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Wejhave investigated and improved the reliability of ‘many formulas used in the radiative corrections to elastic and
inelastic electron scatterings when only the scattered electrons are detected. The radiative corrections to muon scattering
are also investigated. A practical and reliable recipe for unfolding the entire inelastic spectra, including effects due to
virtual photons, internal and external bremsstrahlungs, is given. Examples of actually unfolding the inelastic electron
spectra are given using the experimental data obtained by the electron-scattering group at the Stanford Linear Accelerator

Center.

I. INTRODUCTION

Electron—proton inelastic scattering experiments are
expected to yield information such as

(1) The form factors associated with the yNN*
vertices for various N*’s,

(2) The sum rules! for vy (off shell) 4 P—hadrons.

(3) Test of PCAC theory near pion threshold.?

However, a casual glance at the data from various
laboratories®* shows that these resonances and con-
tinuous hadronic states sit on top of very high radiative
tails, especially in the deep inelastic region, as shown*
in Fig. 1. Obviously, no reliable information can be
extracted from such experiments unless one can calcu-
late these radiative tails accurately. For example, when
the contribution of the radiative tail amounts to 60%,
of the cross section, one might make an error of a
factor of 2 in evaluating the hadronic cross section if
an error of 209, is made in estimating the radiative
tail. Various people®>! have used different approxi-
mation schemes to evaluate the radiative tail. These
approximations essentially consist of various versions
of peaking approximations which assume that the pho-
tons emitted are either along the direction of the inci-
dent electron or the scattered electron. It was shown by
Maximon and Isabelle'? for the case of potential scatter-
ing that the peaking approximation can be wrong by
as much as a factor of 2 in the very inelastic region.
The purpose of this paper is to give a practical and
reliable recipe for handling the problems associated
with radiative corrections. By practical we mean that
the problem can be handled by a computer without
straining its capacity; and by reliable we mean that
the error involved in our approximations will be small
and its magnitude can be estimated. In any practical
application of the radiative corrections, the effect of
electron straggling in the target has to be included.
This is necessary because the internal bremsstrahlung
has roughly the same effect as that given by two
external radiators with one placed before and one after

* Work supported by the U.S. Atomic Energy Commission.

the scattering, each of thickness
tiy=%(e/m)[In (—¢*/m*) —1]

radiation lengths. For example, if —¢*=2 GeV? these
two radiators will each have a thickness of ¢;,;=0.0276
radiation lengths. If the target has thickness 0.0552
radiation lengths, the effect due to straggling will be
roughly equal to that due to the radiative corrections.
Hence when the target thickness is comparable to ¢,
we must treat the straggling effect with great care.

Throughout this paper we restrict ourselves to one-
photon exchange between the electron current and
hadron current and also ignore the emission of real
photons by hadrons. Only when treating the radiative
corrections to the elastic peak have we included both
the infrared divergent part of the two-photon exchange
diagrams and also the emission of real photons by
hadrons (see Sec. IT). The order of magnitude of these
effects can be estimated by comparing the Z! and the
Z? terms with the Z° terms given in Table I.

In this paper most of the basic formulas are given
in the Appendices. In the text we discuss how these
formulas are to be used in practical applications. Ap-
pendix A discusses the straggling of the electrons in
the target; in Appendix B we reproduce the formulas,
first given by one of us (Tsai) in Ref. 13, for the exact
treatment of bremsstrahlung in the lowest-order Born
approximation allowing for form factors, recoil, and
inelastic excitation of the target system; Appendix C
derives a peaking approximation formula based on the
exact formulas given in Appendix B; and in Appendix D
we give several practical considerations associated with
programming some of our formulas for a computer.
In Sec. II, we discuss the radiative corrections to the
elastic peak with the straggling effect in the target
included. The numerical values from the formula of
Tsai* and that of Meister and Yennie® for the radiative
corrections to the elastic peak are compared. We found
that, for e*p scattering, the two formulas give identical
answers within 19, of the cross section, but for high Z
targets the results can be quite different. The origins
of the differences in these two formulas are investi-
gated. We also briefly mention how to do radiative
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Fic. 1. A typical spectrum of inelastic ep scattering and the
radiative corrections. Both of these curves are taken directly from
Brasse et al. (Ref. 4).

corrections to muon scatterings. In Sec. ITI we calculate
the elastic radiative tail using our exact formula [Eq.
(B5) ] and several versions of approximation formulas.
We conclude that all different versions of approxi-
mation formulas are good near the peak but predict
result in error by 30 to 409 when the electron looses
more than § of its energy through bremsstrahlung.
Hence it is essential to use the exact formula to calculate
the elastic radiative tail, which is usually the most
dominent background to the inelastic electron scatter-
ing. Fortunately, it is rather easy to apply the exact
formula to calculate the elastic radiative tail. For the
continuum part of the spectrum, after elastic radiative
tails have been subtracted, one is essentially forced to
use an approximation formula. This is because our
exact formula [Eq. (B6)] for the continuous spectra
can be used only if the two inelastic form factors
F(¢?, M) and G(g% M,*) have been separated out of
the data. This is impossible before one applies the
radiative corrections to the data. However, we believe
the approximation formula is quite adequate for han-
dling the radiative corrections to the continuous part
of the spectrum. This optimism is based on the results
given in Table IIT and Table IV in which we have
compared the radiative tails of the elastic peak and
the 3-3 resonance using both the exact formula and
various approximation formulae. In Sec. IV, we treat
the radiative corrections to the continuous spectrum,
using the 3-3 resonance as an example. We first calcu-
late the nonradiative 3-3 cross section using the method
described by Dufner and Tsai’® and then include the
effects due to straggling and radiative corrections. We
give a procedure to extract the nonradiative cross
section from the experimental data; this is called an
“unfolding procedure.” When the target particle is an

electron or a muon, both nonradiative and radiative
cross sections are calculable, hence it is never necessary
to consider the unfolding procedure. In contrast when
the target is a proton or a nucleus, there is no reliable
theory of strong interaction to give a theoretical non-
radiative cross section; hence it is necessary to extract
the nonradiative cross sections from the radiative (i.e.,
experimental) cross sections. In Sec. IV.B we show
in great detail how this can be accomplished. Examples
of the results of unfolding the inelastic-electron spectra
are given using the experimental data obtained by the
experimental group at the Stanford Linear Accelerator
Center. We emphasize that experiments have to be
planned carefully before its execution so that the radi-
ative corrections can be applied. We suggest several
items which are useful for the design of the experiments.
In Sec. V, our results are discussed and summarized.

For convenience we have called our target particle
a proton, but it is obvious that the treatment given in
this paper is applicable to any nucleus as long as its
atomic number, Z, is small compared with o 1=137,
Our formulas are applicable for incident electron ener-
gies down to a few million electron volts with the
exception of our straggling formula, Eq. (A.3). The
latter becomes inaccurate when the electron energy is
less than ~100 MeV due to our use of the complete
screening formula for bremsstrahlung and neglect of
the contribution from the ionization effect.

The notations used in this paper (except in Sec. II)
are summarized below for easy reference. We use the
convention =c¢=1. Energy and momentum are always
in gigaelectron volts. The metric used is such that
ps=E,E,—p-s:

s=(Es, s) : four momentum of the incident elec-
tron;
p=(Ep,, p): four momentum of the outgoing
electron;
pi= (M, 0) : four momentum of the target parti-
cle;
k= (w, k): four momentum of the real photon
emitted;
pr=s+tpi—p—~k: four momentum of the final
hadronic system;
u= (o, W) =s+pi—p=ps+k;
(u?) 2 ="[(ps+k)?]"2: missing mass;
¢=(s—p—k)*=(pr—p:)%
M, My, m, m,, m,: masses of target particle, final
hadronic system, electron, muon, and pion, respectively;
M33=1.236 GeV, M,=0.938 GeV;
6: scattering angle of the electron;
0x: angle between u and k;
0;: angle between u and s;
0,: angle between u and p;
T': target thickness in unit of radiation length;
tiw, brw: initial and final target window thicknesses in
unit of radiation length;

Z: atomic number of the target nucleus;
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A: atomic weight of the target nucleus;
N': 6.023X 10% = Avogadro’s number;
79: 2.818X 10718 cm, classical radius of the electron.

The reader is advised to read the Appendices first
before reading the text.

A review paper on the same subject by L. M. Maxi-
mon appears previous to this one in this issue. Although
written in different spirits, the two papers complement
each other in many places. While Maximon’s paper
explains the basic terminology of radiative corrections
and gives a guide to the literature on the subject, our
paper gives a detailed description of a workable pro-
cedure for actually handling the experimental data. A
few questions of terminology and apparently conflicting
statements in the two papers warrent clarification. At
the end of Sec. 2, Maximon says that a fundamental
shortcoming of the peaking approximation is its in-
ability to go smoothly into the radiative correction
proper. We show a way that this defect can easily be
corrected, as can be seen by comparing our Eq. (C.8)
with the A-dependent part of our Eq. (B.7). In our
opinion, the real trouble with the peaking approxi-
mation is that it is not easy to improve it so that it
reproduces the correct result for a hard-photon emission
independent of the behavior of the form factors. In
Maximon’s terminology, the first term in our Eq.
(IV.1) is called the “radiative correction’” and the two
remaining integrals in that equation are called either
the ‘“hard-photon contribution” or the “contribution
from the radiative tail” of the lower-mass states of the
final target system. We adopted the usual convention
and used the word ‘“‘radiative corrections” for the entire
procedure. We have completely ignored the so-called
dispersive effects, i.e., the real part of the two-photon
exchange contribution mentioned at the end of Maxi-
mon’s paper. The reason is that these calculations are
highly dependent upon the detailed mechanism of
strong interactions; hence they should be treated sepa-
rately from the part of the radiative corrections which
is dominant and relatively independent of the strong-
interaction mechanism. This effect is very interesting
from the theoretical point of view because it is so
model dependent. The effect can be measured experi-
mentally by comparing the et and ¢~ scattering using
the same target.

II. RADIATIVE CORRECTIONS TO THE
ELASTIC PEAK

Radiative corrections to the elastic peak is a very
well-known subject, hence we shall discuss only those
points which have practical interest.

Schwinger!” first calculated the radiative corrections
for potential scattering and found that the measured
cross section (meas) should be related to the lowest-
order cross section (Born) by a factor (1+38):

do/dQ [mess = (14-3) (do/dQ) [Borm,  (IL.1)
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where

17

(6) =In (sin? 36) In (cos? 30) +P(—sin? 36). (I1.2)
Here ¢ is the four-momentum transfer, E is the energy
of incident or scattered electrons (in polential scattering
they are identical), and AE is the maximum energy
loss of the electron or the maximum energy of the
photon allowed by kinematics (they are identical in
potential scattering). Schwinger also noticed that when
AE—Q, § in Eq. (I1.2) becomes negatively infinite,
whereas on physical grounds, do/dQ |meas should go to
zero as AE—0. This is due to the fact that the multiple
photon emissions have been neglected, and he conjec-
tured that (1+46) in Eq. (II.1) should be replaced by
¢® if higher-order radiative corrections are taken into
account. Later Yennie and Suura®® and Yennie, Fraut-
schi, and Suura® proved that indeed the infrared diver-
gent part of 6 in Eq. (IL.1),

Sine=(—2a/w)[In (—¢*/m?) —1]In (E/AE), (IL.3)
should be exponentiated (i.e., 14dix—elint). As far
as we know it is still an open question whether other
contributions to 8, Svertex—+0vao=8—0int, should be ex-
ponentiated or should assume some entirely different
form SUCh as 1+6vertex+avac—>(1”6vertex"'5vac) -1-

However, for practical applications this is an aca-
demic question at the presently available energies be-
CAUSE Oyae ANd yertex are given by

Svae=(20/m)[(=5/9)+% In (—¢*/m*)] (I1.4)

and

dvertex = (2a/m) [—1+% In (—¢*/m?) ], (ILS5)
respectively. Even if —¢?=20 GeV? we have 8yac=
2.58X 1072, 8vertex =5.9X 1072 Hence (8vac+Overtex) 2 COD-
tributes at most 0.7%,. In contrast to this the exponenti-
ation of din¢ is absolutely essential at high energies and
at large momentum transfers because AE must be
taken small enough to avoid the pion threshold, re-
sulting in a magnitude for 8in¢ very close to —1.

When the momentum transfer | —g? |2 becomes
larger than or comparable to the mass of the target
particle, we have to take into account both the kine-
matical effect due to target recoil and the dynamical
effect due to photon emission by the target system.
Neither of these effects is contained in Eq. (I1.2).

The expression for & containing these two effects
was first given by Tsai (T) and later by Meister
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and Yennie (MY) .1 Tsai’s expression can be written as

—a _-q2 Ey Es— — Ey
o= —%( 2321 (-—) (1 14221 )(21 53 )_q>( )._zz £
- <9 2 1n s -+ nm + ng nAE nn z 1nM

2 7 / /2
+221n _A_J._<£ln 164 »~2> + ﬁ{_ 144 Bt M —cb[~ (E" N 1+B4 1 J}
E4+M 1 64

n

2E,Es—ME;
E;(M —2E;)

7AE\B: 14, 1—84 M
M—E M (M —E;) — —ME
v2zlo(=257) - (i) +* Grmin) + o mir e | " )]
Ey 2EsEy—ME; 2E3E,—ME, Ey(M —2E3) 2F3
)+ (1)
ol
ME; 2E Ey—ME; 2F,
M—E1) (M—E1> (2(M—E1)>
—Z|®|— —P & In
[ ( A m )t w ) 2E1——
Fy—E 72 Fy— M\Y2 [1—B,\1/2 — M\2 Fy— M\2
W S A UG M R () ]“’[—( =) |} oo
T Ey Ba EAM 1+B4 EAM EA+M
The last four Spence functions in the second set of heavy parenthesis were ignored in the original paper of

E—E Ey—E 2F(Es—E.
o) o () ()
E; 2B Ey—
2F1>]
M—E; (M—Ea) (2(M—E3)> )J
Z|o| — —&® ¢ -+In
Tsai* because they are always small when Z=1. These terms are reinserted here so that the formula gives a

correct limit when Z is large. Meister and Yennie’s formula is

5= o {[ln <2P12Ps> _1] 1n|: (AE3> ] TN (2{’1173) —1 ln2n—2$-}
T m E; m?

Z(X E],)2 (AE3
+ 7r{nn n[ﬂ<E4 7

Zra ([ By E4+174>
+ T {[P4ln< M

The notation used in both formulas is as follows: F,
Es, and E, are energies of incident electron, scattered
electron, and the recoil nucleus, respectively. The
masses of the electron and the target particle are
m and M, respectively. The step function 8 is defined
by MY as 8(x) =(In2x)8(1—x); B: is the velocity of
the recoil particle in units of the velocity of light,
'I]=E1/E3, and AE=AE3=E3 peak—Eg min AS Was shown
in Fig. 1 of Tsai’s paper." Z is the atomic number of
the target particle when the incident particle is e~ and
the sign of Z is changed when the incident particle is
et, e.g., Z=1 for ¢ p scattering and Z=—1 for e*p
scattering. ®(x) is the Spence function® defined by

3 (x) = /z:I_n_%:y_l_dy
0

In Table I and Table II, we compare the numerical
values given by Egs. (I1.6) and (I1.7). We notice that
for exp scattering, these two formulas give practically
identical results. When Z is high, Eq. (I1.6) gives a
reasonable answer, whereas Eq. (I1.7) does not. Since
there are some experimentally detectable differences in

(I1.8)

o) )
[ (] () () o

the two formulas, it is important to know the origins
of these differences. They are as follows:

(1) In MY all the Spence functions are approxi-
mated by logarithmic functions using the following
relations®:

®(x) =atiat ot @/m) 4o, i (2] <15

®(1)=ix2 and P(—1)=—7n%
for x> 1,

B(x) = —3 In? | | +3m—0(1/x);
for x<—1,

®(x) =—35In? | x| —En2—2(1/x).

The Spence function ®(x) was subsequently approxi-
mated by ®(x) =0 when | x| <1,and ®(x) = —3 In?| x|
when | x| > 1. We regard this approximation as rather in-
adequate because it can cause an error of (a/w) (72/3) X
(1, Z, 22)~19%, in e—p scattering for each Spence func-
tion used. Since there are more than a dozen Spence
functions involved in the problem, the resultant error
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Tasie I. Radiative corrections for ¢=-p and e*-p elastic scattering (AE;/E;=19%,).
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A
Incident Scattered Tsai Meister and Yennie
electron Scattering electron
energy angle energy —¢? VA VA A z0 Zla VA
(GeV) (deg) (GeV) (GeV/c)? term term term term term term
17.314 35.100 3.975 25.031 —0.2296 —0.0563 —0.0411 —0.2296 —0.0566 —0.0310
15.999 19.700 8.007 14.996 —0.2516 —0.0267 —0.0307 —0.2516 —0.0266 —0.0220
14.649 18.800 7.992 12.492 —0.2521 —0.0234 —0.0279 —0.2521 —0.0232 —0.0197
13.329 17.600 8.006 9.990 —0.2523 —0.0196 —0.0247 —0.2523 —0.0194 —0.0169
11.999 16.082 7.997 7.510 —0.2518 —0.0155 —0.0207 —0.2518 —0.0153 —0.0136
10.723 14.000 8.005 5.100 —0.2499 —0.0110 —0.0159 —0.2499 —0.0108 —0.0097
6.032 17.186 4.687 2.525 —0.2402 —0.0097 —0.0106 —0.2402 —0.0095 —0.0056
2.201 38.601 1.455 1.400 —0.2256 —0.0168 —0.0083 —0.2256 —0.0168 —0.0041
2.206 15.999 2.022 0.346 —0.2138 —0.0035 —0.0022 —0.2138 —0.0034 0.0008
B
¢~-p elastic scattering e*-p elastic scattering
Incident Scattered
electron Scattering electron b 8
energy angle energy —q¢ 81 (by Meister 81 (by Meister
(GeV) (deg) (GeV) (GeV/c)? (by Tsai) and Yennie) 8~ (by Tsai) and Yennie) 8 —&
17.314 35.100 3.975 25.031 —0.3271  —0.3173 0.0100 —0.2144 —0.2041 —0.0103
15.999 19.700 8.007 14.996 —0.3090 —0.3002 0.0088 —0.2556 —0.2469 —0.0087
14.649 18.800 7.992 12.492 —0.3034 —0.2950 0.0084 —0.2567 —0.2485 —0.0082
13.329 17.600 8.006 9.990 —0.2965 —0.288 —0.0079 —0.2574 —0.2498 —0.0076
11.999 16.082 7.997 7.510 —0.2880 —0.2807 —0.0073 —0.2570 —0.2501 —0.0069
10.723 14.000 8.005 5.100 —0.2769 —0.2704 —0.0065 —0.2548 —0.2487 —0.0061
6.032 17.186 4.687 2.525 —0.2606 —0.2553 —0.0053 —0.2411  —0.2363 —0.0048
2.201 38.601 1.455 1.400 —0.2507 —0.2465 —0.0042 —0.2171 —0.2129 —0.0042
2.206 15.999 2.022 0.346 —0.2195 —0.2164 —0.0031 —0.2125 —0.2096 —0.0029

8 We wish to thank Dr. R. W. Brown for pointing out the numerical mistakes in this column which we made in our original manuscript.

is difficult to estimate. We are unable to determine
for the MY calculation how much this approximation
contributes to the difference in the numerical values
given in Table I. This approximation is especially bad
when Z is large as can be seen from Table II, where
we have calculated the radiative corrections to e=-+%Ca
elastic scattering. In any large-scale data analysis, one
has to use a computer anyway and the Spence function
®(x) defined by Eq. (I1.8) is no more difficult to ob-
tain than the logarithmic function when a computer
is used.

(2) Another source of the difference between T and
MY is in the manner in which the two-photon exchange
diagrams are handled in the two papers. Neither of
these papers claims to have treated the two-photon
exchange terms completely, because the effects of strong
interactions to these diagrams were ignored. These au-
thors were forced to consider these diagrams because
they are needed to supply terms to cancel the infrared
divergence in real photon emission. In T, only the
infrared terms were extracted from these diagrams,
whereas in MY additional terms called spin-convection
terms were also extracted. In practice, the radiative
correction & is used for two purposes: (a) to obtain
nucleon form factors and (b) to obtain the contribution
of the real part of the two-photon exchange? diagrams
by comparing e*p and e¢~p scatterings. Strictly speaking
(b) has to be done before (a). But usually it is assumed
that after applying the radiative corrections, the re-

mainder of the two-photon contribution is small. For
the purpose of (a), one method of extraction cannot
be preferred over the other, because one does not know
which method represents more closely the bulk of two-
photon exchange contributions until the difference in
etp and e~p cross sections are measured experimentally.
For the purpose of (b), the question of preference of
one method over the other is just a matter of conven-
ience in the theoretical analysis. Suppose one wants
to use a certain theory of strong interactions to under-
stand the two-photon exchange process by comparing
his theory to the difference in ep and e*p cross sec-
tions. Then, whether the method of T or of MY is
used, one must restore the part which each has sub-
tracted from these diagrams before the comparison can
be made. The method of T is somewhat simpler than
that of MY because in T only a simple, well-defined
analytical function called

1 2
Koo 2= (pt) [ S5
0

[where p,=piy+ (1—y) p;]

was extracted from each diagram, whereas in MY a
more complicated procedure was used to extract the
contribution from two-photon exchange diagrams (hence
it requires more work to put back what MY have sub-
tracted from these diagrams). The reason T extracted
only k(p:, p;)’s from the two-photon exchange dia-
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grams was not only for simplicity. In addition it was
2 5 5 found that in the exact calculation of radiative correc-
© I8 =& B B tions to e—e scattering,? the remainder is indeed very
e e e ° small after the k(p;, $;)’s were subtracted (it, at most,
contributes 0.1% to the cross section and is independ-
© o @ o« ent of energy in the c.m. system). It is a puzzle then
dlgE |8 8 & 2 why the spin-convection terms do not make much of a
= Tl S S o contribution to the ¢-e scattering. The exact two-photon
g exchange contribution to eu scattering has been com-
g * = o= o puted by Erickson.?? The contributions of these dia-
a 8 glg g8 & =2 grams to the cross section after subtracting the 2(ps, p;)’s
S| T8 |8 o o o are given in Egs. (51)-(55) of Erickson’s paper.? It
b I would be interesting to compare Erickson’s results with
MY’s spin convection contributions. These remarks
g g8 & § & are important when one wants to compare the differ-
Ng|Z2 S 2 2 ence in. etp and e p scatterings with some model of
. I | I I strong interaction in two-photon exchange interaction.
S The effect of straggling in the target system can be
in incorporated into the radiative corrections in the follow-
5: 8 o gz o ing way:
Lg «w a g b :\1" (la‘/dﬂ Imeas:da'/dg lRosenbluth e€xp <6+6¢);
~ o (=) (= o
2 I | I I where
% 5 5 2 o3 8= —{[butivt+30T] In (Ey/r*AE)
sl |xEl8 8 € & + (bt t-30T] In (Eo/AB) |5 (IL9)
2 + (=] (=] o o
S| beror T, ti, and fy, are the target, the initial window, and
Sl & the final window thicknesses, respectively, in units of
% o 2 3 8 3 radiation length. The coefficients &, and b are very
- RE |2 g 3 2 close to 4/3, and their exact numerical values depend
o + (=] (=] (=] S . . .
- [ [ o upon Z of the material as given by Eq. (A.4) in Ap-
8 pendix A.
g 7 S-S =N For elastic scattering of muons, 8, can be taken to
g & g 2 3 &8 & be zero because the muon bremsstrahlung in the target
o 19 9 9 % is reduced by a factor of (m,/m,)?*~~1/40 000 compared
3 / with electrons. If the muon mass is small compared with
g its energy and momentum transfer, then the formulas
# . NQ 2 g 2 = given by T or MY may be used for §, provided m is
H =8 ¥ 3 9 replaced by m, and the vacuum polarization due to
s S|l o <o s the electron pair in the bubble, Eq. (II.4), is added
s to the expression. The order of magnitude of the ratio
of muon radiative corrections to the electron radiative
Tg o le 8 o2 2 corrections is roughly given by (In (—¢¢/m2)—1)X
%g E3 1S 3 9 2 (In (—qz/.n'ﬂ) —1)"L 1t is equal to ~20.25 when —¢?=1
Ko~ | o o o BeV2, This statement is also roughly correct for the
radiative tails, as will be shown in Sec. V and Fig. 5.
Similar observation concerning the radiative corrections
g to muon scattering has been made by Maximon and
g —% ;%n 8 8 8 § Tzara.%
Q
@ III. ELASTIC RADIATIVE TAIL AND VALIDITY OF
VARIOUS APPROXIMATION FORMULAS
S A. Radiative Tail from the Elastic Peak
382 |8 8 8 8
GEEL | S S o o After the elastic form factors G.(¢?) and Gn.(¢?) are
e obtained from the experiments, one can calculate the
radiative tail due to the elastic peak and immediately
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TasLE III. Radiative tail
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Is from elastic e-p scattering.

Missing
E, Mass Mo and Allton- Equivalent
(GeV) (u?)12 GeV Exact Tsai Hand Bjorken radiators
E,=20 GeV, 6=>5° Ep max=18.499 GeV, doo/dQ2=22X1073 cm?/sr
1078 cm?/GeV/sr
18.4 1.040 15.85 15.85 15.85 15.85 15.85
17.5 1.705 1.884 1.860 1.861 1.860 1.862
16.5 2.222 1.246 1.176 1.179 1.175 1.179
10.0 4.257 5.011 3.562 3.863 3.518 3.835
5.0 5.317 42.70 34.59 44.16 33.34 42,03
1.5 5.947 581.9 506.5 788.2 474.7 676.5
E,=5 GeV, 0=5°, Ep max=4.901 GeV, doo/d2=29.6X1073 cm?/sr
10-%0 cm?/GeV /st
4.8 1.036 17.26 17.26 17.26 17.26 17.26
4.5 1.283 4.533 4.523 4.532 4.522 4.526
4.0 1.614 2.250 2.228 2.252 2.225 2.236
2.5 2.340 1.665 1.561 1.732 1.536 1.615
1.0 2.889 5.69 4.918 6.967 4.656 5.226
E;=1GeV, 0=>5°, Ep max=0.996 GeV, doo/d2=1.38X10"%" cm?/sr
10-27 cm?/GeV /st
0.98 0.954 3.733 3.733 3.733 3.733 3.733
0.90 1.030 0.6244 0.6233 0.6255 0.6239 0.6239
0.70 1.199 0.2275 0.2228 0.2322 0.2213 0.2247
0.50 1.347 0.1934 0.1806 0.2079 0.1765 0.1846
0.30 1.480 0.3048 0.2655 0.3672 0.2516 0.3080
0.20 1.543 0.5435 0.4636 0.7304 0.4292 0.5612

subtract its contribution from the inelastic spectrum.
We would like to emphasize that the peaking approxi-
mation to the radiative tail from the elastic peak can
be in error by as much as 30 to 409, when the energy
of the scattered electron is E,<%E,masx. Hence the
result of the exact calculation given in the Appendix B
must be used when the energy loss is large. The formu-
las needed for calculating the radiative tail due to the
elastic peak in the deep inelastic region are given by
the sum of Eq. (A.16) and Eq. (B.5):

da'o,t(E,, Ep, T)
ddE,

do‘o,,(E,,, Ep)
dE,
(I11.1)

where the first term is due to straggling in the target,
and its explicit expression is given by Eq. (A.16); the
second term is due to the internal bremsstrahlung, and
its lowest-order exact expression is given by Eq. (B.5)
[our G, and F, are related to G, and G,, by Eqgs. (IT1.2)
and (IIL.3)7]. For calculating the radiative tail near
the elastic peak such as at the pion threshold, it is
necessary to take into account the multiple photon
emission which is ignored in Eq. (B.5). As will be
shown in the next section, all versions of approximate
formulas give excellent results near the elastic peak
compared with the exact lowest-order result. Further-
more, the effect of multiple photon emission is easy to
take into account if the approximate formulas are used.
Hence the easiest way to calculate the radiative tail
near the elastic peak is to ignore the second term in

do’o S
ddE,

(E,, Ep, T) =

’

the right-hand side of Eq. (IT1.1) and add an equivalent
radiator thickness, f,= (e/bw) [In (2sp/m?) —17, to T/2
in Eq. (A.16). The factor [In (Eo/E) P in Eq. (A.3)
automatically takes into account the effect of the mul-
tiple photon emission.

B. Comparisons of Various Versions of Peaking
Approximations with the Exact Formula

In contrast to the radiative tail from the elastic
peak, it is not easy to apply the exact formula to cal-
culate the radiative corrections to the continuous spec-
trum because the form factors F(¢%, M;?) and G(¢?, M*)
have to be separated out before we can apply the exact
formula, Eq. (B.8). Hence one is essentially forced to
use an approximation formula (which requires only the
knowledge of cross sections) to calculate the radiative
corrections to the continuum part of the spectrum after
the elastic radiative tail has been subtracted from the
inelastic-electron spectrum. Therefore, in this section
we investigate the reliability of various approximation
formulas.

In Table III, results are given for the radiative tail
of the ep elastic peak calculated according to the exact
formula Eq. (B.5) and also several versions of approxi-
mations including our own Eq. (C.11). In Table IV
results are given for the radiative tails from the 3-3
resonance using (a) the exact formula Eq. (B.5), (b)
our version of the peaking approximation, Eq. (C.11),
and (c) the method of equivalent radiators.

The elastic form factors of the proton used in the
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calculation are [see Eq. (B.3)]

Fo(¢) =4(Gd+7Gn®) / (1+7), (I11.2)

Go(¢?) = — @G, (I11.3)
r=—g/4M 7,
and
Ge=Gn/2.7193=[1—(g?/0.71 GeV?) ]2 (IIL.4)

For the form factors associated with e+ p—et+N*
(1236 MeV) a convenient parametrization valid in
the range 0.1 GeV2<—¢?<2.4 GeV? has been given
by Dufner and Tsai!® assuming a pure M1 transition.
In terms of our F(¢? M) and G(¢% M) defined by
Eq. (B.1), Eq. (3.14) of Ref. 16 can be written as

F(¢t Mp) =(2/M,)Ge(¢%, M),  (IILS)
G(¢% MP) =2M,Gi(¢, M7, (IIL.6)
where
Gi(g%, M) =(Q*/ =) G M)
_ T MM mt
(M 2 — M 3s?)*+ T2 M55
E#* M,
M, ’
Q= (Mp—g—M")*(2M,) - ¢,
Q*2=Mp2Q2/ M7,
Ef=(Mp+Mp2—
M33=1.236 GeV,

Q*22 C32 ( q‘l)

)/ (2My),
(I11.7)
[0.85(p*/mr)
14+[0.85(p*/me) I’
pR=[(MpP—M+m.?)/(2M ;) F—m.®, (IIL8)
[Cs(g®) M, ?=2.052 exp [—6.3(—¢)"*][1+9.0(—¢)"*]
(II1.9)

(M) =0.1293 GeV

and where energy is in gigaelectron volts.

In this section we are interested only in investigating
the validity of various versions of the approximation
methods, hence we shall ignore the width I' and replace
the Breit-Wigner formula in Eq. (IIL.7) by a é func-
tion (we restore the width in the next section)

5(M; ‘—Msgz)(—"PMsa 1/[(Mf Mj2) 2+F2M332].

(I11.10)
Since the width of the N* is neglected, we can use Eq.
(B.5) for the exact calculation of the radiative tail
from the 3-3 resonance and Egs. (C.11), (C.8), and
(B.3) for its peaking approximation. In the zero-width
approximation, the form factors F;(¢?) and G;(¢?) which
appear in Egs. (B.5) and (B.3) can now be written as
Gi(¢") =M (Q/ =) Fi(¢)

=4 My (EF+M,) 042C2(g%). (111.11)

In Table IIT we give numerical examples of the radi-
ative tails from the elastic peak at §=5° E,=20, 5,
and 1 GeV. The third column labeled “exact” is based
on Eq. (B.5). The fourth column labeled “Mo and
Tsai” is based on our own peaking approximation,
Eq. (C.11) of Appendix C. The fifth column labeled
“Hand” is based on the peaking approximation formula
of Hand,® which in the notation of our Appendix C
[see Egs. (C.7), (C.8), and (C.11)7] can be written as
ls,p= 2 [xs,p <ln 2sp —1) +3i(1—x )2 In —— 4.y ]

T m? m?

(Hand). (III.12)

The sixth column labeled “Allton and Bjorken” is
based on the peaking approximation formula of Allton’
and Bjorken,® which in our notation can be written as

= ——(l—i—xE ) [n 257 —1]

(Allton and Bjorken). (III.13)

The seventh column labeled “Equivalent Radiators”
is based on a semiempirical formula‘obtained by assum-
ing"that the effect of the internal_bremsstrahlung on
the _elastic or inelastic electron scattering is equivalent
to placing one radiator before the scattering and an-
other radiator of the same thickness after the scatter-

TaBLE IV. Radiative tails from 3-3 resonance (zero-width

approximation).
Missing
Ep ass Mo and Equivalent
GeV (u?)12GeV  Exact Tsai radiators
E,=20GeV, 0=5°  Epmaxc=18.17 GeV,
dog;/d2=16.1X10"% cm?/sr
10~% cm?/GeV /st
17.5 1.705 1.941 1.934 1.934
16.5 2.222 1.032 1.012 1.011
10.0 4,257 2.373 2.269 2.329
5.0 5.317 8.916 9.396 10.25
1.5 5.947 17.15 18.03 19.39
E,=5 GeV, =5°, Ep max=4.560 GeV,
dm/dﬂ 8. 59)(10‘30 cm?/sr
10-% cm?/GeV/sr
4.5 1.283 8.246 8.249 8.250
4.0 1.614 .8624 .8642 . 8664
2.5 2.340 .2229 .2243 .2341
1.0 2.889 .1182 L1158 .1332
E,=1GeV, 0=5° Ep max=0.650 GeV,
do‘aa/ iQ=1.97X10-0 cm?/sr
10~% cm?/GeV /st
0.6 1.275 15.17 15.24 15.28
0.5 1.347 4.264 4.308 4.370
0.3 1.480 1.307 1.328 1.441
0.2 1.543 0.8596 0.8752 1.015
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ing. The thickness of each radiator is equal to
L=b"a/m)[In (2sp/m*) —17], (II1.14)

where b is a number very close to 4/3 as given by
Eq. (A4). Comparing Egs. (A.16) and (A.19) with
Eqgs. (II1.14) and (C.11) and remembering the fact
that in this subsection we are ignoring the ‘multiple
photon emission {hence [In (E,/E)P* in Eq. (A.3)
must be set equal to 1 just for the discussion in this
section}, we obtain

ts.o= (/) [, 3 (1—2,5) 2] {In [2(sp) /m*]—1}
(I11.15)

In Table IV we give numerical examples of the radi-
ative tails from the 3-3 resonance (zero-width approxi-
mation) under experimental conditions identical to
those of Table ITI. We give at the top of Tables III
and IV the peak energy E, max, the nonradiative elastic
cross sections dao/dQ, and doss/dQ for the 3-3 excitation.

(equivalent radiators).

From Tables III and IV we observe the following:

(1) All approximation formulas given above are
very good near the peaks; they are accurate to
within 19, compared with the exact formula when
(Ep max—Ep) /Ep max<0.05. The approximation seems
to work better at low rather than at high incident
energies.

(2) At around Ey~3%E, n.x the approximation for-
mulas can have errors of more than 309, compared
with the exact formulas for the radiative tails from the
elastic peak. Hence when the inelastic spectrum is
dominated by the radiative tail of the elastic peak, the
exact formula must be used.

(3) The rise of the radiative tail near the lower-
energy end of the spectrum is very prominent for the
elastic radiative tail but not so prominent for the 3-3
radiative tail. The reason for the rise of the elastic
radiative tail is that the electron energy becomes very
small after a high-energy photon is emitted by the
incident electron along its direction of motion. The
resulting low-energy electron is then scattered by the
nucleus with a large cross section. For the 3-3 reso-
nance, there is the so-called threshold factor [Q*? in
Eq. (I11.11) ] which makes the rise in the cross section
at low incident energy relatively mild compared with

dovir(Es, By)  do

dQdE, deE,(E“l%)exP(&+ﬁo

dEJ/

+<A)(1/z)f,, [E.—A L bt DT (1)1} (1 )7
E, o on(E E.—E, { st (Dutiot3 )[xl+I( — %) ]}( n ;)

A W/2)fs [Ep max(Es) 4R 7
+(5) o EE I D = O

EptA
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the elastic scattering. If this is true for all other in-
elastic events, then we have a happy situation in which
the radiative tail from an inelastic event affects only
its immediate neighborhood where the approximation
formulas work very well. Another comforting feature
is that the peaking approximation seems to work better
for the 3-3 radiative tail than for the elastic radiative
tail. Of course we can always check whether these nice
features of the 3-3 resonance radiative tail are shared
by other inelastic events after the inelastic form factors
have been obtained (see Sec. IV.D).

(4) It is difficult to judge which version of the ap-
proximations is best for the treatment of the inelastic
spectrum because the error in the approximation seems
to depend upon the behavior of the form factors. For
example, for the elastic radiative tail the method of
equivalent radiators seems to give the best over-all
agreement with the exact formula, whereas for the 3-3
radiative tail our version of the peaking approximation
seems to give a better result. However, the difference
is small, especially near the peak.

IV. RADIATIVE CORRECTIONS TO
CONTINUOUS SPECTRA

After the elastic radiative tail has been subtracted
from the inelastic spectrum, the radiative corrections
must be applied to the continuous part of the spectrum.
We use the 3-3 resonance formulas, Egs. (IILS5)-
(I11.9), to illustrate this .procedure. Let us first con-
sidera reverse problem: namely, given a nonradiative
cross section da/dQdE, for the 3-3 resonance, what is
the resultant cross section do.,/dQdE, when the strag-
gling and the radiative corrections are included? In Sec.
IV.B we consider a more practical problem; namely,
given a set of values for the experimental cross sec-
tion, do,/dQdE,, what should one do to obtain the
nonradiative cross section do/dQdE,?

A. Change of 3-3 Resonance Curve Due to Radiative
Corrections

The nonradiative cross section for the 3-3 resonance
is given by Eq. (B.1) with form factors given by Egs.
(IIL1.5)—(II1.9). Then as a result of the straggling of
the electron in the target and the radiative corrections,
the measured spectrum would be given by

do

dQdE,

(B, Ep)

do

d0dE,

(E, E)), (IV.1)
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where do/dQE,(E;, E,) is the nonradiative cross section [see Egs. (B.1) and (IIL.5)-(II1.9)]. The functions

b= — [(bwt;w—F o) bt HGT) T 1n %] [see Eq. (A.21)],

—a 2(sp) E; E, 2(sp) E,—E, E.—E,
0r= 7 Ii%s——% In pors + (ln”A— +In —K) ln—"—ﬁ— —1)—-®| — —E:—' —-& T [see Eq. (B.7)],
where T is the target thickness in radiation lengths, ¢, and ¢, are the initial and final window thicknesses in
radiation lengths, and & and b, are values of & for the target and window materials given by Eq. (A.4),

#=E//Fy  5=E/E,
tr=b0"Y(a/m)[In (2sp/m?) —1] [see Eq. (II1.14)7],
fe=btrtbutat30T,  fo=bltbulsut+30T,
tsp=(a/m) {3(14%s,") In [2(sp)/m*]—1xs,} [see Egs. (C.8) and (IIL.15)],
Ex min(Ep) = (ma2+2M yme+2M ,E,) /[2M ,—2E,(1—cos8) ] [see Eq. (A.18)],
Ep max(Es) = (2M ,Es—2M ymr—m,*) /[ 2M p+2E,(1—cos 6) ] [see Eq. (A.19)].

The effect due to multiple photon emissions in the internal bremsstrahlung has been approximated by the inclu-
sion of the term ¢ in f; and f, and also the exponentiation of §, in the first term of Eq. (IV.1). Also, the factors
in front of the integrals, (A/E,)’» and (A/E;)”s, have been replaced by their square roots. This will reduce the
error introduced by neglecting region IV as shown in Fig. 3. In addition, it will make Eq. (IV.1) relatively insensi-
tive to different choices of A (see discussion at the end of Appendix A).

Three curves are shown in Fig. 2(a) through 2(c). They represent, respectively,

(1) do/dQdE,, the nonradiative cross section using Egs. (B.1) and (IIL.5)-(IIL.9);

(2) do,/dQdE,, the radiative cross section, Eq. (IV.1), neglecting the straggling, i.e., T'="4t;, =1 =0;

(3) do¢yr/dQdE,, the radiative cross section, Eq. (IV.1), with 7=0.02 radiation lengths, f;=1{2,=0.005 radi-
ation lengths, and b=b,=4/3.

All three curves are calculated for the incident electron energy of E;=20 GeV and §=35°. We have used various
values of A in our calculation and found that the answers are quite insensitive to A. For example, when the miss-
ing mass is equal to 1.236 GeV, for A equal to 10 and 15 MeV, the values of the cross section are 5.18X 10~%

and 5.15X107% cm?/sr- GeV, respectively. If we had used Eq. (A.21) instead of Eq. (A.22), the difference between
these two cross sections would have been 39%.

B. Procedure for Unfolding the Experimental Data

In the previous section, we have demonstrated how to calculate the radiative cross section from the nonradiative
cross section. However, the reverse procedure of extracting the nonradiative cross section do/dQdE, from the
measured cross section dos,,/dQdE, is needed. A procedure for doing this can be inferred from Eq. (IV.1). To
show this, we rewrite Eq. (IV.1) in the following form:

dG' _ dG'H_T(Es, Ep)

E, Ey) = 22020 20) o [ (3-8 ] 5i—3 (A)”””/E‘"“ dE. 9 _ 5 E)
daar, Lo B dgap, oL@ lmep (=0=8){p ) | ppi ) sonm (B B

A fsj2 fEp max(Ey) dEpl da-
- —8;—8,) [= / E,, E,), (IV.2
exp (=00 () [ S W) o (B ), (V)

where

¥ (@) = {tat (buliv+30T) Lot (1—2.) 2]} (In 1/:) 72,
¥ () = {tpt (butput30T) [p+§ (1 —2,) 21} (In 1/,) %2,

This equation implies that if the nonradiative cross o .(Es, E,). The cross sections o[ Ey' < Es min(Fp), Ep]
sections o(E, E,’) are known for E/<(E,—A) at and o[E;, E)/>E,msx(Es)] are equal to zero if the
constant E, and E,’> (E,+A) at constant E,, then elastic radiative tails have already been subtracted
the nonradiative cross section o(%s, E,) can be ob- from the measured cross section. Hence one can ob-
tained immediately from the measured cross section, tain the nonradiative cross section in the neighborhood
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(a)

Fic. 2. Change of the 3-3 resonance curve due to radiative
corrections and straggling. Elastic radiative tails are also shown.
The calculations were done for (a) E,=20 GeV, 0=5°; (b) E,=
5 GeV, 6=23.9% and (c) E.=3 GeV, 6=52.6°. The momentum
transfer squared, ¢%, was chosen to be nearly the same in all three
cases, equal to —2.77 (GeV/c)?2 These curves indicate that the
elastic radiative tail is relatively unimportant near the 3-3 peak,
especially at higher energies, for the particular value of ¢® con-
sidered here.

of the pion threshold along the line @b in Fig. 3. Know-
ing the cross sections on this strip, we can calculate
the cross section for the next strip and so forth until
we unfold the cross sections within the entire area abc
in Fig. 3. There is no essential difficulty involved in
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the procedure. The only thing one needs is an efficient
computer program to handle the entire unfolding auto-
matically. The best way to test the efficiency of this
program is to do a reverse calculation of the previous
section: namely, starting out with o4.(Es, E,) obtained
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Fi6. 3. Kinematic regions necessary for radiative corrections
to inelastic electron scattering, E,’ is the incident electron energy
and E;/, the scattered electron energy.

from the previous section, try to reobtain the original
cross section o(E,, E,). This exercise is extremely im-
portant in practical applications. It enables one to
perfect the program for doing the radiative corrections
without waiting for the experimental data, One can
also get some feeling about the number of points meas-
ured inside the area abc in Fig. 3 that are needed to
carry out the radiative corrections reliably. If one prac-
tices with enough examples of a similar nature, one
may even be able to make an intelligent guess about
the nonradiative cross section by just looking at the
experimental data.

From the structure of Eq. (IV.2), the whole unfold-
ing procedure should proceed smoothly as soon as we
finish unfolding the first few points of data near the
pion threshold. These first few points may be treated
very crudely because the cross section near the pion
threshold is very small and the error in these points
will not significantly affect the unfolding of the subse-
quent points (the radiative tail of a small cross section
is small). Let us first consider the radiative corrections
to the first few points on each spectrum nearest to the
pion threshold as shown in Fig. 4. We have assumed
that there are four spectra available corresponding to
four different incident energies 4, B, C and D, respec-
tively. The first data point on each spectrum can be
approximately unfolded by keeping only the first term
and ignoring the two integrations in Eq. (IV.2); in
the expressions for §; and é,, we take A equal to the
vertical distance between the point (E,, E,) and the
pion threshold when calculating In(E,/A), but equal
to the horizontal distance between the point (E,, E,)
and the pion threshold when calculating In(E,/A). The
first point in each spectrum serve as the beginning for
our entire subsequent unfolding program. We arrange
the rest of the data points in all four spectra in sequence
as an increasing function of the missing mass M;. Then
starting from the point with the lowest M, we proceed
to unfold each data point individually by use of Eq.

(IV.2) together with an appropriate choice of A and
an interpolation or extrapolation procedure to be dis-
cussed in the following. The quantity A in Eq. (IV.2)
should not be confused with the interval between the
data points. It is just an artificial device to handle the
infrared divergence problem. In fact, one should always
make sure that the final result is relatively insensitive
to the choice of A, provided A is chosen small enough
so that the variation of the cross section is negligible
within this interval but large enough so that the neglect
of region IV in Fig. 3 is justified. The error due to the
neglect of region IV in Fig. 3 is expected to be roughly
~[(8T/2) In (E,/A) . Since the widths of the reso-
nances are roughly ~100 MeV, A should be chosen to
be less than 15 MeV in the resonance region. Assuming
b=4/3, T=0.03 radiation lengths, and E,=10 GeV,
the error due to the neglect of region IV is roughly
0.16% of the cross section for A=15 MeV and 0.22%,
for A=5 MeV.

Due to limitations on available accelerator time,
usually the cross section is measured at many values
of the outgoing electron energy E, but only at a few
values of the incident electron energy E,. Therefore,
interpolations and extrapolations of the cross sections
are required when using Eq. (IV.2) to do the radiative
corrections. For example let us consider the radiative
corrections to the second data point (E;, E,) on spec-
trum 4 of Fig. 3. The integration with respect to dE,’
can be carried out readily over the spectrum already
unfolded. However it requires some trick to perform
the integration along the horizontal direction because
there are no data points available, The important thing
to notice is that the cross section for a fixed value of
the missing mass M, varies only monotonically as a
function of incident energy at a fixed angle, whereas
the cross section can vary rapidly with E, along the
constant E, line. Hence it is most desirable to make the
interpolations or extrapolations along the equimissing mass
line rather than directly along the constant E, line (see
Fig. 4). Consider the integration with respect to dE,
in Eq. (IV.2) for performing the radiative corrections
to the second data point on the spectrum A.XSuppose

Ep
PION THRESHOLD
EQUIMISSING
MASS LINES
(Es.Ep) Yo
hid
X2 X t
~lak-
1 1 1 Eé

Fic. 4. Tllustration of the unfolding procedure for each experi-
mental data point. The cross represents a data point. We assume
that there are four spectra corresponding to four incident energies
A, B, C, and D available at one angle.
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the nonradiative cross section o(E,’, E,) at point (E,,
E,) is required to perform the integration. This cross
section can be extrapolated from the cross sections al-
ready unfolded in the following way: (1) Compute the
missing mass M, corresponding to the point (E,’, E,)
where the cross section (nonradiative) is desired. (2)
Use an appropriate interpolation or extrapolation for-
mula to find the cross sections corresponding to this
value of missing mass on spectra 4, B, C, and D using
only the already unfolded points in each spectrum.
(3) Finally, extrapolate the cross sections obtained
in step (2) to obtain the cross section at the desired
point (E,/, E,). This procedure works very well until
we reach a very high missing mass value where the
equimissing mass line passes through only spectra C
and D (the equimissing mass line passes through only
spectrum D at a still higher missing mass). Thus, when
near the ends of spectra C and D, the extrapolation of
the cross section can not be done using the procedure
just described. We suggest a way to overcome this
problem: (1) Usually when My is larger than 2 GeV,
the resonances are small and the spectra change only
monotonically as a function of M. Hence the spectra
A-C can be extrapolated downward somewhat without
much loss in accuracy. This procedure will extend the
range of the integrand in the dE,’ integration but will
not cover the entire range required for the radiative
corrections of the tail ends of spectra C and D. (2)
With a reasonable choice of A, the first term in the
right-hand side of Eq. (IV.2) contributes about 60%-
70% and the two integrations in Eq. (IV.2) roughly
contribute equally (15%-20% from each). Thus we
divide the dE,’ integration into two parts, that which
can be extrapolated or interpolated from the measured
cross sections and that which can not, and replace this
latter portion by the corresponding dE,’ integration.
For example, in Fig. 4 we replace the integration from
%1 to %, by the integration from y; to 3. We have
applied this procedure to the 3-3 resonance model
mentioned previously and found that even if x; and ¥,
are extended all the way to the pion threshold, the
resulting error amounts to only a few percent of the
cross section. This observation implies that even if
there is only one spectrum measured at one angle, one
can still do the radiative corrections approximately if
willing to tolerate an error of $10% in the cross
section. -

We have applied the unfolding procedure described
above to the experimental results on the inelastic elec-
tron scattering data obtained by the electron scattering
group at the Stanford Linear Accelerator Center.?® The
results are shown in Figs. 5(a)-5(f). Two curves are
shown on each graph; they represent the raw experi-
mental data and unfolded data, respectively. Figures
5(a)-5(d) represent four spectra measured at 7, 10,
13.5, and 16.02 GeV in incident energy and 6°, and
they are unfolded simultaneously using the procedures
described above. Figures 5(e¢) and S(f) use the same
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experimental data as shown in Figs. 5(a) and 5(d),
but they were unfolded by assuming that the dE,’ inte-
gration is equal to the dE,’ integration in Eq. (IV.2).
As is evident from our previous discussions, the more
spectra one has at one angle, the more reliable is our
procedure for the unfolding. Comparing Fig. 5(a) with
5(e), and Fig. 5(d) with 5(f), we observe that the
results differ by at most 6% in cross sections. While
an error of 6% may be tolerable for many purposes,
it can become disastrous when one wants to separate
the two form factors from data measured at two differ-
ent angles.

C. Some Practical Considerations

The most important thing the experimentalists have
to do is to plan the experiment from the beginning so
that the radiative corrections can be carried out. We
list several items in the following to assist such plan-
ning:

(1) The purpose of the experiment is to obtain
F(¢®, M) and G(¢? M) as functions of ¢ and M.
When the radiative process is ignored, ¢* and M,* can
be written as

—@?=2sp=-+4E,E, sin® 30 (Iv.3)
and
MpA=uw*=M?42M(E,—E,)+¢, (Iv.4)
from which we have
MpA—-M*—g?
E' 2’ ] =
(¢%, M7, 6) Vi
(MJ2__M2_ 2)2 ¢ )1/2
- IV.5
+< 16M32 2(1—cos8)/ ’ (IV-5)
' Mp—M2—g?
2 Y2 )= L 2
EP(q ) Mf ) 6) aM
Mp-M—g)? ¢ )/
- . (IV.6
( 162 2(1—cos 6) ( )

Hence for fixed ¢? and M/? we can choose two values
of 6 and obtain two sets of values for (E,, E,) from
Egs. (IV.5) and (IV.6). Let us denote them by
[E8(01)7 Ep(ol)’ ‘12, Mfz:l and [Es(GZ)a Ep(02)7 q25 Mfzjy
respectively. The form factors F(¢?, M/?) and G(¢? M)
can be separated out from the knowledge of the non-
radiative cross sections at these two sets of kinematical
conditions by solving two simultaneous linear equations
using Eq. (B.1):

F(¢, MP)+(2/M?) tan® (6/2)G(¢*, M7)

=X[E0(01)1 EP(GI); ¢, Mfz:l; (IV7)
F(¢, M)+ (2/M?) tan? (6:/2)G(¢%, M)
=X[E«(62), Ep(62), ¢, M7, (IV.8)
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F16. 6. Examples of overlap in the (2sp, M,?) plane™for three
values of [E,msx(g), E min (0?] represented by Foint ¢;in Fig. 3
at three angles 6y, 6, and 6;. The separation o

possible only when two triangles overlap.

form factors is

where X is the cross section divided by the kinematical
factor in front of the bracket in Eq. (B.1).

(2) In order to do radiative corrections, one needs
to take data at many different incident energies at one
angle. The values of the cross sections at different
angles are not required to perform the radiative cor-
rections. The number of points measured inside the shaded
area abc in Fig. 3 must be dense enough so that inter-
polation between points can be carried out. In the shaded
area of Fig. 3, the lines parallel to ab represent the
“equimissing mass lines”; for example, line ab repre-
sents u?= (M ,+m.)?, the missing mass corresponding
to the pion threshold, and the next line represents,
say, #?= (1236 MeV)?, etc. The point ¢ has the highest
missing mass. The lines intersecting the ‘“‘equimissing
mass lines” represent the “equimomentum transfer
lines”; 2sp is minimum at point “a,” whereas it is
maximum at point “b.” Let us suppose an experi-
mentalist wants to measure cross sections at an angle
6 within the range of E,’ and E,’ shown by the shaded
area of Fig. 3. The kinematic region indicated by the
shaded area is uniquely determined by the angle
and the position of point ¢, which we will denote by
c(Ema=, Ejmin 9), For any given ¢(E®*, E, §) we
can map the shaded area of Fig. 3 onto an area in the
(M2, 2sp) plane. This area is bounded by the follow-
ing inequalities:

(M+ m”) 2S M)ﬁs M2+ 2M (Esmax__Epmin)
—2Emexf, min(]1—cos6) (IV.9)

and

M MHIMET )

2Emin(1—cos 6 .
(=08 0) B (1 cos ) ~

MM P+ 2 E o
2M+2Em2x(1—cos f)

<2Em=x(1—cos §) (1v.10)

Equation (IV.9) gives the range of the missing mass
covered by the experiment and Eq. (IV.10) gives the
range of momentum transfer for each value of MA.
The area bounded by Egs. (IV.9) and (IV.10) is a
triangle in the (M2, 2sp) plane. Hence each shaded
area in Fig. 3 can be mapped onto a triangle in the
(M4, 2sp) plane. In order to determine the form fac-
tors from Eqs. (IV.7) and (IV.8), one has to measure
another set of cross sections at a different angle. The
latter set of data must also consist of points which are
represented by a shaded area shown in Fig. 3 in order
to do radiative corrections. Let us again represent this
area by the position of point ¢’ in Fig. 3 and denote
it by ¢/ (Egax', Eg=iv’ ¢"), This new kinematical region
can again be mapped onto a triangle in the (M2, 2sp)
plane. It is obvious that only in the regions where two
triangles overlap can one determine the form factors
F(g® M) and G(¢%, M#). In Fig. 6 we have plotted
three triangles corresponding to three sets of ¢’s:
¢(17.5 GeV, 3 GeV, 2°), ¢’(17.5 GeV, 3 GeV, 4°) and
¢’(17.5 GeV, 3 GeV, 8°). The points @, b, and ¢ in
Fig. 3 have the same kinematical significance as points
a, b and ¢ in Fig. 6. From the overlapping region of the
two triangles a’d’¢c’ and a”’b"’¢"” we see, for example,
that the separation of form factors for the 3-3 reso-
nances at M 2= (1.236)2=1.53 GeV? is possible in the
range 0.2 GeV:<2sp<1.41 GeV2 The measurements
are assumed to be made at 4° and 8°, with incident
energies of up to 17.5 GeV. All the spectra are assumed
to be measured down to 3 GeV.

D. Final Check of Reliability of Approximate Formula

After the inelastic form factors have been obtained,
we can use them to calculate the radiative tail using
the exact formula, Eq. (B.6). The results can then be
utilized to check the reliability of the original approxi-
mations made to obtain these form factors.

V. DISCUSSIONS AND SUMMARY
In Fig. 7, we plotted five curves:

(1) Elastic radiative tail from ep scattering using
our exact formula, Eq. (B.5) (see Column 3 of Table
III).

(2) A curve similar;to the above but using the
method of equivalent radiators, using Eqs. (IIL.15),
(C.11), (B.3), (I11.2), (II1.3) (see Column 7 of Table
TII).
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(3) The 3-3 resonance with radiative corrections
[see Fig. 2(a)] and its radiative tail using the method
of equivalent radiators (see Column 5 of Table IV).

(4) The radiative tail from the 3-3 resonance using
our exact formula, Eq. (B.5), with the zero-width
approximation for the 3-3 peak [Eq. (III.11) and see
Column 3 of Table IV].

(5) The radiative tail from up elastic scattering using
Eq. (B.5).

All five curves are calculated for an incident energy

=20 GeV, scattering angle §=5°, and with the strag-
gling effect in the target ignored. These curves illus-
trate the over-all behavior of the radiative tails from
elastic ep and pp scatterings and e4p—e+N*. They
also illustrate the reliability of the approximation for-
mula used. We should notice that at this incident
energy and scattering angle, the elastic cross section
and the 3-3 resonant cross section are comparable in
magnitude (2.2X1073 and 1.61X 1073 cm?/sr, respec-
tively). However, the radiative tail from the elastic
peak is much more prominent than that from the 3-3
resonance, except in the neighborhood of the 3-3 peak.
The order of magnitude of the ratio of the up to ep
radiative tail is roughly given by [In (2sp/m,?) —1]X
[In (2sp/m*) —177.

We have investigated and improved the reliability
of many formulas used in calculating radiative correc-
tions to elastic and inelastic electron scatterings when
only the scattered electrons are detected. The uncer-
tainties still left are the contributions from (a) multi-
ple photon exchange between the hadron current and
the electron current and (b) the effect of the real
photon emissions from the hadronic system. These two
effects have to be treated together in order to achieve
cancellation of the infrared divergences. Except in the
infrared limit, both of these effects depend upon the
detailed structure of the strong interactions, which
are hard to calculate. In the formula for the radiative

5 10 15
SCATTERED ELECTRON ENERGY IN GeV

corrections to the elastic peak, these two effects have
been calculated in the infrared limit and are given by
the terms proportional to Z! and Z? in Table I. The
terms proportional to Z! represent two-photon exchange
contributions and the interference terms between the
electron-bremsstrahlung and the hadron-bremsstrahlung
diagrams. The terms proportional to Z2 come from the
square of the hadron-bremsstrahlung matrix elements.
It is reasonable to assume that the ratios of Z! terms
to Z° terms, and of Z2 terms to Z° terms, from the elastic
radiative corrections roughly give the order of magni-
tude of the corresponding contributions from the -
elastic excitation of the hadronic system. When posi-
trons are used, Z' terms change sign. We notice also
from Table I that Z' and Z? terms are comparable in
magnitude. Hence, the most practical way to determine
the significance of the above-mentioned two effects is
to make some spot comparisons of the experimental
inelastic spectra for positron scattering with those for
electron scattering. If the difference is small, these two
effects are probably negligible; if not, then one should
start worrying about them.

In summary let us sketch an ideal procedure for
doing radiative corrections:

(1) Perform e*p and e~ elastic scatterings at various
energies and angles. Compare the experimental results
with formulas given by T and MY (see Sec. II) and
select the version which gives a better agreement with
the experimental results. Perform the radiative correc-
tions using Eq. (II.9) and obtain elastic form factors
G.(¢?) and Gn.(g®).

(2) Use Figs. 3 and 4 to determine the desirable
ranges of momentum transfer ¢? and missing mass M2
to be investigated by the experiment. Take data at
two angles; the data at each angle must consist of
many incident energies so that interpolatlon between
poxlnts inside the shaded area shown in Fig. 3 is pos-
sible
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Fi16. 8. Comparison of Eq. (A.6) with Eq. (A.9) for Z=1. The
curves plotted represent (do/dE) XoN A~ (Eo— E). F; corresponds
to Eq. (A.9) and F; corresponds to Eq. (A.6).

(3) Calculate the radiative tail from the elastic peak
using Eq. (IIL.1) and subtract its contribution from
each inelastic spectrum. It should be emphasized that
our exact formula, Eq. (B.5), must be used for this
purpose.

(4) Perfect the procedure for doing radiative cor-
rections to inelastic spectra by carrying out the exercise
mentioned in Sec. IV. First: starting with a given
nonradiative 3-3 resonance cross section, calculate the
radiative cross section using Eq. (IV.1). Then perform
a reverse calculation using Eq. (IV.2) to see if one
can obtain the original nonradiative cross section. This
exercise not only enables one to perfect the procedure
for performing the radiative corrections before the data
become available, but also can tell one how many data
points need to be taken within the shaded area of
Fig. 3 in order to carry out the radiative correction
satisfactorily.

(5) Apply the radiative corrections to inelastic spec-
tra using the procedure obtained in Sec. IV. Obtain
inelastic form factors F(¢?, M) and G(¢?, M4) using
Egs. (IV.7) and (IV.8).

(6) Take the data on etp inelastic scattering at a
few points and compare the results with those on ep
scattering. The difference between the two cross sec-
tions represents the uncertainty due to multiple pho-
ton exchange and the bremsstrahlung by the hadronic
system.
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APPENDIX A: STRAGGLING EFFECT

As mentioned in the introduction, the straggling ef-
fect of the electron in the target is very similar to the
radiative corrections, and the magnitude of the two
effects are often comparable in most of the experimen-

tal conditions. Hence the effect of straggling must be
treated with as much care as the radiative corrections.
In the literature, the straggling formula given by Bethe
and Heitler,”

[(In(Ey/E) ]t/ 21
r(t/n2) °

has often been used to calculate the straggling effects.
The function 7.(Ey, E, t)dE represents the probability
of finding an electron in the energy interval dE after
an electron, initially with energy E,, travelled a dis-
tance ¢ (in units of radiation length) in the target.
Equation (A.1) is adequate for an order-of-magnitude
estimate, but is not accurate enough when an accuracy
of better than 209 (in evaluating the stragging effect)
is required. In most of the experiments, the target thick-
ness is less than 0.05 radiation lengths; and as will be
shown later in actual applications, the straggling effect
can be approximated by assuming that the target is
divided in half, and that one of the halves is placed
before the scattering and one after. Hence ¢ in Eq.
(A.1) is less than 0.025 radiation lengths and I'(x)
for small # can always be replaced by x~1. We are also
interested in E, and E, both larger than 1 GeV; hence
the only electron energy attenuation of importance is
that due to bremsstrahlung (we can ignore ionization).
For the same reason we can use the bremsstrahlung
cross section with complete screening except near the
bremsstrahlung tip (k~ZE, or E—0). The deviation
from the complete screening formula occurs only when
the minimum momentum transfer to the target is larger
than, or comparable to, the inverse of the atomic
radius; hence, the complete screening formula is cor-
rect as long as we disregard the region

E - (£>< 137m
E, E,
(A.2)

22'BEy+13Tm
for Z=1, Ey=1 BeV.

Under the conditions specified above, we propose that

Eq. (A.1) should be replaced by

e ]

Ie(E(), E, f) =E0-1

(A.1)

~0.03

4\ E, E
(A.3)
where
b=%{1+35[(Z+1)/(Z+¢ IIn (1832-13) T} (A4)
and
£=In (1440Z-28) /In (1832718), (A.5)

We believe Eq. (A.3) is accurate to within 19, in the
range 0.5Ey<E<ZE; and within 2%, in the range
0.05E,< E<0.5E, by the following reasoning:

(1) It was first shown by Bethe and Heitler?2 that
if the cross section for the bremsstrahlung were given
by

do/dE= (bA/X,N)[EsIn (E/E)T?, (A.6)
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then I,(E,, E, t) would be given rigorously by

[In (E/E) P+
I'(d) ’

where A is atomic weight, N is Avogadro’s number,
and X is the unit radiation length in grams per square
centimeter. The actual form of the cross section is quite
different from Eq. (A.6), especially when E<0.35E,,
as can be seen from Fig. 8.

(2) From Eq. (A.6) and Eq. (A.7) we notice that
when b2 is small, Eq. (A.7) can be written as

N do Eq
I(Eo E, )= [~ Xot — I =") .
(Eo, E, 1) ( "dE)(n >

Ig(E[], E, l) =F;! (A7)

(A.8)

If the electron encounters the atoms in the target at
most once, then one would have obtained only the first
factor on the right-hand side of Eq. (A.8). Hence the
term (In Ey/E)% can be regarded as a correction due
to the multiple encounters. Now all we have to do is
to insert a correct expression for do/dE into (A.8),
instead of using Eq. (A.6), and show that the correc-
tion factor (In E,/E)% is relatively insensitive to the
fact that Eq. (A.6) is a bad approximation when
E<0.35E,.

(3) The correct expression for do/dE correspond-
ing to one-photon emission and complete screening is

given by*
dzr A4 E 3 (Ey— E\?
1__ |z 52
L X153 (B D) [E0+4( = )]
£_Z_+_1 —1/3 —1)
(14 55 Fz D (18329)37), - (49)

where X, is the unit radiation length given by Bethe
and Ashkin®

1/Xo= (4N/A)arZ(Z+¢) In (183Z-18). (A.10)

Comparison of Egs. (A.9) and (A.6) shows if b is
chosen to be that given by Eq. (A.4), then the two
expressions agree completely in the infrared limit
(E—E,), and Eq. (A.9) is only 19 less than Eq.
(A.6) when E=0.98FE,. In Fig. 6 we compare numeri-
cal values of Eq. (A.6) and Eq. (A.9). It is seen that
Eq. (A.6) and Eq. (A.9) agree numerically within

0t(Eyy Ep, T) =da,/d9dE(Es, E, T)

fT dt . ,/E, max(By")
= 8
T Es mm(Ez’) Ep

where E; min(E,) is the minimum value of E,/ allowed
by the kinematics of o(E,, E,’) when E,’=E, and
E, max(ES") is the maximum value of E, for a given
E,/. We shall use Eq. (A.12) to calculate three things.

(a) Effect of straggling on the elastic peak radiative
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109, up to E=0.35E,, but differ drastically for E<
0.35E,.

(4) The shape of the bremsstrahlung spectrum at a
high photon energy k(k= E,— E) should not affect the
correction factor (In Ey/E)% for high E, because if a
hard photon is emitted, E will no longer be high. Since
Eq. (A.9) agrees with Eq. (A.6) to within 109, in the
range 0.35F,< E< E,, the correction factor (In E,/E)%
must be substantially correct in this energy range.
This factor is less than one when E>0.37E, and greater
than one when E<0.37E,. Hence the over-all effect of
this factor is to deplete the number of high-energy
electrons and to increase the number of low-energy
electrons, a very intuitively plausible effect. Since the
number of electrons removed from the high-energy
side of the spectrum is roughly the same in two cases,
we expect the number of electrons moved into the low-
energy side must be roughly the same in two cases
because of the conservation of leptons. In the region
E<0.35E,, the spectrum given by Eq. (A.6) is less
than that given by Eq. (A.9); hence we expect the
correction factor for Eq. (A.9) must be less than that
for Eq. (A.6). But the correction factor for Eq. (A.6)
is only slightly larger than unity in this region. For
example, (InEy/E)*3~1.03 for E=0.05E, and ¢=0.02.
Even if this factor is totally wrong, the error is at most
39 at this energy. In reality the error is probably less
than 29,. We will not consider the region where E<
0.05E, because the complete screening formula is un-
reliable near the bremsstrahlung tip.

From Eq. (A.3) the fraction of electrons, initially
with energy FEo, which have an energy in the range
Ey— A< EXLE, after passing through a target of thick-
ness ¢ is given by

/Eg ( d (A bt f A
I1.(Ey, E, {)dE= —) r ( ><<1
Eo—A ’ ) E, © L,

=exp [—btIn (Ey/A)]
=1—0btIn (Ey/A)+ - (A.11)

Suppose an electron suffers a single large angle
(6>m/E,) scattering in a target of thickness T with
a cross section (do/dQdE,") (E/, E,/, 0)=a(E/, E,');
then because of straggling, the measured cross section
would be given by

dE,1.(Es, EJ, )a(E/, E))I.(E,, Epy T—1), (A.12)

corrections: For elastic scattering we have
o(EJ, E,)=do/dQdE, (E/, E,’)
=[doo(ES) /dQ o (ES — E,'— E/E,/ M~'(1—cos 8)),
(A.13)
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P Pe
F16. 9. Feynman diagram for non-
radiativelep inelastic scattering.
s P
where

n=1+E/M-1(1—cos §)~1+EM-(1—cos 6). (A.14)

Substituting (A.13) into (A.12) and integrating the
result with respect to E, from Ep max—AE t0 Ep max,
we obtain

Ep max AE \¥T/2 AEqy? bT/2
E,, Ep, T)dE,= ( ) ( )
'/l;;? max_AE Ut( ? ) i EP max Ee
X iiﬂ’ (E,), (A.15)
a ’
where

Ep mex=E,/[1+EM(1—cos §) |=Eqn.

Equation (A.15) can be derived under the assump-
tions AE/E, maxX1 and 87<1. The detail is straight-
forward but messy. Equation (4.15) is used in Eq.
(11.9).

(b) Effect of straggling on the radiative tail of the
elastic peak: This is similar to (a) except now we are
interested in the value of E, not very close to Ep max.
In this case we have from Eq. (A.12)

doy, da
aaz, Eo B 1) = LBy Eom, 1100t 352 (Fym)
do,
+L( B, By, 3T) =2 (Ex),  (A16)
where

m=[1—E,M*(1—cos 0) I,
ne=1+E,M1(1—cos6),

and I, is given by Eq. (A.3).

(c) Effect of straggling on the radiative correction
to the continuum state: Let us assume that the elastic
radiative tail has been subtracted from the inelastic
spectrum already. Then the limits of integration
Eymin(Ep) and Epmax(ES) in Eq. (A.12) are given
by the kinematics of the electro-pion production at
the threshold, namely

(M~+me)2=M2+2M(E,—E,")—2E/E, (1—cos 6).
(A.17)

Hence
E, win(Ep)
= (M2+2Mm.+2ME,) /[ 2M —2E,(1—cos 6) ]
(A.18)
and
Ep mex(ES')

=(2ME'«—2Mm.—m.2) /[2M+2E,'(1—cos 8) .
(A.19)

The region of integration in Eq. (A.12) is shown by
the shaded area in Fig. 3. In order to avoid the singu-
larities of the integrand at E,=E, and E,=E,/, it is
a good idea to separate the region of integration into
four regions as shown in Fig. 3. The cross section
o(E/, E;) is smooth compared with I.(E,, E,/, t) and
I.(E,, E,, T—t). For simplicity let us suppose A is
chosen such that b In (E,/A) < 0.2and bt In (E,/A) <
0.2; then from Eq. (A.11) we expect that region I would
contribute more than 649, region II more than 16%,
region IIT more than 169, and region IV less than
49, to the integration. If we ignore region IV, we ob-
tain [using Eq. (A.11)]

do T Gi[ A\ ANT-0
dE,d9 E" E ’ - / T (_> (ﬁ_‘) E‘D’ E
dEde( » 1) ] T[ %) \E, o(E,, Ey)

A b(T—t) rE.—A
+ ( —) / 1B, E/, )o(E/, E,)dE)
E, Es min(Ep)

A bt
+ (’E:)

EF ma x(El)
[ 1w, B 1-o(m, B |

EptA
(A.20)
E, E ”
~ (1—%(bT) In = —21(47) In —”) o(E,, Ep)
A A
E,—A
-+ Ie(Es: Esly %T)U(EBI; EP) dE,/
Es min(Ep)
By max(Es)
+ I.(E), Ey, 3T)o(E,, E,)dE,'. (A.21)

EptA

We have assumed that the variation of the cross sec-
tion is negligible when E, and E, are changed by a small
amount A. Since the widths of the resonances are typi-
cally 100~150 MeV, A should be taken less than ~15
MeV. When E,=20 GeV and 57/2=0.03 radiation
lengths, we have 35T In (E,/A)>0.2. Hence neglect of
region IV and terms proportional to [357 In (E./A)J?
causes an error of ~49,. This is somewhat undesirable.
We remedy this defect using the following criteria:

(1) We insist on ignoring region IV in Fig. 3 to
save computation time.
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(2) The expression must be accurate up to terms
of the order of [3b7T In (E,,;/A) ] compared with the
correct expression when the cross section is constant.

(3) The expression must be relatively insensitive
to the choice of A when the cross section is constant.

Using these criteria, we propose the following ex-
pression as a substitute for Eq. (A.21):

do
aE;:Z—Q (Esy Ep, T)=exp (8s+6p)0 (Es, Ep)

E,—A

tep (38) [ LB, B AT (E, BB

Es min(Ep)

Ep max(E,)

+exp (3%,) I(E), Ey, 3T)o(E,, E,')dE,)/,

EptA
(A.22)

where
8s,p=—3bTn (E, ,/A).

When the cross section is constant we expect that the
right-hand side must be equal to the left-hand side of
Eq. (A.22). Expanding the right-hand side of (A.22)
in power series of 8,5, We see that the left-hand side is
equal to the right hand side up to terms of order 6,2
Hence the criterion (2) is satisfied. Again if we assume
that the cross section is constant and differentiate the
right-hand side of (A.22) with respect to A, we see
that the resultant expression is equal to zero up to the
terms of the order 4,2 Hence the criterion (3) is satis-
fied. What we have accomplished is essentially the
nearly complete elimination of the error introduced by
neglecting region IV. Furthermore, we have made our
expression relatively insensitive to the choice of A [see
discussions after Eq. (IV.1) in Sec. IV]. We shall refer
to the approximation in which region IV in Fig. 3 is
neglected as the strip approximation.

APPENDIX B: EXACT CALCULATION OF
RADIATIVE TAILS

It was shown by Tsai®® that the radiative tails from
an arbitrary unpolarized target system and arbitrary
hadronic final state can be calculated exactly in the
lowest order of «if (1) the one-photon exchange mecha-
nism is assumed, (2) the interference terms between
the electron bremsstrahlung and the hadron bremsstrah-
lung are ignored, and (3) only the scattered electrons
are detected.

This can be done because in the one-photon exchange
model, the nonradiative cross section (see Fig. 9) de-
pends upon two form factors, and the radiative cross
section (see Fig. 10) also depends upon the same two
form factors. We shall reproduce here the formulas
given in Ref. 13 for completeness. Let us normalize
these form factors by the nonradiative cross section
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F16. 10. Feynman diagrams for radiative ep inelastic scattering.

(only the scattered electron is detected):
do/dQdp= (202 E22M /¢*) cos? 36[ F(q?, M /)
+(2/M7) tan® 36G(¢, M#)], (B.1)

where E, and E, are energies of the incident and scat-
tered electrons, respectively, M and M; are masses of
the initial and final hadronic system, 6 is the scattering
angle, and

¢*=—4E,E, sin? (6/2),

Mp=M+2M (E,— E,) +¢.

When the mass of the final hadronic system is discrete,
M 2= M 32, we shall normalize the two form factors such

that
F(¢, MP)=Fi(s(Mp—M7P), (B.2a)
G(¢ MPA)=Gi()os(MpP—-MP),  (B.2b)
where j denotes the jth discrete level, and j=0 corre-
sponds to the elastic scattering. Substituting Eq. (B.2)

into Eq. (B.1) and integrating both sides with respect
to dp, we obtain the cross section

do; o}

T z [14+EM1(1—cosf) ]

2
X cos? 30 [F,(q2) + 0 tan? %GG,-(qZ)] . (B.3)

The form factors F;(¢*) and G;(g?) for elastic ep scatter-
ing are given in Eqs. (II1.2) and (II1.3), and those for
the narrow-width approximation to the 3-3 resonance
are given in Eq. (IIL.11) in the text. An example of
the form factors F(g?, Mp2) and G(g?, Mp2) for con-
tinuous M 2 is given by Egs. (II1.5) and (II1.6) for the
3-3 resonance.

In the following sections we first give the formula to
calculate the radiative tail from a discrete level and
then give a formula for calculating the radiative cor-
rections to continuum states.

1. Radiative Tail from a Discrete Final Hadronic
State

The expression for the radiative tail due to the jth
level is [see Eq. (11) of Ref. 13]

d*s Jr aaEp 1 wd ( Cos Ok)

dQdp  (27)*ME, ), 2¢*(uo— | u | cos 6r)

27
X prTuvd¢k, (B4)
0
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where

BT M°F <q2>{ [2B(Eyt) 3¢ ] o (2B, (Eam) +3a]—2

(pk)? (k)2

2
+ ) {(m2(sp—a?) + (p5) [2E.Ep— (ps) +o(Ee—Ep) T}

+ (pk) "[2(E:Ept EsotEp?) +5¢°— (sp) —m*]— (sk) [ 2(EEp— Ept+E2) +3¢*— (sp) —mzj}

4(ps) (ps—2m’)

Gig) (e (m ) (U ()T (55T 4+ (o) ()

+(2ps+2mi— @) [(ph) -1~ (sk)-q) ,

and ¢? is the momentum transfer to proton target squared, which is equal to
2m*—2E,Ep,+2 | s || p | cos 042M2—2w(E,— E,) +2w | 1| cos by,

and w is the photon energy equal to 5 (22— M) /(uy— | u| cos 8;). We have chosen a coordinate system such that
the z axis is along the u direction and the electron momenta s and p in the x-z plane. In this coordinate system
the quantities ¢* and M 2 are independent of the photon azimuthal angle ¢, only (pk) and (sk) are dependent
upon ¢. Hence the integration over ¢, in Eq. (B.4) can be readily carried out with the help of the following
three integration formulas:

2T dd) 2

(a) / a—!—;x = __7[:2)”2 where x= cos ¢x,
2T dy 27ra

(b) / (a+bx)? (=)’

: /% o 2 [ b b }
V), o) (@b - (@b—ab) | @tk (a—pyin ]

The integrated result is given as the following:

doy o < ) wd(cos )
dﬂdp (2m)2\E jﬂ 2¢* (uo— | u | cos 6y)

2 2 2 ! 2 2

i ((a2—b2)”2 D 1,) i (sp—c)+ (sp) [2E.Ey— (sp) +e(Eu—By) ]
T [2 B4 Bt ER+ L 2
+ (@2— )12 (BBt Bt Z’)+2 —(SP)_m]
2T

q?
- (0,2—‘17/2) 1/2 [2<E3Ep—'Epw+E82) + E — (SP) _MZ:H

2 2wa’
+G;(¢?) [((02_7';)3/2 -+ (alz_rzlz) 3/2) m? (2m*+-¢?) 48w

’

14 14
(a2—b2) 12 - (a2—b'2)12

+8r ( ) () (sp—2m2) + 2] (a2— B2) 12— (a"— b'2) ~12] (25 p+ 2m— ) D , (B.5)
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where
- —|p|siné,
wlE,|s|sin@—E;|p|sinb,+ |s| p|sinfcosb]’
e — | s|siné,
w[Ep|s|sin—FE,|p|sinb+ |s| p|sindcosb]’
a=w(E,— | p| cos 8, cos b;),
b=—w|p|sin 6, sin 6,
d'=w(E;— | s| cos 6 cos 6;),
b'=—w|s| sin 6, sin 6,
60x=angle between k and u,
6,=angle between p and u,
and

6,=angle between s and u.

2. The Radiative Corrections to the Continuum State

Let us assume that the radiative tail due to the elastic peak has been subtracted from the inelastic spectrum
already. The exact formula to lowest order in « (ignoring the radiative corrections to the hadron current) is given
by Eq. (15) of Ref. 13. The rediative cross section (ignoring the straggling) can be written as

(do+/dQdp) (Es, Ep) = (do/dQdp) (B, Ep)[148,(A) I+ (dor/dQdp) (w>A),

where do/dQp(E;, E,) is the continuum nonradiative cross section,
—alsg 1gq 2(sP) (1 B, >( 2(sp) ) ( Es——Ep) (E—E)]
\B)= T | Te e AT ~ ~ — 1 —® , (B.
6.8) = 22|43 10 2 (1n 2 22 1 22 = )|, @

&(x) is the Spence function, and
Wmax(cos Og) wdw

do,
O
aaap @A 2 MES _, Acos )

BT, is the same as B, T, in Eq. (B.4) except that F;(¢?) and G;(¢?) are replaced by F(¢%, M) and G(¢?, M),
respectively. The energy w of the photon is a function of M and cos 6,

(B.6)

B,,,”T,.,dd)k. (B.8)

w=3(u—Mp2)/(— | u| cosbr); (B.9)
wmax(C0s 6;) is the value for w at the pion threshold
Wmax (€08 Or) =3[ — (M~+m.)%]/ (o— | 1| cos br). (B.10)

Let us sketch briefly the derivation of Eqgs. (B.6)—(B.8). The continuum mass state can be regarded as a sum-
mation of many discrete levels. Hence, in order to obtain the radiative tail due to continuous mass states, we have
to integrate Eq. (B.4) with respect to M 2. Equivalently all we need to do is to make the replacement

wWma x(COs 0z)

F:‘(q2)—>/::+m F(g, M2)dM 2= /

and a similar one for Gj(¢*) in Eq. (B.4). We have
used Eq. (B.9) to change the variable of integration.
Substituting Eq. (B.11) into Eq. (B.4), we notice
that the integrand diverges at w=0 (the well-known
infrared divergence). Hence we divide the integration
into two parts, one from w=0 to A and the other from
A t0 wmax(cos 0;) . The integration from A to wmax (cos 6x)
is given by Eq. (B.8). The integration from w=0 to A
plus the vacuum polarization and the vertex correction
is given by Eq. (B.7), which can be obtained from the

F(g®, M) 2(uy— | u| cos ) dw (B.11)

Z° terms of Eq. (I1.6). It should be noted that A is
chosen here to be independent of angle, whereas in
Eq. (I1.6) AE is the maximum energy loss of the de-
tected electron. When AE is fixed, the maximum energy
of photons which can be emitted along the direction
of the incident electron is #?AE, whereas in the direc-
tion of the scattered electron it is AE. Hence, instead of
[In (E,/9*AE)+ In (E,/AE) ] asin Eq. (I1.6), we have
to use [In (E;/A)+ In (E,/A)] in Eq. (B.7).

The integration with respect to ¢ in Eq. (B.8) is of
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course identical to that in Eq. (B.5). Equation (B.8)
is practically useless as it stands, because we have to
know F(¢?, M¢) and G(g?, M) for certain range of ¢?
and M/ before we can apply radiative corrections. We
shall derive an approximate expression for Eq. (B.8)
using peaking approximations in Appendix C. A possi-
ble use of Eq. (B.8) is in making the final consistency
check on the data after F(g? M) and G(¢? M) were
extracted, by using peaking approximation method.

APPENDIX C: PEAKING APPROXIMATIONS

Schiff*! was the first one to use the so-called peaking
approximation to integrate the Bethe-Heitler’ formula
for bremsstrahlung. Our Egs. (B.4) and (B.6) are
essentially the Bethe-Heitler formula with modifica-
tions due to the spin, recoil and excitation of the target
system.® Many people*®!! have written down various
versions of the peaking approximations. In the follow-
ing we shall derive our own version based on Egs.
(B.4) and (B.8). Figure 11(a)-11(c) show some exam-
ples of the integrands of Eqgs. (B.5) for the radiative
tail from the elastic peak in ep scattering, for E,=20
GeV, 6=5° and E,=18, 12, and 6 GeV. The interesting
features shown in these plots are:

(1) The integrand in Eq. (B.5) is indeed very
sharply peaked when 6 is equal to 6, or 6,, namely
most of the photons are emitted along the direction
of either the incident or the scattered electron. The
widths of the peaks are roughly given by (m/E,)? and
(m/E,)'2, respectively. This is to be compared with
6=m/E,, which is the angular spread of the bremsstrah-
lung when the direction of the scattered electron is
integrated out. We shall call these two peaks the s peak
and the p peak, respectively.

(2) Because | ¢%| decreases monotonically with in-
creasing cos f; and the integrand is roughly propor-
tional to ¢*G,2(¢?), we see that the s peak is more
prominent than the p peak.

(3) When E, is small, there occurs a third peak
near cos =1, where | ¢?| becomes minimum. Since
this third peak is not taken into account in the usual
peaking approximation, we can understand why the
peaking approximation becomes unreliable at the low-
energy end of the scattered electron spectrum.

In Fig. 11(d)-11(f), some examples of the integrand
in Eq. (B.5) are shown for the radiative tail from the
elastic peak in up scattering with E,=20 GeV, 6=5°,
E,=18.3, 12.5, and 6 GeV. We observe that there are
hardly any peaks in this case. However, it is interest-
ing to notice that if we blindly apply our peaking
approximation formula, Eq. (C.11), to the calculation
of the elastic radiative tail of up scattering, the answer
is correct to within 109, near the elastic peak, and
within a factor of 2 in the deep inelastic region.

The detailed procedure of our peaking approxima-

tion is as follows:

(1) Terms with (sk)~2 and (sk)~!in Eq. (B.4) are
assumed to contribute only to the s peak, whereas
terms with (pk)~% and (pk)~! are assumed to contrib-
ute only to the p peak.

(2) Terms which do not have (pk) or (sk) in the
denominator, such as —2 and 4 in Eq. (B.4), are made
to contribute half to the s peak and half to the p peak.

(3) The most important terms are those with
(pk) (sk) in the denominator. We first ignore the 6
dependence of photon energy, w, and integrate this
term with respect to the solid angle

it [ d%
| Erresiel Kad sy

sp+L(sp)—mi]n
2

= 2 C(spy—mn i T

~(4r/o?) (sp)™ In [2(sp) /m*],
where p,= (1—x) p+us.

We then give
2(sp)

2 _
o (sp)'In Py

to the s peak and
2(sp)

27

2T (sp) 1 In 2222
P
to the p peak, where w, and w, are the photon energies
along the incident (6,=0;) and outgoing (6.=0,) elec-
tron directions, respectively, and are given explicitly by

we=3(2—MpP) /[[M—Ey,(1—cos§)] (C.1)

and

wp=%(—MpP) /[M+E,(1—cos6)]. (C.2)

(4) Using a technique similar to the above, we ob-
tain

m? 4
(R = o
m? 4
o P
d% 4r . E;tp _ 4r  2E,
e AP} e AR ORI i
)l " Tm By m
a4 o,
(k) " w.Ee m

The coefficients associated with these terms in the inte-
grand are evaluated at the peaks. For example, for
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Fic. 11. Integrands in Eq. (B.5). The curves plotted are for E,=20 GeV, §=>5° and (a) E,=18 GeV, (b) E,12 GeV, and (c) E,=6 GeV, for e+p—e+p+v; and (d) B,

(d)
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18.3

6 GeV for u+p—u+p+v.

12.5 GeV, and (f) E,=

GeV, (¢) E,
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the s peak, w is replaced by w;, ¢* and M/ are replaced
by
g2=—2(E;—w;) E,(1—cos 8),

M= (C.3)
and for the p peak, w is replaced by w,, and ¢* and M2

w2—2ws(uo— | u | cos6;),

do,

where

<d0, ( >A)) _
aQdp @ kl]s—

O[SEPM /wmnx<°05 0s) dws 1
2w E;

Ws

aaap M= (dszdp (o> )>k|ls+<d?zdp

Mst) {

are replaced by
gt=—2E,(E,+w,) (1—cos h),
M 2= 12— 20, (ttg— | 1 | cos 6,). (C4)

With these approximations, Eq. (B.8) can be written as

).
kllp

—w;) (14-cos ) —w?

(C.5)

E,(E,

+[E,(Es—ws) (1+cos 0) +ws(Es+E, cos 0) | In [2(sp) /m?*]
F[—ws(EAE, cos 0)+ (Ey/Es) 3 (ws) (14-cos ) ] In (4E2/m?) }

+[2G (g7 Ms?) /M ]

—E,(Es—ws) (1—cos 0) 4w+ E.E,(1—cos 0) In [2(sp) /m*]
— (ws/Es) E,(1—cos 0) (E;—

30,) In (2E,/m)*}); (C.6a)

do, BE,M  [emex(©os 0) gy, 1
(0> A) =— / — — X[terms obtained by interchanges E«—E,,
de? kllp

2w E;

wp Gy’

(5) We have gotten rid of one integration by the
above approximation; however, Eq. (C.6) is still not
in a desirable form because it still implies that F (g2, M )
and G(¢?, M*) have to be separated out from the cross
section for certain ranges of ¢* and M2 before one can
apply radiative corrections. It is desirable to make a
further approximation such that the integrands in Egs.
(C.6a) and (C.6b) contain only the cross sections
o0 (Es—ws, Ep) and o(Es, Ep+w,), respectively. Com-
parison of Eq. (C.6) with Eq. (B.1) shows that some-
how we have to make the ratio of the coefficient
of Gj(¢?) to that of F;(¢®) in Eq. (C.6) equal to
2M~2 tan?(6/2) in order to achieve this purpose. We
can do this by ignoring w.? in the nonlogarithmic term
and changing In (4E.2/m?) into In [2(sp)/m*] in Eq.
(C.6a). After these approximations, Eq. (C.5) can be
written as

do, E—A dE,’ do
A)= / = E/ E
dQdp (w>2) Bo pinEp) Bs—Es' dﬂdp ( )
By maxB)  JF,!
E, E;), (C.1
+ /Epﬂ E,/—E, b oap dﬂdp ( ), (€D
where
L= = (3(1He M [2(p) /] =5}, (C8)
:Esl/Es: (Es""ws) /Es, (C.9a)
%p=E,/E) = Ep/ (Eptw,), (C.9b)

and E; min(Ep) and Ep nax(Es) are given by Egs. (A.18)
and (A.19).

ws>—wp, and ¢Xq,? in Eq. (C.6a)]. (C.6b)

When M is discrete, M ;= M;, do/dQdp in Eq. (C.7)
contains a 6 function

(do/dQdp’) (E{, E,)—[do;(E)) /d2]
X[2M~+2E/ (1—cos 0) o[ (s'+ pi—p")2—M 7.
(C.10)

Substituting Eq. (C.10) into Eq. (C.7), we obtain the
expression for the radiative tail from a discrete hadronic
mass state M= M; in the peaking approximation:
M+ (E;—ws) (1—cos 8)
M—E,(1—cos9)

d
(E w,)-{—wp 1ty daJ

da‘ r

dQdp

(ES; Ep) =0,

d
"’ (E), (C.A1)
where w, and w, are given by Egs. (C.1) and (C.2),
respectively.

APPENDIX D: REMARKS ON PROGRAMMING

In this Appendix, a few remarks concerning the nu-
merical calculations of radiative corrections will be
given.

First, it should be noted that in calculating the
radiative tail from the elastic peak, the integrand in
Eq. (B.5) has an uncertainty of zero divided by zero
when a’b=ab’. This happens just because of the par-
ticular factorization used in the ¢ integration, and
there is nothing wrong with it. It occurs at an angle
given by

cos 0= (1/sin 0)[(E./ | s |) cos 0,— (E,/ | p|) sin 65],
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which corresponds to the position of the minimum be-
tween the s and the p peaks. To facilitate the numerical
calculation, an extremely small area near this point
should be ignored in the numerical integration. The
error thus introduced is negligible.

Secondly, in calculating the radiative corrections in
the inelastic region, two small regions near point ¢ and
b as shown in Fig. 3 should be ignored in the integra-
tion. This will avoid difficulty caused by roundoff error
in a computer. Again, the error thus introduced is
beyond detection, because typically the deleted region
is only a few MeV wide.

We have performed all the calculations discussed in
this paper on the IBM 360/75 computer at SLAC.
Double precision has been used all through the calcu-
lations in order to retain 14 significant digits. Typi-
cally, we found the following information which may
be of some use to the experimentalists:

(1) It takes 0.74 min to compute 200 different val-
ues of the Spence function with an accuracy of 1075,

(2) It takes =~0.6 min to compute 10 different val-
ues of & for ep elastic scattering using Tsai’s formula,
while ~0.5 min for the same number of points using
the formula given by Meister and Yennie.

(3) It takes 1.5 min to calculate 100 points for the
radiative corrections on the 3-3 resonance peak with
an accuracy of better than 10~ using the peaking
approximation method.

(4) It takes 4.2 min to calculate 175 points on the
radiative tail from the ep elastic peak with an accuracy
of better than 1073, using the exact formula.

(5) It takes ~45 min to completely unfold ~1100
data points of the four spectra shown in Fig. 5(a)-5(d).
The time needed to compute the elastic radiative tails
is not included.

(6) It takes only ~2 min to unfold one spectrum
shown in Fig. S(e) or 5(f) by the approximation that
the two integrals in Eq. (VI.2) are equal to each other.
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