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Systematic Survey o1: t.ie .—.. '.nteraction
S. A. AFZAL, * A. A. Z. AHMAD, f S. ALIf

International Center for Theoretical Physics, Trieste, Italy

A systematic survey of the subject of the a-a interaction is made. The early observations of n emission and resulting
theoretical descriptions, especially the a-particle model of nuclei, are described, as are more recent a—~ scattering
experiments. The latter were designed to obtain information about the nature of the -a interaction and about the
energy levels of Be by studying the resonance behavior of the phase shifts, The phenomenological approach, i.e., the
attempt to construct the o.-a potential which reproduces the experimental phase shifts, is described as are
detailed theoretical constructions of the repulsive inner part and attactive outer part of the a-a interaction. Studies
of how the a—a interaction provides better understanding of the structure of a-clustered nuclei and also of the fundamental
forces between the constituents of these nuclei are discussed. Suggestions for the direction of further eBorts are made.
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1. INTRODUCTION
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Even early reviews of the a-particle model (apM) of
nuclei ((Rosenfeld (1948), Dennison (1954), Glassgold
and Galonsky (1956)j recognized the importance of the
n—0. interaction. These reviews described the qualitative
features of the CPM, but these features had to wait
until the middle of the last decade to be veriGed by
scattering experiments which had a direct bearing on the
a—n interaction.

Recently, considerable interest has been shown in the
cluster model of nuclei and hypernuclei. Such a model
often involves two or more n's, and one needs to use an
a—n potential that is in accord with fundamental studies
and scattering results and, at the same time, can be
handled with mathematical convenience in the problem.
It thus seems very useful to make a systematic survey
of the subject of the a-o. interaction. To this end, we
shall follow the historical development in this Geld.
Some of the earlier scattering results and their inter-
pretation are incorrect, and are only included for
completeness. The entire subject of the o,—n interaction
occupies so important a role in the nuclear structural
problems that we feel the gradual development of the
subject is well worth following. Although the emphasis
of this paper is on the two-body n—o. interaction and not
on the CPM, we begin with a brief review of the latter.

With the discovery of radioactivity by Becquerel and
the Curies in 1896—1898, the n particle was discovered.
Subsequently, some of its properties were studied by
Rutherford and his collaborators LRutherford and

Geiger (1908), Rutherford and Royds (1909)j, who

found that the n rays are positively charged (each n
particle carrying two units of electronic charge) and are
nothing but 4He nuclei. Some other important properties
of the 0. particle are

(1) It has an intrinsic spin and parity of 0+ and thus

obeys Bose—Einstein statistics; the wave function
describing two a particles must remain symmetric with

respect to exchange of particles.
(2) It has a radius of ~1.44 fm.
(3) It is a tightly bound system with a binding

energy of 28 MeV.

The CPM, which takes into account the above
features, originated from the n emission of nuclei.

2. THEORY OF n EMISSION

The Coulomb force increases with size as the square
of the charge number Z', but the nuclear binding in-

creases approximately as the mass number A. Thus, the
Coulomb repulsion dominates in heavy nuclei, causing
u emission. Geiger and Nuttal (1911, 1912) established
the rule that the n emitters with large disintegration
energies have short half-lives, and conversely. Quantum
mechanics found one of its Grst applications in the hands
of Gamow (1928) and of Condon and Gurney (1928,
1929) in explaining this rule. This theory assumes that
the n particle is preformed inside the parent nucleus and
moves in a spherical well determined by the daughter
nucleus. Assuming the spherical potential V (r) between
the n particle and the daughter nucleus, shown sche-
matically in Fig. 1, the penetration probability I' of an
n particle of energy E meeting a barrier provided by the
spherical region a&r(b is given by

2 b

P= exp —— I2M[V(r) E]}'"dr-
fi
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fundamental points of view. These two approaches
meet, as usual, on the common ground of the "phase
shift. "Before we focus on this ground, we present some
of the factors leading to the recent n—n scattering
experiments.

3. u—n SCATTERING

A. Review of the Earlier n—n Scattering Results

U0

FrG. 1. V(r) denotes the potential energy between a daughter
nucleus (i.e., the parent nucleus minus one alpha particle) and
an alpha-particle system and goes to zero when r, the distance
between the two bodies, is very large. E denotes the disintegration
energy.

Large E means a short life; the Geiger —abuttal rule is
explained. However, this success is rather misleading.
Although certain nuclei emit n particle and this emission
can be explained by quantum mechanics, there is not
much other evidence to support the O.PM. It was re-
placed by the subsequently developed rs pmod—el of
nuclei LChadwick (1932)$. The study of nuclear
reactions has shown that neutrons and protons are also
emitted from some heavy nuclei in highly excited states.
An improved understanding of the nuclear forces tells
us that the a particle cannot remain in the nucleus for
a long time and still keep its identity. In a modi6ed
version, the 0, particles exist as stable units only for a
short time LWefelmeiser (1937a, 1937b),von Weizsacker
(1938), Pano (1937), Wheeler (1937b)j; they then
break up into their constituents, which again rearrange
themselves into new e-particle structures. This version
still owes its origin to the exceptional stability of the n
particle. Wheeler (1937b) pointed out that for the nPM
to hold, the frequency of vibration of the o. particle
should be greater than the frequency of nuclear ex-
change, but calculations of Gronblom and Marshak
(1939) and of Margenau (1941) show that these two
frequencies are comparable. In support of the aPM,
90% of the binding energy of the light nuclei comes
from the constituents of n particles and 10% from the
classical bond between n particles. Also, nuclei having
nucleons besides n particles give a rather small binding
energy and increase slowly until another n particle is
formed. (Elements between &He and Be show this
trend. ) However, the nPM cannot explain the binding
energy of heavier nuclei having an odd nucleon which

plays a more important role. The model was aptly
defended by Herzenberg (1955), whose points will be
discussed in dealing with the mechanism of the a 0.
interaction.

Like all other two-body interactions, the cx—0. interac-
tion has been studied both from phenomenological and

The Grst n—n scattering was performed when
Rutherford and Chadwick (1927) investigated the
scattering of e particles from He nuclei. Up to 1939, the
only sources available for a scattering were natural n
emitters, e.g., radium, thorium, and polonium. The
succeeding development of the cyclotron, Van der
GraaG, and other high-energy accelerators has provided
a. particles with higher, more controlled bombarding
energies. One can broadly divide the whole range of e—e
scattering experiments into two periods: (1) 1927—1939,
when the natural emitters were used as sources, and
(2) 1940 onwards, when the accelerators were used for
the source beam.

The 0.—0. scattering experiments performed during thc
period 1927—1939 werc all based on the "annular-ring
method. " A small chamber with an annular-ring
scattering volume was used. Gas pressures were high
compared with those now used. The energies of the 0.
particles emitted from the radioactive nuclei at the
scattering volume were determined by range measure-
ments. The scattering of o. particles from He nuclei was
investigated as a function of energy by slowing down
natural 0, particles with absorbers. The measurements
were crude; the intensity of the beam was rather low
and spreads in energy and angle were rather large.

Some of the basic ideas behind the 0.—a scattering
experiments originated from Chadwick and Bieler
(1921), who investigated the scattering of n particles
from hydrogen nuclei. They attempted an explanation
of this scattering in terms of the Coulomb Geld between
the two particles. However, at close collision distances
(&4 fm) the force between the two particles increased
much more rapidly with decrease of distance than could
be accounted for by the inverse square law of force.
Chadwick and Bieler interpreted the divergence from
the classical Coulomb scattering as follows: A point-
charge structure was assumed for the H nucleus and, as
a erst approximation, an elastic oblate spheroid of
semiaxes about 8 and 4 fm moving in the direction of the
minor axes was assumed for the o. particle. An H nucleus
projected towards such an n particle would move under
the ordinary Coulomb electrostatic forces until it
reached a spheroidal surface of the above dimensions.
Then it would experience a powerful 6eld of force and
recoil as from a hard elastic body. This model agreed
only roughly with the experimental observations; a
close comparison could not be made because of the



S. A. ArzAL, A. A. Z. AHMAn, tNn S. Art Systetlatt'e Survey of tttea u-IttteraetioN 249

dif5culty in calculating the collision relations for an
oblate spheroid.

The collision of n particles with He nuclei could give
further information of the force Geld in the immediate
neighborhood of the He nucleus. Since both particles
have the same structure, there would be no need to
assume a structure for one to deduce that of the other.

In view of these considerations, Rutherford and
Chadwick (1927) performed an experiment to scatter
0. particles off He nuclei. The results showed that the
collision relations for these particles were similar to those
holding for 0.—hydrogen scattering. They observed that
at large distances of collision the force between the
particles was given by Coulomb's law, but there was an
indication of a departure from Coulomb's law at closer
distances. This departure was attributed to the structure
of the particles; Rutherford and Chadwick (1927)
tentatively explained it by invoking some strong
additional forces which increased much more rapidly
with distance than an ordinary inverse square Coulomb
6eld.

At the same time, some thought was given to the
adequacy of the description of this phenomenon in
terms of the old mechanics; the new mechanics had
already been established. Oppenheimer (1927) and later
Gordon (1928) showed that the scattering of particles
by an inverse square Geld is the same in the new
mechanics as in the classical theory. Mott (1930)
showed that this is not necessarily true for two identical
particles, since the wave functions used must be anti-
symmetrical or symmetrical in the coordinates of the
two particles, and thus the scattering laws may very
well be affected. According to Mott's theory, the
formula giving the number of a particles scattered from
He nuclei into a given solid angle dQ(8, p) will be

(2e2) 4

dI= csc4 8+ csc4 (-,'sr —8)
m4e'

1+ cos 281
!+2 cscn 8 csc2 (2's —8) 2

~
st log

1—cos 28i

)&2 sin 8d8@,

where st = (2e) v/gatv = (4/137) (e/v), v is the relative
velocity of the two a' s, 8 is the angle through which the
line joining the a s is deflected, and g is the azimuthal
angle. The ratio of quantum-the'oryscattering to classical
scattering is thus seen to have a maximum value of 2 at
45 for all velocities of the n particles. Mott also
predicted some maxima and minima in the scattering
cross section. Unfortunately, in the experiments of
Rutherford and Chadwick, these are masked by the
structure eGect. To show them, the a particles would
have to be so slow that the structure effect would be
negligible.

Chadwick (1930) was the first experimentalist to

verify the validity of Mott's predictions by doing an
0. scattering experiment in He at very low energies

( 1MeV). Here the experimental results approach
the value of twice the classical scattering as the energy
of incident 0. particles decreases, i.e., the results
approach more and more closely to quantum-theory
scattering. Chadwick found, by comparing the amount
of scattering observed in the collision experiments, that
the forces between the particles vary little from Coulomb
forces. Thus, the deviation from classical scattering
could not be ascribed to a divergence from Coulomb
forces; it was then attributed to a failure of the classical
theory. This was indeed borne out by Blackett and
Champion (1931), who performed an a scattering
experiment in a Wilson cloud chamber and found the
minimum in the scattering cross section at about 25,
in excellent agreement with Mott's theory. However,
there were indications of deviations from Mott's theory,
and experiments were carried out later by Wright
(1932), Mohr and Pringle (1937), and Devons (1939)
to study these deviations. An explanation was also
sought in terms of the eGects of nuclear forces, a more
deGnite nomenclature for the so-called additional
forces. By this time, the idea of the nucleus being com-
posed of neutrons and protons was gaining ground, and
the concept of the nuclear force (responsible for keeping
the neutrons and protons together in the nucleus) was
introduced. It was reasonable, therefore, to assume that
this nuclear force would provide a nuclear potential
between the n particles, and thus the a—n scattering
should be governed not only by the Coulomb forces but
also by the nuclear forces. One would then expect that
the effect of the nuclear forces would be to cause a
change in the phase of the initial wave describing the
incident n particles. This phase change, usually caOed
the phase shift and denoted by 8, was seen to contain
all the essential information about the nuclear potential.
Phase-shift measurements thus became the main con™
cern of the later experiments.

B.More Recent n-o, Scattering Results

The purposes of the a-a scattering experiments have
been, first, to get information about the nature of the a-a
interaction, and second, to investigate the energy levels
of 'Be by studying the resonance behavior of the phase
shifts. Be, which is unstable and dissolves into two 0.

particles, provides a typical and interesting example of
a system of two 0. particles. It is expected that the low-

lying states of this sytem are determined fairly well by
only the relative motion of the cx particles because of
their extreme tightness. Information on the levels of
'Be can also be obtained from a number of nuclear
reactions. A schematic diagram of the energy levels of
Be is shown in Fig. 2. The position of the ground state

has been altered slightly by a recent reliable measure-
ment (discussed later in this paper).



250 REviEws or MoDERN PHYSICS ~ JANUARY 1969

LvkwvA'&+~A e+
Jc

Ni wa tv rwAtA'o'pvAiw

20.808
Li tLI -a

Q5

& 18.913
Qe +He -a

p4

~ 16.787
Li tHe -p

18.896
Qe tn

717.819
8 +d-a

16.002 l4 e &0-

15.028
Li +d -n

p4

'f I 1.759
L't He'

21 441 22280 LI't d

He5 tHe

252
24.0 to+.o~

I& .a
23 T «

~122.5 "
z -ic~

21.6
Z1.5 i
20.36
f9 9 i"' z~ats.

.18 9 1905J9:2Z

18.15
17,64

16.63 ' +

t'

~l' -a

-5

.&03~04
I.i + p 17.252

21.685
Li tt

- 3.0 - 3.0
z5

I 440 rNaf~

17.9?9
f9 ro B 2N 0sf z

16.672 f
16.023 1 Be td p

Li tt-n
Fio. 2. Energy levels of eBe (re-

produced from Lauritsen and Ajzen-
berg-Selove (1966) by courtesy of
Egclear Physecsg.

8.588 ll

8"tp-a

kiJ.~rr e.o

20

4.592
Be +d-t

f0.229
4a- 8 tn-t

,
-1.567

t-' ta 4 1-2.562
t.i +a-t

He' t He'

0 559
Be +p-d 0534

Blot p -He'&-I.665 5 r
Be ty-n9

r-6.028
B ty-d
-7.369
Z'zt y -a
6 1.2268"t y -t
-I4.53@
4 +y -2a

It is of interest to see if the resonances in a—n scatter-
ing are observed at the energies corresponding to the
low-energy states of 'Be. The usual procedure in this
connection is to make a partial-wave analysis of the
phase shifts 8~ for a given partial wave with angular
momentum /. Because of the simplifying features
of the n particles (namely the zero spin and the
high internal binding energy), the phase shifts are
reduced to a minimum, and one can analyze the
scattering in terms of only real phase shifts up to a
laboratory bombarding energy of 35 MeV. Appendix I
gives the usual method of phase-shift analysis as
employed by the experimentalists.

We shall present the a—o.scattering results energywise,
although this will disturb the chronological order a bit.
Table I shows the list of experiments to date and the
energy ranges covered.

The 6rst postwar experiment was done by Cowie,
Heydenburg, Temmer, and Little (1952) at the
Department of Terrestrial Magnetism, Carnegie In-
stitution of Washington (the data obtained at this

institute on cr—n scattering will be called DTM data),
who measured the differential cross section for n
scattering in helium in the energy range of 400 to 950
keV (lab) over the angular range of 10' to 45' (lab).
They found that at an energy of 850 keV the deviations
from Mott scattering amounted to as much as S%%u~.

A more complete account of n—0. scattering in the
low-energy region was given by Heydenberg and
Temmer (1956), who covered the region from 150 keV
to 3 MeV (lab) between laboratory angles of 10o and
80 . By doing these experiments they wanted, 6rst, to
verify the Mott formula in detail in the energy region
where there was no nuclear effect; second, to explain and
explore the region of the ground state of 'Be; and
finally, to study the 3-MeV level of 8Be. Table II shows
their S- and D-wave phase shifts. Below 400 keV, the
nuclear interaction was not found to play an important
role, and Mott's formula for Coulomb scattering was
verified in detail. (The method of verification of Mott's
formula consists in observing the departure of the ratio
of the actual cross section to the theoretical Mott cross
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TAsx.z I. A list of the postwar experiments on the scattering of alpha particles in. helium.

Energy range
in lab system

(MeV) Source of particles

Angles of observation
of scattering in lab

system References

0.15-3.0
3.0-6.0
4.0—12.0
5.0-9.0

6.4-7.8

10-20

12.3-22.9

12.9-21.6
20, 20.4

23-38

Van der GraatI (D.T.M., Washington)
Van der GraaG (Rice)
Tandem (O.N.R., Caltech)
Van der GraatI (Rice)

Cyclotron (Yale)
Cyclotron (Yale)
Tandem (Heidelberg)

Cyclotron (Illinois)

Cyclotron (Indiana)
Cyclotron (St. Louis)
Cyclotron (St. Louis)
Cyclotron (Birmingham)

Cyclotron (88", Berkeley)

10'-80'
15'-45'
15'-45'

15'16.5', 27'22' and
35'3.5'

7'30'-45'
10'-45'

For each bombarding
energy, data were taken
at 11 pairs of angles
{right—left)

10'30'-45'

15'-45'
7'-60'

30' and 45'
15'-45'

15.32', 27.75', 45'

Heydenberg and Temmer (1956)
Russell, Phillips, and Reich (1956)
Tombrello and Senhouse (1963)
Jones, Phillips, and Miller (1960)

Berk, Steigert, and Salinger (1960)
Dunning, Smith, and Steigert (1961)
Werner and Zimmerer (1964)

Nilson, Jentschke, Briggs, Kerman,
and Snyder (1958)

Steigert and Sampson (1953)
Mather (1951)
Braden, Carter, and Ford (1951)
Bredin, Burcham, Evans, Gibson,

McKee, Prowse, Rotblat, and Snyder
(1959)

Shield, Conzett, Darriulat, Pugh, and
Slobodrian (1964)

30 Cyclotron (M.I.T.)

38.5

37—47

Cyclotron (Birmingham)

Cyclotron (60" and 80", Berkeley)

53-120

Cyclotron (IKO, Amsterdam)

Cyclotron (88", Berkeley)

33.5-35.5 Cyclotron (INSU, Tokyo)

0—45'
45'-90'

270'-360
15'-45'

15'-45'

7'30'-45'

7'30'-50'

5'-45'

Graves (1952)

Chiba, Conzett, Morinaga, Mutsuro,
Shoda, and Kimura (1961)

Burcham, Gibson, Prowse, and Rotblat
(1957)

Conzett, Igo, Shaw, and Slobodrian
(1960)

Conzett, Slobodrian, Yamabe, and
Shield (1964)

Conzett, Shield, Slobodrian, and
Yamabe (1964)

Van Niftrik, Brockman, and Van Gers
(1964)

Darriulat, Igo, Pugh, and Holmgren
(1965)

section from unity as a function of energy. ) Above
400 keV, nuclear interactions come into play; Bo

decreases from approximately 180 at 400 keV to about
120 at 3 MeV. The D-wave phase shift does not appear
below 2 MeV and reaches the value of 2.5' at 3 MeV.
These results agree with those of the Rice Institute
(presented below) at the 3-MeV point of overlap.

Hydenberg and Temmer also gave some estimates for
the width l'g of the ground state and its lifetime r,
namely 10~&3.5 eV and r~2)(10 "sec; these were
calculated by a method described in the Appendix of the
Heydenberg and Terrier paper. Previous estimates
were v &&2)&10 'esec and r&~4X10 M sec LCrussard,
(1950), Hodgson (1952), Treacy (1955)j.Thus, it was
inferred that 2&10 ' secor&&4)&10 ' sec. These esti-
mates have been changed by the results of more reliable
experiments.

At about the same time, Russell, Phillips, and Reich
(1956) performed n—n scattering experiments in the
Rice Institute for laboratory bombarding energies of 3
to 6 MeV at lab angles of 15

y 17 5
y

20
y

27' 22 p' and
35o3.5'. (An angle of 27o22' corresponds to a zero of the

second-order Legendre polynomial Ps(cosg).j Their
phase-shifts plot is reproduced in Fig. 3. Their 27 22'
curve was found to be a monotonic function of bombard-
ing energy; but the variations in the other excitation
functions led Russell et al. to assign a J(spin) value of
2+ for the 2.9-MeV state.

The single-level dispersion theory of Wigner and
Eisenbud (1947) was applied to this state, and the
level parameters of the state were obtained by 6tting
the D-wave resonance. To sketch the method of ex-
tracting the level parameters only very briefly, the
nuclear phase shift bg is expressed in the dispersion
theory as 8&=8&,z—C & where, following the notations of
Jones, Phillips, and Miller (1960),

C t
——tan ' PFt/Gt j, vtr ——hard-sphere phase shift

and

Bi,tt ——tan-'
t -,'I'g, t/(Eit+hgt —E, )j;

P~, G~ are the regular and irregular Columb wave
functions and E, . and k are the energy in the c.m.
system and the wavenumber (2tjtEjfcs)'ts, respectively;
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k(r)) =I)' g Lts(es'+rp) 7 '—ln t)—0.5772;

TABLE II T. he experimental a-a scattering phase shifts in the parameter 4es/its. The functton k(g) is given by
energy range 0-23 MeV (lab) )Heydenberg and Temmer (1956,
Tombrello and Senhouse (1963), Nilson, Jentschke, Briggs,
Kerman, and Snyder (1958)g. All phase shifts are in degrees.

Energy

Phase shifts E may be expanded in the eGective-range approxima-
tion as

0.400
0.600
0.850
0.950
1.00
1.50
2.00
2.50
3.00
3,84
5.26
6.47
6.96
7.47
7.88
8.87
9.88

10.88
11.88
12.3
15.2
1/. 8]l
20.4'
21.65
21.8
22.25
22.81
22.9

0~0.5
178&1
175~1
173~1
171&1
159~1
148~1

137.5~1
128.4~1
114.1~1
96.6~2
79.5~2
/5. 9~3
71.4~4
68.0+4
59.4~4
51.6&4
45.6a4
41.0~4

29~4
iia4
7&2—1.6~2—8.8+2—6.9~2—10.2~2-9.4~2

-10.7~2

0.0%0.1
1.0&0.2
2.5&0.3
7.5&1

37.5&2
80.8&2
92.7%3

102.1&4
107.5&4
113.8+3
115.2&2
116.3~2
114.9&2

L 103&8
' 100&8
104&4

9/. 5w4
94.7&2
94.8~2
93.3%2
91.7&2
94.0&2

-0.1
0.2-0.1—0.1

0
0
0
0~1
0&1
0+1

3.0+1.5
5.2&2

24. 1&2
,
27.7&2

'" 41.8&2
I" 47.0+2
I 48.1~2
56.4&2

). 59.2~2

0
0.54
0.13
1.03
0.09
1.07
1.09

Eq~ is the constant expansion parameter. The c.m.
reduced width y~s and the c.m. laboratory width I'I, I are
related by

where
SP) I= (pV)s/AIs), =sz,

A re= FIs+GIs

a)„I= -y),'(gI+I) e=sE,

gI= pp~I '(&I"I/r)p) AI '(GI/I" I) 7 —sz, -
R is the nuclear radius. The resonance energy E„, is
deined as that at which 8q,g=-,'m. Values of excitation
energy, reduced width, etc. , are then obtained (for a
given hard-sphere radius) by fitting the phase shifts to
the above dispersion-theory formulas.

The level parameters for the D state as obtained by
Russell, Phillips, and Reich (1956) are shown in Table
III, where the level parameters obtained by other
authors for the various states are also shown. These
widths seem consistent with a two-body model of 'Be.
Russell et cl. applied the Landau E-function formalism
to get the width of the ground state of 'Be. The Landau
E function for S-wave scattering of charged particles is
dered by

E= t s. cot be/(es»" —1)7+k(t)) (E1)

the p-wave phase shift and p the energy

E= (2tlk) '(—a '+-,'rek' —Ere'k'+Qre'k' ~ )

=A+BEL+CEL'+ DEL'. (E2)

The parameters u, rs, I', Q Inay be determined by fitting
(E1) by (E2), using a standard least-squares program.
The width in the c.m. system is calculated from the
expression

( dh dE
(~»"—1) I

—
~ (E3)

&dEz, dEL zs=zs0.b)

NOte that at reSOnanCe (8=SI)r), E=k(I)). RuSSell,
Phillips, and Reich (1956) obtained a value of
4.5&3 eV for the width of the ground state.

Analysis of the experiment by Dunning, Smith, and
Steigert (1961) at lab energies of 6.43, 6.84, and 7.78
MeV gave the values of the phase shifts as Bp=82.5,

77 5o. g 8Po g 820. nd g 7Po g yP4o

respectively. The S-wave phase shifts are in excellent
agreement with those to be discussed below of Jones,
Phillips, and Miller (1960) and Berk, Steigert, and
Salinger (1960), but their D wave phase shi-fts are
somewhat smaHer. However, this is not very significant
because the cross section is rather insensitive to the
D-wave phase shift near this energy region.

Berk, Steigert, and Salinger (1960) attempted to fill
in the gap between the 6-MeV' Rice data and the
Illinois data above 12 MeV by@doing a scattering
experiment at 7.56MeV, and obtained be=70 and

l4
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Sg,

-I(4 E (LAB) ME V

6,
»eao s,

Fro. 3. a—0. scattering phase shifts below 24 MeV showing the
DTM LHeydenberg snd Temmer (1956)g, the Rice Institute
/Russell, Phillips, and Reich (1956)g, and the Illinois PNilson,
Jentschke, Briggs, Kerman, and Snyder (1958)g data The.
smooth curves have been drawn arbitrarily through the data
points. )Figure reproduced from Russell et al. (1956) by courtesy
of The Physeeaf ffesfeIe. g
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TABLE III. Level parameters as used by various authors for the D, G and other excited states of 'Be. These parameters were ob-
tained by sting the O.-n scattering resonances with the single-level dispersion relation. The term 8P is the ratio of the reduced width
to the Wigner limit 3h'/2iiR', as given by the first sum rule of Wigner and Treichman (1952). For the comparison of the experimental
phase shifts to those obtained with the use of parameters, see the references shown against each set of parameters. (The general feature
of the dispersion-theory its is that a larger radius gives a fit on the low-energy side of the resonance while, for the smaller radii, the
Gt on the high-energy side improves.

Nuclear
radius R(fm)

Excitation
energy~

~exo
(MeV, c.rn. )

Reduced
width

VX,P
(MeV, c.m. ) References

5.0

3.5
3.5
3.5
4.44

3.5
4.5
4 5
5.0
4.5

2.9

2.9

3.1
3.18

11.7

36.7
27.6
29.4
24.7
56.9

0.9

0.9

3.5
3.36
2.0

2.3
2.4
3.3
2.0
6.5

0.7

0.4

1.32
1.27
1.26

1,14
0.66
0.48
0.66
0.24

Russell, Phillips, and Reich (1956);Nilson,
Jentschke, Briggs, Kerman, and Snyder
(1958)

Nilson, Jentschke, Briggs, Kerman, and
Snyder (1958)

Jones, Phillips, and Miller (1960)
Tombrello and Senhouse (1963)
Nilson, Jentschke, Briggs, Kerman, and

Snyder (1958)
Darriulat, Igo, Pugh, and Holmgren (1965)
Darriulat et at. (1965)
Darriulat et al. (1965)
Darriulat et at. (1965)
Darriulat et ol. (1965)

The excitation energy of each level is with respect to the ground state excitation energy Eexo the ground-state energy for which the value of
energy of Be, The resonance energy Eres is obtained by adding to the 0.096 Mev (c.m. ) was used in these calculations.

8&——100'. These values are in good agreement with
those found by Jones et al.

The next higher-energy experiments were performed
in the range of 5 to 9 MeV by Jones, Phillips, and Miller
(1960) at lab angles of 15'16.5', 27'22', and 35'3.5'.
LThe 6rst and third angles correspond to zeroes of
P4(cos 8), and the second to a zero of Es(cos 8).) The
phase shifts as a function of energy are shown in Fig. 4.
Their analysis shows evidence of the resonant state at
~3 MeV, in keeping with the previous observations.
The behavior of the S-wave phase shift was found to be
the same as that observed in the early experiments.
Jones et al also examin. ed the apparent inconsistency of

the 12.3- and 15.2-MeV phase shifts of ¹1son,Jentschke,
Briggs, Kerman, and Snyder (1958). Assuming a
different set of phase shifts at these energies, they still
obtained nearly the same cross section as Wilson et al.,
which shows that the cross section is not very sensitive
to the choice of phase shifts in this region.

Looking at these level parameters (Table III), one
notices that the width of the D state is large compared
with the Wigner limit (3IrP/2tcR') . This indicates that it
is wholly of n nparentag— e and thus supports the nPM
of 'Be.

Tombrello and Senhouse (1963) performed n—n
scattering experiments in the energy range of 3.8 to

I leo

r
s yggSglof 'wghis &

FrG. 4. a-n scattering phase shifts
derived--.::by Jones, Phillips, and Reich
(1960) are shown with those derived by
Heydenberg and Temmer (1956); Rus-
sell, Phillips, and Reich (1956); and
Nilson, Jentschke, Briggs, Kerman, and
Snyder (1958). The phase shifts are
plotted as a function of laboratory energy.
The smooth curves are drawn arbitrarily
through the data points. In the dgure,
"present work" refers to the results of
Jones, Phillips, and Miller (1960). /Fig-
ure reproduced from Jones, Phillips, and
Miller (1960) by courtesy of The Physical
Review
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TAsr, E IV. A list of the main reaction channels that open at
high bombarding energies in the initial a-a channel. The thresh-
old energies of these channels are given in the lab coordinate
system.

Reaction channel
Threshold energy

(MeV)

'Li+ p]
zBe+n
4He+n+'He
4He+n+'He
'He+'He
t+'Li
4He+2d
'Li+d
'Li+n+p
He+ p+d,

'

He+2p
'Li+n+4
'Be+2n
'He+d+t
4n+4p

34.73
39.68
41.21
43.1
43.6
43.6
44.77.
44.82
49.28
54.2
54.8
56.2
60
76.47

113.61

12 MeV, covering the so-far untouched region of 9 to 12
MeV. The phase shifts they obtained are shown in
Table II. At 3.8 and 6 MeV, their phase shifts agree
with those of Russell et al. Below 9 MeV, 80 shows in-
creasing disagreement with increasing energy, but the
disagreement is within the uncertainties of the results.
The phase shifts of Berk et al. at 7.56MeV and of
Dunning et al. at 7.78 MeV are in good agreement with
those of Tombrello and Senhouse. The results of the
latter are also consistent with those of Heydenberg and
Temrner and of Nilson et Ol. , except for the two points
of Nilson at 12.3 and 15.2 MeV.

The level parameters of Tombrello and Senhouse for
the 2+ state (see Table III) are in excellent agreement
with those obtained by Jones ef al. These level param-
eters were chosen primarily as a compromise between
the disagreeing values at high and low energies. How-
ever, since the dispersion-theory Gt to the data was not,

very impressive, Tombrello and Senhouse pointed out
the doubtfulness of the significance of such a parame-
trization. The variety of parameters obtained by
diferent groups for this state introduces such a doubt.

The energy range to be discussed next is 12.3 to 22.9
MeV. Absolute differential cross sections for a—n
scattering have been measured at 10 energies between
12.3 and 22.9 MeV by Nilson, Jentschke, Briggs,
Kerman, and Snyder (1958) at the University of
Illinois. The angular range they covered was 11 to
50 (lab). They observed no broad S state in 'Be for
excitation energies between 0.5 and 11.45MeV, in
disagreement with the results of Steigert and Sampson
(1953) who obtained a 7.5-MeV 0+ state from their
analysis. From their results there were, however, clear
indications of the 2.9-MeV 2+ state and a broad 4+
state in the neighborhood of 11 MeV with a reduced
width of about 2 MeV. The I-wave phase shift was first
observed at 20 MeV and was found to be positive. An
experimentally observed 86 indicated that an I state may
exist at a high energy.

The experimental S-, D-, and G-wave phase shifts of
Nilson et cl. are given in Table II, the level parameters
they used for the D-wave phase shifts being included in
Table III. An interesting observation made by Nilson
et a/. for these parameters was that no one set of single-
level parameters reproduced the experimental values
over the entire range of 0—22 MeV $Nilson, Jentschke,
Briggs, Kerman, and Snyder (1958)j.

Two scattering experiments were performed at
Washington University by Mather (1951) at 20 MeV
and by Braden, Carter, and Ford (1951) at 20.4 MeV.
Their experimental results show reasonably good agree-
ment with those of Nilson et al. at 20.4 MeV. They did
not give any phase-shift values due to insufhcient data.

Steigert and Sampson (1953) performed II—IY scatter-
ing experiments in the energy region almost overlapping
that of Nilson et al. The region they covered was from
12.88 to 21.62 MeV. These results are found to agree
qualitatively as well as quantitatively with those of
Nilson et al. except for the indication of the 7.55-MeV
0+ state in Steigert and Sampson's results. They
accounted for the steep rise in their S-wave phase
shifts by invoking a resonance level at 7.55&0.08 MeV
with a width I' of 1.2&0.4 MeV. There was a large error
in the width measurement because there were few points
available to give the resonant shape. However, this
evidence for the 7.55-MeV level is at variance with
many particle reactions and with the 'Be energy-level
schemes predicted either by an nPM or a central-force
model. LThe recent scattering experiments of Werner
and Zimmerer (1964) in the energy range of 10—20 MeV
also did not support the assumption of the 7.5-MeV
level in sBe.f The D wave showed no evidence of any
resonance behavior in the energy region covered. For
the G wave, Steigert and Sampson obtained the value of
the well-known level as 10.9&0.4 MeV and a width I'
of 1.2&0.4 MeV.

Bredin, Burcham, Evans, Gibson, McKee, Prowse,
Rotblat, and Snyder (1959) performed n—n scattering in
the range 23.1 to 38.4MeV. The 23.1-MeV results
agree with those of Nilson et al. at 22.8 MeV, but there
is some disagreement between the results for 38.4 MeV
and those of Farrel and Yavin (unpublished) .There was
also considerable difference between the results at about
30 MeV and those of Graves (1951, 1952) . 86 was found
to continue increasing negatively to the highest beam
energy used (38.4 MeV), and there was some indication
of a broad level in the S state at an excitation energy
between 15 and 20 MeV. This could not be accounted
for by the dispersion theory. The phase shift 86 con-
tinued smoothly between 23 and 38.4 MeV. They also
found the 4+ level at 11.4&0.3 MeV. The phase shifts
b6 and 88 were not accurately determined and seemed to
show no resonance behavior.

In connection with checking the apparatus and
experimental arrangement for 'He —o. scattering, Chiba,
Conzett, Morinaga, Mutsuro, Shoda, and Kimura
(1961) investigated a—a scattering at 32.5 and 35.5
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TAsr.E V. The real and imaginary parts of the phase shifts as deduced by Darriulat, Igo, Pugh, and Holmgren (1965) from their
measurements on the elastic scattering of n particles by helium between 53 and 120 MeV (lab). The reaction cross section og (in milli-
barns) and the value of v(=xv/N, x' being defined in Appendix I and N being the number of data points) are also shown. (Table
reproduced from Darriulat, Igo, Pugh and Holmgren (1965) by courtesy of Z'he Physi cot Zfevtew. j

Energy
(MeV) ag (mb) Re(bo) Re(82) Re(b4) Re(86) Re(bg) Re(@v) Re (bgs)

53.40
58.49
63.91
69.91
77.55
77.55
99.60
99.60
99.60

119.86

2.2 649.9
1.4 687.9
3.4 800.2
1.0 859.3
2.6 848. 1
2.7 879.0
1.1 791.5
1.5 820.7
1.9 833.3
1.4 823.9

—75.2~2.4—83.7~2.2—92.5&3.6—97.2+1.8—109.0&4.4—120.9~3.8—129.5&5.7—140.7~6.4—126.0&4.3—161.5&6.3

47.9~1.7
45.6a1.6
38.0&1.8
33.3+1.1
23.4~2. 1
16.4~2. 1—2.0~1.7—4.0~1.9—6.4a1.9—16.0~1.7

137.9~1.3
138.9a1.5
142.1~1.5
136.1&1.2
136.8&1.9
137.0+1.8
128.0&1.7
132.4a1.5
133.6+1.9
130.3~1.8

27.5+0.6
41.8~0.7
54.2&1.1
63.2&0.8
73.6%2.6
76.6&2.7
86.7&2.0
88.9~2.7
90.0&2.7
93.8&2.8

2.0~0.5
4.0~0.4
6.4+0.5
8.9+0.4

11.7~0.7
9.8&0.7

21.5w0. 7
17.9~0.9
16.9~1.2
26.0~1.4

0.6+0.4
1.2a0. 5
2.4~0.4
2.5&0.7
3.6&0.6
4.3~0.5
4.9&0.6
6.8&0.6
7,0&0.9 1.7&0.8

Energy
(MeV) ag(mb) Im(bp) Im {82) Im(84) Im(86) Im(~s) Im(S„) Im(S„)

53.40
58.49
63.91
69.91
77.55
77.55
99.60
99.60
99.60

119.86

2.2 649.9
1.4 687.9
3.4 800.2
1.0 859.3
2.6 848. 1
2.7 879.0
1.1 791.5
1.5 820. 7
1.9 833.3
1.4 823.9

12.1&3.1
10.7~2.3
14.2~3.2
9.6~2.0

18.0+4.6
12.2&3.7
27.4+6.0
26.2~6.9
10.8&4.4
15.7w3. 9

22. 1&1.7
19.2a1.3
18.4&1.9
17.9&1.0
19.8&2.3
18.2&2. 1
17.0+1.6
15.7~1.8
13.2~2.0
15.6&2.5

16.3&1.1
16.4+0.9
18.7~1.4
20.3a1.0
20.1+1.8
12.9~1.3
20.9+1.6
13.2a1.8
11.2&1;3
13.8+1.6

3.2~0.5
6.9&0.6

15.8&1.0
20.3~0.8
27.3&1.5
32.8%2.0
28. 1&1.7
27.0~1.8
30.3&2.5
26.6+1.4

0~0.4
0~0.4
0&0.6

1.9+0.4
2.5+0.7
4.7%0.8
8.5w0. 8

11.0~1.2
15.5&1.4
18.3+1.2

0~0.4
0&0.4
Oa0. 2
Oa0. 5
Oa0. 5
0~0.5

1.0a0.6
0.4+0.7
3.7&0.6 0+0.5

MeV. They found that the angular distribution of n—n
scattering changes appreciably with energy in this
energy range. Their results were in agreement with
those of Bredin et al. (1959) and of Burcham, Gibson,
Prowse, and Rotblat (1957). Burcham et al. measured
the angular distribution of n—n scattering at 38.5 MeV
and obtained a c.m. cross section of 110mb/sr at 90'
falling to a sharp minimum of about 0.5 mb/sr at 64 .
Their approximate analysis in terms of real phase shifts
showed that Sp and b2 are large while b4, b6, 88, are small
at this energy.

The next higher-energy scattering was performed by
Conzett, Igo, Shaw, and Slobodrian (1960). Absolute
differential cross sections had been obtained at 36.8,
38.8, 40.8, 41.9, 44.4, 46.1, 47.1, and 47.3 MeV. The
single prominent minimum seen at 36.85 and 38.83 MeV
gave way to two minima at the higher energies. This
transformation from one to two minima with increasing
energy is also present in the 12-23-MeV n—n data where
resonance scattering from a virtual excited state (4+)
around 11 MeV in Be is observed.

A phase-shift analysis by Berztiss (thesis) of the
n—n elastic-scattering data of Bredin et al. (1959) and
Conzett et al. (1960) between 23 and 47 MeV suggested
rapid energy variation of the S, D, and G phase shifts
near 40MeV. Since the threshold for the reaction
n+n-+'Li+p is at 34.73 MeV (lab) and since other
reactions open near 40 MeV, there was some speculation
that this energy variation might be due to threshold
effects. This situation seemed to need analysis of
experimental data more closely spaced in energy. In this
connection, Conzett, Slobodrain, Yamabe, and Schield

(1964) measured differential cross sections for n—n
scattering from 8' to 50' (lab) at nine energies between
37 and 43 MeV with an energy resolution better than
200 keV and an angular resolution of 0.25 . From an
analysis of these experimental data, Conzett, Schield,
Slobodrian, and Yamabe (1964) obtained two sets of
phase shifts consistent with the experimental data. The
phase shifts oscillated rapidly with energy. The oscilla-
tions were thought to be related to the opening of
inelastic channels and, most probably, to the neutron
channel (n+n-+'Be+rt) which proceeds with a rapidly
increasing cross section near threshold.

Excitation functions for n—n elastic scattering between
laboratory bombarding energies of 23 and 51 MeV were
measured by Shield, Conzett, Darriulat, Pugh, and
Slobodrian (1964) at lab angles of 45, 27.75, and
15.32'. Sharp resonant oscillations in the excitation
functions for 15.32 and 45 were found correspond'ing
to the levels in SBe at 16.6 and 16.9 MeV for which spin 2
and even parity were assigned.

Darriulat, Igo, Pugh, and Holmgren (1965) per-
formed n—n scattering experiments covering the range
53 to 120 MeV. Since a number of reaction channels
open at E(lab) &~ 34.73 MeV (as shown with the
corresponding threshold energies in Table IV), the
phase shifts are no longer real. Hence, Darriulat et al.
analyzed the data in terms of complex phase shifts and
obtained the phase shifts shown in Table V. The real
parts vary smoothly with energy, and the I,=O, 2 and
4 phase shifts follow the trends at lower energies. A
broad l=6 resonance is found at 26MeV (c.m.);
again, the real parts show some Quctuations around
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40 MeV, a plausible reason for the Ructuations being
discussed in connection with the analysis of Conzett,
Schield, Slobodrian, and Yamabe (1964). As can
be seen from Table V, the imaginary parts of the
phase shifts vary smoothly with angular momentum
and energy. The absorption experienced by the l=0, 2, 4
partial waves at 53.4 MeV and at higher energies are
about the same. The I=6 and the l= 8 imaginary phase
shifts, however, increase with energy in a manner almost
similar to the corresponding real phase shifts. Darriulat,
Igo, Pugh, and Holmgren (1965) also found that the
effects of Im BI (absorption) on the elastic differential
cross sections is small at small angles but increases
rapidly at larger angles. Since at 53.4 MeV the effect of
absorption was found to be already large, Darriulat et al.
correctly pointed out that the phase shifts obtained at
lower energies, but above the threshold energies, for the
inelastic processes should be viewed with due caution
since these were obtained from previous analyses using
only real phase shifts. Thus, although Darriulat et Ol.

found a broad l=6 resonance at about 26 MeV (c.m. ),
their conclusions for the l =6 partial wave are weakened
because they were based on the use of the above-
mentioned phase shifts. Darriulat et al. found evidence
for an /=8 resonance on the basis of the complex
phase-shift analysis of their data. They also found in the
analysis of the diGerential cross sections that the real
parts of the phase shifts are rather insensitive to the
values used for the imaginary parts. If the same finding
is also true for the low-energy analysis, then the con-
clusions for the 1=6 wave may not be substantially
changed. Darriulat et al. also tried dispersion-theory 6ts
for the real parts of the phase shifts. Table III gives
several sets of parameters which 6t the phase shifts in
various ways. No single value of the hard-sphere radius
gave a reasonable 6t for either the l=6 or the 1=8
resonance. However, using a hard-sphere radius of
4.5 fm, all the 6ve resonances so far observed were com-
pared, and it was found that the energies and reduced
widths of the resonances given by dispersion-theory Gts
are approximately proportional to J(7+1).

The results discussed so far may be summarized as
follows: Below 400 keV there does not seem to be any
evidence of nuclear interaction. The S-wave phase shift
starts from this point with a value of 180 and decreases
monotonically with energy. It passes through zero at
about 22 MeV and then becomes negative. The D wave
comes into play at about 2.5 MeV and goes to a
maximum of 120 at about 8MeV and then starts
decreasing. The G wave does not start before 4 MeV and
then increases with energy. The Iwave is first observed
at 20 MeV and is positive. Reaction channels open at
E(lab) &~ 35 MeV when the phase shift is no longer real;
the imaginary part accounts for the reaction, while the
real part describes elastic scattering.

So far, three levels are de6nitely established; the 0+
level at ~92 keV, the 2+ level at ~3 MeV, and the 4+

level at 11 MeV. Indications for higher levels have
also been found and discussed. )Sources of information
on the various levels of 'Be are given by Lauritsen and
Ajzenberg-Selove (1966).j

= —D+q%'/2pr' (P1)
Haefner used this potential to determine the proper-

ties of 'Be assuming that it is a 2n system. In this
potential, r is the a—o. separation, D is a constant (the
well-depth parameter), p, is the reduced mass, and qs is
a parameter. This potential is repulsive for small r
(representing the effect of the Pauli principle operating
between nucleons of the a clusters), attractive for
intermediate r, and is Coulombic outside r0.

Using the notation of Haefner, the radial functions
for this potential for l=0, 2 and for r(R are (for the
choice of g'=30)

R4(r) =As js(k0r)

Rs(r) =Ass(kor) /(kor) '~' r(R, (P2)

with ko'=k'+2pD/fi', k'=2pE/fr~, and E, the relative
energy of the system. The functions RI,(r) for r&R are

Rs(r) =80(fs(kr) cos 8&+g&(kr) sin 8sj r&R

Rs(r) =Bsffs(kr) cos 8s+gs(kr) sin bshe r&R, (P3)

wherefi(kr) =Fi(kr)/kr, gi(kr) =Gi(kr)/kr, and FI(kr)
and Gi(kr) are, as before, the regular and irregular
Coulomb functions.

The matching of the functions (P2) and (P3) for each
l at r=R by requiring the continuity of the functions
and their first derivatives, determines 8I and AI/Bi as
functions of the energy. Haefner found the maximum
of AI/BI to be a good criterion for a virtual level of
angular momentum /. He also used the fact that when
the maximum occurs at those energies for which the
irregular wave function is much larger than the regular
wave function, 8I ——90 . (In the Breit-Wigner formula-
tion, this means that there is no potential scattering and
the phase shift is given by the resonant term alone,
giving B)=90 at resonance. For values of R=4.50—4.75
fm, the maximum of the ratio occurred in the neighbor-
hood of 3 MeV. )

4. PHENOMENOLOGICAL ANALYSIS OP
n—u SCATTERING

So far, we have discussed the 0;a scattering results
and the parameters that have been extracted from them.
We now present the phenomenological approach, in
which one attempts to construct an n—a potential which
reproduces the experimental phase shifts. The method
adopted in most of these approaches is outlined in
Appendix II.

One of the earliest phenomenological o.—0, potentials
was proposed by Haefner (1951) and was of the form

V(r) = 4e'/r
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Using the then-available data on the ground state of
Be, namely a virtual state (presumed to be a 'So state)
at an energy of ~90keV above that for an infinite
separation of two o, particles, Haefner observed that
go(kR)))fo(kR) at this energy and obtained for the
position of the ground state of zero angular momentum
(given by 8o =90') the relation

PoR jo'(koR) /jo(koR) =kRgo'(kR) /go(kR) ]to oo t .v.

(P4)

Equation (P4) gives D as a function of R.Themaximum
of Ao/Bo as a function of R was also determined and for
values of R from 4.0 to 5.0 fm this maximum ranged
from E~2.7 to 3.8 MeV.

Later, Nilson, Jentschim, Briggs, Kerman, and
Snyder (1958) used the Haefner potential in the
analysis of their n-0. scattering results and determined
D from the (then) position of the ground state a
E=96 keV. It turned out that D was between 19 and
50MeV depending on the choice of R. As we have
already seen, for values of E. between 4 and 5 fm,
Haefner found the maximum in Ao/'J3o to be between
E=2.7 and 3.8MeV, which included the D state at
2.9 MeV, known later. Nilson et cl. extended Haefner's
Dmdel to include /=4 and found that the energy range
in which A4/84 attains its maximum value for values of
R between 4.13 and 5.08 fm was from 9 to 12 MeV. This
included the G state, which they determined from the
dispersion-theory analysis. A quantitative test of the
2~ model of Haefner seemed to be to see how well it can
reproduce the experimental phase shifts, and in this
connection Wilson et cl. calculated, with Haefner's
potential, the various phase shifts bo, b2, b4 and found
that the best agreement with the low-energy experi-
mental phase shifts requires a small value of R (3.49 fm);
the D-wave phase shifts did not rise enough to reproduce
the experimental l=2 phase shifts beyond 12 MeV. A
good 6t to the 6-wave experimental phase shifts was
obtained with R=4.44fm. As pointed out by Nilson
et al. , a crucial test of the potential would be a com-
parison between the experimental and theoretical 84

beyond 22.9MeV, but no such data existed at that
time. However, although Haefner's potential does not
exactly reproduce S-, D-, and G-wave phase shifts, the
similarities between the experimental and rotational
model phase shifts seemed to indicate that these states
could be described in terms of a two-body interaction.

About the same time as Nilson et al., Humphrey
(1957) was able to reproduce the ce nscatter-ing phase
shifts for the entire range of 0 to 22 MeV with a modified
Haefner potential. His best Gt required E.=3.75 fm and
an /-dependent well depth Dt (Do ——21MeV, Do ——25
MeV, and D4=32 MeV).

Van der Spuy and Pienaar (1958) made a phenom-
enological analysis of a—0. scattering up to a bombarding
energy of about 6 MeV. They investigated whether a

velocity-independent, two-body cz n —interaction can
represent the phase-shift data and also what features
of the interaction are predicted phenomenologically.
They considered the following 0;n potential:

=4e'/r,

r~& r)

rg«&~ r~

r& rN

(P5)

with

dR, (r)
ft Rt(r)

r ='rN

fo= Error cot K(r„rg), —
S~ S~

f~= —2+ +
3 3L(3/war' —1) —(3/xtr) cot (xtr+y)) '

where

cot (Er&+@)= (Er~) '—-'oEr~,

E'= k'+ (2ts V/P) 7oo= 2tsE/5'.

Thus, they selected a set of (r~, r~, V) values to get the
best 6t of the above inside log derivatives to the outside
log derivatives calculated from the experimentally
observed phase shifts at selected values of rN. For the
S wave they obtained the best compromise Gt for
rN ——4fm, r&

——1.7 fm, and V=7.2 MeV (including the
94.5-keV~resonance point) . The 6t, exluding the
resonance" point, required r~=4fm, r~=1.8fm, and
V=7.9 MeV. For the D wave, the best compromise Gt
was for r~=4fm, r~=1.8fm, V=10.5 MeV. Thus, for
both S and D waves the best 6t required the same rN
and r&, but diferent well depths, namely Va= 7.9 MeV
and V~=10 MeV. The difference between Vg and V~
increases for lower r~ because of the centrifugal
potential.

Thus, the investigation of Van der Spuy and Pienaar
indicated for the square-well analysis that even at very
low energies (E(6MeV) one needs a velocity- depend-
ent interaction with a core radius of about 1.8fm.
However, if the velocity dependence of the core can be
schematized as an / dependence of the core, then the
analysis'twould indicate that Potential (P5) g with
rrr 4 fm, Prts ——2.05 fm, ",,r~=——0.08 fm, V=9.5 MeV,
would yield the best compromise Gt. Thus, the results

which is characterized by three parameters: the hard-
core radius r~, the nuclear-interaction range rtr, and the
well depth V. Using the radial Schrodinger equation for
two 0| particles,

d'Rt(r) 2ts A,' l(t+1)
dr' 5o 2ts

+ —E—v (r) —— Rt(r) =0,

with the potential given by Eq. (P5) .Van der Spuy and
Pienaar deduced for the inside (r(r~) solution the
logarithmic derivative



258 REvIEws oP MoDERN PHYsIcs ~ JANUARY 1969

of Van der Spuy and Pienaar suggested that it is not
possible, even at very low energies, to obtain a velocity-
independent n—n potential fitting both 5 and D waves.

H. Wittern (1959) derived a semiphenomenological
potential from a consideration of the single nucleons
given by the Pauli principle and from the character of
the shell-model wave functions for the actual levels of
the 'Be compound nucleus and their excitation functions.
Wittern's analysis points to the same conclusions about
l dependence of the n—n potential as those of Van der
Spuy and Pienaar.

Igo (1960) made an optical-model analysis of the
elastic n—n scattering for bombarding energies ranging
from 23.1 to 47.1 MeV. He used a complex potential

V+i W

1+ exp L(r—ro)/d]
' (P6)

V..«&= V,«n exp (-~, '")+Vo exp (-~"') r P ri(l)

(P7)

where r~&'& is the hard-core radius. V &'~ at r=rI "& was
taken to be zero. Potential (P7) is thus characterized
for a given l by two l-dependent free parameters V&('~,

p~"& of the repulsive part; the parameters Vo and po of
the attractive part are fixed to —325 MeV and 0.29
fm ' from the theoretical investigation of Shimodaya,
Tamagaki, and Tanaka (1962) which we shall discuss
in Sec. 5. A fairly good 6t to the experimental phase

where the parameters V, 5', r&, and d were required, by
agreement with the angular distributions taken at eight
different energies, to be —112 and —1 MeV (for
bombarding energies near 40 MeV), 1.8 and 0.6&0.1
fm, respectively. The real parts of the phase shifts
obtained for this potentia1 were in good agreement with
the preliminary values of Snyder Lsee Burcham et at,.
(1958)) in the energy range 23—42 MeV. The imaginary
parts of the phase shifts were close to zero. The introduc-
tion of a nonzero 5', necessary to reproduce the total
reaction cross section, had a negligible eGect on the real
part of the phase shifts. Using the same potential form

(P6), Van Niftrik, Brockman, and Van Gers (1964)
obtained an optical-model fit to their angular distribu-
tion data of n-n elastic scattering at a primary energy of
51 MeV. The corresponding values of the optical-model
parameters are V= —122 MeV, W'= —11 MeV, ro ——1.81
fm, and d=0.74 fm. The calculated reaction cross
section is 770 mb. The Coulomb potential was included

by both Igo (1960) and Van Niftrik et a/. with different
assumptions about the charge distribution.

Endo, Shimodaya, and Hiura (1964) made an
investigation of the extent to which n—n scattering can
be explained in terms of an energy-independent poten-
tial and used the following l-dependent potential:

shifts through the excitation of 40 MeV (lab) requires

V ~"=371MeV,

V, &» =373 MeV,

V,«& =357 Mev,

~ "&=0.342 fm—',

»(» =0.360 fm-2,

»«) ——0.435 fm-',

r "'=1.6 fm;

r &»=1.4 fm.

r,«~ =0,8 fm.

V (r) =u~[1+ exp t (r—r~)/a~)} '

—N2}1+ exp L(r—r,)/a, )}—'

—iW}1+exp L(r—r~)/aa)} '+Vo(r),

where the erst term represents the repulsive core and
the second, the larger-ranged attractive potential; the
third term accounts for inelastic processes and the
fourth term is the Coulomb potential due to a uniformly
charged sphere of radius Eq.

Like previous authors, Darriulat et al. also tried to fit
the phase shifts for all partial waves using the same
potential but failed. Then they took recourse to an
l-dependent potential and used a diferent set of param-
eters for each partial wave. The values of the parameters
of the real potentials that reproduced the real parts of
the phase shifts are V~=150 MeV, a~=0.1~0.005 fm,
rj.= 1.65~0.03 fm, U2= 9.2~0.5 MeV, ~=0.4&0.1 fm,
rm ——3.72+0.07 fm for the S-wave; the corresponding
values for the D and G waves being 150, 0.05~0.03,
1.63+0.03, 16.0~0.2, 0.3~0.05, 3.55 and 220, 0.05, 1.2,
71~1, 0.46&0.03, 2.48+0.02, respectively. The values
of the repulsive-core parameters for the G wave were
found to be some sort of upper limit, since the G-wave
phase shifts could be reproduced even without these.
In view of the fact that the imaginary parts of the phase
shifts were not experimentally well determined and also
that the real parts of the phase shifts were not found to
be sensitive to the parameters of the imaginary part of
the n—n potential, the latter were rather arbitrarily fixed
to W=5 MeV, E)40 MeV (and W=O, E(40 MeV),
r3 ——r2, a3=~. As pointed out by Dariullat et al., these
potentials suGer somewhat from the ambiguity which
is characteristic of any Saxon-Woods parametrization.
%hen the real parts of these potentials are plotted as
functions of the n—n separation, the tails of the potentials
for /=0, 2, 4 partial waves are almost the same (in
agreement with theoretical expectations), but the l=6

The phase shifts of Endo et al. for E(lab) 40—50
MeV agree well for low l with those obtained by Igo
(1960) who used a purely attractive real part in his
optical potential. Endo et al. argued that the use of
such a completely real part may not be realistic.
However, Igo's analysis was perhaps justified, as
discussed below.

Recently, Darriulat, Igo, Pugh, and Holmgren
(1965), in an attempt to fit the real parts of the n n-
scattering phase shifts for energies between 53 and
120 MeV, introduced a complex Saxon —Woods potential
of the form
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and the l=8 potentials are different in this region.
However, the latter finding shouM not be disturbing
since the I,=6 potential was mainly determined froni
phase shifts between 35 and 47 MeV and, for reasons
mentioned in Sec. 3.B, should not be taken very
seriously. Also, the l =8 potential was constructed from
scanty experimental information and should also be
treated with caution.

Suinlnarizing, the n—cx potentials that have been
constructed from the experimental phase shifts show
some common features: The n-n potential is l dependent
but is independent of the incident energy. The ranges of
the inner repulsive part and the outer attractive part
are of the order of 2 ands fm, respectively. The repulsive
part becomes weaker for higher I, while the attractive
part becomes stronger. Thus the phenomenological
analyses of a—n scattering establish beyond doubt that a
static cx—0. potential common to all l does not exist.
Nevertheless, the attractive part may be taken as
common to all /. The l dependence enters through the
repulsive part and may be regarded as a simple form of
velocity dependence. fin fact, Ali and Bodmer (1966)
have suggested a procedure for the construction of such
potentials in a fairly unique way; we postpone its
discussion until Sec. 6, when we deal with the prospect
for further studies in the u—cc interaction. ) As remarked
by Van der Spuy, admission of more general velocity-
dependent eGects seems to make the purely phenomeno-
logical analyses rather arbitrary unless one knows the
actual type of velocity dependence from more funda-
mental considerations. Thus, studies of the fundamental
model of the cz n interaction are—extremely useful not
only for understanding the essential features of the
interaction but also for making the qualitative features
of the phenomenological n—n potentials meaningful.
Before these studies are dealt with in Sec. 6, the in-
vestigations concerning the effective-range theory of
n-e scattering are discussed. These followed a recent
measurement of the ground state of 'Be and have some
relevance to phenomenological studies of the n—a
interaction.

Recently, Berm, Dally, Muller, Pixley, Staub, and
Winkler (1966, 1967) have been able to make a rather
direct and precise measurement of the width (I"„=6.8&
1./ eV) and position (Est(c.m. ) =92.12+0.05 keV)
of the ground state of 'Be, whose lifetime 7 has been
determined to be L0.97(+0.32, —0.19)jX10 ' sec.
Russell, Phillips, and Reich (1956) obtained 2=4.5&3
eV with the effective-range theory. Later, Barker and
Treacy (1962) repeated this calculation using the same
expansion and found a value of 6.8~0.6 eV, which is in
better agreement with the recent experimental value.
However, these results were obtained with the old value
of the ground-state position of 94keV, which was
shown to be inaccurate by the experiments of Berm et cl,.
and of Reichert, Staub, Stussi, and Zamboni (1966).
The correct resonance energy is important in obtaining

the ground-state width because of the rather rapid
change in the Coulomb penetration with energy. I'urther
calculations using the new value of the resonance
energy were erst reported by Tombrello (1966) who
found that the uncertainties in the parameters of the
effective range expansion (which arise due to the un-
certainties associated with the measured S-wave phase
shifts) cause large uncertainties in the width. Tombrello
concluded that, on the basis of the available data, the
eGective-range theory of S-wave O.-o. scattering does not
enable the width of the 'Be ground state to be deter-
mined accurately. Rasche (196'/) has pointed out that
Tombrello used only one-half of the experimental
information (Est) and tried to make predictions for the
other half (I') . Rasche used both E~ and I' to determine
the eGective-range expansion parameters and observed
that the inclusion of F in the analysis of low-energy
phase shifts (bv) considerably reduces the uncertainties
in the effective-range expansion coeKcients A, 8, C, D
t see Eq. (E2)j.Rasche has apparently been able to put
a better limit on I' t I', =6.4(+0.8, —0.5) eVj which
is even narrower than the direct experimental limit
quoted by Berm, et al.

Kermode (196/b, 1967c, 1968) has recently presented
an analysis of S-wave phase shifts using a hard-core
eGective-range formula previously developed by Ker-
mode, (1965). According to Kermode's analysis, one
uses the experimental phase shifts 80 to calculate a
function I'0 de6ned by

Fp =kf(Gv +Pe cot 8p) /(Gp+ Pp cot 8e) ]
where Iio and Gg are again the S-wave regular and
irregular Coulomb wave functions, ao is the hard-core
radius, and k is the relative momentum (c.m.). Fv is
then 6tted to the eGective-range expansion

Fv= A+8k'+Ck'

and, finally, delning the width as the difference in the
energies for which the phase shifts are 45 and 135, one
calculates it from

/dzv dFoi ' /dBer=2k, G
kdE dEj E kdE E

where so= kGe'/Ge. Using a hard-core radius of 1.7 fm
Lwhich is the same as that used in the potential of
Van der Spuy and Pienaar (1958)j, Kermode obtained
a value of 6.14&0.04 eV, in reasonable agreement with
the measurements of Berm et al.

Use of the phenomenological o.—n potential has been
made by Ali and Afzal (1967) to 'reproduce the new
ground-state parameters of 'Be. Their observation has
been that an S-state n-a potential which reproduces
phase shifts in good agreement with experiment may
give a fair representation of the ground state of 'Be.

More recently, Kermode (1967b, 1967c, 1968) has
shown that the eGective-range formula for charged
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particles with no hard core, used by other authors, is not
good for n-0. scattering. Kermode finds that the hard-
core, eGective-range formula describes rather well the
low-energy S-, D-, and 6-wave a—0. scattering. He also
finds it possible to define a hard-core radius which takes
approximately the same value (1.7 fm) for all three
partial waves, in apparent inconsistency with the
results of the phenomenological analyses. However, the
latter finding is rather difEcult to understand, for one
hopes on fundamental grounds that if the n—a potential
is at all velocity dependent, this dependence is more and
more reQected in its inner part. If one can schematize
the velocity dependence as an / dependence, then it
seems more plausible that the a—o. interaction should be
characterized by an /-dependent inner core (and an
outer attractive part common to all l) rather than an
l-independent one.

S. FUÃDAMENTAL STUDIES OF THE
n—n INTERACTION

By fundamental studies of the n-n interaction we
mean those studies which begin with an eight-nucleon
(four protons and four neutrons) system and try to
develop an interaction between two n clusters, starting
from first principles and the basic two-nucleon forces.
The earliest of such theoretical studies began with the
celebrated "Resonating Group Formalism" of Wheeler
(1937b). This formalism regards the neutrons and
protons in the nucleus as being divided into various
groups (e.g. , n particles) which do not maintain their
identity forever but undergo continual changes, re-
distributing themselves into new groups. One then seeks
from group-theoretical considerations which of the
groupings are important for a particular state of a given
nucleus. The wave function of the composite nucleus is
written as a totally antisymmetrized combination of the
wave functions for the various possible groups in the
nucleons. Following Wheeler's method (which, in fact,
has paved the way for detailed analysis of configurations
involving two groups) one obtains for the relative motion
of two groups an integral equation in which appears an
interaction generated from two-nucleon forces. This
consists of two parts: a direct part which involves no
particle exchange between the two groups and another
part appearing in the form of a nonlocal kernel interac-
tion containing terms corresponding to the exchange of
one, two, or more nucleons between the groups. Wheeler's
formalism has been followed up until quite recently by
various authors in diGerent contexts, and we shall later
present direct applications of the method only as far as
the cx-a interaction is concerned.

Besides expanding the theory of resonating-group
formalism, Wheeler also used a simple nPM (which
assumes the a-n forces to be given beforehand) along
molecular lines LWheeler (1937b)jato describe low
states of excitation between the a particles. The sym-
metric function of the centers of gravity of the n

particles was written as the product of rotational and
vibrational wave functions, and the results of the
molecular theory were applied to determine the allowed
rotational and vibrational quantum numbers for 'Be
and for "C and "O. Margenau (1941) pointed out that
because of some essential differences between the nuclear
and the molecular cases (e.g., the differences in the
natures of the interactions between atoms and those be-
tween nuclei), the introduction of molecular viewpoints
should be viewed with caution. Margenau calculated the
interaction energy of two n particles as the di6'erence
between the total energy and the energy of two isolated
a particles, each with a wave function built up about a
fixed point. The calculations of Margenau were es-
sentially the same as those of Heisenberg (1935) who
allowed the mass centers of the interacting 0. particles to
oscillate with an arbitrarily chosen amplitude about two
fixed points. In Margenau's calculations the mass center
was described by the same parameter that described the
motion of a nucleon inside an 0. particle. Expressions for
the interaction energy contained Heisenberg's mass-
center oscillation parameter explicitly and Margenau's
implicitly and were therefore difEcult to interpret.

Wheeler (1941) was also the 6rst to give a theoretical
interpretation of the n—n scattering measurements up to
1939. Following Taylor (1931, 1932), he analyzed the
results in terms of the phase shifts of the l=0, 2, 4
partial waves up to 7 MeV. His analysis demonstrated
a rapid phase variation at about 3 MeV (c.m. ) for 1=0.
Thus, Wheeler was forced to assign zero spin to the
2.9-MeV state in Be, which is now definitely known to
be a 2+ state. This does not imply that Wheeler's
method of analysis was strong, but that his calculations
were based on inaccurate phase-shift values.

The intention of the early theoretical works was to see
whether the basic two-body u—n interaction has a short-
range repulsion and an attractive part over the n-n
spacings of 3—4 fm (corresponding to the average spacing
of two n's in a nucleus) . The repulsion is needed to pre-
vent 0.'s from coming too close to each other and over-
lapping, making the O,PM of nuclei meaningless. A rough
criterion that overlap shall always be small was given by
Herzenberg (1955, 1957):Eo(2'Ls —((bs ') )~1'$ where
s is the average separation of two neighboring a particles
in an n-particle nucleus and ((bs 2))'~' is the root-
mean-square deviation of s . + is a certain distance
from the center of the o. particle up to the radius at
which the density distribution in the n particle was
assumed to be constant. From the relation of Eo with r
(the radius of the a particle) and from some rather
rough estimates for s and (8s ') in 'Be, Herzenberg
deduced that r & 1.57 fm. This is indeed consistent with
the measured radius (1.44 fm) of the n particle as was
available later from' the 'experiments of Hofstadter
(1956).

The nonoverlapping of a particles in 'Be should be
reQected also in the repulsive nature of the n—cx potential.
The repulsive part of the theoretically determined Of.-n
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interaction is not a static potential but has a velocity-
dependent character; thus, one cannot represent the
repulsion graphically. One may, however, plot the
effective phenomenological 0.—n potentials and get some
idea of the extent to which the n particles overlap in
states of Be. This point has been illustrated in Sec. 6.

The attractive part of the basic two-body n-n inter-
action is needed to sustain the nuclei against electro-
static repulsion. These theoretical works also sought to
establish whether the 0.—n interaction is additive, i.e.,
whether the force between two 0.'s is independent of the
presence of neighboring n's. Heisenberg's idea was that
the short-ranged repulsion (which corresponds to the
exchange ot nucleons between the a particles) could be
accounted for by exchange forces, while the additive
attraction would be due to van der Waals forces. But
Margenau's calculations showed that the second-order
forces between two 0. s, which correspond to the van der
Waals force in molecular interactions, were of shorter
range than the exchange forces and hence could not be
additive. The total 6rst-order interaction between 0.
particles (i.e., sum of direct and exchange interactions)
was found by Margenau to be repulsive. Thus, strong
polarization forces (when two a.'s come very close to
each other's 6eld of forces they tend to distort each
other so as to minimize the total energy, thus producing
an attraction) had to be invoked, which went against
the spirit of the O.PM of nuclei.

Margenau also chose a simple model, in keeping with
the a—0. interaction composed of 6rst- and second-order
forces deduced by him, to obtain the S-wave phase
shifts. He used an in6nite repulsive potential for a 0.
separation from 0 to r&, an attractive square well from r&

to 4.5 fm, and Coulomb repulsion outside 4.5 fm. The
phase shifts obtained at low energies for various values
of r& agreed with the (then) phase shifts but did not
show resonance effects, and Margenau concluded that
the two-body interaction was incompatible with the
scattering data.

Inglis (1941) showed that if the nucleon-nucleon
interaction has a Vukawa rather than a Gaussian tail
and if there is no appreciable nonexchange part in this
tail, then the 6rst-order forces would provide an
attractive region. Later, Edwards (1952) pointed out
that the attraction found by Inglis was not due to the
shape of the potential but to the fact that the tail did
not have an appreciable nonexchange part. Edwards
calculated the binding energy of the 'Be nucleus using
the variational n—n wave function

g ro' exp (—Cro' Dg r,,z Dg r tt')— —

&spin and charge functions,

where C and D are parameters and

rg'= 4 rj rg r3 r4 —
4 r$ r6, rz

the r's being the coordinates of the nucleons of the n

clusters. Edwards' calculation showed that it was not
possible to bind 'Be unless the saturation conditions had
been given up. However, as pointed out later by
Herzenberg (1955, 1957), the signi6cance of a calcula-
tion with a ground-state boundary condition is not clear
since the Be state is virtual. Thus, a more satisfactory
treatment of the virtual levels of Be should use the
reduction of an eight-body problem to a two-particle
equation of motion containing an effective interaction
between two 0. clusters.

So much for the historical part of the theoretical
trend in the development of the subject of cx-0. in-
teraction. Let us now look at more current pictures of
the subject. The recent theoretical analyses of the
n—0. interaction followed a great impulse given to this
iMld by Herzenberg in a series of papers (1955, 1957)
in which the eePM of nuclei was revived, and the several
interesting features of the n-n interaction were ex-
plored. Herzenberg made an anatomical separation of
the ez-a interaction into four parts: (a) a direct inter-
action Vn due to the direct (nonexchange) tail of the
nucleon —nucleon potential, (b) an exchange interaction
V~ due to the exchange of nucleons between the n
particles, (c) a polarization interaction Vvo~ (whose
origin we have already explained), and (d) the Coulomb
interaction Eq. The 6rst three terms are analogous to
the long-range Coulomb interaction of ions, electron
exchange, and van der Waals forces, respectively, in
atomic physics. Herzenberg made explicit calculations
for these components with the use of a basic nucleon—
nucleon force having the charge-independent form

(where r;; is the distance between nucleons t' and J, res

the unit vector pointing from nucleon i to nucleon j,
and the d; are 2/5 times the intrinsic spin operators)
and a wave function in which each of the two interact-
ing 0. particles is con6ned to the neighborhood of a
6xed point. The important observations of Herzenberg
were that V~ and V~,~, which provide the attractive
part of the ce-a interaction, are additive (in what
follows, only the two-body interaction, in which
additivity is of no concern, is dealt with) and that Vz
and V~,~ have a larger range than does V~. VX is
velocity dependent and could account for the repulsion
required by the +PM. The additivity of V& depends on
the existence of a direct tail in the S-N interaction.
In the absence of this tail, the only source of attraction
is V~,~ which, however, is rather weak for central forces
between nucleons. Herzenberg also found that the
strength of the tail in the Serber forces provides the
right order of magnitude of the 0.—0. attraction. Thus,
considerable emphasis is required on the direct part of
the X—X interaction. In earlier calculations this was
regarded as going against the usual saturation con-
ditions. Herzenberg argued that "saturation con-
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ditions" should not really stand in the way of the
explanation of the a—a interaction by V& because,
first, nuclear forces should give saturation only within
the known range of nuclei so that an attractive VD

may still be possible, and second, VL is due to a fringing
nuclear field extending outside the a particle, and thus,
two a particles can attract each other without over-
lapping. Herzenberg remarked that the nuclear forces
may be modified at short distances to give saturation
and still allow a tail to give the a particle a fringing
field. Considering the features of the component parts
of the n—n interaction, Herzenberg suggested that the
complete n—ot, interaction may be represented by a
potential which has a static part corresponding to the
direct part of the cx—o, interaction and an effective
repulsive part which takes into account the repulsive
nature of V~. Indeed, in constructing a—a potentials
from a—a scattering data, these features of Herzenberg's
investigation, as well as those of the more recent
theoretical works, have been taken care of at least
qualitatively. Following Herzenberg, several authors
have attempted to study the two-body a-a interaction
in great detail using the resonating-group approach.
The development of Van der Spuy (1959), outlined
below, is typical.

Let us consider a system of eight nucleons (four
protons and four neutrons) and imagine that they can
be divided into various possible two-n groups. Starting
from one pair of a particles, other groups of two n's

may then be generated by allowing exchange of nucleons
between the pair. These nucleon exchanges must,
however, be governed by the Pauli principle. Thus,
following the resonating-group formalism, one assumes
that the wave function of the eight-nucleon system is
given by

/=ed. (12, 34) fg(56, 78)R(r.p) j, (F1)

where 0', is the antisyrnmetrization operator given by

O', —= L1
—II(25) —H(26) —H(15) —H(16)

+H(15)H(26) jL1—H(47) —H(48) H(37)—
—H(38) +H(37) H(48) j.

In (F1) the neutrons have been labeled as 1256 and the
protons as 3478. H(25) is the Heisenberg exchange
operator, exchanging both space and spin coordinates
of particles 2 and 5. The f,'s are the internal wave
functions of the n particles and have the form
f(12, 34) =x(12, 34)p(12, 34), where x is the anti-
synuIIetric spin part and p the symmetric space part
of P. R(r) describes the relative motion of two a
particles. One assumes that the two a groups are
unpolarized. This assumption is justified if one con-
siders low cx—a energies of scattering so that the parti-
cles do not interpenetrate. The basic idea is to start
from (F1) and derive an equation of motion for R(r)

with the 0.—a interaction built up from fundamental
two-nucleon forces. One achieves this in the following
way.

Starting with the Hamiltonian

$2 8

H= gVP+ g V(i, j),
i=1 (1' "8)

(F2)

X 12, 34 * 12, 34
space spin

X$T E+ Q V—(i,j))x (12, 34) p (12, 34) =0,
(1234)

where T is the kinetic-energy operator in the c.m.
system of the a particle; p is the symmetrical, spacial
a wave function, which for simplicity may be assumed
to be

$(12, 34) exp I
—a(&»'+&»'+I'I4'+r»'+r24'+'r»') j

The fact that the internal wave function does not de-
pend on the inter-a separation implies the assumption
that the o, particles are not polarized during collision.

One obtains, using certain symmetries, the equation

4' V'+(E—2E ) —VD(r) R(r)

dr'E r, r' E r'. F4

VD(r) is the direct interaction (i.e., in the absence of
nucleon exchange) originating from the identity ele-
ment of the antisymmetrization operator 6, and is
given by

VD (r) =4(4w+ 2b —2h —m) VOL16a/(16a+3P) f12

&& exp f—16aPr'/(16a+3P) j. (FS)

Vo and p characterize the radial dependence of the
nucleon —nucleon interaction v;; which is taken as

I(ij) =—V exp (—Pr, ). (F6)

This potential was chosen to obtain an analytical ex-
pression for the kernel since Gaussian forms integrate
easily. The direct part VU(r) of the Coulomb inter-

where V(i, j), the two-nucleon force, is given by

V(i, j) = $w+Imp, (ij )+bp, (ij ) +hH(i, j)jV(i, j),
and the eight-body Schrodinger equation is

(F3)

To obtain an equation for the relative wave function
R(r), the nucleon coordinates must be integrated out.
Thus, (F3) is multiplied by P,*(12,34)fz(56, 78) and
integrated over the space and spin variables of all the
nucleons, keeping r constant. Use is made of the
identity
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Et(r, r') = (4sr««') —' g (2l+1)kt(«, »') Pt(cos 8).

Thus,

kt(«, »') =2'««' E(r, r') Pt(cos 8) d(cos 8), (F8)
—1

where 8 is the angle between r and r'. With (F7) and
(F8), Eq. (F4) reduces to

fP f d' l(1+1)l
4M (d«' «' I+~—Vo(») ft(»)

&r r, r'
I,

r' dr'. F9
0

The price for the antisymmetrization of the wave
function in order not to violate the Pauli principle is to
solve the integral equation (F9) with a complicated
kernel function. Although this kernel can be computed
numerically, it is rather difFicult to interpret Eq.
(F9) except in general terms. Van der Spuy used the
Taylor series expansion

r kt(«, »')ft(«') d»'
0

(» «) n tfn
kt(«, »') d«' fi(»)

0 NI drn

= 2 V-t(«) (d"/«")ft(») (F10)

where V„t(») is the «tth moment of the kernel kt(«, »') .
The «t=0 term of (F10) gives Vet(«) ft(«), an E-depend-
ent direct part which can be added to the /-independent

action $4e'/«erf (4«e't'n)] is also added to VD(») to
give a total direct part Vo'(«) = Vti(»)+ V, (»).

Equation (F4) shows that in order to know R(r) at
the point r in space, one needs to know R(r') at all
other points r' in space. Thus, (F4) describes a non-
local process; the kernel of the integral equation
E(r, r'), involving both r and r', represents a nonlocal
interaction and is symmetric. The exact analytical
expression for this kernel is a rather complicated
function and is given by Van der Spuy (1959). Mathe-
matically speaking, the origin of the kernel interaction
lies in the antisymmetrization of the wave function.
But since antisymmetrization means physically that
particles having the same spin and charge should
not come too close to one another, it is expected that
Et(r, r') should incorporate the character of a re-
pulsion. We shall return shortly to this point. To get
more insight into the kernel, one can separate out
partial waves by making the following expansions in
terms of Legendre polynomials:

R(r) =» ' g ft(»)Pt(cos0) (F7)
and

direct part Vo(»)ft(») . The next meaningful moment is
for st=2 which gives V2t(«)(d'ft(«)/«']. Since the
latter term involving the curvature (i.e., the second
derivative of the relative wave function) can be added
to the kinetic-energy term in the left-hand side of
(F9), it leads to a correction in a mass in interaction.
A similar situation is observed for nucleons in nuclear
matter (Bethe (1956)].The effective n mass increases
if V2t(«) is positive. Investigation of the effect of this
term on o.—o. scattering has not been made.

Van der Spuy made explicit evaluations of the direct
and kernel interactions as a function of n—0. separation
and found that the direct interaction has a range of

5 fm, while the range of the kernel (exchange)
interactions is about 4 fm. Van der Spuy (1956) at-
tempted to calculate n—o. scattering phase shifts, but
used only one set of parameters, namely those that were
found from the analysis of the e-0. problem; n= 0.08387,
P=0.2853, Ve = —47.62 MeV, x=a+ tN =0.8, y =
4w+2b —2h —rN=1.620. Voo is the predominant V„o
term; also

~
Vr(«) =Vn(«)+V, («)+Vot(«)

~

is small
compared with

~

VD'(»)
~

or Vop(«) up to 2-3 fm,
indicating a low magnitude of the core potential.
For the D wave, Vp2 was larger than the other terms in
V„2 but was not predominant, and the D wave was
found to have a velocity-dependent interaction.
Vr(«) was found to be negative for the D wave all the
way from the origin. This is somewhat disturbing since
in order to make the 0.—n interaction meaningful,
considerable repulsion at short distances is necessary to
prevent the two 0.'s from dissolving into eight nucleons.
One thus suspects the accuracy of Vr(«) at short dis-
tances.

The scattering phase shifts were calculated by
Butcher and McNarnee (1959) within the framework
of the resonating-group theory. But their calculations
were with a nucleon —nucleon force which did not
describe the S-wave scattering data. As pointed out by
Schmid and Wildermuth (1961), their force mixture

(e Serber plus e Rosenfeld) seemed to contradict the
results of other analyses. Nevertheless, theirs were the
first calculations which took a complete account of the
exchange part of the Coulomb interaction.

The kernel interaction in (F9) was also derived by
Schmid and Wildermuth by varying the relative wave
function R(», »t,), according—to the Ritz variational
principle, in the expression

*B —X ~ dr=0.

Schmid and Wildermuth solved Eq. (F9) on an IBM
'7090 computer. The nucleon —nucleon interaction they
chose was of the same form as that used by Van der
Spuy and may be written once more:

V;s= —Ve exp (—P«,P)Lw —-', t»t(1+tt;tt;) (1+~;.~t)

+s2b(1+t4 tt;) —ah(1+v;. s )]. (F11)
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Fn. 5. The energy dependence of the phase shifts calculated by
Okai and Park (1966) is shown by the dashed curves for a pure
Serber force and by the dash and dot curves for the mixed force,
respectively. The solid curves represent the real parts of the
experimentol phase shifts. /Figure reproduced from Okai and
Park (1966) by courtesy of The PIsysica/ ffeesem. t

Vs= 72.98 MeV,

w+m —b—k=0.63,

P= 0.46 fm—'
w+m+b+h, = 1.

With this choice, the potential (F11) yields values of
singlet and triplet effective ranges, singlet ss-p scatter-
ing length, and deuteron binding energy in good
agreement with experiment. As shown in the work
of Pearlstein, Tang, and Wildermuth (1960), the exact
form of the two-nucleon potential is not very important
as long as it reproduces the two-body scattering data
sufficiently well. Schmid and Wildermuth calculated
the n—n scattering phase shift as a function of the force
mixture consisting of a combination of pure Serber
force (w=m, b=h) and a pure Rosenfeld force (m=2b,
k= 2w). For a pure Rosenfeld force, the direct nuclear
part of the cr—cr interaction (see Eq. (FS)j vanishes.
Thus, the phase shifts are expected to increase with a
decrease in the Rosenfeld force.

The best agreement obtained with the experimental
phase shifts was a 94% Serber force and a 6% Rosen-
feld force. However, although their agreement for
l= 2 and 4 was good, for l=0 their curve was below the

The numerical solution for f(r) determined from Eq.
(F9) for this potential was Inatched to Coulomb wave
functions, the phase shifts being determined in the
matching procedure. As we have seen earlier from the
analysis of Van der Spuy (1959), the parameters to be
adjusted in the calculations are the matter density of
the 0; particle„which enters through the internal wave
function of the o. particle, and the parameters Vo,

P, w, m, b, and b of the nucleon —nucleon interaction
of the type (F11). Since by normalization w+m+
b+b=1, the nucleon —nucleon parameters are reduced
to Gve. Schmid and Kildermuth's calculations were
with

experimental points. Their resonance value was 0.4
MeV higher than the (then) experimental value of
about 95 keV. They remarked that if the potential
depth in (F11) were increased by a small amount,
their curve would rise and 6t the experimental points.
However, the fact that among all authors employing the
resonating-group formalism only Schmid and Wilder-
muth claimed success in reproducing experimental data
needed investigation. It was discovered later by Okai
and Park (1966) from a rather detailed cluster-model
analysis of n-n scattering that the discrepancies of
Schmid and Wildermuth's results from other cal-
culations were in some cases due to an error in the
numerical computation. Failing to reproduce the
results of Schmid and Wildermuth, Okai and Park
employed rather detailed computing techniques and
calculated the phase shifts for s, d, g, i, k partial waves
through the excitation energy of 40 MeV. Their main
aim was to reproduce the energy dependence of the
i and k waves on the basis of the resonating a-cluster
model. To this end, they extended the previous cluster-
model analysis to i and k waves and to higher bombard-
ing energies. Although at these high energies (up to
40 MeV c.m. ) channels other than the initial o.—cr

channel were open, Okai's and Park's calculations
were based on the one-channel approximation. They
used the same nucleon-nucleon potential as used by
Schmid and Wildermrfth, but their calculations were
more comprehensive and diGered from those of the
latter on a number of points. They calculated the
Coulomb exchange terms explicitly and verified them
to be the same as those obtained by Butcher and
McNamee. They did some calculations including the
Coulomb exchange terms in the kernel interaction; this
was found to increase the phase shifts only slightly from
those obtainable with the direct Coulomb interaction.
The increase, it is understood, was due to the fact that
the Coulomb exchange terms in the nonlocal kernel have
an opposite (i.e., attractive) sign relative to the direct
repulsive Coulomb part and, hence, increase the eGec-
tive interaction and the phase shifts. Figure 5 gives the
phase-shift-versus-energy plots for various / values, as
obtained by Okai and Park. A comparison with the real
parts of the experimental phase shifts is also shown. For
S and D waves, the calculated phase shifts are systemat-
ically larger by about 20% than the experimental ones,
the agreement for the G wave being slightly better below
25 MeV. There is a discrepancy for all partial waves ex-
cept for / =8, for which the phase shifts are rather reason-
able. For a pure Serber force, the phase shifts are con-
sistently larger for all partial waves. As the Rosenfeld
force is introduced and gradually increased, leading to
an enhancement of the repulsion in the nonlocal kernel
interaction, the phase shifts decrease. This has been
confirmed by calculations with 6% and 10% Rosenfeld
forces. However, Okai and Park observe that to get
agreement with the experimental phase shifts, one
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would need an inordinate amount of Rosenfeld com-
ponent in the force mixture. Thus there was some
indication that the only repulsion present in the short-
range exchange interaction in the kernel arising from the
antisyxrnnetrization of the wave function is not suf-
hcient to reproduce the experimental values; it thus
seems necessary to invoke the explicit inclusion of a
hard core in the nucleon-nucleon interaction. The
preliminary calculations of Waghmare (1964) show that
a soft-core N-X interaction leads to a soft-core re-
pulsion in the n-n potential at least 1.6 times higher
than the attractive depth at the origin. One thus
hopes that a hard-core nucleon-nucleon interaction
would strengthen the repulsion in the n-n interaction.

Okai and Park also investigated the energy inde-
pendence of the n-n potentials. They plotted the
scattering wave functions for different / values and for
diferent incident energies as functions of n-n sepa-
ration and found that the zero points r,&0~ and r,&'~

of the S- and D-wave functions, respectively, remain
fairly unchanged over a wide range of incident ener-
gies. These zero points are within a distance of 3 fm,
which is close to the contact distance (i.e., twice the
root-mean-square radius of a free cv particle) of the two
cz particles. LSee Fig. 3 of Okai and Park (1966).j
Comparing these zero points with the hard-core radii
in the range of 1.4-2.1 fm and 1.2—1.8 fm for the S
and D waves, respectively gas required by Endo,
Shimodaya, and Hiura (1964)j, the l-dependent, but
energy-independent, core radii coincide with the zero
points of the scattering function within the contact
distance. However, since the wave functions within the
contact distance do not vanish, the repulsive hard
core, in the strict sense, does not exist; the core is seen
to be rather soft. From the analysis of Okai and Park,
it thus seems that the kernel interaction is not suf-
Qciently strong to be replaced by a local hard-core
potential.

At this point one may ask, even if the nonlocal
kernel interaction may be replaced by a soft-core local
n—n potential, to what extent would the local potential
be equivalent to the nonlocal one. This question has
not yet been fully answered. Some attention has
already been given to it by Shimodaya, Tamagaki, and
Tanaka (1962). Using essentially the same resonating-
group formalism, these authors investigated an ef-
fective n—n potential from the standpoint of the
cluster model of Be by making use of reliable proper-
ties of the pion 'theoretical nucleon-nucleon potential
which consists of the one-pion exchange potential Vq

(OPEP), the two-pion exchange potential V2 (TPEP),
and the shorter-ranged potential V3. It can be written
as

V'= —(l)( ";)(~'~ ~;) V(r';)

+ Q P(S ~)L2s+1V w(s, .)+2s+1V w(s . .)]
S.e

where P(S, 2r) is the projection operator for the state
with spin S and parity 2r, and 's+'Vw(r;;) is the potential
in this state. For explicit expressions for V (r;;), see
Shimodaya, Tamagaki, and Tanaka (1962) . Their
equation of relative n—n motion is written in the form

['e,—2;jx&(&) = )»(&)g&(r) p f «&« '» (r, &') &!&(&')&(&'

0

+f w&' &(r r.')y (&)&dr' (F12)
0

where xt(r) is r times the radial function ft(s') in
Fq (F9) ~

f'42 1 d —8') f42 l(l+1)—I+4M r2 dr ctrj, 4M r2

In (F12), Vt)(r) is the direct potential as before, in-
dependent of gt(r), and Wt(v'" and Wt("~) are the
kernels of the exchange-potential and kinetic-energy
terms, respectively. An "effective" local n-n potential
Vp" may be dined as

I &.—2' 3xt(~) = Vt"'(~)xt(~),
where

V"'(~) = V (r)+h (r) j-l

x
( f p(w«'"&(r r') pw&&&' &(r, &')]g&(r')dr'j .

0

(F13)

Obviously, the "eGective" potential is dered only
where xt(r) is not equal to zero. The definition of the
equivalent local potential (ELP) makes some sense
if one argues that n-n scattering may be described
phenomenologically by a local, energy-independent
potential and that the kernel is a peaked function near
r= r'; the nonlocality of the exchange terms is perhaps
not too serious. Calculations of KLP require, however,
the knowledge of xt(r). Shimodaya et al. pointed out
that at least the qualitative features of gt(r) can be
obtained by studying how zt(r) is damped by Pauli-
principle requirements in the n-cluster structure of
'Be. LThe relation between the shell model and the
cluster model of 'Be, or of other n-clustered nuclei
like 'C and "0, was shown by Perring and Skyrme
(1956).The cz-particle wave functions for the ground
states of 'Be and of "C and "0,when antisymmetrized,
become identical with the shell-model wave functions.
The interested reader is referred in this connection to
Biel (1957), Wildermuth and Kanellopoulos (1958a,
1958b), and Neudachin and Smirnov (1957) and to
other relevant references cited in the book by %ilder-
muth and McClure (1966) on the "Cluster Model of
Atomic Nuclei. "j

Rewriting the antisymmetrized harmonic-oscillator
shell-model wave function for the (1S)4(1P)4 con-
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iguration into that of two ground o. clusters, one
obtains

xf(r) =r4 exp (—vr') (F14)

The r4 factor in (F14) corresponds at small distances
to a repulsive potential like 20/r'; the latter together
with the centrifugal potential give the effective re-
pulsive potential

t'20+1(1+1)7/r'=l, ffL(l,ff+1)/r'j, (F15)

which determines the behavior of x~'s at small dis-
tances. A form of yf(r) which is consistent with (F15)
and with the approximate asymptotic form of zf(E)
(i.e., rxf(r) 1j for the ground state of sBe can be
written as

yf(r) =[1—exp (—fr'))"/r r'" ' for small r

for large r (F.16)

This form, chosen merely for convenience in calculation,
was used by Shimodaya et a/. with the values of the
parameters p= 3, f =0.15 fm ' for l=0 and 2, and p=4,
v=0.15 fm ' for /= 4. These parameters were chosen to
correspond approximately to the solution in the presence
of a phenomenological hard-core 0.—0. potential of
hard-core radius 2 fm, well depth —10 MeV and

range 5 fm, as suggested by Van der Spuy and Pienaar
(1958). The exchange potentials in (F13) calculated
with this xf(r) show repulsion in the region where two

0, particles overlap, i.e., for r &2 fm. Shimodaya et ul.

observed that the main contribution to the exchange

potential comes from the TPKP one-pair exchange term
and the kinetic-energy terms. The latter are of shorter

range compared to VD (r) . The total exchange potential
behaves like a repulsive core with a radius of approxi-
mately 2 fm. This repulsion is due to the extreme tight-
ness of the 0. particles, which cannot overlap unless

quite high energies are spent to excite them. The total
efkctive cx—n potentials have stronger attraction and

weaker repulsion inside for larger /, the l dependence

resulting from the exchange potential. As pointed out by
Shimodaya et al. , this means weak angular correlation
between the exchange and nonexchange wave functions

because the overlap of the two n particles is small. Thus,
the effective potential V '(r) and a relative wave func-

tion XI(r), which is consistent with the Pauli principle,
are apparently consistent also with each other. LIn a
recent letter, Tamagaki and Tanaka (1965) discuss

the connection between the nodal behavior of the o.—a
scattering function and the hard core of the n-a inter-
action. $ Although the effective local a—4I potential has

nearly all the features demanded by phenomenological

analyses of the interaction, these features are only

qualitative, and it is not clear if the eQective n—o,

potential so obtained will give a satisfactory Qt to the
experimental phase shifts. Moreover, the choice of
parameters of yf(r), although appropriate for demon-

strating the relative diGerence between the l=0 and
l= 2 potentials, is presumably not very realistic. Thus,
within the framework of the approach of Shimodaya
eI, ul. , a somewhat more suitable procedure to derive the
equivalent local n—a potential V,g'" seems to be to
keep p and f as free parameters along with the nucleon-
nucleon force parameters and determine these by re-
quiring V,&'&' to reproduce the phase shifts. One
could perhaps employ a self-consistent procedure;
i.e., one would make a guess for Xf(r) and calculate the
exchange potentials, which in turn would be used to
calculate a fresh xf(r), and so on, until self-consistency
is attained for xf(r) and the exchange potentials. A
comparison of Xf(r) thus deterInined with the xf(r) of
Eq. (F14) would perhaps give a better understanding
of the interplay between the core of the O.-o. interaction
and the damping of the relative a—n motion.

0. RECENT OUTLOOKS AND DISCUSSIONS

Knowing the general theoretical features of the 0.—n
interaction, one may ask how best these features can be
included in constructing phenomenological n—o. po-
tentials which are of interest in the a-cluster models of
light nuclei and hypernuclei, etc. As is well known, one
can construct a number of phase-invariant potentials;
i.e., one may just assume an a—o. potential shape
(e.g., a square well or Gaussian shape) with a certain
number of free parameters in it and see if this potential
fits the phase shifts. The various potentials discussed in
the section on phenomenological a—o. potentials have in
fact been derived this way. Recently, Ali and Bodmer
(1966) adopted a somewhat different and more
satisfactory approach. They constructed acceptable
S-, D-, and G-wave potentials, adopting the philosophy
that a common attractive part of these potentials can
best be constructed from a consideration of the G-wave
phase shifts which are sensitive mainly to the attractive
part. Especially at low O.-n bombarding energies, the
large centrifugal barrier for the G wave masks the
inner repulsive part. For the nuclear part of the phase
shifts, the following superposition of repulsive and
attractive Gaussian shapes was used:

V f & (r) = VR exp (—pE'r') —VA exp ( fIA'r'), —
where (VE, off) and (VA, fIA) are the depths and in-
verse ranges of the repulsive and attractive parts,
respectively. (The advantage of using a Gaussian
shape is that a comparison with the theoretical ex-
pectations for the direct part may be made; the latter
becomes Gaussian in shape if, for convenience in cal-
culation, a Gaussian shape for the X—E interaction is
assumed. ) To investigate the effect of the centrifugal
barrier, only the attractive part was considered (i.e.,
VR=O) for the G wave. For a given fIA, V~ was varied
to give agreement to the experimental phases. It was
found possible to obtain two attractive parts Dabeled
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d4 and e4 by Ali and Bodmer (1966) with Vz=
130 MeV, p,g=0.475 fm ' and Vg=150 MeV, pg=
0.5 fm 'j which alone reproduced the phase shifts
reasonably well (see Fig. 6). Keeping these attractive
parts the same for /= 0 and /= 2, the repulsive part was
varied to obtain agreement with S- and D-wave phase
shifts. The best S-wave potentials, denoted by d&

and eo by Ali and Bodmer, were for V+=500 MeV,
@~=0.7 fm ' for d4 and Vg=1050 MeV, pal=0. 8 fm '
for e4, respectively. The phase shifts reproduced by
these potentials are shown in Fig. 7 and compared with
the experimental ones. The parameters of the best
D-wave potentials, denoted by ds and es (see Fig. 8,
where the D wave pha-se shifts are shown), are Vtt=
320 MeV, p,g=0.7 fm ' for d4 and Vg=640 MeV,
p& ——0.8 fm ' for e4, respectively. It was found that with
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FIG. 7. The k=0 phase shifts b0 as obtained by Ali and Bodmer.
(1966) as a function of the c.m. energy E for the potentials do
and eo of Ali and Bodmer (1966) (explained in Sec. 6). The
experimental values are shown with error bars except where the
errors fall within the circles. LFigure reproduced from Ali and
Bodmer (1966) by courtesy of Ngclear Physics 5.
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Fro. 6. The I=4 phase shifts 84 of Ali and Bodmer (1966) as a
function of the c.m. energy E for the purely attractive potentials
d4 and e4 as explained in Sec. 6 and for the potential d4 (10, 0.7).
The latter has the repulsive part Vg = 10 MeV, pg =0.7 fm ~ in
addition to the attractive part d4. The experimental values are
shown with error bars. I Figure reproduced from Ali and Bodmer
(1966) by courtesy of Nttolear Physics5.

The results obtained by Ali and Sodmer, besides
agreeing with the results of Darriulat et al (1965.),
have all the features of the analysis of Shimodaya et a/.
(1962); the potential is local but l dependent and is
weakened in going from l=0 to l=4, and an outer
attractive tail, independent of / exists.

A plot of the effective local n—u potentials ds, ds, d4

plus the corresponding centrifugal barriers for different
/ values is shown in Fig. 9. It is seen that with the
decrease of the / value, the size of the repulsive core of
the nuclear potential, as compared with the root-
rnean-square radius E (=1.44 fm) of the n particle,

attractive parts giving less satisfactory its to 84 than
d4 and e4, it was not possible to construct suitable
potentials, especially for the D wave. Only very small
repulsive parts are permissible for the G waves (per-
missible limits for the l=4 repulsive parts are Vg &10
MeV for pal=0. 7 frn ' for the attractive part d4 and
Vtr &10 MeV for tttt ——0.8 fm—' for e4) to yield phase
shifts consistent with the experimental ones, and d4

and e4, when plotted as functions of r, are quite similar.
These facts strongly indicate that the approach of Ali
and Bodmer uniquely determines the common at-
tractive part of /= 0, 2, and 4. One could always try to
determine a common attractive part for /=0 and 2 by
trial and error. However, since the results for 84,

especially at low energies, are expected to be most
sensitive to just the attractive tail of V (cV), it seemed
reasonable to try to determine this part by starting
with 84.
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FIG. 8. The It'=2 phase shifts 8& as obtained by Ali and Bodmer
(1966) as a function of the c.m. energy 8 for the potentials d
and e~ of Ali and Bodmer (explained also in Sec. 6). The experi-
mental values are shown with error bars except where the errors
fall within the circles. /Figure reproduced from Ali and Bodmer
(1966) by courtesy of Ngctear Physics. g
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Bodmer, in order to attach more significance to these
results, precision measurements of high-l (i.e., /=4 or
higher) phase shifts would be necessary.

Recently, interesting work has been reported by
Berm and Scharf (1967) in which they attacked the
inverse problem of constructing unique n-n phe-
nomenological potentials from the scattering phase
shifts. Using the Marchenko version of the fundamental
Gel'fand-Levital solution of the inverse problem in
scattering theory LMarchenko and Agranovich (1963),
Gel'fand and Levitan (1951), Faddeev (1963)$,
they constructed 5-, D-, and G-wave n-n potentials
which for consistency gave exactly the phases from
which they were constructed. The features of the n-n
interaction found from earlier phenomenological studies
were also present in their potentials, which claimed
quantitative certainty because of the way they were
determined. However, their G-wave potential, although
giving correct phase shifts, shows oscillations (Berm and
Scharf, (1967)] when plotted as a function of distance
and does not seem to be physically reasonable. A
tentative explanation given by Berm and Seharf for the
osci1lations was that in the energy region of 25—45
MeV, from which comes the main contribution to the
G phase shifts, not many consistent phase shifts exist.
Furthermore, the inelastic processes already open in
this region, and hence the use of the two-body potential
model becomes doubtful. Thus, for the determination
of the G-wave n—n potential, one seems to need to
restrict oneself to rather low laboratory bombarding
energies ( &24 MeV) as already emphasized by the
analysis of Ali and Bodmer (1966).

More recently, Payne, using the one-boson exchange
model of the E—S interaction which allows for the
coupling of o., co, and @ mesons to the nucleon, cal-
culated n—n scattering from threshold to 100 MeV
laboratory energy using both the Schrodinger equation
and the E/D equations. The phase shift in the X/D
approach is given by

(Cg"+') ' exp (ibt) sin bt ——Et(S)/Dt(S),

where

g is defined as before and q is the momenturo. . For
details about S, D see Payne or Scotti and Kong
(1965). Following Preist (1965), who also investi-
gated the contribution of meson exchange to the n—n
potential using only co and 0- mesons, Payne neglected
the exchange forces in the calculation of the n—n
potential. Payne observed that while the E/D equations
do not give very accurate results, an extension of the
earlier calculation of Preist with the Schrodinger-
equation solution enabled him to obtain the best
possible fit to the experimental data with g.'=2.66,

where vt(r) is the solution of the Schrodinger equation
with the ELP Ut(r);

(d'vt/dr')+ fk2 —Pl(l+1)/r'j}et ——Ut(r) et. (R1)

The relationship between Nt(r) and st(r) is given by

Nt(r) =gt(r)st(r) (R2)

with gt(r) „„=1.
A large number of ELP's satisfying Eq. (R2) may be

constructed, but Piedeldey has suggested a procedure
for constructing one which is without poles and is
smooth Igt(r))01. According to this procedure, one
obtains for a suitab1e ELP the expression

g„'=3.07, and ge'=2. 95. The values of the coupling
constants which fit the E E-data are found to be
g,'=3.05, g„'=2.77, go'= 2.26 LScotti and Wong
(i965)j. Since the one-boson exchange potential is a
nonrelativistie reduction of the field-theoretical po-
tential, and since there is some ambiguity in this
reduction, the discrepancies between the above sets of
parameters are not large. Payne, however, does not
find a good Qt to the D- and G-wave data, especially
below 10 and 30 MeV, respectively. The calculated
phase shifts are systematically larger than the ex-
perimental ones, indicating that some extra repulsion
is needed for these waves. Whether this repulsion could
be obtained by including exchange eGeets or, more
likely, a hard core in the E-S interaction is not clear.
A careful analysis in this direction would be illumi-

nating.
Thus, studies of the n-n interaction may not only

give a better understanding of the structures of 'Be and
other n-clustered nuclei, but may also provide informa-
tion about the fundamental forces between the con-
stituents of these nuclei. However, to fulfill the pur-
poses of such studies, one must understand in greater
detail the important features of the n—n interaction;
i.e., the appearance of "hard" or "quasi-hard. " core in
the interaction and the question of replacement of the
nonloeal n—n interaction by an equivalent local one.
LThe equivalent local potential as dehned by Eq.
(F13) is a rather trivially equivalent one; it has poles
whenever xt(r) is zero. g Recently, Fiedeldey (196/)
has given a general prescription for the construction of
equivalent local potentials (ELP) which may be
applied with profit to the n—n problem. Fiedeldey
proposed that in order to define an ELP without
poles one may relax the requirement that the equivalent
local wave function equals the nonlocal wave function
everywhere and assume that

Nt(r) „„-+zt(r),
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with

and n&, p& delned by the equations

n, (r, r') = v&'(r) &o&(r') —v~(r') or~'(r),

pt(r, r') =~~(r) v~(r') —v&(r)co~(r'); (R3)

v&(r) and cog(r) are, respectively, the regular and
irregular solutions of Eq. (R1) with the Wronskian

vg'(r) a)&(r) —(u&'(r) v&(r) =1.

Thus, one could use initial approximations for U&&'& (r),
gP&(r), solve Eq. (R1) to get v&&'& and co&&'&, calculate
0.&~'&(r, r')p~&'&(r, r') from Eqs. (R3) and use these
a~, P~ in calculating NP&. This U&o& could then be used
as an input in (R1), and the whole procedure repeated.
This iterative scheme could be carried on until self-
consistency is attained for U&(r) and g&(r). The ELP
thus obtained could be used to calculate the phase
shifts 8&, and by comparison of these phase shifts with
those given by the nonlocal potential, the adequacy
of the above procedure could be tested. One may
wonder if one can do without an effective o,—o, po-
tential, in view of the fact that the phase shifts can be
obtained directly by solving an integrodiGerential
equation (F9) without using such an n—n potential.
This may be true for the 0;n system but for problems
involving o. clusters, other than o.—a scattering, in-
corporation of the interaction terms in the form of an
effective n—n potential is indispensable; the use of the
theoretically obtained o.—n interaction in these systems
would be too complicated. Recently, Clark and Wang
(1966) dealt with the theory of n matter, in which
the importance of applying effective n—n potentials
also becomes evident.

Some of the features of the effective local o.—0. po-
tentials which seem to need further study are its energy
dependence, the contribution of polarization forces to
it, and the dependence of its repuulsive part on the
hard core of the N—N interaction. 4 Regarding the
erst aspect, the phenomenological analyses and the
fundamental studies of the 0,—n interaction present two
rather different situations. The phenomenological
analyses admit an l-dependent (indicating only
implicit energy 'dependence through the connection
of / with energy for a given impact parameter) but
energy-independent potential, whereas the theoreti-
cally derived o.—a potential is both / dependent and ex-
plicitly dependent on the relative o. nenergy—. It has
been pointed out by Okai and Park (1966) and also by
Abe eI, ul. at the 1967 Tokyo Conference that the
nodal behavior of the relative 0.—cx wave function is
almost energy independent. Thus, there are indications

that the explicit energy dependence of the n—n inter-
action is perhaps not very serious, and one may just
take l dependence as the simplest type of permissible
velocity dependence. However, further work in this
direction would be stimulating.

It is important to note that in order to get informa-
tion about the direct part of the N-N interaction from
the phenomenological tail of the 0;0. potential, it is
necessary to assume that this tail can be identified
with the tail of the direct part of V &~& arising from
nlclear forces. This assumption is strictly justified only
if the latter tail is not complicated by polarization
forces; i.e., if polarization forces are suf6ciently small
in the region of the tail. It may be argued on general
grounds that because of the extreme rigidity of the n
particles, the polarization forces are expected to be
small. In fact, the calculations of Herzenberg and
Roberts (1957) for the polarization forces (V„&)
indicate that, at least at low energies, V„i is small
in the region of the tail of V &~'. Their calculations
were based on central N-N interactions, whereas the
most important long-range contribution to V„,i is
expected to come from the strong and long-range
tensor component of the one-pion exchange potential.
Nevertheless, they did make some estimates for a
Yukawa interaction with a range of p '. For the
nucleon-nucleus case, Dr ell (1955) estimated the
contribution to V~, i from a one-pion exchange tensor
forces and showed it to be small. However, although
the polarization forces do not seem to obscure the tail
of V &~&, detailed and more realistic calculations of the
former would be useful in making the role of the direct
part as a possible probe into the N—N interaction more
significant.

An important study would be the relation between
the hard core of the N-N interaction and the repulsion
in the n—n interaction. There is repulsion in the latter
at short distance which, in the resonating-group
approach, is due to the nonlocal term E&(r, r') which
originates from the Pauli principle. Since this repulsion
is not strong enough to be replaced by a hard-core
phenomenological n—o. potential, and since the phase
shifts calculated with the fundamental o.—n interaction
are above the experimental ones, a need to increase the
effective repulsion in the n—n interaction is justihed;
it seems that the required extra repulsion could be
obtained by explicitly invoking a hard core in the
N—N interaction. Studies in this direction are expected
to throw considerable light on the repulsive character
of the 0.—n interaction. All of the fundamental studies
made so far have used a local X—N interaction, whereas
the recent developments in the nuclear-matter problem
(such as described by Bethe at the Nuclear Structure
Conference in Tokyo in September 1967) suggest the
necessity that the N—Ã interaction be nonlocal. It
would be of considerable interest to see the effect of the
nonlocality of the X-N interaction on the effective
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two-body o,—n interaction. It is expected that the kernel
Et(r, r') and, hence, the phase-shift calculations,
would now be tediously complicated by the introduction
of a hard core in the E—E interaction as well as by
nonlocality of the latter; thus, proper numerical
procedures may have to be sought.

The phase-shift calculations, within the framework
of the resonating-group method, have been made for
various partial waves at high energies (through the
excitation energy of 40 MeV) and good comparisons
have been observed with the real part of the eocperi

trterttal phase shifts* (which are necessarily complex,
because the lowest reaction threshold is at E=34.73
MeV for 'He+'He —+rLi+P) . However, the inter-
action used was purely real; it was derived under
assumptions (e.g. , no-polarization approximation for
the n particle) which are valid only at low energies
when the scattering is entirely elastic. (The opening
of inelastic and reaction channels not only introduces
imaginary parts of the phase shifts but also affects the
real parts of the phase shifts for the entrance channel. )
Thus, such comparisons are not strictly justified, and
at these high energies the phase shifts must be regarded
as an indication only. A more complete theory would
have to consider a multichannel form. ulation of the
collision problem in the cluster-model approximation.

Abe, Endo, and Tamagaki (1967) have recently
reported their study of the high-energy behavior of the
repulsive core at 915 MeV. Using two-nucleon ampli-
tudes in the impulse approximation, they con-
structed the cz-cz potential V „(r)= —(120+i150)
exp (—0.387 r') consistent with the elastic data at this
energy. It is seen that the repulsive core, which mani-
fests itself as a hard internal structure of the composite
system at low energies, disappears and becomes ab-
sorptive at high energies.

The fundamental studies of the 0.—o. interaction may
serve as a useful basis for understanding interactions
between other complex nuclei. Recently, considerable
interest has developed in nucleus —nucleus scattering
[Block and Malik (1967)]where one also speaks of an
eGective nucleus —nucleus interaction. In cases where
these nuclei have a cluster structure (e.g., "C—"C or
"0—"0 scattering), the same resonating-group form-
alism which is applied to the a—a problem may be
used, although the numerical complications in such
cases would be considerably larger. However, the
basis features of the interactions between these rela-
tively complex nuclei are expected to be essentially
the same as those observed in the case of a system of
two spinless, tight o. particles. Thus, a deeper under-
standing of the properties of the interaction between
two a clusters is expected to shed considerable light
on the structure of many of the light nuclei.

*The same observation has also been made by Ali and Bod,mer
with the use of purely real phenomenological n-a potentials.
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APPENDIX I: METHOD OF PHASE-
SHIFT ANALYSIS

Starting with the two-body Schrodinger equation for
the n-n system and following the usual partial-wave
analysis, one obtains for the scattering amplitude the
expression

f(0) = (2ik) ' g (2l+1) [exp (2ibt) —1]Pt(cos 8).
L=O

Because of the symmetric nature of the n—n wave
function, the components of the scattering amplitude
with odd l make no contribution, while the components
with even l are doubled. Thus,

f(8) = —g (2t+1) [exp(2i0t) —1]Pt(cos 8) . (AI.1)
l even

When the Coulomb interaction is taken into consider-
ation, the differential cross section for scattering is
given by

with

where

d~/did=
I f(0) I',

f(0) =fos(0)+f»(0)

fos(0) =f (0)+f (~ 0)—

(AI.2)

and

f, (8) = . , exp [—irt log (sin' —,'8) +2ioe]
2k sin' —'0

q being defined in the text.
The phase-shift analysis may be done in two ways.

one is the graphical method which was first employed
by Wheeler (1941) for analyzing the early scattering
experiments of Mohr and Pringle (1937) and of
Devons (1939).

fNs(0) = (ik) ' g (21+1)(exp (2i0t) —1]
l even

&& [exp (2io t) ]Et(cos 8); (AI.3)

fNs(0) and fos(8) denote the nuclear and the Coulomb
part, respectively, of the scattering amplitude. The
Coulomb phase shift of rank l is dehned by

o t arg I'(I+——1+irt),



272 Rzvrzws oz MonzRN PHYsIcs JANUARY 1969

In this method it is instructive to express the differ- solutions of (AII.1) in the region r&R are then
ential cross section o (0) in the form

o, (8)3Pe' It'
=csc'0 exp (—iq log. sin'8)

s'e'

+secs 8 exp (—ist log. cos' e) + (2s/rt) g (2l+1)
l even

XPI(cos e) fexp L2s(ot —o-s)7ILexp (2@I 1—)7 (AI.4)

in an obvious notation. A solution of Eq. (AI.4)
for 8& is sought by treating each term as a vector in the
complex plane. This equation will usually be satisfied
by more than one set of 8&. When the number of partial
waves to be included become large, the graphical
method becomes rather laborious and one seeks a
second method of doing the analysis, i.e., by an itera-
tive procedure using a computer.

There are several slightly diGerent versions of the
second method. We sketch one which has been used by
Darriulat, Igo, Pugh, and Holmgren (1965). An
initial set (8I, 0) is chosen. For this set, the calculation
of ys (chi squared) defined by

LX;(expt) —X,(theor) 7'

/AX (expt) 7'+ f 58 PdX;(expt)/IN 7}'
is made. In (AI.S), X;= (do/dQ) (0;, E), hX; being the
uncertainty in the measured value of X; and 68;
the uncertainty in the angle at which X; is measured.
The theoretical cross section is calculated by using
formulas (AI.2) and (AI.3) . A new set of values for the
b~ is chosen, using the recursion formulas

~ x''I ~x''I' "'
~l,7b+1 ~ l,n M~)„~ M~j

where B is a suitable steplength 6xed beforehand. The
procedure is continued in iteration until x„+q'&g„',
when the required solution for the 8& is assumed to
have been obtained.

APPENDIX II: PHASE-SHIFT CALCULATIONS

The radial part of the Schrodinger equation for two
e particles may be written

k' —U(r) —,ft(r) =0, (AII.1)
l l 1

where ks=2tsE/fP, tt being the reduced mass of the
two cr particles, E their relative energy, and U(r) =
(2tt/its) V (r). Beyond some large enough distance R,
the nuclear part of the complete cr-cr potential V, (r)
becomes negligible and the Coulomb part dominates.
The required solutions of (AII.1) are those which
vanish at the origin and behave asymptotically as an
incoming Coulomb distorted plane wave plus outgoing
Coulomb plus nuclear distorted spherical wave. The

tft (k, r) 7„pz——exp fi(bt+tr I) 7/k

X icos BIF t(k, r) +sin btGt (k, r) 7, (AII.2)

the notations being the same as used earlier.
The solutions for r(R are generated as follows: As a

starting value (near the origin or the hard core)
ft(k, r) is taken to behave like r'+'. Using this starting
value, (AII.1) is integrated numerically, using standard
procedures, out to r=R. The solutions generated in
this way are multiples of the solutions we require,
i.e., ft ctf——t, and hence the phase shift bt is independent
of c&. One readily obtains

kFt'(k, r) —F(k, r) L(k, r)
tan bt —— ' ', ', AII.3

Gt(k, r) L(k, r) —kGI'(k, r)

where the prime denotes differentiation with respect to
p(=kr), and L=ft'/ft is the log derivative of the
function ft at the joining radius r=E.

In deriving (AII.3), use is made of the property of
continuity of the wave function and its log derivative
at r=R. For given values of the parameters p(at
r=R) and rt, the Coulomb wave functions and their
derivatives F~, Gg, Jig' and Gg' may be calculated
numerically by using, e.g., the series expansion method
of Froberg (1955). The conditions for the series ex-
pansions to be valid are yp&50, p&10. Tables of
Abramowitz (1952) and of Tubis (1957) Inay be
useful; see also Bloch (1951).
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