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Although the theory of the propagation of electron waves in periodic solids and the theory of the elastic diGraction
of electron waves by periodic solids have developed independently into band theory and dynamical electron-diGraction
theory, respectively, they are in fact formally identical. The electron wave functions which can exist in the crystal are
determined by a seven-dimensional hypersurface in energy-complex K space which defines the totality of solutions to
the wave equation in the in6nite crystal. In the diGraction problem, the introduction of the crystal surface together
with the magnitude and direction of the external electron wave vector selects the particular set of eigenfunctions which
are excited during a given experiment and which correspond to the allowed electron states in the crystal. This set con-
stitutes the wave 6eld in the self-consistent multiple-scattering approach. It is demonstrated that the energy band
diagram of band theory and the constant energy dispersion surface of dynamical theory are in fact sections of the same
hypersurface. The complex nature of the dispersion surface leads to the excitation of evanescent waves both in the
crystal and in the vacuum. The diGraction boundary conditions, notably conservation of total energy and of momen-
tum parallel to the crystal surface, can easily be introduced, geometrically, by means of a constraint surface which
contains the crystal normal. In a given experiment the excited wave functions are determined by the intersection of
the hypersurface with the appropriate constraint surface. It is shown that the most useful constraint surfaces are
those at constant energy and furthermore that the dispersion hypersurface is an ameniable method for the discussion
of low-energy electron-diffraction (LEED) cases of high order and high symmetry, several of which are outlined in detail.
The variation of the reQected intensities observed in electron-diffraction experiments is discussed in terms of the changes
in the allowed electron wave functions as calculated by three-dimensional band-structure and/or dynamical diffraction
theory. In particular, we predict zeros in the rejected Bragg intensities for certain special geometries in the case of two
simultaneous reflections (mixed Bragg —Laue case) .
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I. INTRODUCTION

Measurements of intensity in low energy electron
diffraction (LEED) as a function of the diffraction
parameters are characterized by extensive fine struc-
ture. Because of the appearance of maxima in the
intensity which violate strict three-dimensional crystal
symmetry and because of the expected large mag-
nitude of the atomic scattering cross sections in the
energy range studied (10-1000 eV), analysis of LEED
observations has emphasized the two-dimensional as-
pects of the problem. Electron-diGraction theories
(Bethe, 1928; McRae, 1966; Kambe, 1967; Plaskett,
1967; Boudreaux and Heine, 1967; Tournarie, 1962;
Marcus and Jepsen, 1968) have been developed which
can in principle be made exact. Those most applicable
at low energies have emphasized the heretofore unex-
plained surface-related effects; e.g., non-Bragg frac-
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tional order peaks and surface wave resonances.
However, the utilization of techniques cordon to
high-energy electron diGraction and to x-ray diGrac-
tion, where the intensity is studied as a function of
three-dimensional diffraction parameters, has indi-
cated that the diGracting crystal is indeed three
dimensional. Recent measurements in this laboratory
indicate that the inclusion of the effects of simul-
taneous reflections (multiple diffraction) in a three-
dimensional model successfully accounts for the geo-
metrical origin of most of the one structure observed
(Gervais, Stern, and Menes, 1968; Taub and Stern,
1968; Stern and Taub, 1968; Gervais and Stern, 1968;
Stern, Taub, and Gervais, 1968; Stern, 1968).

The understanding of the origin of the intensity
variation with diGraction parameters in LKED meas-
urements therefore requires the development of a
three-dimensional dynamical diGraction theory or its
equivalent. The purpose of this article is not to review
existing theories in detail but to show, in particular,
the mathematical formalism, and hence the under-
lying physics, of the band-structure approach (Bou-
dreaux and Heine, 1967) and. the dynamical diffrac-
tion theory of Bethe (1928) for electrons in triperiodic
media are identical. We will demonstrate that the
energy-band diagram of band theory and the (con-
stant-energy) dispersion surface of dynamical theoryf
are in fact sections of the same seven-dimensional
dispersion hypersurface in energy-complex K space
(E, K",K'), which defjjnes the totality of allowed
electronic states in the crystal. f

The introduction of the idealized crystal surface
(which leaves the semi-in6nite crystal intact) does
no more than introduce boundary conditions. The
constraints imposed by the satisfaction of the bound-
ary conditions in any diGraction experiment determine
a particular constraint surface in this hyperspace
which contains all the solutions allowed by the bound-
ary conditions. The intersection of this constraint
surface and the dispersion hypersurface selects the
eigenfunctions excited in the crystal by that experi-
ment. In particular, to prevent divergences in the
electronic density from developing, the only imaginary
components of K which are allowed to exist are those
normal to the crystal surfaces.

The eigenfunctions of real K contain the traveling
waves of the problem; however, it is the relative
amplitudes of all the eigenfunctions of real and com-
plex K which determine the diGracted intensities. The
latter part of this paper will be concerned with a
discussion indicating how a qualitative determination

*The standard spherical diffraction coordinates in three di-
mensions are E, total incident energy; 8, angle of incidence with
respect to the surface normal; p, angle of orientation of the plane
of incidence dered by the incident beam and the surface normal
with respect to a 6xed direction in the surface.

f The concept of the dispersion surface was originally derived
for x rays by Ewald (1916).

$ The relationship between total reQection (Bragg rejections)
and bandgaps in the solid was 6rst discussed by Morse (1930).
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Fo,e(K, E)
6
G(h, k, l)

H
H
K
K"
K'
E
K))
Kg

Unit vector in the real lattice
Unit vector in the reciprocal lattice
Tie point
Total electron energy
Eigenvalue of E whose eigenvector is the

wave vector K
The secular determinant
Reciprocal lattice vector
Reciprocal lattice point, where h, k, l are

integers
Hamiltonian
H'= 7s'+ k'+ P
Electron wave vector in the crystal
Real component of K
Imaginary component of K
x Component of K
Component of K parallel to the surface
Wave vector associated with the Gth re-

flection, Kg=K+6
Electron wave vector in the vacuum, all

components labeled as for K
Wave vector of the electron incident on

the crystal surface
Number of plane-wave states used in the

expansion of the electron wave func-
tion

Potential energy of the electron in the
crystal

The 6th Fourier component of the po-
tential energy

of the relative plane-wave amplitudes can be made
on the basis of simple approximations for certain
symmetrical cases. In particular, for the case where
two rejections which lie in the plane of incidence
are simultaneously excited, the real two-dimensional
dispersion surface will be shown. A description will

be given of how the boundary conditions can be used
to determine the qualitative behavior of the diGracted
intensities as functions of the magnitudes of the dy-
namical diGraction parameters. One new result of this
approach is to show that for the case of two simul-
taneous reflections (the mixed Bragg —Laue case)
certain geometries lead to zero intensity for the Bragg
reQection.

It should be noted that it is only the existence
of the boundary surface which is required for the
present discussion, the structure in the diGracted
intensities being related to bulk phenomena. The
chemical state of a real crystal surface and the exact
nature of the transition region between the interior
and exterior of a crystal is known to strongly aGect the
details of the diGracted intensities, making LKED an
important and useful tool for the study of surfaces.
(See the bibliography in Dvoryankin and Mityagin,
1968.) However, such truly surface effects can only
be discussed once the importance of the three-dimen-
sional nature of the diGraction is recognized.

II. GLOSSARY
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Ug", Ut."'
X, R
X
aG
&G

tY, y

ts(X)

4G

+(K, R)

@,(K, R)

O'G(K, R)

+vac

The real and imaginary components of Ug
Vector in real lattice
Coordinate in real lattice
Energy denominator =KG' E~-
= EG—Uo

Angle of incidence (latitude) and azi-
muthal angle (longitude)

Electron wavelength
Periodic part of the Bloch function
Absorption coeKcient
Surface normal
Fourier coeKcients of the wave function

@tc(X)
Total wave function of the electron in

the crystal
Block wave associated with the ith tie

point
Wave field propagating in the direction

of the reflection G
Total wave function of the electron in

the vacuum

UG ——s ' tPX' exp (iG X') U(X'). (2)

Here {6}is the set of reciprocal lattice vectors for
the crystal space group, where 6 is the vector drawn
from the origin of reciprocal space to the reciprocal
lattice point G(heal). f.

*It is often easier to solve this equation if it is fjtrst transformed
to a pseudowave equation (Harrison, 1956; Kittel, 1950; 1956;
Heidenreich, l950), where the pseudopotential V(X) is substi-
tuted for U(X). V(X) is much weaker than the real potential, but
has the same periodicity. The @x(X) then are the pseudowave
functions which are smoother near the ion cores, but otherwise
identical to the real wave functions; hence they can be expanded
in a smaller number of plane waves; EE. are identical to the eigen-
energies of the Schrodinger equation for conduction electrons. The
choice of pseudopotential and the details of its construction do
not alter or influence this discussion in any way.

$ Atomic units are used so that fts/2m = t.
g 6=2rr{tsb&+kbp+tbpl, where b; at =8;t and f al is the set of

basis vectors of the real lattice; h, k, l are integers.

III. THEORY

A. Plane-Wave Expansion and the Secular Equation

Both band-structure and dynamical diffraction the-
ory seek to determine the complete set of eigenfunc-
tions of the Schrodinger equation for electrons in an
infinite triperiodic crystal. As applied to diffraction,
both theories have utilized plane-wave expansions of
the crystal wave field. Formally this becomes the
nearly free-electron approximation (NFEA) when the
expansion is truncated.

The one-electron Schrodinger equation is

&4tr(X) = —
I &'+ U(X) }4tr(X)=&4tr(X) (&)

where U(X), the potential energy of the electron in
the three-dimensionally periodic crystal, * t can be ex-
pressed as a three-dimensional Fourier sum:

U(X) = Q UG exp (—iG-X) = Q UG } 6),

The Bloch wave is expanded in a series of plane
waves (momentum representation), most of whose
terms will be small:

@tr(X) =ts(X) exp (zK.X)

= Q @G exp (iKG X)—= Q yG [ KG), (3)

where ts(X) =ts(X+a) and KG=—K+6, K=Kr+z~';
therefore KG'=K' and KG"——K'+6 If Eqs. (2)
(3) are substituted into (1) and the scalar product

~
KG) is taken, Eq. (1) is turned. into a set of linea, r

homogeneous equations:

(KGs—&x)4G+ Q Usr~4m= o (4)

Eq. (4) can be written

+GAG+ Q UH GCH— (6)

Nontrivial solutions of Eq. (6) exist if and only if
the secular determinant vanishes:

~p+Up UGs

B,G,+Up UGs-Gr

&G,+Up ~ =0. (7)

Equation ('7) is a 2Xth-order equation in the seven
variables K", K', and 8 defining Ag, where X is the
number of p1ane-wave states used in the expansion
Eq. (3). The solutions to these coupled eigenvalue
equations are the set of N eigenvalues (hp} and the
set of X eigenvectors Intr'}. Each eigenvector is an
E-member column vector corresponding to a Bloch
wave,

ytr'(X) = g yG'exp (zKG' X),

which has a Axed ratio of amplitudes &G'/@p' deter-
mined by Eq. (6). The point of departure of the two
theories is in assignment of hg to Kg or E~ and arises
from the boundary conditions usually associated with
the problems considered by the two theories.

B. Comparison of Band Theory and Diffraction
Theory

Sand theory is usually concerned with internal
electrons bound to the crystal with E&0. If one

This basic set of equations is identical in band theory
and dynamical diffraction theory.

If we now define the coeKcient

+G= (KG +K) p
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FIG. 1. A plane of the reciprocal lattice near the origin, showing
the Brillouin zone boundary corresponding to the reflection 6:
The zone boundary G is the perpendicular bisecting plane of the
vector G. Several other zone edges are also shown. The arc of the
Ewald sphere of reflection passing through the origin and the
reciprocal lattice point G is also shown, together with the center
of the sphere, for two different energies. It can be seen from the
construction that the Brillouin zone boundary (G) is just the
locus of the center of all Ewald spheres passing through the origin
and the reflection 6.

considers the momentum K of the electron to be
fixed, the crystal potential perturbs the energy of the
electron so that an electron in momentum state Kg
has energy E»=KG'+kg. It can be seen that once
K is assumed, Eq. (7) reduces to an 1Vth-order equa-
tion in E with N roots, the N eigenvalues of the
secular equation. These define the familiar bandgaps
in the E-vs-K curve: The dispersion appears in E
at constant K.

The dynamical theory of electron diBraction, on
the other hand, is concerned with the behavior of
external electrons injected into the crystal with fixed
positive energy E&0. The unperturbed momentum
K is therefore perturbed by the crystal potential and
becomes Kgs=E»+kg, and the dispersion appears in
K at constant E. This can be compared, in principle,
to the simple one-dimensional problem from elemen-
tary quantum mechanics

E(x}

&»=&p'+ &p, (9)

wh ereas in dynamical diGraction theory (Ewald, 1916)'
the momentum of the state of energy Ez is

IKp I
=a(E»—Up)" (10)

Since the average value of the potential energy of
the electron in the crystal Uo is negative, either Ez
is decreased or

I
K

I
is increased with respect to the

free-electron values.
The crystal symmetry causes a degeneracy, or an

admixture of plane-wave states, wherever K is such
that

I
K I

=
I
K+G

I

=

In band theory this is just the condition that K end
on a Brillouin zone boundary (Kittel, 1950; 1956;
Heidenreich, 1950); in dynamical diffraction theory
this is the condition that G be on the Ewald sphere
(Batterman and Cole, 1964; James, 1963; 1965) .
Geometrically these two conditions are identical: The
Brillouin zone boundary de6ned by the perpendicular
bisector of reciprocal lattice vector G is just the
locus of centers of all Ewald spheres passing through
the point G (Fig. 1).* In the nearly free-electron
approximation, truncation of the inhnite expansion
is usually made by including only those G which are
on or near to the Kwald sphere of reflection and have
a radius equal to the average value of

I
K

I
for the

crystal Bloch waves of energy E» (K'=E» Up) or-
those 6 corresponding to reQections whose Brillouin
zone boundaries lie near the end of K.

in which the total energy is a constant, but the ki-
netic energy and therefore the period of the wave
function diGers in the two regions of space I and II
shown in the above diagram. Since the value of only
one scalar variable, E, has been assumed in Eq. (7),
the secular determinant described by the 2Nth-order
equation in the variables K(E, 8, &p) becomes the
equation of 2E surfaces of constant energy in K space
(in complex K space, six variables: K"; K').

In the reciprocal lattice of the crystal, at a general
point in space, K, the crystal periodicity causes no
degeneracy if

I
K I &

I
K+G

I
for all G; under these

conditions, in the nearly free-electron approximation,
only one term in the plane-wave expansion has a large
amplitude. In this case the equations become

p (x) p, IK),

&p4p+ ~p4p =0.
Therefore,

o= —Uo=K' —Ez,

gp —(Kr) s—(K~)s+ 2'sKr /' .g»—

In band theory the energy of the state with mo-
menturn K is

U(x}
* Simultaneous diffraction into more than one beam occurs if

there is more than one reciprocal lattice point on the Ewald
sphere or if K ends at the corner of a Brillouin zone.



R. M. SrzxN, J. J. PERRY AND D. S. BovnREaUx Barsd Strstotgre amd LEZD DsspersjorsSNrfaoes 279

For the case in which there is only one such 6,
Eqs. (4) become

(&o'—Ex)do+ Uotu+ Use= o,

(&g'—Ex)4g+ Ugf g+ Ug4o= o,

where Ut-. = U 0,. i.e., a center of symmetry has been
assumed. * This set of equations is usually written
in the two cases as

(1) Band theory:

{(Ko'+Uo) —Ex}4p+Ug4g=0~

Ug4o+ {(Kg'+ Up) —Ex}4g=o'

(2) Diffraction theory:

{Ko—(Ex—Uo) }So+Ug&g=0i

(12a)

Ug4o+ {Kgs—(Ez—Uo) }pe=0 (12b)

The secular equations for the eigenvalues in. the
two theories are then K)

r
Kp

(Ko'+ Uo) —Etc Ug

(Kg'+ Uo) —Ex

Ko' —(Err —Uo) Ug

Kg' —(Ex Up)—

=0.
7

=0

(13a)
FIG. 2. Solution of Eq. (13b) for (8, K&", E&') . In this drawing,

the coordinates are chosen such that K1' is orthogonal to K~". In
order to demonstrate the fact that for an arbitrary value of K~",
for example, one corresponding to a wave traveling in the plane
of the surface, there are an infinite number of imaginary solutions
K&' which decay away from the surface into the crystal. This is
not the section usually shown (where the real and imaginary
components of K are chosen parallel to each other) .

In band theory this secular equation leads to the
familiar energy bandgap (Ez=Kps+ Up+ Ug) at the
Brillouin zone boundary (ho=kg), where purely real
K solutions are forbidden, and to the dispersion in
K of E leading to eGective mass formulas. Wave
functions having complex K are allowed everywhere,
including the gap (Heine, 1964). The necessity of
maintaining finite electron densities everywhere re-
quires that such wave functions have nonzero am-
plitudes only around impurities or near surfaces.
Figure 2 shows the energy as a function of Kp (com-
plex). LThe an.alytic properties of the energy and
Bloch functions as functions of complex K are ex-
tensively discussed elsewhere (Blount, 1962; Stern,
1967; Kohn, 1957; Krieger, 1966; Heine, 1965), in-
cluding in particular the branch points on the com-
plex K plane and the proper connection of the energy
band sheets in complex space. ) The coordinates of
Fig. 2 are chosen such that K2 is orthogonal to K~.
(This is not the usual one-dimensional E-vs-E dia-
gram where Er is parallel to E'.) The reason for
this choice is to demonstrate that in the case where
K2" lies in the surface and K~' is directed normal to
the surface, there is an infinite allowed set of ex-
ponentially decaying solutions having a K' vector
normal to a particular propagating solution.

In dynamical diffraction theory, Eq. (13b) is the
equation of a constant-energy surface in complex K

*In a higher-order approximation, the weak beams (Kg'+ Up-
E~&0) can also be included.

space known as the dispersion surface. Each point on
the surface corresponds to a pair of allowed K vectors,
one drawn to (0) and the other to (G). The eigen-
state of energy Ez corresponding to that point is
described by an eigenfunction which is the sum of
two plane waves whose wave vectors are the afore-
mentioned pair and whose amplitudes, pp and. gg,
are determined from Eq. (12b) by substituting the
appropriate pair of wave vectors. Figure 3(a) shows
the constant-energy surface in the region of the dis-
persion in K due to the single perturbation U6. Equa-
tion (13b) can be written

(14)

which is the equation of a hyPerbola {in Kps and
Kg') asymptotic to spheres of radius K about 0 and G,
shown by the heavy lines in Fig. 3(a).

The totality of solutions of the secular equation
represents a surface in (E, K) complex hyperspace.
This seven-dimensional surface (E, K', K') is called
the dispersion hypersurface. A section of this hyper-
surface at constant E and constant K' (K'=0) is
the familiar dispersion surface of dynamical diffrac-
tion theory. A section at constant 8, P and K'=0
is the familiar energy dispersion of band theory.
These sections are shown in Figs. 3(a) and 3(b),
respectively. The magnitude of the dispersion in K

(K,'—E') (l4 —E') = Uy: E'=E U„—
ho'hg'= Ug )0,

.'. sgn b,o = sgnhe,I
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A
Ko —Ko

0

(a)

Fxo. 3. (a) Dispersion sheets of real K (the constant-energy sur-
faces) at an energy

~
Ko

~

' which lies in the center of the bandgap
associated with the reQection G. AA' is the Gth Brillouin zone
boundary and is called the diameter line in di6raction theory. D
and D' are called the diameter points. The intersection of the
free-electron spherical constant-energy surfaces, I., is known as
the Lane point. (b) Energy dispersion diagram at the first Bril-
louin zone boundary. The dispersion in energy at the Brillouin
zone boundary is measured from the parabolic free electron
surface.
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Ki

(a) (b)

Fro. 4. (a) A three-dimensional (E, Kp, Ks') isometric view of the dispersion hypersurface in the tirst Brillouin zone. (b) The
outline of Fig. 4(a), showing the intersection of the dispersion hypersurface with a constant-energy plane (K&, Ks) and with an arbitrary
K plane (E, K') . The point B shown lies in both these planes. If these planes are considered to be those of Figs. 3 (a) and 3 (b), then
it can be seen that the 6gures can have a point on the edge of the bandgap in common. Traversing the gap from this point in one
plane is not equivalent to traversing it in the other plane from the same point, since the points C, C are not equivalent.

at constant E and in E at constant K is indicated.
The dispersion hypersurface is a general property

of the crystal, describing as it does the energy of
the Bloch wave at any point in K space. The prob-
lem reduces to the accurate determination of the form
of the Bloch wave (NFEA, OPW„etc.) at any point
on the hypersurface.

A three-dimensional section of this surface (E, Kt",.
Ks"), chosen so as to illustrate the connection between
the two standard diagrams, is shown in Fig. 4(a).
In Fig. 4(b), the outline of the dispersion hyper-
surface of Fig. 4(a) is shown together with the trace
(near the Brillouin zone boundary) of the surface
(ABC'Il') on a plane of E=E'= const and the trace
(DBCF) on a plane of arbitrary K=K'= const.
These two planes contain the common point 8 which
lies on the edge of the gap. If the planes indicated
are the planes of Figs. 3(a) and 3(b), then the re-
lationship between the dispersion in E and in K can
be seen. Traversing the gap at constant energy (from
J3 to C') is not equivalent to traversing the gap at
constant K (from 8 to C).

In Fig. 5(a), constant-energy slices of Fig. 4(a)
in the 6rst Brillouin zone are taken at the levels
indicated. These are constructed following the rules
usually associated with the drawing of the dispersion
surface in the dynamical theory (Batterman and Cole,
1964; James, 1963; 1965) Lthe Harrison construction

(Harrison, 1956) for nearly free-electron constant-
energy surfacesj. The usual band diagrams are in-
dicated on the E—Kt and E—Ks planes of Fig. 4(a),
illustrating the bandgaps in the directions K» and K2.
Figure 5(b) shows these band diagrams drawn in
the series of planes having orientations between that
of E—K» and 8—K~, in the quadrant K»—K2 of
Fig. 4(a). Figure 5(c) shows the intersection of the
surface of Fig. 4(a) with the plane Ks——constant,
chosen at the level Z shown in Fig. 4(b). The band-
gap at the Grst Brillouio. zone boundary is shown.

IV. BOUNDARY CONDITIONS IN ELECTRON
DIFFRACTION

A. Theory

If a crystal surface is introduced into the problem,
the conditions existing on the boundary as dined
by a given experiment determine in a self-consistent
way which Bloch waves allowed in the bulk are ex-
cited. The presence of a surface admits both the real
and complex K solutions, the latter decaying nor-
mally from the surface.

The boundary conditions require:

(a) conservation of energy,
(b) conservation of momentum parallel to the

surface,
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2 ~/c&~ Kp

El Plane

Pl Pl

(a)

-IK

F

6j
onstant-energy sectionsFIG. 5. a

o ig. 4(a), taken at the levels ErE6-
Indicatedin Fig. 4(a), constructed in

the manner suggested b d a
fraction theor beory. b E-vs-K band dia-
grams, in a series of planes having orien-

c are just the solutions of Eq. (13b)

Z
Kz

(c)
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(c)continuity of the total wave function and its
normal derivative at the surface, ~

(d) finite electron densities everywhere.

For the plane-wave description to be valid, condi-
tion (c) requires that the expansion include solutions
for both real and complex K; i.e., the evanescent
waves in both the vacuum and the crystal must
always be taken into account for the proper matching
of the wave field at the surface.

The last condition (d) requires that the complex
solutions have imaginary parts normal to the surface
only, i.e., K;=E,s. Since this fact is common to all
experiments at a single surface (s=O), the constraint
surface in imaginary space is the plane E,'=E,'=0
for all experiments.

Conditions (a) and (b) are used to determine the
proper set of eigenfunctions excited in the crystal,
and condition (c), to determine the relative ampli-
tudes of each of the eigenfunctions in the crystal
and in the vacuum. The incident beam is assumed
to have unit amplitude, and there can be no other
waves in the vacuum traveling towards the crystal.
Condition (d) therefore prohibits the excitation in
a real, semi-infinite crystal with absorption of BLoch
waves having a net electron Qow towards the en-
trance surface, since this would require an infinite
source deep within the crystal. f

The selection of the set of excited eigenfunctions
in the crystal satisfying the 6rst two boundary con-
ditions is formally accomplished by determining the
intersection between the dispersion hypersurface and
the constraint surface in a given experiment. To de-
termine which solutions of real K satisfy the last
boundary condition, it is necessary to establish the
direction of electron Qow parallel to the velocity
vector of the Bloch wave associated with each point
on the dispersion surface. It can easily be shown
(Peierls, 1929; Sommerfeld and Bethe, 1933) that the
velocity of the Bloch wave (px(X) ~

v
~
@x(X)) always

has a direction perpendicular to the constant-energy
dispersion surface t'(e) = VxE/(2sm) 'Is/ (see Appendix);
hence not all eigenfunctions can be excited in a given
experiment.

In the following we will discuss the geometrical
conditions imposed in real K—E space in those dif-
fraction experiments which determine simple con-
straint surfaces. It is to be emphasized, therefore,
that in addition to the Bloch waves excited with
real K there are those which satisfy the combination

*For a finite crystal these same boundary conditions:apply
at the exit surface with the additional condition that„'there are no
incoming waves from the vacuum at that surface.

t In the problem of a finite crystal, all surfaces must be con-
sidered, requiring the generalization to seven-dimensional space
since the exponential decay is in three independent directions. In
the case of a thin crystal, the direction of electron propagation is
no longer restricted, since waves propagating towards the entrance
surface, even though they are attenuated by the crystalline ab-
sorption, always are of finite amplitude within the finite crystal.

const

7l
FIG. 6. The surface normal v drawn through the end of the

incident vacuum k vector It can. be)seen that all the vectors
drawn from the origin to the surface normal have the same corn-
ponents of k parallel to the surface. This is the construction which
allows the geometrical determination of all the points on the
dispersion surface which correspond to plane waves satisfying this
boundary condition.

of constraints in real K space along the E,' axis of
complex space.

There exist three methods of systematically scan-
ning the K vector of the incident wave through
reciprocal space, varying only one of the diGraction
parameters at a time: (1) The energy E of the in-
cident electron beam may be varied while either
keeping the direction (8, &) of the incident beam
constant (pseudorocking curve) or maintaining K~~
constant. (2) The angle of incidence, 8, may be varied
while keeping the energy E and orientation @ con-
stant (rocking curve). (3) The crystal can be rotated
about the surface normal, maintaining the angle of
incidence 0 and the energy E, constant (rotation
diagram). If a Bragg reflection appears in the spec-
ularly reRected beam in the third case, that reBection
is maintained during the rotation.

It is appropriate to first discuss constant-energy
experiments, cases (2) and (3). Here the obvious
constraint surface is the surface E=E;„.The inter-
section with the dispersion hypersurface is the con-
stant-energy dispersion surface, two-dimensional sec-
tions of which were shown in Fig. 5(a). From this
constant-energy set of Bloch waves the appropriate
excited subset is that which conserves momentum
parallel to the surface. The constraint surface defined
by this condition is generated by the locus of the
surface normal through the end of the vacuum h
vector (K~ ~

=it~~) (Fig. 6) . In the rocking-curve experi-
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FIG. 7. The constant-energy dispersion surface in the region of
three reflections, L, 8, O'. The incident direction of the vacuum
wave vector k;, is shown, as is the orientation of the surface and
the surface normal. The points B', I, B, B' indicate the position
of the Brillouin zone boundary for those reflections.

ment the locus is the plane of incidence (@=const).
In the rotation-diagram experiment the locus is the
cylinder whose axis is the surface normal and whose
radius is K~ t.

Consider the generation of the rocking curve in
detail. Figure 7 shows the intersection of the plane
of incidence with the constant-energy surface: a section
of the spherical constant-energy surface in the vacuum
(radius O'=E") is also indicated. The plane of the
surface is indicated at the origin, properly orientated
in reciprocal space. The incident vacuum wave vector
k;„, is drawn at the proper angle of incidence, 0, with
respect to the surface normal. A line parallel to the
surface normal drawn through the end of this vector
will then intersect the constant-energy surface at
those K (called tie points) such that the Bloch waves
associated with those points satisfy the boundary
conditions (a) and (b). The rocking curve is then
generated as 0 is varied, moving the points of inter-
section from 0 to I. to 8 to J3'.

The position of the Brillouin zone boundary for
the reflections (B'), (L), (B) are shown at the points
B, L, and B. As the incident direction is varied, the
successively excited crystal wave vectors, KL„K&,
and K~, are drawn from the tie points to the recip-
rocal lattice points L(mno), B(heal), and B'(rst), re-
spectively. A reQection is designated to be of the
Laue type when the diGracted wave vector is directed
into the crystal (forward scattering or transmission);
a Bragg reQection occurs when the wave vector is
directed towards the vacuum (back scattering or
total reflection). For the orientation of the surface
normal shown in Fig. 7, the points B(hkl) and B'(rst)
correspond to Bragg reflections and L(mao) corre-
sponds to Laue rejections. These rejections are ex-
cited for orientations of the incident K vector such
that the surface normal passes through the regions
of the dispersion surface near 8', 8, and I. It should
be noted that in the region of J3, no traveling waves

are excited and the incident beam suGers total re-
Qection. On either side of the two-beam Sragg re-
Qection, the surface normal cuts the dispersion sheet
at two points. In a real, semi-infinite crystal, only
the tie point corresponding to an energy Row into
the crystal has a physical meaning.

There are two obvious experiments in which the
energy may be varied. In one case, the parallel com-
ponent of K (k~~) is maintained constant, resulting
in a planar constraint surface; its interaction with
the dispersion hypersurface is the energy-vs-E, band
structure, a simplified plot of which is shown in Fig.
5(c). This experiment is dificult to perform, however,
since to maintain k~1 constant while varying k, re-
quires an accurate simultaneous variation of both the
magnitude and direction of the incident beam k'"'.
The other experimental condition, in fact the one
usually chosen in LEKD measurements, is mainte-
nance of the incident direction of k' ' constant and
variation of the energy. In this case the constraint
surface is the plane of incidence, and the region of
the dispersion surface near to the intersection with
the surface normal through the end of k' ' must be
reconstructed at each energy. Thus, while the second
method is experimentally easier, an analytical de-
scription of the trace of the intersection of the dis-
persion surface with the constraint surface is difEcult
to formulate. The geometrical interpretation is made
in the same way as for the rocking curve.

After the excited set of Bloch waves from the inter-
section of the constraint and dispersion surfaces have
been determined, the amplitudes of the Sloch waves
for any experiment are obtained from the conditions
of continuity of the wave function and its normal
derivative. Each eigenfunction associated with the ith
tie point* can be written as

%,(K, R) = Q yg' exp (iKg' R),

and the total wave function becomes

+= P C,%;(K, R) . (15)

The wave field %0, propagating in the direction of
the reflection G,f can be written as

eg= Q C,yg'exp (kg' R) (16)

and the total wave function can then be written

The C; are determined from the boundary conditions
which can be written as

p= g CP' (K R) ( p (17a)

8%/Bs,.j,~= Q C,(8@;/Bs) (,=e. (17b)

*Only those tie points associated with allowed direction of
electron transport are included.

t It is proposed to call this the Ewald wave.
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Since %' is expanded in a Fourier series, Eqs. (17)
can be applied term by term. In the vacuum, U=O
and solutions of Eq. (1) are plane waves of real and
complex k. At the boundary, therefore, in addition
to the vacuum plane waves usually considered, there
will be evanscent waves with amplitudes decaying
away from the surface into the vacuum. The imagi-
nary part of any complex k-plane wave of real energy
must be normal to the real k, and thus the only
allowed evanscent waves in the vacuum have real
k parallel to the surface. *

B. Experimental Conditions

The intensity of any reQection from a given surface
is uniquely determined by the values of all three
incident diGraction parameters. In each experiment
the boundary conditions select diGerent sets of ex-
cited eigenfunctions, and some selected by one method
will never be selected by the others unless the initial
conditions of the several scans are deliberately chosen
so as to excite the same tie point in hyperspace.
Even if the same point is excited in the diGerent
experiments, the sequence of adjacent points excited
during the scan will usually be different Lsee Fig.
4(b)g; thus the comparison between measurements is
dificult. In dynamical theory, the object of both
theory and experiment is to determine the eGects of
simultaneous diGraction. Because it is easy to vary
the energy in the apparatus commonly employed in
LEED, the technique of measuring intensity vs energy
has been almost exclusively in LEED. In such a
measurement, vast areas of the dispersion hyper-
surface will not be excited. In particular for any
incident direction of high symmetry, no matter how
high the energy is allowed to become, the sphere of
reQection will never excite those points lying in a
dense reciprocal lattice plane passing through the
origin and normal to the incident beam.

Recent experiments in this laboratory have indi-
cated that it is the excitation of precisely these lom-
index Laue reQections which are responsible for much
of the anomalous structure observed in the reQected
intensity (Stern and Taub, 1968; Stern, Taub, and
Gervais, 1969; Stern, 1968) in typical LEED measure-
ments. There the incident direction is not one of high
symmetry, but is chosen to be several degrees from the
surface normal (which is usually a low-index direction)
in order to allow observations of the specularly reQected
beam. These small deviations from directions of high
syrrnnetry are suQicient to excite low-index Laue
refiections. (In Sec. V of this paper we discuss two
highly simplified models of these interactions. )

For a cubic crystal, the Fourier coeKcients of the
potential, UII, decrease with increasing values of
EP=Its+Jts+P t and are therefore largest for low-

~ For aplane vrave in the vacuum:g'p=~ and @=exp (ik R).
Thus (k")'—(k')'+2tk". k*'=Z; therefore 2ik" k'=0, and (k")'—
(ki) s —g

t For a discussion ot structure amplitudes see Chap. 3 of Vain-
stein (1964).

index reQections which are strong. In order to excite
low-index reQections, it is necessary to move the
incident beam away from one of the high-symmetry
directions of the crystal. %hen the incident beam is
parallel to a low-index direction, then the symmetry
of the reciprocal lattice makes all simultaneous re-
Qections degenerate, insomuch as symmetrical recip-
rocal lattice points mill always be excited simulta-
neously. If the incident beam is moved away from
the low-index direction to excite a strong forward-
diGracted beam, then the degeneracy of the simul-
taneous reQections is removed, and the intensity
measurements are characterized by a manifold in-
crease in the 6ne structure observed. This is true in
the nearly free-electron model; the eGect of the de-
generacy and its removal become more severe in any
model containing stronger interactions. A detailed
discussion of the one structure observed in the three
types of measurements described above will appear
elsewhere.

V. DYNAMICAL INTERACTIONS IN THE TWO-
AND THREE-BEAM CASES

A. Introd. uction

In order to illustrate the eB'ects of the dynamical
interactions between the several plane-wave compo-
nents of the Bloch waves, it is useful to discuss several
simple multiple-beam cases.

For the two-beam case (X=2), when a Laue re-
flection is excited symmetrically Lpoint L of Fig.
3(a) j, the two forward-scattered plane waves have
equal amplitudes, but are not colinear. This gives
rise to a traveling wave moving parallel to the Bril-
louin zone boundary into the crystal and a standing
wave normal to the Brillouin zone boundary. The
standing wave is associated with a periodic variation
of the wave-field amplitude in the crystal (pendel-
losung) which can be observed in conventional elec-
tron transmission microscopy, as extinction contours
in thin, wedge-shaped crystals. In a thick crystal,
these interactions occur only for the forward-scattered
beam which is not observed in low-energy electron
diGraction. *

The excitation of a Bragg reQection in a semi-
in6nite crystal where only a single tie point can be
excited is accompanied by a single-crystal plane wave

*Detailed discussions of the two-beam case for x rays (Batter-
man and Coles, 1964; James, 1963, 1965) and electrons (Hashi-
moto, Howie, and Whelan, 1962) appear in the literature. The
importance of the forward-scattered beam for LEED has been
discussed in terms of the di6erent absorption associated arith the
plane waves for each dispersion sheet (Taub and Stern, 1968;
Stern and Taub, 1968). The details of the wave-tmld amplitudes
and the dispersion surface for high-energy electron diGraction for
the S-beam case have been treated in the literature [Lehmpfuhl
and Reiszland, 1968; Fues, 1936; 1943; %'agner, 1951; Penning
and Polder, 1968$. Discussions of the relative wave-6eld ampli-
tudes for the three-beam Laue case here also appeared for high-
energy electrons (¹ehrs, 1954a; 1954b; Moliere and ¹ehrs,
1954) and for x rays (Ewald and Heno, 1968; Heno and Ewald,
1968; Penning, 1968).
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scattered towards the vacuum at the edge of the gap
and decaying evanesent crystal wave in the gap. The
shape of this Bragg reQection is well known for the
case where there is no absorption (Kronig and Penny,
1931). In a 6nite crystal, pendellosung is expected
in the Bragg reQection because in this case both tie
points can be excited.

The consideration of the three-beam case will allow
a contrast to be made between the dynamical pre-
dictions of the two approximations. However, the
three-beam approximation is just that: an attempt
to expand each of the crystal Bloch waves in terms
of three plane waves. This is best seen by rewriting
Eq. (4) as

4a= Q [Ua a4rr/(&e' &x) j—

and noting that the expansion contains terms which
are large only when the energy denominator (Aa) is
approximately zero. For most experiments at mod-
erate or high energies, for arbitrary values of the
diffraction parameters, this approximation (X=3) is
not valid because of the existence of other strongly
excited reQections. It is only by careful choice of the
magnitude and limitation of the range of the diffrac-
tion parameters that an approximate three-beam sit-
uation can be excited.

The following section is therefore intended only as
a guide to help in the understanding of the role that
the boundary conditions play in determining the rel-
ative plane-wave amplitudes and hence the diGracted
intensities during an experiment. The use of the
three-beam approximation will permit a qualitative
understanding of the physical origin of certain phe-
nomena which are frequently observed in the experi-
mentally determined reQected intensities.

B. The Two-Bee~ Case

It is instructive to first examine the dispersion sur-
face in a region where the two-beam approximation
is valid. The Bragg —Laue conditions are fulfilled
exactly at the intersection of the two spherical free-
electron constant-energy surfaces. This point is known
as the Laue point of the reflection Lpoint I. in Fig.
3(a)j. U the surface normal drawn through the end
of k' ' passes through this point, then the reciprocal
lattice point of the reQection lies on the Kwald sphere.
That is the case for the orientation of the incident
wave vector indicated by the points L, and 8 and 8'
in Fig. 7. The relative amplitude of the plane wave
at a tie point on a particular dispersion sheet is in-
versely proportional to the distance between the tie
point and the Laue point for that reflection (Bethe,
1928). If no tie point is excited, as in a pure Bragg
reQection, the incident beam is totally reQected across
the region of the gap. ~

The surface normal parallel to the Brillouin zone
boundary (L), passing through the Laue point, inter-
sects the dispersion surface at the symmetrical tie
points $D and D' of Fig. 3(a)] which are known as
the diameter points. In a real crystal where inelastic
processes must be considered, the waves associated
with each sheet of the dispersion surface propagate
with different absorption coef5cients. The wave asso-
ciated with the dispersion sheet farthest from the
origin has an absorption coe%cient larger than the
average value, and the wave associated with the dis-
persion sheet nearest to the origin has an absorption
coefficient lower than average; at the diameter points,
the difference between the two absorption coefhcients
is a maximum, the one wave being anomalously ab-
sorbed, the other being anomalously transmitted
(Borrmann effect (1941)).

In the multiple-beam case it js possible to estimate
the relative strength of the plane waves associated
with each tie point by considering each reQection of
the two-beam approximation. It must be remembered,
however, that all the excited dispersion sheets con-
tributed to each reQection, so that only a very quali-
tative description of the reQected intensities can be
given.

Ugg o

~i—Uo Ua, a, qh-

U~, Ug, g, 62—Up

U g,

Thus the equation of the dispersion surface becomes

Fo,ai.ao(K ~)
= 808182 LUa~gUay —Gg80+ UetU~g82+ UagU~o51j

+ )&a,U a,Ua~, +U a, Ua, Ua, -a,j=0, (1&-)

where So=ho —Uo=Ko' —K' and K'=Ez Uo. —
The ratios of the Geld amplitudes of the Bloch

waves are

U2 U2

$1,U—2 ~2 U-1 U2—1

Ijhp U1 U2 U1 UR
(19a)

U2-x

bp Ug 8p

Ux &I U2 Ug—y

Ug U2
(19b)

C The Three-Be~m Case

The matrix equation describing the three-beam
case is

*The evanescent wave amplitude is constant across the gap,
providing for a constant reaction coefBcient in this region. Ux—s Us-j.
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where the indices 0, 1, 2 refer to the reflections
0 (000), B(hht) and L (mno), respectively.

There is no loss of generality and the geometry is
considerably simplified if the reciprocal lattice points
(0), (B), (L) are considered to lie in the plane of
incidence. In this case the three points lie in the
constraint surface for rocking curves and for meas-
urements made at constant incident direction, but
varying energy.

It is possible to make semiquantitative predictions
about the reQected intensities and total forward-
diGracted wave fields based on the properties of the
8loch waves associated with certain special sets of
points on the dispersion surface. In particular, it is
of interest to determine which 8loch waves have one
plane-wave component of zero amplitude and spe-
cifically to investigate when the dynamic interaction
is such that in a multiple-beam approximation, one
of the diGracted waves is extinguished.

(i) Comditiort for Zero Amplitude of Orte Ptarte Wave-
Comportertt of the Btoch Wave

In Eqs. (6) it is possible to arbitrarily specify the
amplitude of one and only one plane-wave compo-
nent p;. In the three-Geld case it is possible to exam-
ine the consequences of requiring one plane-wave
component of the 3loch wave to be zero. If in the
matrix equation describing the three-Geld interaction,
one arbitrarily sets Qp ——0, then

with the two-beam dispersion surface F~~=0. This
line, de6ned by

U—B UL—B

U g bg

U a 4
Ua I,

=0 (23)

for crystals with a center of symmetry, is

8B KB——' K'—= UB Ur B/ Ur )

8r Kr'——K'=—UB r Ur/UB.

Furthermore, this line always lies on the plane*

2KB (L—B)= —(L—B)'

(24)

yB——0: 2Kp L

= (U z, Uz B/U B) (U~U B/—U~B) —Lp, (26a)

gr, =0: 2Kp B

= (UBUB r/U r) —(UBU g/UB g) B'. (26b)—

+ (UB pe/UB) —( UBUg B/Ur ), (25)

independent of energy. t
Similar conditions exist in order that pB or

be zero. The Bloch waves (pp, 0, @r) and ($~, $B, 0)
map onto the intersections of Fgl (K, E) =0 and
FgB (K, E) =0 with FgBr (K, E) =0, respectively.
These intersections lie on the planes

~0 U~ Ui 0

U BoB —UL BQB —=0.

) &..)
(20)

(ii) The Mixed Bragg Laue Case—
Figure 8 shows the dispersion surf ace for the three-

beam symmetrical case, where 8 lies on the Brillouin
zone boundary associated with I The equations of
"zero" planes in this case, where U~ ~= U~, reduce to

Therefore, the two conditions imposed on (K, E)
and g and p;, in order that Qo =0, are

y, =o: 2K .(B—I,) =—(L—B) +PU.—(U;/U. )];
(27a)

(27b)

(27c)
(21a) QB= 0: 2Kp L= —L';

P&
——0: 2Ko B=—B'+ L(UB'/Ur, )—Ur j.

=0i

Ua-z, ~r.

UBQB+ Ur gr, =0.
and

The trace of these planes in the plane of the 6gure
is shown, and the positions of the points associated
with zeros in the Bloch waves are indicated in Fig.
8 (d) . It must be noted that, although the planes of
the intersections exist independent of energy, the zeros
in the 81och waves exist when and only when the
three-beam and two-beam dispersion surfaces intersect
at the values given by Eq. (24), which may possibly
occur only at complex values of Ko, thus the zeros
do not necessarily appear on the dispersion surface
in real K space.

(21b)

The equation of the dispersion surface can be written as

FgBt (K, E) =0= bp

UB—L ~L

U g U~g U—B ~B

+Us (22)
U g U~

Ug

The Grst of Conditions (21) is identical to the equa-
tion of the dispersion surface in the two-beam (XB,El )
approximation. Since Eqs. (21) and (22) must be
simultaneously satisfied, it is seen that Qp

——0 is asso-
ciated with those points on the three-beam dispersion
surface FgBr (K, E) =0 along the line of intersection

* For crystals without a center of symmetry these are two lines,
one given by Eq. (24), the other by tte UBUB q/U ~ an——d
sI Ur-BU r,/U B. — —

Ks, ——KB+ (L—B);Kr,'=KB + (L—B)'+2KB~ (L—B),
KLp —K'= (KB'—K') +2KB (L—B)+ (L—B)'= UB /Us/UB. —
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FIG, 8. Three-beam dispersion surface for the symmetrical case where the Bragg reQection 3 lies in the Brillouin zone boundary
of the Laue reQection L. For the Bragg reQection to appear in the specularly reQected beam, the crystal normal v must be parallel to
OB. The dispersion surface is shown for an energy below the symmetry point LFig. 8(a) j; at the symmetry point LFig. 8(b) j; and
above the symmetry point /Fig. 8 (c) g. The position of the Ewald sphere is shown near the reciprocal lattice point B. Et passes through
the origin and the reciprocal lattice point L in the three cases. During a rocking curve the crystal normal moves from the orientation
of R to 5, The planes in which the crystal plane wave associated with the reflections 3, 0, and L are identically zero are shown (@&=0,
@L——0, @0——0). An enlarged diagram of the region of dispersion is shown in 8(d): the direction of the energy Qow is indicated as is
the allowed point Q;, @;,0) (fdled circle) and the unallowable points (open circles).
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The ratios of the nonzero components of the wave
fields are given by the condition (21b):

(28)

Thus, in the symmetric case the position of the Bloch
waves of Ps ——0 are of particular interest for two
reasons:

(a) At this angle one expects a minimum in the
reQected Bragg intensity.

(b) Since @z,/Pp ———1, this is exactly the condition
for the anomalous penetration or Borrmann eGect in
the forward-diGracted beam. In LKKD, anomalous
penetration is associated with reduced secondary
emission which hs then simultaneously observable with
the Bragg minimum.

In general, in an Xth-order approximation $0,.=0
for those Bloch waves which map onto the inter-
section of the surfaces Fp .0,...rs„,(K.. , E. ) =0 and
Fo...e; s,g s...gN s(K, &) —0.

A detailed discussion of the application of these
concepts to experimental observation follows.

D. Behavior of the Plane-Wave Amylitudes During
an Exyeriment

Figure 8 shows the dispersion surface for the sym-
metrical three-beam case where the Bragg reQection
lies on the Brillouin zone boundary of the Laue re-
Qection. For the Bragg reQection to appear in the
specularly reQected beam, the surface normal must
be parallel to B. The three diagrams show the dis-
persion surface at energies (a) just below the sym-
metrical case, (b) at the symmetrical case, and (c)
above the symmetrical case.

From Eq. (26) it can be seen that it is possible
to draw the intersection of the surface in which one
plane-wave component will be zero with the plane
of the drawing as a straight line, parallel to the
Brillouin zone boundary, but displaced by an amount
given by Eq. (27). The planes for which Pz,

——0,
Ijhit=0 alld Pp=0 are shown as are the Brillouin zone
boundaries: The plane for Ps ——0 is identical to the
Brillouin zone boundary of the Laue reQection I., in
this case.

In Fig. 8(a), the surface normal t is shown for
a particular angle of incidence. At the energy of
Fig. 8(b), this angle of incidence excites the sym-
metric three-beam case exactly, and the Ewald sphere
passes through the reciprocal lattice points 0, I.,
and J3. The Ewald sphere is shown in its entirety in
Fig. 8(b), and arcs of the Ewald sphere for the same
incident direction are shown near to the reciprocal

lattice point 8 in Figs .8(a) and 8(c). The reflec-
tion I. is excited almost equally for the three energies
at this orientation because it lies near the origin.
The behavior of the crystalline plane waves during
a true rocking curve can be discussed in terms of the
intersection of the surface normal with the dispersion
surface as the former is swept across the diagram.
The positions of the surface normal corresponding to
particular orientations of the incident beam are labeled
on the dhagrams.

For an arbitrary orientation of the incident beam,
the surface normal will make, at most, 2F inter-
sections with the real dispersion surface; in this case
2K& 6.*Since only those Bloch waves which correspond
to allowed directions of electron transport have a
physical meaning, in a semiin6nite crystal there will
only be S tie points excited.

In Fig. 8(a), for the orientation of the incident
beam R, the surface normal is seen to have six inter-
sections with the dispersion surface. The three phys-
ically excitable tie points are indicated by closed
circles.

In Fig. 8(a), for the orientation of the incident
beam v, there is only one rea1 tie point excited near
the region of large dispersion: The Bloch wave at
this point contains three strong plane-wave compo-
nents. For an orientation slightly counterclockwise
from this position, the Bloch wave is described by
(Pp, 0, Pr,). A rocking curve at this energy about the
orientation v would show a specularly reQected beam
having a strong minimum in the intensity at that
orientation for which &st=0. Over this same range
of orientations, the Bragg reQection is 'excited since
the surface normal passes through the gap in the
dispersion surface: Any attempt to calculate the re-
Qected intensity must take into consideration the
evanescent waves associated with the gap. It should
be noted that the presence of the third. reflection (1.)
results in an increase in width of the gap over and
above that width expected for the two-beam case of
the Bragg reQection alone. This eGect can be seen
in Fig. 8(b), where the Bragg reflection occurs for
the range of orientation E.—5 in the three-beam case:
The two-beam Bragg gap would occur for the range
1-5. Except for the zeros predicted by Eq. (27),
three strong plane-wave components are excited near
the appropriate two-beam intersections (Laue points)
in each case, the third reQection notwithstanding.

For the energy of Fig. 8(c), it can be seen that
during a rocking curve, the surface normal passes
through a sequence of two-beam intersections: a Bragg
reQection in the region R—1, a Laue reQection in the
region j.—3, and a second Bragg region 4-5. The po-
sition of the tie points corresponding to the excita-
tion of Bloch waves with only two nonzero plane-

~ The remaining solutions correspond to those "gap" evanescent
praves vrhich must be included in the 2$ solutions.
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FIG. 9. (a) Construction for the Ewald sphere LEj at an incident direction e for a vacuum wave vector k, crystal wave vector
K. The free-electron constant-energy spheres LO), LBj, LLg are drawn about the three reciprocal lattice points, 0, 8, L, respectively.
(b) —(f) The constant-energy dispersion surface (NFEA, heavy curve; free-electron approximation, light circles) for energies from
below to above the excitation of the symmetrical three-beam case. The incident direction is maintained constant in the 6gure showing
the behavior of the crystal normal during a typical intensity-vs-voltage (pseudorocking) curve.

wave amplitudes are shown in Fig. 8(d), which is
an enlarged drawing of the region of the dispersion
of Fig. 8(c). The direction of the energy flow is shown
for each sheet of the dispersion surface. The inter-
sections for each plane Pr.——0, P~ ——0, ps=0 are shown
at the appropriate sheet of the dispersion surface:
She interppct&op op @D excited sheet is indicated by

a 611ed circle, on an unexcited sheet by an open
circle.*

*The condition for @~&=0 occurs on the low-absorption sheet
(j) of the dispersion surface. The accompanying excitation of
the high-absorption sheet (s) is at the point of maximum absorp-
tion (the diameter point) so that the plane wave gz' will have a
negligible contribution to the amplitude of the crystalline Ewald
wave Geld g~.
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FIG. 10. Schematic drawing of the dispersion surface during a
rotation diagram. During the rotation the magnitude of the
incident wave vector k and the diBraction angle 8 (measured from
the crystal normal) remain constant, and the plane of incidence
containing the origin and the incident wave vector is rotated
about the surface normal. The cylindrical constraint surface (S)
generated by the surface normal u during the rotation is shown
at the top of the 6gure. A re6ection L is shown which corresponds
to the excitation of the symmetrical three-beam case of Fig. 9.

Due to the conservation of current, as the surface
normal excites successive tie points during a rocking
curve, the intensity associated with a particular re-
Qection changes continuously as the relative plane-
wave amplitudes change. The intensity of the Bragg
reQections observed in low-energy electron diGraction
will exhibit fine structure which on purely kinematical
arguments would appear to be anomalous.

A unique prediction of this F-bealn model is the
existence of geometries for which the Bragg reQected
intensity exhibits a minimum (equal to zero if the
contribution of the evanescent waves to the surface
matching is ignored). A detailed discussion of the
experimental observation of such minima in the three-
bearn mixed B rag g

—Laue case will be published
elsewhere.

Figure 9 shows a drawing of the three-beam dis-
persion surface LEq. (18)$ for several energies. The
Ewald construction is shown in Fig. 9(a) for the
simultaneous excitation of the points (0) (1.) (B).
If the surface normal (v) is chosen as shown, then
8 becomes a Bragg re6ection and L becomes a Laue
reQection. The circular free-electron constant-energy
surfaces are also drawn. Figure 9(b) is drawn for an
energy which excites only the Laue reQection strongly.
The Ewald sphere is always far from the reciprocal

lattice point B, and the Bragg reflected intensity (in
the specularly reflected beam) is a minimum for the
orientation shown. At this energy the presence of the
dispersion sheet Fts(K, E) =0 does not effect the
dispersion sheets For, (K, E) =0, which appear as for
the two-beam case. As the energy is increased while
the incident direction is maintained constant L9(b)
through 9(f)j, the dispersion in sheet Fts(K, 8) =0
increases as the Bragg reQection is excited; a gap
finally develops in the constant-energy surface furthest
from the origin. At still higher energies the gap moves
oG as a new dispersion sheet appears, and the Bragg
reQection is no longer strongly excited as the same
incident direction. It should be noted that the geome-
tries of Figs. 9(b) and 9(f) are identical, an indica-
tion of the fact that, in general, the many weak
Bragg rejections need to be considered only as a per-
turbation to the two-beam Laue case.

The difficulty in describing the behavior of the in-

tensity measured during a pseudorocking curve where
the energy is varied, but the incident beam direction
is maintained can be seen from the sequence of Pig. 9.
For each energy the dispersion surface must be con-
structed and the relative plane-wave amplitude cal-
culated. In addition, the contribution of the evanescent
waves in the gaps must also be taken into account.
As the energy is varied, not only do various sheets
of the dispersion surface appear in the region of the
surface normal, but the positions of the zeros de-
termined by Eq. (27) are also swept past the indi-
vidual tie points, as is the case in Figs. 9(b)—9(d).
In particular, for the diffraction geometry of Fig. 9(c),
the wave field propagating in the direction of the
Bragg reQection is essentially zero, since the tie point
on the sheet of constant-energy dispersion surface
enclosing (B) is unexcited, the tie point on the middle
sheet of the dispersion surface excites plane waves
which are strongly absorbed, and the tie point nearest
0, L has an exact zero in the Ewald Geld +~. For
this geometry, the surface matching would predict
a zero in the intensity of the specularly reQected
beam. This zero appears on the low-energy shoulder
of the Bragg reQection which has a maximum at the
energy of Fig. 9(d).

The behavior of the reQected intensity during a
rotation diagram can be determined from inspection
of Fig. 10. If the incident direction and energy are
chosen such that the Bragg reQection 8 is excited,
then for the surface normal paraUel to K, a maximum
in the specular intensity is observed. If multiple
diffraction is ignored (Ups=0, H&B), then during
the rotation, the cylindrical constraint surface (S)
swept out by the surface normal (shown at the top
of the figure) does not intersect a sheet of the dis-
persion hypersurface. In this case, no crystalline plane
wave is excited and the incident plane wave is totally
reQected with constant amplitude for all orientations
of the plane of incidence. The lnagnitude of the
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evanescent wave in the gap is invariant during the
rotation. If multiple diffraction is introduced, then
a number of reQections will be excited during the
rotation. For a particular reQection I, there will be
some orientation of the plane of incidence containing
the three reciprocal lattice points 0, I., B. This cor-
responds to the geometry discussed in the previous
sections. In general, near this orientation, a sheet of
the dispersion hypersurface associated with an arbi-
trary reQection I. mill be excited, giving rise to a
crystalline plane wave resulting in a decrease in the
amplitude of the specularly reflected beam (conser-
vation of current). For the symmetrical geometry
shown in Fig. 10, the amplitude of the crystalline
Ewald reQection %~ will be zero for the orientation
shown. This will be true for the case of any reciprocal
lattice point lying on the circle passing through L.
Rotation diagrams should therefore be characterized
by minima in the specularly reQected intensity asso-
ciated with the excitation of simultaneous reQection
(Gervais, Stern, and Menes, 1968; Stern, Taub, and
Gervais, 1969;Stern, 1968).

E. Relative Amplitude of Crystalline RefIections

A calculation of the amplitude of the various crys-
talline reQections in terms of the magnitude of the
Fourier coe%cients of the crystal potential for par-
ticular crystals (Vainsthein, 1964) is beyond the scope
of this discussion. It is, however, appropriate to dis-
cuss qualitatively the relative amplitudes of the crys-
talline plane waves in order to give some insight into
the degree of approximation made in considering a
particular two- or three-beam case.

In a real crystal at Gnite temperature the effect
of the thermal motion of the atoms is to reduce the
strength of a reQection H by a term which can, to
a 6rst approximation, be written as exp (—MH).
This term, known as the Debye-Wailer factor (James,
1965) should be associated with each of the Fourier
coeKcients of Eq. (6). At constant temperature, MIr
is proportional to EP=h'+k'+Pepsin'9/X'. Therefore,
the plane waves in the two-beam approximation have
amplitudes proportional to Urr exp( —Mrr), and have
the greatest magnitude for the smallest values of H'.

For the case of nongrazing incidence on low-index
single-crystalline planes, these low-index reQections
are of the Laue type. For typical crystals at mod-
erate energies (100-1000 eV), Bragg reflections have
relative amplitudes of about one order of magnitude
smaller than Laue reQections. In the mixed Bragg-
Laue case discussed above, the Bragg reQection can
be expected to be very weak compared to the Laue
reQection. If for one orientation of the incident beam
a low-index Laue reQection lies on the sphere of re-
Qection, many Bragg reQections will be excited as the
incident direction is varied in a rocking curve, before
a different strong Laue reQection is excited. Since

these Bragg reQections of large H will in general be
weak, they can be considered as a perturbation on
the two-beam case. In LEED, only reflected (Bragg)
intensities can be measured directly. The forward-
scattered (Laue) wave 6eld can only be determined
indirectly in terms of such processes as the secondary
emission. The two-beam approximation can therefore
be considered appropriate in many cases over a large
range of magnitudes of the dynamic diffraction vari-
ables when the effects observed depend primarily on
the forward-scattered wave 6eld.. The three-beam case
will be a valid approximation when the particular
single Bragg reQection being observed is excited along
with a low-index 'Laue reQection. A discussion of
LEED experiments in terms of the two- and three-
beam approximation will be published elsewhere.

F. Inclusion of Inelastic Processes

The discussion of the fundamentals of band theory
and diffraction theory has been presented in terms
of elastic processes which conserve both total energy
and phase. In the discussion of diffraction effects in
real crystals, the concept of absorption has been in-
troduced in a phenomenological manner which dis-
regards the nature of the inelastic processes them-
selves, but which allows the inclusion of additional
selection rules and predictions resulting from the
existence of such processes.

The net absorption of the total crystalline wave
field is dependent on the details of the diffraction
geometry. Although the forward-scattered wave field
is inaccessible to direct measurement in low-energy
electron diffraction, it can be investigated by meas-
uring the secondary emission which is directly sen-
sitive to the details of the net absorption. Since
electrons inelastically scattered deep in the crystal
under conditions of low net absorption have a small
probability of reaching the surface, they do not con-
tribute to the secondary current (Taub and Stern,
1968; Stern and Taub, 1968).

There are several important types of inelastic-scat-
tering mechanisms which must be considered: those
which result in signiicant energy losses and incoher-
ence (Lax, 1957) of the scattered electrons (atomic
excitation and plasma, or conduction electron, excita-
tion) (Pines, 1964; Yoshioka, 1957; Lax, 1957; Honjo
and Miharna, 1954; Kamiya and Uyeda, 1961; Ha-
shimoto, Bowie, and Wh elan, 1962; Meyer, 1967;
Goodman and Lehmpfuhle, 1967; Whelan, 1965; Radi,
1968; Borrman, 1941) and those which are essentially
quasielastic and coherent (phonon excitation). The
latter have been discussed previously by two of the
authors (R. S. and J. P.) (Aldag and Stern, 1965)
and others (McKinney, Jones, and Webb, 1967;
Takagi, 1958; Yoshioka and Kainuma, 1961; 1962;
Hall and Hirsch, 1965).

Neglecting the possibility of anisotropy in the ex-
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where the coefficients of the additional term are
complex:

CHG CHG +&CHG ~ (30)

The general development of the theory of inelastic
scattering (Lax, 1957; Honjo and Mihama, 1954;
Kamiya and Uyeda, 1961; Hashimoto, Bowie, and
Whelan, 1962; Meyer, 1967; Goodman and Lehmp-
fuhle, 1967; Whelan, 1965; Radi, 1968), and in par-
ticular that based on Eq. (29), contains predictions
of all the diGraction eGects arising from the existence
of inelastic processes including the Borrmann eGect
(Borrmann, 1941), secondary emission, and Kikuchi
lines, In addition, the anisotropy of the Auger spectra
based on the details of the aBowed atomic excited
states can also be predicted.

If in Eq. (30), CGH'= UH', and Cee' ——Ue', then the
absorption can be thought of as being associated with
the complex Fourier coeKcients of the crystal po-
tentia1:

Ug= Ug"+i Ug'. (31)

This treatment is not as general as that allowed by
Eq. (29), since it does not include the details of the
crystalline excited states.

The primary eGect of the inclusion of absorption
on the discussion of the elastic diGraction is a de-
crease in the intensity and asymmetry in the shape
of the observed re6ections, compared to the elastic
case. Furthermore, the coefIicients of each of the plane
waves in Eq. (16) now acquire the form

C;=c;exp (—y r),

citation of conduction electrons (Pines, 1964), the
principle source of absorption in the crystal dependent
on the details of the wave 6eM is the possibility of
atomic excitations: The transition probability for such
excitations is proportional to the wave amplitude and
to the local density of bound electrons. In the two-
beam Laue case, the plane waves propagating from
each of the two sheets of the dispersion surface are
out of phase with each other: At the diameter points
the wave associated with the dispersion surface nearest
to the origin has nodal planes parallel to and. situated
at the atomic planes of the reQection; the wave asso-
ciated with the dispersion sheet farthest from the
origin has antinodes on these same planes. The latter
wave therefore suffers anomalous absorption, while
the former wave is anomalously transmitted. Far from
the diameter points, all waves propagate with the
same absorption coefficient.

It is possible to develop the Bethe theory in a
periodic solid where absorption is included by writing
Eq. (4) with an additional term in order to phe-
nomenologically include all inelastic processes (Yo-
shioka, 1957):

(Kg' —&z)46+ g UH 64H+ g CHGAH=0, (29)

where p is the vector absorption coefIicient determined
by the solution of Eq. (29), independent of the com-
plex nature of K; i.e., plane waves of real K are
attenuated.

G. Summary

The electronic band and dynamical diGraction
theories are different but essentially equivalent meth-
ods of treating the propagation of electron waves in
periodic solids. In this paper there is developed a
unified approach to the problem in terms of a seven-
dimensional hypersurface in energy-complex K space,
the dispersion hypersurface, which dednes the totality
of allowed solutions for an electron in a periodic
crystal. The usual energy band diagram of band
theory is the constant 0, q, K;=0 section of this sur-
face. The dispersion surface of dynamical diffraction
theory is a section at constant 8, K;=0.

The dispersion hypersurface is a general property
of the crystal. Discussion of any diGraction problem
requires careful application of the constraints intro-
duced by the boundary conditions of a particular ex-
periment in order to select, from the entire set, those
wave functions excited in that experiment. For an
idealized crystalline surface these conditions imme-
diately reduce the dimensionality of the hypersurface
in imaginary K space. Conservation of total energy
and momentum determines a geometrical constraint
surface, the intersection of which with the dispersion
hypersurface fixes the subset of all allowed wave
functions that can be excited. For a semi-inhnite
crystal, the requirement of finite electron densities
everywhere selects, from this subset, only those eigen-
functions which carry current into the crystal. Ap-
plication of the continuity condition at the surface
then determines the relative amplitudes of the several
excited eigenfunctions.

The geometrical constraints imposed in real K—E
space in the common diGraction experiments are
examined. In particular the two classes of variable-
energy experiment (pseudorocking curves) and the
two classes of constant-energy experiment (rocking
curves and rotation diagrams) are discussed in detail.
In pseudorocking-curve experiments in which the di-
rection of incidence is held constant, the most com-
mon experimental situation, it is necessary —in order
to compare the data with theory —to calculate in
detail a large sectional surface of the dispersion hyper-
surface; in pseudorocking-curve experiments in which
E~~ is maintained constant, an experimentally diKcult
configuration, it is necessary only to calculate a (one-
dimensional) curve on the dispersion hypersurface.
The constant-energy experiments, i.e., those utilizing
well-known x-ray techniques, are in principal straight-
forward and also require calculation only of a curve
on the hypersurface.

The possibility of comparison of the results of a
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given experiment with those of other experiments and
with theoretical predictions depends critically on pre-
cise knowledge of the diffraction parameters. The low-
index Laue reQections are very important in the
generation of much of the complex fine structure
observed in LEKD. The two- and three-beam cases
are developed in some detail as an illustration of
some of the simple predictions of the theory. In the
mixed Bragg —Laue three-beam case, zeros appear in
the reflected Bragg intensities for certain geometries;
the details of the experimental observations to be
expected due to these zeros are discussed. The prob-
lem of inelastic scattering is mentioned brieQy.

Although the present approach is appropriate at
both low and high energies, there is no mention of
the contribution of the crystal surface to the electron-
diffraction intensities in the model used, since the
periodicity of the semi-infinite crystal is maintained
to the crystal —vacuum interface.

The main object of this paper has been the de-
monstration, primarily for heuristic reasons, of the
essential unity underlying quite different approaches
to the theory of electron diffraction. The present
formulation is in fact an expansion of Bethe's E-beam
theory, which is complete in that it has always al-
lowed the possibility of inclusion of the complex K
evanesant waves.

EX. Conclusions

In order to understand LEED experiments it is
necessary to consider the details of the dispersion
hypersurface. The contribution of the near degeneracy
close to, but not at, the points of high symmetry in
the reciprocal lattice can best be demonstrated in
this manner. The detailed contribution to LEED of
the bulk band structure must be understood before
the problem of the surface contribution to diffraction
can be solved. A survey of the general problem shows
that the strong reQections are in general those Laue
reQections having low index. In the case of LEED
measurements in back reQection, the important geo-
metrical situation is that of the excitation of the
mixed Bragg —Laue three-beam case. The constant-
energy dispersion surface is shown to be particularly
appropriate in determining the relative amplitudes of
the crystalline plane waves excited in certain ex-
periments. It is these constant-energy experiments
which allow the most direct identification of the band
structure responsible for the variation of the diffracted
intensity as a function of the diffraction parameters.

In future both real and computer experiments
should be done at constant energy in order to system-
atically explore the dispersion hypersurface and to
determine the effects of the complex symInetries ex-
pected to inQuence LEED. Examination of the dif-
fraction geometry for any real experiment shows that
at energies where the first Born approximation (or

any other currently used approximation) is valid, no
simple (E(10) multiple-diffraction theory is really
a justifiable approximation. In order to investigate
the nature of the dispersion surface and the effect
of weak reQections, inelastic and quasielastic scat-
terings, it will be necessary to perform measurements
with precision comparable to that usually employed
in x-ray diffraction. This sort of care has not been
taken in LEED measurements in the past. The re-
Qected intensities are extremely sensitive to the number
and symmetries of the simultaneous reQections; this
sensitivity is clearly illustrated by the Bragg —Laue
case discussed in Sec. V. C. It would appear that an
entire new generation of experiments is necessary-
on atomically Qat surfaces, at very low energies, with
high angular precision —in order to explore properly
and systematically the origins of the diffraction mech-
anisms, and to distinguish between the utility of the
many LEED theories currently being developed.
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APPENDIX' DIRECTION OF ELECTRON
CURRENT

Proof of the direction of electron current (Schro-
dinger flux):

where
(v) = (k

~
(5/im) v

~
k),

Ik) = Z&glk );

(A1)

therefore

&v)=(~/m) Z I4g I'k. (A2)

and operates with VI„one obtains

(fP/m) kgb —vaZ(k) pg ——0.

Muitiphcation hy pg* and summation over G yields

g (y/m) k, [ yg P
—V~(k) g ] @g )=0

and

g (fi2/m) kg [ yg ~'= v~(k).

Therefore, from Eq. (A2),

(v)= (1/5) V~(k). (A4)

On the other hand, if one starts from the Schrodinger
equation

L(5'/2m) kg' —E(k) $ yg+ Q V~~y~ 0(AB)——
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However, in the units of this paper (5,'/2m=1) it is
necessary to rewrite Eq. (A1) as

whereby Eq. (A4) becomes

(v)= (2m) "'VsZ(k).

REFERENCES
1. P. Aldag and R. M. Stern, Phys. Rev. Lttrs. 14, 857 (1965).
'B. Batterman and H. Cole, Rev. Mod. Phys. 36, 681.(1964).
H. Bethe, Ann. Phys. 87, 55 {1928).
E. I. Blount, Solid State Phy. 13, 306 {1962).
G. Borrman, Physik. Z. 42, 157 (1941).
D. S. Boudreaux and V. Heine, Surface Sci. 8, 426 {1967}.
V. F. Dvoryankin and A. Yu. Mityagin, Kristallografi 12,)1112

(1967) PSov. Phys. —Crystallogr. 12, 982 (1968)g.
P. P. Ewald, Ann. Physik 49, 1 (1916}.
P. P. Ewald and Y. Heno, Acta Cryst. A24, 5 {1968}.
K. Fues, Ann. Physik 36, 209 (1936).
E. Fues, Ann. Physik 43, 538 (1943).
A. Gervais and R. M. Stern, Bull. Am. Phys. Soc. 13,'.592.(1968)

/Surf. Sci. (to be published) g.
A. Gervais, R. M. Stern, and M. Menes, Acta Cryst. A24, 191

(1968).
P. Goodman and G. Lehmpfuhle, Acta. Cryst. 22, 14 (1967).
C. R. Hall and P. B. Hirsch, Proc. Roy. Soc. (London) A286,

158 (1965).
W. A. Harrison, Pseudopotentials in the Theory of Metals (W. A.

Benjamin, New York, 1956) .
H. Hashimoto, A. Howie, and M. J. Whelan, Proc. Roy. Soc.

(London) A269, 80 (1962) .
R. D. Heidenreich, Phys. Rev. 7/, 271 (1950).
V. Heine, Surf. Sci. 2, 1 (1964).
V. Heine, rom Temperature Physics, J. G. Daunt et al., Eds.

(Plenum Press, New York, 1965).
Y. Heno and P. P. Ewald, Acta Cryst. A24, 16 {1968).
G. Honjo, and K. Mihama, J. Phys. Soc. Japan 9, 184 (1954).
R. W. James, Solid State Phys. 15, 55 (1963).
R. W. James, The Optical Principals of the DiJraction of X-Rays

(G. Bell and Sons, Ltd. , London, 1965).
K. Kambe, Z. Naturforsch. 22a, 22 (1967).
Y. Kamiya, and R. Uyeda, J. Phys. Soc. Japan 16, 1361 (1961).

C. Kittel, Introduction to Solid State Physics (John Wiley 8t Sons,
Inc., New York, 1956), 2nd ed.

C. Kittel, Quantu$n Theory of SoMds (John Wiley 3r Sons, Inc.,
New York, 1962).

W. Kohn, Phys. Rev. 115, 809 (1957).
J. B.Krieger, Phys. Rev. 156, 776 (1966).
R. de L. Kronig, and W. G. Penny, Proc. Roy. Soc. (London)

130$ 499 (1931).
M. Lax, Rev. Mod. Phys. 23, 287 (1957).
G. Lehmpfuhl, and A. Reiszland, Z. Naturforsch. 23a, 544

(1968).
P. M. Marcus, and D. W. Jepsen, Phys. Rev. Letters 20, 925

(1968).
J.T. McKinney, K. R. Jones, and M. B.Webb, Phys. Rev. 160,

523 (1967).
E. G. McRae, J. Chem. Phys. 45, 258 (1966).
G. Meyer, Z. Naturforsch. 21a, 14 (1967).
K. Moliere, and H. Niehrs, Z. Physik 137$445 (1954).
P. M. Morse, Phys. Rev. 35, 1310 {1930).
H. Niehrs, Z. Physik 138, 570 (1954a).
H. Niehrs, Z. Physik 139, 88 (1954b).
R. Peierls, Z. Physik 53, 255 (1929).
P. Penning, Philips Res. Rept. 23, 12 (1968).
P. Penning and D. Polder, Philips Res. Rept. 23, 1 (1968).
D. Pines, Elementary Excitations In Solids {W. A. Benjamin,

Inc. , New York, 1964).
J. S. Plaskett, Proc. Roy. Soc. (London) A301, 363 (1967).
G. Radi, Z. Physik 212, 146 (1968).
A. Sommerfeld, and H. Bethe, Hundbuch der Physik, S. Flugge,

Kd. {Springer —Verlag, Berlin, 1933),Vol. 24.
E. A. Stern, Phys. Rev. 162, 565 (1967).
R. M. Stern, Proc. Am. Cryst. Assn. 4, 14 (1968).
R. M. Stern, and H. Taub, Phys. Rev. Letters 20, 1340 (1968).
R. M. Stern, H. Taub, and A. Gervais, Structure and Chemistry

of Solid Surfaces, G. Somorjai, Ed. (John Wiley gr Sons, Inc.,
New York, 1969).

S. Takagi, J. Phys. Soc. Japan 13, 278 (1958).
H. Taub, and R. M. Stern, Bull. Am. Phys. Soc. 13, 592 (1968).
M. Tournarie, J. Phys. Soc. Japan Suppl. BII 17, 925 {1962).
B. K. Vainsthein, Structure Analysis by Electron Diffraction

(Pergamon Press, Inc. , New York, 1964) .
E.H. Wagner, Z. Naturforsch. 62, 133 (1951).
M. J. Whelan, J. Appl. Phys. 36, 2099, (1965).
H. Yoshioka, J. Phys. Soc. Japan 12, 618 (1957).
H. Yoshioka, and Y. Kainuma, J. Phys. Soc. Japan Suppl. BII

171134 (1962).


