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A systematic survey of the subject of the a~a interaction is made. The early observations of « emission and resulting
theoretical descriptions, especially the a-particle model of nuclei, are described, as are more recent a—a scattering
experiments. The latter were designed to obtain information about the nature of the a—e interaction and about the
energy levels of 8Be by studying the resonance behavior of the phase shifts. The phenomenological approach, i.e., the
attempt to construct the a—a potential which reproduces the experimental phase shifts, is described as are
detailed theoretical constructions of the repulsive inner part and attactive outer part of the a—o interaction. Studies
of how the a—« interaction provides better understanding of the structure of e-clustered nuclei and also of the fundamental
forces between the constituents of these nuclei are discussed. Suggestions for the direction of further efforts are made.
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1. INTRODUCTION

Even early reviews of the a-particle model (aPM) of
nuclei [ (Rosenfeld (1948), Dennison (1954), Glassgold
and Galonsky (1956) ] recognized the importance of the
a—a interaction. These reviews described the qualitative
features of the oPM, but these features had to wait
until the middle of the last decade to be verified by
scattering experiments which had a direct bearing on the
a—a interaction.

Recently, considerable interest has been shown in the
cluster model of nuclei and hypernuclei. Such a model
often involves two or more a’s, and one needs to use an
a—a potential that is in accord with fundamental studies
and scattering results and, at the same time, can be
handled with mathematical convenience in the problem.
It thus seems very useful to make a systematic survey
of the subject of the a—a interaction. To this end, we
shall follow the historical development in this field.
Some of the earlier scattering results and their inter-
pretation are incorrect, and are only included for
completeness. The entire subject of the a—« interaction
occupies so important a role in the nuclear structural
problems that we feel the gradual development of the
subject is well worth following. Although the emphasis
of this paper is on the two-body o« interaction and not
on the aPM, we begin with a brief review of the latter.
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With the discovery of radioactivity by Becquerel and
the Curies in 1896-1898, the « particle was discovered.
Subsequently, some of its properties were studied by
Rutherford and his collaborators [Rutherford and
Geiger (1908), Rutherford and Royds (1909)7], who
found that the « rays are positively charged (each «
particle carrying two units of electronic charge) and are
nothing but “He nuclei. Some other important properties
of the « particle are

(1) Ithas an intrinsic spin and parity of 0+ and thus
obeys Bose-Einstein statistics; the wave function
describing two « particles must remain symmetric with
respect to exchange of particles.

(2) It has a radius of ~1.44 fm.

(3) It is a tightly bound system with a binding
energy of 28 MeV.

The oPM, which takes into account the above
features, originated from the « emission of nuclei.

2. THEORY OF o EMISSION

The Coulomb force increases with size as the square
of the charge number Z2, but the nuclear binding in-
creases approximately as the mass number 4. Thus, the
Coulomb repulsion dominates in heavy nuclei, causing
a emission. Geiger and Nuttal (1911, 1912) established
the rule that the o emitters with large disintegration
energies have short half-lives, and conversely. Quantum
mechanics found one of its first applications in the hands
of Gamow (1928) and of Condon and Gurney (1928,
1929) in explaining this rule. This theory assumes that
the « particle is preformed inside the parent nucleus and
moves in a spherical well determined by the daughter
nucleus. Assuming the spherical potential V' (7) between
the o particle and the daughter nucleus, shown sche-
matically in Fig. 1, the penetration probability P of an
a particle of energy E meeting a barrier provided by the
spherical region ¢<r<b is given by

P= exp {— %j;b {2M[V(r)—E]}”2dr} .
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Fic. 1. V(r) denotes the potential energy between a daughter
nucleus (i.e., the parent nucleus minus one alpha particle) and
an alpha-particle system and goes to zero when 7, the distance
between the two bodies, is very large. E denotes the disintegration
energy.

Large E means a short life; the Geiger-Nuttal rule is
explained. However, this success is rather misleading.
Although certain nuclei emit « particle and this emission
can be explained by quantum mechanics, there is not
much other evidence to support the «PM. It was re-
placed by the subsequently developed #—p model of
nuclei [Chadwick (1932)]. The study of nuclear
reactions has shown that neutrons and protons are also
emitted from some heavy nuclei in highly excited states.
An improved understanding of the nuclear forces tells
us that the o particle cannot remain in the nucleus for
a long time and still keep its identity. In a modified
version, the o particles exist as stable units only for a
short time [ Wefelmeiser (1937a, 1937b), von Weizsicker
(1938), Fano (1937), Wheeler (1937b)]; they then
break up into their constituents, which again rearrange
themselves into new a-particle structures. This version
still owes its origin to the exceptional stability of the «
particle. Wheeler (1937b) pointed out that for the «PM
to hold, the frequency of vibration of the a particle
should be greater than the frequency of nuclear ex-
change, but calculations of Gronblom and Marshak
(1939) and of Margenau (1941) show that these two
frequencies are comparable. In support of the aPM,
90% of the binding energy of the light nuclei comes
from the constituents of « particles and 109, from the
classical bond between a particles. Also, nuclei having
nucleons besides « particles give a rather small binding
energy and increase slowly until another « particle is
formed. (Elements between ‘He and #Be show this
trend.) However, the «PM cannot explain the binding
energy of heavier nuclei having an odd nucleon which
plays a more important role. The model was aptly
defended by Herzenberg (1955), whose points will be
discussed in dealing with the mechanism of the a—a
interaction.

Like all other two-body interactions, the a—a interac-
tion has been studied both from phenomenological and

fundamental points of view. These two approaches
meet, as usual, on the common ground of the “phase
shift.” Before we focus on this ground, we present some
of the factors leading to the recent o-a scattering
experiments.

3. a—a SCATTERING
A. Review of the Earlier a—a Scattering Results

The first a-a scattering was performed when
Rutherford and Chadwick (1927) investigated the
scattering of « particles from He nuclei. Up to 1939, the
only sources available for « scattering were natural «
emitters, e.g., radium, thorium, and polonium. The
succeeding development of the cyclotron, Van der
Graaff, and other high-energy accelerators has provided
a particles with higher, more controlled bombarding
energies. One can broadly divide the whole range of a-a
scattering experiments into two periods: (1) 1927-1939,
when the natural emitters were used as sources, and
(2) 1940 onwards, when the accelerators were used for
the source beam.

The a—a scattering experiments performed during the
period 1927-1939 were all based on the “annular-ring
method.” A small chamber with an annular-ring
scattering volume was used. Gas pressures were high
compared with those now used. The energies of the a
particles emitted from the radioactive nuclei at the
scattering volume were determined by range measure-
ments. The scattering of « particles from He nuclei was
investigated as a function of energy by slowing down
natural o particles with absorbers. The measurements
were crude; the intensity of the beam was rather low
and spreads in energy and angle were rather large.

Some of the basic ideas behind the a—a scattering
experiments originated from Chadwick and Bieler
(1921), who investigated the scattering of a particles
from hydrogen nuclei. They attempted an explanation
of this scattering in terms of the Coulomb field between
the two particles. However, at close collision distances
(<4 fm) the force between the two particles increased
much more rapidly with decrease of distance than could
be accounted for by the inverse square law of force.
Chadwick and Bieler interpreted the divergence from
the classical Coulomb scattering as follows: A point-
charge structure was assumed for the H nucleus and, as
a first approximation, an elastic oblate spheroid of
semiaxes about 8 and 4 fm moving in the direction of the
minor axes was assumed for the a particle. An H nucleus
projected towards such an « particle would move under
the ordinary Coulomb electrostatic forces until it
reached a spheroidal surface of the above dimensions.
Then it would experience a powerful field of force and
recoil as from a hard elastic body. This model agreed
only roughly with the experimental observations; a
close comparison could not be made because of the
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difficulty in calculating the collision relations for an
oblate spheroid.

The collision of « particles with He nuclei could give
further information of the force field in the immediate
neighborhood of the He nucleus. Since both particles
have the same structure, there would be no need to
assume a structure for one to deduce that of the other.

In view of these considerations, Rutherford and
Chadwick (1927) performed an experiment to scatter
o particles off He nuclei. The results showed that the
collision relations for these particles were similar to those
holding for a-hydrogen scattering. They observed that
at large distances of collision the force between the
particles was given by Coulomb’s law, but there was an
indication of a departure from Coulomb’s law at closer
distances. This departure was attributed to the structure
of the particles; Rutherford and Chadwick (1927)
tentatively explained it by invoking some strong
additional forces which increased much more rapidly
with distance than an ordinary inverse square Coulomb
field.

At the same time, some thought was given to the
adequacy of the description of this phenomenon in
terms of the old mechanics; the new mechanics had
already been established. Oppenheimer (1927) and later
Gordon (1928) showed that the scattering of particles
by an inverse square field is the same in the new
mechanics as in the classical theory. Mott (1930)
showed that this is not necessarily true for two identical
particles, since the wave functions used must be anti-
symmetrical or symmetrical in the coordinates of the
two particles, and thus the scattering laws may very
well be affected. According to Mott’s theory, the
formula giving the number of & particles scattered from
He nuclei into a given solid angle dQ(6, ¢) will be

2 2) 4
dI= ( i) I:csc“ 6+ csct (37—0)
mivt
14 cos 20)
2 csc2 0 cse2 (Lr— - ==
+2 csc?6 csc? (37 0)2<nlog T cos 20 ]
X2 sin 0d8dp,

where 7= (2¢)%/hv=(4/137) (¢/v), v is the relative
velocity of the two a’s, 6 is the angle through which the
line joining the o’s is deflected, and ¢ is the azimuthal
angle. The ratio of quantum-theoryscattering toclassical
scattering is thus seen to have a maximum value of 2 at
45° for all velocities of the a particles. Mott also
predicted some maxima and minima in the scattering
cross section. Unfortunately, in the experiments of
Rutherford and Chadwick, these are masked by the
structure effect. To show them, the « particles would
have to be so slow that the structure effect would be
negligible.

Chadwick (1930) was the first experimentalist to
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verify the validity of Mott’s predictions by doing an
a scattering experiment in He at very low energies
(=~1MeV). Here the experimental results approach
the value of twice the classical scattering as the energy
of incident « particles decreases, i.e., the results
approach more and more closely to quantum-theory
scattering. Chadwick found, by comparing the amount
of scattering observed in the collision experiments, that
the forces between the particles vary little from Coulomb
forces. Thus, the deviation from classical scattering
could not be ascribed to a divergence from Coulomb
forces; it was then attributed to a failure of the classical
theory. This was indeed borne out by Blackett and
Champion (1931), who performed an « scattering
experiment in a Wilson cloud chamber and found the
minimum in the scattering cross section at about 25°,
in excellent agreement with Mott’s theory. However,
there were indications of deviations from Mott’s theory,
and experiments were carried out later by Wright
(1932), Mohr and Pringle (1937), and Devons (1939)
to study these deviations. An explanation was also
sought in terms of the effects of nuclear forces, a more
definite nomenclature for the so-called additional
forces. By this time, the idea of the nucleus being com-
posed of neutrons and protons was gaining ground, and
the concept of the nuclear force (responsible for keeping
the neutrons and protons together in the nucleus) was
introduced. It was reasonable, therefore, to assume that
this nuclear force would provide a nuclear potential
between the a particles, and thus the a-a scattering
should be governed not only by the Coulomb forces but
also by the nuclear forces. One would then expect that
the effect of the nuclear forces would be to cause a
change in the phase of the initial wave describing the
incident « particles. This phase change, usually called
the phase shift and denoted by 8, was seen to contain
all the essential information about the nuclear potential.
Phase-shift measurements thus became the main con-
cern of the later experiments.

B. More Recent a—« Scattering Results

The purposes of the a-a scattering experiments have
been, first, to get information about the nature of the a-a
interaction, and second, to investigate the energy levels
of 8Be by studying the resonance behavior of the phase
shifts. 8Be, which is unstable and dissolves into two «
particles, provides a typical and interesting example of
a system of two « particles. It is expected that the low-
lying states of this sytem are determined fairly well by
only the relative motion of the « particles because of
their extreme tightness. Information on the levels of
8Be can also be obtained from a number of nuclear
reactions. A schematic diagram of the energy levels of
8Be is shown in Fig. 2. The position of the ground state
has been altered slightly by a recent reliable measure-
ment (discussed later in this paper).
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It is of interest to see if the resonances in a—a scatter-
ing are observed at the energies corresponding to the
low-energy states of 8Be. The usual procedure in this
connection is to make a partial-wave analysis of the
phase shifts §; for a given partial wave with angular
momentum /. Because of the simplifying features
of the a particles (namely the zero spin and the
high internal binding energy), the phase shifts are
reduced to a minimum, and one can analyze the
scattering in terms of only real phase shifts up to a
laboratory bombarding energy of 35 MeV. Appendix I
gives the usual method of phase-shift analysis as
employed by the experimentalists.

We shall present the a—a scattering results energywise,
although this will disturb the chronological order a bit.
Table I shows the list of experiments to date and the
energy ranges covered.

The first postwar experiment was done by Cowie,
Heydenburg, Temmer, and Little (1952) at the
Department of Terrestrial Magnetism, Carnegie In-
stitution of Washington (the data obtained at this

institute on oo scattering will be called DTM data),
who measured the differential cross section for «
scattering in helium in the energy range of 400 to 950
keV (lab) over the angular range of 10° to 45° (lab).
They found that at an energy of 850 keV the deviations
from Mott scattering amounted to as much as 8%.

A more complete account of a-a scattering in the
low-energy region was given by Heydenberg and
Temmer (1956), who covered the region from 150 keV
to 3 MeV (lab) between laboratory angles of 10° and
80°. By doing these experiments they wanted, first, to
verify the Mott formula in detail in the energy region
where there was no nuclear effect; second, to explain and
explore the region of the ground state of 8Be; and
finally, to study the 3-MeV level of ®Be. Table II shows
their S- and D-wave phase shifts. Below 400 keV, the
nuclear interaction was not found to play an important
role, and Mott’s formula for Coulomb scattering was
verified in detail. (The method of verification of Mott’s
formula consists in observing the departure of the ratio
of the actual cross section to the theoretical Mott cross
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TasLE I. A list of the postwar experiments on the scattering of alpha particles in helium.

Energy range Angles of observation
in lab system of scattering in lab
(MeV) Source of particles system References
0.15-3.0 Van der Graaff (D.T.M., Washington) 10°-80° Heydenberg and Temmer (1956)
3.0-6.0 Van der Graaff (Rice) 15°-45° Russell, Phillips, and Reich (1956)
4.0-12.0 Tandem (O.N.R., Caltech) 15°-45° Tombrello and Senhouse (1963)
5.0-9.0 Van der Graaff (Rice) 15;}56.5’ ,127°22’ and Jones, Phillips, and Miller (1960)
°3.5
6.4-7.8 Cyclotron (Yale) 7°30/-45° Berk, Steigert, and Salinger (1960)
Cyclotron (Yale) 10°-45° Dunning, Smith, and Steigert (1961)
10-20 Tandem (Heidelberg) For each bombarding Werner and Zimmerer (1964)
energy, data were taken
at 11 pairs of angles
(right-left)
12.3-22.9 Cyclotron (Illinois) 10°307-45° Nilson, Jentschke, Briggs, Kerman,
and Snyder (1958)
12.9-21.6 Cyclotron (Indiana) 15°-45° Steigert and Sampson (1953)
20, 20.4 Cyclotron (St. Louis) 7°-60° Mather (1951)
Cyclotron (St. Louis) 30° and 45° Braden, Carter, and Ford (1951)
23-38 Cyclotron (Birmingham) 15°-45° Bredin, Burcham, Evans, Gibson,
1(\/185ng, Prowse, Rotblat, and Snyder
1959
23-51 Cyclotron (88", Berkeley) 15.32°, 27.75°, 45° Shield, Conzett, Darriulat, Pugh, and
Slobodrian (1964)
0-45°
30 Cyclotron (M.I.T.) 45°-90° Graves (1952)
270°-360°
33.5-35.5 Cyclotron (INSU, Tokyo) 15°-45° Chiba, Conzett, Morinaga, Mutsuro,
Shoda, and Kimura (1961)
38.5 Cyclotron (Birmingham) 15°-45° B(urgc?lajm, Gibson, Prowse, and Rotblat
1
37-47 Cyclotron (60" and 80", Berkeley) 7°30"-45° Conzett, Igo, Shaw, and Slobodrian
1960
Conzett, Slobodrian, Yamabe, and
Shield (1964)
Conzett, Shield, Slobodrian, and
Yamabe (1964)
51 Cyclotron (IKO, Amsterdam) 7°30’-50° Van é\glftrik, Brockman, and Van Oers
1
53-120 Cyclotron (88", Berkeley) 5°-45° Darriulat, Igo, Pugh, and Holmgren

(1965)

section from unity as a function of energy.) Above
400 keV, nuclear interactions come into play; &
decreases from approximately 180° at 400 keV to about
120° at 3 MeV. The D-wave phase shift does not appear
below 2 MeV and reaches the value of 2.5° at 3 MeV.
These results agree with those of the Rice Institute
(presented below) at the 3-MeV point of overlap.

Hydenberg and Temmer also gave some estimates for
the width Ty of the ground state and its lifetime 7,
namely T,<3.5 eV and 72X 107 sec; these were
calculated by a method described in the Appendix of the
Heydenberg and Temmer paper. Previous estimates
were 7X2X10sec and 7<4X10-¥sec [Crussard,
(1950), Hodgson (1952), Treacy (1955) ]. Thus, it was
inferred that 2X 10~ sec<7<4X 107 sec. These esti-
mates have been changed by the results of more reliable
experiments.

At about the same time, Russell, Phillips, and Reich
(1956) performed a—a scattering experiments in the
Rice Institute for laboratory bombarding energies of 3
to 6 MeV at lab angles of 15°, 17.5°, 20°, 27°22’, and
35°3.5". [An angle of 27°22’ corresponds to a zero of the

second-order Legendre polynomial P,(cos@).] Their
phase-shifts plot is reproduced in Fig. 3. Their 27°22’
curve was found to be a monotonic function of bombard-
ing energy; but the variations in the other excitation
functions led Russell et al. to assign a J(spin) value of
2% for the 2.9-MeV state. . :

The single-level dispersion theory of Wigner and
Eisenbud (1947) was applied to this state, and the
level parameters of the state were obtained by fitting
the D-wave resonance. To sketch the method of ex-
tracting the level parameters only very briefly, the
nuclear phase shift §; is expressed in the dispersion
theory as §;=08,,r— ®; where, following the notations of
Jones, Phillips, and Miller (1960),

&®;= tan™! [F;/G,],-xz=hard-sphere phase shift
and ‘

e= tan™! [31\ i/ (Ext-Au—Eem.) J;

F;, G; are the regular and irregular Columb wave
functions and E.wn. and % are the energy in the c.m.
system and the wavenumber (2uE/72)/2 respectively;
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TasLE II. The experimental a—o: scattering phase shifts in the
energy range 0-23 MeV (lab) [Heydenberg and Temmer (1956,
Tombrello and Senhouse (1963), Nilson, Jentschke, Briggs,
Kerman, and Snyder (1958) ]. All phase shifts are in degrees.

Phase shifts

Energy do 8 LN -3

0.400 0-£0.5

0.600 17841

0.850 17541

0.950 17341

1.00 17141

1.50 15941

2.00 1481 0.0+0.1

2.50 137.5+1 1.0:£0.2

3.00 128.4+1 2.5+0.3

3.84 114.1+1 7.5+1 —0.1

5.26 96.6+2 37.5+2 0.2

6.47 79.542 80.8+2 —0.1

6.96 75.943 92.7+£3 —0.1

7.47 71.4+4 102.1£4 0

7.88 68.0-+4 107.5+4 0

8.87 59.4+4 113.8+3 0

9.88 51.6+4 115,242 0+1
10.88 45.64+4 116.3+2 0+1
11.88 41.04-4 114,942 041
12.3 2944 [ 10348 3.0+1.5
15.2 1144 11008 5.242
17. 742 10444 24.142 0
20.4 —1.6+2 97.5+4 27.742 0.54
21.65 —8.8+2 94,742 41.842 0.13
21.8 —6.942 94,842 [47.0+2 1.03
22.25 —10.2+2 93.342 [48.142 0.09
22.81 —9.442 91.742 56.44-2 1.07
22.9 —10.742 94.0£2 £59.2+2 1.09

E); is the constant expansion parameter. The c.m.
reduced width v,2 and the c.m. laboratory width T ,; are
related by

3Tu= (¥ 4?) =iz,

where
Ar=F7+G7
and
M= —1g1+1) p—ir;
and

g1=p[Fi 1 (8F/dp) — Ai2(G1/F1) Jomir;

R is the nuclear radius. The resonance energy E: is
defined as that at which 8, z=2r. Values of excitation
energy, reduced width, etc., are then obtained (for a
given hard-sphere radius) by fitting the phase shifts to
the above dispersion-theory formulas.

The level parameters for the D state as obtained by
Russell, Phillips, and Reich (1956) are shown in Table
III, where the level parameters obtained by other
authors for the various states are also shown. These
widths seem consistent with a two-body model of Be.
Russell et al. applied the Landau K-function formalism
to get the width of the ground state of #Be. The Landau
K function for S-wave scattering of charged particles is
defined by

K=[r cot 8/ (e¢™—1) ]+ k(n), (E1)

where &, is the S-wave phase shift and 5 the energy

parameter 4¢2/7iv. The function %(y) is given by
h(n) =»? Z [n(n2+72) T2— In p—0.5772;
n=1

K may be expanded in the effective-range approxima-
tion as

K= (29k)(— a4 3rok2— Prki~+QrokS- - +)

= A+ BE;+CE>+ DEj3. (E2)

The parameters @, 7y, P, Q may be determined by fitting
(E1) by (E2), using a standard least-squares program.
The width in the c.m. system is calculated from the
expression

dh dK
Pc.m.= EM—1) | — — .
4 / [( ) (dEL dEL)]EL=En(lab) (ES)

Note that at resonance (§=32r), K=£h(n). Russell,
Phillips, and Reich (1956) obtained a value of
4.5+3 eV for the width of the ground state.

Analysis of the experiment by Dunning, Smith, and
Steigert (1961) at lab energies of 6.43, 6.84, and 7.78
MeV gave the values of the phase shifts as §=82.5°,
0:=77.5°; 8, =80°, 0,=82% and &=70° &,=104°,
respectively. The S-wave phase shifts are in excellent
agreement with those to be discussed below of Jones,
Phillips, and Miller (1960) and Berk, Steigert, and
Salinger (1960), but their D-wave phase shifts are
somewhat smaller. However, this is not very significant
because the cross section is rather insensitive to the
D-wave phase shift near this energy region.

Berk, Steigert, and Salinger (1960) attempted to fill
in the gap between the 6-MeV: Rice data and the
Illinois data above 12 MeV byydoing a scattering
experiment at 7.56 MeV, and obtained &=70° and

IOE(LAB) MEV

15 20 T 6,

F16. 3. a-a scattering phase shifts below 24 MeV showing the
DTM [Heydenberg and Temmer (1956)7], the Rice Institute
[Russell, Phillips, and Reich (1956) 7, and the Illinois [Nilson,
Jentschke, Briggs, Kerman, and Snyder (1958)] dafa. The
smooth curves have been drawn arbitrarily through the data
points. [Figure reproduced from Russell ez af. (1956) by courtesy
of The Physical Review.]
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TaBLE III. Level parameters as used by various authors for the D, G and other excited states of #Be. These parameters were ob-
tained by fitting the a—a scattering resonances with the single-level dispersion relation. The term 6:2 is the ratio of the reduced width
to the Wigner limit 3%%/2uR?, as given by the first sum rule of Wigner and Treichman (1952). For the comparison of the experimental
phase shifts to those obtained with the use of parameters, see the references shown against each set of parameters. (The general feature
of the dispersion-theory fits is that a larger radius gives a fit on the low-energy side of the resonance while, for the smaller radii, the

fit on the high-energy side improves.

Excitation Reduced
energy® width
Nuclear Eoxo .2
l radius R(fm) (MeV,cm.) (MeV,cm.) 0.2 References
2 5.0 2.9 0.9 0.7 Russell, Phillips, and Reich (1956) ; Nilson,
Jentschke, Briggs, Kerman, and Snyder
(1958)
2 3.5 2.9 0.9 0.4 Nilson, Jentschke, Briggs, Kerman, and
Snyder (1958)
2 3.5 3.1 3.5 1.32 Jones, Phillips, and Miller (1960)
2 3.5 3.18 3.36 1.27 Tombrello and Senhouse (1963)
4 4.44 11.7 2.0 1.26 Nilson, Jentschke, Briggs, Kerman, and
Snyder (1958)
6 3.5 36.7 2.3 1.14 Darriulat, Igo, Pugh, and Holmgren (1965)
6 4.5 27.6 2.4 0.66 Darriulat e al. (1965)
6 4.5 29.4 3.3 0.48 Darriulat et al. (1965)
6 5.0 24.7 2.0 0.66 Darriulat et al. (1965)
8 4.5 56.9 6.5 0.24 Darriulat et al. (1965)

8 The excitation energy of each level is with respect to the ground state
energy of 8Be. The resonance energy Eres is obtained by adding to the

8;=100°. These values are in good agreement with
those found by Jones et al.

The next higher-energy experiments were performed
in the range of 5 to 9 MeV by Jones, Phillips, and Miller
(1960) at lab angles of 15°16.5", 27°22’, and 35°3.5.
[The first and third angles correspond to zeroes of
Py(cos ), and the second to a zero of Py(cos§).] The
phase shifts as a function of energy are shown in Fig. 4.
Their analysis shows evidence of the resonant state at
A3 MeV, in keeping with the previous observations.
The behavior of the S-wave phase shift was found to be
the same as that observed in the early experiments.
Jones et al. also examined the apparent inconsistency of

excitation energy Eexo the ground-state energy for which the value of
0.096 MeV (c.m.) was used in these calculations.

the 12.3- and 15.2-MeV phase shifts of Nilson, Jentschke,
Briggs, Kerman, and Snyder (1958). Assuming a
different set of phase shifts at these energies, they still
obtained nearly the same cross section as Nilson ef al.,
which shows that the cross section is not very sensitive
to the choice of phase shifts in this region.

Looking at these level parameters (Table III), one
notices that the width of the D state is large compared
with the Wigner limit (3%2/2uR?). This indicates that it
is wholly of a-a parentage and thus supports the aPM
of 8Be.

Tombrello and Senhouse (1963) performed o~a
scattering experiments in the energy range of 3.8 to

160° ]
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Fic. 4. a—a scattering phase shifts [49°
derived: by Jonmes, Phillips, and Reich
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TaBLE IV. A list of the main reaction channels that open at
high bombarding energies in the initial a—« channel. The thresh-
old energies of these channels are given in the lab coordinate
system.

Threshold energy
Reaction channel (MeV)
"Li+p] 34.73
Be+n 39.68
‘He-+n-+-He 41.21
‘He-+n+3He 43.1
*He--5He 43.6
14511 43.6
‘He+2d 44.77.
sLi+d 44.82
SLi+n+4p 49.28
He+p+d 54.2
He+2p 54.8
SLi+n+d 56.2
SBe-2n 60
3He-+d-+¢ - 76.47
dn+4p 113.61

12 MeV, covering the so-far untouched region of 9 to 12
MeV. The phase shifts they obtained are shown in
Table II. At 3.8 and 6 MeV, their phase shifts agree
with those of Russell et al. Below 9 MeV, §, shows in-
creasing disagreement with increasing energy, but the
disagreement is within the uncertainties of the results.
The phase shifts of Berk et al. at 7.56 MeV and of
Dunning ef al. at 7.78 MeV are in good agreement with
those of Tombrello and Senhouse. The results of the
latter are also consistent with those of Heydenberg and
Temmer and of Nilson ef al., except for the two points
of Nilson at 12.3 and 15.2 MeV.

The level parameters of Tombrello and Senhouse for
the 2+ state (see Table III) are in excellent agreement
with those obtained by Jones et al. These level param-
eters were chosen primarily as a compromise between
the disagreeing values at high and low energies. How-
ever, since the dispersion-theory fit to the data was not
very impressive, Tombrello and Senhouse pointed out
the doubtfulness of the significance of such a parame-
trization. The variety of parameters obtained by
different groups for this state introduces such a doubt.

The energy range to be discussed next is 12.3 to 22.9
MeV. Absolute differential cross sections for a-a
scattering have been measured at 10 energies between
12.3 and 22.9 MeV by Nilson, Jentschke, Briggs,
Kerman, and Snyder (1958) at the University of
Illinois. The angular range they covered was 11° to
50° (lab). They observed no broad .S state in ®Be for
excitation energies between 0.5 and 11.45 MeV, in
disagreement with the results of Steigert and Sampson
(1953) who obtained a 7.5-MeV O* state from their
analysis. From their results there were, however, clear
indications of the 2.9-MeV 2% state and a broad 4+
state in the neighborhood of 11 MeV with a reduced
width of about 2 MeV. The I-wave phase shift was first
observed at 20 MeV and was found to be positive. An
experimentally observed & indicated that an I state may
exist at a high energy.

The experimental S-, D-, and G-wave phase shifts of
Nilson et al. are given in Table II, the level parameters
they used for the D-wave phase shifts being included in
Table IIT. An interesting observation made by Nilson
et al. for these parameters was that no one set of single-
level parameters reproduced the experimental values
over the entire range of 0-22 MeV [Nilson, Jentschke,
Briggs, Kerman, and Snyder (1958) .

Two scattering experiments were performed at
Washington University by Mather (1951) at 20 MeV
and by Braden, Carter, and Ford (1951) at 20.4 MeV.
Their experimental results show reasonably good agree-
ment with those of Nilson ef al. at 20.4 MeV. They did
not give any phase-shift values due to insufficient data.

Steigert and Sampson (1953) performed a-a scatter-
ing experiments in the energy region almost overlapping
that of Nilson et al. The region they covered was from
12.88 to 21.62 MeV. These results are found to agree
qualitatively as well as quantitatively with those of
Nilson et al. except for the indication of the 7.55-MeV
O+ state in Steigert and Sampson’s results. They
accounted for the steep rise in their S-wave phase
shifts by invoking a resonance level at 7.55--0.08 MeV
with a width I" of 1.24-0.4 MeV. There was a large error
in the width measurement because there were few points
available to give the resonant shape. However, this
evidence for the 7.55-MeV level is at variance with
many particle reactions and with the Be energy-level
schemes predicted either by an «PM or a central-force
model. [The recent scattering experiments of Werner
and Zimmerer (1964) in the energy range of 10-20 MeV
also did not support the assumption of the 7.5-MeV
level in ®Be.] The D wave showed no evidence of any
resonance behavior in the energy region covered. For
the G wave, Steigert and Sampson obtained the value of
the well-known level as 10.940.4 MeV and a width T
of 1.24:0.4 MeV.

Bredin, Burcham, Evans, Gibson, McKee, Prowse,
Rotblat, and Snyder (1959) performed a—a scattering in
the range 23.1 to 38.4 MeV. The 23.1-MeV results
agree with those of Nilson et al. at 22.8 MeV, but there
is some disagreement between the results for 38.4 MeV
and those of Farrel and Yavin (unpublished). There was
also considerable difference between the results at about
30 MeV and those of Graves (1951, 1952). & was found
to continue increasing negatively to the highest beam
energy used (38.4 MeV), and there was some indication
of a broad level in the S state at an excitation energy
between 15 and 20 MeV. This could not be accounted
for by the dispersion theory. The phase shift & con-
tinued smoothly between 23 and 38.4 MeV. They also
found the 4* level at 11.44-0.3 MeV. The phase shifts
8 and ds were not accurately determined and seemed to
show no resonance behavior.

In connection with checking the apparatus and
experimental arrangement for He-« scattering, Chiba,
Conzett, Morinaga, Mutsuro, Shoda, and Kimura
(1961) investigated o—a scattering at 32.5 and 35.5



S. A. Arzar, A. A. Z. Aumap, AND S. Aut  Systematic Survey of the a—a Interaction 255

TaBLE V. The real and imaginary parts of the phase shifts as deduced by Darriulat, Igo, Pugh, and Holmgren (1965) from their
measurements on the elastic scattering of « particles by helium between 53 and 120 MeV (lab). The reaction cross section o (in milli-
barns) and the value of e(=x2/N, x* being defined in Appendix I and N being the number of data points) are also shown. [Table
reproduced from Darriulat, Igo, Pugh and Holmgren (1965) by courtesy of 7'%e Physical Review.’]

Energy

(MeV) € (TR(mb) Re(&o) Re(az) Re (54) Re(ﬁe) RC(Ss)r Re(ﬁm) Re(&lz)
53.40 2.2 649.9 —75.242.4 47.9+1.7 137.94+1.3 27.5+0.6 2.0+0.5

58.49 1.4 687.9 —83.742.2 45.6+1.6 138.94-1.5 41.84+0.7 4.04+0.4 0.64-0.4

63.91 3.4 800.2 —92.5+3.6 38.0+1.8 142.1+1.5 54.241.1 6.4+0.5 1.2+0.5

69.91 1.0 859.3 —97.2+1.8 33.3+1.1  136.141.2 63.24-0.8 8.9+40.4 2.4+0.4

77.55 2.6 848.1 —109.0+4.4 23.4+2.1 136.8+1.9 73.6+2.6 11.740.7 2.5+0.7

77.55 2.7 819.0 —120.9+3.8 16.44+2.1 137.0+1.8 76.6+2.7 9.84+0.7 3.6+0.6

99.60 1.1 791.5 —129.5+5.7 —2.01.7 128.0%1.7 86.7+2.0 21.540.7 4.34-0.5

99.60 1.5 820.7 —140.7+6.4 —4.0+1.9 132.4%1.5 88.9+2.7 17.9+0.9 4.940.6

99.60 1.9 833.3 —126.0+4.3 —6.4+1.9 133.6%+1.9 90.042.7 16.941.2 6.840.6
119.86 1.4 823.9 —161.5+£6.3 —16.0+£1.7 130.3+1.8 93.8+2.8 26.0+1.4 7.0+£0.9 1.7+0.8
Energy

(MCV) € aR(mb) Im(Bo) Im(ﬁz) Im(64) Im (56) Im (53) Im(lsll]) Im (512)
53.40 2.2 649.9 12.1+3.1 22.141.7 16.3+1.1 3.2+0.5 0+0.4

58.49 1.4 687.9 10.7£2.3 19.241.3 16.440.9 6.9+0.6 040.4 04-0.4

63.91 3.4 800.2 14.243.2 18.44-1.9 18.7+1.4 15.8+1.0 0+0.6 04-0.4

69.91 1.0 859.3 9.6+2.0 17.9+1.0 20.3+1.0 20.3+0.8 1.9+0.4 0+0.2

77.55 2.6 848.1 18.044.6 19.8+2.3 20.1+1.8 27.3+1.5 2.5+0.7 0+0.5

77.55 2.7 879.0 12.2£3.7 18.242.1 12.941.3 32.8+2.0 4.74+0.8 040.5

99.60 1.1 791.5 27.446.0 17.0£1.6 20.9+1.6 28.1+1.7 8.54+0.8 040.5

99.60 1.5 820.7 26.246.9 15.741.8 13.241.8 27.041.8 11.0=41.2 1.040.6

99.60 1.9 833.3 10.8+-4.4 13.242.0 11.241.3 30.3+2.5 15.541.4 0.4+0.7
119.86 1.4 823.9 15.7£3.9 15.6+2.5 13.841.6 26.641.4 18.341.2 3.7+0.6 040.5

MeV. They found that the angular distribution of a—«
scattering changes appreciably with energy in this
energy range. Their results were in agreement with
those of Bredin ef al. (1959) and of Burcham, Gibson,
Prowse, and Rotblat (1957). Burcham et al. measured
the angular distribution of a—« scattering at 38.5 MeV
and obtained a c.m. cross section of 110 mb/sr at 90°
falling to a sharp minimum of about 0.5 mb/sr at 64°.
Their approximate analysis in terms of real phase shifts
showed that § and 6, are large while ds, 86, Js, are small
at this energy.

The next higher-energy scattering was performed by
Conzett, Igo, Shaw, and Slobodrian (1960). Absolute
differential cross sections had been obtained at 36.8,
38.8, 40.8, 41.9, 44.4, 46.1, 47.1, and 47.3 MeV. The
single prominent minimum seen at 36.85 and 38.83 MeV
gave way to two minima at the higher energies. This
transformation from one to two minima with increasing
energy is also present in the 12-23-MeV a—a data where
resonance scattering from a virtual excited state (4%)
around 11 MeV in ®Be is observed.

A phase-shift analysis by Berztiss (thesis) of the
a—a elastic-scattering data of Bredin ef al. (1959) and
Conzett et al. (1960) between 23 and 47 MeV suggested
rapid energy variation of the S, D, and G phase shifts
near 40 MeV. Since the threshold for the reaction
ata—"Li+p is at 34.73 MeV (lab) and since other
reactions open near 40 MeV, there was some speculation
that this energy variation might be due to threshold
effects. This situation seemed to need analysis of
experimental data more closely spaced in energy. In this
connection, Conzett, Slobodrain, Yamabe, and Schield

(1964) measured differential cross sections for a—«
scattering from 8° to 50° (lab) at nine energies between
37 and 43 MeV with an energy resolution better than
200 keV and an angular resolution of 0.25°. From an
analysis of these experimental data, Conzett, Schield,
Slobodrian, and Yamabe (1964) obtained two sets of
phase shifts consistent with the experimental data. The
phase shifts oscillated rapidly with energy. The oscilla-
tions were thought to be related to the opening of
inelastic channels and, most probably, to the neutron
channel (a+a—"Be+n) which proceeds with a rapidly
increasing cross section near threshold.

Excitation functions for a—a elasticscattering between
laboratory bombarding energies of 23 and 51 MeV were
measured by Shield, Conzett, Darriulat, Pugh, and
Slobodrian (1964) at lab angles of 45°, 27.75°, and
15.32°. Sharp resonant oscillations in the excitation
functions for 15.32° and 45° were found corresponding
to thelevels in ¥Be at 16.6 and 16.9 MeV for which spin 2
and even parity were assigned.

Darriulat, Igo, Pugh, and Holmgren (1965) per-
formed a-a scattering experiments covering the range
53 to 120 MeV. Since a number of reaction channels
open at E(lab)>34.73 MeV (as shown with the
corresponding threshold energies in Table IV), the
phase shifts are no longer real. Hence, Darriulat ef al.
analyzed the data in terms of complex phase shifts and
obtained the phase shifts shown in Table V. The real
parts vary smoothly with energy, and the =0, 2 and
4 phase shifts follow the trends at lower energies. A
broad I=6 resonance is found at /26 MeV (c.m.);
again, the real parts show some fluctuations around
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40 MeV, a plausible reason for the fluctuations being
discussed in connection with the analysis of Conzett,
Schield, Slobodrian, and Yamabe (1964). As can
be seen from Table V, the imaginary parts of the
phase shifts vary smoothly with angular momentum
and energy. The absorption experienced by the /=0, 2, 4
partial waves at 53.4 MeV and at higher energies are
about the same. The /=6 and the /=8 imaginary phase
shifts, however, increase with energy in a manner almost
similar to the corresponding real phase shifts. Darriulat,
Igo, Pugh, and Holmgren (1965) also found that the
effects of Im §; (absorption) on the elastic differential
cross sections is small at small angles but increases
rapidly at larger angles. Since at 53.4 MeV the effect of
absorption was found to be already large, Darriulat et al.
correctly pointed out that the phase shifts obtained at
lower energies, but above the threshold energies, for the
inelastic processes should be viewed with due caution
since these were obtained from previous analyses using
only real phase shifts. Thus, although Darriulat et al.
found a broad /=6 resonance at about 26 MeV (c.m.),
their conclusions for the /=06 partial wave are weakened
because they were based on the use of the above-
mentioned phase shifts. Darriulat ef al. found evidence
for an /=8 resonance on the basis of the complex
phase-shift analysis of their data. They also found in the
analysis of the differential cross sections that the real
parts of the phase shifts are rather insensitive to the
values used for the imaginary parts. If the same finding
is also true for the low-energy analysis, then the con-
clusions for the /=6 wave may not be substantially
changed. Darriulat ef al. also tried dispersion-theory fits
for the real parts of the phase shifts. Table IIT gives
several sets of parameters which fit the phase shifts in
various ways. No single value of the hard-sphere radius
gave a reasonable fit for either the /=6 or the /=8
resonance. However, using a hard-sphere radius of
4.5 fm, all the five resonances so far observed were com-
pared, and it was found that the energies and reduced
widths of the resonances given by dispersion-theory fits
are approximately proportional to J(J41).

The results discussed so far may be summarized as
follows: Below 400 keV there does not seem to be any
evidence of nuclear interaction. The S-wave phase shift
starts from this point with a value of 180° and decreases
monotonically with energy. It passes through zero at
about 22 MeV and then becomes negative. The D wave
comes into play at about 2.5 MeV and goes to a
maximum of 120° at about 8 MeV and then starts
decreasing. The G wave does not start before 4 MeV and
then increases with energy. The I wave is first observed
at 20 MeV and is positive. Reaction channels open at
E(lab) > 35 MeV when the phase shift is no longer real;
the imaginary part accounts for the reaction, while the
real part describes elastic scattering.

So far, three levels are definitely established; the 0
level at 292 keV, the 2+ level at =3 MeV, and the 4t

level at ~~11 MeV. Indications for higher levels have
also been found and discussed. [Sources of information
on the various levels of #Be are given by Lauritsen and
Ajzenberg-Selove (1966).]

4. PHENOMENOLOGICAL ANALYSIS OF
a—a SCATTERING

So far, we have discussed the a-a scattering results
and the parameters that have been extracted from them.
We now present the phenomenological approach, in
which one attempts to construct an a—a potential which
reproduces the experimental phase shifts. The method
adopted in most of these approaches is outlined in
Appendix II.

One of the earliest phenomenological a-a potentials
was proposed by Haefner (1951) and was of the form

V(r) =4¢/r r>R
= — D@72/ 2ur? r<R. (P1)

Haefner used this potential to determine the proper-
ties of ®Be assuming that it is a 2a system. In this
potential, 7 is the a-a separation, D is a constant (the
well-depth parameter), u is the reduced mass, and ¢? is
a parameter. This potential is repulsive for small 7
(representing the effect of the Pauli principle operating
between nucleons of the a clusters), attractive for
intermediate 7, and is Coulombic outside 7.

Using the notation of Haefner, the radial functions
for this potential for /=0, 2 and for <R are (for the
choice of ¢*=30)

Ro(7) = Ao js(kor) r<R,
Ra(r) =AoJs(kor) [ (kor)H?  r<R, (P2)

with ko*=k*+-2uD/H?, k*=2uE/#?, and E, the relative
energy of the system. The functions Rz (r) for r>R are

Ro(f) =Bo[f0(k7’) Cos 6o+go(k1') sin 50] r>R
Ro(r) = B[ fo(kr) cos 83+ ga(kr) sin 85] r>R, (P3)

where fi(kr) = Fy(kr) [kr, gi(kr) =Gy(kr) [kr, and Fy(kr)
and Gi(kr) are, as before, the regular and irregular
Coulomb functions.

The matching of the functions (P2) and (P3) for each
I at r=R by requiring the continuity of the functions
and their first derivatives, determines 8; and 4;/B; as
functions of the energy. Haefner found the maximum
of Ai/B; to be a good criterion for a virtual level of
angular momentum /. He also used the fact that when
the maximum occurs at those energies for which the
irregular wave function is much larger than the regular
wave function, 6;=90°. (In the Breit-Wigner formula-
tion, this means that there is no potential scattering and
the phase shift is given by the resonant term alone,
giving 8;=90° at resonance. For values of R=4.50-4.75
fm, the maximum of the ratio occurred in the neighbor-
hood of 3 MeV.)



S. A. Arzar, A. A. Z. Arvap, anp S. ALl Systematic Survey of the a—a Interaction

Using the then-available data on the ground state of
#Be, namely a virtual state (presumed to be a 1S, state)
at an energy of =~90keV above that for an infinite
separation of two « particles, Haefner observed that
2(kR)>fy(kR) at this energy and obtained for the
position of the ground state of zero angular momentum
(given by §,=90°) the relation

[koR js' (koR) /75 (keR) = kRgy' (kR) /go(kR) Je—s0 xev-
(P4)

Equation (P4) gives D as a function of R. The maximum
of Ay/Bs as a function of R was also determined and for
values of R from 4.0 to 5.0 fm this maximum ranged
from E~2.7 to 3.8 MeV.

Later, Nilson, Jentschke, Briggs, Kerman, and
Snyder (1958) used the Haefner potential in the
analysis of their a~a scattering results and determined
D from the (then) position of the ground state a
E=96 keV. It turned out that D was between 19 and
50 MeV depending on the choice of R. As we have
already seen, for values of R between 4 and 5 fm,
Haefner found the maximum in 4,/B; to be between
E=2.7 and 3.8 MeV, which included the D state at
2.9 MeV, known later. Nilson et al. extended Haefner’s
model to include /=4 and found that the energy range
in which A44/B, attains its maximum value for values of
R between 4.13 and 5.08 fm was from 9 to 12 MeV. This
included the G state, which they determined from the
dispersion-theory analysis. A quantitative test of the
20 model of Haefner seemed to be to see how well it can
reproduce the experimental phase shifts, and in this
connection Nilson ef al. calculated, with Haefner’s
potential, the various phase shifts &, &, 6: and found
that the best agreement with the low-energy experi-
mental phase shifts requires a small value of R (3.49fm) ;
the D-wave phase shifts did not rise enough to reproduce
the experimental /=2 phase shifts beyond 12 MeV. A
good fit to the G-wave experimental phase shifts was
obtained with R=4.44 fm. As pointed out by Nilson
et al., a crucial test of the potential would be a com-
parison between the experimental and theoretical 8,
beyond 22.9 MeV, but no such data existed at that
time. However, although Haefner’s potential does not
exactly reproduce S-, D-, and G-wave phase shifts, the
similarities between the experimental and rotational
model phase shifts seemed to indicate that these states
could be described in terms of a two-body interaction.
k About the same time as Nilson e al., Humphrey
(1957) was able to reproduce the a—a scattering phase
shifts for the entire range of 0 to 22 MeV with a modified
Haefner potential. His best fit required R=3.75 fm and
an l-dependent well depth D; (Dy=21 MeV, D;=25
MeV, and Dy;=32 MeV).

Van der Spuy and Pienaar (1958) made a phenom-
enological analysis of a—a scattering up to a bombarding
energy of about 6 MeV. They investigated whether a
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velocity-independent, two-body a-a interaction can
represent the phase-shift data and also what features
of the interaction are predicted phenomenologically.
They considered the following a-a potential:

Vaa= 0, r<n
=-7, n<rry (PS)
=4¢/r, r>ry

which is characterized by three parameters: the hard-
core radius 7y, the nuclear-interaction range 7y, and the
well depth V. Using the radial Schrédinger equation for
two « particles,
d2R1(7‘)
ar’
with the potential given by Eq. (P5). Van der Spuy and

Pienaar deduced for the inside (r<ry) solution the
logarithmic derivative

o0 /)]

fo=Kry cot K(r,—n1),

+ ;2 [ Vaa( ) ﬁ2 l(l+1)
2u

]R;() 0,

with

xN2

fo=—2+ 3 +

xN2

3[(3/xn*—1)— (3/xx) cot (xx+¢)]’

where
cot (Kn+¢) = (Kn)1—
K=+ (2uV /%),

3Kn, an=Kry

R2=2uE/R2.

Thus, they selected a set of (ry, 71, V) values to get the
best fit of the above inside log derivatives to the outside
log derivatives calculated from the experimentally
observed phase shifts at selected values of 7x. For the
S wave they obtained the best compromise fit for
ry=41fm, r,=1.7fm, and V=7.2 MeV (including the
94.5-keV, _resonance point). The fit, exluding the
resonance point, required ry=4fm, r,=1.8 fm, and
V=79 MeV. For the D wave, the best compromise fit
was for ry=4fm, =1.8 fm, V=10.5 MeV. Thus, for
both S and D waves the best fit required the same 7y
and 7, but different well depths, namely Vg=7.9 MeV
and Vp=10 MeV. The difference between Vg and Vp
increases for lower 7y because of the centrifugal
potential.

Thus, the investigation of Van der Spuy and Pienaar
indicated for the square-well analysis that even at very
low energies (E<6 MeV) one needs a velocity- depend-
ent interaction with a core radius of about 1.8 fm.
However, if the velocity dependence of the core can be
schematized as an ! dependence of the core, then the
analysm\would indicate that Potential (P5)jwith
ry=41fm, Frg=2.05 fm,*. np=0.08fm, V=9.5 MeV,
would yield the best compromise fit. Thus,;the__'results
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of Van der Spuy and Pienaar suggested that it is not
possible, even at very low energies, to obtain a velocity-
independent a—«a potential fitting both S and D waves.

H. Wittern (1959) derived a semiphenomenological
potential from a consideration of the single nucleons
given by the Pauli principle and from the character of
the shell-model wave functions for the actual levels of
the 8Be compound nucleus and their excitation functions.
Wittern’s analysis points to the same conclusions about
! dependence of the a-a potential as those of Van der
Spuy and Pienaar.

Igo (1960) made an optical-model analysis of the
elastic a—a scattering for bombarding energies ranging
from 23.1 to 47.1 MeV. He used a complex potential

VAW

T exp Lor—m) /4]’ (F6)

where the parameters V, W, r,, and d were required, by
agreement with the angular distributions taken at eight
different energies, to be —112 and —1MeV (for
bombarding energies near 40 MeV), 1.8 and 0.6=0.1
fm, respectively. The real parts of the phase shifts
obtained for this potential were in good agreement with
the preliminary values of Snyder [see Burcham et al.
(1958) Jin the energy range 23-42 MeV. The imaginary
parts of the phase shifts were close to zero. The introduc-
tion of a nonzero W, necessary to reproduce the total
reaction cross section, had a negligible effect on the real
part of the phase shifts. Using the same potential form
(P6), Van Niftrik, Brockman, and Van Oers (1964)
obtained an optical-model fit to their angular distribu-
tion data of a—« elastic scattering at a primary energy of
51 MeV. The corresponding values of the optical-model
parameters are V=—122 MeV, W= —11 MeV,r=1.81
fm, and d=0.74 fm. The calculated reaction cross
section is 770 mb. The Coulomb potential was included
by both Igo (1960) and Van Niftrik ef a/. with different
assumptions about the charge distribution.

Endo, Shimodaya, and Hiura (1964) made an
investigation of the extent to which o« scattering can
be explained in terms of an energy-independent poten-
tial and used the following /-dependent potential:

r 2 71(l);

Vea®=V1® exp (—uP7*)+ Vo exp (—uor’)
(P7)

where r,® is the hard-core radius. Vo @ at r=r9 was
taken to be zero. Potential (P7) is thus characterized
for a given I by two l-dependent free parameters V¥,
wm® of the repulsive part; the parameters Vy and yo of
the attractive part are fixed to —325 MeV and 0.29
fm~2 from the theoretical investigation of Shimodaya,
Tamagaki, and Tanaka (1962) which we shall discuss
in Sec. 5. A fairly good fit to the experimental phase

shifts through the excitation of 40 MeV (lab) requires

V1© =371 MeV, wm®@=0.342 fm2, n@=1.6 fm;
V1® =373 MeV, 1@ =0.360 fm—2, n®=1.4 fm;
Vi® =357 MeV, 19 =0.435 fm2, n®=0.8 fm.

The phase shifts of Endo et al. for E(lab)x40-50
MeV agree well for low / with those obtained by Igo
(1960) who used a purely attractive real part in his
optical potential. Endo ef al. argued that the use of
such a completely real part may not be realistic.
However, Igo’s analysis was perhaps justified, as
discussed below.

Recently, Darriulat, Igo, Pugh, and Holmgren
(1965), in an attempt to fit the real parts of the o«
scattering phase shifts for energies between 53 and
120 MeV, introduced a complex Saxon-Woods potential
of the form

Vaa(r) =m{1+ exp [(r—n) /e, ]}
— {1+ exp [(r—12) /2, ]}
—iW {1+ exp [(r—73) fas]} 2+ Ve(r),

where the first term represents the repulsive core and
the second, the larger-ranged attractive potential; the
third term accounts for inelastic processes and the
fourth term is the Coulomb potential due to a uniformly
charged sphere of radius Re.

Like previous authors, Darriulat ef al. also tried to fit
the phase shifts for all partial waves using the same
potential but failed. Then they took recourse to an
l-dependent potential and used a different set of param-
eters for each partial wave. The values of the parameters
of the real potentials that reproduced the real parts of
the phase shifts are U;=150 MeV, ¢;=0.124-0.005 fm,
r1=1.65+0.03 fm, U;=9.2+0.5 MeV, a,=0.440.1 fm,
7,=3.7240.07 fm for the S-wave; the corresponding
values for the D and G waves being 150, 0.054-0.03,
1.634-0.03, 16.0=0.2, 0.34-0.05, 3.55 and 220, 0.05, 1.2,
7141, 0.46-0.03, 2.48-0.02, respectively. The values
of the repulsive-core parameters for the G wave were
found to be some sort of upper limit, since the G-wave
phase shifts could be reproduced even without these.
In view of the fact that the imaginary parts of the phase
shifts were not experimentally well determined and also
that the real parts of the phase shifts were not found to
be sensitive to the parameters of the imaginary part of
the a—a potential, the latter were rather arbitrarily fixed
to W=35 MeV, E>40 MeV (and W=0, £<40 MeV),
73=1y, @3=a,. As pointed out by Dariullat ef al., these
potentials suffer somewhat from the ambiguity which
is characteristic of any Saxon-Woods parametrization.
When the real parts of these potentials are plotted as
functions of the a—a separation, the tails of the potentials
for =0, 2, 4 partial waves are almost the same (in
agreement with theoretical expectations), but the I=6



S. A. ArzaL, A. A. Z. Aavap, aND S. Aur  Systematic Survey of the a—a Interaction

and the /=8 potentials are different in this region.
However, the latter finding should not be disturbing
since the /=6 potential was mainly determined from
phase shifts between 35 and 47 MeV and, for reasons
mentioned in Sec. 3.B, should not be taken very
seriously. Also, the /=8 potential was constructed from
scanty experimental information and should also be
treated with caution.

Summarizing, the a-o potentials that have been
constructed from the experimental phase shifts show
some common features: The a—« potential is / dependent
but is independent of the incident energy. The ranges of
the inner repulsive part and the outer attractive part
are of the order of 2 and 5 fm, respectively. The repulsive
part becomes weaker for higher /, while the attractive
part becomes stronger. Thus the phenomenological
analyses of a—a scattering establish beyond doubt that a
static a—a potential common to all / does not exist.
Nevertheless, the attractive part may be taken as
common to all . The / dependence enters through the
repulsive part and may be regarded as a simple form of
velocity dependence. [In fact, Ali and Bodmer (1966)
have suggested a procedure for the construction of such
potentials in a fairly unique way; we postpone its
discussion until Sec. 6, when we deal with the prospect
for further studies in the o—a interaction.] As remarked
by Van der Spuy, admission of more general velocity-
dependent effects seems to make the purely phenomeno-
logical analyses rather arbitrary unless one knows the
actual type of velocity dependence from more funda-
mental considerations. Thus, studies of the fundamental
model of the a—a interaction are extremely useful not
only for understanding the essential features of the
interaction but also for making the qualitative features
of the phenomenological a-o potentials meaningful.
Before these studies are dealt with in Sec. 6, the in-
vestigations concerning the effective-range theory of
a—a scattering are discussed. These followed a recent
measurement of the ground state of ®Be and have some
relevance to phenomenological studies of the a-«
interaction.

Recently, Benn, Dally, Miiller, Pixley, Staub, and
Winkler (1966, 1967) have been able to make a rather
direct and precise measurement of the width (T',=6.8+
1.7 ¢V) and position (Er(c.m.)=92.12+0.05 keV)
of the ground state of ®Be, whose lifetime = has been
determined to be [0.97(+40.32, —0.19) X101 sec.
Russell, Phillips, and Reich (1956) obtained I'=4.54-3
eV with the effective-range theory. Later, Barker and
Treacy (1962) repeated this calculation using the same
expansion and found a value of 6.840.6 eV, which is in
better agreement with the recent experimental value.
However, these results were obtained with the old value
of the ground-state position of 94 keV, which was
shown to be inaccurate by the experiments of Benn e al.
and of Reichert, Staub, Stiissi, and Zamboni (1966).
The correct resonance energy is important in obtaining
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the ground-state width because of the rather rapid
change in the Coulomb penetration with energy. Further
calculations using the new value of the resonance
energy were first reported by Tombrello (1966) who
found that the uncertainties in the parameters of the
effective range expansion (which arise due to the un-
certainties associated with the measured S-wave phase
shifts) cause large uncertainties in the width. Tombrello
concluded that, on the basis of the available data, the
effective-range theory of S-wave a—a scattering does not
enable the width of the ®Be ground state to be deter-
mined accurately. Rasche (1967) has pointed out that
Tombrello used only one-half of the experimental
information (Eg) and tried to make predictions for the
other half (I"). Rasche used both Eg and T to determine
the effective-range expansion parameters and observed
that the inclusion of T in the analysis of low-energy
phase shifts () considerably reduces the uncertainties
in the effective-range expansion coefficients 4, B, C, D
[see Eq. (E2)]. Rasche has apparently been able to put
a better limit on T' [Te.m.=6.4(+0.8, —0.5) eV] which
is even narrower than the direct experimental limit
quoted by Benn, et al.

Kermode (1967b, 1967c, 1968) has recently presented
an analysis of S-wave phase shifts using a hard-core
effective-range formula previously developed by Ker-
mode, (1965). According to Kermode’s analysis, one
uses the experimental phase shifts § to calculate a
function ¥, defined by

Yo=k[(Gy'+Fy' cot &) /(Go+Fy cot 8o) Jaos

where Fy and G, are again the S-wave regular and
irregular Coulomb wave functions, g, is the hard-core
radius, and % is the relative momentum (c.m.). Y, is
then fitted to the effective-range expansion

Yo=A+BR4-Ck*

and, finally, defining the width as the difference in the
energies for which the phase shifts are 45° and 135°, one
calculates it from

—1 —1
o~ 2 (3
dE dE/ |z dE/gg
where %=£%kGo'/G,. Using a hard-core radius of 1.7 fm
[which is the same as that used in the potential of
Van der Spuy and Pienaar (1958) ], Kermode obtained
a value of 6.1440.04 eV, in reasonable agreement with
the measurements of Benn et al.

Use of the phenomenological a—« potential has been
made by Ali and Afzal (1967) to reproduce the new
ground-state parameters of ®Be. Their observation has
been that an .S-state a—a potential which reproduces
phase shifts in good agreement with experiment may
give a fair representation of the ground state of ®Be.

More recently, Kermode (1967b, 1967c, 1968) has
shown that the effective-range formula for charged
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particles with no hard core, used by other authors, is not
good for a-«a scattering. Kermode finds that the hard-
core, effective-range formula describes rather well the
low-energy S-, D-, and G-wave o—a scattering. He also
finds it possible to define a hard-core radius which takes
approximately the same value (1.7 fm) for all three
partial waves, in apparent inconsistency with the
results of the phenomenological analyses. However, the
latter finding is rather difficult to understand, for one
hopes on fundamental grounds that if the a—a potential
is at all velocity dependent, this dependence is more and
more reflected in its inner part. If one can schematize
the velocity dependence as an ! dependence, then it
seems more plausible that the a—« interaction should be
characterized by an l-dependent inner core (and an
outer attractive part common to all /) rather than an
l-independent one.

5. FUNDAMENTAL STUDIES OF THE
a—a INTERACTION

By fundamental studies of the a-« interaction we
mean those studies which begin with an eight-nucleon
(four protons and four neutrons) system and try to
develop an interaction between two o clusters, starting
from first principles and the basic two-nucleon forces.
The earliest of such theoretical studies began with the
celebrated “Resonating Group Formalism” of Wheeler
(1937b). This formalism regards the neutrons and
protons in the nucleus as being divided into various
groups (e.g., « particles) which do not maintain their
identity forever but undergo continual changes, re-
distributing themselves into new groups. One then seeks
from group-theoretical considerations which of the
groupings are important for a particular state of a given
nucleus. The wave function of the composite nucleus is
written as a totally antisymmetrized combination of the
wave functions for the various possible groups in the
nucleons. Following Wheeler’s method (which, in fact,
has paved the way for detailed analysis of configurations
involving two groups) one obtains for the relative motion
of two groups an integral equation in which appears an
interaction generated from two-nucleon forces. This
consists of two parts: a direct part which involves no
particle exchange between the two groups and another
part appearing in the form of a nonlocal kernel interac-
tion containing terms corresponding to the exchange of
one, two, or more nucleons between the groups. Wheeler’s
formalism has been followed up until quite recently by
various authors in different contexts, and we shall later
present direct applications of the method only as far as
the a—a interaction is concerned.

Besides expanding the theory of resonating-group
formalism, Wheeler also used a simple «PM (which
assumes the o—a forces to be given beforehand) along
molecular lines [Wheeler (1937b)J¥to describe low
states of excitation between the o particles. The sym-
metric function of the centers of gravity of the «

particles was written as the product of rotational and
vibrational wave functions, and the results of the
molecular theory were applied to determine the allowed
rotational and vibrational quantum numbers for Be
and for 2C and 0. Margenau (1941) pointed out that
because of some essential differences between the nuclear
and the molecular cases (e.g., the differences in the
natures of the interactions between atoms and those be-
tween nuclei), the introduction of molecular viewpoints
should be viewed with caution. Margenau calculated the
interaction energy of two a particles as the difference
between the total energy and the energy of two isolated
a particles, each with a wave function built up about a
fixed point. The calculations of Margenau were es-
sentially the same as those of Heisenberg (1935) who
allowed the mass centers of the interacting « particles to
oscillate with an arbitrarily chosen amplitude about two
fixed points. In Margenau’s calculations the mass center
was described by the same parameter that described the
motion of a nucleon inside an « particle. Expressions for
the interaction energy contained Heisenberg’s mass—
center oscillation parameter explicitly and Margenau’s
implicitly and were therefore difficult to interpret.

Wheeler (1941) was also the first to give a theoretical
interpretation of the a—« scattering measurements up to
1939. Following Taylor (1931, 1932), he analyzed the
results in terms of the phase shifts of the =0, 2, 4
partial waves up to 7 MeV. His analysis demonstrated
a rapid phase variation at about 3 MeV (c.m.) for /=0.
Thus, Wheeler was forced to assign zero spin to the
2.9-MeV state in ®Be, which is now definitely known to
be a 2* state. This does not imply that Wheeler’s
method of analysis was strong, but that his calculations
were based on inaccurate phase-shift values.

The intention of the early theoretical works was to see
whether the basic two-body a—a interaction has a short-
range repulsion and an attractive part over the a-a
spacings of 3—4 fm (corresponding to the average spacing
of two o’s in a nucleus) . The repulsion is needed to pre-
vent a’s from coming too close to each other and over-
lapping, making the «PM of nuclei meaningless. A rough
criterion that overlap shall always be small was given by
Herzenberg (1955, 1957) : Ry<3[soa— ((85.2) YH*] where
Se is the average separation of two neighboring e particles
in an a-particle nucleus and ((8s.?) )2 is the root-
mean-square deviation of s,. Ry is a certain distance
from the center of the o« particle up to the radius at
which the density distribution in the a particle was
assumed to be constant. From the relation of R, with 7,
(the radius of the a particle) and from some rather
rough estimates for s, and {(ds.,?) in 8Be, Herzenberg
deduced that 7,<1.57 fm. This is indeed consistent with
the measured radius (1.44 fm) of the o particle as was
available later from the” experiments of Hofstadter
(1956).

The nonoverlapping of « particles in ®Be should be
reflected also in the repulsive nature of the a—a potential.
The repulsive part of the theoretically determined a-a
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interaction is not a static potential but has a velocity-
dependent character; thus, one cannot represent the
repulsion graphically. One may, however, plot the
effective phenomenological a—a potentials and get some
idea of the extent to which the o particles overlap in
states of ®Be. This point has been illustrated in Sec. 6.

The attractive part of the basic two-body a—« inter-
action is needed to sustain the nuclei against electro-
static repulsion. These theoretical works also sought to
establish whether the o—a interaction is additive, i.e.,
whether the force between two o’s is independent of the
presence of neighboring o’s. Heisenberg’s idea was that
the short-ranged repulsion (which corresponds to the
exchange of nucleons between the a particles) could be
accounted for by exchange forces, while the additive
attraction would be due to van der Waals forces. But
Margenau’s calculations showed that the second-order
forces between two o’s, which correspond to the van der
Waals force in molecular interactions, were of shorter
range than the exchange forces and hence could not be
additive. The total first-order interaction between «
particles (i.e., sum of direct and exchange interactions)
was found by Margenau to be repulsive. Thus, strong
polarization forces (when two o’s come very close to
each other’s field of forces they tend to distort each
other so as to minimize the total energy, thus producing
an attraction) had to be invoked, which went against
the spirit of the «PM of nuclei.

Margenau also chose a simple model, in keeping with
the a—«a interaction composed of first- and second-order
forces deduced by him, to obtain the .S-wave phase
shifts. He used an infinite repulsive potential for a-«
separation from O to 7;,an attractive square well from 7,
to 4.5 fm, and Coulomb repulsion outside 4.5 fm. The
phase shifts obtained at low energies for various values
of 7, agreed with the (then) phase shifts but did not
show resonance effects, and Margenau concluded that
the two-body interaction was incompatible with the
scattering data.

Inglis (1941) showed that if the nucleon-nucleon
interaction has a Yukawa rather than a Gaussian tail
and if there is no appreciable nonexchange part in this
tail, then the first-order forces would provide an
attractive region. Later, Edwards (1952) pointed out
that the attraction found by Inglis was not due to the
shape of the potential but to the fact that the tail did
not have an appreciable nonexchange part. Edwards
calculated the binding energy of the ®Be nucleus using
the variational a—a wave function

> rexp (—Cr2—D }4:, r#—D 28 7os?)
P é=1 @ f=5
Xspin and charge functions,
where C and D are parameters and
rlt=[1(ntrotrstr) —i(rtretritr) B

the #’s being the coordinates of the nucleons of the «
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clusters. Edwards’ calculation showed that it was not
possible to bind ®Be unless the saturation conditions had
been given up. However, as pointed out later by
Herzenberg (1955, 1957), the significance of a calcula-
tion with a ground-state boundary condition is not clear
since the ®Be state is virtual. Thus, a more satisfactory
treatment of the virtual levels of 8Be should use the
reduction of an eight-body problem to a two-particle
equation of motion containing an effective interaction
between two « clusters.

So much for the historical part of the theoretical
trend in the development of the subject of a-a in-
teraction. Let us now look at more current pictures of
the subject. The recent theoretical analyses of the
a—a interaction followed a great impulse given to this
field by Herzenberg in a series of papers (1955, 1957)
in which the «PM of nuclei was revived, and the several
interesting features of the a—a interaction were ex-
plored. Herzenberg made an anatomical separation of
the a—a interaction into four parts: (a) a direct inter-
action Vp due to the direct (nonexchange) tail of the
nucleon—nucleon potential, (b) an exchange interaction
Vx due to the exchange of nucleons between the «
particles, (c) a polarization interaction Vpo1 (whose
origin we have already explained), and (d) the Coulomb
interaction E¢. The first three terms are analogous to
the long-range Coulomb interaction of ions, electron
exchange, and van der Waals forces, respectively, in
atomic physics. Herzenberg made explicit calculations
for these components with the use of a basic nucleon—
nucleon force having the charge-independent form

Vii= V(i) (a0ta00i° ;4 a:7i v+ 0o:6; 8j550 75)
+ Vi (r) (aor+ .z %) (80 f'ijﬂj' f.’j— 36:065)

(where 7;; is the distance between nucleons 4 and j, T;;
the unit vector pointing from nucleon 7 to nucleon j,
and the ¢; are 2/ times the intrinsic spin operators)
and a wave function in which each of the two interact-
ing o particles is confined to the neighborhood of a
fixed point. The important observations of Herzenberg
were that Vp and Vpo, which provide the attractive
part of the a—a interaction, are additive (in what
follows, only the two-body interaction, in which
additivity is of no concern, is dealt with) and that Vp
and Vpe have a larger range than does Vx. Vx is
velocity dependent and could account for the repulsion
required by the aPM. The additivity of Vx depends on
the existence of a direct tail in the N-N interaction.
In the absence of this tail, the only source of attraction
is Vpo1 which, however, is rather weak for central forces
between nucleons. Herzenberg also found that the
strength of the tail in the Serber forces provides the
right order of magnitude of the a—a attraction. Thus,
considerable emphasis is required on the direct part of
the N-N interaction. In earlier calculations this was
regarded as going against the usual saturation con-
ditions. Herzenberg argued that ‘‘saturation con-
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ditions” should not really stand in the way of the
explanation of the a—a interaction by Vp because,
first, nuclear forces should give saturation only within
the known range of nuclei so that an attractive Vp
may still be possible, and second, Vp is due to a fringing
nuclear field extending outside the « particle, and thus,
two « particles can attract each other without over-
lapping. Herzenberg remarked that the nuclear forces
may be modified at short distances to give saturation
and still allow a tail to give the « particle a fringing
field. Considering the features of the component parts
of the a—« interaction, Herzenberg suggested that the
complete a—o interaction may be represented by a
potential which has a static part corresponding to the
direct part of the a—a interaction and an effective
repulsive part which takes into account the repulsive
nature of Vy. Indeed, in constructing a—a potentials
from a-a scattering data, these features of Herzenberg’s
investigation, as well as those of the more recent
theoretical works, have been taken care of at least
qualitatively. Following Herzenberg, several authors
have attempted to study the two-body a—« interaction
in great detail using the resonating-group approach.
The development of Van der Spuy (1959), outlined
below, is typical.

Let us consider a system of eight nucleons (four
protons and four neutrons) and imagine that they can
be divided into various possible two-a groups. Starting
from one pair of « particles, other groups of two a’s
may then be generated by allowing exchange of nucleons
between the pair. These nucleon exchanges must,
however, be governed by the Pauli principle. Thus,
following the resonating-group formalism, one assumes
that the wave function of the eight-nucleon system is
given by

¥=0a[¥a(12, 34)%(56, 78) R(rap) ],  (F1)
where @ is the antisymmetrization operator given by
@=[1—H(25)—H(26)—H(15)—H(16)
+H(15)H(26) [1—H(47)—H (48) —H(37)
—H(38)+H(37)H(48)].

In (F1) the neutrons have been labeled as 1256 and the
protons as 3478. H(25) is the Heisenberg exchange
operator, exchanging both space and spin coordinates
of particles 2 and 5. The ¥,’s are the internal wave
functions of the a particles and have the form
Y(12, 34) =x(12, 34)¢ (12, 34), where x is the anti-
symmetric spin part and ¢ the symmetric space part
of ¥. R(r) describes the relative motion of two «
particles. One assumes that the two « groups are
unpolarized. This assumption is justified if one con-
siders low a—a energies of scattering so that the parti-
cles do not interpenetrate. The basic idea is to start
from (F1) and derive an equation of motion for R(r)

with the o—a interaction built up from fundamental
two-nucleon forces. One achieves this in the following
way.

Starting with the Hamiltonian

ﬁ2 8 .
H= Z Vi2+ Z V(%j) ’ (Fz)
2M ‘S 1-8)

where V (4, §), the two-nucleon force, is given by
V (3, 7) =[wtmP (i, §) +bPe (4, j) +hH (3, 7) IV (3, 1),
and the eight-body Schriédinger equation is
Hy=FEy. (F3)

To obtain an equation for the relative wave function
R(r), the nucleon coordinates must be integrated out.
Thus, (F3) is multiplied by ¥,*(12, 34)¢»(56, 78) and
integrated over the space and spin variables of all the
nucleons, keeping r constant. Use is made of the
identity

f x(12, 34)9*(12, 34)
space spin

X[Ta—Ea'l' E V(Z’])]X(lz, 34)4’(12: 34) =O;
(1234)
where T, is the kinetic-energy operator in the c.m.
system of the a particle; ¢ is the symmetrical, spacial
a wave function, which for simplicity may be assumed
to be

¢(12, 34)~ exp [—a(r+r+rd+rad+ru+rs?) .

The fact that the internal wave function does not de-
pend on the inter-a separation implies the assumption
that the « particles are not polarized during collision.

One obtains, using certain symmetries, the equation

h2
[m Vo (B—2E2) V() ]R(r)

- f &'K(r, t')R(r). (F4)

Vp(r) is the direct interaction (i.e., in the absence of
nucleon exchange) originating from the identity ele-
ment of the antisymmetrization operator @ and is
given by

Vi (r) =4 (4wt 2b— 2h—m) Vo[ 16/ (16a+38) T2
X exp [— 16087/ (16a+38)]. (F5)

Vo and B characterize the radial dependence of the
nucleon—nucleon interaction wv; which is taken as

(i) = — Vo exp (—pr:). (Fo)

This potential was chosen to obtain an analytical ex-
pression for the kernel since Gaussian forms integrate
easily. The direct part V¢(7) of the Coulomb inter-
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action [4e?/r erf (4r52a)7] is also added to Vp(r) to
give a total direct part Vo' (7) =Vp(r)+ V(7).

Equation (F4) shows that in order to know R(r) at
the point r in space, one needs to know R(r’) at all
other points r’ in space. Thus, (F4) describes a non-
local process; the kernel of the integral equation
K(r, r'), involving both r and 1/, represents a nonlocal
interaction and is symmetric. The exact analytical
expression for this kernel is a rather complicated
function and is given by Van der Spuy (1959). Mathe-
matically speaking, the origin of the kernel interaction
lies in the antisymmetrization of the wave function.
But since antisymmetrization means physically that
particles having the same spin and charge should
not come too close to one another, it is expected that
K,(r, r') should incorporate the character of a re-
pulsion. We shall return shortly to this point. To get
more insight into the kernel, one can separate out
partial waves by making the following expansions in
terms of Legendre polynomials:

R(r)=r1 Efl(r)P;(cos ) (F7)

and

K (r,1") = (4xwrr") 2 go (214-1)ky(r, 7") Pi(cos 6) .
Thus,

Ei(r, ¥') = 2arr’ / 11 K(x, ') Pi(cos ) d(cos 6), (FS)

where 6 is the angle between r and r’. With (F7) and
(F8), Eq. (F4) reduces to

[_fﬁ_(_d_z_ 1(I+1)
4M \dr* 72

)+E— Vb(r) :lfz(r)

- / " ki, ) fi() A, (FO)

The price for the antisymmetrization of the wave
function in order not to violate the Pauli principle is to
solve the integral equation (F9) with a complicated
kernel function. Although this kernel can be computed
numerically, it is rather difficult to interpret Eq.
(F9) except in general terms. Van der Spuy used the
Taylor series expansion

"k, ar

-3 [ /0 " ba(r, ) %dﬂ] % 10

= 2 Valr) (@/dr) fi(r), (F10)
where V,;(7) is the nth moment of the kernel (7, 7’).
The =0 term of (F10) gives Vy(7)fi(7), an I-depend-
ent direct part which can be added to the l-independent

direct part Vp(7)fi(7). The next meaningful moment is
for n=2 which gives Vy(r)[d*:(r)/dr*]. Since the
latter term involving the curvature (i.e., the second
derivative of the relative wave function) can be added
to the kinetic-energy term in the left-hand side of
(F9), it leads to a correction in & mass in interaction.
A similar situation is observed for nucleons in nuclear
matter [Bethe (1956) ]. The effective a mass increases
if Va(r) is positive. Investigation of the effect of this
term on a—« scattering has not been made.

Van der Spuy made explicit evaluations of the direct
and kernel interactions as a function of a—a separation
and found that the direct interaction has a range of
&5 fm, while the range of the kernel (exchange)
interactions is about 4 fm. Van der Spuy (1956) at-
tempted to calculate a-a scattering phase shifts, but
used only one set of parameters, namely those that were
found from the analysis of the #-« problem; «=0.08387,
B=0.2853, Vo=—47.62 MeV, x=w+m=0.8, y=
4w—+2b—2h—m=1.620. Vi is the predominant V.,
term; also | Vr(r) =Vp(r)+Ve(r)+Va(r) | is small
compared with | Vp/(r) | or Ve(r) up to 2-3 fm,
indicating a low magnitude of the core potential.
For the D wave, Vg, was larger than the other terms in
Va2 but was not predominant, and the D wave was
found to have a velocity-dependent interaction.
Vr(r) was found to be negative for the D wave all the
way from the origin. This is somewhat disturbing since
in order to make the a-a interaction meaningful,
considerable repulsion at short distances is necessary to
prevent the two o’s from dissolving into eight nucleons.
One thus suspects the accuracy of Vy(7) at short dis-
tances.

The scattering phase shifts were calculated by
Butcher and McNamee (1959) within the framework
of the resonating-group theory. But their calculations
were with a nucleon—nucleon force which did not
describe the S-wave scattering data. As pointed out by
Schmid and Wildermuth (1961), their force mixture
(% Serber plus % Rosenfeld) seemed to contradict the
results of other analyses. Nevertheless, theirs were the
first calculations which took a complete account of the
exchange part of the Coulomb interaction.

The kernel interaction in (F9) was also derived by
Schmid and Wildermuth by varying the relative wave
function R(7,—7), according to the Ritz variational
principle, in the expression

5 [ (P Ey— M) dr=0.

Schmid and Wildermuth solved Eq. (F9) on an IBM

7090 computer. The nucleon—nucleon interaction they

chose was of the same form as that used by Van der

Spuy and may be written once more:

Vij=—Voexp (—Brif) [w—im(1+6:- 6;) (14i- 7))
+30(146i-6;) —3h(1+ =i =) 1. (F11)
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F16. 5. The energy dependence of the phase shifts calculated by
Okai and Park (1966) is shown by the dashed curves for a pure
Serber force and by the dash and dot curves for the mixed force,
respectively. The solid curves represent the real parts of the
experimentol phase shifts. [Figure reproduced from Okai and
Park (1966) by courtesy of The Physical Review.]

The numerical solution for f(r) determined from Eq.
(F9) for this potential was matched to Coulomb wave
functions, the phase shifts being determined in the
matching procedure. As we have seen earlier from the
analysis of Van der Spuy (1959), the parameters to be
adjusted in the calculations are the matter density of
the « particle, which enters through the internal wave
function of the « particle, and the parameters Vi,
B, w, m, b, and % of the nucleon—nucleon interaction
of the type (F11). Since by normalization w-m-+
b+h=1, the nucleon-nucleon parameters are reduced
to five. Schmid and Wildermuth’s calculations were

.

with
Vo=172.98 MeV,

w+m—b—h=0.63,

B=0.46 fm?;
w+m—+-b+h=1.

With this choice, the potential (F11) yields values of
singlet and triplet effective ranges, singlet #—p scatter-
ing length, and deuteron binding energy in good
agreement with experiment. As shown in the work
of Pearlstein, Tang, and Wildermuth (1960), the exact
form of the two-nucleon potential is not very important
as long as it reproduces the two-body scattering data
sufficiently well. Schmid and Wildermuth calculated
the a—a scattering phase shift as a function of the force
mixture consisting of a combination of pure Serber
force (w=m, b="h) and a pure Rosenfeld force (m=20,
h=2w). For a pure Rosenfeld force, the direct nuclear
part of the a—a interaction [see Eq. (F5)] vanishes.
Thus, the phase shifts are expected to increase with a
decrease in the Rosenfeld force.

The best agreement obtained with the experimental
phase shifts was a 949, Serber force and a 6%, Rosen-
feld force. However, although their agreement for
1=2 and 4 was good, for =0 their curve was below the

experimental points. Their resonance value was 0.4
MeV higher than the (then) experimental value of
about 95 keV. They remarked that if the potential
depth in (F11) were increased by a small amount,
their curve would rise and fit the experimental points.
However, the fact that among all authors employing the
resonating-group formalism only Schmid and Wilder-
muth claimed success in reproducing experimental data
needed investigation. It was discovered later by Okai
and Park (1966) from a rather detailed cluster-model
analysis of a—o scattering that the discrepancies of
Schmid and Wildermuth’s results from other cal-
culations were in some cases due to an error in the
numerical computation. Failing to reproduce the
results of Schmid and Wildermuth, Okai and Park
employed rather detailed computing techniques and
calculated the phase shifts for s, d, g, 4, k partial waves
through the excitation energy of 40 MeV. Their main
aim was to reproduce the energy dependence of the
1 and k& waves on the basis of the resonating a-cluster
model. To this end, they extended the previous cluster-
model analysis to 7 and £ waves and to higher bombard-
ing energies. Although at these high energies (up to
40 MeV c.m.) channels other than the initial a-a
channel were open, Okai’s and Park’s calculations
were based on the one-channel approximation. They
used the same nucleon-nucleon potential as used by
Schmid and Wildermuth, but their calculations were
more comprehensive and differed from those of the
latter on a number of points. They calculated the
Coulomb exchange terms explicitly and verified them
to be the same as those obtained by Butcher and
McNamee. They did some calculations including the
Coulomb exchange terms in the kernel interaction; this
was found to increase the phase shifts only slightly from
those obtainable with the direct Coulomb interaction.
The increase, it is understood, was due to the fact that
the Coulomb exchange terms in the nonlocal kernel have
an opposite (i.e., attractive) sign relative to the direct
repulsive Coulomb part and, hence, increase the effec-
tive interaction and the phase shifts. Figure 5 gives the
phase-shift-versus-energy plots for various I values, as
obtained by Okai and Park. A comparison with the real
parts of the experimental phase shifts is also shown. For
S and D waves, the calculated phase shifts are systemat-
ically larger by about 209, than the experimental ones,
the agreement for the G wave being slightly better below
25 MeV. There is a discrepancy for all partial waves ex-
cept for /=8, for which the phase shifts are rather reason-
able. For a pure Serber force, the phase shifts are con-
sistently larger for all partial waves. As the Rosenfeld
force is introduced and gradually increased, leading to
an enhancement of the repulsion in the nonlocal kernel
interaction, the phase shifts decrease. This has been
confirmed by calculations with 69 and 109, Rosenfeld
forces. However, Okai and Park observe that to get
agreement with the experimental phase shifts, one
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would need an inordinate amount of Rosenfeld com-
ponent in the force mixture. Thus there was some
indication that the only repulsion present in the short-
range exchange interaction in the kernel arising from the
antisymmetrization of the wave function is not suf-
ficient to reproduce the experimental values; it thus
seems necessary to invoke the explicit inclusion of a
hard core in the nucleon-nucleon interaction. The
preliminary calculations of Waghmare (1964) show that
a soft-core N-N interaction leads to a soft-core re-
pulsion in the a-a potential at least 1.6 times higher
than the attractive depth at the origin. One thus
hopes that a hard-core nucleon—nucleon interaction
would strengthen the repulsion in the a-« interaction.

Okai and Park also investigated the energy inde-
pendence of the a-a potentials. They plotted the
scattering wave functions for different / values and for
different incident energies as functions of a—a sepa-
ration and found that the zero points 7@ and 7,®
of the S- and D-wave functions, respectively, remain
fairly unchanged over a wide range of incident ener-
gies. These zero points are within a distance of 3 fm,
which is close to the contact distance (i.e., twice the
root-mean-square radius of a free a particle) of the two
a particles. [See Fig. 3 of Okai and Park (1966).]
Comparing these zero points with the hard-core radii
in the range of 1.4-2.1 fm and 1.2-1.8 fm for the S
and D waves, respectively [as required by Endo,
Shimodaya, and Hiura (1964)], the I-dependent, but
energy-independent, core radii coincide with the zero
points of the scattering function within the contact
distance. However, since the wave functions within the
contact distance do not vanish, the repulsive hard
core, in the strict sense, does not exist; the core is seen
to be rather soft. From the analysis of Okai and Park,
it thus seems that the kernel interaction is not suf-
ficiently strong to be replaced by a local hard-core
potential.

At this point one may ask, even if the nonlocal
kernel interaction may be replaced by a soft-core local
a—oa potential, to what extent would the local potential
be equivalent to the nonlocal one. This question has
not yet been fully answered. Some attention has
already been given to it by Shimodaya, Tamagaki, and
Tanaka (1962). Using essentially the same resonating-
group formalism, these authors investigated an ef-
fective a-a potential from the standpoint of the
cluster model of ®Be by making use of reliable proper-
ties of the pion”theoretical nucleon-nucleon potential
which consists of the one-pion exchange potential V;
(OPEP), the two-pion exchange potential ¥V, (TPEP),
and the shorter-ranged potential V;. It can be written
as

Vig=—(3) (zi*%5) (8:°6;) Va(rs)
+ SE P(S, m) 251V (ry) +257 Vi (r5) ],
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where P(S, w) is the projection operator for the state
with spin S and parity =, and 25177 (7;) is the potential
in this state. For explicit expressions for Va.(7;;), see
Shimodaya, Tamagaki, and Tanaka (1962). Their
equation of relative a—« motion is written in the form

LE—T:Ixi(r) =Vo(r)xi(r)+ fm w9 (7, ') xi(r) dr’
0

+ f T W (5, ) xa(7) e, (F12)
0

where x;(r) is 7 times the radial function f;(7) in
Eq. (F9);

- 1d 9 7 1(+1)

To=—=—(r =)+ — :

4M 2 dr\ 9or/ .4M r?
In (F12), Vp(r) is the direct potential as before, in-
dependent of xi(r), and W;®°® and W% are the
kernels of the exchange-potential and kinetic-energy

terms, respectively. An “effective” local a—a potential
Vet may be defined as

LE—TeIa(r) = Vet (nx(r),

where

Vett(r) = Vo (r)+Daln I
X { f LW (r, 7))+ W0 (7, ') ]xz(r')dr’} .
0

(F13)

Obviously, the “effective’” potential is defined only
where x:i(7) is not equal to zero. The definition of the
equivalent local potential (ELP) makes some sense
if one argues that a-a scattering may be described
phenomenologically by a local, energy-independent
potential and that the kernel is a peaked function near
r=r'; the nonlocality of the exchange terms is perhaps
not too serious. Calculations of ELP require, however,
the knowledge of xi(r). Shimodaya et al. pointed out
that at least the qualitative features of x;(r) can be
obtained by studying how x;(r) is damped by Pauli-
principle requirements in the a-cluster structure of
®Be. [The relation between the shell model and the
cluster model of ¥Be, or of other a-clustered nuclei
like »C and 0, was shown by Perring and Skyrme
(1956). The a-particle wave functions for the ground
states of ¥Be and of 2C and *O, when antisymmetrized,
become identical with the shell-model wave functions.
The interested reader is referred in ‘this connection to
Biel (1957), Wildermuth and Kanellopoulos (1958a,
1958b), and Neudachin and Smirnov (1957) and to
other relevant references cited in the book by Wilder-
muth and McClure (1966) on the “Cluster Model of
Atomic Nuclei.”]

Rewriting the antisymmetrized harmonic-oscillator
shell-model wave function for the (1.5)¢(1P)* con-
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figuration into that of two ground « clusters, one
obtains

xi(r) =rtexp (—v77). (F14)

The 7* factor in (F14) corresponds at small distances
to a repulsive potential like 20/72; the latter together
with the centrifugal potential give the effective re-
pulsive potential

[204+1(41) ]/ P=lots (lets+1) /7],  (F15)

which determines the behavior of x;s at small dis-
tances. A form of x;(r) which is consistent with (F15)
and with the approximate asymptotic form of xi(R)
[i.e., rxi(r)=~1] for the ground state of ®Be can be
written as

xi(r) =[1— exp (—wv?) JP/r=r**1 for small 7

~r1 forlarger. (F16)

This form, chosen merely for convenience in calculation,
was used by Shimodaya et al. with the values of the
parameters p=3, »=0.15 fm~2 for /=0 and 2, and p=4,
»=0.15 fm2 for /=4. These parameters were chosen to
correspond approximately to the solution in the presence
of a phenomenological hard-core a-o potential of
hard-core radius 2 fm, well depth —10 MeV and
range 5 fm, as suggested by Van der Spuy and Pienaar
(1958). The exchange potentials in (F13) calculated
with this x;() show repulsion in the region where two
« particles overlap, i.e., for # $2 fm. Shimodaya e? al.
observed that the main contribution to the exchange
potential comes from the TPEP one-pair exchange term
and the kinetic-energy terms. The latter are of shorter
range compared to Vp(r). The total exchange potential
behaves like a repulsive core with a radius of approxi-
mately 2 fm. This repulsion is due to the extreme tight-
ness of the « particles, which cannot overlap unless
quite high energies are spent to excite them. The total
effective a—a potentials have stronger attraction and
weaker repulsion inside for larger /, the  dependence
resulting from the exchange potential. As pointed out by
Shimodaya et al., this means weak angular correlation
between the exchange and nonexchange wave functions
because the overlap of the two « particles is small. Thus,
the effective potential V,,!(7) and a relative wave func-
tion x.(7), which is consistent with the Pauli principle,
are apparently consistent also with each other. [In a
recent letter, Tamagaki and Tanaka (1965) discuss
the connection between the nodal behavior of the a—«
scattering function and the hard core of the a—a inter-
action.] Although the effective local a—a potential has
nearly all the features demanded by phenomenological
analyses of the interaction, these features are only
qualitative, and it is not clear if the effective a—a
potential so obtained will give a satisfactory fit to the
experimental phase shifts. Moreover, the choice of
parameters of xi(7), although appropriate for demon-

strating the relative difference between the /=0 and
I=2 potentials, is presumably not very realistic. Thus,
within the framework of the approach of Shimodaya
et al., a somewhat more suitable procedure to derive the
equivalent local a—a potential V,.,°® seems to be to
keep p and » as free parameters along with the nucleon—
nucleon force parameters and determine these by re-
quiring Vae,®? to reproduce the phase shifts. One
could perhaps employ a self-consistent procedure;
i.e., one would make a guess for x;(7) and calculate the
exchange potentials, which in turn would be used to
calculate a fresh x;(r), and so on, until self-consistency
is attained for x;(7) and the exchange potentials. A
comparison of x;(r) thus determined with the x;(7) of
Eq. (F14) would perhaps give a better understanding
of the interplay between the core of the a—a interaction
and the damping of the relative a—a motion.

6. RECENT OUTLOOKS AND DISCUSSIONS

Knowing the general theoretical features of the a—«
interaction, one may ask how best these features can be
included in constructing phenomenological a—a po-
tentials which are of interest in the a-cluster models of
light nuclei and hypernuclei, etc. As is well known, one
can construct a number of phase-invariant potentials;
i.e.,, one may just assume an a-a potential shape
(e.g., a square well or Gaussian shape) with a certain
number of free parameters in it and see if this potential
fits the phase shifts. The various potentials discussed in
the section on phenomenological a—« potentials have in
fact been derived this way. Recently, Ali and Bodmer
(1966) adopted a somewhat different and more
satisfactory = approach. They constructed acceptable
S-, D-, and G-wave potentials, adopting the philosophy
that a common attractive part of these potentials can
best be constructed from a consideration of the G-wave
phase shifts which are sensitive mainly to the attractive
part. Especially at low a—a bombarding energies, the
large centrifugal barrier for the G wave masks the
inner repulsive part. For the nuclear part of the phase
shifts, the following superposition of repulsive and
attractive Gaussian shapes was used:

V™ (r) = Vg exp (—ur’?) — Va4 exp (—pa’?),

where (Vg, ug) and (Va, ua) are the depths and in-
verse ranges of the repulsive and attractive parts,
respectively. (The advantage of using a Gaussian
shape is that a comparison with the theoretical ex-
pectations for the direct part may be made; the latter
becomes Gaussian in shape if, for convenience in cal-
culation, a Gaussian shape for the N-N interaction is
assumed.) To investigate the effect of the centrifugal
barrier, only the attractive part was considered (i.e.,
Vr=0) for the G wave. For a given ua, V4 was varied
to give agreement to the experimental phases. It was
found possible to obtain two attractive parts [labeled
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dy and es by Al and Bodmer (1966) with V=
130 MeV, us=0.475 fm™ and V,=150 MeV, us=
0.5 fm™] which alone reproduced the phase shifts
reasonably well (see Fig. 6). Keeping these attractive
parts the same for /=0 and /=2, the repulsive part was
varied to obtain agreement with .S- and D-wave phase
shifts. The best S-wave potentials, denoted by do
and e by Ali and Bodmer, were for Vp=500 MeV,
ur=0.7 fm™ for dy and Vz=1050 MeV, ur=0.8 fm™
for es, respectively. The phase shifts reproduced by
these potentials are shown in Fig. 7 and compared with
the experimental ones. The parameters of the best
D-wave potentials, denoted by ds and e; (see Fig. 8§,
where the D-wave phase shifts are shown), are Vp=
320 MeV, ps=0.7 fm™ for dy and V=640 MeV,
pr=0.8 fm™! for e,, respectively. It was found that with
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Fic. 6. The /=4 phase shifts &; of Ali and Bodmer (1966) as a
function of the c.m. energy E for the purely attractive potentials
ds and e, as explained in Sec. 6 and for the potential d; (10, 0.7).
The latter has the repulsive part Vp=10 MeV, uz=0.7 fm™ in
addition to the attractive part ds. The experimental values are
shown with error bars. [Figure reproduced from Ali and Bodmer
(1966) by courtesy of Nuclear Physics.]

attractive parts giving less satisfactory fits to 8; than
ds and e, it was not possible to construct suitable
potentials, especially for the D wave. Only very small
repulsive parts are permissible for the G waves (per-
missible limits for the /=4 repulsive parts are Vi $10
MeV for ur=0.7 fm™ for the attractive part d, and
Ve $10 MeV for up=0.8 fm™ for e;) to yield phase
shifts consistent with the experimental ones, and d,
and es, when plotted as functions of 7, are quite similar.
These facts strongly indicate that the approach of Ali
and Bodmer uniquely determines the common at-
tractive part of =0, 2, and 4. One could always try to
determine a common attractive part for /=0 and 2 by
trial and error. However, since the results for &,
especially at low energies, are expected to be most
sensitive to just the attractive tail of Vi, (), it seemed
reasonable to try to determine this part by starting
with 04.
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F1G. 7. The =0 phase shifts &, as obtained by Ali and Bodmer
(1966) as a function of the c.m. energy E for the potentials do
and ¢, of Ali and Bodmer (1966) (explained in Sec. 6). The
experimental values are shown with error bars except where the
errors fall within the circles. [Figure reproduced from Ali and
Bodmer (1966) by courtesy of Nuclear Physics.]

The results obtained by Ali and Bodmer, besides
agreeing with the results of Darriulat ef al. (1965),
have all the features of the analysis of Shimodaya ef al.
(1962) ; the potential is local but ! dependent and is
weakened in going from /=0 to /=4, and an outer
attractive tail, independent of / exists.

A plot of the effective local a—a potentials do, do, ds
plus the corresponding centrifugal barriers for different
! values is shown in Fig. 9. It is seen that with the
decrease of the I value, the size of the repulsive core of
the nuclear potential, as compared with the root-
mean-square radius R, (=1.44 fm) of the « particle,
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F16. 8. The I =2 phase shifts §; as obtained by Ali and Bodmer
(1966) as a function of the c.m. energy E for the potentials d;
and e; of Ali and Bodmer (explained also in Sec. 6). The experi-
mental values are shown with error bars except where the errors
fall within the circles. [Figure reproduced from Ali and Bodmer
(1966) by courtesy of Nuclear Physics.]
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F16. 9. The potentials dy, ds, and d4 of Ali and Bodmer (1966)
with inclusion of the Coulomb potential and the appropriate
centrifugal barriers as functions of the a—a separation 7. R, de-
notes the root-mean-square (rms) radius of the « particle. [ Figure
reproduced from Ali and Bodmer (1966) by courtesy of Nuclear
Physics.]

gets larger, ensuring less and less overlap of the parti-
cles. Evidence about the nonappreciability of overlap
of two « particles, especially in the ground state of *Be,
has been obtained from studies on ,°Be. The investiga-
tions of Bodmer and Ali (1964, 1965), Tang and
Herndon (1965), Ali, Murphy, and Bodmer (1965),
and Herndon and Tang (1966) show that the rms
separation of the « particles in the configuration ,°Be
(in which the A is expected to compress the #Be core
assumed to be in its ground state) has a value of about
3.6 fm which is larger than twice the value of R,,
indicating that the « particles do not overlap ap-
preciably.

Furthermore, it is remarkable that the best S-state
o—a potential B of Bodmer and Ali (V=400 MeV,
pr=0.635 fm™!, V,=160 MeV, us=0.475 fm™),
obtained by employing the A as a probe into the details
of the a—« interaction in the cluster model of ,°Be, is
close to dy, the best S-state a—a potential with the
attractive part ds, mentioned earlier. In fact, the
correct A binding in ,°Be was produced for those a-«
potentials which not only yield the S-wave resonance
correctly, but also reproduce the experimental phase
shifts. Thus, from different points of view, it seems
encouraging to employ accurate determinations of s
(and of higher phase shifts, which would be even more
appropriate) at low energies (<10 MeV) in the
elucidation of the attractive tail of Vo (V).

Another interesting idea that arose out of the above
considerations was to see whether the attractive tail
of the a—a potential can be employed as a probe into
just the central spin-independent, isospin-independent
part of the nuclear force. Since for the o« particle

T=0% J=0%, only the central direct component v
(i.e., the term independent of spin and isospin) will
contribute to the direct part of V,.(IN), the other
spin and isospin terms averaging to zero. The tensor
force gives a small contribution because the a-particle
wave function includes a small amount of D state in
addition to the dominant S state. Thus, the tail of
Vaa(N) selects the attractive tail of v alone and is
expected to be a selective probe into the direct com-
ponent of the nuclear force.

Ali and Bodmer considered the relevance of these
ideas to a one-boson exchange model for the nucleon—
nucleon interaction [Bryan and Scott (1964)7. In
this model, the bosons contributing to v are a ¢ meson
(T'=0, J=0%) and mesons with 7'=0, J=1~. Of the
latter, the lightest is the w meson (m,=5.6 m,) which
gives rise to a short-range repulsion in v, whereas the
former (m,~3m,) will give rise to the required strong
and relatively long-range attractive part of ». The
important point thus seems to be to extract from
Vee™ information about m, as well as the ¢NN
coupling constant.

Considering for the normalized spacial part of the
a-wave function the form

(3/ma?)* exp (—3 Z r:i/32a%)

which gives a Gaussian distribution of the nucleons
proportional to exp (—7%/a?), which, in turn, gives an
excellent fit to the electron scattering experiments
[Hofstadter (1956), Burleson and Kendall (1960) ], and
assuming for simplicity the Gaussian potential ¥, exp
(—72/8%) for the long-range attractive part of v, one
gets

16Vo[ 1+ (24*/6%) ] exp [—7*/ (2a*+5%) ]

for the direct part of V™.

Identifying this with the phenomenological shape
used for the attractive tail of V,.'™ which is pro-
portional to exp (—us%?), one has ua?=2d245%
With ¢=1.184-0.05 fm and Ali and Bodmer’s results
for wa, namely 0475 fm™<Sus<0.5 fm, one gets

0.97 fm 5B £1.39 fm.

One can relate g to the range of a N-N Yukawa
potential proportional to » exp (—ur) by obtaining
that value of u which gives the same intrinsic range b
as the Gaussian interaction. Using the relations
B8=05/(2.06)'? and p'=5/2.12, one obtains

0.66 fm <p1<0.94 fm.

It is noteworthy that the values of x~! arrived at from
the analysis of a—« scattering are significantly less than
the one-pion range and are close to the value cor-
responding to a mass of 2m, for the exchange particle
for the N-N interaction. As pointed out by Ali and
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Bodmer, in order to attach more significance to these
results, precision measurements of high-/ (i.e., /=4 or
higher) phase shifts would be necessary.

Recently, interesting work has been reported by
Benn and Scharf (1967) in which they attacked the
inverse problem of constructing unique a-a phe-
nomenological potentials from the scattering phase
shifts. Using the Marchenko version of the fundamental
Gel'fand-Levital solution of the inverse problem in
scattering theory [ Marchenko and Agranovich (1963),
Gel’fand and Levitan (1951), Faddeev (1963)],
they constructed S-, D-, and G-wave a—a potentials
which for consistency gave exactly the phases from
which they were constructed. The features of the a-a
interaction found from earlier phenomenological studies
were also present in their potentials, which claimed
quantitative certainty because of the way they were
determined. However, their G-wave potential, although
giving correct phase shifts, shows oscillations [ Benn and
Scharf, (1967) ] when plotted as a function of distance
and does not seem to be physically reasonable. A
tentative explanation given by Benn and Scharf for the
oscillations was that in the energy region of 25-45
MeV, from which comes the main contribution to the
G phase shifts, not many consistent phase shifts exist.
Furthermore, the inelastic processes already open in
this region, and hence the use of the two-body potential
model becomes doubtful. Thus, for the determination
of the G-wave a-a potential, one seems to need to
restrict oneself to rather low laboratory bombarding
energies ( $24 MeV) as already emphasized by the
analysis of Ali and Bodmer (1966).

More recently, Payne, using the one-boson exchange
model of the N-N interaction which allows for the
coupling of ¢, w, and ¢ mesons to the nucleon, cal-
culated a-a scattering from threshold to 100 MeV
laboratory energy using both the Schrodinger equation
and the N/D equations. The phase shift in the N/D
approach is given by

(Cg?t1) 1 exp (i8:) sin &;=N:i(S) /D:(.S),

where

L 77\ 2my
c g(1+ fz)em—1 ;
n is defined as before and ¢ is the momentum. For
details about N, D see Payne or Scotti and Wong
(1965). Following Preist (1965), who also investi-
gated the contribution of meson exchange to the a—a
potential using only w and ¢ mesons, Payne neglected
the exchange forces in the calculation of the a-a
potential. Payne observed that while the N/D equations
do not give very accurate results, an extension of the
earlier calculation of Preist with the Schrédinger-
equation solution enabled him to obtain the best
possible fit to the experimental data with g2=2.66,
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2.2=3.07, and g,2=2.95. The values of the coupling
constants which fit the N-N data are found to be
2:2=3.05, g2=277, g2=2.26 [Scotti and Wong
(1965)]. Since the one-boson exchange potential is a
nonrelativistic reduction of the field-theoretical po-
tential, and since there is some ambiguity in this
reduction, the discrepancies between the above sets of
parameters are not large. Payne, however, does not
find a good fit to the D- and G-wave data, especially
below 10 and 30 MeV, respectively. The calculated
phase shifts are systematically larger than the ex-
perimental ones, indicating that some extra repulsion
is needed for these waves. Whether this repulsion could
be obtained by including exchange effects or, more
likely, a hard core in the N-N interaction is not clear.
A careful analysis in this direction would be illumi-
nating.

Thus, studies of the a—« interaction may not only
give a better understanding of the structures of *Be and
other a-clustered nuclei, but may also provide informa-
tion about the fundamental forces between the con-
stituents of these nuclei. However, to fulfill the pur-
poses of such studies, one must understand in greater
detail the important features of the a—a interaction;
i.e., the appearance of “hard” or “quasi-hard” core in
the interaction and the question of replacement of the
nonlocal a-« interaction by an equivalent local one.
[The equivalent local potential as defined by Eq.
(F13) is a rather trivially equivalent one; it has poles
whenever x;(7) is zero.] Recently, Fiedeldey (1967)
has given a general prescription for the construction of
equivalent local potentials (ELP) which may be
applied with profit to the a-a problem. Fiedeldey
proposed that in order to define an ELP without
poles one may relax the requirement that the equivalent
local wave function equals the nonlocal wave function
everywhere and assume that

w1(7) r>e—01(7),

where 9;(7) is the solution of the Schrédinger equation
with the ELP U;(r);

(d2vy/dr®) + {B2—[1(41) /7T o= Ui(r) s
The relationship between #:(r) and #,(r) is given by
(R2)

(R1)

wi(r) =gi(r)n(r),

with gi(7) rae=1.

A large number of ELP’s satisfying Eq. (R2) may be
constructed, but Fiedeldey has suggested a procedure
for constructing one which is without poles and is
smooth [g:(7) >0]. According to this procedure, one
obtains for a suitable ELP the expression

" o
Ui =~ &t [ Kl )l s, )7,
: 0
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with

8N =4 [ Kulr, ")) ulr, 7)

0

and ay, B; defined by the equations
ay(r, ') =v/(r)wi(r) —v(r)w/ (),

Bulr, ') =wi(r)u(r') —vi(r) wi(r') ; (R3)
v;(r) and w;(r) are, respectively, the regular and
irregular solutions of Eq. (R1) with the Wronskian

o/ (r)wi(r) —w)/ (r) vi(r) =1.

Thus, one could use initial approximations for U, (),
219 (r), solve Eq. (R1) to get v, and w,@, calculate
a @ (r, )39 (r, #') from Egs. (R3) and use these
ay, B; in calculating #,®. This U;® could then be used
as an input in (R1), and the whole procedure repeated.
This iterative scheme could be carried on until self-
consistency is attained for U;(r) and g;(r). The ELP
thus obtained could be used to calculate the phase
shifts §;, and by comparison of these phase shifts with
those given by the nonlocal potential, the adequacy
of the above procedure could be tested. One may
wonder if one can do without an effective o—a po-
tential, in view of the fact that the phase shifts can be
obtained directly by solving an integrodifferential
equation (F9) without using such an o—a potential.
This may be true for the a—a system but for problems
involving o clusters, other than a—a scattering, in-
corporation of the interaction terms in the form of an
effective a—a potential is indispensable; the use of the
theoretically obtained a—« interaction in these systems
would be too complicated. Recently, Clark and Wang
(1966) dealt with the theory of a matter, in which
the importance of applying effective a~a potentials
also becomes evident.

Some of the features of the effective local a—a po-
tentials which seem to need further study are its energy
dependence, the contribution of polarization forces to
it, and the dependence of its repulsive part on the
hard core of the N-N interaction.® Regarding the
first aspect, the phenomenological analyses and the
fundamental studies of the a—« interaction present two
rather different situations. The phenomenological
analyses admit an J-dependent (indicating only
implicit energy* dependence through the connection
of ! with energy for a given impact parameter) but
energy-independent potential, whereas the theoreti-
cally derived a—«a potential is both / dependent and ex-
plicitly dependent on the relative a—a energy. It has
been pointed out by Okai and Park (1966) and also by
Abe et al. at the 1967 Tokyo Conference that the
nodal behavior of the relative a-a wave function is
almost energy independent. Thus, there are indications

that the explicit energy dependence of the o« inter-
action is perhaps not very serious, and one may just
take I dependence as the simplest type of permissible
velocity dependence. However, further work in this
direction would be stimulating.

It is important to note that in order to get informa-
tion about the direct part of the N-N interaction from
the phenomenological tail of the a—a potential, it is
necessary to assume that this tail can be identified
with the tail of the direct part of Vo™ arising from
nuclear forces. This assumption is strictly justified only
if the latter tail is not complicated by polarization
forces; i.e., if polarization forces are sufficiently small
in the region of the tail. It may be argued on general
grounds that because of the extreme rigidity of the «
particles, the polarization forces are expected to be
small. In fact, the calculations of Herzenberg and
Roberts (1957) for the polarization forces (Vpor)
indicate that, at least at low energies, Vo1 is small
in the region of the tail of V™. Their calculations
were based on central N-N interactions, whereas the
most important long-range contribution to Vi, 1is
expected to come from the strong and long-range
tensor component of the one-pion exchange potential.
Nevertheless, they did make some estimates for a
Yukawa interaction with a range of w,™'. For the
nucleon—nucleus case, Drell (1955) estimated the
contribution to Vpo1 from a one-pion exchange tensor
forces and showed it to be small. However, although
the polarization forces do not seem to obscure the tail
of Vo™, detailed and more realistic calculations of the
former would be useful in making the role of the direct
part as a possible probe into the N-N interaction more
significant.

An important study would be the relation between
the hard core of the N—N interaction and the repulsion
in the o—a interaction. There is repulsion in the latter
at short distance which, in the resonating-group
approach, is due to the nonlocal term K;(r, ') which
originates from the Pauli principle. Since this repulsion
is not strong enough to be replaced by a hard-core
phenomenological a—a potential, and since the phase
shifts calculated with the fundamental a—« interaction
are above the experimental ones, a need to increase the
effective repulsion in the a—« interaction is justified;
it seems that the required extra repulsion could be
obtained by explicitly invoking a hard core in the
N-N interaction. Studies in this direction are expected
to throw considerable light on the repulsive character
of the a—a interaction. All of the fundamental studies
made so far have used a local N~N interaction, whereas
the recent developments in the nuclear-matter problem
(such as described by Bethe at the Nuclear Structure
Conference in Tokyo in September 1967) suggest the
necessity that the N-NV interaction be nonlocal. It
would be of considerable interest to see the effect of the
nonlocality of the N-N interaction on the effective
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two-body a—« interaction. It is expected that the kernel
K;i(r, ") and, hence, the phase-shift calculations,
would now be tediously complicated by the introduction
of a hard core in the N-N interaction as well as by
nonlocality of the latter; thus, proper numerical
procedures may have to be sought.

The phase-shift calculations, within the framework
of the resonating-group method, have been made for
various partial waves at high energies (through the
excitation energy of 40 MeV) and good comparisons
have been observed with the real part of the experi-
mental phase shifts* (which are necessarily complex,
because the lowest reaction threshold is at E=34.73
MeV for “‘He+-*He—'Li+p). However, the inter-
action used was purely real; it was derived under
assumptions (e.g., no-polarization approximation for
the « particle) which are valid only at low energies
when the scattering is entirely elastic. (The opening
of inelastic and reaction channels not only introduces
imaginary parts of the phase shifts but also affects the
real parts of the phase shifts for the entrance channel.)
Thus, such comparisons are not strictly justified, and
at these high energies the phase shifts must be regarded
as an indication only. A more complete theory would
have to consider a multichannel formulation of the
collision problem in the cluster-model approximation.

Abe, Endo, and Tamagaki (1967) have recently
reported their study of the high-energy behavior of the
repulsive core at 915 MeV. Using two-nucleon ampli-
tudes in the impulse approximation, they con-
structed the o-a potential V(7)) =— (120+4:150)
exp (—0.387 7?) consistent with the elastic data at this
energy. It is seen that the repulsive core, which mani-
fests itself as a hard internal structure of the composite
system at low energies, disappears and becomes ab-
sorptive at high energies.

The fundamental studies of the a—a interaction may
serve as a useful basis for understanding interactions
between other complex nuclei. Recently, considerable
interest has developed in nucleus-nucleus scattering
[Block and Malik (1967) ] where one also speaks of an
effective nucleus—nucleus interaction. In cases where
these nuclei have a cluster structure (e.g., ?C-?C or
18080 scattering), the same resonating-group form-
alism which is applied to the a-a problem may be
used, although the numerical complications in such
cases would be considerably larger. However, the
basis features of the interactions between these rela-
tively complex nuclei are expected to be essentially
the same as those observed in the case of a system of
two spinless, tight « particles. Thus, a deeper under-
standing of the properties of the interaction between
two a clusters is expected to shed considerable light
on the structure of many of the light nuclei.

* The same observation has also been made by Ali and Bodmer
with the use of purely real phenomenological a—a potentials.
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APPENDIX I: METHOD OF PHASE-
SHIFT ANALYSIS

Starting with the two-body Schrodinger equation for
the a-a system and following the usual partial-wave
analysis, one obtains for the scattering amplitude the
expression

7(6) = (2ik)~ 3> (2141) [exp (2i51) — 11Py(cos 6).

Because of the symmetric nature of the a—a wave
function, the components of the scattering amplitude
with odd / make no contribution, while the components
with even / are doubled. Thus,

f(0)=;,% > (2141)[exp(2i6;) —1]P;(cos 6). (AL1)

! even

When the Coulomb interaction is taken into consider-
ation, the differential cross section for scattering is
given by

do/dQ2=|£(0) |2 (AL2)
with
F(0) =fes(0) +fxs(6)
and
Jos(0) =fe(0) +fe(m—06),
where

fo(0) = 5;;1%75 exp [—1n log (sin? £0) 4 2iaq ]
)
and

fxs(6) = (ik)~ ZZ (21+1) (exp (2id,) —1]

X[exp (2i07) 1Pi(cos 6); (AL3)

fns(8) and fos(0) denote the nuclear and the Coulomb
part, respectively, of the scattering amplitude. The
Coulomb phase shift of rank / is defined by

or=arg T'(I4+1+1y),

7 being defined in the text.

The phase-shift analysis may be done in two ways.
One is the graphical method which was first employed
by Wheeler (1941) for analyzing the early scattering
experiments of Mohr and Pringle (1937) and of
Devons (1939).
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In this method it is instructive to express the differ-
ential cross section ¢(6) in the form

c.m. 0 M2v4 1/2 . .
[ﬁ—] =csc? 6 exp (—1n log, sin? 6)
et
+sec? 0 exp (—in log, cos? 6)+(2i/n) D, (21+1)
1 even

X Pi(cos 0) {exp [2i(o1—00) J}[exp (2i6,—1)] (AL4)

in an obvious notation. A solution of Eq. (AIL4)
for §; is sought by treating each term as a vector in the
complex plane. This equation will usually be satisfied
by more than one set of §;. When the number of partial
waves to be included become large, the graphical
method becomes rather laborious and one seeks a
second method of doing the analysis, i.e., by an itera-
tive procedure using a computer.

There are several slightly different versions of the
second method. We sketch one which has been used by
Darriulat, Igo, Pugh, and Holmgren (1965). An
initial set (8;, 0) is chosen. For this set, the calculation
of x? (chi squared) defined by

[X:(expt) — X ;(theor)
[AX(expt) P+ {A6.[dX:(expt) /df;]}*

is made. In (ALS), X;= (ds¢/d) (6;, E), AX; being the
" uncertainty in the measured value of X; and Ad;
the uncertainty in the angle at which X; is measured.
The theoretical cross section is calculated by using
formulas (AI2) and (AL3). A new set of values for the
41 is chosen, using the recursion formulas

ax2 ax221/2
=it (3) /| £(%)
e, 361/, ; o |

where H is a suitable steplength fixed beforehand. The
procedure is continued in iteration until Xn412>xa%,
when the required solution for the §; is assumed to
have been obtained.

xX'=

(ALS5)

APPENDIX II: PHASE-SHIFT CALCULATIONS

The radial part of the Schrodinger equation for two
a particles may be written

f—%+[k2—U(r) l(l+1):|fz(f) =0, (AIL1)

where k?=2uE/fi?, u being the reduced mass of the
two « particles, E their relative energy, and U(r) =
(2u/7?) V4o (7). Beyond some large enough distance R,
the nuclear part of the complete a—a potential Vu(7)
becomes negligible and the Coulomb part dominates.
The required solutions of (AIL.1) are those which
vanish at the origin and behave asymptotically as an
incoming Coulomb distorted plane wave plus outgoing
Coulomb plus nuclear distorted spherical wave. The

solutions of (AIL1) in the region >R are then

[fi(k, 7) J=r=exp [i(8:+01) ]/k

X[cos 8:F:(k, r)+sin 8§:Gi(k, 7) ], (AIL2)
the notations being the same as used earlier.

The solutions for 7< R are generated as follows: As a
starting value (near the origin or the hard core)
fi(k, r) is taken to behave like 7+, Using this starting
value, (AIL1) is integrated numerically, using standard
procedures, out to r=R. The solutions generated in
this way are multiples of the solutions we require,
ie., fi= cifi, and hence the phase shift §; is independent
of ¢;. One readily obtains

tan 8;= [ kFl,(ka 7’) _F(k, r)L(k, f)
= LGuk DLk, =BG/ (k1)

LR, (AIL3)

where the prime denotes differentiation with respect to
p(=kr), and L-fz /fz is the log derivative of the
function f; at the joining radius r=R.

In deriving (AIL3), use is made of the property of
continuity of the wave function and its log derivative
at r=R. For given values of the parameters p(at
r=R) and %, the Coulomb wave functions and their
derivatives F;, Gi;, F/ and G/ may be calculated
numerically by using, e.g., the series expansion method
of Froberg (1955). The conditions for the series ex-
pansions to be valid are np<50, p<10. Tables of
Abramowitz (1952) and of Tubis (1957) may be
useful; see also Bloch (1951).
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