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A general introduction to and bibliography for transport phenomena in gases is provided. Methods for obtaining
density expansions of transport coefficients from time-correlation functions in a moderately dense gas with short-range
repulsive intermolecular forces are considered. A unified treatment of the two methods appearing in the literature (the
t method due to Cohen, Dorfman, and Ernst and the e method due to Zwanzig) is given. Both of these methods lead
to integral equations from which the first two terms in the density expansion of transport coefficients can be computed.
However, because of many-body effects in the gas, both methods diverge when used to compute terms beyond the first
two in these density expansions. Because of this divergence, it is necessary to prove that the t and e methods give the
same results for the first two terms in the density expansion of transport coeQicients. The required proof is provided,
and we conclude that either the t or q method can be used to compute the first two terms in the density expansion of
transport coeKcients provided one assumes that the remaining (divergent) terms, which are neglected, do not contribute
to the first two terms.
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1. INTRODUCTION

Fourier's law of thermal conduction, Fick's law of
diGusion, and Ohm's law of electrical conduction are all
examples of linear transport equations. Such laws are
used to describe the final stage of a system's approach
to equilibrium, if the system was not originally in
equilibrium, or the behavior of a system in an externally
maintained steady state in which there is a small but
constant Bow of some quantity. ln general, these linear,
macroscopic laws all relate the Qux of some quantity to
a gradient in another quantity, i.e.,

q= —X grad T, Fourier's law,

J,=—a grad g, Ohm's law,

J„= Dgrad rt, Fick—'s law. (1.1)

That is, the flows in heat, charge, and particles, q, J„J„,
are proportional to the gradients in temperature T,

*Work supported in part by the National Science Foundation.
t Work supported in part by the U.S. Army Research 05ce

(Durham) Grant AROD-31-124-G783 and in part by the U.S.
Air Force Ofhce of Scientific Research Grant AFOSR-1015-67.
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electrostatic potential P, and concentration rt, respec-
tively. The proportionality constants are called trans-
port coeS.cients. Here we have illustrated the coeKcient
of thermal conductivity X, the coeKcient of electrical
conductivity cr, and the coeKcient of diGusion D.

One of the major problems of nonequilibrium statis-
tical mechanics is to give a derivation of these laws and
their possible gent, ralisations, based upon a knowledge of
the microscopic properties of the systems involved. In
particular one would like to know (1) the range of
validity of the macroscopic laws and the correction to
them whenever they are no longer adequate to describe
the physical situation, and (2) the theoretical predic-
tions for the values of the transport coeKcients and
their dependence upon the important parameters (such
as temperature, density, etc.) that specify the state of
the system.

To guide the reader through the sometimes intricate
logic of the discussion below, we have outlined the
major theoretical developments in Fig. 1.

The most important early discussion of these prob-
lems was based upon the Boltzmann equation. t A brief
discussion of the Boltzmann equation and its solutions
may be found in Uhlenbeck and Ford (1963).g The
Boltzmann equation describes the nonequilibrium
behavior of the single-particle distribution function of
a dilute (only binary collisions are taken into account),
monatomic gas. To obtain the transport coefhcients for
the dilute gas from the Soltzmann equation, one as-
sumes that the system is close to a local equilibrium
state, i.e., a state where equilibrium is established in
volumes which contain a large number of particles but
are small compared to the total volume of the system.
Each small volume has its own (local) temperature T,
density e, and mean velocity u, but these quantities can
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Fro. 1. The logical relationships among the various developments in the theory of transport coeScients.

be diferent in neighboring volumes. If one then expresses
the single-particle distribution function as a local equi-
librium distribution plus a correction proportional to
the gradients in the local equilibrium quantities, a
linearized version of the Boltzmann equation can be
obtained and solved. The method of solution, due to
Chapman and Enskog (Chapman and Cowling, 1939),
depends upon assuming that the single-particle dis-
tribution function depends on time only through the
time variation of the local equilibrium variables,
namely T, e, and u. One obtains, on the basis of this
assumption, the so-called "normal solutions" to the
Boltzmann equation, that are presumed to be valid for
a system either in a steady state, or close to equilib-
rium. In the Chapman —Enskog method, these solutions
are used to establish a theoretical basis for the macro-
scopic laws and to obtain explicit expressions for the
transport coefFicients. These expressions are extremely
useful and agree quite well with experiment for dilute
gas systems.

From the Boltzmann equation it is possible. to",obtain
a generalisatiort of the macroscopic laws, Eqs. (1.1), in

one direction (leading to so-called Burnett and super-
Burnett hydrodynamics) by taking into account, in a
systematic way, corrections to the linearized Boltzmann
equation and including nonlinear terms (Burnett, 1935;
Chapman and Cowling, 1939; Grad, 1949; 1962; Kald-
mann, 1958). This procedure leads to expressions for
the Quxes which contain powers of gradients and higher-
order gradients in the macroscopic variables. For
example, Fourier's law becomes

q= —A, grad T

+ (8 div u grad 2'+other terms of the same order)

+higher-order terms in the gradients. (1.2)

These corrected lavrs are nonlinear and apply only to
dilute gases since they are derived from the Boltzmann
equation. However, the Boltzmann equation is not
adequate for dense systems where more than binary
collisions are important.

To extend the results of the Soltzmann equation to
gases of higher density, one needs a procedure for
deriving corrections to the Boltzmann equation which



298 REVIEWS OZ MODERN PHYSICS ~ APRIL 1969

takes into account, in a systematic way, the fact that
the gas is no longer dilute and that collisions between
three, four, or more molecules are now important.
(Such a gas, not dilute but not near to condensing, is
said to be moderately dense. )

As originally given by Boltzmann, the derivation of
his equation for a dilute gas was intuitive and not based
in a truly rigorous way on the laws of mechanics. Lacking
Boltzmann's intuition, no one has succeeded* in general-
izing the derivation of his equation to obtain intuitively
an equation which describes the behavior of a moder-
ately dense gas. Rather, all generalizations of the
Boltzmann equation have been obtained by solving
Liouville's equation. Although this procedure is quite
formal, it does have the advantage that Liouville's
equation is a consequence of the laws of mechanics, so
that a generalized Boltzmann equation derived from
Liouville's equation rests on a sound theoretical founda-
tion (provided of course that one can justify all the
steps in the derivation!) . For a dilute system, a general-
ized Boltzmann equation derived from Liouville's equa-
tion should, of course, reduce to Boltzmann's equation,
and thus this procedure can be used to secure the theo-
retical foundations of the Boltzmann equation.

Starting with the work of Bogoliubov in 1946
(Bogoliubov, 1961), systematic derivations of the
Boltzmann equation, from the Liouville equation, in-
cluding its corrections to higher densities, became pos-
sible. Bogoliubov was, in fact, the first to give a pre-
scription for obtaining all the higher order density
corrections to the Boltzmann equation. Choh and
Uhlenbeck gave an extensive discussion of the 6rst
correction (Choh, 1958; Sengers, 1966a; 1967), a correc-.
tion that takes into account interactions of three par-
ticles in the gas. The essence of Bogoliubov's generaliza-
tion was that each higher density correction to the
Boltzmann equation takes into account the interaction
of more particles in the gas. The Boltzmann equation
itself considers only two-particle interactions (binary
collisions); the Choh-Uhlenbeck term, three-particle
interactions; and so on. Bogoliubov's methods, however,
were based upon an essumptiote, the so-called "func-
tional assumption, " that the distribution functions for
two or more particles do not depend explicitly upon the
time. Instead, these functions depend on time only
through the single-particle distribution function. The
motivation for this assumption is provided by an
extension of the ideas that are used to obtain the
macroscopic laws from the Boltzmann equation.

The more recent work of M. S. Green, E. G. D.
Cohen, and others (Cohen, 1966; 1967; 1968; Curtiss,
1967; Ford, 1965; Green and Piccirelli, 1963; Hollinger
and Curtiss, 1960; Kritz and Sandri, 1966; Ono, 1964;
Piccirelli, 1966; Stecki and Taylor, 1965) has provided
an alternate derivation of the generalized Boltzmann

*An exception is the Enskog equation (Chapman and Cowling,
1939).

equation that does not involve a functional assumption
and is therefore more rigorous. The work of Green and
Cohen is based on methods borrowed from the equilib-
rium theory of dense gases, in particular on cluster
expansion methods (De3oer, 1949; Uhlenbeck and
Ford, 1961).

Once the generalized Boltzmann equation for a
moderately dense gas is available, the transport coeK-
cients can be obtained by using methods similar to those
used for the Boltzmann equation. The equation is
linearized by expanding the distribution function about
the local equilibrium value and looking for "normal
solutions" of the resulting equations. This procedure
was first outlined by Choh and Uhlenbeck (see also
Garcia-Colin, Green, and Chaos, 1966) who used it to
compute the erst density corrections to the Boltzmann
equation transport coe%cients. Choh and Uhlenbeck
obtained an expression for the effect of three-particle
interactions on the transport coefficients, which they
were not able to explicitly evaluate. In principle, how-
ever, one could obtain an expansion for the transport
coefficients as a power series in the density. In other
words, the development of a generalized Boltzmann
equation led rather directly to an expansion for trans-
port coeScients, 3, appropriate to a moderately dense
gas, in the form

5=Gp+ rs3t+rPGp+ ~ ~, (1.3)

*In addition to Zwanzig's review article (1965), there are:
Andrews {1967),Felderhof and Oppenheim (1965),Green (1961),
Kotnarov (1965),Luttinger (1964), Martin (1965),Mori (1965),
Ono (1965), Salistra (196g), Schofield (196g), and Zubarev
(1962; 1965; 1966).

where 30 is the result of the Boltzmann equation, 3~ is
the result of Choh and Uhlenbeck, and the higher 3's
are in principle known as integrals that depend on the
dynamics of four and more particles.

Before we turn to a consideration of the extent to
which the above expression for the transport coefficients
represents a completion of the attempts to extend the
theory of transport coefficients from dilute to moder-
ately dense gases, we will sketch a parallel development
in the theory of transport phenomena which also plays
a large role in the theory of transport coeScients in
gases. This development is called the method of time-
correlation functions.

Time-correlation functions represent the results of an
attempt to base a theory of the linear macroscopic
transport equations directly on the Liouville equation,
avoiding the intermediate step of a generalized Boltz-
mann equation. In essence the theory goes back to
Einstein and Nyquist, but its more recent form is due
largely to M. S. Green and later Kubo, Mori, and
others. * The basic idea of the method of time-correla-
tion functions is to consider the eGect of a local equilib-
rium state on the complete E-particle distribution
function for the system. The Liouville equation governs
the behavior of the X-particle distribution function of
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the system FN(Rt, pt, ~ ., R~, p&, 1); this function con-
tains all the available information about the system. In
the time-correlation function method, one assumes that
Ii~ is expressible as a local equilibrium N-particle dis-
tribution function plus correction terms. The local
equilibrium function depends on the local macroscopic
variables, temperature, density, and mean velocity, and
upon the position and velocities of the N particles in
the system. The correction to this distribution function
is determined by means of Liouville's equation, and by
assuming that at some initial time the system was in a
local equilibrium state and is proceeding to relax from
local to complete equilibrium. Again one can construct
"normal solutions, " now to Liouville's equation, and
obtain an expression for the corrections to local equilib-
rium in powers of the gradients of the local variables. *
Retaining only the erst term in the expansion in the
gradients, one derives again the linear macroscopic
transport equations but now with considerably general-
ized expressions for the transport coeScients. These
expressions depend upon the dynamics of all N particles
in the system and apply to any system, irrespective of
its density.

In principle one can extend the method to obtain
nonlinear transport equations, also from the Liouville
equation (Kadano8 and Martin, 1963; McLennan,
1961; 1963b; Mori, 1965; Peterson, 1967; Piccirelli,
1968; Robertson, 1967; Storer and Green, 1962; Zwan-

zig, 1964). However, this method is still in its early
stage, and the nonlinear theory is not yet fully worked
out nor understood.

The time-correlation function expressions for the
transport coefBcients depend for their evaluation upon
the solution of the equations of motion for an arbitrarily
large system and upon the averaging of such solutions
over an equilibrium ensemble. Since this procedure is
more dBBcult than evaluating the partition function for
the system, it is necessary to develop approximation
methods in order to evaluate the time-correlation func-
tion expression. For a dilute or moderately dense gas,
the same methods that have been used to derive the
generalized Boltzmann equation from the Liouville
equation have been used to evaluate the time-correla-
tion function. These methods once again lead to the
density expansion, Eq. (1.3) (Curtiss, 1967; Ernst,
Dorfman, and Cohen, 1964; 1965; Krnst, 1965; 1966;
Fujita, 1962; Green, 1961; Kawasaki and Oppenheim,
1964a; McLennan, 1963; McLennan and Swenson,
1963; Mori, 1961; Ono and Shizume, 1963; Resibois,
1964; Tolmachev, 1957; Zwanzig, 1963) .

*The basic idea of local equilibrium states and "normal solu-
tions" is also more or less implicit in those theories where linear
response theory is used to derive correlation formulas for thermal
transport coefficients LKadanoff and Martin (1963), Luttinger
11964), Felderhof and Oppenheim (1965)g. Here one employs
the hydrodynamic equations for the rate of change of the tem-
perature, density, and mean velocity, and closes this set of equa-
tions by assuming )that all remaining local thermodynamic
functions depend on'the aforementioned 6ve quantities through
the local equilibrium relations.

Thus, the development of a theory of linear, macro-
scopic transport equations and density expansion expres-
sions for transport coefficients, for gases at least, can
proceed in either one of two ways starting from the
Liouville equation: (1) via the generalized Boltzmann
equation where the local equilibrium solution appears
at a late stage in the calculation, or (2) via the time-
correlation function method where the local equilibrium
solution appears early in the calculation and the calcu-
lation then proceeds in analogy to the derivation of the
generalized Boltzmann equation. If the two methods
yield identical results, then the methods can be viewed
as completely parallel, the only diGerence being the
order in which various manipulations are carried out.

At this stage in the theory a development took place
which has seriously altered the picture presented so far.
For some time it had not been possible to explicitly
evaluate any of the higher terms in the generalized.
Boltzmann equation or in the density expansion of the
transport coefficients. One only had expressions whose
evaluation required a hmowledge of the dynamics of
systems of three, four, or more particles in the gas. It
was commonly assumed that with sufhcient patience,
these expressions could be evaluated and would lead
to a mathematically well-behaved (i.e., finite) result.
However, until this assumption was verified, one did not
really have a rigorous derivation, from Liouville s equa-
tion, of either the generalized Boltzmann equation or
the density expansion of time-correlation functions. In
particular, without an adequate discussion of the higher
terms in the series, one could not even say that the
Boltzmann equation itself was on any more secure
foundation than Boltzmann had left it. What one could
prove was that the density expansion of transport
coeKcients obtained from the generalized Boltzmann
equation, and the density expansion obtained from the
time-correlation function method were identical, pro-
vided that all terms appearing in these expressions were
well behaved (existed).

As more was learned about the relevant dynamics of
three, four, or more particles that contribute to the
density expansions, it was discovered that most of the
terms in the generalized Boltzmann equation, as well
as the corresponding terms in the density expansions of
the transport coefficients (by whatever method ob-
tained) did Not exist; that is, these terms were actually
infinite when calculated explicitly (it is customary to
say that these terms "diverge" or that there is a
"divergence" in the theory) . The exact term where the
divergence erst appears depends upon the dimension of
the system. In three dimensions, for ordinary gases, the
divergence 6rst appears in the four-body term; in two
dimensions it appears in the three-body or Choh-
Uhlenbeck term. Moreover, all the higher-order terms
in the series are divergent. Needless to say, the appear-
ance of this divergence meant that the theory as then
constructed was not correct and that practically all
previous results in the theory of transport coefficients
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for dilute or moderately dense gases were suspect,
including the Boltzmann equation. *

The divergence appeared in the four- (or three-) body
terms because the region of phase space associated with
the relevant dynamics of the particles was of in6nite
volume. This in6nite volume always appears and spoils
any attempt at explicit evaluation. For the system of
three particles in two dimensions, the divergence is
associated with certain sequences of three binary col-
lisions among the three particles. The phase space asso-
ciated with this sequence grows logarithmically in the
time between the 6rst and last of the three binary
collisions. The expressions, as given by the theory,
require that one take the limit as this time goes to
inlnity, so that this three-body term, in two dimen-
sions, diverges logarithmically.

As a result of this divergence difhculty, all the methods
used before must be re-examined carefully. The deriva-
tion of the generalized Boltzmann equation, the evalua-
tion of the time-correlation functions, and the density
development of the transport coeflicients must all be
called into question. Here we shall concentrate our
attention on one phase of this problem, the evaluation
of the time-correlation function expression for the trans-
port coefficients, since this is the simplest area in which
to exhibit all the areas of difIiculty.

Two basic methods have been used to obtain the
density development of transport coefficients for a
moderately dense gas by means of time-correlation
functions. Both methods are completely formal develop-
ments from the Liouville equation, and each leads to an
integral equation for the time-correlation function that
determines the transport coefficients. However, the two
methods, as presented in the literature, difFer consider-
ably in motivation and procedure. One of the methods
(t method), due to Cohen, Dorfman, and Ernst (Ernst,
Dorfman, and Cohen, 1964; 1965; Ernst, 1965; 1966)
makes heavy use of the first hierarchy equation (Uhlen-
beck and Ford, 1963, p. 120) and an analogy with
equilibrium methods to obtain an integral equation
which is formulated in terms of the time t. This integral
equation bears a close relation to the generalized Boltz-
mann equation. The other method (e method) due to
Zwanzig (1963) involves an inversion of the Laplace
transform of a certain divergent time-dependent opera-
tor. The ensuing integral equation is formulated in
terms of the Laplace transform variable e which corre-
sponds to the time I,. The ~ integral equation is equiva-
lent to the(equation, but theform of the two equations
is different. fA similar situation occurs in the theory of
the generalized master equation (Balescu, 1961; Fulin-

*The literature on the divergence is extensive; the following
list is essentially complete: Andrews (1966), Doriman and Cohen
(1965; 1967), Dorfman (1967), Frieman and Goldman (1965;
1966; 1967), Fujita (1966a; 1966b; 1967), Goldrnan (1966;
1967), Haines, Dorfman, and Ernst (1966), Haines (1966),
Hauge and Cohen (1967; 1968), Hoegy (1967), Kawasaki and
Oppenheim (1965; 1967), Lebowitz and Percus (1967), van
Leeuwen and Weyland (1967), Murase (1966), Sengers (1965;
1966b), Weinstock (1963;1965;1966),Weyland and van Leeuwen
(1968).

ski, 1967a; 1967b; Geszti, 1967; Zwanzig, 1960a) .]This
difFerence in form is extremely significant when a den-
sity development of these equations is contemplated.
Due to the divergence in this density expansion the
circumstances under which the two methods lead to
identical results must be carefully examined.

It is our intention here to pay careful attention to the
two methods for evaluating the time-correlation func-
tion, since the methods and problems that arise in this
discussion are fairly general and are useful in the entire
area of nonequilibrium theory of gases. We shall see
that the two difliculties, (1) the divergence in density
expansions of transport coeScients, and (2) the ques-
tion of the equivalence of the t and e methods for com-
puting these density expansions, are closely related. We
shall provide a critical discussion and comparison of the
t and ~ methods, and in particular their density expan-
sions, for a dilute or moderately dense monatomic gas
with short-range repulsive intermolecular forces, from
a unified point of view. In a subsequent publication, we
shall give a detailed discussion of the attempts to find a
convergent theory and their efFects on the general area
of transport theory.

In either the t or e method, the transport coefhcients
are expressed in terms of limiting values (t~~, e~0) of
special one- and two-particle correlation functions.
Cluster expansions are applied to these correlation
functions to obtain their expansion in powers of the
density. This simple expansion, the "naive density
expansion, " diverges term by term in the limit needed
for the evaluation of transport coefficients, so that the
expansion needs further treatment before useful expres-
sions for transport coefficients can be obtained. (This
divergence was already noted by Bogoliubov and pro-
vided him with one motivation for his "functional
assumption" method. ) This divergence in the "naive
density expansion" is not the crucial divergence and is
easily removed. In both methods this is accomplished
by showing that a suitable summation of the naive
density expansion of the correlation functions is equiva-
lent to the solution of an integral equation. For the sake
of a unified treatment, we shall, in this paper, use
similar methods to obtain these integral equations. We
shall then discuss the relation between the two integral
equations and their solutions.

Since the coef5cient of self-diffusion is mathematically
the simplest transport coeflicient to discuss, the body of
the paper is devoted to it. In the Appendix we generalize
the arguments to include other coefficients, in particular,
the viscosity. In Sec. 2 we define the single-particle
correlation function appropriate to self-diBusion. In
Sec. 3 we give the cluster expansion and obtain the
naive density expansion. The integral equation appro-
priate to the & method is derived in Sec. 4; to the t
method, in Sec. 5. Section 6 is devoted to a formal
comparison of the two methods. In Secs. 7 and 8 we
discuss the comparison of the two methods in some
detail, taking particular account of the divergence, and
insofar as a power series expansion in the density of the
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2. THE SELF-DIFFUSION COEFFICIENT IN
THE t AND e METHODS

The t method (Ernst, Dorfman, and Cohen, 1964;
1965; Ernst, 1965; 1966) for computing the self-dif-
fusion coefBcient begins with the time-correlation expres-
sion (Longuet-Higgins and Pople, 1956; Helfand, 1963)

pi pi( —ti)D=-', lim Ctz lim
t~QQ 0 QQ 5$

(2 1)

transport coefficients exists, we discuss the 6rst few
6nite terms.

(2.11)
z&4&y&N

where

If the Hamiltonian for the system is

p ))

H~ Q—— ' +C(R), (2.9)
j=z 28$

where the total potential energy C (R) is given as the
sum of the pair potential energies C;;(( R;—R; ~)

—=Cts

by
C(R)= g C,. (2.10)

1&i&j&N

then 3!is given explicitly by

x=x,— g e;,,

where particle 1 has momentum pz at time zero and
momentum yi( —t) at time (—t). The mass of the
diffusing molecules is m, and the brackets denote an
average over the initial values of the phases x; of the S
molecules using a canonical equilibrium ensemble, i.e.,

and

N p.x,= / —'.

zan

BR;
(2.12)

0;;= («tC;t/«tR;) t (8/ay;) —(8/Bp;) ]. (2.13)

where

(e,'(e) )= f &» ~»t,'(e)f» (2.2)

ZN= diaz' ' 'dx~ exp —B~ (2.4)

We shall use the notation x as an abbreviation for all the
phase variables of the system. Similarly, R and p will
stand for all initial positions and momenta, and we
shall sometimes write f(x) =f(R, y). The symbol lim
stands for the thermodynamic limit /~00, V—+00,
X/V—+e, where V is the volume of the system and I
is the number density. The thermodynamic limit is to
be taken before the limit t~ ~.

By introducing the time-displacement or streaming
operator S t which changes the phase variables of a
function from their initial values to their values at time

(—t) via
S,g(*) =g(*(—t) ),

it is possible to write Eq. (2.1) as

(2.5)

ffr =~or exp (—P4) ~ (2.3)

Here Hfr is the full E-particle Harniltonian, p=1/ItT
where k is the Boltzmann constant and T the tempera-
ture, and Z~ is the canonical partition function

We remark in connection with the above formulas
that S t does not change B~ since H~ is a constant of
the motion. Nor does it change the equilibrium distri-
bution function ft)f. Therefore, the equilibrium distribu-
tion function can be written either to the left or right
of S t in the expression (2.6).

Concerning notation, we adopt the convention that
quantities which depend on the number of particles such
as S t, 3!,4, etc., are N-particle quantities unless the
particles involved are enumerated in parentheses.

We define the first time-correlation function X(pi, t)
by

eeee ~ pz
X(pi, t) = lim V dx« ~ dxNS t f~ —.(2.14)

QQ nl

That X is not a function of Rz follows immediately
since H& and 3.'depend only on relative positions. In
terms of our delnition for X, the time-correlation
expression for D can be written

pzD= — dyi —.lim dkiX(pi, ti). (2.15)
m t~CQ p

The circumffex on X is used to distinguish X(pi, t)
from its Laplace transform X(pi, «). We always use
this notation so that any pair of functions f(t) and f(«)
are related by

pz p»a=3 hm dtzhm —S t, —
t~ cQ p QQ fÃ SS

(2.6) (2.16)f(e) fdee f(e) . ='
0

Using the de6nitions of the above paragraphs we now
describe the starting point of the «method (Zwanzig,
1963). In this method, D is computed from the time-
correlation expression

The explicit expression for the time-displacement opera-
tor is

S t——exp (—tX), (2 7)

where K is the Liouville operator* which satis6es the
Poisson bracket relation

Xg(x) = I g(x), Bfr I .
D= ie lim dte "lim —~ (2.17)

Pi Pi( —t)

eM 0 5Z St
2.8

which can be written

~There is a diversity of notation for the Liouville operator.
In the literature, the quantity that we call 3:has also been written
gs 8, L, N, andi L, where g is the imaginary unjt.

1 pzD= — dyi —lim X(pi, «)
8 ts

(2.18)
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S go= exp (—tXO). (3 2)

and is to be compared with Eq. (2.15).The e expression
for computing D differs from the t expression by the
insertion of the convergence factor e ". This cannot
change anything so long as the limit eggs in Eq. (2.1)
exists, and me shul/ Olmuys csslme that this is so.

3. NAIVE DENSITY EXPANSION OF THE FIRST
TIME-CORRELATION FUNCTION

In order to calculate a density expansion of D from
Eqs. (2.15) or (2.18) one needs a density expansion of
the first time-correlation function X. We shall now
obtain such an expansion, called the naive density
expansion, by making a cluster expansion of X in
analogy to equilibrium statistical mechanics (DeBoer,
1949) . However, the terms in this naive density expan-
sion are not well behaved for large t. In fact, the term
of order rg" (r=O, 1, ~ ), which depends on the dynam-
ics of r+1 particles, goes as t" for large t (Dorfman and
Cohen, 1967) . Thus none of the individual terms in the
naive density expansion of

f
t

dtgX(pg, tg) or of X(yg, e)
0

will exist as t~~ or as e—+0. Furthermore, the failure
of the individual terms in the naive density expansions
of

f
t

dt)X(yg, tg) or X(y), e)
0

to exist for large t or small e indicates that some suitable
rearrangement or resummatioe of the terms in these
expansions must be made before these expansions can
be used to compute D in either the t or the e method.
We shall discuss these resummations in Secs. 4 and 5.

Preliminary to making the density expansion of
X(p&, t), we consider the identity

t

S g
——S g'+ drS g+,

' Q 0,;,S „(3.1)
0 1&i&j&N

where we have defined the free streaming operator 5 t'
as

Using Eq. (3.1) we may write Eq. (2.14) as

X(p) t) =S,(1)g(1)pg/m

+ «S g+.—(1)o(r) 4 (1) — (3 3)
0 m

where we have defined the operator 0(t) as

0'gS' gfx-
O(t) = lim V dx2 ~ dxjr Q, (3.4)

CO @(1)

and where gt)(1) is the normalized Maxwell —Boltzmann
momentum distribution function:

~(1)=-~(p ) =& -p (-!~p'/~);

(3 5)

In deriving Eq. (3.3), Liouville's theorem for free-
particle streaming was used in the form

= S-,(g) f dxg ~ dxxg(x) (3.6)

which is a special case of the more general Liouville
theorem:

To obtain the naive density expansion of the operator
O(t), from which a similar expansion for X(pg, t) is
obtained through Eq. (3.3), we introduce cluster opera-
tors tt(12

I
3 ~ j, t) defined by the recursion relation

S (12 ~ S)=%,(12, t) S,(3 ~ X)

+ g e(12I3, t)S,(4" S)+ ~ ~ .
a, ll one-tuples in (3~ ~ N)

(3.8)

By writing out Eq. (3.8) for /=2, 3, ~ ~, one obtains a
set of equations which can be solved successively for
the 'll's. In this way one Ands

'tt(12, t) =S , (12),
'tt(12

I 3, t) = S , (123)—S (12)S (3),
(12 I

34, t) =S,(1234)—S,(123)S g(4) —S g(124)S g(3) —S g(12)S g(34)+2S g(12)S g(3)S g(4),

The expansion (3.8) can now be used in Eq. (3.4) to obtain the following expression for O(t):
n2

0(t) =rg dx20)2'tt (12, t) g(12)gt)(2)+ — dxmdxg0g2'tt(12
I 3, t) g(123) gt)(2) gt (3)

(3.9)

e'
+ — dx2dx()dxg0~%, (12

I 34, t) g(1234) gt (2) gt (3)gt)(4)+. ~, (3.10)

where Liouville's theorem has been used. We have also taken the thermodynamic limit and dered the equilibrium
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j-particle position distribution functions g(12 ~ j) in the conventional manner as

(12 "') H 4(') —= (R,R "R;) fI 4(') = 3 1 f d*;
i=1 i=1 c)o

The distribution functions g can themselves be given as density expansions which we write as

g(12) = W(12)+x f dR g(12; 3)+x~ f dRdRg(12; 34)+ ~ ~ ~

g(123) = W(123)+x J dR g(123; 4)+x' f d+414g(123; 43)+

(3.11)

In particular, TV is given by
W(12 j)= exp L

—(8C (12 ~ j)],

(3.12)

(3.13)

and explicit formulas for the g(1 ~ ~ j;j+1 ~ k) can be found in the literature (DeBoer, 1949) .
Before deriving the complete density expansion of O(t), simplified expressions for the operators appearing in

Eq. (3.10) are given. These operators have the form

('(j—2)!7i fde ~ ~ dxg,xgt(12 (
3 ~ .j, t)g(12 ~ j)4(2) ~ ~ ~ 4( j)

dx2 - dip 12- ~ j) t g 12 ~ .j 2 ''' j ~
3.&4

where
2.(12, t) =8iRS g(12),

t

r (123, t) = dti82RS gq g, (12)58»+8»jS g, (123),

t

2. (1234, t)= dti dt28»S 4+gi(12)(8»+82()jS ggpgg(123)$824+824+834jS g, (1234),
0 0

Equation (3.15) can be established by repeatedly using identities similar to Eq. (3.1), for example,

t

S g(123)=S g(12)S g(3)+ dtiS 4+g, (12)S 4+42(3)L8»+8&3S g, (123)t
0

(3.15)

(3.16)

along with Liouville s theorem and the symmetry of Eq. (3.14) under interchange of the labels (3.~ j) .
The required density expansion of the operator O(t) can be found by combining Eqs. (3.10), (3.12), and (3.14).

We have

O(t) = Q I"0,+i(t), (3.1T)
r=1

where the explicit expressions for the operators 0„, which depend on the dynamics of r particles, are given by

Oq(t) = f dx, (12, t) W(12)4(2),

Og(t) = f dxgdxg[~(123, t)W(123)+ (12, t)g(12; 3)]4 (2)4(3),

O(t) = f dx dx dx ,[ (1234, t)W(1234)+ (123, t)g(123; 4)+ (12, t)g(12; 34)]4(2)4(3)4 (4),
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We have thus obtained the naive density expansion of X(pi, t) in the form

t

x(p, f)=s-(1)4(1)—+ Z " & s- .(1)o.+ ( )4(1)— (3.19)
5$ ~g 0 m

We also give the Laplace transformed operators O, (e). They can be obtained by replacing r(12 ~ j, t) by its
Laplace transform u. (12 .j, e) everywhere in Eq. (3.18).The explicit expressions for the r(12 ~ j, e) are

u. (12, e) =8iuG(12, e),

r(123, e) =8iuG(12, e) (8iu+8uu) G(123, e),

T(1234, e) =8iuG(12, e) (8iu+8uu) G(123, e) (8i4+8u4+834) G(1234i e) )

where G(12 ~ j, e) is the Laplace transform of S t(12 ~ ~ .j):
G(12 j, )= f d&e "s-,(12 j)=[+z(lu. ~ j)]'.

0

In the following we will also need the Laplace transform of S &6 which is

Gs(12" J, s)= f etc "s P(12 j)=[a+'Rs(12" j)r'.

(3.20)

(3.21)

(3.22)

4. RESUMMATION OF THE e METHOD

In Sec. 3 we derived the naive density expansion of
X(pi, t). The Laplace transform of Eq. (3.19) gives the
density expansion of X(pi, e) which we write as

X(p„e)=G(1, e) Li+O(e) jX(p„o), (4.1)

Then Eq. (4.4) can be written as*

l: —~()jX()=X(o). (4 &)

The operators B„are found by expanding the geometric
series in Eq. (4.5), using the density expansion Eq.
(4.2) for O(e), and equating coefficients of iden. tical
powers in the density. In this way one Gnds

where

and

o(e) = Z I'O.+i(e)
r=l

X(yi, 0) =y(1)pi/iN.

(4.2)

(43)

&2=02,

&3=03—02',

&4= O4—OSOu —OuOu+Ou,

Since X(pi, 0) and O(e)X(pi, 0) depend only on the
momentum pi, we can replace G(1, e) by c ' in Eq.
(4.1).Hereafter, we suppress the momentum arguments
in the X's.

As mentioned in Sec. 3, none of the terms in this
naive density expansion exists as &~0. To surmount
this difhculty one resums the right-hand side of Eq.
(4.1) by the following procedure (which we call inver-
sion): Write Eq. (4.1) as

(48)
The B„clearly depend on the dynamics of r particles.
Equations (4.6) through (4.8) denne the resummed e

method.
It is especially interesting to note that the resummed

e equations can be obtained by an entirely difFerent
procedure involving the use of projection operators
(PO method) . The idea of the PO method is as follows:
All one needs for the computation of the difFusion

define B(e) by

(1+O(e)j 'eX(e) =X(0),

1—~(,) —=$1+O(e) j-'

(4.4)

(4.5)

*Equation (4.7) is similar in form to the Dyson equation of
quantum electrodynamics fC. Bloch,~StNCies As Statistical Me-
chueics (North Holland Publishing Co., Amsterdam, 1965), Vol.
3. To see this introduce an "exact" propagator g(1, e), where

X(lii e) =g(» e)X(li~, o).
and the density expansion of 8 by

13(e)= Q tu'8, +i(e) .
r 1

(4.6)

Then, using Eqs. (4.1) and (4.5) one sees that g satisfies the
Dyson equation

Le+Re—3E(e)gg(1, e) =1,
with self-energy operator 3f (e) =8(e)G '(1, e).
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t

Y(pi, t) = dtiX(pi, ti).
0

Sy making use of the identity

(5.1)

BCRi——X(1)Ri——pi/sm (5.2)

and the definition of X in Eq. (2.14), we may write Y as

where

r(1, t) = lim 7 fA, ~ cps, f~( Ri) (5.4—)

and where we have written y(1, t) to emphasize that y
depends on Rj as well as pl.

In the literature (Ernst, Dorfman, and Cohen, 1964;
1965; Ernst, 1965; 1966), the resummation of the t
method for Y is accomplished by analogy to equilibrium
statistical mechanics. One makes an activity expansion
of y(1, t) and the corresponding two-particle function
y(12, t) . The activity is then eliminated between these
two expansions to give y(12, t) in terms of y(1, t).
Finally, the first hierarchy equation, which relates
y(1, t) and y(12, t), is used to give a closed equation
for y(1, t) alone. Here we follow a shorter procedure
which gives precisely the same result.

In exactly the same way as in Eq. (3.3) one can
express y(1, t) in terms of 0(t):

t

y(i, t)=S,(1) 1+ drS, (1)0(&) y(1, 0), (5.5)

where
y(1, 0) = —Rip(1). (5.6)

The term 0(t)y(1, 0) does not depend on Ri. This can
be seen by considering

$0(t)y(1, 0) ja R,+ 0(t)Y(1, 0) = —aO(t)g(1) =0,

(5.7)

coefficient is X(pi, t). Since X contains considerably
less information than the X-particle operator 5 t, one
defines a projection operator which projects X out of
5 t. The formal realization of these ideas leads to Kqs.
(4.6) through (4.8) above. Since the derivation of the
resummed ~ equations using the PO method is rather
lengthy, we refer the interested reader to the literature
(Zwanzig, 1960a; 1960b; Ernst, 196/).

S. RESUMMATION OF THE t METHOD

In Sec. 4, Eq. (4.7), we obtained a resummation for
X(e) appropriate to the computation of D in the e

method via Eq. (2.18) . Inspection of the corresponding
equation for D in the t method, namely Eq. (2.15),
shows that in the t method we shall need to obtain a
resummation for Y(t) where

If we now differentiate Eq. (5.5) with respect to t,
we obtain the first hierarchy equation for y(1, t),
namely

Py(1, t)/Btj+3C(1) y(1, t) =0(t)y(1, 0). (5.8)

Solving Eq. (5.5) for y(1, 0),
t —1

y(1, 0) = 1+ drO(r) S (1)y(1, t), (5.9)
0

and inserting this expression into the erst hierarchy
equation, we find

LBy(1, t)/Btj+X(1)y(1, t) =L(t) S,(1)y(1, t), (5.10)

where we have defined L(t) by
—l

1.(~) o(~) )=+ f ~.o(,) . ~s.n)
0

Finally, by using Eq. (5.3), we obtain the resummed
equation for Y(pi, t) which appears in the literature for
the t method:

PY(p, t)/BG-L(t) Y(p, t)

= (pi/sl) p(1) —L(t) Sg (1)Q(1)Ri. (5.12)

The operator L, (t) can be given as a density expansion:

L,(t) = g rs"L„„(t), (5.13)
x~1

where the operators L,(t), which involve the dynamics
of r particles, are given by

L2(t) =02(t),
t

L,,(t) =0,(t) —0,(t) ChiO&(4),
0

L4(t) =04(t) —02(t) dti02(ti) —02(t) dti02(ti)

t

+ 02 (t) dt102(tl) dt202 (t2) q

0 0

(5.14)

In the next sections the resummed t equation (5.12)
and the resummed e equation (4.7) will be compared.

6. FORMAL COMPARISON OF THE t AND e

METHODS

In Sec. 4 we derived the resummed e Eq. (4.7) for
X(e):

Le eB(e)jX(e) =$(1)pi/rN (6.1)

where the diGusion coeS.cient in the e method is to be
found from Eq. (2.18):

and therefore, the operator S,(1) in Eq. (5.5) may be
put equal to unity.

PlD= — dpi —lim X(pi, e) .
3 m ~~p

(6 2)
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Correspondingly, in Sec. 5 we derived the resununed t
equation (5.12) for Y(t):
L~Y(t) /~tj —L(t) Y(t) = (pi/m) 4 (1)

—L(t) Sg(1)p(1)Ri, (6.3)

where the diffusion coefBcient in the t method is to be
found from Eq. (2.15):

L(t) = Q n"L„+i(t),
r~l

and the density expansion of B defined in Eq. (4.6),

(7 1)

(6.13) were designed to give a density expansion for
the diffusion coeScient. The density expansion of L
defined in Eq. (5.13),

pyD= — dpi —lim Y(pi, t).
3 5$ g

Since Y is dined as

Y(t) = f itsy(t, )
0

(6.4)

(6 5)

B(t)= g n B„,(t), ('7.2)
r~l

suggest that we assume that Y(~) and X(0) can be
given as density expansions of the following form:

Y(~) =n 'Ya(~)+Yi(~)+nY2(~)+ " (7 3)

X(0)=n—'X))(0)+X (0)+nX (0)+ ~ ~ ~ (7 4)
this equation gives the connection between the t and
e methods. Equivalently, Eq. (6.5) can be written as

Assuming the i)alidity of the expansions (7.3) and ('7.4)
leads to the t equations

(6.6) L~( )Ya( )=—4(1)pi/m,

L,(m) Yi(~) = —L3(ao) Yo(~)+ lim L2(t)

dte
—"Y(t)=X(e).

In order to make a formal comparison of the t and e

methods, we assume that the diffusion coeScient exists
for the system under consideration, and thus that the
limits in Eqs. (6.2) and (6.4) exist:

XSi(1)$(1)Ri,

Lm(~) Ym(~) =—L4(~)Yo(~) —La(~)Yl(~)

+ lim L3 (t) Sg(1)y(1)Ri,X(0)= lim X(e); Y(~) = lim Y(t). (6.7)
|l~m

By computing the Laplace transform of

aY(t) /at =X(t) (6.8) (7 5)
we see, of course, that which may be solved successively for the Y;(~ ), and to

the e equations

B( )X(o)=—4(1)p/,
)X(0)=—B( )X(0),

B( )X(o)=—B(")Xo(0)—B (")X (0)

Y(N)) =X(0). (69)
Furthermore, since it is always true for f and its Laplace
transform that

(7.6)

which may be solved successively for the X;. In writing
Eqs. (7.5) and (7.6), we have defined B,(m) and
L,(~) as

B,(~)= lim B„(t); L„(~)= lim L„(t) (7.7)
(6.12)lim eB (e) X(0)=—P(1)pi/m

~0

or equivalently as

lim B(t)X(0) = —y(1)pi/m.

The t Eq. (6.3) can be written in the limit as

and assumed that we may interchange the sum over r
and the limit as t~~ in Eqs. (7.1) and (7.2).

This assumption is, however, not valid since it is well
known that a detailed discussion of the dynamical
events contributing to the operators L„and 8„, for a
gas of molecules interacting via short-range repulsive
forces, shows that these operators diverge (fail to exist)
in the limit as t—+~ if r is greater than 3. In fact, L4 and
84 diverge as log t, while J.„and B„diverge as t

(r&4) . Only Lm, Bm, Ls and Ba exist for t~~ . (In two
dimensions the divergence appears one term earlier and
only Lm and B& exist. ) References to the literature on the
divergence may be found in Sec. 1.

(6.13)

lim L(t)Y(~ ) = —p(1)pi/m+ lim L(t) S~(1))t (1)Ri.

(6.14)

V. DENSITY EXPANSION OF THE t AND e

EQUATIONS

We recall that the resumed t and e Eqs. (6.3) and
(6.1), and especially their limiting forms (6.14) and

lim f(t) = lim ef(e) (6.10)
t~m e~0

provided only that the limits exist, we 6nd

0= lim eX(e) = lim X(t) = lim $8Y(t)/Bt) (6.11).
a~0 t~m t~m

Using these results we can write the e Eq. (6.1) in
the limit as



M. H. ERNsT, L. K. HArNEs, mn J. R. DomvMAN Trertsport Coegciertts 307

The existence of this divergence shows us that only
the first two of Eqs. (7.5) and (7.6) are well defined.
We might use these equations to find the first two terms
in the density expansion of D in both the t and ~ methods,
but we shall certainly not be able to go beyond these
two terms without modifying the theory (making
further resummations) to take the divergence into
account. In a subsequent publication we shall discuss
the divergence and its implications for the computation
of density expansions of transport coefBcients. Here we
shall confine ourselves to a discussion of the computa-
tion of the first two terms in the density expansion of the
diffusion coefBcient in both the t and ~ methods.

The first two of the t equations (7.5) are well defined
and are customarily assumed to be valid for computing
the erst two terms in the density expansion of D in the I
method:

D= — dpi —Ln 'Yp(~)+Yi(~)+ ~ ~ g. (7.8)
Py

3 m

Similarly, in the o method, the first two of Eqs. (7.6)
are assumed to be valid for computing the first two
terms in the density expansion of D in this method:

D= — dpi —.[n 'Xp(0) +Xi(0)+ ~ ~ ]. (7.9)
yg

3 m

Even though we have limited ourselves to the com-
putation of the first two terms in the density expansion
of D, we must now answer two questions, both posed by
the existence of the divergence. These questions are:
(1) Do the t and e methods give the same result for the
first two terms of the diffusion coeKcient Las calculated
from the first two of Eqs. (7.5) and (7.6) j? (2) Are
there, beyond the first two terms in D, other terms
proportional to n ' or independent of e which would
modify the first two terms in D )as calculated from the
first two of Eqs. (7.5) and (7.6) j?

With regard to question (1),we see that it is sufficient
to prove that

the number density and the time. Clearly,

F"(~)=Fx(~) =e ',

but if we write

(7.14)

F'(t) = g n-'P, "(t);
rM

we find

Fx(t) = Q n~'F x(t)
r=0

Fo"(~)=Po (~) =1;
P "( )=—1; Pi ( )=—2

(7.15)

(7.16)

P(t) = g e-'F, (t)
rM

so that
Fo(~) =1; Pi(~) = —1

(7.19)

(7.20)

with all other nonzero F„diverging as t—+~. If we try
to write

F(oo) =e '—1+ ~ ~ ~ (7.21)

with all other nonzero Il„~ and Ii„~ diverging as t~~.
This example shows that because of the divergence it
must be proved directly, by dynamical arguments, that

Yo(op) =Xo(0); Yi(oo ) =Xi(0) (7.17)

if we are to establish the equality of the first two terms
in the density expansion of the diffusion coeKcient as
computed by the two methods. We will give the required
proof in Sec. 8.

With regard to the second question, no definite
answer is available. To see why this is so, we consider
a slight modification of our mathematical example.
Suppose we now define a function F(t) as

F(t) =e '+ (nt) 'Lexp ( nt) —1—] (7.18)

with density expansion

aIld
Yp(~) =Xp(0)

Y,(~)=Xi(0)

(7.10)

(7.11)

we see that the terms beyond the first two in Eq. (7.21)
add up in just such a way as to give +1 since we know
from Eq. (7.18) that

to show that the erst two terms of D are the same in
both methods. This will be accomplished if we can
establish that the first two equations in (7.5) and (7.6)
are identical.

It might be thought that this follows immediately
from Sec. 6, where we showed that the solutions of
Eqs. (6.13) and (6.14) are identical. The divergence
spoils this result, however, as the following mathemat-
ical example shows. Think of functions Fr(t) and
Fx(t) Lwhere Fr(oo) and Fx(oo) are analogous to
Y(~ ) and X(0), respectively] defined as

Fr(t) =n '+(nt) —'Lexp (—et) —1j (7.12)

Fx(t) =n '+(et) 't exp (—2nt) —1j, (7.13)

where e and t are dimensionless variables analogous to

F(~)=e '. (7.22)

This example clearly shows that it is not impossible
for the terms beyond the first two in D to combine in
such a way as to modify the first two terms. Whether
or not this happens depends of course on the system
under consideration. It is generally assumed, for a gas
of molecules interacting via short-range repulsive forces,
that the first two terms in the density expansion of the
diffusion coeKcient are not modified by the remaining
terms which diverge and are neglected. There is, strictly
speaking, no sound basis for this assumption. It is clear
from the example that a proof of the assumption would
require that we be able to evaluate I.(~) or B(~) for
this system, either directly or else by means of a fully
convergent density expansion (not necessarily a power
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series expansion) ~ At present, it is not known how to
accomplish this, and thus a rigorous answer to question
(2) is not available.

For the sake of simplicity, we shall assume that the
terms beyond the first two in Eqs. (7.8) and (7.9) do
not in fact modify the first two terms. We emphasize,
however, that this is an assumption, and that it has not
been proved.

8. COMPARI SON OF THE I AND e METHOD S FOR
THE FIRST TW'0 TERMS IN THE DENSITY Ex-

PANSION OF THE DIFFUSION COEFFICIENT

In Sec. 7 we saw that in the t method, D could be
written as

1 piD= — dpi —
I

tt
—'Y, ( oo )+Yi ( oo )+ ~ ~ j, (8.1)

3 m

The operators in Eqs. (8.10) and (8.11) are of course
equal. Equations (8.10) and (8.11) are a Boltzmann
equation for 4 (pi) . Zwanzig has shown this (1963) for
the operator in Eq. (8.11), and it has been shown by
Bogoliubov (1961) for the operator in Eq. (8.10). Thus
the previous proof of the equality of Xo(0) and Yo(oo )
proceeded by demonstrating that Eqs. (8.10) and
(8.11) both gave a Boltzmann equation, while we have
instead proved the equality of the operators in Kqs.
(8.10) and (8.11) directly. For completeness we give
the Boltzmann equation (Chapman and Cowling, 1939)
resulting from Eqs. (8.10) and (8.11). It is

1(&(pi) )=— dys
&I pi —ys I&

m

~ I
~ (p ') —~ (y ) j~(p.)~(p.)

where
L ( )Y( )=—4(1)y/

Ls(o )Yi(c) =—Ls(o) Yo(™)
+ lim Ls (t) St (1)$(1)Ri,.

g-+ co

in the & method we had

D= — dyi [rt '—Xo (0) +Xi (0)+ ~ j,py

3 m

where

= —4 (pi) yi/m (8.12)
(8.2) It is well known that the solution for 4 is unique up

to a vector solution of the homogeneous equation

(8 3) I(4 (yi) )=0. Since no such vector is available, 4 is
unique and Eq. (8.9) is established.

Having seen how the equivalence of the t and e

methods for computing D is established at the Boltz-

(8 4) mann level, we turn to the question of the equivalence
of the density-independent contributions to D. Here we
must show that

B (-)Xo(0) = -~(1)y./
Bs(oo )Xi(0) = -Bs(")Xo(o) (8 6)

In this section we shall show that both methods give
the same result for the first two terms of the density
expansion of the diGusion coefFicient.

We first consider Eqs. (8.2) and (8.5) . From Eqs.
(5.14) and (4.8) we have

Ls(t) =Bs(t) =Os (t) . (8.7)

It follows immediately that

Bs(oo) =Js(oo), (8 8)

so that Xo(0) and Yo( ~ ) satisfy the same equation and
are equal insofar as the solution to this equation is
unique (we shall see below that the solution is indeed
unique) ~

To put this result in a more familiar form, we define
& (pi) by

Yi(") =Xi(o) . (8.13)

L, (t) =Os (t) —Os (t) drOs (r), (8.14)

A

and where Bs(t) is found by taking the inverse Laplace
transform of Bs(e) in Eq. (4.8):

B,(t) =0,(t)— drOs(r) Os(t —r) . (8.15)

The elimination of Os between Eqs. (8.14) and (8.15)
leads to*

This will be demonstrated by showing that the integral
equations (8.3) and (8.6) are identical.

Let us consider the operators Ls(t) and Bs(t) where
Ls(t) is given by Eq. (5.14) as

@(pi)&(yi) —=Xo(0) =Yo ( oo ) ~ (8 9)

Using the first of Eqs. (3.18) and (3.20) we may write
Eq. (8.2) as

Ls (t) =Bs(t)— drLLs (t) —Ls (r) $Ls (t—r) (8.16)

*For the case of hard-sphere interactions, where" I (g) =I {'~) =
Lm( ~), one has

Lg(t) =83 (t)
(8.10)

while (8.5) may be written

lim e dxst)isG(12, e) W(12)$(2)$(1)&(pi)
e-+0 4 (~) =&I (~)

$(pi) pi/m. (8.11) for hard spheres.

(Kawasaki and Oppenheim, 1964b) . For the same reason, the
right-hand side of Kq. (8.18) vanishes so that the integral equa-
tions (8.3) and (8.6) are identical for hard spheres. Similarly, one
sees from Eq. (A.40) in the Appendix, that
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so that Kq. (8.3) can be written

&s(~)Yi(~) = —Ils(~) Xp(0) TIME =0

+ lim
$-&co p

drLL, (&) —L,(r) ]Ls(t—r)

XYo( )+L (l) S,(1)@(1)R, . (8.17)

In writing Eq. (8.17) we have made use of Eqs. (8.8)
and (8.9).

We must now establish the identity of Kqs. (8.17)
and (8.6). This is most conveniently accomplished by
using the relation TIME ~- t

L,(t) S,(1)@(1)R,= dr)L, (t) —L,(r) ]y(1)—
0 m

(8.18)

FIG. 2. The eGect of Q(t) . Molecules 1 and 2 must be initially
within the range of the force, r0, to make any contribution to
L~(t). For times t greater than the time of a collision, rp, the
molecules are separated, have attained their asymptotic momenta
yj' and y2', and Q(t) takes its asymptotic value, +( ~) .

Ls(t) =Ls( ~ ) if t& rp. (8.25)

which can be established by observing that

()S(1)(1)RL()(1)[R+( / )](819)piand ps will have attained their asymptotic va'uespi'
an p2', s.e.,

and that

drLs(r) y(1) —= 'd, ""'
(1)R,

p r
= Ls(/) P (1)Ri. (8.20)

In writing Kq. (8.20) we made use of the relation

pi/m=X(1) Ri=X(12)Ri (8.21)

and the explicit form of Ls given in Eq. (3.18) as

Ls(t) = dkseisS i(12)W(12)@(2). (8.22)

lim drttLs(t) —Ls(r) ] Ls(t r) Yp(~ )+y(—1)—
gazoo p m

(8.23)

In order to discuss the limit in (8.23) we need to
know the behavior of Ls(t) as t +~. If we examine-
Ls(t) as given by Kq. (8.22), we see that S &(12) moves
particles 1 and 2 from their initial phase points to their
phase points at time (—t) . However, the operator Ois,

defined in Kq. (2.13), will be zero unless the particles
are initially within the range of the force, r0. Therefore,
the operator S,(12) moves particles 1 and 2 from their
initial phase points where

~
Ri—Rs

~

(rp to their phase
points at time (—t). Since the force is repulsive and
short range, the particles are separated after a 6nite
time on the order of the duration of a collision, r0, where

Using Eq. (8.18), the term in braces in (8.17) can now
be written as

A diagram is given in Fig. 2.
We now use the result of Eq. (8.25) to discuss the

limit in Eq. (8.23) for large t (t&&rp). Since Ls(r) in
Eq. (8.23) approaches its asymptotic value in a time rp,
the integrand of the v integral vanishes for ~&70. Thus,
as tho ro, we may replace Ls(t r) by Ls—( po ) . By using
Eq. (8.2), we see immediately that the limit in Eq.
(8.23) is zero. Equation (8.17) is therefore

@(~)Yi(~)= —&s(~)Xo(o)~ (826)
vrhich establishes the equality of the inhomogeneous
terms in the integral equations (8.3) and (8.6) .

We have thus proved that both integral equations
(and their solutions) are identical, or that the first
density correction to the coefhcient of self-diGusion is
the same in both t and e methods.

Pl
8py —' '

lim X(pi, e) (e method)
(91)

9. CONCLUSION

We have given a unifmd discussion of the e method
(due to Zwanzig) and the t method (due to Cohen,
Dorfman, and Ernst) for computing the density expan-
sion of transport coefficients from time-correlation func-
tions. We had in mind a system which was a moderately
dense gas with repulsive short-range forces. Taking the
self-diGusion coefficient as an example, we saw that it
could be computed in a density expansion from

(lim Y(pi, t) (t method)

risrp
~
pi —p,

~

'. (8.24)
provided a density expansion of the erst time-correla-

Thus for all times t v0, the particles are separated and tion functions Y or X was available. A straightforward
C (~ Ri—Rs ~) =0, so that W(12) = 1.Also the momenta cluster expansion of the first time-correlation functions
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was obtained in Sec. 3 which led to a density expansion
of Y and X. This expansion, which we called the naive
density expansion, was clearly unsuitable for computing
a density expansion of D since none of the terms in the
expansion existed in the appropriate limit.

This difhculty was surmounted, at least for the first
two terms in the density expansion of D, by making a
rearrangement of the naive density expansion. The two
procedures commonly used to do t'his, the ~ method and
the t method, were outlined in Secs. 4 and 5, and in
Sec. 6 it was shown that they led to the following two
integral equations for Y(~ ) =X(0):

lim B(t)X(0)= —y(1)pi/nt, (9.2a)
g-+co

lim L(t)Y(~)= —p(1)pi/m+ lim L(t) Si(1)@(1)Ri.

B(t) = Q n"8,+i(t);

L(t)= QNL„, (t),
r 1

(94)

were introduced into Eqs. (9.2). Provided that the
limit t~~ in (9.2) and the sum over powers of the
density in (9.4) were interchanged, well-defined integral
equations for Yo and Y& were obtained in the t method,
as were well-defined equations for Xf) and X~ in the e

method. The equations for Yo and Xo depended, through
L2 and B2, upon the dynamics of two interacting mole-
cules in the gas, while the equations for Yj and X&

depended, through L3 and B3, upon the dynamics of
three interacting gas molecules. We mentioned that the
equations for the terms in the expansions (9.3) beyond
Y~ and X~ failed to exist because of the well-known

divergence of the operators B„(t) and L„(t) for r) 3 as
t—+00. Therefore, without further resummations the t

and e methods could only give the first two terms in the
density expansions of transport coefficients.

%e studied a mathematical example which showed
that because of the divergence it was necessary to prove
explicitly (by dynamical arguments) that

Yp(pp) =Xp(0); Yi(pp) =Xi(0). (9.5)

Equation (9.5) did not follow directly from the equality
of Y(pp) and X(0). We gave the proof which estab-
lished Eq. (9.5) in Sec. 8 and showed thereby that the
t and e methods as formulated in the literature and in
this paper gave the same results for the erst two terms

(9.2b)

The utility of these integral equations lay in the
possibility of obtaining from them density expansions
of Y(po) and X(0) in the form

Y( ) =n 'Y ( )+Yi( )+ ~ ~ ~, (93a)

X(0) =N 'Xp(0)+Xi(0)+ ~ ~ ~ . (9.3b)

In Sec. 7 the density expansions of the integral operators
B(t) and L(t)

in the density expansion of the di6usion coefFicient:

D=n 'Dp+Di+ ~ ~ ~ . (9.6)

A similar result is established for the shear viscosity

fj itp+57J$+ (9.7)

in the Appendix La different approach to this proof for
the viscosity has been given by Kawasaki and Oppen-
heim (1964a)).

The mathematical example also showed that it would
not be impossible for the divergent terms, beyond the
first two in Eq. (9.3), when properly resummed, to
modify either or both of the first two terms in Eq. (93) .
This could, in principle, acct the values of either of the
erst or second terms in the density expansions of trans-
port coefficients as computed from the t and e methods.
Whether or not this happens is in fact not known, and
me nish to stress that one cannot have a tru/y rigorous
derivation of the Boltsmane Eq. (8.12) until this question
is settled. In order to assert with complete confidence
that the first two terms are not modi6ed, it would be
necessary either to evaluate B(~) or L(~) in (9.4)
in closed form (a task more dificult than evaluating the
partition function in closed form) or to have available
a systematic procedure which would give either B(~)
or L(~) as a density expansion (not necessarily a
power series) with finite coefficients. Since it is not
known at present how to accomplish either of these
procedures, it is usually assumed, for gases with short-
raDge repulsive intermolecular forces, that the first two
terms in the density expansions of transport coefficients
can be correctly computed from the t or e method, and
that they are unmodiled by the divergent terms in
(9.6) and (9.7) which are neglected. With this assump-
tion, either the t or the e method provides the machinery
to compute the first two terms in the density expansion
of transport coeKcients, and we have seen that the
results are independent of the method used.

Because of the divergence of the operators B„and L„
for r)3, the analogy between density expansions of
equilibrium properties (virial expansion) of a gas and
the density expansions of its transport properties breaks
down at low densities. Thus, in the nonequilibrium case
(in contrast to the equilibrium situation) it is not
possible to obtain a power series expansion of transport
coefFicients in the density with coeScients depending
only on the interactions of r particles by using the
t and e methods, at least if r is greater than 3. It would
appear that collective eGects become important at
rather low densities when density expansions of trans-
port coeKcients are attempted.

In order to obtain terms beyond the first two in a
density expansion of transport coefFicients, it is neces-
sary to make a resummation of the divergent operators
in Eq. (9.4). Kawasaki and. Oppenheim (1965) have
suggested a procedure for resumming certain terms in
Eq. (9.4) in the e method. In essence this resummation
has the eGect that the free motion, between binary
collisions, of the four molecules which contribute to B4
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is modif(ed (damped) by binary collisions with all other
molecules in the gas. These considerations lead to a
modified B4 operator which is not divergent and which
can be used to obtain the third term in the density
expansion of transport coefficients. This method of
resummation indicates that the third term in the density
expansion of the self-diffusion coeKcient should have a
density dependence of e log e, while the third term in
the shear viscosity should behave as rt' log rt (Dorfman,
1967) . For various model systems, the effects of further
resummations have been discussed by Weyland and
van Leeuwen (1968), Hoegy (1967), Lebowitz and
Percus (1967), and Hauge and Cohen (1967, 1968).

APPENDIX

In this Appendix we outline briefly how the results
of the text for the diGusion coeflicient can be generalized
to the shear viscosity p. The notation is in general the
same as in the body of the paper, and we shall use
boldface letters to denote certain operators (e.g., B,
L, 0; not sectors), generalized to the viscosity.

The viscosity is given by the following time-correla-
tion expression (Mori, 1961):

with pin=pi —pe. Equation (A.7b), which is convenient
for later use, can be reduced to (A.7a) by partial
integration with respect to pj. and p2. The expressions
for the t method corresponding to Eqs. (A.6) and
(A.'7) are obtained by replacing lim, ()X(12 ~ s, e)
by limd Y'(12 ~ s, t), where Y(12 ~ s, t) is defined

by

Y(12 ~ s, t) = drX(12. .s, r) .

Using the identity

J= +BC Iy,R,} (A.9)

Ps

in the dehnition of X, we may write

Y(12 ~ s, t) = j(12 ~ s, t) —tt(12 ~ s, 0), (A.10)

where

fJ(12 ~ .s, t)

N
= lim V' dx,~i. ~ dxpdS d frd P I

—y,R,}. (A.11)
CO i=1

dte "(J:S PJ) (A.1) Following the procedure of Sec. 3 we now derive the
naive density expansion of tt(1, t). Analogous to Eq.
(3.3) we find

j(1, t) =S d(1) 1+ AS, (1)O(r) j(1,0), (A.12)

where
(A.13)1t(1, o) = —Ip R }4(1)

and

(A.3)
0 (i) = lim V f dx, ~ de

X Q tt;PS' dfzr ZPi)}4(1)] ' (A 14a)
1&i&j&N

g= limlim
10V

appropriate to the e method; for the I, method one has
an expression analogous to Eq. (2.6). The dyadic
current J is given by

J= g ' — g r;; ', (A.2)
i 1 ~ 1&i&j&N ~~ij

where r,;=R;—R;, and where [A e} stands for the
traceless symmetric part of the tensor A t) (Greek sub-
scripts stand for x, y, or s):

IAmtd} =k(Ame+—At)~) —
sbmt) Z Ave.

In analogy to Sec. 2, we introduce the time-correla-
tion functions

X(12 s, i) = lim V' f dx~ dm. d|-,fed (A.d)

("'d) f dP dP d P ew8:i X(U ~)
eM

(A.7b)

in terms of which the viscosity can be expressed as

(A.S)

The kinetic part qI, is given by

rt), ,', (rtP) dyi———'.lim X(pi, e), (A.6)
P&P&. .
1S

where the notation shows explicitly thatX(1, t) depends
only on I|~ and not on Ri. The potential part g~ is given
by

C'u .
pte= —4 (rd'P) (Epidp2dri2rip .'lim X(12, e) (A.7a)

&u & 0

dg2f- 12, f g 12 1 2 Pj; 1
i~1

+I' dx2dx()7" (123, t) g (123)()()(1)(())(2) d)I) (3)

&( Q Pi;Lp(1)] '+ ~ ". (A.14b)

The permutation operator P~; interchanges the labels
1 and i. In deriving Eq. (A.14) we have used the rela-
tion fdyift (1,0) =0.The operator 0 (t) can be expanded
in powers of the density

O(t) = g I O„„(t), (A.15)
1

and it follows immediately from Sec. 3 that the 0„
operators can be obtained from the O„operators in
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Eq. (3.18) provided the following replacements are
made everywhere in Eq. (3.18):

(» ~ ~ ~, 1)~(2) ~ ~ ~(i)~(» ~ ~ J, 1)

Xe(1)e(2)" 4(J) Z & 'I:4 (1)j-'. (A 16)
i=1

We have thus obtained the naive density expansion of
y(1, 1) in the form

(A.12) with respect to time:

By(1, 1)/N= —X(1)y(1, 1) +O(t) y(1, 0) . (A.25)

In Eq. (A.12) O(r)y(1, 0) is independent of Ri. This
can be verified by replacing Ri by Ri+a and using
Eqs. (A.13) and (A.14) and the conservation of total
momentum. We may, therefore, replace S,(1) by unity
in Eq. (A.12) and solve for y(1, 0) to find

t —1

y(1, 1) = S-~(1)y(1, o) y(1, 0) = 1+ dro(r) Sr(1)y(1, 1). (A.26)
0

Eliminating y(1, 0) between (A.25) and (A.26) and
using (A.10) gives the resummed equation for Y(yi, 1):

BY(pi, t)/N —L(t) Y(pi 1)

CO t

+ g ri" drS q+, (1)0„+i(r)y(1, 0). (A.17)
r=l 0

jplpl/m} p(1) —L(t) Si(1)p(1) j yiRi}. (A.27)

We have defined L(1) as
—1

L(1) =O(t) 1+ drO(r)
0

L1+0 (e) $
—'G '(1, e)y(1, e) = y(1, 0). (A.18)

Next we introduce the operator B(e) defined by

1—B(e)=I 1+O(e))-'

(A.28)

(A.19) and its density expansion as

In contrast to Sec. 4 we now apply the ~ method to
y(1, e) instead of X(1,e). Taking the Laplace trans-
form of Eq. (A.12) and inverting this equation, we
obtain

G—'(1, e)X(yi, e) =eX(yi, e) (A.23)

and write its density expansion as

B(e)= Q I"B,+i(e). (A.20)

It is clear that the operators B,(e) have the same rela-
tion to O„(e) as do the B„(e) to the 0,(e) in (4.8).
Since it follows from (A.8) and (A.10) that

ey(1, e) =X(yi, e)+y(1, 0), (A.21)

we obtain, from (A.18), the resummed equation* fo
X(yi, e):

Le—eB (e) ]X(pi, e) = jpipi/rN} y(1)
—B(e)G '(1i e)4(1) jyiRi} (A 22)

In deriving this equation we have observed that

L(1)= Q I"L„~i(t).
r 1

(A.29)

The coeKcients L„are expressed in terms of 0, in the
same way as I.„is given in terms of 0, in Eq. (5.14) .

As in Sec. 6, one may make a formal comparison of
the resummed equations (A.22) and (A.27) in the
limits e—A and t—+00, respectively. However, if a density
expansion of the resummed equations is considered, one
finds that the operators B„(t) and L,(t) have the same
divergent behavior (1~~) for r) 3 as do the operators
B„(1) and L„(t) in the case of the diffusion coeKcient.
Therefore, all of the remarks of Sec. 7 apply to the
viscosity as well, and one has to establish explicitly the
equivalence of the results of the two methods for the
shear viscosity, to lowest and 6rst order in the density.

If one assunzes expansions of the form

and that

Le—G '(1, e) ly(1, 0) =X(1)j yiRi}P(1)
and

X(0)=I 'Xp(0)+Xi(0)+ ~ ~ ~

Y( ) =~ 'Yp(~)+Yi(~)+"

(A.30)

= {pipi/rN}g(1). (A.24)

The resummation of the 6rst time-correlation func-
tion in the t method parallels the treatment in Sec. 5.
We derive an equation for y(1, t) by differentiating

*ln Sec. 4 of the text, we could just as well have applied the
e method to y(1, e) for the diffusion coef5cient. %e would then
have obtained the following equation:

E —~()3X(p4 ) =f4(1)p/~3 —&()G '(1, )4(1)R.
One can show directly from the de6nition of 0 that

O(p)G '(1 p)4 (1)Ri=0,
which implies in turn that

B(p) G-'(1, e)4 (1)R&=0,

so that Eq. (4.7) is recovered.

in which for convenience of notation the argument p1
is dropped, the following well-dehned equations are
obtained:

(A.32)

B,(~)Xi(0)= —Bp(~)Xp(0)

+ lim Bs(1)+ drBs(r)X(1) $(1) jpiRi}, (A.33)
g-+co 0

and
Ls(~) Yp(~) = —jyiyi/m}&(1) (A 34)

L ( )Y( )=—L(")Y(")
+ lim Ls(1)Sg(1)g(1) jyiRi}. (A.35)
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One has immediately that

B,(t) = O, (t) =L,(t)

When Eq. (A.42) is used in Eq. (A.7) to compute rte,

y(12, 0) does not give any contribution, so we need
only find a resummed expression for ey(12, e). We do
this by writing Eq. (A.11) as

(A.36)
which implies

Xo(0) = I'o(~). (A.37)

To study the equivalence of Eqs. (A.33) and (A.35)
we note that (A.33) can be written

Bs(~)XL(0) = —Bs(~)Xo(o)

+ lim Ls(l)d(1) (p»i)+ f drLI(r)d(1)

y (12, s) = lim (m f dm ~ der

XG( )f Z &;[$(1)]'y(1, 0) (A.43)

so that

XG( )f g E„[Q(1)]-'[1+0()] '
i 1

X[eX(pL, e)+G-'(1, e) y(1, 0) ], (A.44)

where we have used Eqs. (A.18) and (A.21). In order
to f(nd the 6rst density correction to yte via Eq. (A.7b)
one only needs Eq. (A.44) tolowest order in thedensity:

lim eeLsy(12, e)

Lo(t) Sd(1)(t (1){pLRLI =Ls(t)r(I)(1) {pLRLI

+ drL2 (t) y(1)
0 m

(A.39)

and

L (t) =B (t)— dr[Le(t) Ls(r) ]L2(t r) 1 (A.40)
=I-' limn. (12, e) W(12)

eM

X[(t)(2)Xo(p„0)+(t (1)Xo(p, 0)]+... (A 45a)

we may write Eq. (A35) as

Bo(~ ) &2(~ ) = Bo(~ )Xo(0)

+ hm L2(t) y(1) {p1RLI+ drL, (r) dt)(1)
t-+co 0 m

=I ' lim r (12, t) W(12)
g~m

X[dt)(2) I o(PL, ()o)+Q(1) I'o(Ps, (N)]+ ~ ~ ~ . (A.45b)

All of the above remarks apply directly to the t method
for the resummation of F(12, t) or y(12, t) as well, and
we hand

dr[Le(t) —Ls(r) ]+ lim
greco p

X[Ls(t—r) I'o(~)+e) (1) {pLpL/rttI], (A.41)
01sy(12, t)

where we have used Eqs. (A.36) and (A.37).The argu-
ments of Sec. 8, along with (A.34), show that the second
limit in Eq. (A.41) is zero. This establishes the equiva-
lence of Eqs. (A.33) and (A.35), so that their solutions
FL(o(2) and XL(0) are also identical.

Thus the e and t methods give the same results for
the 6rst two terms in the density expansion of the
kinetic part of the viscosity, qI, .

So far, our treatment of the viscosity has been limited
to a discussion of qI, . Vile have seen that the methods for
computing and comparing the 6rst two terms in the
density expansion of p& are almost identical to the
methods used in the text to discuss the diffusion coe%-
cient. However, in order to give a complete discussion
of the Grst two terms in the density expansion of p, it
is necessary to investigate the contribution of p~. For-
tunately, the resummation of the two-particle time-
correlation function is already contained in the fore-
going.

Let us now brieRy discuss the e method for the func-
tion y(12, e), which according to Eqs. (A.8) and (A.10)
is related to X(12, e) by

= lim V' dxs ~ .dxNOLsS 2fg /PL, [p(1)] '

t
X 1+ drO (r) [I'(p, t)+S,(1)y(1, 0)]. (A.46)

0

In the limit as t—+~ the lowest-order contribution in
the density is obviously identical to Eq. (A.45b).

Ke have shown, therefore, that the c and t methods
both give the same results for the fj.rst two terms in the
density expansion of the viscosity

(A.47)st=rto+Sr/L+ ' ' '.
GLOSSARY

The notation B(B) means that both B and its
Laplace transform B are used.

B(B) Single-particle correlation operator
for the e method [Eq. (4.5)]

B.(B.) Coef5cient operators in the density
expansion of B [Eq. (4.6)]
B for the viscosity [Eq. (A.19)]
B„for the viscosity [Kq. (A.20)]

B(B)
(A.42) B„(B„)X(12, e) =ey(12, e) —y(12, 0) .

oo 0

(A 33) day(12, e) = hm r' f dh3 dmd g

where we have used Eqs. (A.36) and (A.24). Further,
since
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D
Dp Dl

pY px p p Y

px' p
g(» "j)
g(1"j;

j+1 k)

Gp

J., J.

L

L
L„

S

0 (0)

0, (0,)

0 (0)
0. (0.)
p

ps

pi

p'~
I'v
q
fp

Self-diffusion coefficient [Eq. (2.1))
First tvro terms in the density expan-
sion of D [Kq. (9.6))
Canonical equilibrium distributi. on
[Eq. (2.3))
X-particle distribution function
(Sec. 1)
Equations (7.12), (7.13), (7.15),
(7.18), and (7.19)
Equilibrium j-particle position dis-
tribution function [Eq. (3.11))
Integrands of higher-order terms in
the density expansion of g(12 ~ j)
[Eq. (3.12))
Laplace transform of 8 i [Eq.
(3.21))
Laplace transform of 5 P [Eq.
(3.22) )
Hamiltonian for the gas [Eq. (2.9))
Liouville operator [Eq. (2.7))
Free-particle Liouville operator [Eq.
(2 12))
Boltzmann collision operator [Eq.
(8.12)]
Current (dyadic) for the viscosity
[Eq. (A.2))
Charge, particle currents [Eq. (1.1))
Boltzmann's constant
Single-particle correlation operator
for the t method [Eq. (5.11))
CoeKcient operators in the density
expansion of I [Eq. (5.13))
I for the viscosity [Eq. (A.28))
I.„for the viscosity [Eq. (A.29))
Molecular mass

Ar/Y= number density
Number of molecules in the gas
Single-particle correlation operator
[Eq. (3.4))
Coefficient operators in the (naive)
density expansion of 0 [Eq. (3.17))
0 for the viscosity [Eq. (A.14)]
0„for the viscosity [Eq. (A.15))
Momentum of all molecules in the
gas
Momentum of molecule i
Momentum of molecule i after a
collision

ps p~

Permutation operator [Eq. (A.14))
Heat current [Eq. (1.1))
Range of intermolecular force [Eq.
(8.24))

R
R;

~py ~lp ~2

V

W(12 ~ .j)

Xs

X (X)

X;

X (X)

i (y)

Y;

ZN

R;—R;
Position of all molecules in the gas
Position of molecule i
Time-displacement (streaming) op-
erator [Eq. (2.5))
Free-particle streaming operator
[Kq. (3.2))
Time
Absolute temperature
General transport coefficient [Kq.
(13))
Coefhcients in density expansion of
a general transport coefIicient [Eq.
(13)]
Local average molecular velocity
(Sec. 1)

j-Particle cluster operator [Eq.
(3.8))
Volume of the gas

First term in the density expansion
of g(12. .j) [Eq. (3.13)]
Phase variable of all molecules in the
gas

Phase variable of molecule i
Single-particle correlation function
for the self-diffusion [Eq. (2.14))
CoefIicients in the density expansion
of X(O) [Eq. (7.4)]
Correlation functions (dyadic), anal-
ogous to X (X), for the viscosity
[Eq. (A.4)]
Coefficients in the density expansion
of X(0) [Eq. (A.30)]
Single-particle correlation function
used in the t method [Eq. (5.4))
Correlation functions (dyadic), anal-
ogous to y, for the viscosity [Kq.
(A.11))
Time integral of X; the single-particle
correlation function used in the t
method [Kq. (5.1)]
CoefFicients in the density expansion
of~( ) [Eq (73))
Correlation functions (dyadic), anal-
ogous to Y, for the viscosity [Eq.
(A.8))
CoeKcients in the density expansion
of Y(00) [Eq. (A31)]
Canonical partition function [Eq.
(2 4))
1/kT
Equation (8.9)
Laplace transform variable
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Shear viscosity [Eq. (A.1)j
First two terms in the density expan-
sion of rt [Eq. (9.7)j
Kinetic, potential contributions to
the viscosity [Eqs. (A.6), (A.7)$
Nonlinear transport coej5cient [Eq.
(12)j
Interaction part of Liouville opera-
tor for molecules i and j [Eq. (2.13)j
CoefBcient of thermal conductivity
[Eq (11)j
CoeKcient of electrical conductivity
[Eqs. (1.1)j
Time of an intermolecular encounter
[Eq. (8.24)j
j-Particle dynamical operators ap-
pearing in the naive density expan-
sion of 0 [Eq. (3.15)g
Electrostatic potential [Eq. (1.1)j
Normalized Maxwell —3oltzmann
momentum distribution function for
molecule i [Eq. (3.5) g

Total potential energy of the gas
[Eq (29)j
Potential energy of molecules i and j
[Eq. (2.10)j
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:review o1.' Some . 'x oerimenta. '. anc. Ana. .ytica.
. 'quations o): State
J. ROSS MACDONALD
Texas Instruments Incorporated, Dallas, Texas 75222

Four di8erent polynomial equations and seven nonlinear equations, all applicable to both solids and liquids, are com-
pared theoretically and statistically. Detailed curve-fitting results are presented for recent water and Hg isotherma]
data. Uncommonly used methods of statistical analysis and comparison, including generalized least squares, are described,
justified compared to usual methods, and applied. In general, certain polynomial equations are found to yield significantly
better fits of many different water and Hg data sets than any nonlinear equation considered. The Tait and Murnaghan
equations, in particular, lead to strong systematic behavior of all residuals calculated herein with them, showing that
they are inadequate models for all the data considered. Even a nonlinear equation derived from a second-order expansion
of the bulk modulus E' in powers of the pressure, which is shown to include several frequently used equations as special
cases, is inferior to selected polynomial equations but is still the best equation examined when appreciabIe extrapo}g tjpn
is necessary. The method of volume normalization almost always used heretofore in statistical fitting of equations of
state to I'—V data is shown to be inadequate and two alternative approaches are proposed and employed herein. Critical
comparison of previous analyses of water and Hg data is made with the results of the present, more refined approach. The
likelihood of important systematic errors in I'-V data, particularly data derived from ultrasonic measurements on liquids
under pressure, is pointed out and high probability of their occurrence in some of the data analyzed is demonstrated.
Even the combination of the best data apparently available and the use of better statistical-analysis methods than have
been employed before does not yet allow one to obtain highly accurate values of the Eo' parameter of water or Hg, and
only an order-of-magnitude estimate of the Eo" parameter seems currently possible. Nevertheless, it appears that near
room temperature E'0" is positive for water and probably negative for Hg and that its appreciable magnitude for both
materials renders a second-order expansion of E inadequate.
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It is the mark of au educateE maN to look for Prccisiou iu
each class of things j ust so far as the nature of the sujhect
admits.

Aristotle
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317
317
319 L INTRODUCTION
319

Hayward (i96'7) has recently stated, "The subject

319 of compressibility equations for liquids is really a
very simple one. Unfortunately, it has been so badly
treated in the literature that it has been made to

323
323 appear unnecessarIly complex. . . In the present workPP

324 I hope to demonstrate by example the truth of
Hayward's 6rst statement and to show, using the324
work of Hayward and others, the applicability of his
second statement.

332 Isothermal compressibility equations are diGeren-
tial, or di'fference, forms of equations of state which

340
are more commonly written in directly useful pres-
sure —volume form. Thus, statements about compress-

341 ibility equations apply, nzutatis mltaedis, to their
corresponding equations of state. Although I shall

346 here illustrate the usefulness of the equations con-
347 sidered using data for liquids, several of these equa-

348 tions have wide applicability as well to homo gen eous,
348 isotropic solids under hydrostatic compression.


