 (1963).
e Reference 2.

We should remind the reader here of the non-
uniqueness of the lowest-order potential. Several dif-
ferent potentials (using different gauges) give the
same first Born approximation to the scattering, but
yield rather diferent results when used in a bound-
state problem. Presumably these diGerences would be
reAected in diGerent, second-order contributions to
the potential, but it is clearly advisable to include
as much as possible in the effective first-order po-
tential. Thus it turns out that the Breit potential
is a better choice than one derived from a covariant
gauge. For some refinements in the correct choice of
the lowest-order potential, the reader is referred back
to the discussion following Kq. (3.30).

Our approach to nuclear corrections, through the
use of a modified Dirac equation, is similar in spirit
to methods used by Barker and Glover45 and by
Sternheim. "The above authors have used the Foldy-
Wouthuysen'~ transformation to approximate the exact
two-body relativistic equation. In the Barker and
Glover paper the lowest-order (in the 6ne-structure
constant) nuclear corrections to the fine structure
and hyperfine structure of hydrogen are obtained.
The mass corrections are calculated up to and in-
cluding terms of order (m/M)s for both the Dirac
and Pauli parts of the interaction. The work of
Sternheim is concerned with calculating very accu-
rately the state-dependent mass corrections to the
hfs of hydrogen and its isotopes.

We will now bridiy compare and contrast our own
work with that of Sternheim. The 6rst point to be
emphasized is that the practical aims of the two
pieces of work are rather diGerent. The present work
was primarily concerned with obtaining the maximum
accuracy for the 1S hyperfine splitting. Beyond rel-
ative order act/M the calculation becomes very dif-
ficult. However, the contributions of this order come
from very small distances (&1/tg) and hence turn
out to give the same fractional correction to the 1S
and 25 hfs; therefore they cancel in taking the ratio
of the two splittings. The state-dependent corrections
are of relative order a'rN/M and come from larger

radii (~ao). Sternheim calculated these using nearly
the same eGective Hamiltonian as has been treated
in this paper. In eGect, he has two terms in addition
to those displayed in our Kq. (2.19). The first of
these (in our notation) is a correction to the time
component of the potential:

—ebs=+ (n/2M') (p~+-', ) d~ p x V (1/r) . (5.1)

It arises from the small components of the proton
spinor, which we have previously ignored. The other
term, whose significance will be explained shortly, is

—id (AxA)/2m, (5.2)

where A is the vector potential from the proton ap-
pearing in (2.19). This term contributes whenever
the components of A are noncommuting.

Sternheim's procedure is to make a Foldy —Wouth-
uysen4~ transformation of the effective Hamiltonian,
keeping only those terms which contribute up to rel-
ative order n'rN/M Since . this is (roughly) an ex-
pansion in powers of p/ns, it is valid only for distances
larger than an electron Compton wavelength. It would
not be adequate for a small distance contribution to
a single state. This is apparent from the fact that
his transformed Hamiltonian has terms with the
dependence r 4. He uses a small r cutoG which can-
cels in the contribution to the ratio of 25 to 1S hfs.
Omitted terms in the expansion will be even more
singular at small r, and their cutoff dependence will

not cancel in the end. This implies that at some
point the Foldy —Wouthuysen transformation will lead
to a "false expansion, "* i.e., additional powers of
p/res are of order 1 rather than of order rr. Because
the operators occurring in Sternheim's calculation
are already singular, it is not quite obvious that higher
terms in the Foldy —Wouthuysen expansion would not
also contribute to the order of interest. Nevertheless,
since our method of calculation yields- a result in

agreement with Sternheim's, this particular pathology
does not actually occur.

Our calculation of the ratio is given in more detail
in Appendix D and will be described here brieQy.
Tracing back through our calculation, it is discovered
that terms of order u'ns/M to the ratio can come
from only five places, which are the following:

(i) A contribution of relative order o.'m/M to the
effective mass res' in Kq. (2.16).

(ii) A normalization correction to the wave func-

tion, which was noted in Sec. II. C to be of relative
order o.'m/M.

(iii) The —(p', W/gi/4M contribution to the wave

function, which was noted in Sec. II. C to be of
relative order rr'm/M at a Bohr radius.

(iv) The contribution of (5.1), which comes from
the small components of the electron's wave function.

* A false expansion is one in which the order in n increases less
rapidly than vrould be estimated by assigning typical values to
the momentum and coordinate operators,
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(v) The residual efFects of the two-photon contri-
butions which are not already contained in our treat-
ment of the lowest-order potential. These include
a term of the form (5.2) as well as the second-order
magnetic-moment interaction. The second-order mag-
netic-moment interaction can be split into two terms
corresponding, respectively, to positive- and negative-
energy intermediate electron states. The former can
be evaluated nonrelativistically, " and the latter is
canceled precisely by the term in (5.2) which is
quadratic in the proton's magnetic moment.

Now let us compare these in detail with various
contributions from Sternheim's treatment. The can-
tribution from (iii) is precisely canceled by a part
of the contribution from (5.2) (the cross term in-
volving the convection and magnetic parts of A).
Accordingly, the contributions from (i), (ii), and (iv)
agree precisely with Sternheim's results from the ef-
fective Hamiltonian treated in lowest order in the
proton's magnetic moment. Our calculation of (i)
and (ii) is trivial, and our calculation of (iv) is
identical to that of Sternheim. In toto, our calcula-
tion is therefore considerably more compact. The
significance of (5.2), as shown by Sternheim, "4' is
that the two-photon interaction of the electron does
not contain any efFective interaction of the form (5.2) .
This contribution is necessary to cancel a similar one
from the term

(p/2m) Ln (p+eA. )g'

which arises in the Foldy —Wouthuysen transformation.
His result is con6rmed explicitly in Appendix D.

Any comparison of theory and experiment in quan-
tum electrodynamics requires of course a knowledge
of the fine-structure constant and possibly of other
physical constants. At the present time there is an
unresolved discrepancy between the two best deter-
minations of n. The value accepted until recently
was obtained from the measurements of the fine-
structure separation in deuterium by DayhoG, Trieb-
wasser, and Lamb. " It is important to note that
this was obtained by adding two experimental num-
bers: the Lamb shift (2Si~~—2Pi~~ separation) and
the high-frequency separation (2P&~&—2S,~I). Clearly,
the theoretical uncertainties in the shift of the S
state cancel, and those in the relative shift of the
P states are small. There seems to be no obstacle
in the theory toward using this experiment to de-
termine 0.. More recently, an entirely diGerent de-
termination of o. was carried out by Parker, Taylor,
and Langenburg, "who used the ac Josephson effect.
Although it may seem incredible that solid-state
theory is suKciently accurate for this purpose, it
appears that it is necessary to make use of only very
general features like energy conservation and gauge
invariance. In any case, the internal consistency of
the results using different materjals and experimental
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FIG. 7. Comparison of theory and experiment for the hydrogen
6ne structure. The shaded regions represent the experimental
results. Each theoretical value has three independent uncer-
tainties, as indicated in the box. These errors are supposed to
include realistic estimates of neglected terms as well as uncer-
tainties introduced by other experiments; they should be inter-
preted as a limit of error.

conditions provides the most convincing demonstra-
tion of the interpretation.

The situation is summarized in Table I, which
includes not only the two determinations just men-
tioned, but also the results of other experiments ex-
pressed in terms of the value of 0, they would predict.
Note that the indicated errors are "limits of error"
which perhaps correspond to two standard deviations.
Kith improved experimental accuracy or better theo-
retical understanding (as indicated), any of these
experiments could resolve the discrepancy between
the present two determinations. We note that if the
solid-state determination is correct, a long outstand-
ing discrepancy of about 45 pprn between theory and
experiment in the hyperfine structure (hfs) would be
removed. From the discussion of Sec. III.D, it would
require an exceedingly large nucleon polarization effect
to reconcile the hfs with the one-structure value of 0..

The disagreement between the two values of a is
actually worse than is indicated by a straightforward
comparison of the two values shown in Table I. This
is because one value of 0. must predict two experi-
mental numbers in the fine structure. The more com-
plete situation is illustrated in Fig. 7, where we plot
theoretical values of the two splittings as a function
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of n together with the experimental results. The Lamb
shift for B is plotted rather than that for D since
it has smaller theoretical uncertainties. We see that
the solid state 0. predicts much too large a high-
frequency separation (~0.6 mHz too large), well out-
side the quoted error for that measurement. This
seems much too large to be accounted for by any
theoretical uncertainties in the Lamb shift. We can
draw two conclusions from this figure: (i) The solid
state a is not compo tible with the 6ne-structure
measurements. (ii) Using the fine structure n, there
is a discrepancy in the Lamb shift between theory
and experiment; the theory would have to be shifted
about three or four times its limit of error to agree
with experiment.

Before one takes the Lamb shift discrepancy too
seriously, the experimental discrepancy between values
of 0. should be resolved. If it should turn out that
the high-frequency separation (2'/2 2Si~2) should
increase to yield agreement with the solid state n,
the Lamb shift discrepancy would be reduced to an
almost tolerable size. On the other hand, if the dis-
crepancy persists, there are a number of possible
ways it might be accounted for. One would be an
error in some part of the theoretical evaluation. This
seems very unlikely since all but a few very small
terms have been checked by several authors. "Another
would be that the contributions of the omitted terms
in the perturbation expansion are unexpectedly large.
Still another is that some known physical eGect has
been overlooked; this too seems unlikely since many
competent physicists have explored a variety of pos-
sibilities. The most intriguing possibility is that some
unknown physics is beginning to show up. There
have been some speculations along this line.""
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APPENDIX A' NOTATION

The notation of Schweber's" book. is used except
as otherwise noted. We work with a metric tensor
g„„=gi"" with components

Therefore, the four-momentum p' is equal to E'—p'.
We will also use a notation de6ned by

p= p &"=»0—p.v. (A.3)

The symbol J is utilized to denote transversality.
In cases in which there is no ambiguity as to what
momentum a vector is transverse, we will use no
further indices. However, if we wish to write the
components of the vector A perpendicular to a mo-
mentum designated as 1, we may write A~g~. The
number in parentheses also aids us in determining
the manner in which vectors are dotted into one
another. For example, vectors with the symbol (1)
are multiplied by other vectors with the same symbol.
For instance, the appearance of a product such as

means
7~(3)&&a)7s~O)'4~(3)

v qv»&i
qa' i k qi2 i

(A4)
Qr q3

Our units are chosen such that 5=c=i and e'=
4xa.. The electron mass will be denoted by m and
the proton mass by 3f.

In various places in the text we will distinguish
between proton and electron variables by using a sub-
script e or p. However, in most places the symbol e
is dropped since it will be understood that nonsub-
scripted variables refer to the electron.

APPENDIX B: ASYMPTOTIC FORM OF THE
HYDROGEN WAVE FUNCTION (15)

In momentum space the Coulomb wave function
satis6es the equation

(8.1)

where E is the energy eigenvalue. We would like to
obtain the asymptotic value of this wave function.

If we insert the nonrelativistic approximation to
the wave function,

and
goo= —gu= —g22= —g33= ~ (2mn)"' 1

27r (p"+(mn) ']'

A„B&=AoBp—A P'. (A.2)

gp, =0 for p+p. (A.1)

We distinguish between covariant and contravariant
vectors by using upper and lower indices. The scalar
product of vectors A„and B& is

I
= .(p')I,(8 2)

&I:(&.p')/2~ix & &L(&.p)l2~jx. '

into the right-hand side of (8.1), we obtain on the
left-hand side an excellent approximation to the wave
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function for all y. %e find that

fE+m'& g2

E3
(2 )'( ' —)' '

where E and e actually contain more than just the
basic binding. The integral appearing in (3.3) may
be readily evaluated by contour methods.

For large values of p we obtain the result

[(R+~)/2~] x.i.(p)+8 (~~) (p/~) xk(p) (Il 4)

This asymptotic value is not in agreement with the
asymptotic value obtained from the lowest-order treat-
ment of the SS equation with a Coulomb kernel.

The small components of p, (p) are equal to

,' (nuxR—)' (C 7)

Therefore the finite size of the proton changes the
binding energy to

E -', mn'[1 —&4r(rnnR)']. (C.S)

Using (C.6a) and the normalization of the wave
function we find that

the relationship

j«'& (0) (1—~R') = e—s"{1+i& [ln PR—(1/2PR) ]I,

(C.6a)
and if we match derivatives we find

f~'&(0) (1——yR') = PR—{1+i&lnPR (1/—2PR) I e s~

+ [1+&&(ln PR+1)]e &'~. (C.6b)

The quotient of (C.6a) and (C.6b) may be used to
obtain the value of i&. The result turns out to be

Therefore

&P&'& (0) (1—mnR) &P(0) . (C.9)

but this in turn is simply

[(& p) /2m]x. i.(p).
(

$~'& (0)
~

(1—2mnR)
~

iP
~
(0) [

~ (C.10)

(3.6) and the correction due to a finite shell of charge is

This is exactly the same as the small components
of @,. This was previously noted in Sec. III.

APPENDIX C: NONRELATIVISTIC SIZE
CORRECTION —SHELL OF CHARGE

—25$AR hfs. (C.11)

This may be compared to the correction appearing
in (3.21) of the text. It obviously agrees with the
result previously obtained.

As mentioned in Sec. V, we have obtained the
same result as Sternheim for the n'm/M state-de-
pendent mass correction to the hfs of hydrogen.
Here we will work out some of the details of this
calculation.

Using Eqs. (2.14) and (2.16) in the text we find
that a suKciently accurate solution of our modified
Dirac equation is given by

AB= {I/[I+~ —~(~'/2) ]I
X {1-(1/4m) [p', W]} (I+@,)A „(D.I)

i"(r) =~V"(r) (C 1)

then for values of r&E we have the equation

dV /&"+{ P'+ 2(P+1-~) /I~ =0 (C.2)

where the energy is related to P by P'=2rrl,
~
E

~
and

the small quantity i& is given by p(1+i&)=mn. To
first order in the small quantity g, the solution of
(C.2) may be shown to be

@&'&=cV{r+r&[rln (Pr) —(1/2P)]I e s" (r)R). (C.B)

and

y~s= {1/[I+) —X(n'/8) ]I
X {1—(I/4~) [p', ~]I (I+P& ) fo s8 (D.2).The equation for r&E. is

~'4 "«"+{—P'+2P [(I+~)/R]I &"=0 The state-dependent 0.2 terms in the denominators
arise from an evaluation of the normalization of the
wave functions to the required order. The wave func-
tions iPO are solutions of Eq. (2.16) which depend on
an effective mass and a modified fine-structure con-
stant, as discussed after Eq. (2.16). The parameter &i

has also been defined above Eq. (2.16). To the
desired. accuracy the eGective masses for 18 and 2S

Its solution is approximately given by

i"=&r(1 67r'+ ")i"—(o) («R), (C 5)

where

y = -P'+[2P (I+r&) /R].
If we match (C.3) and (C.S) at r=R we obtain

e hyperfine splitting is proportional to ( g(0) ~g
APPENDIXD: CONFIRMATION OFSTERNHEIM'S

jn Sec III If the proton c nsists f a ST TE E ENT MASS CORREC IONS

shell of charge of radius R rather than a point charge, TO HYPERFINE STRUCTURE

the result should change to ~ip~'(0) p, where the
superscript (s) stands for size or structure.

If we write
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are, respectively,

m L1—(m/M)+-' , (m/M )a'7

Ll —(m'/3P) 7)12

and

m L1—(m/M) +-,'(m/M) a'7
(D.43

$1—(nP/M') 7)"

The hyperine splitting is now obtained from

effective interactions should cancel. In the present
formalism, we then expect that the two-photon-ex-
change contributions should yield a compensating
term to (D.10).

Let us consider in detail how this cancellation oc-
curs. In momentum space the contribution due to
two transverse photons of the Dirac type is

i (4)ra) '
(27r) 4

d'p'I vo»(»'(p' m—+i0) 'v—i(»&

dgt(r)L xp, ~7 &,y(r). (D.5) + vov&(1) (Pl+Ps P m+i0) v&(3) }

By analogy with Eqs. (3.6)—(3.9) we obtain the fol-
lowing contributions from (D.S) (for the moment,
we ignore the Lp', W7 term in (D.1) and (D.2) }:

1S:

2'„(1+l()(1—l()

3M L"1+l(—l((a'/2) 7'

2S:

2', (1+X)(1—X) (1+

(D.7)

From (D./) and (D.6) we obtain contributions of
order a'm/M to the residual R, which is defined by

1+R=8)2(hfs)/) i(hfs). (D.8)

These contributions are

( —& p41x t (p'-p)'+ 07 'L(p —p')'+ 07 'I1 2' j

X (Px+P2 P' —M—+i0) 'v& (D.13)
a pm/2Mj

We are interested in terms which are explicitly
O(1/M ). Using a positive-energy projection operator
for the proton we obtain

i (4n a) '
(2') 4

d'P I vo»(»'(p' m+—+) 'v~o)'

+»v~(&)'(p)+p3 p m+i0) 'v~(»'7

X L(P' P)'+i07 —' L(P P')'+i07 —'(& —~'+i0) '

M+ M" """pa+ p

—fa'(m/M) (D.9)

and constitute the sum of (i) and (ii) referred to
in Sec. U. %e see that they arise in a simple way
from the normalization and the effective mass.

There is also the correction which arises from the
Lp~, W7 term of the wave functions in (D.1) and
(D.2). It is

The E' integral of (D.14) may be done by contour
methods. We will 6rst consider the ladder graph and
close the contour above the axis. The proton pole
contributes

'd
rptQ (tr)

"
i/0(r) . (D.10) (4)ra)' I vov~(»'(p' —m+i0) 'v~(1)'

(2x)'

Although it will be canceled precisely by another per-
turbation, this term may easily be evaluated for the
1S and 2S states (using a cutoff at small r). The
resulting contribution to R is

pi+p' + (p' —p) x~„
(pi—p')' (p' —pa)' 2M 2M

+ I

+ (p —p') x&, , (D.»)
2M 2M

This contribution arises in the Foldy-Wouthuysen
approach from the noncommutativity of the con-
vection and magnetic interactions. In that treatment,
it is given by the interaction

id L(A, x A )+ (A„xA, ) 7/2m, (D.12)

where A„and A, denote the magnetic and convection
parts of A. It was shown by Sternheim4' that such

where E' in the electron propagator is equal to Ej.
In the low-momentum region (pq, p8, p'~ma) this is
exactly the transverse-transverse part of the iteration
of the potential.

The convection —convection and convection —magnetic
terms of (D.15) have been incorporated in the e&ec-
tive potential treatment. Only the magnetic —magnetic
term. is new. Let us consider it briefly. The electron
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factor may be written as

1L (P')
g]—(p'2+m2) 112+$0

0!io&
'

(D.16)
+1+(p 2+m2) 1/2 iO

with g and A the positive- and negative-energy
projection operators. The positive-energy part of the
propagator gives a contribution. which has been eval-
uated by Schwartz" using second-order perturbation
theory. (Note: In this term one should really keep
all orders of the Coulomb interaction. )

Next we consider the negative-energy part of (D.15).
To the desired accuracy the electron factor becomes

(1/2m) ~1.(2&
'0 ~o&', (D.17)

and therefore we obtain a contribution of

(1/2m) (d A„)'= (1/2m) (A A„+id A x A„].
(D.18)

Only the second term

which is

—(1/4m) LA2+id A x Aj. (D.22)

Next we will consider the crossed graph of (D.14).
Here it is convenient to close the contour in the lower

half-plane. The electron pole is again unimportant.
The photon poles are again important only for the
negative-energy part, but not for the positive-energy
part (the same argument as for the ladder graph).
The electron factor for the negative-energy part
becomes

and we obtain

(1/2m) tTJo) 0 J.(3& (D.23)

+ (1/4m) LA2 —id A x Aj. (D.24)

The over-all sign of (D.24) differs from that of (D.22)
because we have closed the contour in the lower half-
plane. The relative sign of the two terms is negative
due to the order of the matrices in (D.23).

Adding up the contributions (D.19), (D.22), and
(D.24) we obtain

(1/2m)iu A &cA„ (D.19) (1/2m)ig A xA„—(1/2m)id AxA. (D.25)

contributes to the hfs.
There are additional contributions to the ladder-

graph term of (D.14). The electron pole occurs at
E'~—m and leads to photon and proton denomina-
tors which are, respectively, of order 4m~ and 2m.
These large denominators lead to a very high nominal
order (apparent powers of n) for the resulting oper-
ator. While the true order is less, it is still higher
than terms being considered and is state independent.
In considering the photon pole contributions, it is
convenient to separate the electron propagator into
positive- and negative-energy parts. For the former,
the electron denominator is of the order of the photon
momentum. Since the same denominator is of the
order of the binding energy in the proton pole con-
tribution, the resulting contribution is one power of
0, smaller than the terms we seek.

The important contributions are those coming from
the negative-energy part of the electron propagator.
The electron factor becomes

(1/4m') 0.2.&2&'m (1-yo) O.io&'~(1/2m) 0 2, &2&'0 ill&',

We note that terms involving A x A cancel in (D.25),
and we are left with

—(1/2m) id L (A, x A„)+ (A„xA,)). (D.26)

This term exactly cancels (D.12), and therefore the
expression in (D.11) does not contribute to R.

We have demonstrated this cancellation only for
the case of the Dirac part of the magnetic moment.
The Pauli interaction will behave in the same way
to the order of accuracy which we require.

Finally, the interaction of Eq. (5.1) will give a con-
tribution to E. The interaction may be written as

+(~+2) I' p& ~ ~(&+2) d'L

The expectation value of (D.20) gives a contribution
to 8, connecting the small components of the Dirac
wave function. We obtain

e Le

(D 20) Uslllg

X + (O' —P2) 22e„
P2+P' i

Expression (D.24) may easily be evaluated for the
Pl+P' i, „' 1S and 2S states. We obtain a contribution to R of

I (~+2)/~uj(m/~)~2(2» 2—mr) (D 31)

a,.L=-,'(a„a~ L+a La,.a) (D.29)

d2p' 1 1 1 and 1l Ld pf= —2d. p&p (this follows from the fact
(~~)

2
(2m) 0~(2) 0~(1&'—. . . , that d pf is a 1112 state), we obtain

—~(~+2)
Z r y (r) & p, "

& p|t (r). (D.30)
4m'M' r
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Adding (D.9), (D.31), and the term obtained by
Schwartz, 4' we obtain complete agreement with Eq.
(2.18) of Sternheim. "

ln addition to the terms just discussed, we have
carefully examined the two-photon contribution to the
effective potential to see whether there are any fur-
ther state-dependent contributions to R of order
cr'ttt/3II. The ladder and crossed diagrams separately
have such contributions, but they are easily seen to
compensate when added. We have not examined the
higher-order contributions (i.e., from three or more
photons) to the effective potential. In view of the
cancellations in the two-photon contribution, it seems
unlikely, although not impossible, that contributions
arise in higher order.
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