
RR VIE%'S OF MODERN P HVS I CS VOLUME 4t, NUMBER i JANUAR Y 1969

Scattering oI:,. o..arizec. '. eptons at . '. .xg. ~ . 'nergy
NORMAN DOMBEYt
Department of Physics, Harvard University, Cambridge, Massachusetts

A unified treatment is given of the high-energy elastic and inelastic electromagnetic scattering of electrons and muons
by hadrons in terms of the polarization density matrix of the virtual photon exchanged. It is shown that when the leptons
are longitudinally polarized, the virtual photon is in a pure polarization state which is a coherent superposition of an
elliptically polarized transverse state and a longitudinal state. Experiments utilizing these features are suggested and
the formulas for the cross sections are obtained. The limit in which the virtual photon is almost real is investigated
carefully. Finally, it is shown that the formalism is immediately applicable to neutrino scattering.

At present most experiments of this kind are per-
formed with electron beams at electron accelerators.
Muon beams have been formed from the decay of pions
in fhght at the major proton accelerator sites, and
experiments have been successfully carried out recently. '
Larger proton accelerators giving rise to more intense
and higher-energy pion beams will probably be built in
the next few years; this should make muon experiments
of this kind more common. In particular, muon beams
have one major attribute not possessed by electron
beams: they are polarized. Ke shall always mean
longitudinally polarized when discussingpolarized leptons;
this component dominates scattering at high energies. 3

In principle, it is also possible to partially polarize
electron beams, 4 and so it is interesting to make an
analysis of what new information can be obtained with
polarized lepton beams; that is the purpose of this
paper.

%e begin in the next section by constructing the
polarization matrix of the virtual photon initiating the
reaction (assuming always that only one photon is
exchanged) in the approximation where the lepton mass
is neglected. In Secs. III and IV we systematically
analyze e1astic and inelastic scattering of these polarized,
zero-mass leptons by nucleons; we choose pion produc-
tion as the simplest and perhaps most immediately
interesting inelastic process. In Sec. U we consider the
corrections to this formalism necessitated by including
the lepton mass. These corrections are most important
in the forward directions where k~0. Finally, in Sec.
VI we show that neutrino scattering can be included in
this general formalism.

I. INTRODUCTION

Experiments where electrons or muons are scattered
o6 nucleons and nuclei have been pursued for many
years in order to discover the electromagnetic properties
of the nucleons and nuclei. In elastic scattering, the
quantities of interest measured by these experiments
are the form factors G~(ks) and Gsr(k'), which describe
the longitudinal (Coulomb) and transverse (magnetic)
coupling strengths of a virtual photon of four-momen-
tum k to the particle. The Fourier transforms of Ga
and Gsr in configuration space can be considered the
charge and magnetic-moment spatial distribution
functions of the particle (at least in nonrelativistic
models) . In the case of inelastic scattering,

l+H +1+H', -(i)
it is convenient to consider the equivalent photon
process

y+B-+B', (ii)
where B, H' are two different hadronic states. The
photoexcitation amplitude describing the transition
(ii) from H to H' at center-of-mass energy W is written
as T(W). Then for the process (i) the transverse
transition amplitude T(k', W) for which T(0, W)=
T(W) can be measured, as can the longitudinal tran-
sition amplitude L,(k, W), which is not present at
k'= 0. If only the four-momentum of the final lepton is
measured, k' and W are determined, but electively
all states B' of energy lV are included. So in this case
the quantities measured are the total absorptive cross
sections or (k', W) and oz(ks, W). All these quantities
T(ks, W), L(ks, W), os (k', W), and oz(ks, W) are of
great interest in synunetry schemes and dynamical
models in elementary particle physics and nuclear
physics. If H and H' are degenerate in some symmetry
scheme, the quantities T(k', W) and L(ks, W) can be
related to the form factors of Z. Dynamical models
(sum rules, superconvergence relations, bootstraps, for
example) relate integrals of or and oz in k' or W or
both to zero or to the static electromagnetic properties
of H, or will give the asymptotic properties of T, I.,
oz, 0I, as k and 9 tend to inlnity.
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II. DENSITY MATRIX

We erst consider the process

y+N~N',

where N' is any hadronic state. The amplitude 5K for
this process is given in terms of the hadronic electro-
magnetic current operator J„by

5R,=e(N' [ J„[N)g„,

f
where 8„ is the polarization of the real photon y. The
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%e now turn to virtual photons. The matrix element
for the process

Eg+E—ole+ 1P
1S

OR= e'(¹
I J„ I

N &(l2 I j„I lg&/k',

assuming one-photon exchange, and then
3a

I
OR I'= (2"/k') 2"„,L„„

(12)

(3b) (13)
where now

2k'L"= Z «2 Ii. I ~i&*«s Ii. I 4&
SP lIl

cross section for this process is given in terms of I OK I'.

IoRI'=e g «v'I~.
I x&'Pr'IS„I x&8.*8„

pol, sp jn

=e'T„,L„„;

L„,= +8.*8„,
p01

T„,= g «v'
I ~, I

ar&*yr'
I J„I x&,

Sp 1Ik

where P sums over final states and averages over
initial states. If the Lorentz condition k 8 0 is used,

k„L„,=k,L„.—0.

As the hadronic current J„ is conserved (using the
shorthand J„=W'

I ~„ I &&),

kP„=k„T„,=k.T„,=0. (5)
Equations (4) and (5) imply that it is sufficient to
consider the spacelike components only of L„„and
T„„.~:The 3X3~matrik p;, =L;; is called the photon-
polarization density matrix. If we take the photon
momentum to be in the s direction, '

k„= (0, 0, k, ik), (6)
then

8„=(8„8„,0, 0),
I 8* I'+

I 8. I'=1- (7)
For linearly polarized photons in the x' direction

(1 0 0

p= (p's) = (8)

(o o o)
For unpolarized transverse photons averaged over x
and. y directions,

(-;oo

and T„„is given as before.
The electromagnetic current for leptons is given by

jp ZQ2 //SAN)

k„j„=k„L„,=k,L„,=O

and for unpolarized leptons

2k'L„,=-', Tr Py tsar, y leg„5

(16)

2Lag= 1,

2L~= (ko'lk') L8l(1—8) 5~

(19b)

(19c)

=2(lgg~+lt„l2„—lg le„,)
=2(lt„la„+lt„lg,+,k'0„,), (17)

where the lepton mass ttt has been neglected This.will
be a good approximation for k'»rN'. To evaluate the
right-hand side of Eq. (17), the s direction is defined
as before:

k„= (o, o, Il I, ek,) (18)
and the x-s plane, the scattering plane, is de6ned by
the leptons. Then, after some manipulation,

2Ln= 1+(k'/I lg P) cot'~P

= (1+8)I(1-8), (19a)

p= 0 ~ 0

(o o o

(9)

42= Ln=L 3=Lorn=o, (19e)

2Lto=2L»= (ko'/k')''L28(1+8) 5'"/(1 8)~ (19d)

For a partially linearly polartzed beam of relative
strength (1+8) in the z direction to (1—8) in the
y direction,

where 8 is defined by Eq. (19a) and clearly measures
the transverse linear polarization of the virtual photon
I cf. Eq. (10)5. From Eqs. (19c) and (19d) 8 also
measures the longitudinal polarization of the virtual
photon and can be w-I'itten as

p= -', (1-8) 0 (10) 8=I 1+2(I ig I'lk') « ' lyl '; (2o)

p= e/2 0

0 0

o o o

For right circularly polarized photons

8„=(1/V2) (1, e, O),
and so

—~/2 0)

f is the angle of scattering between incident and final
lepton. '

The polarization matrix p@ could be taken to be
(1—8)L,, But the longitudinal components of Eq.
(18) are not in their most useful form, as they appear
to be singular for the real photon limit of k'=0 (see
Sec. VI) . It helps to write out the amplitude OR directly
in terms of the currents. Then,

~.i.=J j—&oi o=~.i.+~ei e+9—(I ttgI'/ko') 5J.i*



P12 P21 P23 P32 (22)
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using Eqs. (5) and (16), or

J„j„=J.j.+J„j„(—k'/k. ')Z, f,. (21)

Thus, it is possible to include the current conservation
factor (—k'/ko') in the lepton contribution to DK and
ignore it in the hadronic. With the inclusion of this
factor, the polarization density matrix can be written:

pu= (1—g) Ln= 2(1+g),
p„= (1—g) L,,=-,'(1—e),
p»= (k4/ko') (1—g) L»= (k'/ko') &,

PM= p3i= —(k'/k//') (1—&) Li3= —(klko) Llg(1+g) j"

Thus, experiments using unpolarized leptons are
equivalent in the small k' limit (but remember that
k'&)I'; we go into this point later) to those using
partially linearly polarized photons. Furthermore, the
polarization 8 will be known very accurately. This
result has been known for some time. In general, there
will also be the interference term between the long'itu-

dinal and transverse components of 8 which can be
used to measure longitudinal amplitudes of the hadronic
transition.

The main result of this paper can now be approached.
Suppose our incident leptons are polarized (say, right
polarized). Then the operator for zero-mass leptons
which projects out the states for which

&.px=! pl x

and now
«——(k'/kP) 8, (23)

We have written k = (k') '/'; henceforth it will only have
this meaning. Finally, the longitudinal polarization is
defined:

is —,'(1—ys). The corollary of Eq. (17) is now

2k'L. .=l Tr Lv. 4v.v 4v. (1—vs)] (26)

(27)
';(1+8) -L'l .(~+ )7")

—,'(1—C)0

—L-,'«(1+g) j'"
0

)
(24)

This is the desired result which shows that in the
scattering of unpolarized leptons, the density matrix of
the virtual photon is the incoherent sum of the two
pure states7

i.e.)

k2J~„~=8 ~p lg leap)

L)2"———Lgi" ————,'iL(1+8) /(1 —g) 7'"

(28)

(29a)

L,,„"= —L32"—(i/v2) (ko/k)! 8/(—1 P) ]'/2, —(29b)

where I.„,~, the symmetric part of I.„„,is given by Eq.
(19), but L„."satisfies

2k'I.„„"=—-', Tr fy lay„y l/y„yg)
or

g.=!L-, (1+g)3'", 0, -«'"I
g&= (0, L-', (I—g) J/', 0I.

-', (1+g)

(25a) L,13A —L,31
A —0

'~/& &'P' —P& (—&+a)7"
)—'L-', «(1—&) 3'"p= z(1 g2)1/2

—L-',«{1+8)]"' iL-',«{1—f,) ]'/2

(25b) The new density matrix, defined as before, is

(29c)

(30)

This density matrix shows that the virtual photon is in
the pure polarization state

g = I! -'(1+g) O'" 'Ll(1—~) j'" -g '"I (»)
Thus, scattering by polarized leptons is equivalent to
scattering by a photon whose polarization is a super-
position of a transverse elliptic component and a
longitudinal component. To extract the new information
contained in interference between xy and ys components
requires scattering off polarized targets, for otherwise
an antisymmetric contribution to T„„in electromagnetic
interactions cannot be obtained (as parity is con-
served) . Alternatively, recoil nucleon polarizations
could be measured, but our analysis will be made in
terms of target polarization, as this should become the
more effective technique.

The rest of this paper (except Sec. UI) is devoted to
a study of the scattering of polarized leptons off
polarized nucleons.

III. ELASTIC SCATTERING

k=li —l2= p2 —pi, (32)

We will now calculate the elastic scattering of a
polarized electron or muon by a polarized nucleon. 3 A
formalism is developed which goes over easily into the
calculation of inelastic scattering. It is most convenient
to work in the Breit frame of the nucleon, ' rather than
the general frame of the last chapter. If /&, pi, l2, p2
denote the four-momentum vectors of the incident and
final lepton and nucleon, the momentum transfer k is
given by
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in the nucleon Breit frame This gives the Rosenbluth formula

From Eq. (19a)
ko=o, l

~~ p, . (33) da/dQ= (ez'/k') (E'/E) '{Gs'{cot' g/(1+r) j
yrG3j'$2+ cot' —',y/(1+ r) j}, (42)

(1+8)/(1 —8) = csc' —',Pti, (34)

where Pit is the lepton angle of scattering in the nucleon
Breit frame. 8 is not an invariant quantity, but it is
invariant under Lorentz transformations along k.

The lepton four-momenta are (taking the z direction
along lg)

where E and E' are the energies of the initial and 6nal
lepton in the laboratory frame.

Alternatively, in terms of the polarization 8, Eq.
(42) can be written as

do/dQ= (2n'/k') (F.'/F)'(1 8) '(—8Gtt-'+rGss') ( 3)

li =—k (cot -', tPtt, 0, 1, i csc —',Pit), (35a)

lz ——-', k(cot-', Pit, 0, —1,i csc go). (35b) do/d0= (ee'/2M') (&'/&)'(1 —8) '(G~'+&LGtz'), (44)

21-g2= 1,

2L4e = —Co t

2L14—2L41 —z cot opB csc ale/By

2Liz ———2Lzi ———z csc ',fts, -

2Lz4 ———2L4z ———cot —,'Pti,

I.p„=I.„3=0. (36)

The proton current in its Breit frame is very simple.
In terms of two-component spinors, the nucleon
current is

~l =X2 &"Xi~
where

F'=ikG~d e2,

5'= —ikG~d eg,

S'=0,
$4= 2MiG~,. (37)

e~, e&, e3 a,re unit vectors along the x, y, and s axes, and
GE(k') and Gee(k') are the electric (Coulomb or
longitudinal) and magnetic (transverse) form factors
of the nucleons. For unpolarized nucleons we can con-
struct the symmetric tensor T„„given by Eq. (3b)":

(38)
leading to

Tu= T~2= &'G~',

all other T„„=O.Hence

T44= —4M'G~2; (39)

2L„.T„,=k'Get'(2+ cot' ,'its) +4M'G~' cot' ,'—ftt—
In terms of the angle of scattering in the laboratory

frame P,
(4o)cot' gii ——(cot' ail') /(1+r),

where
r=k'/4M'.

The elements of the tensor I.„„for an initial lepton of

positive helicity are easily calculated to be

2L,i= csc' —,'Pit,

using r=k'/4M =ko'/k'. Note that in this case as
k'~0, 81„—+~ and the longitudinal terms dominate.
This simply shows that the corresponding real photon
process y+X +E is fo—rbidden.

For a polarized target„T„„"must be added to T„,of
Eq. (38):

T„."=~,' Tr 8, "+F-o& nj (45)

for the nucleon polarized along (opposite) the direction
defined by the unit vector n. For large values of k',
say r 1, the term involving Gze' in Eq. (42) is about
40 times as big as the term Git' Lmaking the usual
assumption that Ger(k') Gie(k'); GE(0) = 1, GiLr(0) =
2.79j. This means that it is basically Ger which is
measured in the existing experiments at large momen-
tum transfer. The most interesting experiment is thus
to measure an interference term of the form G~G~ and
so find Gn. From Eq. (37) interference between (14)
and (24) components will provide terms of this form;
Eq. (36), however, shows that Lze= —Lez, while

J&4——L4&. So the configuration necessary will be one in
which T~———T4~, and the proton must be polarized in
the x direction )defined by the lepton momenta in
Eq. (35)J. Now

Tg4'= —T42*= 23AG~G~, (46)
so

2L»T»=kzGzt (2+ cot zilrts)+4M G@ cot

%4MkGzGer cot ',fit (47)—
or

do/dQ= (n'/2M') (E'/E)'(1 —8) '

)& {Gee'+gr Git'~2GitGteL-, 'gr. (1—8) ]'t'I (48)

where the alternative sign comes from reversing the
direction of polarization. Thus, measuring the asym-
metry in the cross section on Gipping the target polar-
ization will measure G+G~ directly. Note that the sign
of G~ can be determined in this measurement; as
Gz Fi rFz,"it is a pri——ori q—uite likely that Gz becomes
negative for large values of O'. The target nucleon must
be polarized perpendicular to the virtual photon in the
Breit frame, i.e., perpendicular to the direction of the
recoil nucleon in the laboratory and in the scattering
plane.
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For targets polarized in the s direction, it is easy to
show that the asynunetry is proportional to G~'.

IV. INELASTIC SCATTERING—
PION PRODUCTION

Ke now turn to pion production,

ll+ pl~4+ pp+q

where T„,~ indicates that the tensor is evaluated in the
Breit frame. The most convenient frame in which to
evaluate T„, is the center-of-mass frame of the reaction
k+pr~pp+q. In order to reach this frame from the
Breit frame, a Lorentz transformation is made in the
z direction transforming

k„=(0,0, k, O)
into

01
k= 3»—l», k+plop+ g, (49)

k„''= (0, 0, k„ ikp),

2LIp"—— i csc —,'fs, — 2LIp"= cot-,'ps sin p,

2Lpp" = —cot g s cos p. (52)

First consider an unpolarized target. The nucle-
onic contribution T„, will now be symmetric; also,
as the y axis is perpendicular to the Breit frame, the
only sylnmetric tensor which includes a component in
this direction is b„,.Since T„3=0,

2L„,T„.= (1+ cot' ~pgS cos' b) TIIS

+(1+ cot' —,'if' sin' y) Tpp~ —cot' -', Ps T4ps

+p cot pigs csc +ps cos $(TIP+Tpl ), (53)

where g is the four-momentum of the final pion. We are
interested in coincidence measurements whereby two
of the anal particles are observed, and thus all the
momenta of all the particles are determined. This is
the simplest inelastic process, although its formulation
is complicated enough. The methods of the last section
are followed; the square of the matrix element for the
process is still best evaluated in the Breit frame of the
nucleon, given as before by Eq. (33).But the nucleonic
system now de6nes its own plane containing lr and q.
So the lepton momenta l» and l» now depend on the
angle d between the leptonic plane and the nucleonic
plane. Hence,

ll = pk (cot pg'II cos Q, cot pfs s111 Q, 1, 1 csc Qgs), (50a)

lp=-', k(cot -,'tea cos p„cot ,'Ip& sin p,-—1, i csc —',/II).

(50b)

It is convenient to break L„, up into symmetric L„„~
and antisymmetric I.„," components when describing
scattering by a positive helicity lepton.

%e have

2LI18=1+ cot' +s cos'g,

2LIp=& cot &1ps sin 2g,

2LpP= 1+ cot pIPs s111 P,

2LIP =i cot pcs csc pIPs cos P,

2Lp4 =—co't pigs,

2Lpps =$ co't pIPs csc xpIPs sill @,

L 8

where ko and k, are functions of k» and the center-of-
mass energy 8'.9 ID this frame

k'Tpp =—kp'T

kT«= ikpT«— , kT+= ikpT;—4s' i,j =1, 2. (54)

Putting all this together gives the we11-known result

d'o. n E')Ki, do.,
dE'koIdQ. 2n E k' dQ

for the diGerential cross section for scattering into the
lepton solid angle Chug measured in the laboratory and
into the pion solid angle dQ, measured in the center of
mass. E, E', and

~
K ( are measured in the laboratory

frame; i.e., in this frame k„=(K, iXp), Kp E E'. —— —
do, /dQ is the cross section in the center-of-mass frame
for pion production by a virtual photon and can be
written from Eqs. (53) and (54) as

(k,/~ q () (d /0dQ) =
p (TII+Tpp)+-', (T11—Tpp) 8 cos 2@

+grTpp —Lsrgr, (1+@)O'I'(Tl, +T„)cos y (56).
The 6rst term is just the cross section for pion produc-

tion by an unpolarized, transverse virtual photon; the
second term comes about from interference between
transverse states and is the p-dependent term which
occurs in photoproduction using linearly polarized
photons; the third term is the cross section for pion
production by a longitudinal photon, and the fourth
term represents interference between longitudinal and
transverse components. The expressions for the T;;
in terms of &he conventional amplitudes 5'» ~ ~ %6" are
given in Eq. (A4) of Appendix A. By varying p and 6
for 6xed k», lV, and 8, each of the four terms can be
measured separately.

%e now consider scattering oG a polarized target
First, let us consider what can be learned in pion
photoproduction experiments using polarized transverse
photons and polarized targets. "There are four complex
functions F», F», Fe, 54 and hence seven independent
quantities describing pion photoproduction for each
pair of values of W and 8 (the pion scattering angle) .
If linearly polarized photons are scattered by an un-

polarized target, two quantities T»» and T»» are meas-
ured, one for each direction of polarization. Linearly
polarized photons scattered by a polarized target give
two amplitudes for each direction of polarization of the
target; hence, six independent quantities can be
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q/I q I
=e»in 0+el coso;

Ke define

e2= ee 22 e,. (57)

T; "='Tr PM-*tt n]. (58)

From measurements t using Eq. (55)j of the pion-
production cross section do.,/dQ for polarization along
and opposite to the direction n, we can form the sum
and differences

aI1d
2(dos/dQ) 8"= (doe/dQ) + (do e/dQ)

2(do„/dQ) n"——(do, /dQ) a—(do,/dQ) . (59)

(do, /dQ) a" is just do, /dQ of Eq. (56) for unpolarized
particles. The asymmetry in the cross sections for
polarization along the x and s directions is given by

(do/dQ)n" ———,'LT12"+T22")8 sin 2y

(2/2) (1 82) 1/2(T 2a T e)

L28L(1+8)]'t'(T22 +T22e) sin y
—iI 218L(1—8) g't (T22 T22e) cos Q. (60)

For polarization along the y direction,

( d/od)QD =
2 (Tll"+ T22") +2 (Tll T22")8 cos 2Q

ya, T„Pg,(1+8)J—t2(T„+T„)cosy

+iL218L(1—8) Jt2(T122 Tele) sin p. (61—)

All four terms in Eq. (60) and all the interference terms
in Eq. (61) can be measured by varying the azimuthal
angle g. To decouple the transverse and longitudinal
terms (Tile+ T222) and T22", 8 must also be varied. The
expressions for T;" are given by Eqs. (A5) —(AV) of
Appendix A.

As seen from the form of these expressions, the sym-
metric terms T;++T;," (which could be measured with
an unpolarized beam scattered on a polarized target)
do give the imaginary part of products of amplitudes

measured (the two amplitudes measured on an un-
polarized target are, of course, not independent of
these six). Thus, this is still insll+cient to specify the
problem; these measurements must be supplemented by
measurements of a circularly polarized photon scattered
by a polarized target, which give two extra quantities
and provide a complete set of measurements.

Furthermore, the measurements using nrcularly
polarized photons involve the real part of certain
products of amplitudes 5;, while the measurements
using linearly polarized photons involve the imaginary
part of the same products of amplitudes. Hence these
measurements are complementary.

Proceeding to the calculation with a polarized target,
we write down the formulas for the target polarized in
the x, y, and z directions: The x and y directions are
dehned so that the pion momentum q is given by

q =
I q I (sin 8, 0, cos 0)

whose real part is given by the antisynunetric terms.
The transverse terms (i,j=1, 2) of Eqs. (60) and (61)
are precisely those which appear in the photoproduction
expressions involving linearly and circularly polarized
photons. Thus, working at low k2 (in view of the condi-
tion k'»rtt2, this is in practice restricted. to polarized
electron scattering), it is possible to make a complete set
of measurements of the photoproduction amplitudes in
one experiment, as the elliptically polarized virtual
photon is a superposition of linearly and circularly
polarized components.

By the same argument as before, there are six com-
plex functions of lV, 8, k' describing the general case,'

hence, 11 independent real observables must be meas-
ured. The symmetric parts of Eqs. (56), (60), and
(61) give 12 quantities, thus in principle specifying the
system. The Gvc extra antisyrrnnetric quantities in-
volved in using polarized leptons overdetermine the
system, but in practice would be very useful because
they involve the real part of functions whose imaginary
part is known.

A simple example is the erst pion-nucleon resonance,
the X~222*(J=2, I=2). We consider the production of
2r' (in order to avoid the pion pole) at resonance and
include only s and p waves of the fmal erEsyste-m,
using the partial-wave analysis of Eq. (A8) .

The dominant excitation in this region is the magnetic
dipole Mj+. The goal is to measure the less important
terms at resonance. These form two groups:

(i) The electric and longitudinal quadrupole excita-
tions El+ and I.l+ of the X* which are in phase with

Mg+."
(ii) The background terms

whose phase is small, as the slt2 and plt2 2rNpha-se
shifts are small at this energy. '~

The formulas are approximated by only including
terms quadratic and linear in M 1+. The term I Ml+ I' is
the dominant contribution and has already been meas-
ured'6'~ in unpolarized electroproduction experiments.
M~+ is pure imaginary at resonance, so the real parts
of the interference terms of group (ii) with Ml+ and
the imaginary parts of interference terms in group (i)
can be omitted. For the transverse terms using 64=0,

T12*+T21* determines Im (Mt~1+*), (62a)

T12e+ T21* determines Im (Ee++3M1 cos e) Ml+*,

(62b)

T12*—T22' determines (3 cos2 0—2) I Ml+ I2+6&1+Ml+*.

We can choose 8 appropriately in (62b) and (62c) and
thus provide clean measurements of all three transverse
nonresonant terms.

For the longitudinal terms the procedure is similar.
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Starting with the expression for unpolarized particles
[Eq. (56)j:
T12+Tzi determines Re (L2++6LI+ cos 8) M i+*. (63a)

This term has been measured" and presumably is a
measurement of J~+. Also,

T22*+T22* determines

Im [Lo+ cos 8+Li (3 cos' 8—2) jMI+*, (63b)

and Jo+ and L~ can be isolated by taking cos 0=0 and

3 The higher x—N resonances can be trea ted similarly
but they are more complicated.

We now look at inelastic lepton scattering integrating
over the pion angles 8 and p. If Eq. (56) for unpolarized
leptons and nucleons is integrated, we obtain, using
Eq. (55),

obtain the limit k'—+0. This means scattering at almost
forward angles, so that

L(1—g)/(1+g) 3'" (E—E)/(E+E) (6g)

Although this factor is inverted in Eq. (66), it repre-
sents the ratio of the diGerence to the sum of the
transverse cross sections. Hence it should be as large as
possible in order to separate the asymmetric eGects.
For a given energy E, the largest values of t/I/ are the
best to measure.

V. FORWARD SCATTERING

We now consider the case where k' is not large com-
pared with m~. This is especially important for muon
beams. For simplicity, only forward scattering, /=0,
is considered and now eP is not neglected.

To first order in ns'
d'o/dE'dkDI . (n/2zk') ——(E'/E) (i K i/k') (1—g) '

X[0'T(k2, W)+BI,OD(k2, W) j (64)
k'= m2 (E E')2/E—E'. (69)

for the total virtual single pion photoproduction cross
sections ap and 0-1,. Here

k,
kIT Ir d& (Tl1+ T22)

lql
and

k.
01.= 2X' dXT3g) (65)

where x=cose, for virtual single pion photoproduction.
But clearly, Eq. (64) is independent of the final hadronic
state N' in the reaction ii+N~lz+N', where only l2 is
observed. So, in general, 0-g and 0-~ measure the total
virtual-photon absorption cross sections. Now, Eq. (60)
gives the asymmetry in lepton scattering oG a nucleon
polarized along and opposite to the direction of the
virtual photon:

(kizkr/dE'Ckdi) '=" (d'o/dE'A—I) —"
kY E'

i
K [ 1+8 "'

2~~ E k~
[ap(k2, W) —OA(k2, W) j, (66)

~here

k,
(0p —a g) = 21ri —de (TI2*—T21') . (67)

By comparison with Eq. (11) for the density matrix of
a right circularly polarized photon, we see that 0-~ and 0.~
measure the total pion production cross sections for
virtual transverse photons of spin parallel and anti-
parallel to the spin of the nucleon. Again, Eq. (66) can
be generalized to apply to all final hadronic states 1P.

The absorptive cross sections ap(W), 0A(W) for
k'=0 are those which appear in the Drell —Hearn-
Gerasimov' sum rule. They can thus be measured
directly using polarized electron beams (see below for
the use of polarized muon beams in this connection) to

and

so

kzL„S= (li,l2„+li„l2„+-.I'k28„„)

L„„"=—(z/2) (51„82„81„82„), —

L12"= —L21"= i/2—

(71)

(73)

The lepton momenta are given by

ii=[0 0 -'k '(m2+-,'k2)»q

l2 [0, 0, ——,'k, i(m'+-,'k') 112$.——

So for the nonzero elements of J.„,8,

LII =L22 =1/2,

L44E —2m'/k'. —— (75)

Thus, I„,is an incoherent superposition of a completely
right circularly polarized transverse state (for incident
positive-helicity muons) plus a pure longitudinal state.
In terms of 8 we find that for the transverse contribu-
tion, 8 is zero, while for the longitudinal state, 8=
2EE'/(E'+E"), which is the forward-angle limit of
Eq. (20) neglecting m. If the lepton were of zero mass,
it must conserve helicity, and the lepton current is
now proportional to k„ for forward scattering. ' Hence,
if the hadron current is conserved there is no forward
scattering in this approximation. Including mass, this
theorem can be generalized: If the lepton scatters pre-
serving helicity in the forward direction, it is still true
to first order in m/E that j„ is proportional to k„.
Thus, all the scattering is helicity-Qip, and the virtual

As this is nonzero and positive, the Breit-frame for-
malism can still be applied. Thus, the lepton tensor I.„,
including the mass terms must be calculated with
2(1+0.,) in place of 2(1—yz) for the lepton spin-
projection operator. Then,

2k'L„,=2 Tr [(~ II+2m)~, (~ i2+zm)~„(1+~,)), (70)

and for L„„=L„E+L„,",
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photon in a forward helicity-Hip transition must have
spin 1. Hence, we have the above result.

We now obtain

E'IKId .
dE'&)dn, 2x' E &' dn

where for unpolarized nucleons

(k./I q I) (da. /d&) = ,'(Tu+ T—n)+(2nt'/ko') Tea (77)

For right-polarized muons and a nucleon polarized par-
allel and antiparallel to the beam direction, integrating
over pion angles gives

(d2o/dE dtdt) ~. {d'o/dE —d&ot). "
n E'I KI

I
.ot( 'OW) —o.g(k' W) j. (78)

2m.2 E k2

Thus, forward muon scattering where the muons are
polarized, provides a beam of almost real, completely
circula. rly polarized photons, for k' can be made very
small by using very high-energy muon beams; ot (W)—
o~(W) for almost real photons can thus be measured.

VI. NEUTRINO SCATTERING

(G'/2'") 9"
I ~. I &) (l Ij." I ~), (80)

where G'=G cos 0, or G sin o„depending on whether
strangeness is conserved or not, and 0, is the Cabibbo
angle "

The weak leptonic current is

j„=iud„(1+»)»,.
thus,

I
m I2= ',G'2T„.E„„, -

We now consider the process of neutrino scattering
on nucleons

t+E~l +1V',

where E' is any state which can be reached through
first-order weak interactions.

A high-energy neutrino beam is an inevitable com-
plement to a high-energy muon beam. The major
diHRculty of performing experiments with this beam,
apart from the very small cross section, is that the
incident neutrino energy is not known. With better
methods of particle detection and with a more intense
neutrino beam, it may be possible to detect all final
state particles of Reaction (79) and thus determine the
over-all energy —momentum configuration. Expressions
for the relevant cross sections will be written assuming
this to be the case.

The matrix element for Reaction (79) is given by
standard weak-interaction theory to be

as in Eq. (3b), and

E„„=Tr I y l,y„(1+»)y imp„(1+») j
=2 Tr I 7 i»„y l»„(1+»)j. (84)

Comparing Eq. (84) with Eq. (26), it is apparent that

E„„=Sk'L„„~, (85)

where L„„~is the transpose of L„„.This shows that the
formalism of the previous chapters is applicable to the
neutrino case, provided neutrinos are compared with

left-polarized muons or electrons, and antineutrinos
with right-polarized muons or electrons.

The neutrino analogs of Secs. III, IV, and V are now

brieQy described.

A. Charge-Exchange Scattering

We consider the processes

o+rt~p+l,
t+p—&rt+l+.

In the nucleon Breit frame, L„„is given by Eq. (36),
and so E„„is determined.

The weak nucleon current

gw Je+JA.

where by the conserved current theory J„"is just the
nucleon isovector electromagnetic current and"

(p I ~.' I n) =i~».»»~(k')+k. ~»5»~(k').

is nonzero showing that J„" is not conserved.
The energy of the nucleon in its Breit frame is
(o= (M'+k'/4)'t'=M(1+r)'t' We are not interested
here in polarizing the target nucleon, so T„„is given as
in Eq. (38) and

Tu= Tgg= k GM +4to e,
T44 ———4M'Gg',

T)2———7"2g———4»(ufo. . (89)

As k„L„,=0 in our approximation, the second term does
not contribute, so there is just one extra form factor
a{k') to consider.

As before J„"is written in terms of two-component
spinors, J„"=g2*5&y~, where in the Sreit frame

$'= ikG~d- e2—2omd- eg,

r'= —»Guy. ex—2~ma e~,

5'= —2Mnd e3,

54= 2MiGg.,

where

T = gy"
I
J -

I x)*{w
I J -

I x)
Thus, the neutrino analog to the Rosenbluth formula

(83) for the differential cross section in the laboratory is"
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[cf.Eq. (42) $
do G"k' (E' ' cot'

G@2 +[rg242+ (1+r)asj
1+r

COt' —2,$) /E
X 2

' &46~+ ——r, 90
1+r j &M

or in terms of 8, as

d~/dQ (G 2k2/4~2) (E /E) 2(1 S)—1

)( (rg242+sg@2+ (1+r)422~2G2442[r(1+ r) (1—s2) j&&2}

(91)
The positive sign is for incident neutrinos.

B.Weak Pion Production

The processes we consider are

v+N~l +N+zr,
p+ N +l++N+—zr.

By analogy with the electromagnetic case, the weak
pion production cross section do.„/dQ can be defined by

d'o. G"k' E'
(
K

(
dU

dE'~td~~ kr' E 1—8 dQ

where the notation is the same as in Eq. (55). The
general form for d&r /dQ for an unpolarized target can
be written down in terms of the 5; and G; of Appendices
A and B, but this wouM not be very useful. Instead,
we consider the production of the X~36* resonance
including only the dominant terms M&+, the magnetic
dipole transition arising from the vector part of the
weak current, and E2+, Ls+, Sz+, the electric, longi-
tudinal and scalar dipole transitions from the axial
vector part of the weak current. The form of these
dipole operators is taken from the partial-wave analy-
ses [Eqs. (AS) and (B2)$.

Both L and S (suRixes are no longer necessary) for
the axial current must be considered because it is not
conserved. So, in place of Eqs. (54),

k'T44 ———ko'Tss —
zkoko (Ts4+ Tps) +k,'T44,

kTp4R= zkpT 2+k.To4, —
kT4P = —ikpTs, +k,T4,, i= 1, 2. (93)

Similar equations for T»~ are not needed here because
L» Ls„0.From Eqs. (——93), —t—he quantity

A=L —(k/ko) S (94)
alone describes the longitudinal and scalar transitions,
provided that the lepton current is conserved.

From Eqs. (51) and (52) for L„„,the cross section for
producing a pion at the first resonance can now be
written:

(k,/i q i)(do /dQ)

=2[[E ('+ [ M [ &2(1—s')'I'E*Mj(2+3 sin28)

+sg(E2—Ms) sin'8 cos 2P+6(kp/k) I[28(1+8))'"E*h.
+[—'S(1—S) j212M*A.} sin 8 cos 8 cos P

+ (kp'/k') S(1+3cos' 8) I
A Is (95)

A = —(k'/kp') L, (96)

and the oM formalism is regained. But as it is not con-
served, Eqs. (92) and (95) show that as k2~0, only the
longitudinal term involving

~
A

~
remains. In addition,

in this limit kpA=k&L —k,S—+k,L—kpS, which is just
(apart from angular factors) the matrix element of
B„J„"between N and %~236*. If the usual assumption is
made, i.e., that this matrix element is proportional to
that of P (p is the pion field operator) for k' close to
—m ', in particular for k'=0," Adler's result is ob-
tained'2 —for forward neutrino scattering, do„/dQ is
always proportional to the cross section for the corre-
sponding process with an initial charged pion replacing
the weak current.

Finally, the appropriate value of 8 in the k'—+0
limit must be found as in Sec. V. At forward angles

k'= ms (E—E') /E'

for final lepton mass m. L„„is now

(97)

k L„2„E[lD,ls„+ls„ls„+,'(k'+m'-) 8„,); (9S)

and L„„"is ignored, as only the longitudinal and scalar
couplings are important for small k'. The lepton
momenta in the Breit frame are

ls ——[0, 0, ,'(m'+k-')/k, -,'i(m'+k')/kj,

is=[0) 0, —,'(m' —k')/k, —,'i(m'+k')/kj (99)
and so

k'Lss —— ksL44 —'ms (k—'—+-m') /k'

k'Lss ——ksI42=-s'zms(k'+m') /k'. (100)

Note that the k'~0 limit is here much more singular
than the limit was in Sec. V, for now neither the weak
lepton current nor the weak hadronic current is
conserved.

The terms T3„and T„3 must now be calculated;
for k'—+0

so
Tss =—T44 =2z(T24 +T42 ),

S/(1 —S) = 2m'(k'+m') /k'

=2EE'/(E —E') ',

(101)

(102)

and with this substitution, Eqs. (92) and (95) give the
forward cross section. It is perhaps surprising that this
value of S is again the forward angle limit of Eq. (20)
neglecting m, although the weak current is not
conserved.

In the simplest Chew —Low-type theories, E and L are
proportional to a(ks) and S=O"

Note that the effective longitudinal polarization is
now given by (kp/k) O'12 rather than by Sz,'~2 ——(k/kp) S'"
as in the electromagnetic case. If the weak current were
conserved,

k,L—kpS=0,
so that
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APPENDIX A

The form of the matrix element (Esr
~ J ( E) for the

process y+X—+sr+X, where y is a virtual photon in
the center-of-mass frame, is given by

Xz 8 Xl zd5 1+,d '

lid�

' ~2+zd ' ktl+3+ zd ' 'ltlf 4

+id hlaFg+id q43, (A1)

where q and k are unit vectors in the directions of q
and k. It is also useful to define

Next, for n=e3

Tlz'+ T31'= 2 Im (%1*84+%3*f3)sin 8,

Tzz'+T, z*———2 Im (8:3' F3+8:3'"51)sin 8,

Tlz*—Tzl*= 2i—[T33+ Re (81*%4+53*53)sin'8j,

Tzzz T33—=23 Re (F'3 $3+83 $1) Sill 8

711 ~22 ~88 ~14 ~31

Now, for n= e&

Tll"= 2 Illl (Pl —Pz COS 8+84 Sill 8)

(A6)

)& (pz+pz+P4 cos 8) sin 8,

Tzzz= —2 Im (%1*83) sin 8,

T333= —2 Im (rz"s,') sin 8,

so

Pz'=- %1+83cos 8+53,

Pz =P4 COS 8+%4, (A2)

T13 +T31 —2 Im E~z'*(rl—~z cos 8+&4»n' 8)

—Pz'*(pz —Pl cos 8+53 sin' 8) j,
Tlzz T31"=—2i Re (Pz'*(Pl—Fz cos 8+%4 sin' 8)

P' = id p(P1—Pz cos 8+84 sin' 8) el —53'*(Pz—P, cos 8+53 sin' 8) j,
+ (Fz+Pz+P4 cos 8) sin 8 ezj, TyP= Tm~= TgP= Tgg=o. (A7)

P= —Pz sin 8+id ez(P1—Fz cos 8),

53= id LP3' sin 8el+ (Pz'+Pz' cos 8) ez]. (A3)

Then, starting with the formulas for unpolarized
targets, we have

T»= T»+D ~" I'+ t ~4 I'+2 Re (~z&3)+2 Re (~1&4)

+2 Re (%3*%4) cos 8] sin'8,

Tzz=
( Fl ('+

) Fz )
—2 Re ($1*%3) cos 8,

T»=
I

&3' I'+
I

&3' I'+2 Re ($3' $3') cos 8,

T13+T31= 2 sin 8 Re LF3'*(Pz+P3+P4 cos 8)

+r,"(V,+P, cos 8+@,)j. (A4)

For polarized targets, first n= e», we have

Tlz*+Tzl*= 2 I111 LP3 ($1+&3 COS 8+%4)

—Pl*(%3+53+54cos 8) j sin 8,

Tzz~+ T33*=2 Im LP3'*(8'1—Pz cos 8)

+$3 (Fl cos 8 Sz) g,

Tlz*—Tzl*= 2i Re pP3*(—F1+53 cos 8+$4)

Pt (F3+F3+F4 cos 8) j sill 8,

Tzz Tzz = 2i Re p—z'*(sl——rz cos 8)

+~3'*(~,cos 8—rz) j,
Tg, =Tp =2 =Xi =T3 =p

The multipole expansion for the F; is, with x= cos8,"
rl ——g{(/Mt++Et+) P~l'(x)

+L(i+1)Mt +Et jPt 1'(x) I,

Pz= QL(i+1)Mt++LMg jPl'(x),
p3= QL(E3+—Mt+)Ps+1"(x)+(Et +Ml )Pl 1"(x)j,
s4 ——Q(Mtl. —Et+—Mt —El )Pl"(x),
~3'= ZL(i+1)L~P~3'(x) -ll-~ '(*)j,
~ =Zf I'LL =(i+1)1- jP'(*) I. (AS)

Here, Mg~, E~~, and L~~ are the magnetic, electric, and
longitudinal multipole amplitudes leading to a 6nal
x-E state with orbital angular momentum l and
J=l+-,'.

APPENDIX B

The form of the matrix element (Xzr
~
J„"

( zr) in
the center-of-mass frame is

x.*(~"+G")x,
s~= (8:,0),

and F is given in Appendix A. The most general form
for Gl' is"

G=Gltl+Gzd tld+Gzd lid ktl

+G4dd k+Gzk+Gzd qd kk

G4=3G3+iGzd tld k. (&1)
In the multipole expansion of the G; it is not clear
which multipoles to call electric and which magnetic.



246 REvIEws oF MoDERN PHYsics ~ JANUARY 1969

There are unfortunately as many notations as au-
thors in this field. Equation (64) for inelastic scattering
detecting only the final lepton is

d'o n E' iKi
dE'd 2 'E k' ( ') f~r+eior j

Akerlof et uIt'. ' use basically the same notation but they
include the gauge-invariant factor (k2/kps) in their
longitudinal cross section 0-1.&A) rather than in the vir-
tual photon polarization density matrix. So

or, '"& = (k'/k, ') o.i, (C1)

Gilman'5 introduces

0'trgnS =O'T7 (A) (C2)

Hand' writes Kq. (64) in terms of the equivalent real
photon energy E

so
E= (W' —M')/2M;

or&H&=(
i
K

i /E)or,

os'H&=(
[ K

~

/E)oiiA&

(C3)

(C4)

In terms of the inelastic form factors" n(Ep, k') and

P(Ep, k')

d2a/dE~do&I (4n2EI2/k4) L2 sin2rpn(Ep k2)

+cos'—'llP(Ep k') 7 (C5)

We will choose the convention that the electric multi-
poles still have the same quantum numbers as the
longitudinal and scalar multipoles, i.e., they carry the
natural spin-parity assignments for an axial vector
field. So with this convention and otherwise using the
same notation as the multipole analysis of F; we obtain

GI ——+L(MI+—EI+)PI+I"(x) —(MI —E»)PI I"(x) j,
G2= —ZP(l+2)MI++ (l—1)MI-—EI++E»]PI (x) ~

Gs= Q(EI+ MI++—M» —EI )PI'&(x),

G4= —QL(l+1)M&+PI+I'(x) +lMIMI I'(x) ),
Gs'= ZLL ~P~I'(x) —L I-PI-I'(x) j,
Gs'= Q(L I —L I+) PI'(x),

Gv = FALSI+PI+I'(x) —S»PI I'(x) j,
Gs= Q(S» SI+)PI—'(x),

where
Gs'= Gs+GI cos 0+G4,

Gs'= Gs+G2+Gp cos 9.

APPENDIX C

where Eo——E—E'. Then

n (Ep, k') = ( ) K
(
/4E'n) or,

p(Ep, k ) = (42r n) (k / ~

K
~ ) (o'r+O'I, t ). (C6)

Drell and Walecka27 use the form factors t/t/'~ and 5'~,

n =WI/M, p =W2/M. (C'7)
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