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Four di8erent polynomial equations and seven nonlinear equations, all applicable to both solids and liquids, are com-
pared theoretically and statistically. Detailed curve-fitting results are presented for recent water and Hg isotherma]
data. Uncommonly used methods of statistical analysis and comparison, including generalized least squares, are described,
justified compared to usual methods, and applied. In general, certain polynomial equations are found to yield significantly
better fits of many different water and Hg data sets than any nonlinear equation considered. The Tait and Murnaghan
equations, in particular, lead to strong systematic behavior of all residuals calculated herein with them, showing that
they are inadequate models for all the data considered. Even a nonlinear equation derived from a second-order expansion
of the bulk modulus E' in powers of the pressure, which is shown to include several frequently used equations as special
cases, is inferior to selected polynomial equations but is still the best equation examined when appreciabIe extrapo}g tjpn
is necessary. The method of volume normalization almost always used heretofore in statistical fitting of equations of
state to I'—V data is shown to be inadequate and two alternative approaches are proposed and employed herein. Critical
comparison of previous analyses of water and Hg data is made with the results of the present, more refined approach. The
likelihood of important systematic errors in I'-V data, particularly data derived from ultrasonic measurements on liquids
under pressure, is pointed out and high probability of their occurrence in some of the data analyzed is demonstrated.
Even the combination of the best data apparently available and the use of better statistical-analysis methods than have
been employed before does not yet allow one to obtain highly accurate values of the Eo' parameter of water or Hg, and
only an order-of-magnitude estimate of the Eo" parameter seems currently possible. Nevertheless, it appears that near
room temperature E'0" is positive for water and probably negative for Hg and that its appreciable magnitude for both
materials renders a second-order expansion of E inadequate.
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each class of things j ust so far as the nature of the sujhect
admits.
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319

Hayward (i96'7) has recently stated, "The subject

319 of compressibility equations for liquids is really a
very simple one. Unfortunately, it has been so badly
treated in the literature that it has been made to

323
323 appear unnecessarIly complex. . . In the present workPP

324 I hope to demonstrate by example the truth of
Hayward's 6rst statement and to show, using the324
work of Hayward and others, the applicability of his
second statement.

332 Isothermal compressibility equations are diGeren-
tial, or di'fference, forms of equations of state which

340
are more commonly written in directly useful pres-
sure —volume form. Thus, statements about compress-

341 ibility equations apply, nzutatis mltaedis, to their
corresponding equations of state. Although I shall

346 here illustrate the usefulness of the equations con-
347 sidered using data for liquids, several of these equa-

348 tions have wide applicability as well to homo gen eous,
348 isotropic solids under hydrostatic compression.
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The liquids water and Hg have been selected for
examination herein for two related reasons: First,
their general importance, and second, the high ap-
parent precision and relative accuracy of some of the
available P—V data for these materials. At the present
state of the art, selected data for these two liquids
seems "better" than any available for other liquids
or solids. Such high quality probably arises from the
relative ease of working with liquids as compared to
solids and to the importance of these two materials,
which has earned them extra attention. Mercury is
important both because it is the most common dense
material which is liquid at room temperature and
because it is widely used both as a pressure trans-
mitting medium and as a part of pressure gauges in
P—V experiments on other materials. To obtain the
highest accuracy in such experiments, the density of
mercury must be known as a function of pressure.
The importance of water both to life and to inanimate
processes on earth needs no emphasis. Both in deep
fresh-water lakes and in the oceans the water pressure
in the depths is high, and the P—V—T properties of
water are of great importance in oceanography and in
underwater explosions. To name but a single property,
since sound velocity depends on density, it is of practi-
cal importance to And how water density depends on
temperature and pressure.

Although some of the equations considered here
have at least a partial theoretical basis, they cannot
be used to calculate total cohesive or elastic energies
for the materials to which they are applied (Mac-
donald, 1966).Nevertheless, such semiempirical equa-
tions may be of very substantial value for smoothing,
interpolation, and extrapolation of pressure —volume
data and in determining values of such material
parameters as isothermal compressibility and its Grst
derivative with pressure, both evaluated at atmos-
pheric pressure for example. Several of the equations
considered may be applicable up to the very high
pressures (including shock-wave range) of interest in
geophysics for very slightly compressible solids and
their molten state. The usefulness of equations of
state in geophysics is well stated by Birch (1952).
For example, the study of phase changes, elastic wave
velocities, and P—V relations in natural minerals under
high pressure is central to gaining understanding of
the composition and structure of the earth's mantle
and core.

The present work does not attempt to examine all
reasonable empirical equations but rather attempts
to consider th'e relations between and utility of several
frequently used equations and a generalization of
some of them. In particular, the Birch (1952), Keane
(1954), and Mie —Lennard-Jones equations (see, e.g. ,
Bernardes and Swenson, 1963) are not among those
compared here. Their utility, particularly for solids,
will be discussed elsewhere based on the methods of
analysis and comparison described herein. The reader
may wonder why the present eGort is devoted to

examination of some semiempirical equations, eschew'-

ing detailed and/or 6rst-principles discussion of the
physical processes in a liquid or solid which lead to
specific P—V relations. The reason is that I deal here
with quite precise data from actual substances, not
idealized materials. The derivation of a P-V relation
for a real liquid or solid involves the solution of a
very dBBcult many-body problem, where even re-
striction to pairwise interactions is usually improper
(see, e.g., Bernardes and Swenson, 1963). No generally
adequate solution is yet available. Therefore, it only
seems practical at present to examine heuristic equa-
tions, albeit ones written in terms of conventional pa-
rameters having clear experimental interpretation. By
this means, one may hope to discover the best "model"
(expressed as a I' Vequati—on) for each material
investigated and thus to obtain trustworthy estimates
of the material parameters involved in the equation.
An obvious extension of the approach leads to P—V—T
relations through the temperature dependence of the
parameters. Clearly, the "best" model is only best in
a relative sense, i.e., the best of those available for
comparison with speci6c data. It is extremely un-
likely that there exists a "universal" equation of state,
of useful degree of simplicity, best for all condensed
materials.

Finally, one may wonder why shock-wave data ex-
tending to very high pressures are not employed
herein. The main reason is the very much larger un-
certainties in shock-wave data as compared to those
of some of the data considered here, where the volume
under pressure is probably accurately known to within
5 or 10 parts per million. The shock-wave process
does not always lead to conditions well approximated
as hydrostatic, and it may involve the melting of
materials originally solid. Shock.-wave data are neither
isothermal nor adiabatic but lead to P—V values
associated with a Rankine-Hugoniot curve (Duvall
and Fowles, 1963). The I' Vvalues obta-ined are at
least 1% uncertain and must usually be further trans-
formed. The conversion to adiabatic or isothermal
conditions involves theories whose applicability is un-
certain and parameters of frequently unknown ac-
curacy (Alder, 1963; Ahrens, 1966) . The resulting
isothermal P—V values probably contain appreciable
systematic errors and may be 5% or 10% or more
uncertain. The accuracy and precision of such data
still seem too low to warrant their use in the present
kind of detailed comparison of equations of state.

II. GLOSSARY

A. Symbols

A& A general symbol for the kth disposable param-
eter in a least-squares 6t; also polynomial-
equation-of-state parameter expressed in terms
of P&, g, and 8. A=O, 1, ~ ~ ., n —1; Eq. (13);
Table III
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TABLE I. Nonlinear equations.

Equation name Acronym

First
Appears

in: Form

Usual Tait equation

Murnaghan equation

UTE

V/Vo= (1+nPoP) "'
V/Vo=1 {PoP—/L&+k (v+1)PoPE }

V/Vo=1 —{PoP/[I+o(v+1)PoP—(1/12) (y' —1)(PoP)') }

VIVo= {L1+:(n v)-PoH—ID+0(n+v)PoP3}"'

V/Vo= *p { PoP/Lt—+l PoPj}

ME (SOE~ with y=—q) Eq. (10)

LSME (SOE& with y=—1) Eqs. (9), (9')Linear Secant-Modulus
equation

In textQuadratic Secant-Modulus QSME
equation

Zq. (5)

Zq. (6')

Eq. (6)

SOZ, (&&0)

SOKA' p or q=—0

SOEo (g&0)

Second-Order equation

Second-Order equation

Second-Order equation V/Vo= exp {—(2/g) tan '
&&L(oe) (PoP)/(1+onPoP) j}

Eqs. (1), (1') V/Vo=1 —(g+1) ' In LI+(o/+1)PoP)

b

8
C
d;

Parameter in the QSME; (y' —1)/12
Parameter in the UTE; Eq. (1)
Parameter in the UTE; Eq. (1)
Composite residual. i=1, 2, ~ ~, S; Eq.

and text

(d) Mean value of d, 's; X 'g d;

N
E1

(14) p
I'
I'p
I',

~Vs

Sg

IV q
d, , Root-mean-square value of d s fE ' g dzjt/'

i=1 rz
Ez A parameter in oz, Z=x or y, V or p; Eq. (17)
f Number of degrees of freedom; X—os

f Median of M distribution
Fz A parameter in oz, Z=x or y, V or p; Eq. (17)
g Number of zero crossings of d;(x,); I—1

gp A particular value of g; Np —1

(g) Expected mean value of g (binomial distribu- sq'

tion)
Bz Parameter in oz, Z=x or y, V or p; Eq. (17) sg

J Parameter in the UTE; Eq. (2)
E Isothermal bulk modulus; sometimes denoted

elsewhere by 8; —V(BP/BV)s, P '
Z' (BJ /BP)sE" (B'E/BP') s S
&o (&)~o,' po ' S„
Eo' (E')~o, also denoted here by oI; elsewhere de-

noted by Bp', n, etc. t
Ei —Vo(BP/B V)r

p Vo/(Vo —V) Eq (9) T
E ' (BK/BP)s,„„ I
1. Parameter in the DGE; (o/

—1) '; Eq. (11') No

M Basic generalized least-squares parameter; V
Eq. (15) V,

3fp A particular value of 3f V.
n Number of disposable parameters in an equa- V

tion of state; k=0, 1, 2, ~ ~, n —1 Vo

Number of data points; i=1, 2, ~ ~, S
Maximum possible number of zero crossings of

d, (x;); 7—1
Reduced pressure; I'—Po
Pressure variable
Value of I' at V=Vp
A probability related to the distribution of M;

see text
(Q ~) 2jl/2 —+II, ~sjl/2. gs —0— 72

Parameter in the UTE; formally equal to o/+1
Relative standard deviation (s.d.) of parame-

ter Z; here Z may be A/o, Po, o/, etc. ; thus,
r„=—{ (s.d. of o/)/r/{

Generalized least-squares residual; X;—x;
Generalized least-squares residual; F;—y;
Standard deviation of least-squares residuals;

PM/f j'" or [M/(f —1)]'/' see text
Standard deviation with nonzero (d); [S/f)'/s

or PS/(f —1))'/s; see text
For a least-squares fit of an equation of the

form y=f(x), sy is the s.d. of y at a given
value of x or y; thus, we de6ne sy(X,) as so

for X;=Xq, st at p 100 bar, s„at ~~X, /2,
s~ at X~=—X „,and s, at 100X,

Least-squares sum of squared residuals; Eq. (14)
Contribution to S arising from the pressure

residuals
(Vo—V)/Vo
(V,—V)/V
Temperature
Number of runs in a set of least-squares residuals
A particular value of u
Volume or speciic volume
An estimated or initial value of Vo

Value of V at s=s,—
Value of V as s—+00

Value of V appropriate at P=Po, p=0



Vp„Measured value of Vp

(Vp —V)/V
w. (V.—V) /V
x Symbol for an independent variable; at the ith

data point the calcmlated value of x is x;
X Symbol for an observed value of x; at the ith

data point, X=X;
y Symbol for a dependent variable; at the ith

data point, the calculated value of y is y;
I' Symbol for an observed value of y; at the ith

data point, F=I";
s Ppp
s, Value of s at which a phase change occurs
z, — (s,—e) with e~0

Value of 2,
' at which E' 6rst passes through zero

P Isothermal compressibility; E—'
Pp (P)~, Ep '
Pi —Vp '(BV/BP)r, Ei '

[(E ') '—2E E "]'"=—[g'—2P]'"
A simpler symbol for Ep' (dimensionless)

8 q'; a dimensionless material parameter involving
0 &0' and Eo

0& A probability in the binomial distribution of I
(d)/d, .
Ordinary least-squares residual; X;—x,
Ordinary least-squares residual; Y,—y;
The two-tailed probability that No occurred by

chance
oz Expected standard error of the Zth variable;

generalized least-squares weighting involves
the variances a.„.' and 0„,.2

rr~, Calculated standard error of the parameter AI,
A simpler symbol for EpEp" (dimensionless)
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TABLE II. General polynomial equations.

Name Acronym

Bridgman equation

Inverse Volume equation

Slater equation

Davis-Gordon equation

IVE

SE

DGE

of the AA, 's in terms of pressure derivatives appear
later in Table III. The highest degree of x which
appears in a polynomial equation will frequently be
indicated with a prefix; thus, 3BE denotes the Bridg-
man equation of third degree.

III. SPECIFIC EQUATIONS

Before discussing in some detail prior work in this
field and some new specific curve-fitting results, I shall
define and compare the main isothermal equations of
state which will be considered herein. The isothermal
bulk modulus E is defined as —V (BP/B V) p. Its inverse
P is the corresponding compressibility, which should be
distinguished from the ersttts compressibility, Pi —=

—Vp '(BV/BP) r=Ei ', occasionally used by some
authors without discriminating it from P. Here Vp is
the value of V, the specific volume, at some reference
pressure (frequently 1 atm) Pp. Let p= P P„ the- —
pressure variable most appropriate in an equation of
state, especially one for liquids where P'0 cannot
be zero.

B. Equations

l. Eonh. near Eqlutions

There are many diGerent ways the equations of
Table I may be written. For consistency, they are
all given here with V/Vp on the left and involving
the parameters Pp, tt, y, and q. Alternatively, they
may all be solved for p as a function of V/Vp. The
present form of the equations assumes that Vo is
known exactly. Procedures applicable in the usual
situation, where this is not the case, are discussed
in the text.

Z. Polynomia/ Equations

The four polynomial equations considered are of
the form

y= gA, x".

E=P'= (V/J) [I3+—P] (2)

where J=—C logM e. It has been shown elsewhere
(Macdonald, 1966) that the constants J (or C)
and 8 of the above are not as easy to interpret or
relate to theory as are the following simple modifi-
cations of them. Introduce P instead of P, define
r—=V,/J= q+1, and l—et Pp—= (P) ~p —=[r(B+Pp) ]—.
Here, because of its frequent appearance the simple
symbol z is used for Ep'= (BE/BP)z evaluated at
p=0. Then (1) and (2) become

A. Usual Tait Equation

In the past, the Usual Tait equation (abbreviated
UTE) has been usually written in the form (Gibson
and Loeffler, 1941)

Vp —V= C logip [(8+P)/(8+Pp) ].
This leads immediately to

%hen Vo is known exactly, Ao=—0 and the equations
may be summarized as in Table II, where
(Vp —V) /Vp and w= (Vp —V) /V. Expressions for some

V/Vp ——1—r ' ln (1+rPpp)

E= (V/Vp) [Kp+rP] (2')
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K=Ko+Ko'P+ o Ko"p', (4)

where Eo" is (O'K/8I")z evaluated at p=O. Until
the compression is considerable (PoP) 1), the second-
order term may be nearly negligible for most solids
since the dimensionless quantity

~

EoKo"
~

is expected
to be small compared to unity or even (

Zo'
~

(Ander-
son, 1966; Ruoff, 1967a). Unpublished work of P. B.
Ghate (private communication) suggests, however,

Here Eo~Po ', and the (V/Vo) in Eq. (2') is that
given by (1'). The Tait equation is a nonlinear
equation in the sense that its parameters enter non-
linearly.

Note that Po is the usual initial compressibility,
a frequently employed thermodynamic quantity whose
interpretation and temperature dependence, unlike
those of the Tait 8, are well known for many ma-
terials. Further discussion of r Lwhich usually falls in
the range (3(r(13)) is given later on in this work
and elsewhere (Macdonald, 1966). Although it is not
yet clear if any occasions exist for which it is more
appropriate to use the Usual Tait equation rather
than one of the equations discussed in the next sec-
tions, it is quite clear (Macdonald, 1966) that if
such an occasion does exist the outmoded parameters
8 and C shouM no longer be used.

Hayward (1967) has pointed out that the Usual
Tait equation is not that originally proposed by Tait
(1888). Since it has nevertheless been designated
"the" Tait equation by a long succession of authors
(including the present author), we shall retain this
time-hallowed but faulty usage here, merely adding
the adjective "usual. " The actual Tait equation,
strongly supported by Hayward as superior to the
Usual Tait equation and any others, will be discussed
below. Finally, Hayward has noted that the ersatz
bulk modulus, Ki—=Pi ', is, for the UTE, given by

Ei= (Vo/V)K=—Eo+rP, (3)

written with the present, more transparent, param-
eters. It is thus a linear function of p.

B. The Second. -Order Equation

In this section, I shall discuss a general nonlinear
equation of state which includes within it two other
equations which have been shown to be of value
under special conditions. In later sections, the ap-
plicability of the general equation to P-V data will
be discussed and exhibited by means of statistical
curve-ltting results on water and mercury.

It has been found that at least over a considerable
pressure range, E (not Ei) is or is very nearly linear
in pressure p for many liquids and solids. (For details
see Moelwyn-Hughes, 19S1, 1964; Harris and Moel-
wyo-Hughes, 1957; Macdonald, 1966; Anderson, 1965,
1966; and references therein. ) This suggests that a
Taylor series expansion of E in terms of p around
the point p=O would be appropriate. To second-order
one has

that such smallness is unlikely for several solids.
Further, Ruoff (1967b) has recently calculated ap-
proximate values of EoEo" and Ko" (adiabatic rather
than isothermal) for several solids and found non-
negligible values. Unfortunately, there seem to be no
accurate experimentally derived values for Eo" yet
available. Since the symbols m and n appear in the
frequently used Mie-Lennard-Jones power-law ex-
pression for the interaction energy of a pair of mol-
ecules or atoms, we shall eschew them here and use
two neutral symbols chosen to achieve the maximum
simplicity of subsequent equations. One such symbol
is the p —=E'0' already introduced„. the other is 7—=

C
(Eo')'—2EoKo"1't' Then (4) becomes

K~Ko+gP+ (1/2Zo) L(go—yo)/2j Po

=Ko I 1+ps+ L(g' —y') /4] z'I, (4')

a compressibility equation in the sense of Hayward.
Here s~Pop. Note that the physical interpretation
of q is quite clear from its dehnition as Eo'.

Equation (4') can be readily integrated to obtain
a second-order equation of state (SOEi). The result
may be written

1+o(n—V)PoP "',)O~2+ 0
Vo .1+o (v+7) PoP

where Eo ' has been replaced by Po. Murnaghan
(1949) has given a somewhat similar expression which
is also supposed to be derived from a E quadratic
in P. It is not, however, unless his general parameters
a and 5 are related by c=——b.

In a talk abstract, Ho and Ruoff (1967) have men-
tioned using an integration of Eq. (4) to fit I' V—
data on Na, but the form of the equation of state
is not given. In a later paper, Ruoff (1967b) has
given an adiabatic form of Eq. (5), written in an
equivalent but less transparent manner and with
80=0. His equation involves adiabatic parameters in
place of the present isothermal ones. It is worth
pointing out that the adiabatic and isothermal equa-
tions are not really equivalent transforms of each
other, for the stated conditions, even though they
have the same form. There are two ways a P—V
equation of state for adiabatic conditions may be
obtained from Eq, (4). In the erst, the parameters
on the right are simply transformed from isothermal
to adiabatic conditions (Anderson, 1966). Integration
of the resulting isentropic expression for E leads to
RuofPs result. Alternatively, the left side of Eq. (4)
may be directly transformed to isentropic conditions
by relating all quantities involved to the energy and
volume derivatives of the entropy. The 6nal ex-
pression for the isentropic E will generally involve
higher powers of P than the original isothermal ex-
pression of Eq. (4). Thus, the final isentropic equation
of state obtained by subsequent integration will differ
from that obtained by the erst method.

Equation (5) includes the case y'=q' appropriate
when the Eo" term in (4) is zero or of negligible



NAI.D otiorts of ~toJ Ross MACD 32i

ressure ran e. As,.e e erimenta p
2gp and

ortance over t e ~
arise where

impo
1 ter cases may

bl On dehning
we sh

'
then far from n g g»0 leads to

11 see ae
e» i e.the «" term» .

o~ (4&) with 92=0 integration 0q2

the SOEs

( pspV
( ~

«II— -', (q) I(,+.(„/2)P,P
= exp

vs&0. (6)

I.po

O.90

p.80
V
V0

p70

p.60O 5 all ci (6) coa o the SOEO

V = e p —
1+(„/'2)psp

6) h s &ee~ g'f E1 ss conven ient fo
h basis of theo-1967) who a '

that 0 +
hy Rose (

i the parameters~
Rose

lculatjons o
'

calculations,
retical calc .

In ma~ing his cAl, and i'
tain results

Cu, ~g~ ' ' t rpreted cer ai
le-crystal

aPParently
train dePendence

misin er
of s ng(1966) for the '

d them illcorrec y 'stants and us
ntit Eo" involvesddt th tt

compare
imenta va ue pe

ical valu
r a reement wial'e 111 V oo1 aglor er

1e not in coan areexp enment e

lI I
l.2

0.50

l.05

I.OO

0.95

0.90
V

Vp

0.80

0.75

0.70
0

= 20

10

0

I II

3.6
I I I

2.4 2.8 3.20,4 0.8 1.2

I I

I.6 2.0

Ppp

I II I

32 3620 24 280.4 0.8 1.2 1.6

(a)

l.p

0.8

—0.6V
Vp

04

0.2

I.2

I

l.6 2.0 2.4

(a)

II

2.8 3.2 3.60 0.4 0.8 1.2

E.p =6

0.8

—0.6V
Vp

0.4

0.2

II

3.6
I I

2.4 2.8 3.20 4 0.8 1.20
I

I.6 2.0

Ppp

(b)

es for g=3 and&0) curve shapese uationPIG. . e
6 and vayu

(b)

es for g =3 ande
' )0) curve shapes or g=e uation q

6 and variou
Second-Order eq es

retical cal-
culatio n of cy23 01

Thus, no cre ence can e gi
to his cor-

Gh te 196/).
-order cons anRose's fourt -or

'th a
clear exp
arises prim

a dls-

". In practice, y q

"h.-yie ~eter whose speciic
Nt tht i t

values of t ese
'

s ex ansions o

the Usual Tait equation are,

V/Vs= 1—s+ L:, (rt+1))s'
~ ~ 7' (3rts+6st+y

and
(8)

&= +1alld p'=r
hd dand 2 illustrate t eFigures I an



322 REVIE%S OP MODERN PHYSICS APRIL 1969

Second-Order equation on z for g=3 and 6 and a
variety of y and q values. In Fig. 1 all curves with
0&7&1 lie too close together to be resolved.

As the figures show, Kqs. (5) and (6) exhibit dif-
6culties at high compressions. Consider the variation
with y' of V/Vo at high values of z. We see that for
7')q', V/Vo reaches zero and goes negative for a
finite z! If we define V as the limiting value (when
such exists) of V as s~~, then V =0 for y2=qm.

This is not an unreasonable result. %hem 0&y'&g',
however, Eq. (5) leads to V /Vo ——P(g —p)/(g+&) J»,
which may be quite close to unityt Further, for
—~ (y'(0, (6) leads to V /Vo ——exp L

—(2/q) &(

tan '
(q/q) J, a quantity that may again be relatively

close to unity. Note that the values predicted by (5)
and (6) for V /Vo when q and p are zero may be
shown to be the same, namely exp (—2/p).

Although it may seem illogical to continue to con-
sider an equation of state for which V„/V~ may be
as large as 0.7 to 0.8, it should be remembered that
an equation of state is only required to be applicable
up to a value of z where a phase change occurs, not
necessarily for the full range of z to in6nity. Beyond
a phase change, another equation of state, or the
same one with different parameters, will be appli-
cable. Thus, one must only require, for p &z, that
V & V„where V, is the speci6c volume at z,—,and
z, is the value of z at which the phase change occurs.
As we shall show later, this inequality is appropriate
and holds for water. Similarly, if it should turn out
that for a, certain material y')g' and V/Vq could
thus go negative, the SOE~ might still be applicable
provided a phase change occurred before V/Vo began
to fall oG rapidly toward zero.

The above possible difficulties with V/Vo are asso-
ciated with similar anomalies in the behavior of E
and E' with p or s. These all arise from the truncation
of the in6nite power series for E after its quadratic
term. As discussed above, these difficulties may be
of no practical importance if the resulting equation
of state is only required to hold in a pressure region
where higher terms make a negligible contribution.

When z-+CC, on the other hand, Eq. (4') leads to
~
E ~~~. It is clear that the results E~—~ and

E'—+—00 following when p )g and z~~ are non-
physical. In fact, it is unreasonable to expect that
E' could even go negative. The value of z at which
E' becomes zero, s„=—2q/(p' —g') = E,'/EOEO", mu—st-
therefore appreciably exceed z, if the SOE~ is to be
useful up to or near z,. How applicable can we expect
the Second-Order equation to be at high values of z
when alternatively, p'&p' and E—+ in the limit,
as it thermodynamically should' Note that E' will,
in this case, be a monotonically increasing function
of z, a thermodynamically allowed possibility. Keane
(1954) and Anderson (1968) have shown, however,
that it is at least plausible to consider

E„'=(BE/aI') r,„—

to be finite, positive, and somewhat smaller than
Ep' —=g. Keane has derived an equation of state on
this basis whose E' decreases monotonically from Ep'
to E '. Although Anderson (1968) has used a variety
of shock-wave measurements on several solids to show
that the Keane equation is slightly superior to the

Second-Order equation (see Part D of this
section where this equation is termed the "Murna-
ghan" equation), the difference is small and the likely
inaccuracy of the data and lack of isothermal con-
ditions suggest that the case for the superiority of
the Keane equation up to high compressions has not
been fully proved. Only a small diGerence between
the Ep' values used in data fitting with the Keane
equation and with the Murnaghan equation would
render the resulting curves the same within the likely
experimental error of the data used by Anderson.
At the same time, it is by no means proved that E'
must either always decrease or increase monotonically
with pressure in a wide pressure range where no
phase change occurs. It may even increase with z for
some materials over Ep' and then decrease and ap-
proach a E ' less than Ep' as z continues to increase.
Some light on the restrictions on the behavior of E'
for the liquids H20 and Hg will be shed by the later
curve-6tting results of the present work.

C. The Linear Secant-Modulus Equation

p=mEg/1 —-', (q —1)wj ' (9')

where w—= (Vo—V)/V. Partly because of the sim-
plicity of (9) and its linear dependence on p (Po was
implicitly taken zero by Hayward who thus used I'
rather than p), Hayward has bravely stated that
Kq. (9) is "unquestionably superior" and "is for
several reasons the best" of several equations he dis-
cussed. He gives no statistical comparison of these
several equations, however, and his reasons are weak
and unconvincing. Also, whenever y is taken 6xed at
a specific constant value, as here for the Linear Secant-
Modulus equation, the present results show that a
special relation is established between Ep' and EpEp",
one that certainly cannot be expected to be appli-
cable in general. It is by deriving the Linear Secant-
Modulus equation as a special case of the Second-
Order equation that this relation becomes obvious,
although it can be inferred from direct calculation
of E. Note that for Eq. (9), V /V, = (g—1)/(g+1),
a result apparently unnoticed by Hayward.

When p=—1, (5) reduces to the original Tait equa-
tion, termed the Linear Secant-Modulus equation
(LSME) by Hayward. This equation may also be
written (Hayward, 1967) in the form

E =$V p/(Vo —V) j=E+-,'—(q+1)p, (9)
thus linear in p for the difference-type ersatz bulk
modulus Em. The Linear Secant-Modulus equation
may also be rearranged to



'f. Ross MAcnozALn Eqlateols of State 323

Hayward has shown that the Linear Secant-Modulus
equation is not only of the form of Tait's original
equation, but it also is equivalent to the Tumlirz
and Tammann equations. Concerning these equations
Hayward states, "It is typical of the present confused
thinking in this Geld that these are still regarded as
two distinct equations. . ., although they are nothing
of the kind. " Unfortunately, Hayward made this
same type of error himself, as we shall see in Sec.
III.D.

Hayward has suggested that quadratic (and even
cubic) terms in p be added to Eq. (9) to allow it
to cover high-pressure regions for compressible Quids.
While there is theoretical justiGcation to expect that
it would be useful to express the basic thermodynamic
quantity E in a Taylor series around p=0 and ex-
perimental evidence to show that such a series may
be usefully truncated for some materials at the linear
or quadratic level (except probably at high com-
pressions), the only justification for adding higher-
order terms to the artiGcial construct E~ can be
empirical, i.e., that doing so leads to equations which
Gt I'—V data better than any others with the same
number of adjustable parameters. It thus does not
seem sensible to add quadratic and perhaps higher
terms to E& to improve its applicability and utility
if equivalent or superior results can be obtained with
a quadratic E. The quantitative results to follow
show, for example, that Hayward's forthright state-
ment that a quadratic E~ "is the best equation for
water over very large pressure ranges" is not well
based. Finally, from a practical viewpoint, Anderson
(1965, 1966) has shown how Ee, Ep', and perhaps
even Eo" may be derived from ultrasonic measure-
ments at modest pressure, which then allows Eqs. (5)
or (6) to be used to estimate compression to high
pressures, provided higher-order terms are negligible. *

D. The Murnaghan Equation

When y=—rt, Eq. (5) reduces to

I'/I'o= (1+nPop) "', (10)

a widely used equation which has been recently
examined in some detail (Macdonald, 1966) and may
be abbreviated as the ME. Here the "M"may stand for
Murnaghan (1944), who apparently was the first to
publish it although an adiabatic form of the equation
was presented in 1942 OSRD reports by Kirkwood and
co-authors, or modified (Macdonald and Barlow, 1962;
Macdonald, 1966). Note that setting y=rt in (4') re-
duces the E expansion to a linear relation. Such a linear
expansion and the resulting Murnaghan equation have
been used and found satisfactory at least in the me-
dium pressure range by, among others, Moelwyn-
Hughes (1951, 1964) (whose compressibility equation

e Note added ea Proof: Barsch and Chang (1969) have recently
used values of Eo, Xo', and Xp" derived from ultrasonic measure-
ments on several cesium halides to reach interesting conclusions
on the relative applicability of several equations of state for these
materials.

of state was termed the Linear Tangent-Modulus
equation by Hayward); Macdonald (1966), particu-
larly for water (see also Macdonald and Barlow,
1962); Anderson (1965, 1966); Swenson (1966); and
Monfort and Swenson (1965). A theoretical relation
between g and the Gruneisen parameter for solids
has been discussed earlier (Macdonald, 1966, where
rt is designed by I) and shows, along with the rela-
tion p =—Eo', that p is not the "arbitrary constant"
it was termed by Hayward. Further, Moelwyn-Hughes
(1951, 1964) has expressed rt as ~a(tt+tN+6), where
tt and ttt are the Mie-Lennard-Jones equation param-
eters. For mercury he used m=6, the value appro-
priate for attraction by London dispersion forces alone.
Then, rt=-', I+4. With his value of tl+I of 15.5+1.0,
one finds rt~7.2&0.3 for mercury. Our later deter-
minations of g agree poorly with this result and with
a value of 8 derived by Furth (1945), principally
from thermal data. In a recent discussion (Macdonald,
1966) of the Murnaghan equation, the corresponding
compressibility equation is explicitly given in Eq.
(A12) of the 1966 work and shows that E isalinear
in pressure. In spite of this result and the stated
connection with the work of Anderson, who used the
linear E relation, Hayward has treated the Murna-
ghan equation and the Moelwyn-Hughes —Anderson
equation as two distinct equations, although they are
nothing of the kind.

The similarity at the E level of the Usual Tait equa-
tion in Eq. (1') and the Murnaghan equation of (10)
should be noted. The UTE suffers from the defect that
at very high pressures it leads to negative V; it was by
making simple modiGcations in the UTE to avoid this
catastrophe that the author (Macdonald and Barlow,
1962) was first led to the Murnaghan equation. If the
Usual Tait equation and the Murnaghan equation are
expanded in powers of p, it is found (Macdonald, 1966)
that the results agree exactly to second order and
almost exactly to third when r is taken as g+1, as
already stated. Nevertheless, actual least-squares curve
fitting of I' Vdata for even a— relatively incom-
pressible fiuid like water shows that higher-order
terms are important because the value of g obtained
from the UTE curve Gtting disagrees with that ob-
tained from ME Gtting of the same data. In spite
of their important differences, the Usual Tait equa-
tion and the Murnaghan equation have often been
mistaken for one another at the compressibility equa-
tion level, usually because of failure to distinguish
between P and Pt.

E. The Davis-Gordon and Bridgman Equations

Davis and Gordon (1967) have recently given a
discussion and comparison of some equations of state
in connection with their work on Hg. They Gnd the
following equation (the D GE) particularly appro-
priate for this material:
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Tmr.E III. Variables and parameters of four polynomial equations of state.

Equation

3BE

3IVE

3SE

3DGE

—k t,n+&) Po'

k(p—1)P—p'

k(p+1)Pp '

k(n —1)Pp '

(1/12) (3n'+6p+2 &—)PoP

(1/12) (3pP 6—v+2 e—)PpP

(1/12) (3pp+6p+4+8) pp '

(1/12) (3p'—6p+4+8)Pp '

where again w=(Vp —V)/V. Note the similarity to
Eq. (9'), the LSME. To indicate the degree of a
polynomial equation such as the DGK, I shall prehx
the degree to the equation designation. Thus, Eq.
(11) may be denoted as the 2DGE. The Davis-
Gordon equation of second degree stems from a trun-
cated Taylor series expansion around Vp/V=1 and
was used by Bridgman (1936) many years ago. A sim-
ilar equation (the 2SE) involving (Vp V)/Vp instead
of w has been discussed by Slater (1939). Written
in inverse form, the second-order Davis —Gordon equa-
tion becomes

V/V =Ei L+ (I'+2Lpop)"'3 ' (11 )
where I.= (g—1) '.—Its series expansion is

V/Vp=1 s+ Pp(n—+11~' Lp(n'+—1)js'+ " (12)

Davis and Gordon have also considered Bridgman's
second-degree Taylor expansion of V in powers of p
around p=0. When one expands to third degree, one
finds necessarily that the result (the 3BE) is just
Eq. (7), the third-degree series expansion of the SOE.
Similarly, the 2BE is given by Eq. ('7) when this
SOE series is truncated after the second-degree term.
The third-degree Bridgman equation has recently been
used, without identification of the coefficients with
pressure derivatives of E, by Kell and Whalley (1965)
for Qtting water P-V—T results.

F. Polynomial Equations

For later reference and use, four nonequivalent but
closely related polynomial equations of state of third
degree are summarized in this section. Two are the
already discussed 3BE and 3DGE; the other two are
the cubic Slater equation (3SE) and the cubic Inverse
Volume equation (3IVE), the latter involving V ' as
the dependent variable (which is proportional to
density) . These equations may all be written in
the form

3

y= QApx', (13)
k 1

where speci6c choices of the x and y variables and
the pertinent coeKcients (expressed in terms of pres-
sure-volume derivatives) are summarized in Table 111.
In this table, w—= (Vp—V)/V as before and t=
(Vp —V)/Vp=(V/Vp)w. We have expressed all the
parameters in terms of Pp, g, and P—=g'= —yP.

Should any of these equations be extended to fourth
or higher degree, the coefficients (Ap, etc.) could be
expressed in terms of Eo, Eo', Eo" and higher-pressure
derivatives of E evaluated at p=0. This is currently
unnecessary, since even Eo" can scarcely be very
accurately determined from experiment thus far, much
less Eo'" and even higher derivatives. Thus, in any
comparision made herein of, e.g., the 4BE with the
3BE, the new coeKcient necessary will be introduced
linearly, as, e.g. , the free parameter A4, rather than
as a complicated function of the various pressure
derivatives. Note that since all four of the polyno-
mial equations are derived from Maclaurin expansions,
the derivatives Eo, Eo', and Eo" refer to the point
Vp, I'p, at which p, w, and t are all zero. This point
may be that at P=PO= j atm or, for solids, it may
appropriately be taken at P=P0=0. Note that sur-
face-tension eGects are not explicitly considered here.

Finally, the 3SE is the reversion or inverse of the
3BE and the 3DGE the reversion of the 3IVE, both
to third degree. The true reversions of these equations
involve an infinite number of series terms (or the
roots of cubic equations); since the series obtained
by reversion are truncated after the third power,
none of the equations is entirely equivalent to any
other. Further, it should be clear from their form
that none of the four equations is likely to be of
value for extrapolation very fax outside the Qtting
range.

IV. ANALYSIS OF DATA

A. An, alysis Method

In previous work (Macdonald, 1966), some methods
of statistical curve Gtting and of assessment of the
degree of 6t obtained were described in detail. With
the availability of more accurate P—V data and con-
siderable information concerning their measurement
errors, it becomes worthwhile and sometimes essential
to apply more sophisticated and powerful methods
than those discussed earlier.

Most of the equations already discussed may be
written in either the form y=f(x), where y= V or
V/Vp and x—=p, or the related inverse form x=g(y),
but it is impractical to write some, such as the 3BE
of Eq. (7), in both forms. When both forms may be
used, ordinary unweighted (or weighted) linear or
nonlinear least squares operating on a given set of
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data leads to somewhat diGerent values of the least-
squares parameters, depending upon which form is
used. The question thus arises of which to use. In one
case, observed x values Xi are supposed to be known
exactly and hence to be error free; the least-square
residuals are then of the form p„,.=—Y;—y;, where Yi
is an observed value of y and y, is the corresponding
calculated value. In the other case, the F s are (often
implicitly) assumed known exactly and the calculated
residuals are p„.=—Xi—x;.

In most experiments, there is likely to be some
error in both variables (we restrict attention here to
the situation for which there is only a single "inde-
pendent" variable of the x type). Only when a var-
iable is intrinsically discrete (because, e.g., of quan-
tum-mechanical or whole-number reasons) is there
a possibility of obtaining all exact values. Even when
both variables contain random or systematic errors,
one may still frequently make a distinction between
them. Especially in the physical sciences, one variable,
termed "independent, " is frequently brought, insofar
as possible, by the experimenter to a set of chosen
values; it is thus controlled. In this common situation,
errors will still generally occur and the actual or
true values of x will be diGerent from the controlled,
chosen values making up the set {I,}.The variable
is then nonrandom, but the error between an X and
the corresponding true x value will be a random
variable. Thus, the correlation between the error
vector and the true set is nonzero in this case. This
situation is significantly different from that where
the variable in question is uncontrolled. There, the
error vector and the true set are uncorrelated and X
is a random variable.

For the simple case of linear regression, the statis-
ticians (Berkson, 1950; Geary, 1953; Scheffe, 1959)
have considered the question of the choice of re-
gression equation [y=f(x) or x=g(y) $ in great detail.
For both variables containing uncontrolled error,
neither regression yields an unbiased estimate of the
parameter relating x and y. When the independent
variable x is controlled, however, it has been shown
that the usual regression, y=f(x), yields an unbiased
estimate of this parameter provided some usual sta-
tistical restrictions are satisfied.

In I'—V experiments, I' may sometimes, but not
always, be controlled in the above sense. Unfortu-
nately, we almost always need to deal with f(x)'s
and g(y)'s nonlinear in their parameters. The best
regression choice has apparently not been studied in
the general nonlinear situation. It turns out that we
can avoid the need to make a choice at all and gain
additional important advantages if we adopt a gen-
eralized least-squares procedure erst given by Deming
(1943) and recently discussed in considerable detail
by Wolberg (1967). See also Williamson (1968).

It is assumed, as is nearly always the case, that
errors occur simultarieously in both the y and the x

variables; the residuals then may be written E„,.—=

Yi—y;, E,.=—Xi—x;. We have used diferent symbols
for these residuals since they will, in general, be cal-
culated by a diGerent procedure from that leading
to p„,. or p„.. Only when all R,,=0w—ill {R„,}= {p„,.};
similarly for all R„,.=O. Next, introduce the weights
m„,.=r„,-' and m.,=—~.,-'. Here r„,.' and ~.,' are the
expected variances of the measured values of the
variables, quantities assumed known from the ex-
perimental conditions or from direct measurement.
It will be assumed that the observations are stochas-
tically independent. Deming s idea then was to mini-
mize the magnitude of the function S with respect
to simultaneous variation of all the parameters of the
6tting equation, where

S—= Q {w„,. R„,.' +w„. R„.'}—= Q {N„,.t+E„'}

=—Q dP—=S„+S,. (14)

Minimization of S leads to calculated values of E„,.
and R„(and hence to calculated values of y and x)
and to values for the parameters appearing in either
y=f(x) or x=g(y). But note that S is symmetric
in x and y. Thus, the least-squares value of S will
be independent of which form, y=f(x) or x=g(y),
is employed. The importance of the weighted residuals
in x to S may be conveniently estimated by the ratio
S,/S. This ratio will be zero when the observed and
true values of x are assumed to coincide; then {o„.}-+

When residuals are distributed normally and in-
dependently, as they frequently will be to good ap-
proximation, least-squares and maximum likelihood
parameter estimates are identical (Draper and Smith,
1966, Section 10.2). Even when the errors are not
normally distributed, Guest (1961) has pointed out
that least-square estimates will almost always be
adequate. In the linear situation, that where the
functional relationship between x and y is linear in
the parameters, least-squares parameter estimates will
be unbiased —averages of the parameters obtained
from continued replication of the experiment will
approach their true values. Further, the Marko8
theorem states that in this case, whatever the form
of the error distribution function, the least-squares
parameter estimates will be the best linear unbiased
estimates (BLUE), those having the smallest possible
variances.

Here X is the number of data points; E„, and E„
are standardized residuals of the form (R„./o„.);

N
S„—= g Zr„,m;
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Unfortunately, we will usually be dealing with
functional relationships nonlinear in their parameters.
Even when y f(x) is linear in the parameters in-
volved, our minimization of Eq. (14), which involves
the R „will in general introduce some over-all non-
linear parameter dependence. For this case, the usual
statistical estimates will generally be at least some-
what biased (Draper and Smith, 1966). They may
still be used in many situations as convenient ap-
proximations, nevertheless. Further, Wolberg (1967)
has implied that unless the errors are very large, the
usual expressions for the estimates are reasonable for
most experiments, and he takes all such estimates as
unbiased, provided the true errors are uncorrelated,
a reasonable assumption We shall use his expressions
for the n parameters A ~, their standard deviations
o.~„and their correlations pp„with the expectation
that these quantities and S itself will usually at least
be good approximations to unbiased estimates of the
quantities in question in cases where systematic errors
are negligible and random errors relatively small.

It should be noted that although the true x and y
errors may usually be assumed to be uncorrelated,
the least-squares calculated residuals, say (N„, ) and
[N,, ), will usually be highly cross correlated. This
correlation is a necessary consequence of the form of
the equation to be fitted. We have no way (without
inde6nitely replicating the experiment and also elimi-
nating all systematic errors) to obtain true values of
the errors; all we can do is minimize S and obtain
a calculated (not-true) curve and estimated values
of the parameters. Because of the correlation between
the x and y residuals, little or no additional informa-
tion is obtained by considering the individual residual
sets jN„) and [N„.) separately. In testing residuals
for normality and autocorrelation, we shall therefore
only consider the composite residuals

d;—= (N~'+N„P)'" sgn (N„,).
Note that even when the measurements are stochas-
tically independent and there are no systematic errors,
the d s themselves will be correlated to some degree
(Draper and Smith, 1966, Section 3.7) because of
the n relations involving them arising from the least-
squares determination of e parameters. There are
residuals but only f=N zp degr—ees —of freedom.

Wolberg gives an expression for the ("unbiased")
standard-error estimate of y, sr(x), which can be
calculated for any x value. For simplicity, we shall,
in the later curve-Gtting work, routinely calculate sy

for only a few points within the experimental range:
X=O or Xz if Xz/0, where sr —=sp, X—X, /2, where

sf—=s; and X=X, where sf=—s~. It is important
to note that the general expression for sy may be
readily evaluated for a given set of data and a given
"model" (functional equation choice) at x values
outside the experimental range. Thus, when it is
desired to extrapolate beyond this range, the expected

error in the calculated yi at any large xi may be
obtained and serves as a measure of the worth of the
extrapolation provided the model is appropriate. Some
equations of state will be far better for extrapolation
than others; thus it is worthwhile to calculate sf at
X=100X, where we de6ne sf=s,.

A valuable feature of S, according to Wolberg and
Deming, is that its distribution function is a chi-
squared distribution whose mean value is just the
number of degrees of freedom, f=N —e —Th.us, we
should 6nd upon continued replication of the experi-
ment that (S) (where () denotes the mean value)
should approach (N —N). Although this result is ap-
parently not quite correct in general, it is never-
theless frequently useful.

Equation (14) shows that 8 is made up of a sum
of squares of the standarized variable d;, as it should
be to satisfy a chi-squared distribution. Further, there
are (N N) deg—rees of freedom associated with this
sum. It is necessary, however, for a sum of squares
which satisles a chi-squared distribution to be asso-
ciated with a standardized variable whose mean is
zero (Hald, 1952; Peng, 1967). But

(d)=—N 'Qd. /0

in general (see Deming, 1943, p. 182), although the
sum will usually be very much smaller than (ds)z~P=-

d, . To evaluate the needed correction, define

M=—g (d;—(d))',

M= S—(d)'N (15)

on using Eq. (14). It is clear that when ~&(d)'N,
as @rill usually be the case, S and M may be used
interchangeably. Whenever this inequality is not well
satis6ed, however, one should use M instead of S in
considering results associated with dependence on a
chi-squared distribution. Although 3E=S quite closely
in much of the present work, we shall nevertheless
use 3f rather than S since a slight gain of accuracy
results. Because the variance of M is known to be 2f,
we expect the mean of M to be f and its standard
deviation to be (2f)'~'.

When the least-squares sum M is calculated for a
given model and data set, yielding the value 3f0, we
will usually not find Mp=f:—N —N. If we can be

a quantity which does indeed have a chi-squared
distribution provided it can be transformed from a
sum of S correlated squares to a sum of the squares
of (N—n) stochastically independent variables. Hald
(1952, Section 10.6) shows how this may be done.
It rvi11 not, of course, be possible in general if the
measurements are not stochastically independent
and/or systematic errors are present. Expansion of
the sum for 3f leads to
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satis6ed that the measurements were stochastically
independent and that no systematic errors were pre-
sent (see below), M should nevertheless obey a chi-
squared distribution. Although a value of 3f such as
Mp much different from f could arise from chance,
when the probability of 6nding such a value is very
low the result may indicate instead that, e.g., all
the o.„,'s and o-„.'s were under or overestimated. Multi-
plying all these quantities by a constant c changes M
proportional to c ' but does not aGect the estimated
values of the parameters and their standard deviations.

The quantity M obeys a chi-squared distribution
whose mean is f and whose median we shall term f .
For 15&f&30,f f 0 66—, fo.r example. Suppose we
have a calculated value of M, Mp, available. Now
let E, be the two-tailed probability de6ned as follows.
If Mp&f, E, is twice the single-tail probability (ob-
tained from a table of the cumulative chi-squared
distribution) of finding by chance an M&M», while
if Mp) f„,P, is twice the probability of 6nding M) Mp

by chance. As an example, for f=23 and Mp ——9.26
or 44.2, E, would be 1%. It increases to 5% when
Mo=11.7 or 38.1. Such low values of 8, would in-
dicate a high chance that the scales of [o„,. } and
fo„} were chosen incorrectly (possibly that of only
[o„,} or [o„}might be wrong, not both), and the
most natural procedure would be to correct them
using o„, =co,ie and c'=Mp/f. This leads to a new
Mp equal to f. The resulting estimated o„. and o.„,.
would then be likely to be more nearly correct than
the original ones. Of course if, for example, S,/S«1,
then only o„i would be important in affecting 5 or 3f.
The c correction would then only be pertinent for
o.„„and the values of o;,. whether right or (not too
far) wrong would be unimportant.

Systematic errors (or bias) in the data have the effect
that the average values of the measured variables do not
approach the true values as the experiment is in-
dehnitely replicated. This is because systematic errors,
by de6nition, recur without change on replication,
while stationary random errors average out. System-
atic errors may lead to strong correlation between
successive measured values and residuals and may
then be discovered by an examination of the residuals.
Even when they are absent, (measurements stochas-
tically independent), systematic errors arise if the
model is poorly chosen. If the functional equation
does not Gt the data well after removal of any out-
lying residuals from stochastically independent data,
the successive residuals will again show considerable
correlation and the means of the estimated parame-
ters will not approach their true values as the ex-
periment is replicated and reanalyzed.

In this work, I shall be considerably concerned
with both random- and systematic-error contributions
to total uncertainty. Recent discussion of such con-
tributions has been given by Eisenhart (1968). Since
the numerical values quoted herein are always esti-

mates of the true values of the quantities considered,
I shall generally omit the word "estimated" for
brevity.

To assess the trustworthiness of the results of curve
Gtting, we shall examine the standardized residuals, d, .
First, they may be tested for approximate normality
by plotting their cumulative distribution function on
probability graph paper (Hald, 1952, Section 6.6);
a straight line should result for normal data. Second,
we may examine the residuals plotted versus x and
assess randomness and possible correlation qualita-
tively. If ¹

—n~¹, the correlation among the re-
siduals arising from the e relations involving them is
negligible (Draper and Smith, 1966, Section 3.7),
and we may be primarily concerned with correlation
arising from systematic sources.

We may obtain an approximate quantitative meas-
ure of the correlation as follows. Let n» be the number
of positive d; residuals, e2 the number of negative
ones, and N the number of runs —successive residuals
of the same sign. Draper and Smith (1966, Section
3.9) give a test based on given (measured) values of
e», e2, and u. But e» and ~ as well as u have dis-
tributions of their own, and it seems preferable to
consider the test based on a binomial distribution
of u alone. Excluding zero values of the residuals,
one sees that they may have only positive or negative
signs; thus, the basic probability of the occurrence
of either sign is 8»

——0.5. For ¹ residuals, there is
actually a maximum of ¹»=—

¹

—1 zero crossings, g,
or changes of sign of the residuals possible. When
X—e S, it will be an adequate approximation to
ignore the correlations between residuals arising from
the e relations mentioned earher. Then, at least ap-
proximately, we may consider g=—u —1 as following
a binomial distribution with 8»=0.5 and with ¹»
events. The mean of g is then (g)=Xi/2 and its
standard deviation so is (Xi/4)'ts. Suppose a partic-
ular value of u, uo, is found experimentally. Let II
be the two-tailed probability that this occurred
by chance. The value of 1—II for a value uo found
in a least-squares 6tting will then indicate the prob-
ability that important correlations are present and
that uo did not occur by chance from an essentially
uncorrelated set of residuals.

We may readily obtain II from a table of the cu-
mulative binomial distribution (National Bureau of
Standards, 1950). Let IIi be the value obtained from
this table on entering it with go=uo —1, ¹», and
0» ——0.5. Then because of the symmetry of the bi-
nomial distribution about its mean when 0»= 0.5,
II=2II». As an example, if uo=18 and ¹ =27, one
finds II=24.78%, not an outstandingly high value.
When up ——16 and Pi=27, however, II=70.11%, sug-
gesting that correlation is probably unimportant in
this case. For ¹»——27 and uo=5, on the other hand,
one finds 11~4.9X10 '%, entirely negligible. In this
case, where up(((u), II=2(1—IIi), rather than 2IIi.
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Although the parameters will be biased and sta-
tistical measures such as S, standard deviations, and
various probabilities mill not be very trustworthy
when systematic errors are present, or possibly even
when the model is nonlinear in its parameters, we
shall nevertheless list all such quantities derived from
the curve 6tting for comparison purposes. They will

help us decide on the best model for a given purpose
(interpolation, extrapolation, parameter determina-
tion, etc.) provided. we are suKciently careful in the
interpretation and use of the calculated values.

B. Consistency of the Data

AII of the equations of state considered in Sec. III
involve Pa through p=P Po and —Vo through such
combinations as V/Vo or Vo/V. At p=0, V/Vo is
unity by de6nition, and t and m are thus zero. The
proper choice of I'p and Vp is a matter of considerable
importance when diGerent equations of state are to
be considered. Herein, we shall always take I'p= j
atm —1.0j.325 bar; thus, Vp will be the most ap-
propriate value of V at Po 1.01325 bar——, where p=0.
How should Vp be determined assuming it is not
known exactly ab ieitioP

Consider a somewhat more general polynomial
equation than (13), namely

n—1

y= gA, e, (16)
k=0

where e is the number of free disposable coefficients
and the pair (y, x) might be, e.g., (V, p), (V ', p),
(p, V), or (p, V '). The four resulting equations are
equivalent to those in Sec. III.F if n=4, except that
there is here the loss of a degree of freedom because
of the presence of the disposable parameter Ap. I ur-
ther, note that least-squares fitting of Eq. (16) may
be carried out either with the linear Aq s directly as
they appear or with substitutions for them such as
those of Table III where the Po, g, 8 parameters ap-
pear nonlinearly. The S value obtained should be the
same for either approach. To determine the best Vp

let us consider fitting P—V data with Eq. (16), using
one of the (y, x) combinations above. The data may
or may not include a measured value of Vo at p=0.
If no value of Vp was determined as part of the ex-
periment yielding other V values, then clearly the Vp

most consistent with the rest of the data will be Ap
for the (y, x) choice of (V, p) and Ao ' for the choice
(V ', p). For the choices (p, V) and (p, V—'), the
most appropriate Vp will be the pertinent root of the
polynoinial equation obtained by taking p=0 and
V=Vp. If a measured value of Vp of high expected
accuracy is available from a di6erent experiment, it
can, of course, be used along with the I'—V data in
question provided the P'=I'p and V= Vp values added
to the data are weighted separately using appropriate
weights generally diGerent from those for the other
points.

Unfortunately, when (p, V) or (p, V—') are used
in (16), a good least-squares fit is dificult to obtain
because of the high correlation between the Aq pa-
raineters introduced by these forms of (16) where
the range of variation of V is much more limited
than that of I'. This diKculty may be avoided by
instead using the choices (p, t, ) and (p, w, ), where

(V,——V)/V„w, —= (V,—V)/V, and V, is an esti-
mated 6xed value of Vp. The final consistent value
of Vp is then again determined as the zero of a poly-
nomial. For example, for the choice (p, t,) the equa-
tion for 6nding the root would be of the form

0=Ap+Ai[(V, —Vp) /V, ]
+ "+A. i[(v.—v,)/v. ]"-'.

The real root nearest V would be the one to choose
for Vp unless the original choice of V, had been very
poor. A first-order approximation for the root is suf-
6cient when V, is well chosen. Note that when a
change of variable is made, consistent weighting must
be used, as discussed in detail later, in all determina-
tions of Vp and subsequent curve Gtting to allow
consistent comparisons. For example, if oi (p) is the
appropriate weighting (through zvi

—=oi ') for the V
variable, then that for V ', oy ', would be V '0~,
that for the m variable would be (Vo/V')ai, and
that for t would be Vp '0-y. The expressions for 0-~ '
and 0 only apply accurately when oi/V((1. This
inequality is well met for all the data considered
herein, and the above relations will thus be employed
as appropriate.

In order to obtain best estimates of the Davis—
Gordon equation or Slater equation A; (i)0) pa-
rameters, one may first find Vp accurately as above,
then carry out a second fitting of the data with the
equation in question, making use of the Vp value
obtained from the first 6tting in forming the t or m

employed in the second 6tting. This three-step pro-
cedure may sometimes be avoided at the cost of
considerably increased parameter nonlinearity of the
6tting equation and consequent possible difhculty in
obtaining convergence to the least-squares solution.
Again use n, or t, for the Davis —Gordon equation or
Slater equation, respectively, but take the V involved
in m, or t, as a free parameter itself whose anal least-
squares value will be the best estimate for Vp. In
addition, do not introduce Ap at a11. Then V, takes
the place of Ap, the number of degrees of freedom
will be the same; and the best value of Vp will be
obtained directly if convergence is achieved. Note
that with this procedure only o-y need be introduced,
not O.„or a.

&, and the calculated E„will be residuals
of V;. This approach will be simplest when good
initial approximations of the parameters are known,
making convergence quicker and more likely. When
this is not the case, the above free-Ap procedure is
a better choice; it will be frequently used herein.
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We have discussed. two procedures above. In one,
in order to aid convergence we introduce a change
of variable, a free Ao parameter, and a 6xed V„and
finally obtain a best estimate of Vo indirectly. In the
other, no A0 is introduced (it may be taken fixed
at zero) and V, is a free parameter whose least-
squares value gives Vo directly. The latter method is
preferable when convergence will not be greatly slowed
thereby. For example, it may be readily used for the
Bridgman equation or Inverse Volume equation by
taking the V in t or m free. Finally, there will be
equations where the two situations coalesce and no
change of variable is necessary. We can then intro-
duce a free Ao parameter whose initial value is V
and whose final least-squares value is the best esti-
mate for Vo. Thus, the Murnaghan equation may be
written V=Ao(1+rtPop) t&. Of course if it is desired
to obtain results in terms of the conventional variable
V/Vo rather than V, then the best estimate of Vo

may be found from a preliminary 6tting and used to
obtain results pertinent to V/Vo. For example, a fur-
ther 6tting of the equation may be carried out using
the new variable V/Vo, with proper normalization
achieved through the use of the best estimate of Vo
in forming V/Vo.

The Vo's obtained from Gttings with various equa-
tions of state will not in general be exactly equal.
The Vo obtained from the best-Gt equation is, by
definition, the value most consistent with the rest of
the data. Thus, in comparing the appropriateness of
various equations of state for the same data it is
important that Vo values be found from fitting the
data with each equation separately. Biased compari-
sons will be obtained, for example, if in the usual
way one uses a single, inconsistent, Gxed Va for the
V/V& variable employed in all fitting. For any equa-
tion Gtted using an inconsistent Vo, the resulting
least-squares parameters will be systematically biased
and will be likely to be less accurate than those ob-
tained using the above procedure. This difficulty
seems to have shown up in Kell and Whalley's (1965)
fitting of their water data (all temperatures) using
the 3BE. It possibly explains the strongly nonzero
residual averages apparent in most of their individual
runs at constant temperature. The appearance of a
nonzero residual average (d) is a general consequence
of least-squares fitting of any equation which lacks
a disposable Ao type of parameter, unless the nor-
malization is made consistent as above.

When the data does include a measured value of V
at p=0, say Vo„, the same fitting of a given equa-
tion with a free Ao or V parameter may be carried
out as before. It is unlikely, in general, that the Vo
obtained from such Gtting will equal Vo . Never-
theless, V~ should be retained as part of the data
in any subsequent 6tting involving the variables
V/Vo, re, or t, and Vo, not Vo„, should be used for
normalization. Note that when a free Ao is introduced

its standard deviation is equal to the sj value at the
point (Vo, 0).

When Ao or V, is a disposable parameter, it is of
course counted in determining f, the number of degrees
of freedom. When the most appropriate V0 has been
obtained for a given equation and is then used for
normalization in an equation involving the variable
V/Vo, no free parameter of the Ao type explicitly
appears in the conventional approach, and Ao is re-
placed by either unity or zero depending on the
variables used and the form of the equation. Clearly,
were the equation fitted with the addition of a free
parameter of the Ao type in place of the Gxed con-
stant, one would obtain just unity or zero for this
parameter as the case might be. Thus, the unity or
zero actually used in the equation when Vo is chosen
consistently and Ao is not free is really eGectively
free, not fixed. The number of degrees of freedom
will then be the same as that in the situation where
a free Ao or V explicitly appears. As we shall see
later, however, even using the proper value of f and
the most consistent Vo by no means eliminates further
diKculties inherent in the usual approach which takes
V/Vo as a dependent or independent variable and
involves no free parameter of the Ao type. For sim-

plicity, subsequent reference to the Ao-free situation
should be understood to include the related alternate
situation where V, rather than Ao is free.

Since the standard deviation (s.d.) of the residuals
is probably the most significant single quantity for
comparing various models and equations of state, its
de6nition and calculation is worth especial examina-
tion. The usual de6nition of the s.d. for a residual
set Id;I is sd'=(S/f)'t'. But remember that (d)WO
in general, especially when Ao is not free. Now the
s.d. is a measure of the absolute magnitude of the
residuals, and M may be quite diferent from 5 when
(d)QO. Rather than have the usually unknown effect
of (d)WO rnelded into the s.d. as it is in se, it seems
far preferable to define se—=(M/f)'t' which is based
on squares of (d;—(d)) and quote (d) separately
when it is significantly diferent from zero. Of course,
when (d)=0, se' and sq are identical.

Three situations need to be considered. First, if Ao
is free, sd and sd' are given' as above. Note that s~&
fM/(f —1)Jt2 here since the loss of a degree of free-
dom associated with (d), which is itself involved in M,
is the same loss as that associated with Ao and should
not be counted twice. Second, consider the case where
Ao is Pxed at some value not known to be the "best"
value, that which would be found in the Grst case
above. Then, although f is numerically increased by
unity over that of the Grst case, s&' is formally still
given by (S/f)"'. On the other hand, the loss of the
degree of freedom in M arising from the presence of
(d) is not now counted in f, and. we here must use
so= t'M/( f—1)j't'. Note that the (f 1) in this ca—se
is D.umerically equal to the f of the first case. Finally,
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when As is 6xed at its "best" value as above, f is
again increased by unity over the free case but Ao is
really (known to be) effectively free. Thus, here we
should use ss'= PS/( f—1)jr~' and sq ——fM/( f 1)—j'is
numerically equal to the results obtained in the
free-Ao case.

If r„and 0, are chosen correctly and there is no
bias, one should obtain 3E=f on the average, and
s&——1 in the usual situation of Ao free. We may ex-
press the rms value of the d, 's as

g its—(Q—1 Q if s) 1/2—

1

nearly equal to ss' when f~~jt'/ and also to sz in the
usual situation considered herein where (d)—0 and
M—S. Finally, rather than use (d) when it is ap-
preciably diGerent from zero, the normalized quantity
X=—(d)/d, . is more signi6cant.

If Id;} involves only random errors and is normally
distributed, there is only a 0.27% chance that a given

~
d,

~
will exceed 3'. Anscombe and Tukey (1963)

have given a rejection rule for outliers which, for
X=27 and f=23 for example, leads to rejection of
the residual of largest magnitude provided it exceeds
about 2.6'. %hen a residual has thus been rejected,
the analysis is repeated without the associated data
point and the same rejection rule applied again, etc.
This rule is based on a premium of 2.5%. That is,
if a residual is rejected which really belonged to the
distribution followed by the other residuals (and
hence should not have been rejected), then the aver-
age error variances of the parameters would be in-
creased by 2.5%. In the following work, we shall

apply this rule where applicable and determine anal
Vo's only from data adjusted by this procedure.

Finally, in order to compare with ordinary least-
squares results, we shall sometimes wish to take
either O.„or 0„,. zero and choose the nonzero one
equal to unity. Such a unity value does not, however,
imply that the real 0,. or 0-„„ the best estimate for the
standard deviation of a single measurement of X; or
F; (or of the standard deviation of the average value
of X; or Y; when the data are averages of individual
measurements), is unity. This choice is merely a con-
venience to reduce the present procedure to ordinary
unweighted (strictly, unity-weighted) least squares.
It only does so, however, when the 0 taken as unity
applies to the dependent variable. Further, in the
ordinary least-squares situation with unity weighting,
the expected value of 31 will not be f. Generalized
least squares, unlike simple least squares, allows unity
weighting (or any other weighting) to be applied to
either the dependent or independent variable. When
the unity choice is made, the resulting sz or s& is the
ordinary least-squares standard deviation of the fit for
the pertinent variable.

What is the pertinent variable, however, in the

present situation where we have taken pains to use
appropriate transformed weighting, 0. when m is one
of the variables, 0~ when t is used, etc.? Consider
first the situation where 0-„=1 and 0.~=0. Then
Rv,.——0 and R„,=/t'/. „,=(p. ,),—(p,)„where the "e"
and "c" subscripts stand for "experimental" and
"calculated. " Thus, s~ obtained with this weighting
from a Bridgman equation, Inverse Volume equation,
Slater equation, or Davis —Gordon equation fitting, for
example, will measure the random error (if the model
is appropriate and systematic errors in the data are
negligible) of p and P.

The situation is slightly more complex when 0-~=0
and o-&=1. Consider, for completeness, a relatively
general transformation of y or x. Take, for example,

f(x), —where f(x) is a transformation having a
finite, nonzero 6rst derivative df/dx for all x of in-
terest. For simplicity, denote experimental x and g
values as x„and $„and calculated values as x„.
and g„. Now let b,=x„x„—; the—n N„=8,/0„. Fur. ther,
provided*

~
o„./x;

~
&&1 for all i's, or,.=

~
d$/dx

~ „,.a„..
We now wish to calculate /t'/~, = ($„$„)—/ir. t—, .in te. rms
of x;. To do so we use the expansion around x„,
g«=f(x«) =P„—8, (dg/—dx) ~,„+o(i'i)., and find, to first
order in b

S,(d&/Cx) i „,. dP
~.f } d /dx i.„. "

dx)

provided
~
o„./x;

~
&&1. Except for possible changes in

sign, we see that Np, .—N, For all at least reasonably
good 6ts, the neglect of o(8) and the condition on

~

o.„/x;
~

will be well met. Further, for the present
sort of data, when x;= V;, d$/dx will be bounded
and nonzero for all transformations of interest.

Now when (y, x)=(V, p) or (p, V) and o„=0,
O.y= 1, Ey, =N~,.= V„—V„—=5;, as expected. The
above general results show that, in addition, when

(y, x)=(t, p), (p, t), (w, p), or (p, tt), we find Ei,
N„,.——N~,. ———b;. Thus, in all cases of interest when
t or m is used as a variable with the above weighting
choice, sq and sq', which are formed from the Ng,
alone for this weighting, refer to the V; variable just
as in the (y, x) =(V, p) or (p, V) case. These results
are convenient since they allow us to compare di-
rectly s& values obtained from all the polynomial
equations considered with those obtained when (y, x) =
(V, p), as for the Murnaghan equation and other
nonlinear equations. Note that although the s&'s all
refer to the V; variable, they will be obtained from
fittings with diGerent equations and may thus be
expected to differ in general for this reason alone.

Although direct replication of a data set is the

*This is an approximate condition, adequate for the trans-
formations considered herein. C. A. Barlow (private communica-
tion) has shown that if G(x) —=

~

ln L [ (d//dx)/(df/dx) 0
~ g ~, a

more general approximate condition is a. ;(dG/dx)„&(1. More
exactly, he shows that it is sufhcient to require that the variance
of G(x;) for anysfixed value of s be much less than unity.
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best way to allow the consistency of the data to be
determined and appropriate values for g„. and 0„,.
selected, another less ideal method is available when
no replicated data are available. This is the method
of partitioned data (Monfort and Swenson, 1965;
Macdonald, 1966). A given data set is divided into
two or more subsets and each used separately in
curve fitting. For example, one might separate the
data into the first half and the last half or the even
data points and the odd ones. If systematic errors
are absent from the data, if the model is appropriate,
and if random errors are not extreme, one would
expect quite stable parameter values to result from
the fittings; thus a given parameter value obtained
from a subset should be close to the corresponding
value obtained by fitting the complete set. Unfortu-
nately, this method confounds the eGects of systematic
errors in the data and in the choice of the model. It can
show that something is wrong but not always what
is wrong.

The above procedure is particularly important when
one desires to combine two quite diferent data sets.
Suppose, for example, one has available static I'—V
results for a given temperature and covering a rela-
tively limited pressure range and, as well, shock-wave
results reduced to the same temperature, thus iso-
thermal. Although the transformed shock-wave data
will cover a much higher pressure range, they will
almost certainly be far less accurate and precise than
ultrasonic or static data. It would be quite improper,
therefore, to throw the static and dynamic data sets
together and do ordinary unweighted (unity-weighted)
least-squares fitting. Rather, generalized least squares
should be used with appropriate weightings for each
X; and F; value of each data set. Such weighting,
if properly selected, will compensate for the great
diGerence in accuracy of the two sets and will make
it reasonable to combine them. In addition, one should
carry out fitting of a given equation of state sepa-
rately with each such weighted set. The results ob-
tained from the two separate sets and the combined
set should all give the same parameter results quite
closely, provided there are no systematic errors in
the data or any arising because the equation exam-
ined is inappropriate. It is strongly recommended
that this procedure be followed when combining shock
wave and other data sets for subsequent analysis.
One can then determine quantitatively how well a
single equation 6ts both sets.

V. APPLICATION TO WATER

A. Previous Work

A detailed nonlinear-least-squares statistical curve-
6tting comparison of the Usual Tait equation and
the Murnaghan equation for Bridgman (1935) water
da, ta (0-12 000 kg/cm') was carried out by Macdonald

(1966). It showed the Murnaghan equation to be
generally superior to the Usual Tait equation for
water except possibly at temperatures near 100'C. At
the time this work was done, the extensive statistical
study of Ginell and Ginell (1965) of water using the
Usual Tait equation was unknown to the author.
Unfortunately, the Ginell study uses the old Tait
parameters and a cumbersome statistical method. The
standard errors of the results for the Tait parame-
ter 8 (termed C by the Ginells) are very large and
for some data implausible negative values of 8 are
obtained. Thus the weight assigned to this study
cannot be large.

Eckart (1958) and Hayward (1967) have both
applied the Tumlirz, or LSME, to the analysis of
water data. Eckart found reasonably good fitting of
several sets of quite ancient data but did not carry
out a true statistical least-squares analysis of the
data. Hayward, using the modern, apparently very
precise and accurate data of Kell and Whalley (1965)
covering the range from 0-1 kbar, contented himself
in showing that E2(p) was closely a linear function
of p and in making somewhat unsupported statements
based on this result. However, he apparently used
Kell and Whalley's interpolated data based on (at
each temperature) a Bridgman equation 6tting rather
than the original I'-V data which were used by Kell
and Whalley to obtain their equation-of-state param-
eters. Thus, his conclusions possibly apply to this
series equation of state more than to the water data.

Finally, Li (1967) has recently carried out a pains-
taking analysis of a variety of water compression
data using the Usual Tait equation in the form of
Eq. (1).Unfortunately, this is also not a least-squares
statistical analysis. What is more, Li fixed one of the
UTE parameters, C, at the value 0.3150 found long
ago by Gibson and LoeQler (1941). He uses this
value for all data sets at all temperatures even though
there is no longer justification for a constant value
of C (see Cutler, McMickle, Webb, and Schiessler,
1958; Macdonald, 1966; and.Hogenboom, Webb, and
Dixon, 1967), and a statistical study (Macdonald,
1966) had already demonstrated, at the time Li wrote
his paper, that much higher fitting accuracy could be
obtained using the Usual Tait equation for water
with C (actually r) temperature dependent.

Using C=0.3150, Li goes on to calculate the old
Tait parameter 8 for virtually every I'—V point
available in every data set he examined. On aver-
aging those J3's which remain relatively constant
within the range 0.4 to 1.0 kbar, he finally obtains
analytical expressions for 8 as a function of tem-
perature. The temperature dependence of Po instead
of 8 would have been much more significant; further,
the apparently arbitrary omission of many data points,
the lack of least-squares determination of the C
and 8 coeflicients, and the very considerable dif-
ferences between the results obtained from diGerent
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data sets, renders the results of dubious value. There
are, apparently, mistakes in some of the 8-vs-tem-
perature results: Except for the erst term the B(T)
expressions following from the data of Amagat (T&
45'C) and Newton and Kennedy (2'& 25'C) are
exactly the same (to the four 6gures given of each
constant).

Although Li makes no comparison between his J3
values and those obtained earlier by any other authors
such as Gibson and LoefHer (1941) and Ginell and
Ginell (1965), he does attempt to show that the
Murnaghan equation is not as applicable for water
as the Usual Tait equation. To do this he uses two
sets of Bridgman's data Lneither set was the full one
used by the author (1966), and. the origin of one set
was not statedg. Again using C=0.3150, he 6nds 8
values generally somewhat higher than those follow-

ing from the other sets of data analyzed. Because
of the restrictive choice C=0.3150 and the lack of
even a one-parameter least-squares fitting, these re-
sults scarcely allow one to dismiss these Bridgman
data and certainly do not bear on the relative ap-
plicability of the Murnaghan equation and the Usual
Tait equation. The present author's previous com-
parison, using Bridgman data which covered a much
higher pressure range, remains reasonably valid, al-
though a much improved treatment of better data
is given herein.

In addition, Li endeavors to show the inapplicability
of the Murnaghan equation relative to the Usual Tail
equation by using the ancient E—V water data of
Ekman (1908) which has been criticized by Eckart
(1958). Using po values which were derived from
direct, low-pressure sound-velocity measurements, Li
calculates g for several pressures in the range 0.2&
p&0.6 kbar and Gnds a systematic variation of g
of 4% to 8% over this range. Little or no such pres-
sure dependence should occur if the Murnaghan |:qua-
tion were indeed applicable and random and systematic
errors in the data su%.ciently small. As we shall see
below, the Murnaghan equation is indeed not the best-
6tting equation of state (although it is superior to the
Usual Tait equation); the errors in the Ekman data are
probably by no means negligible in such a calculation
of p; and finally it is inappropriate to neglect the
probable errors in Po as Li's procedure does. Better
measures of the precision of q obtained from analysis
of more precise and accurate water data are pre-
sented later.

K Weighting of Data

We shall Grst illustrate the analysis methods de-
scribed above and investigate equation-of-state ap-
plicability using the O'C P—V data of Kell and
Whalley (1965). These authors have been extremely
careful and painstaking in attempting to identify and
eliminate or reduce all sources of systematic error in
their experiment. The largest likely contributor is un-

oz'= &z'+ (&z+I'zp) ' (17)

as the general form for 0„' and 0F'.
In a conventional least-squares analysis, such as

that used by Kell and Whalley, 0„=0 and OI =Hz,
a constant usually taken as unity. It turns out that
the Hy value which causes the 3BK 3fo to be essen-
tially f is 2.48&(10 . We shall designate this choice

certainty in the density of Hg under pressure, a quan-
tity calculated using an equation of state, and thus
not a contributor itself to random error. When better
density data becomes available, the Kell—Whalley
water data can be readily improved. For the O'C data,
Ã 27 and Vo„did not exist as a part of the meas-
urements. The maximum pressure applied was about
1000 bar and the minimum V was about 0.95. Values
of V were given to six decimal places. In order to
eliminate round-oG errors which would otherwise ap-
pear (Macdonald, 1964), all calculations described
below were carried out on a digital computer using
double-precision arithmetic involving the equivalent
of approximately 13 decimal digits.

In this section, we shall be primarily discussing the
determination of the most appropriate V and p
weighting, the search for and elimination of any
outliers, and the determination of the most appro-
priate Vo for each equation of interest. Although Vo

was not measured directly by Kell and WhaHey along
with their p&0 measurements, the derivation of their
V values from the basic measurements did involve
the choice Vo——1.0001604 (Kell, 1967; Bigg, 1967).
Nevertheless, to make the final equation-of-state com-
parision as unbiassed as possible, I shall use not
this Vo but the Vo s arising from initially fitting the
equations with disposable Ao parameters, as discussed
in Sec. IV.B.

Weighting of X; and F; data values should prop-
erly be based upon the most likely random error
expected for each individual X; and F; measurement.
These standard-error values should ideally be deter-
Diped by repeated replication of the experiment.
Further, replication should not only be used to obtain
estimated values of the standard deviations of the
individual measurements for weighting; the data ob-
tained should then be melded together and used in
the generalized least-squares analysis. Since Kell and
Whalley give no replicated O'C data, we shall base
the weighting on their statements of accuracy of the
measurements and on the random sources of error
listed in their extensive error analysis table. Let Z
stand for either p or V. Then at the oz level, the
random errors considered are of two types: (a) those
which are independent of pressure, Hz in magnitude,
and (b) those depending linearly on pressure, (Zz+
&zp). The sources of these types of errors, as listed
by Kell and Whalley, suggest that they are stochas-
tically independent of one another. Thus, we may
write
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Tmr, E IV. Least-squares results for water at O'C with Ap disposable and diferent weightings. ~

Equation-
weighting

M
StIt

S„jS I
r.(%) n(%)

Sp

~Ay

4BE-A 22. 18

1.004 90

18

17 1.35X10 ' 4-77X10 4 1.30X10 2 2.08X10 i 1.15

1.00015973 1.27X10 6 9.61X10~ 2.15X10 ' 8.80X103

3HE-A 22.95 0 16 1.00016037 1.08X10 6 9-43X10 1-88X10~ 2.33X10'

0.9988 93 1.12X10 ' 2.60X10 4 3.99X10 ' 2.36X10 2

3BE-B

0.6389

1.00016012 8.99X10 ~ 8.90X10 ~ 2.75X10 ' 2.58X10'

9 41X10 ~ 2.49X10 4 4.16X10 3 2.65X10 2

3DGE-B 8.994

0.6253 0.8

—1.20X10 2

1.60

1.82X10 2 1.83X10 2 6.81X10 2 5-69X105

2.97X10 4 8.43X10 3 3 ~ 15X10 2

3BE-C 23.76

1.016

1.00015987 7.91X10 8.80X10 3.55X10 2.83 X10'

8.32X10 ~ 2.44X10~ 4.35X10 ' 2.93X10 '

3DGE-C 22.46 —1.69X10 ' 1.58X10 ~ 1.78X10 ' 8.68X10 ' 6 15X10'

0.9881 99 9.90X10 ~ 2.84X10 4 8.70X10 3 3.35X10 ~

A weighting: o'& =0; 0'p =2.48)(10-e; B weighting: 0'&» = (10» bar)»+(10-4p)», 0'y» =5 &(10-»+(2 )&10~+2X10~p)»; C weighting: 0&» = (2.5)(10»
bar)»+(10 4p)», 0'v» =10»+(10 6+2)(10 9p)».

as weighting A. On the other hand, the Kell-%halley
error table, supplemented by correspondence with
Kell, suggests the following values (weighting 8):
&v 5''X1o ', &v~2X10 ' Pv~2X10 'bar '; B„~
10 ' bar, E„~O, and Ii„~10 4.

Table IV shows the results of a further search for
the most appropriate weighting for the O'C data.
The search has been carried out on the basis that
the O'C data set is a representative sample of the
universe of all possible O'C sets, since this is the
most reasonable hypothesis to make when only a
single set is available, as is frequently the case. Al-

though evidence obtained by 6tting some of Kell and
Whalley's T)0'C data sets (see Sec. V.D) suggests
that the O'C set has lower inherent residuals than
the others, we shall nevertheless adjust the weighting
to yield ufo f; an exact equality is unnecessary here
since the standard deviation of the chi-squared dis-
tribution is (2f)'t', relatively large for f 25. The
above adjustment will still serve an illustrative pur-
pose and, further may be expected to lead to weight-
ing and results more appropriate than those of
weighting A.

The Kell—Khalley T&0 C data contain a few P—V
sets which are essentially replications at the same, or
virtually the same, temperature. Residuals derived
from 6tting two such sets are found to be highly
correlated; thus, one must conclude that the Kell-
%halley data contain some systematic as well as
random errors. In subsequent work, I hope to apply
a statistically valid approach to eliminate or greatly
reduce this type of systematic error in all the T'&O'C

data. For the present, the available data are still
apparently appreciably more precise and accurate
than any other data available and thus allow better
discrimination between various equations of state.
Further, it turns out that the systematic error in the
O'C set does not keep the residuals from being nor-
mally distributed and essentially random. Thus, for
a given run the residuals for that run may still be
considered random even though they contain "ran-
dom" errors which would reappear unchanged upon
replication and which are thus actually systematic.
This type of error will be termed "random systematic. "

In Table IV the A0 parameter was free and ad-
justable throughout. To determine the most appro-
priate weight I decided to employ the Bridgman
equation and the Davis —Gordon equation, since these
two equations allow comparison of, respectively, Ov

and the s~'s for the V-fit, and o„and the p-fit st's.
In order to exhibit Vo directly, the BK its in the
table were carried out with the (y, x) pair taken as
(V, p); then, Ae ——Ve and, contrary to the case when

(t, p) is used, no V, needed to be introduced. Row 1

shows some of the results obtained for the 4BE with
A weighting. All headings have already been dined
except the r~„'s which are the relative standard de-
viations of the Al, parameters. No results for nor-
mality are shown in the table because all fittings
included in it led to good normality of the residuals.
Further, there were no d; outliers present in the 6t-
tings of Table IV which needed to be eliminated;
for example, max

~
d,/se

~
was 2.0 for Row 1 and 2.2

for Row 2.
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T~LE V. Sum of squares M and number of runs I for various
equations obtained with Ao free and with C weighting: o~'=
(1.5X10 ' bar)~+(10 4p)'; ar' ——10 "+(10~+2X10 'p)'.

Equation Equation

2SE
2BE
2DGE
2IVE

3IVE
3BE
3DGE
3SE

4*SE
4*DGE
4*BE
4*IVE

2479/4

1232/4

894.5/4

217.4/6

27.89/13
23.76/13

22.46/15

19.64/20

76.08/9

55.07/9

32.46/14

21.31/18

4BE
4IVE

4DGE

4SE

UTE
ME
LSME
SOEo

SOE2

21.04/20

20.94/20

19.62/20

19.50/20

517.1/4

357.9/6

95.25/6

90.67/6

27.14/13

The results of Row 1 are far from ideal, both be-
cause the probability II of 18 runs occurring by chance
is low and because the relative standard deviations
of A3 and A4 are too high for comfort. Similar results
were obtained vrith the 4DGE. Therefore, further
analysis was carried out using as appropriate models
the 3BE and 3DGE; the 2BE and 2DGE gave com-
pletely inadequate fits showing great systematic error.
Note the improvement in the results of Row 2 over
those of Row 1. Since neither the Bridgman equation
nor the Davis —Gordon equation is adequate for ex-
trapolation, vre find very large values of s, as ex-
pected.

Rows 3 and 4 shovr the results of fits using 3 weight-
ing. It is immediately apparent from the low values
of M that the constants in this weighting are too
large if this data set is representative. If so, P, shows
that there is only about a 1% chance of obtaining
these values of M, vrhich are about tvro standard
deviations of f smaller than f. Since there is a mul-
tiple infinity of ways of changing the constants in
the expressions for ov and o~ which will lead to M~f,
I chose to guide and limit the choices by applying
a simple, arbitrary criterion as an illustration of pos-
sibilities. The criterion for the 3BE is that a change
in ov(p) which leads to sy(p) values closer to the
changed ov(p) is desirable. Similarly for the 3DGE,
any change in or(ro) which results in sy(w) values
closer to the changed o.„(w) is desirable.

The nonzero value of Ao found in Rovr 4 for the
3DGE indicates that the estimated Vo, V = 1.0001604,
used in forming the m variable of the DGE is not
completely consistent with the data for the equation.
The consistent Vo, obtained as a polynomial zero,
vrill be listed later.

The so, s, and sN values in the table are associated,
respectively, with p—4.29, 268, and 1025 bar. For B
weighting, the corresponding O.y values are 3.01&&10 6,

3.38)&10, and 4.63&(10 ', vrhile the O„values are
1.00)(10 ', 2.86)&10, and 0.103 bar. Comparison of
corresponding 0 and sf values for Rovrs 3 and 4 in-
dicates that the Oy values are too large and that
H„ is probably too small.

In order to bring closer agreement between the
assumed weightings and the resulting s~'s, several
diferent weightings were investigated which would
lead to M&y f. It was found that the ov weightings
vrere fairly dominant in determining both the V sy's

and the ps''s —that is, changes in o„produced less
change in the ps''s than did changes in ov. Thus,
major changes in weighting were confined to cd.
Further, no eGort was made to achieve exact equal-
ities or to change the form of the weightings. The C
weighting used for the runs of Rovrs 5 and 6 was
found to yield appreciably improved results, however,
and vrill therefore be used in the subsequent analysis.
It is defined by HI ——10 ', Ey ——10, F~——2&(10
bar ', B„=1.5)&10 bar, E~=O, and F„=10

For C weighting, the O.y values are, in the same
order as above, 1.42)&10 ', 1.83&(10 ', and 3.21X
10 a, while the o„values are 1.5X10 ', 3.07X10 ',
and 0.104 bar. Comparison with the corresponding
sy's of Rows 5 and 6 will show the improvement
achieved. Although there are some significant changes
in the rz, 's as the vreighting is changed, probably
the most significant changes occur in S„/S and in
the ss values. For the present data (but not in gen-
eral), it turns out that the actual differences in the
A~'s themselves found on going from A to C vreight-

ing are well vrithin the Al, standard deviations. Never-
theless, the 35% S~/S value found with C weighting,
or even the 16% following from B weighting, indi-
cates that random errors in the P measurements
should not be neglected here, and that generalized
least-squares analysis is more appropriate than ordi-
nary least squares.

It should be especially emphasized that if the ov
and O.„Bweighting had been changed by multiplying
both weightings by a constant c, it vrould have been
possible to achieve Mo f, but the B-weighting sy's

would have remained unchanged. Although the change
would have brought Oy values closer to the V sf's,
they would not be as close as they are with C weight-
ing. Further, the concomitant reduction in O„vrould
have caused the so associated with p to be even
further from the corresponding o.„ than it is with 3
vreighting. Thus, to achieve a maximum degree of
agreement between 0-y and 0-„and the corresponding
s~'s, a much greater relative change in 0-y than in
O„was required. It is, of course, this essentially forced
change which leads to the high S„/S value found
with C weighting.

C. Comparison of Equations

Table V shows generalized least-squares results for
M and I for m.ost of the equations of state discussed
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herein. The Kell—Whalley O'C data with X=27 and
C weighting were used with Ao a disposable param-
eter. Incidentally, the use of A or B weighting, rather
than C, would not have changed the ordering in M
shown in Table V. The dependent variable of all the
nonlinear equations was V/Vp, as ln Table I.

The 6rst set of four equations, with m=3 and very
low u values, clearly involves too simple models. In
the third set, the asterisk indicates that the third-
order term x' in each equation has been omitted; the
number of degrees of freedom, 23, for each equation
of this set is thus the same as that for each of the
equations of the second set. Note that of the lass
6ve equations on the right, the nonlinear equationt
of state, only the SOE& is comparable to the best
of the polynomials. Of the eight simpler equations
with f=24, only the nonlinear LSME and SOEp have
M values below that of the best polynomial of this
class, the 2IUE. Finally, the very considerable im-
provement achieved using the Second-Order equation
as q goes from zero (the SOEp) to its best free value
(the SOEp) is evident. Nevertheless, it appears that
even the nonlinear SOE& is not quite as good a model
within the range of the data as some of the simple
polynomial equations.

Table VI presents more detailed results for some
of the equations of most interest. Here we have em-
ployed an improved conventional approach in order
to illustrate its inherent deficiencies while at the same
time allowing comparison of the 6tting capabilities
of the various equations. In the usual approach,
V/Vp is used as a variable, no free parameter of the
Ao type appears, and Vo is a constant taken the same
for all equations compared using a single data set.
The improved approach illustrated by the results of
Table VI and applicable when Vo is not known exactly
uses for normalization the most consistent Vo found
separately for each equation, takes Ao zero but re-
moves an otherwise present degree of freedom because
of the introduction of the most consistent Vo, and
uses weighting appropriate for the volume variable
(V/Vp, t, or w) employed so that all M's and sz's

are directly comparable. Incidentally, the r«values
shown in the table are, of course, obtained not from
an Ao ——0 run but from one in which Ag or V is free.

For comparison with the 3BE-C results shown in
the middle of Table VI, the last row presents 3BE-A
results. Except for the last line all results in this
table involve Weighting C. The residuals of all the
equations listed in the table were substantially nor-
mally distributed. Excellent normality was found for
all equations below the SOEO in the table, while
normality was poorer for the SOEO and the equations
above it, which all show relatively high M values.
As might be expected, the normality of the 2SE
residual set was poorest of all. Note that even though
M is slightly smaller for the 4SK than the 3SE, the
3SE s~ is smaller than that of the 4SE because of the

change in f in passing from one to the other of these
equations. Incidentally, s& and s&' are equal to six
or more significant figures for the 3SE and 4SE, and
X——7.1&(10 t and —1.2X10 ', respectively, for
these 6ts.

The use of a fixed Vo in the present 6ttings leads
to serious perturbations of the sy values unless the
Vo values used are presumed to be exact. This is,
of course, not usually the case. Nevertheless, when

Vo is fixed its likely uncertainty does not enter into
the calculation of the s~'s. Thus, for example, the sy

pertinent at p=0, where V= Vp, is forced to be zero,
clearly incorrect. Lesser perturbations occur for sf s
associated with p&0 values. When Vp is not known
exactly, it is desirable to calculate sr's with Ap (or V,)
free so that its error aGects the s~'s. The eGect can
be seen by comparing the (correct) st's of Row 5
of Table IV with the corresponding perturbed ones
of the 3BE of Table VI. Note that since the so's of
the runs of Table VI (for which p~4.29 bar) would
have been so perturbed as to be useless, we have
given instead sr ——st, associated with p 100 bar.

In addition to errors in all sj's arising from the
assumption implicit in the conventional approach that
Vo is known exactly, errors arise from the same cause
in the o~„'s and r~, 's as well (k&1). Even though
a proper value of f may be readily used, there is one
less free parameter with Ao and V 6xed than with
one or the other free. Thus, the rg, 's found with Ao
and V, 6xed are smaller than those obtained with
Ao or V, free. For example, the r&1 &po of the 3BE-C
run of Table IV, obtained with Ao free, is appreciably
larger than the corresponding 3BE rp, shown on the
ninth row of Table VI, where Ao—=0 and V is 6xed
at the value of Vo given.

Although I have followed common practice in
Table VI by comparing equations with V,= Vo and
Ao fixed, it should now be clear that better practice
would require Ao or V to be free unless Vo is known
exactly. Incidentally, when the free-Ao approach is
used, it is still desirable, in order to get best estimates
for the parameters, that the 6xed V used be equal
to the consistent Vo found separately. %hen the
free-V, approach can be employed, this complication
is, of course, unnecessary. I strongly recommend that
future work in this area eschew the practice of im-
plicitly assuming that Vo is known exactly unless it
actually is!

The st's (s~, s, s~, and s,) given in the table do
not all apply to the same quantities. For the non-
linear equations, the sy's are the standard deviations
of the y variable V/Vp. Those for the BE's apply
to the variable t—= (Vp —V)/Vp and are thus directly
comparable; but the IVE sy's are associated with the
different variable w—= (Vp—V)/V, which is, however,
suSciently close to t for the present data that sy's

can be cross compared. Finally, the s~'s of the DGE's
and SE's are the standard deviations of y= p values.
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TmLz VI. Detailed 6ttings for various equations; Vo 6xed at value shown for each equation and C weighting used except for the
last row, which uses A weighting.

Equation
Vo

10'rp()
M
$4

10'Po(bar-')
1o+~0 10

Sy ~N
Se

2SE

2IVE

UTE

ME

LSME

SOEO

1.00018345 2479

7.38 10.16 «0.01

1.00015386 217.4 46

«0.01

1.00017070 517.1

3.28 «0.01

1.00016881 357.8 40

3.861 «0.01

1.00016420 95.23 36

1.40 1.992 «0.01

1.00016401 90.65 36

1.943 «0.01

0.001

0.05

0.001

0.05

0.05

5.1611

10.3

7.231

10.5

5.0849 5.073

5.1263 6.151

4.32 4.37

5.1214 6.012

3.65

5.1092 5.674

1.74

5.1096 5.684

1.78

8 66X10 2 6.23X10 i

1.65X10 ~ 1.34X10'

1.12X10 ~ 8.35Xio 6

2.3OX10 ' 1.89X10 '

1.87X10 ~ 1.11X10 '
3 51X10 6 1.38X10 ~

1.55X10 6 9.26X10 6

2.»X10-6 8.«X»-'

7.80X10 ~ 4.8SX10 6

1.50X10 ' 4.14Xio 4

7.61X10 ~ 4.73X10 6

1.46X10 6 3.95X10 4

SOE2 1.00016014 27.14

0.926

36 5.09946 5.409

1.77

5.305 6.09X10 3.53X10 '
8.32X10 ~ 3 21X10 ~

3IVE 1.00016030 27.88 5.09999 5.430 4 880 6 OOX10 ~ 4.09X10 6

0.908 1.101 44 3.99 3.41 8-76X10 ~ 2.64X10'

3BE

3DGE

1.00015987

0.832

1.00015954

23.76

1.016

22.46

1.48 3.49

5.09728 5.298

5.09845 5.358 6.187 5.43X10 ~ 3 48X10 6

7.91X10 I 2.32X10'

7.453 1.14X10 8.52 Xio

0.855 0.9882 99 85 1.69 3.36 1.61X10 2 5.09XIO~

3SE

4BE

1.00015885

0.808

1.00015909

0.924

19.64

0.9241

21.04

0.9779

36

67

36

97

20

20

2.23 10.5

5.09453 5.144

5.61

5.09579 5.240

2.15 1.50X10 ' 4.70X10'

7 772 6.11X10 ~ 3.98X10 6

8.99 8.57X10 ' 8.97X10'

9.919 1.08X10 ' 7.84X10 '

4SE

3BE

1.00015866

0.946

1.00016037

19.50

0.9414

36

78

0

20

2.66 16.8 11.6 1.94X10 2 1.96X108

5.09951 5.379 6.097 6.01X10 ~ 1.8SX10~

5.09377 5.100 10.536 1.22X10 2 9.73Xio 2

1.12 0.9986 93 56 1.56 3.08 1 22 8.80X10 ~ 1.88X10'

All the equations of Table VI have been written
in forms that involve the physically signi6cant pa-
rameters Po, g, and tt=g' or q. Equation (1') for the
Usual Tait equation thus involves g+1 in place of
the parameter r. The use of Po, g, and 9 or q as ex-
plicit parameters allows their standard errors to be
obtained directly, a considerable virtue since the pa-
rameters themselves are generally found to be some-
what correlated. Values of 8 and its standard error
obtained from the higher-order polynomial ettings

have been used to calculate the q and r, values shown
in the table, allowing direct comparison with the q
which is obtained directly from SOE2 htting. To save
space, values of A4 and r~, for the 48K and 4SE
have been omitted from the table. They are, respec-
tively, 1.61&&10-M (1&5.02X10-') har 4 and 2.31&&
10' (1&2.14). It is thus clear that these higher-order
parameters are very poorly determined.

Although we have not shown results in the table
for the 4*IVE, a good-6tting equation for the present
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data, it is worth mentioning that its Po and g parame-
ters fall between those of the 3DGE and the 3SK,
rg, is only 1.22)&10 4, and r, is 2.14)&10 3, both some-
what better than those of the 3BK or 3SE.

Hayward (1967) has stated that the Linear Secant-
Modulus equation is the best empirical equation for
water up to about 3 kbar and that the Linear Secant-
Modulus equation with an additional free parameter,
say b, (the Quadratic Secant-Modulus equation or
QSME) is the best equation for water over very
large pressure ranges. The results of Table VI show
how far from the truth the 6rst part of this state-
ment is. To check the second assertion, the Quadratic
Secant-Modulus equation was run with C weighting
and Ao free, yielding M =28.83, a value slightly
greater than that for the SOE~, an equation with
the same f value. This result together with the
Quadratic Secant-Modulus equation value of I of 13
suggests that the Quadratic Secant-Modulus equation
is comparable or slightly inferior to the SOE2 for
the present data and is not necessarily the best equa-
tion for water over a very large pressure range. As
mentioned earlier, the Second-Order equation should
be chosen over the Quadratic Secant-Modulus equa-
tion unless the latter shows appreciable superiority
for the data in question.

One may conclude from the results of Table VI
that only the SOE2 is useful for appreciable extrap-
olation (the other nonlinear equations give too poor
a fit and the polynomials blovr up on extrapolation),
but that polynomial equations such as the 3BE, the
3DGK, the 3SK, and possibly the 4*IVE are likely
to be superior for fitting and interpolation within the
range of given data. The quartic equations such as
the 4BE and 4SE, while leading to slight reductions
in M, show signi6cantly increased values of sy's and
parameter relative errors over the corresponding cubics.

Figure 3 shows a comparison of the normalized
residuals tg; versus p for the poorly 6tting Murnaghan
equation and the good 6tting 3SE of Table VI. Note
how the small "random" deviations of the 3SK also
appear in the ME curve superimposed on large sys-
tematic deviations arising from inadequacy of the
Murnaghan equation model.

It turns out that all of the three equations with
1=20, a high value relatively unlikely to occur by
chance from random variation, have almost identical
Id;I 's. Corresponding individual d s are quite closely
the same. This fact suggests that our original assump-
tion, that the O'C water data were representative,
seems somewhat unlikely. The present results suggest
instead that the data have, by chance, smaller errors
than might be expected and that thus the change
from B to C weighting was not the most reasonable
procedure. If this is the case, the present results still
suKce to allow close comparison to be made between
the various equations of state and show that the 3SK
seems the best of all for the present data. Analysis
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FIG. 3. Plot of the normalized d; residuals versus p for O'C
water obtained from data Gtting with the 3SE and Murnaghan
equations.

with B weighting also indicates that the 3SK is su-
perior to the other equations for the present data;
B weighting leads to d; values for such equations as
the 3BK, the 4*IVE, and the 3SE reduced by a nearly
constant factor of 1.58 over those found with C
weighting.

Examination of the results of the table shows that
for such reasonably good 6tting equations as the 3BK,
the 3DGE, and the 3SE there is no agreement of Po,
y, and q parameters within one or two of their stand-
ard deviations. On the other hand, there is agreement
within one standard deviation or less between the
results for the 3SE and 4SE. This is added evidence
that the 3SE is the best model for the present data.
If so, the appreciably diGerent parameter results ob-
tained for the SOE~, for example, must be taken to
be biased and in error because of systematic devia-
tions arising from an inferior model choice. That
systematic errors of this kind can definitely lead to
biased parameter values and standard deviations is
shown by the results in the table. For example, the
2lUE is a very poor model and 6t, yet it leads to
apparent rp, and r„values comparable to or better
than those of the 3SKt Unless the model is applicable,
as the 3SE seems to be, the various parameter values
and standard deviations obtained must be discounted
as biased.

Elsewhere (Macdonald, 1964), I have considered
to some extent the question of when it is appropriate
to stop adding higher degree terms in a polynomial
fitting of data (see also Margulies, 1968). As Hald
(1952, Section 20.3) shows, the t distribution may be
used to help decide whether adding a further A~ term
to a polynomial is statistically justi6ed or not. If the
hypothesis is made that Ay=0, then t= (rA, ) ' with
K=X—e degrees of freedom. Using the quoted values
of r~4 obtained for the 4BE and 4SK, we Gnd that
it is statistically signiicant to go from the 3BE to
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Tanr. z VII. Detailed iitting results for water data of Kell and Whalley (K—W) at 50.00'PC and Vedanr and Holton (V—H) at 50'C.
Weightings as indicated; here and subsequently, weighting A is given by o~=0, op =1.

Equation-
weighting;

data source
10'sg Vp

10're

10'PO
(bar ')
10'rpo 10 r„

3SE-A

K-W

3SE-C

K-W

SOEg-A

2.42X106

34.4

1.0121095

2.0

4.40883

1.012105 4.4308

1.0121094 4.40867

7.8

5.424

2.0

59.5

2.5

5.430

2.3

58.5

3.2

6.153 —40.1

44.4

1.5

44.0

1.9

—1.10

V-H 30 0.33 0.12

3DGE-A 33.4 1.012086 4.4152 5.966 —26.3 4.66

12 30 0.69 0.68 1.3

the 4BE but not at all from the 3SE to the 4SE.
These conclusions are consistent with the variation
of e arising from these changes and again point to
the 3SE as the best minimum-parameter equation for
the present data.

The parameter standard deviations given in Table
VI do not include contributions from systematic errors
in the data. Using estimates of these systematic errors
presented in Table 5 of Kell and Whalley (1965), we
6nd that the systematic standard error of Vo is about
+3)&10 ', considerably larger than the (random)
standard error of Table VI. The number 3)&10 ' does
not include uncertainty in the conversion factor from
milliliters to cubic centimeters. To first order, the
systematic standard error of Pp is about &7)&10 ' or
~4)&10 ' bar ', where the second figure includes un-
certainty in the density of mercury not included in
the Grst 6gure, and even the 6rst 6gure is corn-
parable to the random standard error of Pp for the
3SE 6t.

Kell and Whalley give no estimates of systematic
error depending on p' and p'; thus, no explicit esti-
mates of systematic errors of q and q can be derived
from their work. We may be con6dent, however, that
the actual uncertainty of these quantities is appre-
ciably larger than three times the standard deviations
given in the table. Thus, even using the present ex-
tremely good data, p and especially q values, cannot
be taken as very closely defined. In particular, we
might crudely estimate q~10 with an over-all un-
certainty of perhaps &25% for water at O'C if C
weighting is appropriate. The phase change for water
at O'C occurs between 6 and '7 kbar, and the corre-
sponding V, is greater than 0.83 and less than 0.85.
Using the SOE2 and 3SE parameters of Table VI to
calculate V, the minimum value of V allowed by
the SOE~ with q&0, one 6nds V ~0.75 and 0.80,
respectively, both adequately below V,. For p of 5
to 6, q must be about 16 before V,& V . As Table VI

and the above error considerations show, such a large
value of q is quite unlikely and would lead to a much
poorer 6t of the data using the SOE2 than that of
Table VI.

The 3SE parameter values of Table VI lead to
E/Ep= 1+5.1z+31z'. At the maximum value of z
for the Kell—Whalley data, this expressions becomes
E/Ep —1+0.27+0.084, showing that the last term,
which involves f=EpEp", is —by no means negligible.
Further, it is not suSciently smaller than the second
term that truncation of the E/Ep series after the
second-order term is likely to be justified over the
entire, quite limited pressure range considered. In the
present case then, the Second-Order equation of state
may only be regarded as a heuristic fitting equation
and the Eo' and Eo" parameter values derived from
its use are not likely to be the true values implicit
in the data but are biased. This is also clear from
Table VI since the SOE2 is by no means the best
fftting equation therein. Anderson (1965, 1966) has
suggested that truncation after the gs term of the
E/Ep expansion may be sufficient for many materials.
The differences between the Murnaghan equation p
and that found with the SOE2, neither of them very
close to the better 3SE p value, show that this hy-
pothesis is invalid for water.

D. Hew Data

When this paper was essentially completed, the
recent water P Vdata of Vedam and H—olton (1968),
derived from ultrasonic propagation measurements,
came to my attention. Although these data are ap-
parently about two orders of magnitude less precise
(four decimal digits in V) than those of Kell and
Whalley, they are important because they cover the
pressure range up to 10 kbar, a range about 10 times
wider than that of Kell and Whalley. Thus, higher-order
parameters such as g and 0 should be derivable with
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smaller standard deviations than the precision of the
volume values initially suggests.

Since Vedam and Holton present no high-pressure
O'C data, we examine their 50'C data set, for which
E=21. The results of many curve-fitting trials with Ao
free and with a„=0 and av ——1 (see Sec. VI for discussion
of the appropriateness of this choice in a similar situ-
ation) show that the 3DGE leads to apparently ran-
dom residuals and is the best fitting equation. Fairly
close behind it is the SOE~, a nonlinear equation
with the same n value as the 3DGK. The 4DGE
gives a good 6t but with two parameters lacking in
statistical signi6cance. Although the 4SE fit yields
an sz slightly lower than that of the 3DGE, its pa-
rameter relative errors are considerably larger. Further,
the 3SK yields a very poor 6t, as do the 4IVK, 4BK,
3IVK, 3BK, etc. Of the nonlinear equations with only
Ae, Pe, and q free, the Murnaghan equation seems the
best, but it still yields an s& nearly three times as
large as that of the 3DGK and a of only 4. The
Quadratic Secant-Modulus equation, as usual, is in-
ferior to the Second-Order equation (and Murnaghan
equation as well here) and leads to se 9.1X10 '
and NO=5.

Surprisingly, Vedam and Holton make no compari-
son of their results with corresponding ones of Kell and
Whalley. Comparison shows that the four-6gure, 0—1-
kbar, specific-volume results at 0' and 50'C of Vedam
and Holton (termed reliable four-figure values by these
authors), with X=6 for each temperature, actually
usually diGer from the corresponding six-figure results
of Kell and Whalley by no more than one or two digits
in the fourth place, although the 100'C results show
one diAerence of about eight digits in the fourth place.
Rather than compare the high-pressure 50 C Vedam-
Holton results with only the O'C Kell—Whalley results, I
have carried out curve fitting of the 50'C Kell—Whalley
data using the 3SE, the best 6tting equation (by a small
margin) for the 50'C data as it was for the O'C data.
Significant fitting results are presented in Table VII.
As an aid in comparison, more decimal figures are
given here for some of the parameters than is strictly
justified by their standard deviations. No data points
had to be eliminated for overly large residuals, and
all residuals were normally distributed to good ap-
proximation. Weighting C is that already defined and
used for the O'C water data. Weighting A is here
the choice 0.„=0, 0.~=1 rather than that with O.y/1
de6ned earlier as A.

Finally, although the signi6cant dimensionless pa-
rameter P—=E&Xe"=—~(q'+8) may be calculated di-
rectly from q and 0 results, ry can only be calculated
from the results of an g, 8 run if the correlation of g~

and 8 is known. But only the correlation of p and 8,
not q' and 0, is obtained from a fit directly involving
these parameters (it is nearly —1 for the present
data). Therefore, the values of f and rt, shown in
Table VII have been obtained directly by carrying

out additional fitting with each pertinent equation
written to involve P instead of 0 as one of the free
parameters.

The results shown in Rows 1 and 2 of the table
indicate that changing from A to C weighting does
not alter the parameter values significantly. Note
that the degree of 6t is appreciably poorer for the 50'C
K.ell—Whalley data than for the O'C data. There the
3SE-C yielded s~0.92 with NO=20; here the corre-
sponding s~ is 2.4 with No

——11.The rg's are correspond-
ingly larger for the 50'C data as well. In particular, the
directly determined value of f for the 3SE-C O'C data
fitting is 62.4, and r~~0.038. Note that although the
corresponding 19% relative error of the 50'C P result
is considerably larger than desirable, it is still insuf-
ficiently large that one should accept the null hy-
pothesis that P is not statistically different from zero.
In the present instance, we may conclude that there
is less than a 0.1% probability that the true P is indeed
zero. Since the value of Eo at 50'C is larger than that
at O'C for water, the indicated reduction in P in
going from 0' to 50'C suggests the likelihood of an
even greater decrease in Eo" with increasing tempera-
ture for water in this range.

Although the s~'s for the Vedam —Holton SOE~ and
3DGK are nearly the same, the higher-order parame-
ters determined from these two fittings are consider-
ably diGerent. In spite of these differences and the
extended range of the Vedam —Holton data (V; ~
0.82), we evidently have no strong basis for choosing
the SOE~ or the 3DGK as the better model for these
particular data.

The results of Table VII show appreciable diGerences
between the Row 1 and Row 4 parameters, especially
the higher-order ones. Vedam and Holton give values
(termed "isothermal compressibility" !)for the quantity
(BV/BE)z, not P. If the quoted 50'C value for (BV/BP)r
at P=O is converted to Pe, one obtains about 4.416X
10 ' bar ', very close to the 3DGK value in the table,
which seems to be the most appropriate value fol-
lowing from their data. Note that although only four
signi6cant 6gures are given in the V data, s~3X10 '.
Random roundoff alone might be expected to lead to
a somewhat higher 6gure on the average; further,
3)&10 ' is about an order of magnitude smaller than
the maximum errors Vedam and Holton expect. Thus,
the result suggests the presence of very considerable
smoothing, itself a possible source of systematic error.
Unfortunately, Vedam and Holton do not distinguish
between random and systematic error in their data and
thus do not discuss possible sources of the latter explic-
itly, especially those considered by Wilson (1959) for
similar ultrasonic measurements. It is, of course, always
desirable to judge the reliability of data by direct con-
sideration of all details of the experimental method
and procedures leading to the data in question. By
this means one should be able to set a reasonably
accurate upper bound on the magnitudes of the vari-
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ous kinds of systematic error possibly present. Al-

though we can never be objectively certain of the
absence of systematic errors, we can frequently bound
those that may remain. This approach is preferable
to that I have had to follow in much of the present
work of inferring the presence of considerable sys-
tematic errors in the data from statistical analysis
and comparisons.

Although the Row 1 and Row 4 p values diGer by
many times their standard deviations, it is the 0 and

f differences which are most startling. The Row 1

0 value is consistent in sign and magnitude with the
apparently more precise 0 C 0 result. But the Row 4
0 is negative, suggesting that y, not q, is the appro-
priate variable in the SOE for water. As we see, these
diBerences lead to an order-of-magnitude diGerence
between the two f values! It is relatively cold com-
fort that both f values are positive so at least the
sign of the last term of Eq. (4) remains unchanged.
Note that even the small value of /=4. 66 leads to
a value of (f/2)s', „, the last term in the second-
order expansion of E/Eo, of about 0.44 for the Vedam-
Holton data at maximum s. The probability that the
great difFerence in f values occurred because of chance
variations in the random error components of one or
both of the two data sets compared is exceedingly small.
The difference most probably arises from systematic
errors in the data. It is probably significant that a high
likelihood of appreciable systematic errors in the data
appears from the analysis of Sec. VI which also deals
with ultrasonically derived P—V results, there for liquid
Hg. Some possible sources of systematic errors likely
to be of importance in such measurements and deriva-
tions are discussed there.

The very fact that the best-fitting equation is dif-
ferent for the two sets of 50'C data is suggestive of
the presence of systematic error. Although the 3SE
and 3DGE equations are similar models and should
allow some significant cross comparison of parameters
(albeit ones which almost certainly reflect appreciable
systematic error effects), it is of interest to compare
the predictions of the two data sets when the same
model, not necessarily the best-fitting one, is used
for fitting both sets. Luckily, the 3DGE-A yields, for
the Kell—Whalley data, s~5.19&&10~, not signifi-
cantly worse than that of the 3SK-A. In addition,
one finds: Vo 1.0121101, Po 4.41075&&10 bar ',
q~5.484, 8~24.73, and ~27.8. The relative standard
errors of Vo, Po, and g are comparable to those found
with the 3SE-A; on the other hand, rg 0.50 and
r~~0.20. Thus, the value of 0 found is not highly
significant; that of f, however, has a very high prob-
ability of being significantly diferent from zero pro-
vided ry is not itself strongly biased by the presence
of systematic errors. Comparison with the results
of Row 4 of Table VII still indicates very considerable
differences between the g and f estimated values,
difFerences of many standard deviations of the largest

such deviations involved. Since the Kell—%bailey
3DGE-A Vo and Po values are apparently considerably
better determined than those following from the high-
pressure Vedam —Holton data, it is of interest to use
these values as fixed parameters in a 3DGE-A fit of
the Vedam —Holton data. Unfortunately, such a fitting
does little to reduce the g, 0, and P discrepancies
discussed above for the two sets of data. For example,
it leads to g 5.922, e~—24.2, and $~5.41 instead of
the corresponding values in the last row of Table VII.

The estimated systematic errors in the 50.007'C
Kell—Whalley data should not be much larger than
those already discussed for the O'C data. On the
other hand, Vedam and Holton state that their spec-
ific volumes should be good to a few parts in 104 up
to 7 kbar and to one part in 10' at higher pressures.
In order to obtain a feel for the eGect of systematic
errors consistent in magnitude with these estimates,
I have arbitrarily modified the Vedam-Holton V data
values by adding d V;=&10 '~p, s to each V;. These
changes lead to about a %0.8% change in Po, about
a %6% change in g, and to the addition to 0 of about
~19.4 when the modified data is fitted with the
3DGE as before. The quantity r& remains essentially
unchanged for the negative increments but is in-
creased to 0.38 for the positive increments, rendering
the 0 value obtained, about —7.0, somewhat difficult to
distinguish from zero in this case. Since the addition
of the above AV; to the Kell—Whalley V data leads
to a negligible change in the 3SE parameters shown
in Row 1 of the table but to a great change in the
Vedam —Holton 3DGE 0 result, it seems plausible to
assign the main cause of the difference between the
results of Rows 1 and 4 to systematic errors in the
Vedam —Holton data. Clearly, relatively small system-
atic errors can have a very appreciable effect on 0;
to determine it accurately one needs both excellent
data and as wide a compression range as possible.

E. Water Conc1usions

The present results indicate that the Usual Tait
equation is a very poor choice for water and that it
is not worthwhile for people to continue to derive
a plethora of C and 8 Tait-equation parameters as
they have in the past for water and organic liquids.
If the Usual Tait equation is ever used, it should be
written to involve the parameters r (or g+1) and Po
directly. The results also indicate that uncritical use of
the Murnaghan equation for water and perhaps even
some solids should be eschewed.

Unless the residual set Id, I can be reduced until
d; depends essentially randomly on X; or F;, system-
atic errors remain. Even when this has been accom-
plished, if it requires a many-parameter equation of
state, one suspects that systematic errors are present
in the data (and are compensated by the excess
parameters), rather than systematic errors arising
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from mismatch between data having only random
errors and the selected model. The author knows of
no published results with the Usual Tait equation or
Murnaghan equation where it has been made clear
that systematic errors of either kind are negligible.
They are, in fact, clearly present in the previous
ordinary least-squares fitting of Bridgman's (1935)
water data (Macdonald, 1966). Most authors who
have used the Murnaghan equation (and other equa-
tions of state) do not give standard deviations of the
6ts and parameters obtained, do not estimate sys-
tematic errors, and do not plot residuals. In the rare
cases when residuals are shown, they almost invari-
ably exhibit major systematic errors. In addition to
the authors already listed in Sec. III.D, others
(Drickamer et al. , 1966; Drickamer, 1968; Urvas
et al. , 1967; and Stephens and Lilley, 1968) have
recently used the Murnaghan equation for a variety
of data. It particularly appears from the work of
Grover et al. (1967) that at least some of the x-ray
diGraction data of Drickamer are incorrect. Here it
is therefore very likely that there are systematic
errors in the data itself. Even were they absent, one
wonders if the Murnaghan equation is a sufficiently
good model to eliminate systematic errors of the
remaining type when it is used in analyzing I'—V data
for many solids and liquids.

The present results show that it would be quite
inadequate to derive Pe and q for a material like
water from the results of ultrasonic measurements at
modest pressure and use these isothermal parameter
values in the Murnaghan equation to estimate com-
pression at high pressure, as Anderson (1965, 1966)
has suggested. Since the Murnaghan equation is evi-
dently an inappropriate model for water in the 0—1-
kbar range, it can hardly be expected to be better
for higher pressures. The above estimation procedure
should not be employed for other materials, except
perhaps to obtain crude estimates, unless it has first
been shown with as accurate data as possible that
the Murnaghan equation is an adequate model for
the material in question. Analysis of the type dis-
cussed herein, as well as accurate data over at least
an appreciable compression range, will generally be
required to show the presence or absence of system-
atic errors and the consequent applicability of the
Murnaghan equation or other equation, such as the
Second-Order equation, for such estimation.

Finally, the present results show that for water
at O'C a polynomial equation of state is likely to be
a better model, at least over a limited pressure range,
than any of the nonlinear equations of state con-
sidered herein with the same number or fewer free
parameters. In the Kell—Whalley relatively low pres-
sure range, the third-degree Slater equation is markedly
superior to the SOK2. Only the SOK& is appropriate
for extrapolation to higher pressures, however. Such
extrapolation, for example for water at T&0'C, must

be somewhat suspect, nevertheless, since the SOK2
de6nitely leads to systematic errors of the model-data
mismatch type. Clearly, a better nonlinear equation
of state is still needed; an examination of some further
possibilities will be the subject of future work.

Comparison of curve-6tting results of direct I'—V
data for water at 50'C with those obtained from 6tting
I' Vvalu—es of Vedam and Holton (1968) derived at the
same temperature for a wider pressure range indirectly
from ultrasonic-propagation measurements shows wide
discrepancies, especially in higher-order parameters
such as rt=—Eo' and f=EeEe—". These discrepancies
almost certainly arise from systematic errors, probably
principally in the ultrasonic I' Vresu—Its (provided the
models used are valid for the data employed), not from
random statistical variation. Although the matter is
not absolutely clearcut, it appears that P is large
and positive for water in the 0'—50'C range and is
smaller at 50'C than at O'C.

VI. APPLICATION TO MERCURY

A. Introduction

In this section we shall be primarily concerned
with the recent I'—V results for Hg of Davis and
Gordon (1967). Data sets with X=13 were obtained
for T=21.9', 40.5', and. 52.9'C. Although Vo values
were not directly measured, the following values of Vo
(actually V by our present definitions) were used in
the calculations: 1.0039775, 1.0073616, and 1.0096224,
respectively.

Pressure was measured with a calibrated wire-resis-
tance gauge and extended to about 13 kbar, where
V was about 0.96 at 21.9'C. Pressure changes of
about 6 bar could be detected. Calibration was carried
out against a precision free-piston gauge and an or-
dinary least-squares fitting of the form ~/Re AP+-—
BI was obtained; here R is resistance and A and 8
are free parameters. The standard deviation obtained
was equivalent to 6 bar. The use of the above formula
tends to smooth I', and no statement was made con-
cerning randomness of the residuals. It is therefore
uncertain whether this equation is a good model or
whether its use introduces systematic errors which
might have been largely eliminated had higher terms
in E been included.

In the Davis —Gordon work, volume was not mes-
ured directly but was calculated from acoustic-wave
velocity measurements. The initial compressibility Po
was independently determined and was thus not taken
as a disposable parameter in comparing equations of
state. Values used were 4.025662)&10 ', 4.114246'
10 ', and 4.174143)&10 bar ' at 21.9', 40.5', and
52.9'C, respectively. Since Pe is therefore not dispos-
able, it is frequently convenient to use the variable
s=—Pep rather than p here.
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In order to obtain V values, a relation between P
a,nd eg, the measured sonic velocity, was needed. The
authors used P=A+Bcr+Dcg and determined the
new A, 8, and D coefficients by ordinary least-squares
fitting. Note that here the eGect of errors in cz is
forced into P, since cz values are taken as exactly
known in such a least-squares procedure. But errors
in P should properly include errors arising in the
resistance measurements as well. Further, again no
statement was made concerning whether higher-order
terms in cz would have been needed to eliminate
systematic errors of the model-data-fit type and thus
reduce the residuals of this second fitting to ran-
domicity. In both the resistance fitting and the pres-
sure —velocity fitting, weighting of both dependent and
independent variables would have been preferable,
and the smoothing arising from the (possibly unduly
truncated) equations actually used is likely to have
introduced appreciable systematic errors into the final
P—V results.

The above relation between P and cz was used to
obtain V values by integration from P= 1 bar to
given rounded values of P. Such integration also is
likely to introduce uncertain systematic errors. Fur-
ther, the P associated with each resulting V was
taken as exact; thus, all the error was here forced
into V even though error could have arisen from the
measurement of P in the original calibration of the
pressure gauge, from the measurement of resistance,
from the measurement of sonic velocity, and even
from the conversion from adiabatic to isothermal
conditions.

The above uncertainties make comparison of equa-
tions of state and derivation of Hg parameters by
the present methods (or those of Davis and Gordon)
somewhat dubious. Nevertheless, we shall carry out
such comparison since a number of important points
will be illustrated thereby.

B. Previous and Preliminary Results

Using ordinary least squares, Davis and Gordon
investigated the applicability of various equations of
state to their P-V data, including the 2BE, 3BE,
2DGE, and Murnaghan equation. In all their fitting
they took A0=0 in the conventional, but unfortunate,
way. Note that since V/Vp is the dependent variable
in some of these equations while P is in others, and
unity weighting of the dependent variable was used
throughout with the independent variable taken as
exact, sometimes all the error or uncertainty was
forced into V/Vp and sometimes into P, even though
in the calculation of the P—V data P values were
forced to be exact.

Before applying the present methods to the Davis—
Gordon results, the important check of trying to
duplicate their sd' and g values was made using their
data and ordinary least squares. Here we define
weighting A by 0.~=0 and 0.&=1 and B by 0.+=0

and c„=i. Then Davis and Gordon used A for the
BE's and 8 for the 2DGE. They expressed s&' in
terms of V/Vp in all cases and obtained sq' ——18&&10 '
and 8)&10 at 21.9'C for the 3BE and 2DGE, re-
spectively. My calculation with the above weightings
(which reduce generalized least squares to ordinary
least squares) led not to these values but to about
24X10 ' for both equations. Thanks to helpful cor-
respondence with Dr. Davis, the discrepancies were
traced to roundoG from the original six-figure values
of V to the four- and five-figure data actually pub-
lished. Using the unrounded data kindly supplied by
Dr. Davis, I was able to duplicate the published s~'

results; the unrounded data for all three temperatures
were used thereafter. These data are given in the
Appendix.

Davis and Gordon found the 2DGE to be the best
of the equations they examined. Before leaving results
obtained with Ao ——0 as above, further 2DGE results
are thus of interest. Using the unrounded 21.9'C data
and the 2DGE with Ao ——0 and B weighting, I found
sg' ——2.79 bar and sd=2.67 bar. Here Ao is fixed at
not the most consistent value so s~ is calculated with
11 degrees of freedom and sd' with 12. Since X was
found to be 0.4, clearly (d) was far from zero. Using
the parameters of this fit, I determined standard
deviations of the V/Vp variable directly from newly
calculated residuals in V and found sd'~8.4)(10
and s~7.8&10 '. Further, when the same data were
run with A weighting, a ) of about 0.45 was found
and sq' and sq for the V variable were 9.9&(10 and
9.3&(10 ', appreciably difkrent from the comparable
B-weighting results. The diGerences primarily arise
from the difference between A and B weighting for
the 2DGE with these data, not from the first set of
standard deviations being associated with V/Vp and
the A-weighting ones applying to V. These results
are for the best fitting equation Davis and Gordon
considered. For the worst, the 2BE, these authors
and I found an sq' of 235&& 10 ' for V/Vp, and I find
a corresponding sq of 216&&10 . Here X~0.47, and
it is clear that in a case like this values of s~ and )
are much more meaningful than that of sd' alone.
The values of 5 and M were 6.62X10 and 5.13)(
10 ~, quite diGerent indeed.

C. Comparison Of Equations

One of the virtues of the generalized least-squares
approach is that even when it is essentially reduced
to ordinary least squares it still allows one to do
more than is possible with ordinary least squares.
Thus, when a given equation y=f(x) cannot be ex-
plicitly written in its inverse form, one can still di-
rectly compare its parameters and other quantities
obtained with the residuals all in y and X; taken as
exact and the corresponding quantities obtained when
F; is taken exact and the residuals are all in x. When
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y= V and @=p, the first case merely involves weight-
ing A above and the second weighting B. These two
situations represent the extreme cases; all other
weightings for which 0.„,. and o-„are nonzero con-
stants yield results between those of the extremes.

When constant weighting is used, weighting A is
considerably more appropriate for the Davis-Gordon
data than weighting B since P values are taken as
exact for these data. Although Davis and Gordon
give a discussion of possible errors in their results,
they primarily deal with potential systematic errors
in the data; little or no discussion of separate ran-
dom errors is presented. Since the weighting used in
the generalized least squares should involve only the
estimated random errors (or at most the estimated
random-systematic errors as well), we must look else-
where for the weights to be used. It will be shown
that constant weighting appears to be a reasonable
approximation and thus that weighting A, or 0,=B,
with H„a constant, should be used. Nevertheless,
I shall present some weighting B results for com-
parison.

Table VIII shows results with free Ao, 80=1.01325
bar, and weighting A for all the principal equations
considered herein. Note the great span of s~ values.
That for S is even. greater: the 5's for the 2DGE
and 2BE are 570 and 3.3&(10' times larger, respec-
tively, than that of the 4SE, for examplet Note that
the s~'s for the 2BE and 2DGE are somewhat smaller
here where Ao is free than those quoted above when
it was axed. Also the ~ values found here for the
2BE and 2DGE with Ao free were about 3&(10 '
and —2&10 ', respectively. We shall not generally
quote ) values when they are negligibly small. The
residuals found for the various ettings show no large
outliers which should be eliminated, and they are
reasonably well normally distributed; this is only fair
for such equations as the 2BE, 2DGE, and LSME
and quite normal for ones with more parameters such
as the 4DGE, 4SE, etc. Note, however, that the
relatively small value of X=13 leads to a small f
(9 for the 4SE, for example), and the assumption
that correlation between the residuals may be neglected
is probably relatively poor for all the equations and
becomes worse as e increases.

Examination of the r&, 's for the various equations
and application of Student's t test shows that it is
still highly signiicant to go from the 4BE to the
5BE and the 4IVE to the 5IVE. It is significant to
go from the 3D GE or 4*DGE to the 4D GE or S*DGE
but not to go to the SDGE. It is not signiicant to
pass from the 5*SE or 4SE to the 5SE. Thus the
significant equations of lowest se with f=9 are the
4DGE, the 4SE, and the 5*DGE and those with f=8
are the SIVE and 5BE. Detailed comparison of tg, 's
shows that the largest r~„'s (omitting r~,) of the
4SE, 5IVE, and 5BE are all about the same size,
while the 4DGE and 5*DGE show considerably larger

TAsr.z VIII. 106gq, vrhere sq is the standard deviation of the
residuals, and number of runs u for various equations obtained
using 21.9'C Hg data with A 0 free and A weighting: 0.„=0; ug= i.

Equation 10e se/tt Equation 10' se/tt

2BE

2IVE

2SE

2DGE

169/3

125/3

41.1/3

7.03/3

4BE

4IVE

4DGE

4SE

1.50/5

1.18/5

0.336/7

0.327/7

4*IVE

4*SE

4*DGE

34.4/4

25.6/4

4. 15/4

0.556/6

5SE

5DGE

SIVE

SBE

0.323/8

0.319/8

0.267/8

0.265/8

3BE

3IVE

3SE

3DGE

S*IVE

S*SE

S*DGE

13 4/4

9.94/4

1.14/4

0.548/4

9.06/5

6.83/5

0.861/5

0.304/8

SOEp

LSME

ME

UTE

QSME

SOK1

53.5/3

53.2/3

26.8/3

20. 1/3

3.70/4

1.76/4

values (parameters less well determined). Although
the s~'s of the SIVE and SBE are somewhat less than
that of the 4SE, the 4SE involves one less free pa-
rameter and is hence simpler. Thus, of the more
complicated equations which reduce the residuals to
essentially random dependence on V or p, it seems
most sensible to pick the 4SE as most appropriate.
Clearly, none of the nonlinear equations is adequate
here. As we shall see later, the Davis —Gordon 2DGE
yields residuals showing strong dependence on V or p,
indicating the presence of systematic error. Inciden-
tally, the II probability for No

——3, 4, 5, 6, 7, 8, and 9
runs is here 0.6%%uo~ 4%~ 15%~ 39%~ 77%~ 77%~ and 39'%%uo~

respectively. Thus, the 4SE has a highly likely number
of runs while the SOKE, QSME, and 2D GE, for
example, have unlikely numbers. These percentages
are, however, only very approximate here because of
the residual correlation arising from low f values.

Although no B-weighting results are shown in Ta-
ble VIII, with such weighting the ordering of the
equations by s& is the same as shown; even more,
any B-weighting s& value may be obtained to within
about &5% from the corresponding one in the table
by multiplying it by 3.1)(10' bar. Thus, the actual
4SE se for 3 weighting (pertaining to p) is 0.106 bar,
very significantly lower than the various possible er-
rors mentioned by Davis and Gordon, as is also the
corresponding A-weighting value of 0.327&(10
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TABLE IX. Comparison of 4SE A&'s with A and B weighting for
T=21.9'C Hg data using V~=1.0039775.

A Weighting
(e„=0;~v=1)

B Weighting
(e'e =1;e v=0)

(—2 '?3+0 31) X10-e

1 (6xed)

5.1383+0.0045

9.94+0.25

37.4+3.5

(—2.70+0.3'I) X10~
1 (axed)

5.1373&0.0049

10.00+0.M
36.7+3.7

In order to compare results of A and 3 weighting
in more detail, let us consider the 4SE written in the
form of Eq. (16) with y=s and x=t„ the 2&'s are
then dimensionless. Table IX shows a comparison of
the resulting A~'s for the two weightings. To high
accuracy here, the best Vo's may be obtained from
Vp—V +Ap. Note that corresponding A&'s are gen-
erally the same to within one 0.~, or less. Thus, for
the present data no new results of significance can
be obtained by using 8 weighting instead of A or by
any intermediate weighting with both 0.& and g„con-
stant and nonzero.

Figure 4 shows the sj's obtained from 4SE Gttings
at different temperatures for A and 3 weightings.
These degree-of-fit standard deviations have been ex-
pressed in terms of the physically significant param-
eter p rather than s. Note that the variation between
the two weighting types and the three temperatures
is quite small. Even the variation with p is sufliciently
small that a constant weighting, such as A, seems
appropriate. Certainly, strong proportional or linear
weighting does not seem very apposite. Because the
6rst data point used in these calculations was that
for 8= 1 kbar, the values of sf at p=0 were obtained
from the standard errors of the Ao's. Since Ao is free
here, the values of sf are not rendered inaccurate as
they are when Ae is inappropriately taken 6xed (and
error free) in the usual way.

Figure 5 shows a residual plot for the 2DGE and
4SE with 3 weighting. Curves of much the same
general shape would have been found with A weight-
ing. Here the residuals apply to p, not s. Those of
the 4SE have been increased by 10 times for plotting
clarity. These results certainly indicate most graphi-
cally the systematic error remaining with the 2DGE.
Similar behavior is found for the two higher-tempera-
ture data sets.

Since it was found that the 4SE reduced the re-
siduals to essentially random dependence on p for all
three temperatures, it appeared possible to apply the
chi-squared distribution addition theorem to obtain
a best average s~ for the three 4SE fittings at different
temperatures. To do so, sd was calculated from
L(SIQ+Ms+Mig)/3f]' s with f= 9, and 3E results

from the 4SE fitting with A weighting. Here A, 8,
and C refer to the 21.9', 40.5', and 52.9'C ettings.
This operation is only allowed if the sums of squares
added are stochastically independent. The intercor-
relations of the d s were found to be egg 0.04, &gg—
0.24, and rz&~0.27, probably suKciently low to allow

a meaningful result from the combination. The s~

value obtained was 0.349)&10, again a very low
value. When this result is used as the value of B,
in O.,=B„and 0„=0 weighting, one finds the follow-

ing sq values for the 21.9', 40.5', and 52.9'C data,
respectively: 0.933, 1.089, and 0.971, all close to unity
as they should be.

What may one conclude from all the above results?
First, the p and V standard deviations, generally
much less in magnitude than the precision and ex-
pected accuracy of the measurements which led to
the I'—V data, show that a great deal of smoothing,
g,rising from the various procedures discussed in Sec.
VI.A, must have occurred. Second, the strong sys-
tematic errors apparent on using such equations as
the 2DGE make it necessary to go to such relatively
complicated equations as the 4SE or 5BE to obtain
random residuals and a reasonable value of N. Even
the 4SE is more complicated an equation than was
necessary to describe the apparently more accurate
water data. It thus appears extremely likely that the
additional complexity in the 6tting equation over
that required for water arises from a melange of sys-
tematic errors in the present Hg data. One cannot,
therefore, conclude that the 4SE is necessarily the
best equation for Hg, and one must look on all de-
rived parameter values with a jaundiced eye!

Although we have thus far taken Pe values 6xed
at the independently determined values used by Davis
and Gordon in order to achieve a measure of com-
parability with their results, one could argue that
since we take Ao free, and doing so makes a con-

IO—

I I 1 I I

/*i

210sf-
(bars) 4

x

X 2I.9 'C
~ 40.5 'C

52.9 oC

8 ~--—--t 2I.9'C

0 I

0
I 1 I & I 1 I 1 I 1 I

2 4 6 8 10 I2

p{k bars)
I4

Fro. 4. Plot of the standard deviation of the variable p, sf, versus
p for 4SE sting of the 21.9'C Hg data of Davis and Gordon.
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TABLE X. Detailed 6tting results for six diGerent Hg data sets (see text); weighting A throughout: e„=0;o j = 1.

Equation-
Temperature

('C)
10'sg Vo

10'rgo

10'Pfl
(bar ')
103rpo 10'r»

0
10'ry

A4
10~re 4

2DGE—21.9 7.03 1.003966

3.4
4.02566 9.4015

8.3

4SE-21.9 0.327 1.0039748 4.02566

0.31

9.2808 —199.5

9.7 1.8
38.1

9.3

4SE—21.9 0.340 1.0039742 4.02496 9.250 —192.1 33.3

8 0.27 0.30 6.9 27

4SE-22 8.62 1.003978

32

4.096 10.9

1800

—1240 2630

3DGE-20 2.85

10

1.003644

6.1
4.0211 8.76

171

—138

4SE-40.5 0.383 1.0073597 4.11425

0.36

9.3479 —212.0 51.2

7.6

4SE-52.9 0.346 1.0096194 4.17414

7 0.33

9.4166 —227. 1

9.6
62.4

3DGE-50 3.59 1.009097

7.2

4.1600

1.3
8.59

170

—113

16

siderable diGerence in values of Vo, q, etc., we should
also take Pe free for consistency. This matter can
only be settled by consideration of the precision and
expected accuracy of the independently determined

2—
d.

I

{bars)l—

I ) I ) I

I
I

2OeE I
I

I
I
I
I
I
I

0 o~ j

-2-

s I i I t

0 2 4
t

6

I
//

/
~~
I t i I

IO l2

4SE
(IO dij-

l4

p tk bars)
Pro. 5. Plot of the normalized 8'; residuals versus p for 21.9'C

Hg data obtained from fitting vrith the 2DGE and 4SE, using 8
weighting. Note that the 4SE residuals have been increasecl by a
factor of 10.

values of Pe used by Davis and Gordon. Since no
discussion of them was given, an unequivocal decision
to take Pe free or not seems impossible.

Since Davis and Gordon did not compare their
results with previous ones for Hg, we shall remedy
this lack to some extent herein. Table X shows the
results obtained for signiicant parameters using six
diGerent I'-V complications. Rows j., 2, 3, 6, and 7
follow from the Davis —Gordon results; 5 and 8 use
results (with X=11 and 12, respectively) of Bett
et ul. (1954); and Row 4 (with X=12) uses Bridg-
man's (1911) early results. Weighting A was em-
ployed for all these runs, Ao was free, and V = Vo.
Except for the 6rst row, the equation found best for
each particular data set considered has been used.
As before, A4 is dimensionless.

Comparison of the results of Rows 1 and 2 shows
that since the 2DGE gives a poor it to the data,
its apparently quite precise prediction for p cannot
be trusted because of systematic errors of the poor
model type. Davis and. Gordon obtained 9.38 for g
using the 2DGE with Vo Axed. Row 3 shows what
happens when Po is taken free rather than Axed at
the Davis —Gordon value for this temperature as in
Row 2. The main change is that the relative standard
deviations of the g, 8, and A4 coe%cients increase
considerably.
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Davis and Gordon estimate the uncertainties of V
and P at P=13 kbar as about +0.01% and &0.4%,
respectively. The total uncertainties following from
their data might be as small as &4)&10 5 for Vo

and &10 bar ' for Po. Both these figures are much
larger than the corresponding 21.9'C 4SE standard
deviations following from the results of Table X.
Nevertheless, they still probably do not include con-
tributions from all the bias and smoothing sources
described earlier, and the probable eGect of these
sources of error on higher-order parameters such as g
and 8 cannot be readily evaluated, although it is
likely to be large.

Direct calculation for the data of Rows 2 and 7
yields the following values of P: —56.7+1.6 for
21.9'C and —69.2~1.6 for 52.9'C. The standard
deviations given here include only the eGects of ran-
dom errors in the data, not the likely appreciable
systematic errors in the data already discussed. Al-

though the real values of 8 and P may thus not be
very close to those given in the table and above, the
evidence nevertheless seems to indicate that P and 0

are negative for Hg in this temperature range and
that y, not q, is the appropriate parameter here. The
large magnitudes of P found for both water and Hg,
although uncertain, still indicate that stopping the
expansion of E in powers of p at second order, as
in Eq. (4), is inappropriate for these materials even
over the limited pressure ranges considered herein.
Taking the above result for P at 21.9'C at face value,
one finds from Eq. (4) that s„~0.16. Bridgman's
(1911) data indicates that s, for Hg at this tem-
perature is about 0.048, satisfactorily smaller than z„.
Note that z,„for the Davis —Gordon data was about
0.052, slightly exceeding Bridgman's z„. nevertheless,
no evidence of a phase change appears in the data.

Bridgman's (1911) 22'C data was heavily smoothed;
Row 4 shows that it leads to aberrant values for 8
and A4. The 0 value is, however, not of great sta-
tistical signilcance since its r& value is large. Hay-
ward (1967) states that 20'C Bridgman data (no
reference given) leads to a negative value of the
higher-order parameter b in the QSME. His con-
clusion does not seem to be based on statistical anal-

ysis, however. Since series expansion allows one to
equate fi and —(0+1)/12, all the 8 results of Table X
indicate that 5 is, in fact, positive for Hg, a sign
which Hayward expects for all liquids. Note, however,
that the Kell—Whalley water data with 0 positive
lead to a definite negative sign for b. Hayward has
stated that the LSME is the best empirical equation
for Hg up to at least 12 kbar pressure. The results
of Tables VIII and X show, ignoring the eGects of
possible systematic errors in the various data sets,
that even the QSME, with an additional parameter,
is not the best equation and that the SOE&, among
many others, is appreciably better than the QSME.

The Bett et aL (1954) data sets are derived from

Hudleston's equation of state using both some of
Bridgman's (1911) data and atmospheric-pressure
velocity of sound measurements. Bett et al. believe
that their procedure leads to better I'—V results than
those of Bridgman. From Rows 5 and 8 of Table X,
the s~'s and rz's are indeed better; without original
good data it is impossible to state, however, how
much the Huddleston equation may weight and bias
the results. It certainly appears that the 3DGK can
represent data calculated from the considerably more
complicated Huddleston equation quite adequately.
The Bett et al. data had only Ave decimal digits yet
the 3DGE errors were in the sixth place or better!
Note the exceptionally high value of 00/X for the
20'C data set following from Huddleston-equation
smoothing.

D. Mercury Condusions

The seven diferent data sets examined all involve
an appreciable amount of smoothing and probably
contain very considerable systematic errors arising
from this and other sources. The relative systematic
error is likely to be particularly high for the three
Davis —Gordon data sets. The probable presence of
these errors renders the following conclusions some-
what uncertain.

Previous workers in the present area have generally
been content to 6t their data with oversimplified
equations of state. The high-degree polynomial equa-
tion (4SE) found necessary in order to reduce the
d s to approximate randomicity for the Davis —Gordon
and Bridgman data probably is compensating for
some of the systematic errors present in these data.
The resulting parameters are thus rendered even more
uncertain. A simpler polynomial equation (3SE or
3DGE) was required for the water fittings. None of
the nonlinear equations was found suitable for the
present Hg data; the Linear and Quadratic Secant-
Modulus equations of Hayward were particularly poor.

Comparison of the results of Table X for the various
data sets shows a reasonable change with increasing
temperature of the Davis —Gordon q and 0 values,
but only fair or worse over-all agreement with the
Bridgman and Bett et a/. results. In view of the ex-
tensive smoothing present in all the data considered
and the likely possibility of other systematic errors
in the data, we must conclude that q, e, and f cannot
yet be deterInined very accurately for Hg. As a very
tentative generalization based on a limited tempera-
ture range and on relatively uncertain parameters,
we suggest, nevertheless, that Eo" for both water
and mercury probably decreases algebraically with
increasing temperature over the limited ranges con-
sidered, 0'—50'C for water, 22'—53'C for Hg. In these
ranges, Eo" seems to be positive for water, negative
for Hg, and considerably too large in magnitude to
be ignored.
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VII. GENERAL CONCLUSIONS

This section discusses opinions, methods, and sug-
gestions for the future rather than the specific curve-
fitting results and comparisons examined in earlier
sections.

Workers in the present field, and probably others,
seem willing to spend large amounts of time, effort,
and money on obtaining experimental results but
generally spend a disproportionately small amount of
effort on planning their experiments to optimize sub-
sequent analysis (see, e.g. , Wolberg, 1967) and on
the actual analysis of the expensive data obtained.
Rarely is sufhcient consideration given to identi6ca-
tion and reduction of possible systematic errors in
the data. Even more rarely in the physical sciences
is sufhcient replication carried out that the random
error in each individual measurement can be properly
assessed and any random-systematic error present
largely eliminated. Finally, rather than following the
usual procedure of carrying out no statistics at all
on the experimental results or a minimum amount,
authors should err the other way, by doing too much-
if that is possible. Usually, weighting of all variables
should be used, necessitating the introduction of gen-
eralized nonlinear least-squares procedures.

Previous workers in the P—V—T Geld have not
usually fully appreciated the need to Gnd an equation
of state that reduces least-squares residuals to ap-
proximate randomicity; further, they never seem to
examine the residuals for normality and for a likely
number of runs. It has been estimated (National
Bureau of Standards, 1968) that from 50% to over
90% of the data contained in literature in any spec-
ific 6eld contains data unworthy of critical evaluation.
In many cases, the lack of worth arises from "loss
of information through oversimplification. "An example
is the frequent failure to distinguish between random
and systematic estimates of uncertainty. Although
systematic error can never be guaranteed entirely
absent in the data, it should be bounded and mini-
mized to the maximum possible degree in order to
allow systematic error of the other type, that arising
from an inappropriate choice of model, to be rec-
ognized and itself minimized by a proper fitting
equation choice. As we have seen in the pr'esent work,
the presence of systematic error in the data may
sometimes be recognized because the 6nal Gtting
equation is forced to be more complicated or have
more parameters than seems likely on physical grounds
or from other comparable experience.

The precision of reported data, that of both X; and
F;, should be such that the estimated standard devi-
ations of a replicated X;, F; pair (i fixed) is in the last
place given. For example, if the random-error stand-
ard deviation, obtained by replication, of a certain P
value were 0.62 bar, the associated P value should
be stated as, e.g., 1071.3 bar, not 10/1 or 1071.34 bar

All experiments are limited in practice by cost, time, and
equipment. Within these limitations, the experiment
should be designed so that for each point the normalized
residuals, N„. and F„„areroughly equal in magnitude.
Depending on the weighting, the precision required
in X; and F; by this condition may be very different.
N««hat )X„.( (N„,

~

will lead to S, S„, or
S,/S~0.5.

When No, a speci6c number of runs, differs ap-
preciably from its most likely value, such difference
can arise either from an unfortunate distribution of
random errors or from systematic errors. The possible
effect of random errors may be identified by either
covering the same range with a larger X or, preferably,
also replicating the data set several times. These
measures allow one to distinguish better between ran-
dom and systematic errors and to obtain the most
appropriate fitting equation. They also make it more
practical to partition the total amount of data in
various ways, and by Gtting a number of subsets
separately, examine the stability of the derived pa-
rameters and the appropriateness of the Gtting equa-
tion in another way. Sometimes such partitioning can
bring to light appreciable systematic errors in the
data as well. For example, if the s~'s obtained from
separate Gts of the bottom and top halves of the
data diGered by 5 or 10 times, one would suspect
the presence of strong systematic errors in the data,
a poor equation choice, or a terrible choice of weights.

At a Gxed temperature, a suitable P—V data set
should cover the maximum range of P practical and
should have S&30 to ensure that E—m S. Further,
this set should be replicated at least 5 or 10 times,
allowing 0„,. and 0.&,. to be determined experimentally.
The Mo's obtained from the replicated sets should
follow a chi-squared distribution when fitting is car-
ried out with an appropriate equation of state and
weighting. If the resulting (M) is not within one or
two standard deviations, (2f)'t', of f assuming the
appropriate model is used, the weighting should be
changed to bring this about. Then the replicated sets
should be merged for a 6nal fitting. It appears that
with the accuracy and precision of presently available
"good" data a suitable equation of state for a fixed
temperature should have no more than three to four
free parameters, counting Vo. In the present work,
most of the parameters of all the equations were
highly correlated, suggesting the possibility of an
adequate equation of state with fewer parameters.

Unless Vo is known exactly or to far greater ac-
curacy than other V values, Vo should not be taken
fixed in the usual way but should be a free parameter.
Two methods of handling Vo when it is not exactly
known have been described herein. The one in which
Vo ——V is taken as free is preferable when generalized
nonlinear least-squares convergence is not too slow
or as a final 6tting method after the other method
has been used.



348 REvIEws oF MQDERN PHYsIcs ~ APRIL 1969

Finally, the present work indicates that, at least
for the water and Hg data examined, EOE0" is far
too large that a second-order series approximation
for E in terms of p (Eq. 4) is a good approximation
even over the relatively small compression ranges
considered. . For the O'C water data at maximum
pressure (~10s bar), Eire—1+0.27+0.084, showing
that the successive series terms decrease only slowly
even for this relatively low pressure. Since a second-
order expansion is not generally sufhcient for the
water and. Hg data, Anderson's (196S, 1966) hypoth-
esis that the Murnaghan equation of state, arising as
it does from a linear expansion of E, is sufhcient for
extrapolation to very high compressions is definitely
inappropriate for these materials. Any such "extrapo-
lation from the origin" is dangerous to use without
independent checks.

The present work illustrates some of the kinds of
analysis of I'—V data which can be, but rarely are,
carried out. I hope it will help demonstrate the pos-
sibility and desirability of better planning and anal-
ysis of experiments in this area, especially .needed,
in my opinion, as data precision and accuracy con-
tinue to improve.

APPENDIX: UNROUNDED DAVIS-GORDON
I'-V RESULTS FOR Hg

I'
(kbar)

V
(21.9'C)

V
(40.5'C)

V
(52.9'C)

1

2

3

5

6
7

8
9

10
11
12
13

1.000018
0.996209
0.992539
0.988996
0.985570
0.982254
0.979038
0.9/5916
0.972883
0.969933
0.967061
0.964262

0.961532

1.003304
0.999405
0.995650
0.992029
0.988529
0.985143
0.981862
0.978680
0.975589
0.972584
0.969660
0.966813
0.964037

1.005497
1.001537
0.997726
0.994051
0.990502
0.987070
0.983745
0.980521
0.97/391
0.974349
0.971390
0.968509
0.965702
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