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A general introduction to and bibliography for transport phenomena in gases is provided. Methods for obtaining
density expansions of transport coefficients from time-correlation functions in a moderately dense gas with short-range
repulsive intermolecular forces are considered. A unified treatment of the two methods appearing in the literature (the
¢ method due to Cohen, Dorfman, and Ernst and the ¢ method due to Zwanz1g) is given. Both of these methods lead
to integral equations from which the first two terms in the density expansion of transport coefficients can be computed.
However, because of many-body effects in the gas, both methods diverge when used to compute terms beyond the first
two in these density expansions. Because of this divergence, it is necessary to prove that the ¢ and e methods give the
same results for the first two terms in the density expansion of transport coefficients. The required proof is provided,
and we conclude that either the # or ¢ method can be used to compute the first two terms in the density expansion of
transport coefficients provided one assumes that the remaining (divergent) terms, which are neglected, do not contribute

to the first two terms.
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1. INTRODUCTION

Fourier’s law of thermal conduction, Fick’s law of
diffusion, and Ohm’s law of electrical conduction are all
examples of linear transport equations. Such laws are
used to describe the final stage of a system’s approach
to equilibrium, if the system was not originally in
equilibrium, or the behavior of a system in an externally
maintained steady state in which there is a small but
constant flow of some quantity. In general, these linear,
macroscopic laws all relate the flux of some quantity to
a gradient in another quantity, i.e.,
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q=—Agrad T, Fourier’s law,
Je=—o0 grad ¢, Ohm’s law,
Jo=—D grad =, Fick’s law. (1.1)

That is, the flows in heat, charge, and particles, q, Je, Jp,
are proportional to the gradients in temperature T,

* Work supported in part by the National Science Foundation.
T Work supported in Bart by the U.S. Army Research Office
(Durham) Grant AROD-31-124-G783 and in part by the U.S.
Air Force Office of Scientific Research Grant AFOSR-1015-67.

electrostatic potential ¢, and concentration #, respec-
tively. The proportionality constants are called trans-
port coefficients. Here we have illustrated the coefficient
of thermal conductivity A, the coefficient of electrical
conductivity ¢, and the coefficient of diffusion D.

One of the major problems of nonequilibrium statis-
tical mechanics is to give a derivation of these laws and
their possible generalizations, based upon a knowledge of
the microscopic properties of the systems involved. In
particular one would like to know (1) the range of
validity of the macroscopic laws and the correction to
them whenever they are no longer adequate to describe
the physical situation, and (2) the theoretical predic-
tions for the values of the transport coefficients and
their dependence upon the important parameters (such
as temperature, density, etc.) that specify the state of
the system.

To guide the reader through the sometimes intricate
logic of the discussion below, we have outlined the
major theoretical developments in Fig. 1.

The most important early discussion of these prob-
lems was based upon the Boltzmann equation. [A brief
discussion of the Boltzmann equation and its solutions
may be found in Uhlenbeck and Ford (1963).] The
Boltzmann equation describes the nonequilibrium
behavior of the single-particle distribution function of
a dilute (only binary collisions are taken into account),
monatomic gas. To obtain the transport coefficients for
the dilute gas from the Boltzmann equation, one as-
sumes that the system is close to a local equilibrium
state, i.e., a state where equilibrium is established in
volumes which contain a large number of particles but
are small compared to the total volume of the system.
Each small volume has its own (local) temperature T,
density #, and mean velocity u, but these quantities can
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F1G. 1. The logical relationships among the various developments in the theory of transport coefficients.

be different in neighboring volumes. If one then expresses
the single-particle distribution function as a local equi-
librium distribution plus a correction proportional to
the gradients in the local equilibrium quantities, a
linearized version of the Boltzmann equation can be
obtained and solved. The method of solution, due to
Chapman and Enskog (Chapman and Cowling, 1939),
depends upon assuming that the single-particle dis-
tribution function depends on time only through the
time variation of the local equilibrium variables,
namely 7', #, and u. One obtains, on the basis of this
assumption, the so-called “normal solutions” to the
Boltzmann equation, that are presumed to be valid for
a system either in a steady state, or close to equilib-
rium. In the Chapman-Enskog method, these solutions
are used to establish a theoretical basis for the macro-
scopic laws and to obtain explicit expressions for the
transport coefficients. These expressions are extremely
useful and agree quite well with experiment for dilute
gas systems. L

From the Boltzmann equation it is possible_to obtain
a gemeralization of the macroscopic laws, Egs. (1.1), in

one direction (leading to so-called Burnett and super-
Burnett hydrodynamics) by taking into account, in a
systematic way, corrections to the linearized Boltzmann
equation and including nonlinear terms (Burnett, 1935;
Chapman and Cowling, 1939; Grad, 1949; 1962; Wald-
mann, 1958). This procedure leads to expressions for
the fluxes which contain powers of gradients and higher-
order gradients in the macroscopic variables. For
example, Fourier’s law becomes

gq=—hgrad T
-+ (6 div u grad T} other terms of the same order)
(1.2)

These corrected laws are nonlinear and apply only to
dilute gases since they are derived from the Boltzmann
equation. However, the Boltzmann equation is not
adequate for demse systems where more than binary
collisions are important.

To extend the results of the Boltzmann equation to
gases of higher density, one needs a procedure for
deriving corrections to the Boltzmann equation which

~+higher-order terms in the gradients.



298  Reviews or MopErN Prysics « ApriL 1969

takes into account, in a systematic way, the fact that
the gas is no longer dilute and that collisions between
three, four, or more molecules are now important.
(Such a gas, not dilute but not near to condensing, is
said to be moderately dense.)

As originally given by Boltzmann, the derivation of
his equation for a dilute gas was intuitive and not based
in a truly rigorous way onthe laws of mechanics. Lacking
Boltzmann’s intuition, no one has succeeded* in general-
izing the derivation of his equation to obtain intuitively
an equation which describes the behavior of a moder-
ately dense gas. Rather, all generalizations of the
Boltzmann equation have been obtained by solving
Liouville’s equation. Although this procedure is quite
formal, it does have the advantage that Liouville’s
equation is a consequence of the laws of mechanics, so
that a generalized Boltzmann equation derived from
Liouville’s equation rests on a sound theoretical founda-
tion (provided of course that one can justify all the
steps in the derivation!). For a dilute system, a general-
ized Boltzmann equation derived from Liouville’s equa-
tion should, of course, reduce to Boltzmann’s equation,
and thus this procedure can be used to secure the theo-
retical foundations of the Boltzmann equation.

Starting with the work of Bogoliubov in 1946
(Bogoliubov, 1961), systematic derivations of the
Boltzmann equation, from the Liouville equation, in-
cluding its corrections to higher densities, became pos-
sible. Bogoliubov was, in fact, the first to give a pre-
scription for obtaining all the higher order density
corrections to the Boltzmann equation. Choh and
Uhlenbeck gave an extensive discussion of the first
correction (Choh, 1958; Sengers, 1966a; 1967), a correc-
tion that takes into account interactions of three par-
ticles in the gas. The essence of Bogoliubov’s generaliza-
tion was that each higher density correction to the
Boltzmann equation takes into account the interaction
of more particles in the gas. The Boltzmann equation
itself considers only two-particle interactions (binary
collisions) ; the Choh—Uhlenbeck term, three-particle
interactions; and so on. Bogoliubov’s methods, however,
were based upon an assumpiion, the so-called “func-
tional assumption,” that the distribution functions for
two or more particles do not depend explicitly upon the
time. Instead, these functions depend on time only
through the single-particle distribution function. The
motivation for this assumption is provided by an
extension of the ideas that are used to obtain the
macroscopic laws from the Boltzmann equation.

The more recent work of M. S. Green, E. G. D.
Cohen, and others (Cohen, 1966; 1967; 1968; Curtiss,
1967; Ford, 1965; Green and Piccirelli, 1963; Hollinger
and Curtiss, 1960; Kritz and Sandri, 1966; Ono, 1964;
Piccirelli, 1966; Stecki and Taylor, 1965) has provided
an alternate derivation of the generalized Boltzmann

* 1)\11 exception is the Enskog equation (Chapman and Cowling,
1939).

equation that does not involve a functional assumption
and is therefore more rigorous. The work of Green and
Cohen is based on methods borrowed from the equilib-
rium theory of dense gases, in particular on cluster
expansion methods (DeBoer, 1949; Uhlenbeck and
Ford, 1961).

Once the generalized Boltzmann equation for a
moderately dense gas is available, the transport coeffi-
cients can be obtained by using methods similar to those
used for the Boltzmann equation. The equation is
linearized by expanding the distribution function about
the local equilibrium value and looking for “normal
solutions” of the resulting equations. This procedure
was first outlined by Choh and Uhlenbeck (see also
Garcia-Colin, Green, and Chaos, 1966) who used it to
compute the first density corrections to the Boltzmann
equation transport coefficients. Choh and Uhlenbeck
obtained an expression for the effect of three-particle
interactions on the transport coefficients, which they
were not able to explicitly evaluate. In principle, how-
ever, one could obtain an expansion for the transport
coefficients as a power series in the density. In other
words, the development of a generalized Boltzmann
equation led rather directly to an expansion for trans-
port coefficients, 3, appropriate to a moderately dense
gas, in the form

5=30+n31+n252+ e, (13)

where J, is the result of the Boltzmann equation, J; is
the result of Choh and Uhlenbeck, and the higher 3’s
are in principle known as integrals that depend on the
dynamics of four and more particles.

Before we turn to a consideration of the extent to
which the above expression for the transport coefficients
represents a completion of the attempts to extend the
theory of transport coefficients from dilute to moder-
ately dense gases, we will sketch a parallel development
in the theory of transport phenomena which also plays
a large role in the theory of transport coefficients in
gases. This development is called the method of time-
correlation functions.

Time-correlation functions represent the results of an
attempt to base a theory of the linear macroscopic
transport equations directly on the Liouville equation,
avoiding the intermediate step of a generalized Boltz-
mann equation. In essence the theory goes back to
Einstein and Nyquist, but its more recent form is due
largely to M. S. Green and later Kubo, Mori, and
others.* The basic idea of the method of time-correla-
tion functions is to consider the effect of a local equilib-
rium state on the complete N-particle distribution
function for the system. The Liouville equation governs

the behavior of the N-particle distribution function of

*In addition to Zwanzig’s review article (1965), there are:
Andrews (1967), Felderhof and Oppenheim (1965), Green (1961),
Komarov (1965), Luttinger (1964), Martin (1965), Mori (1965),
Ono (1965), Salistra (1968), Schofield (1968), and Zubarev
(1962; 1965; 1966).
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the system Fy(Ry, Py, +, Ra, Pu, £) ; this function con-
tains all the available information about the system. In
the time-correlation function method, one assumes that
Fy is expressible as a local equilibrium N-particle dis-
tribution function plus correction terms. The local
equilibrium function depends on the local macroscopic
variables, temperature, density, and mean velocity, and
upon the position and velocities of the NV particles in
the system. The correction to this distribution function
is determined by means of Liouville’s equation, and by
assuming that at some initial time the system was in a
local equilibrium state and is proceeding to relax from
local to complete equilibrium. Again one can construct
“normal solutions,” now to Liouville’s equation, and
obtain an expression for the corrections to local equilib-
rium in powers of the gradients of the local variables.*
Retaining only the first term in the expansion in the
gradients, one derives again the linear macroscopic
transport equations but now with considerably general-
ized expressions for the transport coefficients. These
expressions depend upon the dynamics of all IV particles
in the system and apply to any system, irrespective of
its density.

In principle one can extend the method to obtain
nonlinear transport equations, also from the Liouville
equation (Kadanoff and Martin, 1963; McLennan,
1961; 1963b; Mori, 1965; Peterson, 1967; Piccirelli,
1968; Robertson, 1967; Storer and Green, 1962; Zwan-
zig, 1964). However, this method is still in its early
stage, and the nonlinear theory is not yet fully worked
out nor understood.

The time-correlation function expressions for the
transport coefficients depend for their evaluation upon
the solution of the equations of motion for an arbitrarily
large system and upon the averaging of such solutions
over an equilibrium ensemble. Since this procedure is
more difficult than evaluating the partition function for
the system, it is necessary to develop approximation
methods in order to evaluate the time-correlation func-
tion expression. For a dilute or moderately dense gas,
the same methods that have been used to derive the
generalized Boltzmann equation from the Liouville
equation have been used to evaluate the time-correla-
tion function. These methods once again lead to the
density expansion, Eq. (1.3) (Curtiss, 1967; Ernst,
Dorfman, and Cohen, 1964; 1965; Ernst, 1965; 1966;
Fujita, 1962; Green, 1961; Kawasaki and Oppenheim,
1964a; McLennan, 1963; McLennan and Swenson,
1963; Mori, 1961; Ono and Shizume, 1963; Resibois,
1964; Tolmachev, 1957; Zwanzig, 1963).

*The basic idea of local equilibrium states and “normal solu-
tions” is also more or less implicit in those theories where linear
response theory is used to derive correlation formulas for thermal
transport coefficients [Kadanoff and Martin (1963), Luttinger
(1964), Felderhof and Oppenheim (1965)]. Here one employs
the hydrodynamic equations for the rate of change of the tem-
perature, density, and mean velocity, and closes this set of equa-
tions by assuming fthat all remaining local thermodynamic
functions depend on’the aforementioned five quantities through
the local equilibrium relations.
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Thus, the development of a theory of linear, macro-
scopic transport equations and density expansion expres-
sions for transport coefficients, for gases at least, can
proceed in either one of two ways starting from the
Liouville equation: (1) via the generalized Boltzmann
equation where the local equilibrium solution appears
at a late stage in the calculation, o7 (2) via the time-
correlation function method where the local equilibrium
solution appears early in the calculation and the calcu-
lation then proceeds in analogy to the derivation of the
generalized Boltzmann equation. If the two methods
yield identical results, then the methods can be viewed
as completely parallel, the only difference being the
order in which various manipulations are carried out.

At this stage in the theory a development took place
which has seriously altered the picture presented so far.
For some time it had not been possible to explicitly
evaluate any of the higher terms in the generalized
Boltzmann equation or in the density expansion of the
transport coefficients. One only had expressions whose
evaluation required a knowledge of the dynamics of
systems of three, four, or more particles in the gas. It
was commonly assumed that with sufficient patience,
these expressions could be evaluated and would lead
to a mathematically well-behaved (i.e., finite) result.
However, until this assumption was verified, one did not
really have a rigorous derivation, from Liouville’s equa-
tion, of either the generalized Boltzmann equation or
the density expansion of time-correlation functions. In
particular, without an adequate discussion of the higher
terms in the series, one could not even say that the
Boltzmann equation itself was on any more secure
foundation than Boltzmann had left it. What one could
prove was that the density expansion of transport
coefficients obtained from the generalized Boltzmann
equation, and the density expansion obtained from the
time-correlation function method were identical, pro-
vided that all terms appearing in these expressions were
well behaved (existed).

As more was learned about the relevant dynamics of
three, four, or more particles that contribute to the
density expansions, it was discovered that most of the
terms in the generalized Boltzmann equation, as well
as the corresponding terms in the density expansions of
the transport coefficients (by whatever method ob-
tained) did not exist; that is, these terms were actually
infinite when calculated explicitly (it is customary to
say that these terms “diverge” or that there is a
“divergence” in the theory). The exact term where the
divergence first appears depends upon the dimension of
the system. In three dimensions, for ordinary gases, the
divergence first appears in the four-body term; in two
dimensions it appears in the three-body or Choh-
Uhlenbeck term. Moreover, all the higher-order terms
in the series are divergent. Needless to say, the appear-
ance of this divergence meant that the theory as then
constructed was not correct and that practically all
previous results in the theory of transport coefficients
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for dilute or moderately dense gases were suspect,
including the Boltzmann equation.*

The divergence appeared in the four- (or three-) body
terms because the region of phase space associated with
the relevant dynamics of the particles was of infinite
volume. This infinite volume always appears and spoils
any attempt at explicit evaluation. For the system of
three particles in two dimensions, the divergence is
associated with certain sequences of three binary col-
lisions among the three particles. The phase space asso-
ciated with this sequence grows logarithmically in the
time between the first and last of the three binary
collisions. The expressions, as given by the theory,
require that one take the limit as this time goes to
infinity, so that this three-body term, in two dimen-
sions, diverges logarithmically.

Asaresult of this divergence difficulty, all the methods
used before must be re-examined carefully. The deriva-
tion of the generalized Boltzmann equation, the evalua-
tion of the time-correlation functions, and the density
development of the transport coefficients must all be
called into question. Here we shall concentrate our
attention on one phase of this problem, the evaluation
of the time-correlation function expression for the trans-
port coefficients, since this is the simplest area in which
to exhibit all the areas of difficulty.

Two basic methods have been used to obtain the
density development of transport coefficients for a
moderately dense gas by means of time-correlation
functions. Both methods are completely formal develop-
ments from the Liouville equation, and each leads to an
integral equation for the time-correlation function that
determines the transport coefficients. However, the two
methods, as presented in the literature, differ consider-
ably in motivation and procedure. One of the methods
(¢ method), due to Cohen, Dorfman, and Ernst (Ernst,
Dorfman, and Cohen, 1964; 1965; Ernst, 1965; 1966)
makes heavy use of the first hierarchy equation (Uhlen-
beck and Ford, 1963, p. 120) and an analogy with
equilibrium methods to obtain an integral equation
which is formulated in terms of the time ¢. This integral
equation bears a close relation to the generalized Boltz-
mann equation. The other method (e method) due to
Zwanzig (1963) involves an inversion of the Laplace
transform of a certain divergent time-dependent opera-
tor. The ensuing integral equation is formulated in
terms of the Laplace transform variable ¢ which corre-
sponds to the time £. The e integral equation is equiva-
lent to the f equation, but the form of the two equations
is different. [A similar situation occurs in the theory of
the generalized master equation (Balescu, 1961; Fulin-

* The literature on the divergence is extensive; the following
list is essentially complete: Andrews (1966), Dorfman and Cohen
(1965; 1967), Dorfman (1967), Frieman and Goldman (1965;
1966; 1967), Fujita (1966a; 1966b; 1967), Goldman (1966;
1967), Haines, Dorfman, and Ernst (1966), Haines (1966),
Hauge and Cohen (1967; 1968), Hoegy (1967), Kawasaki and
Oppenheim (1965; 1967), Lebowitz and Percus (1967), van
Leeuwen and Weyland (1967), Murase (1966), Sengers (1965;
%?ggg)) , Weinstock (1963; 1965; 1966) , Weyland and van Leeuwen

ski, 1967a; 1967b; Geszti, 1967; Zwanzig, 1960a).] This
difference in form is extremely significant when a den-
sity development of these equations is contemplated.
Due to the divergence in this density expansion the
circumstances under which the two methods lead to
identical results must be carefully examined.

It is our intention here to pay careful attention to the
two methods for evaluating the time-correlation func-
tion, since the methods and problems that arise in this
discussion are fairly general and are useful in the entire
area of nonequilibrium theory of gases. We shall see
that the two difficulties, (1) the divergence in density
expansions of transport coefficients, and (2) the ques-
tion of the equivalence of the ¢ and ¢ methods for com-
puting these density expansions, are closely related. We
shall provide a critical discussion and comparison of the
¢t and e methods, and in particular their density expan-
sions, for a dilute or moderately dense monatomic gas
with short-range repulsive intermolecular forces, from
a unified point of view. In a subsequent publication, we
shall give a detailed discussion of the attempts to find a
convergent theory and their effects on the general area
of transport theory.

In either the ¢ or e method, the transport coefficients
are expressed in terms of limiting values (¢—, e—0) of
special one- and two-particle correlation functions.
Cluster expansions are applied to these correlation
functions to obtain their expansion in powers of the
density. This simple expansion, the “naive density
expansion,” diverges term by term in the limit needed
for the evaluation of transport coefficients, so that the
expansion needs further treatment before useful expres-
sions for transport coefficients can be obtained. (This
divergence was already noted by Bogoliubov and pro-
vided him with one motivation for his “functional
assumption” method.) This divergence in the “naive
density expansion” is not the crucial divergence and is
easily removed. In both methods this is accomplished
by showing that a suitable summation of the naive
density expansion of the correlation functions is equiva-
lent to the solution of an integral equation. For the sake
of a unified treatment, we shall, in this paper, use
similar methods to obtain these integral equations. We
shall then discuss the relation between the two integral
equations and their solutions.

Since the coefficient of self-diffusion is mathematically
the simplest transport coefficient to discuss, the body of
the paper is devoted to it. In the Appendix we generalize
the arguments to include other coefficients, in particular,
the viscosity. In Sec. 2 we define the single-particle
correlation function appropriate to self-diffusion. In
Sec. 3 we give the cluster expansion and obtain the
naive density expansion. The integral equation appro-
priate to the ¢ method is derived in Sec. 4; to the ¢
method, in Sec. 5. Section 6 is devoted to a formal
comparison of the two methods. In Secs. 7 and 8 we
discuss the comparison of the two methods in some
detail, taking particular account of the divergence, and
insofar as a power series expansion in the density of the



transport coefficients exists, we discuss the first few
finite terms.
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If the Hamiltonian for the system is
Hy= ZP ~ +3(R), (2.9)

2. THE SELF-DIFFUSION COEFFICIENT IN
THE ¢ AND ¢ METHODS

The ¢ method (Ernst, Dorfman, and Cohen, 1964;
1965; Ernst, 1965; 1966) for computing the self-dif-
fusion coefficient begins with the time-correlation expres-
sion (Longuet-Higgins and Pople, 1956; Helfand, 1963)

dt1 lim <p1 Bl t1)> (2.1)

where particle 1 has momentum p; at time zero and
momentum pi(—¢) at time (—¢). The mass of the
diffusing molecules is m, and the brackets denote an
average over the initial values of the phases #; of the NV
molecules using a canonical equilibrium ensemble, i.e.,

D=11im

t>c0

@@= [dne-duvg@y,  22)

where
fy=2Zy'exp (—BHy). (2.3)

Here Hy is the full N-particle Hamiltonian, 8=1/kT
where % is the Boltzmann constant and T the tempera-
ture, and Zy is the canonical partition function
Zy= /dxl- ««dxy exp (—BHy). (24)
We shall use the notation x as an abbreviation for all the
phase variables of the system. Similarly, R and p will
stand for all initial positions and momenta, and we
shall sometimes write f(x) =f(R, p). The symbol lim,,
stands for the thermodynamic limit N—w, V—w,
N/V—mn, where V is the volume of the system and »
is the number density. The thermodynamic limit is to
be taken before the limit #—c0.
By introducing the time-displacement or streaming
operator S_; which changes the phase variables of a
function from their initial values to their values at time

(—t) via
S_eg(x) =g(x(—1)), (2.5)
it is possible to write Eq. (2.1) as
=1 hm dt1 hm< S_,l h . (2.6)
t—»oo m

The explicit expression for the time-displacement opera-
tor is

S_:= exp (—13C), (2.7

where JC is the Liouville operator® which satisfies the
Poisson bracket relation
Jeg(x) =

{g(x), Hx}. (2.8)

*There is a diversity of notation for the Liouville operator.
In the literature, the quantlty that we call 3C has also been written
as &, L, i8, and L, where ¢ is the imaginary unit.

1=12

where the total potential energy ®(R) is given as the
sum of the pair potential energies ®;;(| Ri—R; |) =®;;

by
dR)= 2 dy (2.10)
1<I<j<N
then 3C is given explicitly by
=535— D, 05 (2.11)
1<i<<N
where
3k 9
3Co= 2 IR, (2.12)
and
0= (8%:j/9R.) -[(3/0p:) — (8/3p;) ].  (2.13)

We remark in connection with the above formulas
that S_; does not change Hy since Hy is a constant of
the motion. Nor does it change the equilibrium distri-
bution function fy. Therefore, the equilibrium distribu-
tion function can be written either to the left or right
of S_¢ in the expression (2.6).

Concerning notation, we adopt the convention that
quantities which depend on the number of particles such
as S_y, ¢, ®, etc., are N-particle quantities unless the
particles involved are enumerated in parentheses.

We define the first time-correlation function X(py, £)

by
R(py, )= lim V f ditge - dxnS_s fNP”—;. (2.14)

That X is not a function of Ry follows immediately
since Hy and 3C depend only on relative positions. In
terms of our definition for X, the time-correlation
expression for D can be written

f dpl—— lim
t->c0

The circumflex on X is used to distinguish X(py, £)
from its Laplace transform X(p;, €). We always use
this notation so that any pair of functions f(¢) and f(e)
are related by

dtlx(pl, h).  (2.15)

(&)= / die<tf(1). (2.16)
0

Using the definitions of the above paragraphs we now

describe the starting point of the ¢ method (Zwanzig,

1963). In this method, D is computed from the time-

correlation expression
—1
D=11lim &L-)-> (2.17)
m

dte““ lim <
>0

which can be Written

1
D=1= / dpy 2 lim X (py, €) (2.18)
3 m 0
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and is to be compared with Eq. (2.15). The € expression
for computing D differs from the ¢ expression by the
insertion of the convergence factor e~¢!. This cannot
change anything so long as the limit {#— in Eq. (2.1)

exists, and we shall always assume that this is so.

3. NAIVE DENSITY EXPANSION OF THE FIRST
TIME-CORRELATION FUNCTION

In order to calculate a density expansion of D from
Eqgs. (2.15) or (2.18) one needs a density expansion of
the first time-correlation function X. We shall now
obtain such an expansion, called the naive density
expansion, by making a cluster expansion of X in
analogy to equilibrium statistical mechanics (DeBoer,
1949). However, the terms in this naive density expan-
sion are not well behaved for large ¢. In fact, the term
of order »~ (r=0, 1,--+), which depends on the dynam-
ics of r4-1 particles, goes as ¢ for large ¢ (Dorfman and
Cohen, 1967). Thus none of the individual terms in the
naive density expansion of

t
/ dt1X(p1, tl) or of X(pl, e)
0

will exist as —w or as e—0. Furthermore, the failure
of the individual terms in the naive density expansions
of

t
/ X (py 1) or X(pye)
0

to exist for large ¢ or small e indicates that some suitable
rearrangement or resummation of the terms in these
expansions must be made before these expansions can
be used to compute D in either the ¢ or the e method.
We shall discuss these resummations in Secs. 4 and 5.

Preliminary to making the density expansion of
X(py, £), we consider the identity

(3.1)

t
S—t= S—t°+ / de_t+f° Z o'ijS—r,
0 1<i<j<N
where we have defined the free streaming operator S_.°
as

S_0= exp (—13C). (3.2)

w12, ) =S-,(12),
U123, 1) =S5_,(123) —S_,(12) S_.(3),

Using Eq. (3.1) we may write Eq. (2.14) as
X(py, ) =S_.(1)$(1) p1/m

t A
+ [ @S (HOmem B, (33)
0
where we have defined the operator O(t) as

> 0:iS—+fw (3.4)

icien o(1)

and where ¢(1) is the normalized Maxwell-Boltzmann
momentum distribution function:

o(1)=¢(p1) =4 exp (—3Bp/m);
/ dpg(p1) =1.

O(1) = lim V[dxz---de

(3.5)

In deriving Eq. (3.3), Liouville’s theorem for free-
particle streaming was used in the form

/dxz---deS_,"(lZ---N)g(x)
=S .,(1) j g+ -ding(x)  (3.6)

which is a special case of the more general Liouville
theorem:

fdxl---dx,-S_,(IZ---j)g(x)= /dxl---dxjg(x). 3.7

. To obtain the naive density expansion of the operator
O(t), from which a similar expansion for X(py,?) is
obtained through Eq. (3.3), we introduce cluster opera-
tors (12| 3-+-7,¢) defined by the recursion relation

S_¢(12++-N)=w(12, £) S_4(3:++N)
+ > W(12] 3, 1) S_e(4 = N)++--.
)

all one-tuples in (8**°N
(3.8)

By writing out Eq. (3.8) for N=2, 3, -+, one obtains a
set of equations which can be solved successively for
the U’s. In this way one finds

Q12| 34, 1) = S_,(1234) — S_,(123) S_o(4) — S_¢(124) S_4(3) — S_.(12) S_, (34) +25_,(12) S_(3) S_4(4),

The expansion (3.8) can now be used in Eq. (3.4) to obtain the following expression for IOF

(3.9)

+ g;/dxzdxadxﬁm‘u(lz [ 34, 1) g(1234)$(2) ¢ (3)p(4)++++, (3.10)

where Liouville’s theorem has been used. We have also taken the thermodynamic limit and defined the equilibrium
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j-particle position distribution functions g(12+-+) in the conventional manner as

g(12"']) I]Id)(’l,)Eg(R]Rz"'R]) IiIlqb(z): lim Vf/dx,-+1---defN. (311)

=1

The distribution functions g can themselves be given as density expansions which we write as

g(12)=W(12)+n/dR3g(12;3)+n2deadR4g(12;34)+"',

g(123)=W(123)+n/dR4g(123;4)-I-n2/dR4dR5g(123;45)+"',

(3.12)
In particular, W is given by
W(12+++j) = exp [—B®(12-++7) ], (3.13)

and explicit formulas for the g(1-++7;j+1--+k) can be found in the literature (DeBoer, 1949).

Before deriving the complete density expansion of O(f), simplified expressions for the operators appearing in
Eq. (3.10) are given. These operators have the form
[(=2) T [ doe - duutu(12 | 3+, 0812+ +1)$(D)++6( )
= [ v w125, D812+ D62+ 6(5),  (B.14)
where

7(12, 1) =6125_,(12),

13
#(123, 1) = f 02511 1,(12) [Bs-625 ]S, (123),
0

t i1
(1234, 1) = f it f 82111 (12) [Bi5--025 1S o1 10 (123) [Bret-Ou-05, ]S, (1234),
0 0

(3.15)
Equation (3.15) can be established by repeatedly using identities similar to Eq. (3.1), for example,
t
S_.(123)=5_,(12) S_.(3) + / AtS_t14,(12) S_p16,(3) [613+625 15—, (123), (3.16)
0
along with Liouville’s theorem and the symmetry of Eq. (3.14) under interchange of the labels (3---5).
The required density expansion of the operator O(#) can be found by combining Egs. (3.10), (3.12), and (3.14).

We have -
0= > w0 (d), (3.17)

r=1

where the explicit expressions for the operators 0,, which depend on the dynamics of 7 particles, are given by

0:)= [ awr (12, )W (12)(2),
Os(t) = / duades[7(123, )W (123) +#(12, £)g(12; 3) 6(2)$(3),

Ou(t) = / daadsdoa[7(1234, 1) W (1234) +7(123, £)g(123; 4)+7(12, ) g(12; 34) Jo(2)$(3) (4),

(3.18)
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We have thus obtained the naive density expansion of X(py, £) in the form

&0, )=S0 B+ S [ drS e 0matrs() .
r=1 0

(3.19)

We also give the Laplace transformed operators O,(¢). They can be obtained by replacing #(12+« -4, f) by its
Laplace transform 7(12+-+4, €) everywhere in Eq. (3.18). The explicit expressions for the 7(12+«+7, ¢) are

7(12, €) =01,G(12, €),

T( 123, e) = 012G( 12, 6) (013+023) G( 123, 6) 3
7(1234, €) =01.G(12, €) (615+025) G(123, €) (B1a+02+03) G(1234, €),

where G(12+- -4, €) is the Laplace transform of S_;(12-++5):

G(12+++j, &)= /wdte—E’S_t(IZ---j)=[e+3€(12--~j)]-1.
0

In the following we will also need the Laplace transform of S_J which is

Go(12+++7,¢) = /m dtetS_0(12+ « +j) =[e+3Co(12+ - +f) T
0

4. RESUMMATION OF THE ¢ METHOD

_ In Sec. 3 we derived the naive density expansion of
X (py, ). The Laplace transform of Eq. (3.19) gives the
density expansion of X(p1, ) which we write as

X(PI; €)=G(1: 6)[1+0(6)]X(ph 0)) (41)
where
0(e)= Z’:, #O0p1(e) (4.2)
and R
X(p1, 0) = (1) ps/m. (4.3)

Since X (p1, 0) and O(e)X(p1, 0) depend only on the
momentum p;, we can replace G(1,¢) by ¢! in Eq.
(4.1). Hereafter, we suppress the momentum arguments
in the X’s.

As mentioned in Sec. 3, none of the terms in this
naive density expansion exists as e—0. To surmount
this difficulty one resums the right-hand side of Eq.
(4.1) by the following procedure (which we call invet-
sion) : Write Eq. (4.1) as

[1+0(e) J7eX (&) =X (0), (44)
define B(e) by
1—B(e)=[14+0(¢) T (4.5)
and the density expansion of B by
B(e)= il wBra(e). (4.6)

(3.20)
(3.21)
(3.22)
Then Eq. (4.4) can be written as*
[e—eB(e) 1X(e) =X(0). (4.7)

The operators B, are found by expanding the geometric
series in Eq. (4.5), using the density expansion Eq.
(4.2) for O(e), and equating coefficients of identical
powers in the density. In this way one finds

Bz= 02,
By=03;—04,
By=04—030,— 0,050,

(4.8)

The B; clearly depend on the dynamics of 7 particles.
Equations (4.6) through (4.8) define the resummed e
method.

It is especially interesting to note that the resummed
€ equations can be obtained by an entirely different
procedure involving the use of projection operators
(PO method). The idea of the PO method is as follows:
All one needs for the computation of the diffusion

* Equation (4.7) is similar in form to the Dyson equation of
quantum electrodynamics [C. Bloch,¥ Studies in Statistical Me-
chanics (North Holland Publishing Co., Amsterdam, 1965), Vol.
3. To see this introduce an “exact” propagator g(1, €), where

X(p1, &) =¢(1, 9X(p;, 0).

Then, using Egs. (4.1) and (4.5) one sees that g satisfies the
Dyson equation

EG+JCD“M (e) ]g(l, €)= 1,
with self-energy operator M (e) =B(e)G1(1, €).
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coefficient is X(py, £). Since X contains considerably
less information than the N-particle operator S_;, one
defines a projection operator which projects X out of
S_¢. The formal realization of these ideas leads to Eqs.
(4.6) through (4.8) above. Since the derivation of the
resummed e equations using the PO method is rather
lengthy, we refer the interested reader to the literature
(Zwanzig, 1960a; 1960b; Ernst, 1967).

5. RESUMMATION OF THE { METHOD

In Sec. 4, Eq. (4.7), we obtained a resummation for
X(e) appropriate to the computation of D in the e
method via Eq. (2.18). Inspection of the corresponding
equation for D in the ¢ method, namely Eq. (2.15),
shows that in the ¢ method we shall need to obtain a
resummation for Y (¢) where

t
Y(py, )= / dnX(ps, 1). (5.1)
0
By making use of the identity
3CR1=3C(1)Ri=pi/m (5.2)

and the definition of X in Eq. (2.14), we may write Y as

Y(pl; t)=Y(1, t)“Y(l, 0)) (53)
where

v(1, )= lim ¥V [ g+ -dinS_sfu(—Ry)  (5.4)

and where we have written y(1, f) to emphasize that y
depends on R; as well as p;.

In the literature (Ernst, Dorfman, and Cohen, 1964;
1965; Ernst, 1965; 1966), the resummation of the ¢
method for Y is accomplished by analogy to equilibrium
statistical mechanics. One makes an activity expansion
of y(1,¢) and the corresponding two-particle function
y(12, £). The activity is then eliminated between these
two expansions to give y(12,¢) in terms of y(1,¢).
Finally, the first hierarchy equation, which relates
y(1,¢) and y(12,¢), is used to give a closed equation
for y(1,¢) alone. Here we follow a shorter procedure
which gives precisely the same result.

In exactly the same way as in Eq. (3.3) one can
express y(1,¢) in terms of O(¢):

1,5)=S5_(1)] 1+ tdrS,lO'r 1,0), (5.5
y(1, ) <>[ / <)<)]y< ), (5.5)
where

y(1,0)=—Rip(1). (5.6)

The term O(£)y(1, 0) does not depend on R;. This can
be seen by considering

[O@®)y(1, 0) Jririra—O0 @)y (1, 0) = —aO(£) $(1) =0,
(5.7)

and therefore, the operator S,(1) in Eq. (5.5) may be
put equal to unity.
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If we now differentiate Eq. (5.5) with respect to ¢,
we obtain the first hierarchy equation for y(1,?),
namely

Loy (1, ) /0t1+5e(1)y(1, ) =0()y(1,0). (5.8)
Solving Eq. (5.5) for y(1,0),

(1, 0)=[1+ fo t d‘rO(T):I_ISt(l)y(l, 5, (5.9)

and inserting this expression into the first hierarchy
equation, we find

oy(1, ) /ot]+3e(Dy(1, ) =L(H) S«(Dy(1, 1), (5.10)
where we have defined L(¢) by

L(t)=0(t)[1—l— fo t dTO(T)]_l.

Finally, by using Eq. (5.3), we obtain the resummed
equation for Y(py, ) which appears in the literature for
the ¢ method:

[9Y (py, ¢) /0¢]—L(£) Y (ps, £)
= (p/m)¢(1) —L(1) S:(D$(DRs.  (5.12)

The operator L(#) can be given as a density expansion:

(5.11)

©

L(t)= 2 wL.n(),

r=]1

(5.13)

where the operators L,(¢), which involve the dynamics
of  particles, are given by

Ly(t) =0s(1),
L)) =0s0)=0u() [ au0),

0

L) =00 ~0s() [ at046)~0u) [ auOuta)
0 0

A t A ¢ A
+0:) [ na(t) [ du0u(n),
0

0

(5.14)

In the next sections the resummed ¢ equation (5.12)
and the resummed e equation (4.7) will be compared.

6. FORMAL COMPARISON OF THE ¢ AND ¢
METHODS

In Sec. 4 we derived the resummed ¢ Eq. (4.7) for

X(e):
Le—eB(e) JX(e) =(1) p1/m, (6.1)

where the diffusion coefficient in the ¢ method is to be
found from Eq. (2.18):

1 .
D=3 dplil;-th(pl, 0. (6.2)

>0
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Correspondingly, in Sec. 5 we derived the resummed ¢

equation (5.12) for Y(2):

(oY (1) /ot]— L(1) Y (£) = (pr/m)$(1)
—L(1)S:«(1)¢(1)Ry, (6.3)

where the diffusion coefficient in the ¢ method is to be
found from Eq. (2.15):

D=- / dpl D i Y(py, ). (6.4)
t>co
Since Y is defined as
t
Y(o) = / dtX(h), (6.5)
0

this equation gives the connection between the ¢ and
¢ methods. Equivalently, Eq. (6.5) can be written as

e ["a()=X(0). (6.6)
0
In order to make a formal comparison of the ¢ and
methods, we assume that the diffusion coefficient exists

for the system under consideration, and thus that the
limits in Egs. (6.2) and (6.4) exist:

X(0)= lim X(¢); Y(o)=1mY(). (6.7)
>0 >
By computing the Laplace transform of
aY (1) /at=X(t) (6.8)
we see, of course, that
Y (»)=X(0). (6.9)

Furthermore, since it is always true for f and its Laplace
transform that

lim f(£) = hm f(e) (6.10)
t»>o
provided only that the 11m1ts exist, we find
0= hm eX(e) = lim X(¢) = hm [6Y(¢)/ot]. (6.11)

t->0

Using these results we can write the ¢ Eq. (6.1) in
the limit as

lim eB(e) X(0)=—¢ (1) pi/m (6.12)
0

or equivalently as
lim B(£)X(0) = —¢(1) ps/m. (6.13)

t-»>c0

The ¢ Eq. (6.3) can be written in the limit as
lim L(£)Y (0 ) = —¢(1) py/m+ hm L(#)S:(1)¢(1)Ru.

t->co

(6.14)

7. DENSITY EXPANSION OF THE ¢ AND e
EQUATIONS

We recall that the resumed ¢ and ¢ Egs. (6.3) and
(6.1), and especially their limiting forms (6.14) and

(6.13) were designed to give a density expansion for
the diffusion coefficient. The density expansion of L
defined in Eq. (5.13),

L= 3 wLaw),

r=1

and the density expansion of B defined in Eq. (4.6),
B(t)= > wB1(d),

r=1

suggest that we assume that Y(e) and X(0) can be
given as density expansions of the following form:

Y(oo)=n"1Yg(0)+Y1(0)+nYy(0)+---, (7.3)
X(0) =n""Xy(0) +X1(0) +#nXs(0) +--+. (7.4)

A ssuming the validity of the expansions (7.3) and (7.4)
leads to the ¢ equations

Ly(0)Yo(w)=—¢(1)py/m,
Ly(0)Y1(o0)=—Ls( ) Yo(o0 )+ iim Ly(1)
X S:(1)p(1)Ry,
Ly(0)Yy(o0)=—Ly(0)Yy(o0)—Ls(0)Yi()
+ lim Z3(#) S:(1) (1) Ry,

(7.1)

(7.2)

(7.5)

which may be solved successively for the Y;(« ), and to
the e equations

By(0)X(0) = —o (1) py/m,
By(0)X1(0) = — By( ) X,(0),
By()Xa(0) = — By( ) Xo(0) — B3 () X1(0),

(7.6)

which may be solved successively for the X;. In writing
Egs. (7.5) and (7.6), we have defined B (o) and
L.() as

B.(0)=lim B,(});

t-»>0

L(»)=lim L,(§) (7.7)

and assumed that we may interchange the sum over
and the limit as #— in Eqgs. (7.1) and (7.2).

This assumption is, however, not valid since it is well
known that a detailed discussion of the dynamical
events contributing to the operators L, and B,, for a
gas of molecules interacting via short-range repulsive
forces, shows that these operators diverge (fail to exist)
in the limit as f— if 7 is greater than 3. In fact, L, and
B, diverge as logt, while L, and B, diverge as ¢t
(r>4). Only L,, Bz, Ls and B; exist for . (In two
dimensions the divergence appears one term earlier and
only L, and B; exist.) References to the literature on the
divergence may be found in Sec. 1.



The existence of this divergence shows us that only
the first two of Egs. (7.5) and (7.6) are well defined.
We might use these equations to find the first two terms
in the density expansion of D in both the fand emethods,
but we shall certainly not be able to go beyond these
two terms without modifying the theory (making
further resummations) to take the divergence into
account. In a subsequent publication we shall discuss
the divergence and its implications for the computation
of density expansions of transport coefficients. Here we
shall confine ourselves to a discussion of the computa-
tion of the first two terms in the density expansion of the
diffusion coefficient in both the ¢ and ¢ methods.
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the number density and the time. Clearly,
FY(o0)=FX(o0)=n"", (7.14)
but if we write
FY(t)= 3> wFX ()
r=0
()= S X (1), (7.15)
=0
we find
Fo¥ () =F* () =1;
F¥(0)=—1; F&(0)=—-2 (7.16)

The first two of the ¢ equations (7.5) are well defined
and are customarily assumed to be valid for computing

the first two terms in the density expansion of D in the ¢
method:

b= %/dl’l%'["“‘Yo(w)-l—Yl(w)-l-'"J- (7.8)

Similarly, in the ¢ method, the first two of Egs. (7.6)
are assumed to be valid for computing the first two
terms in the density expansion of D in this method:

D=3 [ dn B L% @+ X0 4441 (79)
Even though we have limited ourselves to the com-
putation of the first two terms in the density expansion
of D, we must now answer two questions, both posed by
the existence of the divergence. These questions are:
(1) Do the t and ¢ methods give the same result for the
first two terms of the diffusion coefficient [as calculated
from the first two of Egs. (7.5) and (7.6)]? (2) Are
there, beyond the first two terms in D, other terms
proportional to #! or independent of # which would
modify the first two terms in D [as calculated from the
first two of Egs. (7.5) and (7.6)J?
With regard to question (1), we see that it is sufficient
to prove that
Yo(0 ) =Xo(0) (7.10)
and
Y1()=X,(0) (7.11)

to show that the first two terms of D are the same in
both methods. This will be accomplished if we can
establish that the first two equations in (7.5) and (7.6)
are identical.

It might be thought that this follows immediately
from Sec. 6, where we showed that the solutions of
Egs. (6.13) and (6.14) are identical. The divergence
spoils this result, however, as the following mathemat-
ical example shows. Think of functions FY(f) and
FX(t) [where F¥(«) and FX(x) are analogous to
Y () and X(0), respectively] defined as

FY()=n""4 (nt)Lexp (—nt)—17], (7.12)
FX()y=n""4 (nt)[exp (—2nt)—1], (7.13)

where # and ¢ are dimensionless variables analogous to

with all other nonzero F,¥ and FX diverging as t—o.
This example shows that because of the divergence it
must be proved directly, by dynamical arguments, that

Yo()=Xe(0);  Yi(o)=Xi(0) (7.17)

if we are to establish the equality of the first two terms
in the density expansion of the diffusion coefficient as
computed by the two methods. We will give the required
proof in Sec. 8.

With regard to the second question, no definite
answer is available. To see why this is so, we consider
a slight modification of our mathematical example.
Suppose we now define a function F(¢) as

F(t)=w"4 (nt)[exp (—nt)—1]  (7.18)
with density expansion
F(f)= 3 wF,(2) (7.19)
r=0
so that
Fo(0)=1; Fi(w0)=—1 (7.20)

with all other nonzero F, diverging as t—. If we try
to write
F(o)=n1—14---, (7.21)

we see that the terms beyond the first two in Eq. (7.21)
add up in just such a way as to give +1 since we know
from Eq. (7.18) that

F(o)=n"1, (7.22)

This example clearly shows that it is not impossible
for the terms beyond the first two in D to combine in
such a way as to modify the first two terms. Whether
or not this happens depends of course on the system
under consideration. It is generally assumed, for a gas
of molecules interacting via short-range repulsive forces,
that the first two terms in the density expansion of the
diffusion coefficient are not modified by the remaining
terms which diverge and are neglected. There is, strictly
speaking, no sound basis for this assumption. It is clear
from the example that a proof of the assumption would
require that we be able to evaluate L() or B(«) for
this system, either directly or else by means of a fully
convergent density expansion (not necessarily a power
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series expansion). At present, it is not known how to
accomplish this, and thus a rigorous answer to question
(2) is not available.

For the sake of simplicity, we shall assume that the
terms beyond the first two in Egs. (7.8) and (7.9) do
not in fact modify the first two terms. We emphasize,
however, that this is an assumption, and that it has not
been proved.

8. COMPARISON OF THE { AND ¢ METHODS FOR
THE FIRST TWO TERMS IN THE DENSITY EX-
PANSION OF THE DIFFUSION COEFFICIENT

In Sec. 7 we saw that in the ¢ method, D could be
written as

1 P Y (oo 0)dees
L 3-2 t ACORR AR CEY
where
Ly()Yo(0)=—¢(1)p1/m, (8.2)
Ly(0)Y1(0)=—Ls(0)Yo()
+ lim Ly () S:(1)¢(1)Ry;  (8.3)
in the e method we had
1 P~ _
D=" / dpy P [ K (0) + X0 (0) - -+ T, (8.4)
3 m
where R
By(0)Xy(0)=—¢(1)p1/m, (8.5)
By(0)X1(0) = — By( ) Xy(0). (8.6)

In this section we shall show that both methods give
the same result for the first two terms of the density
expansion of the diffusion coefficient.

We first consider Egs. (8.2) and (8.5). From Egs.
(5.14) and (4.8) we have

Ly(t) =By (t) =0s(2). (8.7)
It follows immediately that
By()=Ly(), (8.8)

so that X((0) and Y,( ) satisfy the same equation and
are equal insofar as the solution to this equation is
unique (we shall see below that the solution is indeed
unique).
To put this result in a more familiar form, we define
A(p) by
¢(p1) A(p1) =Xo(0) =Yo(). (8.9)
Using the first of Egs. (3.18) and (3.20) we may write
Eq. (8.2) as '

/ debiaS_o.(12)W(12)(2)6(1) A (pr) = — b (p1) pr/m,

(8.10)
while (8.5) may be written

lim ¢ / drsraG (12, W (12)6(2) (1) A (py)

>0

=—o¢(p)p/m. (8.11)

The operators in Egs. (8.10) and (8.11) are of course
equal. Equations (8.10) and (8.11) are a Boltzmann
equation for A(p;). Zwanzig has shown this (1963) for
the operator in Eq. (8.11), and it has been shown by
Bogoliubov (1961) for the operator in Eq. (8.10). Thus
the previous proof of the equality of X¢(0) and Y,()
proceeded by demonstrating that Egs. (8.10) and
(8.11) both gave a Boltzmann equation, while we have
instead proved the equality of the operators in Egs.
(8.10) and (8.11) directly. For completeness we give
the Boltzmann equation (Chapman and Cowling, 1939)
resulting from Eqgs. (8.10) and (8.11). It is

1A= [dp: [ bdbdx('—p—‘;lz—')

X[A(p) —A(p) Jo(p1) o (p2)
=—a¢(p1) pr/m. (8.12)

It is well known that the solution for A is unique up
to a vector solution of the homogeneous equation
I(A(p1))=0. Since no such vector is available, A is
unique and Eq. (8.9) is established.

Having seen how the equivalence of the ¢ and e
methods for computing D is established at the Boltz-
mann level, we turn to the question of the equivalence
of the density-independent contributions to D. Here we
must show that

Yi()=X,(0). (8.13)

This will be demonstrated by showing that the integral
equations (8.3) and (8.6) are identical.

Let us consider the operators L;(¢) and B;(#) where
Ls(t) is given by Eq. (5.14) as

Ls(2) = 0s(8) — On() [ * 4rOn(r),

0

(8.14)

and where Bs(t) is found by taking the inverse Laplace
transform of Bs(e) in Eq. (4.8):

B (1) =05(1) — / '4102(7)02(1—1). (8.15)
0

The elimination of Os between Egs. (8.14) and (8.15)
leads to*

Ls(t) = B3(1) — /t dr[Ls(t) — Lo(7) JLa(i—7)  (8.16)
0

* For the case of hard-sphere interactions, where' Ly (f) = Ly(7) =
Ly( ), one has

L(t) =By (1)
(Kawasaki and Oppenheim, 1964b). For the same reason, the
right-hand side of Eq. (8.18) vanishes so that the integral equa-
tions (8.3) and (8.6) are identical for hard spheres. Similarly, one
sees from Eq. (A.40) in the Appendix, that

Ls(t) =Bs(¢)
for hard spheres.
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so that Eq. (8.3) can be written
By(0)Y1(w)=—Bs(=)Xs(0)
+ lim { / ' dr[ Ls(8) — Lo(7) JLa(t—17)
0

t>co

xmoo)+Lz<t>st<1>¢<1>m}. (8.17)

In writing Eq. (8.17) we have made use of Eqgs. (8.8)
and (8.9).

We must now establish the identity of Egs. (8.17)
and (8.6). This is most conveniently accomplished by
using the relation

L) S(D$MRi= [ drlLa() ~ L) J6(D) B
0

(8.18)
which can be established by observing that
Ly(1) S:(1)¢(1) Ri= Lo($) ¢ (1) [Ru+ (pat/m) ] (8.19)
and that

~ [anmem B = [(ar D 411,
0 0
—LMs(DR.  (820)

In writing Eq. (8.20) we made use of the relation
pi/m=3(1)R;=3C(12)R, (8.21)
and the explicit form of L, given in Eq. (3.18) as

Ly()= f debuS_(12) W (12)$(2).  (8.22)

Using Eq. (8.18), the term in braces in (8.17) can now
be written as

t_m {f dr[Ls(8) - Lz(f)][Lz(t~T)Yo(°°)+¢(1) ]}

(8.23)

In order to discuss the limit in (8.23) we need to
know the behavior of L,(f) as . If we examine
Ly(2) as given by Eq. (8.22), we see that S_;(12) moves
particles 1 and 2 from their initial phase points to their
phase points at time (—¢). However, the operator 6;,,
defined in Eq. (2.13), will be zero unless the particles
are initially within the range of the force, 7). Therefore,
the operator S_,(12) moves particles 1 and 2 from their
initial phase points where | Ri—R, | Z7, to their phase
points at time (—¢?). Since the force is repulsive and
short range, the particles are separated after a finite
time on the order of the duration of a collision, 7, where

(8.24)

Thus for all times £2 7, the particles are separated and
®(| Ri—R; |) =0, so that W (12) = 1. Also the momenta

ToRIM? | ) i |—1.
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— TIME=-1t

F16. 2. The effect of Ly(#). Molecules 1 and 2 must be initially
within the range of the force, 7o, to make any contribution to
Ly(f). For times ¢ greater than the time of a collision, 7o, the
molecules are separated, have attained their asymptotic momenta
Py’ and py/, and L, (¢) takes its asymptotic value, Ly(

p: and p, will have attained their asymptotic values py/
and py/, i.e.,

Lo(f) = Lo(0) if

A diagram is given in Fig. 2. _

We now use the result of Eq. (8.25) to discuss the
limit in Eq. (8.23) for large ¢ (£>7,). Since Ly(7) in
Eq. (8.23) approaches its asymptotic value in a time 7,
the integrand of the 7 integral vanishes for 7> 7. Thus,
as ¢—>, we may replace Ly(¢—7) by Ly(). By using
Eq. (8.2), we see immediately that the limit in Eq.
(8.23) is zero. Equation (8.17) is therefore

By(e0)Yy(e0) = —Bi()Xy(0), (8.26)

which establishes the equality of the inhomogeneous
terms in the integral equations (8.3) and (8.6).

We have thus proved that both integral equations
(and their solutions) are identical, or that the first
density correction to the coefficient of self-diffusion is
the same in both ¢ and ¢ methods.

£ 70. (8.25)

9. CONCLUSION

We have given a unified discussion of the ¢ method
(due to Zwanzig) and the ¢ method (due to Cohen,
Dorfman, and Ernst) for computing the density expan-
sion of transport coefficients from time-correlation func-
tions. We had in mind a system which was a moderately
dense gas with repulsive short-range forces. Taking the
self-diffusion coefficient as an example, we saw that it
could be computed in a density expansion from

{lim Y(py,¢) (¢£method)
>0
/ (9.1)
73 ‘' lim X(py, ) (e method)

>0

provided a density expansion of the first time-correla-
tion functions Y or X was available. A straightforward
cluster expansion of the first time-correlation functions
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was obtained in Sec. 3 which led to a density expansion
of Y and X. This expansion, which we called the naive
density expansion, was clearly unsuitable for computing
a density expansion of D since #none of the terms in the
expansion existed in the appropriate limit.

This difficulty was surmounted, at least for the first
two terms in the density expansion of D, by making a
rearrangement of the naive density expansion. The two
procedures commonly used to do this, the e method and
the ¢ method, were outlined in Secs. 4 and 5, and in
Sec. 6 it was shown that they led to the following two
integral equations for Y («)=X(0):

lim B(£)X(0) = —¢(1) py/m,

t->o

(9.2a)

lim ()Y () = —g(1)p/m-+ lim L) Si(1)$ (DR

t>x
(9.2b)

The utility of these integral equations lay in the
possibility of obtaining from them density expansions
of Y() and X(0) in the form

Y (o) =n"Yo()+Yi(w)+--+, (9.32)
X (0) =#X(0) + X (0) 4+ - - (9.3b)

In Sec. 7 the density expansions of the integral operators
B(t) and L(2)

BU)= 35 wBua(0);

r=1

L(t)= 2 wLmn(D), (9.4)
r=1

were introduced into Egs. (9.2). Provided that the
limit #— in (9.2) and the sum over powers of the
density in (9.4) were interchanged, well-defined integral
equations for Y, and Y; were obtained in the ¢ method,
as were well-defined equations for X, and X, in the €
method. The equations for Y, and X, depended, through
L, and Bs, upon the dynamics of two interacting mole-
cules in the gas, while the equations for Y; and Xi
depended, through Ls and Bs, upon the dynamics of
three interacting gas molecules. We mentioned that the
equations for the terms in the expansions (9.3) beyond
Y: and X, failed to exist because of the well-known
divergence of the operators B,(¢) and L,(¢) for r>3 as
{—ro . Therefore, without further resummations the ¢
and e methods could only give the first two terms in the
density expansions of transport coefficients.

We studied a mathematical example which showed
that because of the divergence it was necessary to prove
explicitly (by dynamical arguments) that

Yo()=Xp(0);  Yi(w)=X1(0).  (9.5)
Equation (9.5) did ot follow directly from the equality
of Y(«) and X(0). We gave the proof which estab-
lished Eq. (9.5) in Sec. 8 and showed thereby that the

¢.and e methods as formulated in the literature and in
this paper gave the same results for the first two terms

in the density expansion of the diffusion coefficient:
D=w"'Dy+Dy+-- - (9.6)

A similar result is established for the shear viscosity
n=notnmt--- (9.7)

in the Appendix [a different approach to this proof for
the viscosity has been given by Kawasaki and Oppen-
heim (1964a)].

The mathematical example also showed that it would
not be impossible for the divergent terms, beyond the
first two in Eq. (9.3), when properly resummed, to
modify either or both of the first two terms in Eq. (9.3).
This could, in principle, affect the values of either of the
first or second terms in the density expansions of trans-
port coefficients as computed from the ¢ and e methods.
Whether or not this happens is in fact not known, and
we wish to stress that one cannot have a truly rigorous
derivation of the Boltzmann Eq. (8.12) until this question
is settled. In order to assert with complete confidence
that the first two terms are not modified, it would be
necessary either to evaluate B(w) or L(«) in (9.4)
in closed form (a task more difficult than evaluating the
partition function in closed form) or to have available
a systematic procedure which would give either B ()
or L(») as a density expansion (not necessarily a
power series) with finite coefficients. Since it is not
known at present how to accomplish either of these
procedures, it is usually assumed, for gases with short-
range repulsive intermolecular forces, that the first two
terms in the density expansions of transport coefficients
can be correctly computed from the ¢ or € method, and
that they are unmodified by the divergent terms in
(9.6) and (9.7) which are neglected. With this assump-
tion, either the ¢ or the e method provides the machinery
to compute the first two terms in the density expansion
of transport coefficients, and we have seen that the
results are independent of the method used.

Because of the divergence of the operators B, and L,
for >3, the analogy between density expansions of
equilibrium properties (virial expansion) of a gas and
the density expansions of its transport properties breaks
down at low densities. Thus, in the nonequilibrium case
(in contrast to the equilibrium situation) it is not
possible to obtain a power series expansion of transport
coefficients in the density with coefficients depending
only on the interactions of 7 particles by using the
¢t and e methods, at least if 7 is greater than 3. It would
appear that collective effects become important at
rather low densities when density expansions of trans-
port coefficients are attempted.

In order to obtain terms beyond the first two in a
density expansion of transport coefficients, it is neces-
sary to make a resummation of the divergent operators
in Eq. (9.4). Kawasaki and Oppenheim (1965) have
suggested a procedure for resumming certain terms in
Eq. (9.4) in the e method. In essence this resummation
has the effect that the free motion, between binary
collisions, of the four molecules which contribute to B;
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is modified (damped) by binary collisions with all other
molecules in the gas. These considerations lead to a
modified B, operator which is not dlvergent and which
can be used to obtain the third term in the density
expansion of transport coefficients. This method of
resummation indicates that the third term in the density
expansion of the self-diffusion coefficient should have a
density dependence of # log #, while the third term in
the shear viscosity should behave as #? log # (Dorfman,
1967). For various model systems, the effects of further
resummations have been discussed by Weyland and
van Leeuwen (1968), Hoegy (1967), Lebowitz and
Percus (1967), and Hauge and Cohen (1967, 1968).

APPENDIX

In this Appendix we outline briefly how the results
of the text for the diffusion coefficient can be generalized
to the shear viscosity n. The notation is in general the
same as in the body of the paper, and we shall use
boldface letters to denote certain operators (e.g., B,
L, O; not vectors), generalized to the viscosity.

The viscosity is given by the following time-correla-
tion expression (Mori, 1961):

n= lim hm—- dte““(] S_uJ) (A1)
0 o©
appropriate to the e method, for the ¢ method one has
an expression analogous to Eq. (2.6). The dyadic
current J is given by

iPi a¢u}
J= I )
Z{ m } 1<§<N{ 7 ory;

where r;=R;—R;, and where {4.5} stands for the
traceless symmetric part of the tensor 4,5 (Greek sub-
scripts stand for , y, or z):

{Aaﬂ} E%(AaB‘Jf‘Aﬁa) "‘%&xﬁ Z Aw-
v

(A.2)

(A3)

In analogy to Sec. 2, we introduce the time-correla-
tion functions

X(12+++5, )= lim V* / Qtpre - danS_ofud  (A)

in terms of which the viscosity can be expressed as
n=nrt+"ng. (A.5)

The kinetic part 7 is given by
—2508) [ apBtim X (2,9, (A6)
>0

where the notation shows explicitly that X (1, £) depends
only on p; and not on Ry. The potential part 54 is given

by
1.9 0%sp ..
n¢=—25(n*8) | dpidpedrisre —:lim X (12,¢) (A.7a)
(<) STRPIRY

=& (128) / dpidpadtupurufn:lim X (12,¢)  (A.7b)
>0

with pis=p1— p2. Equation (A.7b), which is convenient
for later use, can be reduced to (A.7a) by partial
integration with respect to p; and p.. The expressions
for the ¢ method corresponding to Egs. (A.6) and
(A.7) are obtained by replacing lime.o X (12 .5, €)
by lime.q ¥ (12++ -5, £), where Y (12-++s,8) is defined

by
A ‘ A
Y1205, )= / &R (12-+5,7).  (A8)
0
Using the identity
N
J= 33 {pR) (A9)
=1
in the definition of X, we may write
Y (124405, ) =§(12+ -5, 8) —§(12-++5,0), (A.10)
where
§(12-++5,1)
= lim V* / dtnse - -dinSofn 3 {—pRi. (A1)
=1

Following the procedure of Sec. 3 we now derive the
naive density expansion of #(1,f). Analogous to Eq.
(3.3) we find

g(1,¢)=5~t(1)[1+ /tdrs,(1)6(7)]g(1,0), (A.12)
0

where

9(1,0)=—{pRu}$(1) (A.13)

and
O () = lim V/dx,-.-de
X T 0uSfw 2o Pulo(DT (Alda)
1<i<GN b=t
—n [ dnt(12,05(106(D8(2) X AL

o / duvads (123, 1) g(123) (1) $(2) 6 (3)

X Z Pulo(1) T+

=1

(A.14b)

The permutation operator Py; interchanges the labels
1 and 4. In deriving Eq. (A.14) we have used the rela-
tion [dp:§(1, 0) =0. The operator O (¢) can be expanded
in powers of the density

0= 3w,

ra=]

(A.15)

and it follows immediately from Sec. 3 that the 0,
operators can be obtained from the O, operators in
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Eq. (3.18) provided the following replacements are
made everywhere in Eq. (3.18):

#(12¢+ 45, )p(2) + + -9 ()7 (125, 1)
Xo(16(D)-+-4() 1 PLsDT (A16)
We have thus obtained the naive density expansion of
7(1,¢) in the form
9(1,)=5_(1)§(1, 0)
+ 5w [ 480 )0ra(1,0). (A1)

In contrast to Sec. 4 we now apply the e method to
v(1,¢) instead of X (1,¢). Taking the Laplace trans-
form of Eq. (A.12) and inverting this equation, we
obtain

[1+0(e) I7G(1, €)y(1, &) =§(1,0).
Next we introduce the operator B(e) defined by

(A.18)

1—-B(e)=[140(e) I (A.19)
and write its density expansion as
B(e)= D wB,u(e). (A.20)

r=1

It is clear that the operators B,(¢) have the same rela-
tion to O,(¢) as do the B,(e) to the O,(¢) in (4.8).
Since it follows from (A.8) and (A.10) that

ey(1,€)=X(py, €)+7(1, 0), (A.21)

we obtain, from (A.18), the resummed equation® fo
X (pl: E) :

[e—eB (&) 1X (py, €) = {p1pr/m} $(1)
—B(e)G(1, €)¢(1) {pR4}.

In deriving this equation we have observed that

(A.22)

G1(1,e) X(p1, e) =eX (py, €) (A.23)
and that
[e—G™(1, €) 19(1, 0) =3C(1) {pRi} (1)
={pipy/m}e(1). (A.24)

The resummation of the first time-correlation func-
tion in the ¢ method parallels the treatment in Sec. 5.
We derive an equation for ¢(1,¢) by differentiating

*1In Sec. 4 of the text, we could just as well have applied the
e method to y(1, €) for the diffusion coefficient. We would then
have obtained the following equation:

[e—eB(e) IX(py, €) =[¢ (1) p1/m]—B(e) G1(1, )¢ (1) Ry
One can show directly from the definition of O that
0(e)G™1(1, )¢ (1) R =0,
which implies in turn that
B(e)G™(1, €)p(1) Ry =0,
so that Eq. (4.7) is recovered.

(A.12) with respect to time:
a9(1,2) /ot=—5e(1)§(1, ) +0(1)§(1,0). (A.25)

In Eq. (A.12) O(7)j(1, 0) is independent of Ry. This
can be verified by replacing R; by Ri+a and using
Egs. (A.13) and (A.14) and the conservation of total
momentum. We may, therefore, replace S,(1) by unity
in Eq. (A.12) and solve for (1, 0) to find

i1, 0) =[1+ /0’ O (r) ]_1&(1)@(1’ f). (A.26)

Eliminating §(1,0) between (A.25) and (A.26) and
using (A.10) gives the resummed equation for Y (py, ¢) :

oY (py, 1) /3t—L() ¥ (py, 1)

={pip/m}é(1) —L(#) S:(1) (1) {p:Rs}. (A.27)
We have defined L(¢) as
L() =6(t)[1+ / "0 (r) ]’1 (A.28)
0
and its density expansion as
L= 3 wLeu(d). (A.29)

7=l

The coefficients L, are expressed in terms of O, in the
same way as L, is given in terms of O, in Eq. (5.14).
As in Sec. 6, one may make a formal comparison of
the resummed equations (A.22) and (A.27) in the
limits e—0 and #— 0, respectively. However, if a density
expansion of the resummed equations is considered, one
finds that the operators B,(¢) and L,() have the same
divergent behavior (o) for >3 as do the operators
B,(#) and L.(f) in the case of the diffusion coefficient.
Therefore, all of the remarks of Sec. 7 apply to the
viscosity as well, and one has to establish explicitly the
equivalence of the results of the two methods for the
shear viscosity, to lowest and first order in the density.
If one assumes expansions of the form

X(0)=n"X0(0) +X1(0)+- -+ (A.30)

and
V(w0)=n1Pp(0)+Fi(0)+---  (A.31)

in which for convenience of notation the argument p,
is dropped, the following well-defined equations are
obtained:

B(0) Xy(0) = — {pipy/m}é(1),
By(0)X1(0) = —Bs () X,(0)

+ lim [ﬁz(t)—l— / ‘ dfﬁz(f)sc(1)]¢(1>{plnl}, (A.33)

t—»>

(A.32)

and R
Ly() Yo()=—{pipr/m}e(1),
Ly(0) Vi(0)=—Ls(0) ¥y(w)
+ lim Ly(1) S(D (1) {pR:}. (A35)

(A.34)
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One has immediately that

By(t) = 0s(t) = La(¥) (A.36)
which implies
X,(0)=Yo(). (A37)

To study the equivalence of Egs. (A.33) and (A.35)
we note that (A.33) can be written

Ba(0)X1(0) = —Bs () X,(0)

+ lim [Lz(t)¢(1) (o) + [ pere {plpl}]

t->c0 7
(A.38)

where we have used Egs. (A.36) and (A.24). Further,
since

Lo(2) S:(1) (1) {piR1} =La () 6(1) { piR4}
+ [ ()6 (1) {p—f} (A.39)

and

L©)=Bi()~ [ #La()~La() TLalt=7), (A0)

(1]

we may write Eq. (A.35) as
By () F1(20) = —By(0) Xo(0)

+ lim [L2<t)¢(1) {pR:}+ /0 L)1) {%}]

t>0

+ lim

t—>oo

X[La(t—7) Yol ) +6(1) {pipy/m}], (A41)

where we have used Eqs. (A.36) and (A.37). The argu-
ments of Sec. 8, along with (A.34), show that the second
limit in Eq. (A.41) is zero. This establishes the equiva-
lence of Egs. (A.33) and (A.35), so that their solutions
Y1() and X1(0) are also identical.

Thus the e and ¢ methods give the same results for
the first two terms in the density expansion of the
kinetic part of the viscosity, 7.

So far, our treatment of the viscosity has been limited
to a discussion of 7. We have seen that the methods for
computing and comparing the first two terms in the
density expansion of 7, are almost identical to the
methods used in the text to discuss the diffusion coeffi-
cient. However, in order to give a complete discussion
of the first two terms in the density expansion of 7, it
is necessary to investigate the contribution of 74. For-
tunately, the resummation of the two-particle time-
correlation function is already contained in the fore-
going.

Let us now briefly discuss the e method for the func-
tion ¥(12, €), which according to Egs. (A.8) and (A.10)
is related to X (12, ¢) by

X(12,¢) =ey(12,¢)— (12, 0).

t dr[Ly(8) —La(7) ]
0

(A42)
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When Eq. (A.42) is used in Eq. (A.7) to compute 74,
7(12,0) does not give any contribution, so we need
only find a resummed expression for ey(12,¢). We do
this by writing Eq. (A.11) as

y(12, &) = lim szdxg---de

XG(e)fw §: Pulo(DT9(1,0) (A43)
so that

By(12, €) = Lim V* f dige » + danbra

XG(f 3 PLs() TLI+0O T

X[eX(p, 0 +G7(1,6)7(1,0)], (A44)

where we have used Egs. (A.18) and (A.21). In order
to find the first density correction to 74 via Eq. (A.7b)
one only needs Eq. (A.44) to lowest order in the density:

lim ef19y(12, €)

>0

=z"1lim er (12, ) W(12)
e

X[¢(2) Xo(p1, 0)+(1) Xo(pe, 0) ]+ (A.45a)

=n11lim #(12, ) W (12)

X[$(2) Po(p1, ©)+¢(1) Yo(ps, ) J++++. (A4Sb)

All of the above remarks apply directly to the  method
for the resummation of Y (12, ¢) or (12, ¢) as well, and
we find

012@(12) t)

N
= lim V2 / drge + ~dunbieS_s fx > Pul¢(1) T

=1

x[1+ / td‘r(A)(T)]_l[f’(pl, H+S.(1)§(1,0)]. (A46)
0

In the limit as #—o the lowest-order contribution in
the density is obviously identical to Eq. (A.45b).

We have shown, therefore, that the ¢ and ¢ methods
both give the same results for the first two terms in the
density expansion of the viscosity

n=not+nmt---. (AA4T)
GLOSSARY

The notation B(B) means that both B and its
Laplace transform B are used.

B(B) Single-particle correlation operator
for the e method [Eq. (4.5)]

B.(B,) Coefficient operators in the density
expansion of B [Eq. (4.6)]

B(B) B for the viscosity [Eq. (A.19)]

B.(B) B, for the viscosity [Eq. (A.20)]
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Self-diffusion coefficient [Eq. (2.1)]
First two terms in the density expan-
sion of D [Eq. (9.6)]

Canonical equilibrium distribution
[Eq. (2.3)]

N-particle distribution function
(Sec. 1)

Equations (7.12),
(7.18), and (7.19)
Equilibrium j-particle position dis-
tribution function [Eq. (3.11)]
Integrands of higher-order terms in
the density expansion of g(12---5)
[Eq. (3.12)]

Laplace transform of S_;
(3.21)]

Laplace transform of S_Q [Eq.
(3.22)]

Hamiltonian for the gas [Eq. (2.9)]
Liouville operator [Eq. (2.7)]
Free-particle Liouville operator [ Eq.
(2.12)]

Boltzmann collision operator [Eq.
(8.12)]

Current (dyadic) for the viscosity
[Eq. (A2)]

Charge, particle currents [Eq. (1.1)]
Boltzmann’s constant

(7.13), (7.15),

[Eq.

Single-particle correlation operator
for the ¢ method [Eq. (5.11)]
Coefficient operators in the density
expansion of L [Eq. (5.13)]

L for the viscosity [Eq. (A.28)]

L, for the viscosity [Eq. (A.29)]
Molecular mass

N/V=number density

Number of molecules in the gas
Single-particle correlation operator
[Eq. 3.4)]

Coefficient operators in the (naive)
density expansion of O [Eq. (3.17)]
O for the viscosity [Eq. (A.14)]

O, for the viscosity [Eq. (A.15)]
Momentum of all molecules in the
gas

Momentum of molecule ¢
Momentum of molecule 7 after a
collision

Pi—DPj

Permutation operator [Eq. (A.14)]
Heat current [Eq. (1.1)]

Range of intermolecular force [Eq.
(8.24)]

3o, 31, Iz

u
U(12[3+++5, )

Vv
W(12--+7)

X

X4

X (X)

Y.
Y (1)
Y
Zn

A
€

R,—R;
Position of all molecules in the gas
Position of molecule %

Time-displacement (streaming) op-
erator [Eq. (2.5)]

Free-particle
[Eq. (3.2)]
Time

streaming  operator

Absolute temperature

General transport coefficient [Eq.
(1.3)]

Coefficients in density expansion of
a general transport coefficient [Eq.
(1.3)]

Local average molecular velocity
(Sec. 1)
j-Particle
(3.8)]
Volume of the gas

First term in the density expansion
of g(12--+5) [Eq. (3.13)]

Phase variable of all molecules in the
gas

Phase variable of molecule 7
Single-particle correlation function
for the self-diffusion [Eq. (2.14)]
Coefficients in the density expansion
of X(0) [Eq. (7.4)]

Correlation functions (dyadic), anal-
ogous to X (X), for the viscosity
[Eq. (A4)]

Coefficients in the density expansion
of X(0) [Eq. (A.30)]
Single-particle correlation function
used in the ¢ method [Eq. (5.4)]
Correlation functions (dyadic), anal-
ogous to y, for the viscosity [Eq.
(A11)]

Time integral of X; the single-particle
correlation function used in the ¢
method [Eq. (5.1)]

Coefficients in the density expansion
of Y() [Eq. (7.3)]

Correlation functions (dyadic), anal-
ogous to Y, for the viscosity [Eq.
(A.8)]

Coefficients in the density expansion
of V(=) [Eq. (A31)]

Canonical partition function [Eq.
(24)]

1/kT

Equation (8.9)

Laplace transform variable

cluster operator [Eq.
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7 Shear viscosity [Eq. (A.1)]

M0, M First two terms in the density expan-
sion of 7 [Eq. (9.7)]

My N Kinetic, potential contributions to
the viscosity [Egs. (A.6), (A.7)]

0 Nonlinear transport coefficient [Eq.
(1.2)]

0:; Interaction part of Liouville opera-
tor for molecules ¢ and j [Eq. (2.13)]

A Coefficient of thermal conductivity
[Eq. (1.1)]

o Coefficient of electrical conductivity
[Egs. (1.1)]

To Time of an intermolecular encounter
[Eq. (8.24)]

F(1ee+5,0) (7) j-Particle dynamical operators ap-
pearing in the naive density expan-
sion of O [Eq. (3.15)]

¢ Electrostatic potential [Eq. (1.1)]

¢ (2) Normalized Maxwell-Boltzmann
momentum distribution function for
molecule 7 [Eq. (3.5)]

o Total potential energy of the gas
[Eq. (2.9)]

By Potential energy of molecules 7 and §

[Eq. (2.10)]
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Review of Some Experimental and Analytical
Equations of State

J. ROSS MACDONALD
Texas Instruments Incorporated, Dallas, Texas 75222

Four different polynomial equations and seven nonlinear equations, all applicable to both solids and liquids, are com-
pared theoretically and statistically. Detailed curve-fitting results are presented for recent water and Hg isothermal
data. Uncommonly used methods of statistical analysis and comparison, including generalized least squares, are described,
justified compared to usual methods, and applied. In general, certain polynomial equations are found to yield significantly
better fits of many different water and Hg data sets than any nonlinear equation considered. The Tait and Murnaghan
equations, in particular, lead to strong systematic behavior of all residuals calculated herein with them, showing that
they are inadequate models for all the data considered. Even a nonlinear equation derived from a second-order expansion
of the bulk modulus K in powers of the pressure, which is shown to include several frequently used equations as special
cases, is inferior to selected polynomial equations but is still the best equation examined when appreciable extrapolation
is necessary. The method of volume normalization almost always used heretofore in statistical fitting of equations of
state to P-V data is shown to be inadequate and two alternative approaches are proposed and employed herein. Critical
comparison of previous analyses of water and Hg data is made with the results of the present, more refined approach. The
likelihood of important systematic errors in P-V data, particularly data derived from ultrasonic measurements on liquids
under pressure, is pointed out and high probability of their occurrence in some of the data analyzed is demonstrated.
Even the combination of the best data apparently available and the use of better statistical-analysis methods than have
been employed before does not yet allow one to obtain highly accurate values of the Ky’ parameter of water or Hg, and
only an order-of-magnitude estimate of the Ko’/ parameter seems currently possible. Nevertheless, it appears that near
room temperature Ko’ is positive for water and probably negative for Hg and that its appreciable magnitude for both
materials renders a second-order expansion of K inadequate.
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