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The method of self-adjoint ladder operators, developed in Parts I and I, is applied to the solution of the generalized
angular-momentum problem. This reveals many interesting aspects of this approach to eigenvalue problems and, in
particular, its relationship to addition of angular momentum. The complete set of irreducible unitary representations of
the underlying algebra is obtained and also the corresponding Clebsch—-Gordan (Wigner) coefficients for the addition of
spin and angular momentum in a space of arbitrary dimension.

I. INTRODUCTION

In Parts I and IT of this series,! hereafter denoted by
I and II, we described the self-adjoint ladder operator
approach to eigenvalue problems and its application to
several systems of physical interest. Here it is used to
study the generalized #-dimensional angular-momentum
problem. This is essentially the problem of determining
the irreducible unitary representations of the Lie
algebra of 0(%) in the canonical group chain

0(%) D0(n—1)D---20(2)

and has applications to the study of the hadron mass
spectrum,? in nuclear spectroscopy,® and in many-body
theory.t It is moreover a system which is of particular
interest in the development of the techniques which
have so far been employed in the discussion of the
orbital angular-momentum problem (I). The reason for
this can be readily understood from the following brief
resumé of the basic arguments involved.

Our primary aim is to derive irreducible representa-
tions for certain Lie algebras. The method for doing this
which is both elegant and elementary is that which
makes use of operators (known as ladder operators)
which raise and lower the eigenvalues of a selected set of
commuting elements of the algebra which we refer to as
the observables. This is the basis of the approach used
by Cartan® who was thus able to derive the irreducible
representations for all the semisimple Lie algebras.
However in Cartan’s analysis a loss of generality arises
because not all the possible sets of observables are
considered; indeed, only those formed by taking linear
combinations of the elements of the algebra are selected.
As a consequence, not all the possible sets of irreducible

1 A, Joseph, Rev. Mod. Phys. 39, 829 (1967); C. A. Coulson and
A. Joseph, ib:d. 39, 838 (1967). ‘

2 P, Budini, Nuovo Cimento 44A, 363 (1966).

3 K. T. Hecht, Phys. Rev. 139, B749 (1965) and references
therein.

4 P, Kramer and M. Moshinsky, Nucl. Phys. 82, 241 (1966).

5S. Helgason, Differential Geometry and Symmeiric Spaces
(Academic Press, Inc., New York, 1962), Chap. III, pp. 130-161.
A simplified account can be found in a review by G. de Franceschi,
and L. Maiani, Fortschr. Physik 13, 318 (1965).

representations are obtained, though those which are do
have the property of being unitarily equivalent to any
other. While this is sufficient for many purposes, it is
sometimes desirable to derive, in explicit form, repre-
sentations other than those obtained by the Cartan
formalism. Such a consideration motivates the present
analysis. The representation with which we are con-
cerned is characterized by choosing the observables
from the Casimir invariants of suitable subalgebras of
the main algebra. As such it is not the most convenient
to handle mathematically; but it is often the one of
greatest physical importance.

Selecting a representation of the form described above
presents us with the problem of determining a ladder
operator for the Casimir invariant(s) of a given sub-
algebra. Now as these are at least quadratic in the
elements of the subalgebra no simple ladder operator
exists.® In the present method, this difficulty is overcome
by factorizing the Casimir invariant and then deter-
mining ladder operators for the resulting factors. This
factorization implements a decomposition of the eigen-
space of the Casimir invariant into a pair of subspaces
and the action of the ladder operator involves not only a
change in the eigenvalue but also an interchange of
subspaces, the direction of which determines the sign of
the stepping process. As was explained in I, it is this
additional property which results in a single self-adjoint
ladder operator rather than, as in the Cartan formalism,
a mutually adjoint pair.

The factorization described above is of physical
importance because it is directly related to the solution
by factorization of several important second-order
differential equations occurring in mathematical phys-
ics.” This was illustrated in I and II by several examples.
It was also pointed out that the ladder operator, being
self-adjoint, could sometimes be interpreted as a
constant of the motion. This was exemplified by a study

¢ A construction of ladder operators as polynomial functions
of the generators of the algebra has been developed by J. C.
Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965); see
also Ref. 9.

7 H. R. Coish, Can. J. Phys. 34, 343 (1956) ; L. Infeld and T. E.,
Hull, Rev. Mod. Phys. 23, 21 (1956).
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of the Dirac-Kepler problem for which the present
analysis enabled one to compare the degeneracy of this
system with that of its nonrelativistic analog. It was
also found that the subspaces described above came to
have a physical interpretation as spin eigenfunctions.

The interest in the eigenvalue problem, with which
we are presently concerned, arises out of the fact that
there is not just one, but several Casimir invariants which
must be factorized simultaneously. This leads to not
just a pair of eigensubspaces, but 2™ of these, where m is
the number of Casimir invariants in the subalgebra.
Correspondingly the ladder operator decomposes into
self-adjoint parts each of which steps an eigenvalue and
interchanges two of the subspaces.

Insofar as providing the irreducible representations
of 0(%) in the form described above, the results obtained
are not new. Gel’fand and Zetlin® first gave the matrix
elements for the elements of the Lie algebra in this
representation. Their results have been rederived by
several other authors®’® Qur work is perhaps most
closely related to that given in a report by Louck,!®
referred to hereafter as L, and with which we make
frequent comparison. The advantage of our present
method of solution, though it lies partly in its greater
simplicity, is essentially a conceptural one. It is also of
interest because it represents a generalization of the
factorization procedure used in solving many of the
second-order differential equations occurring in physics.
Moreover by relating it to the theory of addition of
angular momentum we are able to derive that part of
the Clebsch—Gordon (Wigner) coefficients correspond-
ing to the addition of spin and angular momentum in a
space of arbitrary dimension.

II. THE ALGEBRAIC IDENTITIES

The Angular-Momentum Algebra

We define as in I, Eqs. (2.1) and (2.2), a set of
linear operators, which we refer to as the angular-
momentum components, by the following algebraic
identities:

°ij= _cck.‘f} (2.13.)
(L3, L1]=1Lk, (2.1b)
(L, Lim]=0 for jkims=, (2.1¢)

where the indices 7, &, [, m take the values 1, 2+-+n. It
should be noted that not all of the above relations are
independent; indeed (2.1c) is implied by (2.1a, b).
This is an elementary consequence of the Jacobi
identity.

8 I. M. Gel’fand and M. L, Zetlin, Dokl, Akad. Nauk, USSR 71,
1017 (1950).

9 S. C. Pang and K. T. Hecht, J. Math, Phys. 8, 1233 (1967);
M. K. F. Wong, ibid. 8, 1899 (1967). The noncompact case has
been studied by J. Niederle, J. Math. Phys. 8, 1921 (1967).

7. D. Louck, Los Alamos Scientific Laboratory Report,
LA 2451 (1960).

The angular-momentum components are just the
infinitesimal generators (i.e., they form the Lie algebra)
of the group 0(n) of nX#n real orthogonal matrices.
This has two connected components,!! and that which
includes the identity is the subgroup SO(#) [also
denoted by 0+(%) and R(#) ] of matrices of determinant
~+1. Other groups may also have the same Lie algebra.

In the following we study representations of the
angular momentum algebra described by linear trans-
formations on Hilbert space, such that the individual
elements £j are self-adjoint. These may be regarded as
unitary representations of SO0(z). However, because
this has a doubly connected group manifold, not only
single-valued, but also double-valued representations
are obtained. The latter are nevertheless of physical
importance because phase (of the wave function) is not
itself an observable.??

The above equations describe a generalization of
orbital angular momentum defined in I, Sec. 2. Thus in
I, the operator which may be conveniently denoted by
Lirim, Where

Littm =L L+ L1jCim+Lrilim for Jklms=
=0

was set identically zero. This resulted in a considerable
simplification, and in particular was responsible for the
existence of a simple ladder operator. In the present case
we shall find that £jm, and operators like it, define
additional Casimir invariants. The details of construc-
tion of these have been given in L, pp. 18-40. Before we
can describe the modifications in the ladder operator
necessitated by these changes, a brief review of this
construction is required.

(2.2)

otherwise,

The Casimir Invariants

Let us first observe that £, is formed by taking a
bilinear combination of the basic angular-momentum
operators and cyclically permutating the indices j, &, /,
keeping m fixed. Second, that £;um, like its precursor
Lk, 1s skew-symmetric (antisymmetric with respect to
interchange of any pair of indices). These remarks sug-
gest the following generalization. We define

Lirjarecrisy= Z Litigeeesizr-21Ling-1d2s all symbols
P different
=0 otherwise,
(2.3)

where the summation is over the (2f—1) cyclic per-
mutations of the indices jijo+  <jos—1, keeping jor fixed.
This is just the recurrence relation givenin L, Eq. (1.19).
At present it may seem to arise in a rather ad hoc

1 C, Chevalley, The Theory of Lie Groups (Princeton University
Press, Princeton, N.J., 1946), Chap. II, Sec. V, p. 37.

2H. Weyl, The Theory of Groups and Quantum Mechanics
(Dover Publications, Inc., Princeton, N.J., 1931), Chap. III,
Sec. 16, pp. 180184 and references therein.



manner though we soon see that there is a sense in which
it appears naturally. These operators, which are easily
seen to be skew-symmetric, are referred to as the
generalized skew-symmetric angular-momentum com-
ponents (L, p. 20).

Let us recall that in I the Casimir invariant for the
orbital angular-momentum algebra was represented by
the total squared orbital angular momentum which
took the form?! )

o=+ (2.4)
n 2 o

n (L
2. L= 3 L.
k=1 <k

The obvious generalization of (2.4) is afforded by a
summation over the square skew-symmetric components
(2.3). We thus define

1 n

2

L= Lirjaeeeerjos’
(Zf) ! 1,532,000 d25=1 v Y

n

P>

<z <jos

DGJ'u'z-"'.J'z;Z, (2~5)

operators which, as Louck as shown (L, pp. 27-40),
form a commuting set of Casimir invariants, a result
which may be succinctly expressed

(£, £3]=0, (2.6)

for all j, k=1, 2---n; all f=1, 2+++[n/2], where [n/2]
denotes the largest integer less than (%/2). When # is
even we must choose £;,j,,....7, rather than its square
£," for this set of invariants to be complete.

Some further properties of these operators are dis-
cussed in L. In the present development we establish
(2.6), though not directly, but instead as a consequence
of other identities. Indeed much of the analysis which
follows is not based on the Casimir invariants them-
selves; but on the Casimir factors, quantities that we
define shortly. It sufficies for the present to remark that
for the n-dimensional problem there are at most [#/2]
independent Casimir invariants. This is a consequence
of the fact that the process of construction of the
generalized skew-symmetric components £;yjz,.-..52s
must stop when 2f<#. It is responsible for the increase
in the number of the Casmir invariants as # is raised by
two units and this results in there being a slight differ-
ence in the nature of the eigenvalue problem for odd and
even 7.

13 Tn this notation
n

2z
i<k
represents the double summation
n k-1
k=2 j=1
Similarly,
n
:"<i,---<i2,

represents an analogous 2f-fold summation.

A. JosepH Self-Adjoint Ladder Operators. 111 847

The Spin Algebra

In order to construct the ladder operators for the
generalized angular-momentum problem, we make use
of the spin algebra introduced in I, Sec. 3. We give here,
for completeness, a brief summary of their relevant
properties.

We define [ compare Egs. (2.1a—c) ] the linear opera-
tors oj: j, k=1, 2+« +n, by the algebraic identities

Ok = —0Okj, (2.7a)
opt=1 (2.7b)
cuoi=1iok, Tfor gkl (2.7¢)
Lo, om]=0,  for jklms=. (2.7d)

These are in addition chosen to be self-adjoint. As in
the case of (2.1) the last of these relations follows from
the other three. It is easily seen that (2.1a, c) imply the
anticommutation relation

(2.8)

which is instrumental in providing the ladder operation.
We also have, as shown in I, that

(opoptojom)=[op ople=0 for jkiz%,

for jkims=, (2.9)

arelationship which immediately suggests that we might
construct generalized skew-symmetric components
which are related to the basic spin operators oy in a
manner analogous to the relationship between the
generalized skew-symmetric angular-momentum com-
ponents and the basic angular-momentum operators.
Thus we define

0 k0 lm = 0 1;0km = Okl0 jm

all symbols different
(2.10)

Oj1ie-d2g = Oj1jae Ojgige-Tias—1ios

=0 otherwise,

operators which are easily seen to be self-adjoint,
unitary, and skew-symmetric. They also satisfy “‘con-
traction” relations similar to (2.7c). Finally the spin
and angular-momentum algebras are chosen to be
independent in the sense that any element of one
commutes with any element of the other [I, Eq. (3.7)].

The Factorized Casimir Invariants (Casimir Factors)

The next step in the analysis of the angular-momen-
tum problem is the factorization of the Casimir in-
variants £, using the spin operators defined above. As
explained in the Introduction, the object of the procedure
to derive operators, to be known as Casimir factors,
on which a ladder action can be defined. Now we showed
in I, Eq. (4.4), that

n n

L22= (2 o5lp) (X2 CimLimtn—2),
i<k <m

an expression which illustrates the factorization of the

total squared orbital angular momentum. In the present
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context, this result no longer holds and is replaced by
=(2_ 0Lix) (2 otmLim+n—2)
i<k <m

n

Z T iktmLjime
F<k<LI<m

-2 (2.11)
The appearance of a new operator in the expression for
£,2 can be accounted for by the fact that the £z are no
longer identically zero. Its existence suggests possible
candidates for the Casimir factors, as the summation
involved is easily generalized by making use of the
skew-symmetric components in both the angular-
momentum and spin algebras. Thus we define

n

2

51<d2, e

£,N= (2.12)

Cirjgeee darLiti - i

<Jj2f
as the Casimir factors. We shall soon see to what extent
they fill this role.

Let us observe that, on account of Eq. (2.3) and (2.9),
Eq. (2.12) may be rewritten in the form
EI

Tyt 52f=1

£,0=(2/f1)~

051590 53i4" * * Tjar—152¢

K&Ljijee 'cﬁi‘.;—xhn (2-13)

where the prime denotes that, in the summation, no
two indices may be set equal. The significance of this
result is twofold. First it shows that, because we only
meet the £;,,,...,7, il sSummations of the above kind, it
is unnecessary to carry out computations which directly
involve these operators and therefore we need consider
only the basic angular momentum components &£j.
Second it shows that the £jj,....,5,, arise in a natural
fashion, being defined by an identification of terms in
Egs. (2.12) and (2.13). These properties underlie the
computational and conceptual advantages gained by
use of the spin algebra.

The Casimir factors, like their precursors, form a set
of independent operators which mutually commute.
The latter result may be expressed

[£., £,07=0, (2.14)

for all f, g=1, 2+ -[/2]. This does not follow trivially
owing to the nature of the summations involved; but
may be verified using the algebraic properties of the
spin and angular-momentum operators [ Egs. (2.1a—c)
and (2.7a, b, d)].

It is convenient to include in our list of Casimir
factors the trivial invariant

£,0=1,

where 1 is the identity operator. It may also be con-
sidered to be one of the Casimir invariants and in this
context is written without the brackets in the super-
script.

A brief study of the angular-momentum and spin
algebras shows that it is by no means easy to effect a
factorization of the Casimir invariants in terms of the
£,.. Nevertheless we are able to show, though by an
indirect argument, that such a factorization is possible
and furthermore to derive the coefficients in this
decomposition.

The Casimir factors, unlike their precursors, do not
commute when different values of # are involved. That
is,

[£.0, £n(0]5£0,
whenever n7m and (f#g) 0. We find this result is
essential to the existence of ladder operator. It is un-
fortunate that it may introduce manipulative diffi-
culties.

The Ladder Operator

It was shown in I, Sec. 4 that the ladder operator for
the orbital angular-momentum problem could be
expressed as the difference of the Casimir factors in
(n+1) and % dimensions. This result, of intrinsic
interest in itself, enabled us to determine the eigen-
functions of the Casimir factors needed in describing
the action of the ladder operator. It may be directly
generalized to the present situation in the following
manner. We define the ladder operators L,,\: f=
0,1, 2++-n by

Loy = (2.15)

This expression is equivalent to either of the follow-
ing:

L +1(f) —L£,N

n
2
J1yeee g2 —1=1

K&jije* * = Liopomi1

(f) [2/——1(]‘__1) ]—1

Oj1ja® " Oj:g—1ntl
(2.16a)

Lo = 2":

J1<ger <g2f—1

Gjrigeeiag—int1€j1dz, e iag- 1ntls

(2.16b)
as may be readily verified.
Like the Casimir factors these operators commute for
fixed #, that is
[Lwa®, Lua@]=0, (2.17)

for all f, g=1, 2+ - -[%/2]]. This result, which like (2.14)
is nontrivial, may be verified by use of the algebraic
properties of the spin and angular momentum operators.
When combined, Egs. (2.14) and (2.17) imply [re-
calling the definition of the L,4;*”] that

[Ln1?, £.9]=[L,11 @, £,] (2.18)

for all f, g=0, 1+ +[#/27]. This relates the commutators
between the Casimir factors for # and (z4-1).

Not all of the L,41¢? are important in describing the
ladder operation. Indeed only the simplest of these finds
extensive use, namely, L,.1V. It may be expressed as



[compare I, Egs. (4.1) and (4.5)]

Lna®= nE Tint1Lint1
=1
and satisfies
(L) = L — £ = 200,
This last result implies that
[(Lna®)?, £,]=0, (2.19)

for all f=1, 2+++[n/2]. Consequently (L,+1V)? has no
nonzero matrix elements between different eigenvalues
of the Casimir invariants. L, @ itself is trivially self-
adjoint and we show that it may be decomposed into
[#/2] self-adjoint parts, each of which steps an eigen-
value. Similar properties are shared by the remaining
ladder operators L,1¢7: f=2, 3- - -[1/2] though we are
not to be concerned with this result in the present
development.

In an earlier paragraph we remarked that the eigen-
value problem differs slightly for odd and even n. A
further indication of this behavior is afforded by the
identity

L, =£n(n/2)’

which holds when # is even. This result implies, as we
shall see, that when # is even, the basic ladder operator
L,® decomposes to give, in addition to the (#/2) terms
which step the eigenvalues, a further term which
commutes with all the L,_;?. This feature, which was
not present in the orbital problem, is responsible for the
appearance of a new Casimir invariant as # is increased
by two units.

The ladder operators are related through the im-
portant (and easily verified) identity

(€D, L1y =2Ln 1) — (4 1—2f) Ly,
- (2.20)

which holds for all integer 7, >1, and all f=1, 2+ -+ [/
27, if we set L,®/**D identically zero when # is even. It is
mainly from this result that we are able to deduce the
nature of the ladder operation. It should be noted that
an anticommutation bracket appears in (2.20) rather
than a commutator. This, as we pointed out in I, Sec. 1,
is an essential characteristic and is responsible for the
existence of a self-adjoint ladder operator.

The Dirac Operators

It was shown in I, Sec. 6, that the orbital angular-
momentum problem admits certain operators which
commute with the ladder operator L,,;. These were
referred to as the Dirac operators as they were found to
be identical with the ‘“total angular momentum opera-
tors” introduced by Dirac as constants of the motion

14 P, A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928).
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for spin-} particles in a central (relativistic) field. In the

present context the operators Ju: 7, k=1, 2+ - -n defined
by

Jin=Li+50m, (2.21)

which we continue to refer to as the Dirac operators,
satisfy

i, Lann®P]=0,

for all j, k=1, 2---n; f=1, 2---[n/2]. Thus, they
possess the same invariance properties in the generalized
angular-momentum problem as in the orbital one. This
result finds application both to the understanding of the
nature of the ladder oparation and to the determination
of the eigenfunctions of the Casimir factors.

We now define

(2.22)

il

J1yeeeuf2p=1

T = (20f 1)

Oj1ja" * *Ojar—1dagY 51i2" * Jjamriar

(2.23a)

@) S ()

1,00 527=1

X (Ojos-1iesLiny-rizst3), (2.23b)

operators which can be seen to be the analogs of the
Casimir factors. From the second of the above ex-
pressions it is readily shown that the J, are related to
the £, through the identity

_ (=29t £,0.
(n—2f)I(f—g) !

This proves useful in describing the action of the ladder.
It also shows, recalling (2.14), that the J,9: f=

1, 2--+[#/2] commute for fixed 7.
Next we define

/
Th=Y" (3)20-0 (2.24)
g=0

n
E T .2
J1g2e0etad2f )

51<52,0+-<d2f

T = (2.25)
where the J;,;,...;,, are formed by a recurrence relation
identical to (2.3). The J,%/ are analogous to the Casimir
invariants. They may also be related to the Casimir
factors by taking suitable bilinear combinations of the
latter. We shall postpone a discussion of this to a later
stage (see Sec. 5). For the present it sufficies to remark
that in view of (2.22) these operators commute with
the ladder operators, that is,

[:J,ﬁf} Ln+l<g)] = 07

for all f, g=1, 2-+-[#/2]. For this reason they are
conveniently termed the ‘“Ladder invariants.”

Finally, we remark that whereas the Casimir in-
variants of the subalgebra (defined by choosing
7, k<n) commute with all the elements of the sub-
algebra, the Ladder invariants commute with ladder
operators formed from the additional elements of the

(2.26)
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algebra obtained when # is increased by one unit. The
significance of this result will later become apparent.

III. THE (2n+1)-DIMENSIONAL PROBLEM

The bifurcation in the nature of the eigenvalue
problem for odd and even values of # necessitates a
separate computation for each. We start with the
(2n+1)-dimensional problem, that is we assume that
the eigenvalue problem has been solved in 27 dimensions
and deduce, by construction of suitable ladder operators,
its solution in (2#41) dimensions. As the number of
Casimir invariants is the same in both 2% and (2n-1)
dimensions, this part of the eigenvalue problem is the
simpler.

Let us start with some intuitive considerations which
help to indicate the direction in which the argument
must proceed. We remarked earlier that Eq. (2.20) is
instrumental in the construction of the ladder operator.
Replacing # by 2% and Ly @ by (Lonr —Le) it
becomes

[£09?, Lona® ]y =2{ (Lon 1V —L£2,0HD)

- (’ﬂ—f—*—%) (£2n+l(f) “£2n(n) };
as result which, recalling that
Lon@ =L @ =1, LotV =2y, =0 (3.2)

can be seen to hold for all f=0, 1-- 5.

A brief study of this set of equations reveals that an
approximate summation will eliminate the terms
appearing on the right-hand side, leaving an operator
which anticommutes with Ls,,1V. This may be expressed

3 Pl e D] _
[(,Z::o I'(n+3) Lan )7L2n+1( +—0, (3.3)

in which T denotes the gamma function.

This shows that Ly,.1® changes the sign of the
eigenvalue of the above linear combination of Casimir
factors. In the orbital angular-momentum problem
(I, Sec. 4) an analogous result [I, Eq. (4.3)], when
combined with the expression for the total squared
orbital angular momentum [ I, Eq. (4.4) ], enabled us to
interpret Ls..1 as a ladder operator and thus to solve
the eigenvalue problem. In the present system, there
are n-independent Casimir factors and this provides
n-independent eigenvalues which are to be stepped by
Ly, 1. Equation (3.3) is insufficient, in itself, to imply
such an action; yet there is reason to suppose that it can
be inferred from a suitable number of anticommutation
relations obtained by decomposition of (3.3). For this
reason we express the bracketed sum appearing in (3.3)
as a product of # (commuting) operators £.";
f = 1’ 2eeep

(3.1)

s~ L(n—f+%) £nu)=ﬂ 2,

= T (”+“12‘) f=1 (3'4)

and substitute the resulting expression in (3.3)

LT £ ®), Lnss®J =0,

s=1

(3.5

This now suggests the following conjecture; namely,
that complementary to the product decomposition (3.4),
the ladder operator Ls,:1® reduces as a sum of terms
each of which anticommutes with one of the £ and
commutes with the others. That is

Loy V= Z lona? (3.6)
=
such that _
[k, lyn1V 14 =0 (3.7a)
for all f=1, 2-+-n, and
[k, lyni1@]=0, (3.7b)

for all f(5%g) =1,2+--n.

It is easily seen that such a result, though not implied
by (3.3), does not contradict it. Moreover it is from this
that we shall be able to deduce that the lz,41"”? behave as
self-adjoint ladder operators for the eigenvalues of the
ke and hence for the Casimir factors. Our first
objective must therefore be to establish:

Theorem 1. From the spin and angular-momentum
algebras defined in Sec. 2, it is possible to construct a set
of commuting self-adjoint operators £z ?: f=1, 2+« +n,
such that there exists a unique decomposition of
L3n1® into self-adjoint components lop 1 : f=1,2+ 2
satisfying (3.6) and (3.7).

Proof. The proof divides into two parts. In the first,
the operators described above are constructed. In the
second, they are shown to possess the required pro-
perties.

The Decomposition of the Casimir Factors

The above theorem does not give a definite pre-
scription for the construction of the kon". Let us how-
ever observe two features of Eq. (3.4), an identity which
they must satisfy. The first is that the expression on the
right-hand side of (3.4) represents one of the #-sym-
metric functions which can be formed from the kz,?.
If we could similarly relate the remaining (n—1)
symmetric functions to the Casimir factors then, to
within a permutation, the £.? would be uniquely
determined. This last result is an elementary conse-
quence of the fact that a polynomial of degree # over the
complex field has precisely # roots. Applied here it
shows that the eigenvalues of the £z, (recall that these
operators are to be self-adjoint and to mutually com-
mute) are, to within a permutation, uniquely deter-
mined by the eigenvalues of the Casimir factors. This in
turn determines the operators themselves uniquely.’

15 Strictly speaking only uniqueness to within equivalence is

implied. However, this distinction is unimportant for our present
purpose.



The second point concerning (3.4) to which we must
draw attention is that if the £,," are to be treated on a
equal footing then they must be chosen to be linear in
the basic angular momentum components £j. Taken
together these observations suggest that in order to
define the ko,” we require an expression of the form

/
Ko = D Gon? 9L, @,
g=0

(3.8)

in which the @.//~? are real or possibly complex
numbers and the K»,®) are the symmetric functions
taken over the ky,¢. These may be conveniently
defined by equating coefficients of powers of x in the
expression
n n
IT (e +Fhea) = D am7Rou®. (3.9)
=t 7=

Since the Casimir factors are self-adjoint and com-
mute, the k,,’ may also be chosen to have this property.
Finally, in order to remove the permutation symmetry
in the ks, we introduce the ordering

(kan®)2> (o3 ®)2+ + o> (Fn™)2>0.  (3.10)

This ensures a unique correspondence between these
operators and the Casimir factors. It should be noted
that (3.10) implicitly requires the eigenvalues of the
k2, to be distinct and nonzero. This assumption is
permissible, according to the method of induction, as
long as it can be shown to imply a corresponding result
when # is increased by one and that it holds for =2
(see Sec. 6, “The eigenvalues™).

There now remains the problem of determining the
coefficients @../*?. A systematic computation of these
would result from the requirement that (3.6) and (3.7)
are satisfied. A strict derivation in this sense is not
attempted. Instead we remark that since (3.1) deter-
mines, at least in part, the nature of the ladder opera-
tion, it is natural to choose the @»,*¢ in such a manner
that this equation adopts its simplest form. To this end
we first relate the remaining Casimir factors £o,41? to
symmetric functions in a manner analogous to (3.8).
That is, we define'®

J
Konp = Zfazm-l! 0 Lo 11(?, (3.11)
g=0
where
II (xt+kona) = Z 2" Ko 1, (3.12)
F=1 7=0
and

(B2na®)2> (Bong1?)2e ¢+ > (k2n1™)2>0.  (3.13)

Let us now choose @/ ¢ and a,,/¢ so that (3.1)

16 Note the omission of the bar over Ksny etc. The reason
for this will shortly become clear [Sec. 4, Eq. (4.12)7].
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reduces to
[KZn(f), L2n+](u]+ = 2 (Kzn.*.lu-i-l) —Kan'H)) ) (3 14:)

for all f=0, 1.+, and where we have set [compare

(3.2)]

Ko @ =K ®=1, Kpu®P=Kum=0. (3.15)
A first requirement of (3.14) is clearly
PALE T LA (3.16)

for all f, g=0, 1+ - +n. To proceed further we first reduce
the set of # equations represented by (3.14) to the single
identity in x, namely

[I”I (a4l Lona W]

f=1

=2x{H (x+k2n+l(f)) —H (x—{—]{_:g,,(f)) 1. (3-17)
= f=1

Then, in order to derive such an expression from (3.1),
we replace (3.8) itself by an identity in x. This is
achieved by introducing a set of linearly independent
polynomials in x, denoted by Ps(x): f=0, 1+++%_and
writing it in the form

2"3 Py y(2) L0 = I”I (a4kn®).  (3.18)
=0

/=1

Substitution of this expression in (3.17) and com-
parison with (3.1) enables one to derive, without much
difficulty, the following recurrence relation for the
polynomials

xPn—f—l(x) = —,,__f(x) —(n—f "%)P n—s-1(%) q:gl;%
We may assume, without loss of generality, that the
polynomials are suitably “normalized.” Thus setting
Py(x) =1, (3.19)
we find that
By() =T(a-+f+3)/T(x+d).  (3.20)
This result completely determines the coefficients

s’ ?. Equating powers of x in Egs. (3.8), (3.9), (3.18),
and (3.20) it may be shown that
n—(f—g)

@ii= > 11 (=),

71<dze-<jg m=1

for all f>g=1,2-++n, and

(3.21)

d?nf'o = 1;

for all f=1, 2+ - -n. It is unfortunate that these coeffici-
ents cannot be readily expressed in simple closed form.
Similar difficulties are encountered in L (L, pp. 197-
205). They are to some extent overcome by the above
use of the polynomials Py(x).

Equation (3.20) also determines the relationship
between the k2,? and the Casimir factors. This takes
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the form

n S
£2n(f) = Z H ((ﬂZn(j'")"l'f— m) ) (3'22)

51<g2e -+ <5f m=1

where the 9o, are operators defined by
In? = (b~ (n—1+3)),
for all f=1, 2+« -2, and similarly

n I
3 I (Genpr9m+f—m), (3.23)

Jilgee <o s m=1

Lo =

where
Jon i = (ko1 — (n—f+3)),

for all f=1, 2+« .. ~
This result completes the description of the £z.¢.

The Decomposition of the Ladder Operator

Our next task is to establish the decomposition of
Ly, 1@ as implied by (3.6) and (3.7). We show that this
may be effected by expressing its component parts,
narnely, the ly,1¢?, in the form"

bnpn P =3 (E2n(n)—1[]{_:2n(f ), Lop1®], (3.24)

where f takes the values 1, 2- - - z. Now if these elements
are to satisfy (3.7) then each of them must commute
with the (k2.¢)? a property which must be shared by
Loy 1@ itself. That is

[Lonn®, (kn")?]=0 (3.25)
for all f=1, 2--.n. To verify this identity we observe
that

%{L—A’ [B) L]+:H_EB: [A: L:|+]} =[AB’ L]

holds for arbitrary operators L, 4, and B, given that 4
and B commute. The identification

A=]T @+Euo),

=1

B=]] (a—ku),
=1

L="Ln®

and use of the
functions K,,®,

followed by substitution in (3.17),
defining relations for the symmetric
K1 gives

T @ (Bn)?), Lonia®]

/=1

—25 3 @ Ron®, Koz ®]{ (=1)7— (—1)°}.

7,8=0
(3.26)
1 The (kp.P)~1 are well defined since we are able to show (by

induction) that (£,??)2>0 for all f=1,2-+-n [cf. Eq. (3.10)
and Sec. 6, “The Eigenvalues”].

Now we have shown [Eq. (2.18)]
[32"0)’ £2n+1(”):| = Eegzn(a), £2n+l(f)]

for all f and g. Multiplication of this expression on both
sides by @sn"" 7+ @2a41*° ¢ (recall 3.16) and summation
over f and g gives

[K%(r)’ K2n+1(s)] = [szﬂ(s), I(gn.*.](r)]. (3.27)

Substitution of this result in the right-hand side of
(3.26) followed by interchange of the dummy indices 7
and s, shows that

n

I (@~ (a?)?), Linsi®1=0.
=1

This identity when combined with the ordering of the
keza” implies (3.25) as required.

The result which we have just established enables us
to deduce that a typical matrix element of Ly 1@, in a
representation in which the £, are diagonal, is non-
zero only if the eigenvalue of any given k., is unaltered
or changes sign. This permits Ls.1? to have at most 27
nonzero matrix elements between one given function
and any other. Equivalently (3.25) may be said to
imply that Ly, 1® can be expressed as a sum of 2" terms
each of which commutes with a particular set of the
k2 and anticommutes with the rest. A typical term
takes the form

(1/2) (T %ea®) " [oea®, [£2a®,...[kn™, Lona®]... 7],
f=1

(3.28)

in which the square brackets may represent anti-
commutation or commutation, making a total of 2
such expressions. Now from the identities

[4,[4, L]+] =[A, [A, L]]+=[A2> L]:

which hold for arbitrary operators 4 and L, it is easily
shown (recalling that the £»,? mutually commute)
that a term described by (3.28) commutes with each
k2 appearing in an anticommutation bracket and
anticommutes with each £, appearing in a commuta-
tion bracket. This illustrates the decomposition of the
ladder operator Ls,1®, though we have yet to express
it in the form described by (3.24). To do this we must
first show that of the possible 2 terms which can be
constructed out of (3.28) only # are nonzero, a result
which is a consequence of the identity

[[L2n+1(1), IZQn(f)], ]62"(0):1:0’

which holds for all f>£g=1, 2. - -». This is established as
follows: B
Taking the commutator of (3.14) with K@ gives

[:K2nu) N EK2n (f); L2n+1u):|+] = 2[12‘27: (1)’ K2"+1(/+l)]’

(3.29)

(3.30)
for all f=0, 1+ +n.



Use of Eq. (3.27) with r=(f+1) and s=1, followed
by replacement of Ky, 1® by Lonya® [ cf. (2.15), (3.8),
and (3.11)] converts Eq. (3.30) to

[K2n®, [Kon"?, Lona® [ ]=2[ Kon*D, Lyp a7,

for all f=0, 1.+ -%. This set of (r+1) equations may be
replaced by a single identity in x, namely,

(R, (1T (#4k2n), Lonia® ], ]

s=1

=2x[II (x—HEz,,‘f)) y L2n+1(1)]. (331)
=1
We now substitute the eigenvalues X2, for the &y,
and matrix elements for Ly,;1¥. We may suppose that
in a typical term m eigenvalues change sign and that the
rest remain unaltered. The former may be denoted,
without loss of generality, by Xg: f=1, 2-+-m. If
the corresponding matrix element of Ly, 1@ is nonzero,
it follows from (3.31) that

i Xo(® {ﬁ ( x+7\zn‘”)+ﬂ (x=Xe")}
=1

g=1 f=1

=2{[] (a4+%a?) I (3=R}. (3.32)
f=1 f=1

Equation (3.32), being an identity in », must hold in
particular for x=DX,,™. This implies

(20 %) ] Rea® 43R0 ) =0,
9(=h=1 =1
an expression which further reduces, in view of the strict
ordering (3.10) imposed on the £.,¢, to give

m

> Xl =0.
9(=hy=1

Since this must hold for all  and the X2, are strictly
positive (see Ref. 17), it follows that either =0, or
m=1. Consequently at most one eigenvalue can change
sign in a typical nonzero matrix element of Ly, ®.
This result implies (3.29). The case m=0, which
corresponds to none of the eigenvalues changing sign,
is excluded by (3.5). We may conclude that there are
at most 7z nonzero terms described by (3.28) and
further application of (3.29) enables one to show that
these may be expressed in form given in (3.24). This
establishes the decomposition of Ly,1®. By application
of (3.25) and (3.29) one may verify that the components
lap1¥: f=1, 2---n, satisfy (3.7), and since Ly @,
ki f=1, 2+« -n are self-adjoint, they must also be
self-adjoint. Finally, uniqueness follows as a direct
consequence of the explicit expressions given for these
operators. The theorem is thus proved.

Before continuing we wish to make a couple of re-
marks concerning the latter part of the above proof.
First, the substitution for eigenvalues and matrix
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elements in (3.31), which resulted in a departure from
the purely algebraic techniques previously used, should
be viewed as a convenient rather than as an essential
step. Thus when #=3, elementary, but tedious, manip-
ulation of (3.31) reduces it to

[[LLx®, Fe®], I, Fes® ] (s ® 4-Fes®)
X (ks®+-ks®) (fes® ko) =0,

a result which, combined with (3.5) and the strict
ordering (3.10), implies (3.29). It would seem that a
generalization of this procedure is possible, though not
easy.

Second, we remark that Louck (L, pp. 132-137)
makes use of an equation similar to (3.31) (with
x=—1%) toderive an equivalent result. We feel, however,
that the analysis given fails to be entirely satisfactory
in that it assumes an equation which is the equivalent
of (3.32) (L, p.132, second equation on page) to be
an identity in Xp,”. This argument does not exclude the
possibility of nonzero matrix elements of Lg.a? in-
volving more than one change of eigenvalue for specific
values of Xg,'”. Moreover, since the equation referred to
in L involves only two of the # Casimir invariants, it
cannot, in itself, provide enough information for a
selection rule in the # eigenvalues and hence Louck’s
analysis, though it obtains the correct result, is in-
complete.

The Nonzero Matrix Elements of Ly, 1"

In the following we derive an expression for the
lyn1? from which the matrix elements of Ly, 1™ can be
readily obtained. It may be regarded as a direct
generalization of I, Eq. (4.5).

Substitution for the /5,11 in (3.17) and use of (3.7)
gives

il2n+1(a) ﬂ (x+]52n<f))

g=1 f(#g)=1

= %;:Il (- ®) —g (o], (333)

This identity in x represents # equations which may
be solved for the # unknowns lpnyy¥: f=1, 2+« - 5. How-
ever, as the k2,41’ do not commute with the k,Y?, the
final expressions are rather clumsy and not very useful.
We therefore derive instead relations for the (lp,41¢?)2
as this difficulty is then avoided.

We return to a result established in Sec. 2. Here we
showed, in Eq. (2.19), that the square of the ladder
operator Ly, commutes with all the Casimir factors.
In the present context this implies

[(Lonia®)2, k2a "] =0, (3.34)

for all f=1, 2+++n. Substitution in (3.24) and use of
(3.29) then shows, after some manipulation, that

[l2n+1(f), l2n+1(g):]+=0, (335)



854 Reviews oF MoperN Prysics + OcTOBER 1968

for all f##g=1,2+--n, and that
L (ln1®)2, k2] =0, (3.36)

for all f, g=1, 2+ - +n. These equations show that if we
square the summation appearing in (3.6), cross terms
cancel, and (Lz,11V)? may be expressed as the sum of
squares (lop17)2%: f=1, 2+« +n, none of which have any
nonzero matrix elements between different eigenvalues
of the Casimir factors. Intuitively this is precisely the
result we should expect (3.34) to imply. We may use it
[and (3.7)] to show that Eq. (3.33) may, after some
reduction, be expressed in the form

IT G- ("“’"“m)z)““ﬁ 2= (hn®)?)

/=1

== 20 (e @)? JI @—=(k0®))
g=1 SiFEg)=1
It is easy to check that (3.36) implies that each of the
terms appearing in (3.37) commutes. This result
enables the “partial-fraction” decomposition [ Eq. (B3)]
of the left-hand side to be effected. Recalling (3.10)
and equating powers in %, we obtain

(3.37)

(l2n+l(f) ) 2

={(kan1")2— (hn")?} ﬁ {

g(=)=1

(kony19?)2— (kon® )2}
(]52”(::))2_ (;ghw)z ’
(3.38)

for all f=1, 2+« -n. This exhibits the required expression
for the (lna?)2. We also obtain, from (3.33) and
(3.37), the commutation relations

[(]52"0'))2, Bony 1@ ]=0
[kon®, (kons1)?]=0,
which hold for all f, g=1, 2++-n.

(3.39)
(3.40)

IV. THE (2n+2)-DIMENSIONAL PROBLEM

In the following we reapply the argument given in
Sec. 3 to the (2#+4-2)-dimensional problem. The interest
lies in the appearance of an extra Casimir invariant
which introduces certain minor changes in the ladder
operation. Naturally the same degree of detail will not
be required and we do little more than simply state the
main results.

As before we start from Eq. (2.20), but which we
now write in the form

[L2011?, Lonts® T =2{(Lon 2D — Lon1 VD)
= (n=f+1) (Lons2P — L)}, (41)

where f takes the values 0, 1-++n. At first sight this
expression may seem identical with (3.1). In fact it
differs slightly in that [contrast this with (3.2)]

Lot 70,

As a consequence it is no longer possible to find an
operator which anticommutes with L™ by the
method described previously, though in other respects
the eigenvalue problem is unaltered. In fact we find
that Ly decomposes to give, in addition to » self-
adjoint ladder operators, a further term which commutes
with all the Casimir factors. This is described in the
following theorem.

Theorem 2. From the spin and angular-momentum
algebras defined in Sec. 2, it is possible to construct a
set of commuting self-adjoint operators ks : f=
1, 2-++n, such that there exists a unique decomposition
of Lonie® into (n+1) self-adjoint components lonys?:
f=1,2-++(n+1), satisfying

ntl

Lonys® = {_V:: Lnys?, (4.2)
such that ~
[kni1?, lon2 ] =0, (4.3a)
for all f=1,2---n;
[Fonia?, lony2@]=0, (4.3b)
for all f#g=1,2-++n; and
[k2nia®?, lony st ]=0. (4.3¢c)

for all f=1,2-+-n.

Proof. As before the proof divides into two parts,
starting with the construction of the kzn1¢”.

The Decomposition of the Casimir Factors

By analogy with (3.8) and (3.9) we define
_ i
Ry = Z@le.f—a£2 O
g=0
for all f=0, 1, 2-+ -z, with

IT (e tFmu®?) = 2 a7 Rona.

/=1 f=0

The coefficients @n/+? turn out to be real numbers
relating the symmetric functions Ksn41® to the Casimir
factors £,41. As before, we introduce the ordering

(kony1®)2> (Fony1®) 2+ > (kon1™)2>0, (4.4)

which ensures a unique correspondence between the
k2n+1m and the £2,,+1‘~’).
In a similar manner we define

f
Koo = D Gonps 7980012 ?,
=0

for all /=0, 1.+« (n41), where

n+l 1
H (x+k2,.+2‘f’) = % x"+1‘/K2n+2m,
J=1 =0



and
(k2n42M)?> (Rany2®) 2>+« + > (konya )20, (4.5)

Tt should be noted that because of the existence of an
extra Casimir factor, namely £5.,2®*?, an extra operator
koni2™t) and an extra symmetric function Ky, oD
appear in the decomposition.

We next choose the coefficients @gnq1/'?, @2ny2”+? such
that (4.1) assumes the form [compare (3.14) and
(3.15)] ’

[K2n+lm; L2n+2(1) :|+ =2 (sz{-zu'm - K2”+1U+l)) ) (4-6)

for all f=0, 1, 2+ .5, and where

Ronp ™t =0, Kon2® =Konp1@=1.

As before, this implies
Gony1’ 9= aonol9,

for all f, g=1, 2- - -n. However we also require, essenti-
ally because Ko, 12®t? is nonzero, that!®

nH0=1 wHS =),

Qon 2 Qont2

for all f=1, 2+ +n4-1.

Like (3.14), Eq. (4.6) may be reduced to a single
identity in arbitrary variable, though the presence of the
extra term, namely, Ky, o@D, demands a slight modifi-
cation. Thus we find that

[T @t+Fena®), Lona®]s
7=1

1 n

=2{ﬁ (atbony o) —2 [ (x+Fona®)}, (4.7)
=1 =

a result which should be contrasted with (3.17). To

derive such an expression from (4.1), we proceed as

before letting Py(x) : f=0, 1- - -, denote a set of linearly

independent polynomials in %, chosen such that

Z P,,_f(x) £2n+1U) = H (x+152n+1(n) .
7=0 =1

Substitution of this expression in (4.7) followed by
comparison with (4.1) gives the recurrence relation

xPp—y1(%) = Puy(x) — (n—f) Pr—sa(x),
and the identity (cf. Ref. 18)

Py(x) =1, (4.8)

18 The choice a2.45"*°=1 made here is arbitrary in that an;
real number will do. It is equivalent to_the choice [Eq. (3.19)
xglag)e in normalizing the polynomials P,;(x). This is shown by

4.8).
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from which it may easily be shown that
Py(x) =T (x+f+1) /T (x+1), (4.9)

for all f=0, 1-+-n. This result completely determines
the coefficients @on 19, which take the form

n—(f—g)
dzm-lf"’= Z ﬂ]m,

(4.10)
A<z <jg m=1
for all f>g=1, 2:++n, and
Goni? =1, (4.11)

for all f=1, 2+ -n. _
Comparison of the polynomials P;(x) and P;(x)
shows that

En® = (B, N4-3). (4.12)

This result is found to be of considerable importance
in the interpretation of Lo,43'? as a ladder operator. A
corresponding identity

MmN =(M"+3), (4.13)
which holds for all f=1, 2-+-[n/2], relates the eigen-
values N, of k,? and \,@ of k..

The Decomposition of the Ladder Operator

By precisely the same argument as given in Sec. 3,
we may show that

[L2n+2(1) , (]{";2"_'_1(!) ) 2] = 0,
for all f=1, 2.+ -n, and that

[IL2 n+2“’, ]52 ”_H(f)], ]52n +1(a)]=0’

for all f>£g=1, 2. - -n. It follows, as before, that we may
express the l,2? in the form

lini2? =% (benir?) [hona?, Lons2®],

for all f=1, 2+ -+, and

n
Lony2 @ = {[ T % (Bona®) ™}
=1

X [hnt1?, [ani1®, e « * [kama®, Lonpa® T Ji T

This last term, which has no analog in the (2n41)-
dimensional problem, represents the commuting part of
the ladder operator. The full details of the decomposition
of Lyns2®, as expressed by (4.2) and (4.3a-c), may be
readily verified from the above equations, as is also the
fact that the ly, 42 are self-adjoint. Uniqueness follows
as before. The theorem is proved.

The Nonzero Matrix Elements of Ly, o)

We derive below an expression, which is the analog of
(3.38), for the ly,12¥. It enables us to determine the
nonzero matrix elements of Lo, ,®.



856 REVIEWS OF MODERN Prysics + OcToBER 1968

Substitution of the /s’ in (4.7) and use of (4.3)
gives

I Gthma®)

n
x E {l2n42®®
g=1 f(#g)=1

+lonio ("'H)II (= _}_]";2”1(/‘))

=1
a4l n _
= {Hl (ot Eamie®?) =] [ (x+-Fonnn®)}.  (4.14)
- =t

This identity in # can be expanded to give (#-41)
equations which determine the (#-+1) unknowns,
bnge?: f=1, 2+« (n+1). In particular identifying the
coefficients of #° we obtain

n4-1 n
DonpatD = (ﬁ Bonya) (‘H Fonpa®)1,  (4.15)
f=1

f=1

in which the order of the brackets may be interchanged
even though the two sets of operators k.. and
kony2® do not mutually commute. The remaining
solutions are less interesting and for the same reasons
as given in Sec. 3, we consider instead the corresponding
expressions for the squares (lony2)%: f=1-++(n-+1)
which are simpler.
Let us first observe that (2.19) implies

[ (Long2®)2, Fznn®]=0,

forall f=1,2.+.x. This may be used to show [cf. (3.35) ]
that

[lonie®, bony2@ ], =0,
for all f2g=1,2-.:(n+1), and that
[ (Longs™)2, Bonya@]=0,

for all f=1, 2.+« (n+1): g=1, 2..
(4.14) this result implies that

+n. Combined with

n+l n
II - (kzmuz(f))z)—9¢2£I1 (@ — (k2na)?)

/=1

3 g IT @ ()]

g=1 fFEg)=1

— (langoD)?2 H (22— ('IEzn-!—l(n)z)- (4.16)
=1

Equating coefficients of 2° in (4.16) we obtain

n 1
(Langot0)2={] ] (Ezn+1(f))_2}§fii (kenpa®)?}. (417)
=1

/=1

This, when substituted back in (4.16), gives with a

little manipulation

- zﬁ:l (IZHi(”))Zf I'f[ (w2~ (]52u+1w )?)

(3g)=1

= fI (w2 (k2n+2‘j))2)—f11 (x2— (];;-2"+2(f))2)

=1

—~(—1)"x2"“2(Kz,.+2("+“)2{ﬁ (a2 — (konye")2)

f=1

"InI 2= (kana)™2)}.  (4.18)

=1

Each of the terms appearing in (4.18) commutes with
any other and therefore conventional techniques of
commutative algebra apply. In particular, decom-
position of the right-hand side as a partial fraction
[Eq. (B3)] gives, after some reduction

(l2n+2(f)>2

={ (kan42¥®)2 = (han19)?} {1 = (Bena®) 2 (kany2™H0)?}
% fI {(’32"+2“”>2‘(’§2"+1‘”>2
g(#f)=1 (k2n+1(g))2— (k2n+1m)2
for all f=1, 2---n. This and (4.17) determine the
lony2. We may also show, as before, that
[kane®, (konyr®@)?]=[ (kany2P)?, kanin@]=0,

for all f=1, 2-++(n+1) and all g=1, 2---n.

} . (419)

(4.20)

V. THE LADDER OPERATION

In this section we show how the anticommutation
relations, Eqgs. (3.7a) and (4.3a), may be used to
demonstrate the ladder property which has been as-
cribed to L,.1®. This result enables us to assign eigen-
values to the 2,? and thus to derive the irreducible
representations for the angular-momentum algebra.

The Casimir Invariants

We saw in I, Sec. 4 that a determination of the precise
relationship between the Casimir invariant and its
factor was an essential step in the interpretation of
L,.1 as a ladder operator. This fact still holds true and
consequently we must now try to derive the (now more
complicated) expressions relating the Casimir invariants
(2.5) to the Casimir factors (2.12). As before it is
convenient to tackle the odd and even dimensional
problems separately. We start with the former.

It is perhaps unfortunate that the direct approach
proves unfruitful. Thus, an attempt to generalize (2.11),
which is itself readily verified by explicit multiplication
of the Casimir factors, rapidly produces indescribable
confusion. -With regard to an alternative solution,
attention should be given to the important invariance
property of the (k21¢)? implied by (3.40). This shows,



in view of (2.15), (3.8), (3.11), and (3.12), that these
operators commute with the Lo, 1(®. As the latter are to
have a ladder property, we might anticipate that the
(kany1'”)?, which taken together contain all the elements
of 0(2n+1), will be diagonal in the representation we
seek to construct. This makes them excellent candi-
dates for the Casimir invariants, a qualification we now
examine.

Though the (k2,1¢)? are not explicitly defined in
terms of the angular-momentum components, the sym-
metric functions over them are. These may be expressed
(compare 3.12) in the following manner:

II ((Bena?)2422) = 20 a2 ¥ Kpuys.  (5.1)
f=1 /=0

W now show the Kj, 1 to be linear combinations of
Casimir invariants and derive the coefficients relating
them.

From (3.16), (3.18), and (3.20) we obtain

& & T(atn—f+3) ,
g (kon1V4-2) = !; ——__I‘(x-{—%) Lonn?,

which, combined with the obvious identity

II ((Bonn®)2=22) =1] (Rents?+2) ]I (Rona—20),
7= =1

7=1

implies that

ﬁ ((konir)?—a2)
/=1

2 D(x+n—f+3) T(—ax+n—g+3)
=fza;> I‘({G-i';)r(—x-i—%) S Lot @,

(5.2)

In Appendix A, the double summation appearing in
(5.2) is shown to commute with each of the spin
operators oj: j, k=1, 2.++(2n+2). Now the only in-
variants which can be formed from this latter algebra
are the identity and the generalized”® skew-symmetric
component i...¢nt9. Since the index (2#-+42) is not
present in the above summation, the only invariant
which can appear in it is the identity. Consequently, in
multiplying out the Casimir factors, all the terms
involving the spin operators must cancel, leaving only
those obtained by directly squaring expressions of the
form

GirjaiasLiriz-dap

for all f=1,2---n.
This argument allows us to conclude that the following

19 H. Boerner, Represeniations of Groups (North-Holland Publ.
Co., Amsterdam, 1963), Chap. VIII, pp. 265-287; R. Brauer and
H. Weyl, Am. J. Math, 57, 425 (1935).
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result holds:
z": T(xt+n—f+3) T (—x+n—g+3})
=) T(x+3)T(—2+3)

o, D(etn—f+H) D (~ztn—f+})
= < 1 Lon1.
= T(x+35T(—2+3)
This is the required relationship between the Casimir
invariants and their factors. Moreover the absence of the
spin operators from this expression quickly enables us to
verify the invariance properties which have been
attributed to the £s,1%. Thus recalling [Eq. (2.14)]
that the Casimir factors commute, (5.3) is seen to imply

[£2 3= D= T (—atn—f+})
M T T h) T (—at)

Equating coefficients of #* 2/ and of the ¢j (the
]atter can only appear in £:,,1®) we obtain

[Lir, L2ap¥]=0,

for all j, k=1, 2+++ (2n+1), for all f=1, 2--+5 and all
positive integer values of #. This proves the invariance of
Lonp1¥. A valuable feature of this derivation is that it
clearly shows the natural manner in which the Casimir
invariants acquire their particular form.

We can now relate the Casimir factors to the sym-
metric functions Kp,11%/. Indeed from Egs. (5.1), (5.2),
and (5.3), we immediately obtain

°B2n+1(/)£2n+l(a)

(5.3)

Lony1?! ] =0

S
K2n+12f= E B2n+1f’f_g£2n+1":
g=0

for all f=1, 2+« -5, where Ba,1//~7 is the coefficient of
(—#?)"7 in the expression
P(a+n—g+) D(—a-+n—g+3) /T T (—a+)).
From this it may be shown that
n—(f—g)
Boyil0= 3 ﬁ (Jm—%)%,
51<g2+-<jg m=1

for all f>g=1, 2-+n, and
Bz,,,.;_lf'():l,

for all f=1, 2+ - - n. Like the a5.419, these coefficients do
not appear to have a simple closed form.

A similar analysis may be applied to the (2n-2)-
dimensional problem. Thus we define

nt1 n41
;‘[1 ((kange?)2422) = i a2 Ky

=0

(5.4)

and attempt to relate these symmetric functions to the
Casimir invariants £s.42¥. It is easily shown that

T (a2 —a2)
f=1

_ ’i I'(x+n—f+1)T(—x+n—g+1)

o) (9
T(@)T(—7) Lans T Lanss’®,

f,0=0

(5.5)
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which reduces, as in the previous discussion, to give

I =y
_’il I'(x+n—f+1) T (—x+n—f+1)
N I'(x)T(—=x)

This result may be used to establish the invariance
properties of the £on41*. We may also derive from it an
explicit relationship between these operators and the
symmetric functions defined above. This is

£2n+22f . (5.6)

f=0

5
Kopyo = Z Bonyol T 980n19%9,
g=0
for all f=1, 2-++(n-+1); where
n—(f—g)
Bonyd 0= 3, ﬁ (Jm)?,

J1<dze -+ <jg m=1

(5.7)

forall f>g=1, 2+ - -m;
32n+2f'0=1,

for all f=1, 2+« (n+1).

B2n+2n+l o = (),

The Dirac Operators

Before proceeding with an interpretation of the anti-
commutation relations, we digress slightly in order to
discuss an invariance property [Egs. (3.39) and
(4.20) ] of the (k,)2 This may be thought of as being
complementary to the invariance of the (£,419)?% a
result which proved to be invaluable in deriving the
explicit form of the Casimir invariants. We start, as
before, with the (2z4-1)-dimensional problem.

Equation (3.39) may be shown to imply that the
(k2a")? commute with the ladder operators Lpni1(®.
However, unlike the (kzy1?)? which also share this
property, the (£2.?)? are constructed from the angular-
momentum components taken from the 0(2x) sub-
algebra of 0(2#4-1). They cannot therefore be Casimir
invariants. On the other hand, recalling the discussion of
the Dirac operator given in Sec. 2, we see that they
could be a suitable combination of ladder invariants. In
verifying this conjecture, we must select the symmetric
functions over the (k2,¢?)?2, as the latter are not related
explicitly to the angular-momentum components. We
therefore define in analogy with (5.1)

IT ((Rn)4a) = 3 iR,
=1 =0
and seek to express the Kz,* in the form
A,
Ro??= D Bon? 7000, (5.8)
=0
where the coefficients B,/¢ are real, or possibly com-

plex, numbers. In order to obtain such an expression,
we must first attempt to write the Jo,¢ in terms of the

k2. The technique for doing this derives from the

identity

o T(aH1) (2n—2g) (300

= D(x—n+f+1) (2n—2f) I(f—g) !
—T(s+n—g+3) /T(+3),

the proof of which is given in Appendix B. Combined
with (2.24) this gives

2 T(x+1) J0= il‘(x-{—n——f-i-%) o

= T'(x—n+f+1) =  DI(x+3)
which, in view of (3.18) and (3.20), reduces to
u T'(x+1)
Z S ol M,
7= D(x—n+f+1)

as required. From this result we obtain after a little
rearrangement

(5.9)

(9)
n

2 3

I1 (F+4) =

f=1

]271.(/),

IT ((Fon?)2—a2)

/=1

_ i (—1)o T'(x+n—g T (—x+n—f)

0], @),
I(x)T(—x) T

fi9=0

(5.10)

The double summation in the above expression should
be compared to that appearing in (5.5). Apart from the
trivial replacement of 7 by (#-+1), these differ only in
that the term (—1)/*9 is present in the former. More-
over a simplification of (5.10) parallel to that described
by the successive equations (5.5) and (5.6) would show
that the (k»")? are expressible, as we have already
suggested, in terms of the ladder invariants. Add to
these observations the easily proven fact that the Jj
satisfy the same algebraic relations as the £, and we
are immediately led to consider the identity

n gI‘(x—f—n——g)I‘(—x—{-n—f) ,
féo (=1)7+ T T (=) Ton DT on®
& I(t+n—f)T(—a+n—f) R
“&T Twres O G

which, apart from the factor of (—1)V+9 is the exact
analog of the expression relating (5.5) and (5.6). At
first sight it may seem that an appeal to previous
arguments would be sufficient to establish (5.11); but
the presence of the extra factor frustrates such an
attempt. Indeed the existence of this apparent discrep-
ancy is extremely puzzling. Its explanation lies in the
fact that whereas the spin and angular-momentum
algebras are independent, the spin and Dirac algebras
are not—elements of one being present in the other.
This can implement certain changes in the algebraic
identities when the Jj replace the £3. In the latter
part of Appendix A, we show that this is precisely what



introduces the extra factor in (5.11), which, incidentally,
we are thus able to verify.
Combining (5.10) and (5.11) we obtain

n, T(atn—f)T(—a+n—f)
I'(x)T(—x)

T ()2 —a2)=

/=1 J=0

J 27!2', B}

(5.12)

which confirms (5.8). Furthermore it is easily shown
that _
anf,g___Ban,g’

for all f, g=1, 2+ - +n; where B,,/+? is defined by (5.7).
Similar considerations apply to the (274-2)-dimen-
sional problem. The main result can be expressed as

S
Koni¥ = Z Boni T 1,
g=0

forall f=1, 2,-- -, n, where Bs,41/9 is given by (5.4) and
where the Ky,,:* denote the symmetric functions taken
over the ko1 .

The Ladder

We are now ready to show that L,V behaves as a
ladder operator towards the Casimir invariants of the
0(n) subalgebra of 0(n-+1). In view of the results
obtained in the first part of this section we may select
the (%,)2 to represent this set of Casimir invariants.
A typical eigenvalue equation then takes the form

(=)W (M) = (M) (NP),

where the eigenvalues A\, are arbitrarily chosen to be
nonnegative.

Following the analysis given in I, Sec. 4, we decom-
pose the eigenspace of (k,¢?)? into pair of “mutually
adjoint” subspaces defined by

Ea®Y (Aa; @) =MaPY (MaP; @)
By (AP35 0) = =M (NaP58),  (5.13)

a factorization made possible by the use of the spin
algebra.

We demand of (5.13) two prerequisites. The first is
that this decomposition should not affect the require-
ment?® that we seek a representation in which the
Casimir invariants of 0(z-+1) are diagonal. This con-
dition is easily shown to be satisfied as follows. We recall
that (£,9)? are defined solely in terms of the angular-
momentum components. Thus any eigenfunction of
them, including those given in (5.13) above, is auto-
matically an eigenfunction of the Casimir invariants.
Consequently their diagonalization is unaffected by
(5.13). This argument would fail if the (2.¢?)? were to
be replaced by the (£,?)? which involve both the spin

20 This requirement is an immediate consequence of Schur’s
lemma and the fact that we are seeking érreducible representations.
For an elementary discussion of this point, see S. S. Schweber,

Relativistic Quantum Field Theory (Harper and Row, New York,
1964), Chap. I, p. 25.
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and the angular-momentum algebras, Eq. (5.12). A
similar breakdown was described in II for the Dirac~
Kepler problem.

The second requirement we make of (5.13) is that,
given that y (\.9) exists, both ¢ (\P; @) and ¢y (\,?; b)
must also exist. In Sec. 6 this is shown to hold by
explicit construction of the subspaces. It is a result
needed if the ladder is to extend in botk directions.

Now the action of L,1® on &, was shown to reduce
to a set of anticommutation relations. A given equation
of this type can be expressed in the form

[l ®, Ten? 1=0,

and combined with (4.12) and (5.13) implies
LY (M5 )~ (MNP +1; b)
LY (NP 41; )~y (NP a) .

This result demonstrates that /,411? both steps the
eigenvalues of (2,%?)? and interchanges the subspaces
described as eigenfunctions of the factorized operator
k.. This is essentially the conclusion reached in I,
Sec. 4 for the orbital problem. In the present system
(5.14) implies not just one, but a total of [#/2] such
ladders, though this generalization does not introduce
any added difficulties. This result will now be used to
determine the allowed eigenvalues of the Casimir
invariants and thus to construct the irreducible
representations.

(5.14)

VI. THE REPRESENTATION

A construction of the unitary irreducible representa-
tions belonging to the Lie algebra of 0(%) in the group
chain 0(#) D0(n—1)D---D0(2) is given below. The
simplest part of this problem is the determination of the
allowed values (eigenvalues) of the diagonal elements.
These are, in the present case, the Casimir invariants of
0(n), and the Casimir invariants selected from the
subalgebras of 0(z—1), 0(z—2)---0(2). Extensive
details will not be necessary as the basic arguments are
quite familiar.

The Eigenvalues

The fact that lp,1Y? is self-adjoint, itself a consequence
of the unitarity of the representation, enables us to
argue that the expression for the matrix elements of
(lnta?)?, obtained from (3.38) by substitution of
eigenvalues, must always be nonnegative. Combining
this result with the action of lo,1"” as a ladder operator
for (k2n”)? shows that the eigenvalues (Ag,?)2 of the
latter are bounded above and below. In view of the
ordering (3.10) and (3.13) imposed on the %2, and the
kan1??, it follows that these bounds take the form

(Pn? FAen1®) >8P > Mg 10+ 1),  (6.1)

for all f=1, 2---x, and all integer #, > 1. The p;,""
and the ¢z are nonnegative integers and the two sets
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of eigenvalues \,@, X,¢? are related through (4.13).
Similarly in the (2#-42)-dimensional problem we
obtain

(Poni1” 4+ Non19) 2 Non1P > Nong 20 +-gonn P +-1),
(6.2)

for all f=1, 2.--n and integer #», »>1. The above
pattern of eigenvalues exemplifies the Weyl branching
law developed originally for U(n). A detailed study of
this result and its application to calculation of matrix
elements of tensor operators has been given by Bieden-
harn and Louck®

From the analysis of the three-dimensional problem
given in I, Sec. 4 it follows that A,® must take half-
integer or integer values which may be arbitrarily
chosen nonnegative. Applied to (6.1) and (6.2) this
shows that all the \,? are half-integer or integer. They
may also be chosen to be nonnegative since it is only
their squares which determine the eigenvalues of the
Casimir invariants.

It should be noted that (4.13), (6.1), and (6.2)
imply that in any given set of eigenvalues \,¢:
f=1, 2-+[n/2] each of the members are distinct and
nonzero. This enables us to justify the strict ordering
described in (3.10) and (4.4). A similar strict ordering
may replace that given in (3.13) and (4.5), except that
in contrast to k,™; &, may have a zero eigen-
value.

The bounds on the eigenvalues, as expressed by (6.1)
and (6.2), can be given a simpler form in terms of the
eigenvalues 7,? of the g,”, operators defined by (3.22)
and (3.23). This is

(PP int1?) 25a P> (G104, D),

where
Ga® =0 P — ([1/2]—F)

for all f=1, 2--+[#/2] and all integer #, n> 1.

We may use these results and the expressions relating
the symmetric functions over the (2,%?)? to the Casimir
invariants, to derive eigenvalues for the latter. It is
unfortunate that in general these do not have a simple
form owing to the complexity of the coefficients in-
volved, namely, the B,/-¢. Exceptions are the quadratic
invariant £,2%, and, when # is even, the invariant £,%, the
eigenvalues of which are given below

n/2}
L a®) = (3 jon® G m—20) J ()
=1

e () = qj a4/ 2= (). (63)

A comparison with the results given in L, pp. 100-109,
can now be made. Complete agreement is reached except

2 H, Weyl, The Theory of Groups and Quantum Mecharics
(Dover Publ. Inc., Princeton, N.J., 1931); Chap. V, Sec. 18, p.
390; L. C. Biedenharn and J. D. Louck, Commun. Math. Phys.
8, 89 (1968), and Ref. therein.

in that in L, the set of eigenvalues Ngn™: m=1, 2+,
may assume not only positive, but also negative values.
This discrepancy arises because the factorization pro-
cedure fails to distinguish between the negative range
in the eigenvalues introduced by the spin algebra and
that inherent in the angular-momentum algebra itself.
In other words there may be Casimir invariants which
can be factorized without recourse to the spin algebra.
It is easy to see which these are, namely the set £o,,2™:
m=1, 2+« +n. They have as factors the skew—symmetric
components L£,... om: m=1, 2+, which are them-
selves invariants of the appropriate subalgebras. The
set of eigenvalues hon @ : f<m=1, 2+ + 5, is not therefore
complete, though we can make it so by including in it a
specification of the sign of the invariants £s,... 2n. The
simplest procedure for doing this is to allow for each ,
one of the Ay, ?: f=1-++m, to have both positive and
negative values. In order to obtain agreement with L,
we choose this to be A\o™ and write

L12,0. 2mf Mo ) = ﬁ AP W Aem@) . (6.4)
F=1

Now this increase in the effective number of eigen-
values enlarges the representation and introduces a
possible ambiguity in the nature of the stepping process.
This can sometimes further result in the augmented
representation not being irreducible.?? though this does
not happen in the present case. It is a difficulty which
cannot be resolved by appealing to the methods of the
factorization procedure. However, the following argu-
ment based on the identity

[Lo?, [L12,-,20y Lon 2041 ] 1= Lon 2041, L12,0e,20 |+
(6.5)

developed by Louck (L, p. 120) provides a definitive
solution.
The selection rule in question can be described by

()\2"(1')) ! =)\2n(r)ﬂ:6m:
0rn=0, r#En
=1, (6.6)

where the prime denotes the new eigenvalue. Because
A2x™ has been assigned a negative as well as a positive
spectrum, a further possibility, namely,

(M)’ for r=1,2-++(n—1)
(6.7)

r=mn,

=x2n(r)
=—Agn™®=1) for r=n
is available. Now substitution for the appropriate

22 An example of this can be obtained from a study of the
representations of the algebra generated by L., L,, L, where
[L., L,];=L; cyclically,

using a factorization procedure involving the “spin” algebra
defined by

[os,0,1=0,  owoy=0. cyclically.



eigenvalues [cf. (6.3) and (6.4)] in (6.5) shows that in
either case we must have

n—1

{n®) @ HLAn®) ' =Dn @ =1 T T Au® =0,
r=1

Recalling that A2, >0 for all r=1, 2.+ (r—1), this
implies that either A, =0, in which case (6.6) and
(6.7) are indistinguishable or [ (Aes™)"—Ag,® 2=1 and
(6.7) is excluded. A similar argument shows that
matrix elements in which one of the other eigenvalues
is stepped can be nonzero only if there is no change in
the sign of Ae,™. Finally we remark that it should be
clear that | Asx™ | replaces A2.™ as a nonnegative lower
bound to Agn1™ P in (6.2). This completes the des-
cription of the eigenvalues.

The Eigenfunctions

Whereas the two sets of operators represented by the
(k)2 and the (Bny1?)? mutually commute and may
thus be simultaneously diagonalized, this does not hold
true for their factors. Nevertheless the eigenfunctions of
the .11 may be expressed as a linear combination of
the eigenfunctions of the %2,%? and in the following we
obtain the coefficients in this decomposition. The result,
which is of intrinsic interest in itself, is used to derive
matrix elements of the angular-momentum components
in this representation and moreover determines the
Clebsch—Gordon coefficients for the addition of spin
and angular momentum. It is a direct generalization of
I, (4.15). We start with the (2%41)-dimensional
problem.

Let X,, denote the #-tuple (Aza®, Ron@,+ + +, X3n™) and
i the n-tuple (i1, 42+ ++is). The elements of the former
set will be recognized as the eigenvalues of the &y,
[cf. Egs. (4.12) and (4.13)7], whereas the latter are
integers which may each take either of the values 0 or 1.
Then we define the eigenfunctions ¥ (X,; i) of the k.,
by the following set of equations

kan W (Ren; 1) = (—1) "Ron Y (Ron; 1),

where f=1, 2---n. A comparison of this with (5.13)
shows that when 7;=0, the corresponding eigenfunction

(6.8)
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lies in the “@” subspace (with respect to £,??) and has
eigenvalue N\s,?, whereas when i;=1, it lies in the “3”
subspace with eigenvalue — (A2, +1). These functions
are further taken to be eigenfunctions of all the operators
diagonal in the present representation, though to avoid
cumbersome notation this is not written explicitly. For a
given set of eigenvalues, there are clearly 2 such func-
tions, and they represent the decomposition of the
eigenspace of the Casimir invariants (ky,?)? into its 27
components.

Similarly we define the eigenfunctions ¥ (Agnq1; j) of
the %211 by the equations

kon 1P (Rany1; §) = (= 1) Mgp iy V¥ (Angi; §)  (6.9)
which hold for f=1, 2- - - . It should be noted that these
equations differ slightly from (6.8) in the omission of
the bar over the eigenvalues and the operators. The
need for this distinction soon becomes clear. Like the
¥(Xen;i) these functions are also taken to be eigen-
functions of all the operators diagonal in the representa-
tion, and for a given set of eigenvalues form the 27
components of the eigenspace of the (ks,.1¢)2.

The ko1 can be constructed from a combination of
the k2, and the ladder operators ly,11¢?, a result which
is essentially a consequence of (2.15). Moreover the
lyna?” interconvert amongst themselves the functions
described by (6.8). Thus the ¥ (d41; j) can be expressed
in terms of the ¥(Xe;i). (This argument is a direct
generalization of that given in I, Sec. 4 which provides a
simple example of the construction.) Explicitly we have
the linear relation

1

¥ (Qongr; §) = >

11,42,%++,in=0

B(j,D)¥(Xen;1), (6.10)
where the B(j, i) form the elements of a 27X 2" matrix.
These coefficients depend on the eigenvalues X,¢,
Azoa®; but explicit reference to this is only made where
necessary. They are evaluated as follows.

We apply both sides of the operator equation (3.33)
to the function ¥ (Jen41; j) and select out the component
of ¥(Agn; 1). The resulting identity in # can be decom-
posed by a partial-fraction procedure (as used in Sec. 3)
to give the # equations

@ Ran3 1), lonn @Y (Nan3 141,) )+ B(§, i+1,) = B(j, i){fl (=)Mo n P — (—1) fohgs @)/ InI ((—1)#

f=1

F(Fg)=1

—(—=1)¥r,@)}, (6.11)

which hold for g=1, 2- - -n. In these 1, denotes the unit »-tuple with the gth component one. It is used to indicate
that 7, has been increased by 1 (mod 2). Dirac notation has been used for the matrix elements of the lon1?: the
inner product (-, ) being conjugate linear in the first term and linear in the second. The moduli of these matrix
elements can be obtained from (3.38), though their phase is as yet indeterminate. This is because it depends on the
precise form of the ¥/ (X, 1) though it cannot depend on the ¥ (g1, j) and a fortior: must be independent of the
is:f=1, 2+« +n. On the other hand, the relative phase of the B(j, i) for fixed j can always be chosen to be indepen-
dent of the i;. Recalling the ordering of the eigenvalues implied by (6.1), which determines the signs of the various
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terms, appearing in (6.11), we thus obtain

BU 1) _ o gy (IT

(" {(_1)jf>\2n+1(l)+(*1)i”+1x2n(0)}/ ﬂ {(—1)i’)—\2n(f’+(—1)"’“7—\2n(") 12
B(j, 1) 7=1 = L (= 1) Do P (—1) g, @ sGm= | (= 1) #Ren@ 4 (—1) 70Xy, @ }> ’

which holds for all g=1, 2--

-n. It is not difficult to see that this is satisfied if the B(j, i) take the form

B, 1) =TT (=) #) ATIT {(=1)Mentr®+ (= 1) Keu@} T TTT {(=1) Mhanis®+ (—1) #han 1@}

g=f /=1 g=1 f=1

This expression has two arbitrary features. The first
is that we have chosen to normalize the B(j, i) in the
sense that

S 1BG,) P=1, (6.13)

PRIRr
holds for all values of 5. [The proof of (6.13) is given
in Appendix C7. The second is contained in the choice of
phase of B(j, i), which is determined only to within
multiplication of each column and each row by a com-
plex number of modulus one. With respect to the above
choice of phase it can be shown, by substitution back in
(6.11), that the phases of the matrix elements of the
lon1a@, are given by

(¢ (xZn;’ i), l2n+l(”)¢ ()—\276 i+1 a) >

T vy 1¢, 0

f=1

(6.14)

The transformation described by (6.10) maps
orthogonal vectors into orthogonal vectors. This fact
combined with (6.13) implies that B(j, 1) is a unitary
matrix and thus its inverse can be easily obtained. In
handling this matrix some care has to be taken in
multiplying out the terms under the square root sign.
Difficulties can be avoided by always choosing the
individual terms to be positive.

We now derive the corresponding result for the
(2n-+2)-dimensional problem. The argument used is
similar; but has the additional complication introduced
by the increase in number of Casimir invariants.

We define, by analogy with (6.8) and (6.9), the
functions ¥ (Xens1; 1) and ¥(denye; j). Thus

Font1P% (Roni1; 1) = (—1) Ronp1 @Y Rgnya; 1),  (6.15)
for all f=1,2+++n, and
Eong2 ¥ (Qonga; §) = (—1) N s P (Aony2; §),  (6.16)

for all f=1, 2-.-
denotes the #-tuple (%1, 42+ ++is), where j denotes the
(n+1)-tuple (41, jo***Jat1). A similar remark applies
to the eigenvalues Xosy1 and donyo. Apart from a nota-
tional change, which is convenient for our present
purposes, these functions are exactly the same as those

defined by Egs. (6.8) and (6.9). This correspondence

(n+1). It should be noted that i-

g=f =1
X IT II {(—=1)iResP - (—1) iR, @} )2 (6.12)
g=f+1f=1
can be made explicit by the identity
Y(Xas 1) =T (0 +; ), (6.17)

which holds for all integer %, n> 1.

We now seek to express the ¥ (dsnie;j) as a linear
combination of the ¥(Xwi1; i). Unfortunately as it
stands this is impossible, since (6.16) defines 27t
orthogonal functions whereas (6.15) defines only 2.
Not unnaturally this difficulty can be resolved by
appealing to the spin algebra which, we recall, has in
(2n4-2)-dimensional space the single nontrivial in-
variant o1,s...¢n49. This has eigenvalues =1, and we
denote by a1 and B,41 the corresponding eigenfunc-
tions. These may be represented as spinors with two
independent components (see Sec. 7). We choose their
relative phases such that os,15,0n43, Which is a unitary
operator anticommuting with ay s...(2n49, satisfies

(6.18)

We may use these functions to effect the required
increase in the dimension of the space of the ¥ (Xgnp1; i)
The new functions take the form

12 (X2n+15 i,0) =y (X2n+l; i),

¥(Aeni1; 1, 1) =Baya¥ Nonga; i), (6.19)
and for a fixed set of eigenvalues form a space of
dimension 27+! as required. This above notation can be
put in a more succinct and logical form by extendlng the
n-tuple (i1, %2+ +4,) to include the term 4,41, choosing
1,41=0 to denote multiplication by a1 and i,14=1 to
denote multiplication by Bni1. These augmented func-
tions may be used to construct the ¥ (Qz,4, j), as shown
in the following.

By analogy with (6.10) we write

¥ (Aant2; §)= Zl

1,92, ,in+1=0

Oont2,9n43 | On1)= | Brya)-

C(j, i)¢(x2,,+1; i), (6.20)
where the coefficients C(j, i) form a 271X 2+ matrix,
whose explicit form is determined below.

From (3 22) we have that

e et 2) L1200 ()

,@nt2) =Lony2

n
=H Bonye®

f=1



an identity which implies

1
Lont2 DT (Aonye; §) = (ﬁ (= 1) Nons 2P} (N2ng2; )

f=1

On the other hand, from (6.4) we obtain

1
£1,2,0-,0042¥ (Manye; ) = (ﬁ Non2 ) ¥ (Mang2; ) -
f=1

A comparison of these expressions shows that the
eigenvalue assigned to o1,2...2n42) 1S just the product

T (-1,

f=1
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Applying the invariance property of this operator to
(6.20) it follows that

C(,1) =0, (6.21)
When

n41
(g 71) Finp=1(mod 2).

The remaining (nonzero) coefficients may be ob-
tained by the method used to derive the B(j, i). In this,
Egs. (4.14), (4.15), and (4.19) replace (3.33) and
(3.38) in the determination of the ratio C(j, i+1,)/
C(j,1). The final result takes the form

n n 1 n n41 nil
(G, 1) = ATTT (=1)79) TTTT (= 1) Manss®+ (= 1)Ransa @)/ TT TT (= 1) Aanss® 4 (— 1) #han s

o=/ /=1 f=1g=1

when
ntl
(D7) Fing1=0 (mod 2).
f=1

Like the B(j, i), these coefficients have been normal-
ized and thus form the elements of an unitary matrix;
but one which is now of dimension 27t.. They differ
from the B(j, i) in the nature of the summations
involved. Like the B(j, i), their phases are determined
only to within multiplication of each column and of
each row by an arbitrary complex number of modulus
one. With respect to this choice it may be shown that
the phases of the matrix elements of the lon12¢? are given
by
(‘I’(XZWH; 1), lonr2 @Y (RNony1; i+1,) )

=(ﬁ(—1)"f)l<-,->l. (6.23)

This completes the description of the eigenfunctions.

The Matrix Elements

We derive in the following the matrix elements for
the basic angular momentum operators £j in this
representation. In doing so we may restrict our attention
to the Lmmy1: m=1, 2. -5, as the matrix elements of the
remaining components may be determined from the
commutation relation

L= ()L s1, [Li11 142, [ Lo 11, Laa 2] 1]

which holds for all j<k—1.
The method we use is based on the identity

Lupn®=~[L®, My J1+Ma, (6.24)
where

M,. =0n n+1£n n4l1, (6.25)

g=f+1 f=1

X ﬁf[ ((=1)*Rona P+ (= 1) Rgny @) }12, (6.22)

o=f f=1

which may be easily verified. This expression is effec-
tively much simpler than appears at first sight, because
we may evaluate its matrix elements with respect to the
eigenfunctions of the Casimir factors in such a fashion
that the anticommutator makes no contribution. This
is made possible by the fact that the operators L,®
and M, act independently. Thus the former, as we have
seen, steps the Casimir invariants of 0(z—1). Whereas
the latter, because it commutes with all the elements of
this subalgebra, steps only the Casimir invariants of
0(n). We start with the (2z-+1)-dimensional problem.

We consider first the matrix elements of M,, cor-
responding to the single change of eigenvalue Ay, (@—s
Aan @1, In this we make use of (6.24) (with # replaced
by 2%) and, so as to reduce the contribution from the
anticommutator, we restrict to eigenfunctions of the
ko in a fixed subspace. Recalling that L,,® can be
expressed as a sum of ladder operators 1, ": f=1, 2.+ .9,
which interchange these subspaces (Theorem II), we
obtain

(‘l’ (3~2n+107 X21;—1; i+ ln) ’ L27b+lu)‘p (3'27»; 7\211—1; i) >
= (‘I/ (3"2'n+ 10; XZn—l; i+ ln)) { —‘[lh(n): M2n]++M2ﬂ}
X‘l/ (9\'2711 X2'ﬂ—1; i) >) (626)

where l;,® is the commuting part of L,,®.
Y(hent1,, X2n—1; i+1,) and Y (Ao, xzn_ﬁ i)

are eigenfunctions of the 1 as defined by (6.15),
in which we have made explicit reference to the eigen-
values (\on®)? of the (k3,2 The index 4, which is
included in these functions determines which of the
spinors a,, (8, appears in them. For nonzero matrix
elements of M, and Ly,,1® this index must be increased
by 1 (mod 2) because both these operators contain the
spin component on,en41 Which interchanges @, and
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Bn. Now if the phase of this transformation is deter-
mined by (6.18) then the matrix elements of My, will
be independent of the value of 7, chosen. On the other
hand reference to Eq. (4.15) and the fact that the
eigenvalues (—1)% of 01,2....n must equal the product

IT (=0
I=1
shows that the (diagonal) matrix elements of o,

change sign with this change in 4,. Thus by summation
over i, in (6.26) we eliminate the contribution from the
anticommutator [1.™, Mz, ;.

The left-hand side of (6.26) may be evaluated by
expanding the eigenfunctions of the £y, 1¢ in terms of
the eigenfunctions of the £,,” whose matrix elements
with Lsy,1® are known. Thus by making use of the
unitarity of C(j, i) and the fact that its entries are real,
we may write (6.26) in the form

1

2<¢,Mw>=213 > Zl

m:() jl""'yjﬂ,=0 jl""y"ﬂ=0
and substitute for the matrix elements of Ly,41®® which, recalling (3.38), (4.12), and (6.16), are easily seen to be
given by

(T @ent1653) 5 Lona®¥ (n; §) )= (II( 1)”)(H { Mana¥)2— (Rgn'0)2}/ H

Cnt15; §'5 i41a) C(2n; §, 1) (¥ Qant-145 §), Lony1®¥ Bzn; §) ), (6.27)

(=) Man DA @1}

I Fp=1
{(—1)’0\2,.(/’—)\2,.(”)})”2 for j’=j+1, and j,=0 (6.28)
=0 otherwise.

[It should be noted that the above expression for the matrix elements of Ly,1® differs slightly in appearance
from those obtained when the alternative form of the eigenfunctions ¢ (Xs, 1) of the %5,*? defined by (6.8) is used,
cf., Eq. (6.17).

Ort?loéonalit}]f of the ¥ (Az,; j) reduces the 2xn-fold summation over j” and j appearing in (6.27) to an (n—1)-fold
summation over j excluding jy. It should also be noted that the phase factor appearing in (6.28) is eliminated by
equivalent terms appearing under the square root sign. Furthermore it is not difficult to see that all the terms
involving X2.(? may be taken outside this summation, which by inclusion of the summation over 4, reduces to unity.
This latter simplification is a direct consequence of the fact that the C(j, i) are normalized. We thus obtain the
following expression for the matrix elements of Ma,:

(‘p(oﬂn—}'lm X21&—15 i+ ln); MZn‘p (1271, X2n—1; i) >

=%(ﬁ { Man1®)?— (Ae'?)?} ;ﬁ {()\2n—1(”+if)2—(7\2n‘f))2}/f (I;[ { 2?2 — (A2n )2} { (M2 ?)2— (Nan (@ - 1)2} Y112,
f=1 =1 9)=1

which holds for all g=1, 2--+%, and all possible values of i. (6.29)

The appearance of the i7in the right-hand side of (6.29) should occasion no surprise since (Asn—1¥?4-i7)2 is just the
eigenvalue of (ken1)? associated with ¥ (X2n—, ). Indeed it serves to show that the matrix elements of My, are
independent of the choice of subspace of eigenfunctions of the (kz.—1)2. This fact combined with (6.18) and (6.25)
enables us to extract from (6.29) the matrix elements of £2, 2n1. These take the form

((3&27..*.1, 3"2'n.+ 1 g 3‘21;—1) £2n 21L+1(3‘2ﬂ+1; 3'21;, 1r2'n--1) )

2(H M) = (AP +-3)* }nﬁ{(kzn—x‘f’)z-—(kzn“”%—%)?}/ﬂg { Q)2 = Men@)2H{ (M) 2= (N @+-1)2} )12
=1 g)=1

= <(3"2n+1, A2, 3'2‘"—1) s Lon 2n+l(3¥2n+1; Aot lg, 9\v2n,—1) ), (630)
where the second of these identities follows from the self-adjointness of £2, 2.+1. The expected phase factors
exp (i¢,): g=1, 2+ ++n do not appear because of the choice of phase in (6.12), though they may be included if
re%‘url(:rer(li (6.24) and the known selection rules for Ly, it is easy to see that there are no other nonzero matrix
elements of £on 2ny1. Finally we remark that by suitable identification of terms, the above result combined with
ordering of eigenvalues described by (6.1), can be shown to be in exact agreement with those given by Louck
(L, pp- 117-118).

We now derive the corresponding results for the (27--2)-dimensional problem. The argument is similar and for
this reason extensive details are unnecessary.

From (6.24) (with » replaced by 2n--1) we obtain by analogy with (6.26)
W Qanrrt1g, Ron; 1), Lonpa®¥ Qonr, Mo 1) ) = & Qansat 14, Ron; 1), Mangdy (Qonga, Ron 1) ), (6.31)

where ¥ (Quny1+ 15, Aonet; 1) and ¢ (Qeas1, Aen; i) are eigenfunctions of the k., as defined by (6.8) in which, as before,
we have made explicit reference to the eigenvalues (Azo147)? of the (k2.41¢)% The above expression is less compli-
cated than (6.26) owing to the fact that Ls,,1® does not contain a term which commutes with all the Casimir factors.
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To evaluate the left-hand side of (6.31), we proceed as before expanding the eigenfunctions of the ks, in terms of
the eigenfunctions of the k2,41’ whose matrix elements with Ly, »® are known. Thus from (4.12), (4.19), (6.9),

and (6.12) we obtain
W Qenyart1g Xons 1), Moninf (Qonis, Aens 1))

n+1l

=3 T{ znie)2~ (7\2"+1‘"))2}ﬁ{ (AP +17)— Ren19) 2}/ Aant1?) A2nr'? Nana @ +1)
7

7

XTI { 1) = Monr@+1)2H{ Ronin®) 2= onia @) 2} )2, (6.32)

fFo=1

which holds for all g=1, 2. -% and all possible values of i. The nonzero off-diagonal matrix elements of £snt1 ont2

are thus given by

((DNZM2, l2n+1+ lg; 3*21;) ) £2n+1 2n+2 (3-%’{»2, 3v2n+l, 3-27;) >
n4+l

= (H{ Nong2?)2— Monga@+-%) 2}ﬁ{ M2n)2— Ment1 @432}/ (2N 19 +1) 00119 Mg @ +1)

f=1 =1

X H { Aen1)2— Qonp1 @ +1)2}H{ Aena ) 2— (A2n 2 @) 2} V2 (6.33)

f(#g)=1

= <(Q"2n+2) 3"27b—|—1; J‘-Zn); £27|+1 2n4-2 (QV27¢+2, 3\2n+1+ lg, 3\.2,,,) ).
In addition to the above, £241 2142 has also nonzero diagonal matrix elements which arise because Lo, 2@ includes
a term, namely oo™, which commutes with all the Casimir factors. To derive these we merely repeat the above
argument omitting 1,, in the eigenfunctions appearing on the left-hand side of the Dirac bracket. This gives

1 1
W Qantt, Non; 1), Moyl Qangs, K3 1) )= D' > B
Jn=0

g1 e, 30/=0 j1,+++, 5

(7', 1) B(3,1) (¥ (20415 1) ) Long2®¥ (Mang1; §) ). (6.34)

On using the following identity derived by substitution of eigenvalues in (4.15)

ntl n
(‘I’(D"%H-l; j,) ) L2n+2(1)\1’(3~2n+1§ j) >= (ﬁ )\27H»2<f)) (fI_lI('—l) jf)\2n+1m+%)"1 for j’=j’
=] =

=0

(6.35)

otherwise

and summing after the appropriate indices in (6.34) (see Appendix C), we obtain

W Ran; 1), Monyy (Ao 1) ) = {ﬁ >\2"+2(’)};[3{ (=)@ =3)/(Menn?)2—1)},

(6.36)

whence the diagonal matrix elements of £o41 2442 take the form

n+1 n
((utnt2, Doty Mom) y Lont 2s2 Qeznge, gty Man) )= (L | Nenie? ] A2/ (Mamia?)2—1)}.
=1

This expression contains an indeterminacy if
N2 g™ =N 1™ =, ™ =0.

However in this case it is not difficult to see from (6.35)
that the corresponding matrix element is identically
zero. These results combined with ordering of the eigen-
values implied by (6.2) can be shown to be in precise
agreement with those of Louck (L, pp. 116-117).
Finally we remark that for each distinct set of eigen-
values of the Casimir invariants, these matrix elements
describe an irreducible representation which is finite
dimensional. The irreducibility follows from the fact
that the eigenvalues of the operators diagonal in the
representation separate the states and the fact that we
have exhibited a complete set of ladder (shift) operators
which may be used to convert any one state into any
other. It is finite dimensional because of the bounds on
the eigenvalues. Moreover as these bounds were not
arbitrary but a specific requirement derived from unit-

(6.37)

/=1

arity, it follows that all the irreducible representations
are finite dimensional and that we have obtained all of
them. This completes the description of the representa-
tion.

VII. THE REPRESENTATIONS OF THE
SPIN ALGEBRA

In the following we show that our results may be
used to construct all the irreducible representations of
the spin algebra. Though these have been derived
before,® the present analysis is nevertheless of interest
as it helps to reveal the underlying structure of the
factorization method, which we are thus able to relate
to the theory of addition of angular momentum. These
observations enable us to suggest possible means of
generalizing this approach to the study of arbitrary Lie
algebras and to derive the Clebsch—Gordon coefficients
in the addition of spin and angular momentum in a space
of arbitrary dimension.
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A comparison of Egs. (2.1a~c) with (2.7 a-d) leads
to the conjecture that the spin algebra may be a special
case of the angular momentum algebra.?® To show this
explicitly we merely have to verify that (2.1 a-c) and

Lat=311, (7.1)
where j, k=1, 2+« +n, with the identification
oin=2L; (7.2)

for all j, k=1, 2+++n, imply (2.7a-d) and vice-versa.
Combining (2.1b) and (7.1) it follows that
(LaLiLi—1Li1) =iLnLu
(FLn—LLiLit) =iLulm,
for all 4, k, I5%. Addition shows that for this range of

indices the angular-momentum components anticom-

mute. Substituting this back into (2.1b) gives
LaLn=5%Lu

as required. The rest is trivial.

This result has the following interpretation: the
correct algebra to use in the factorization of the Casimir
invariants of the angular-momentum algebra (2.1a-c)
can be derived from the latter using (7.1) and (7.2). It
would be of some interest to know whether this pro-
cedure could be profitably applied to other Lie algebras.

A further consequence of the above result is that it
enables us to determine all the irreducible unitary
representations of the spin algebra from our previous
results concerning the angular momentum algebra.
This is shown in the following.

The first step is to derive the form taken by the
Casimir invariants when (7.1) holds. From (2.3), (2.5),
and (7.1) we find this to be given by

2f — [— - ’ 2\ —1 w ’ 2,
et 3@ (5&52) 7
_wl (DY
_(Zf)!(n—Zf)l( TG) )1’

for all f=1, 2+ +[%/2]. Substituting this result in (5.6)
and using the identity
2 (2m) ! T(f+DY
/Z-; {(Zf) 1(2n—2f) ! ( r'(3) )
T'(x4+n—f) T (—x+n—f)
T'(x)T(—x)

_ T(at+ntP T(—atnt3)
- TEHT(—t+d)
which is verified in Appendix B, we obtain
(kan®)2= (n—f+3)11,
for all f=1, 2+ - +n. Similarly we find that
(k2n—l(f))2= (n—-f)zl,
for all f=1, 2+« (n—1).

28 The connection between the Lie algebras is described in H.
Boerner, Representations of Groups (North-Holland Publ. Co.,
Amsterdam, 1963), Chap. II, Sec. 5, pp. 36—42, Chap. VIII,
Theorer 2.1, p. 269.

(7.3)

(7.4)

(7.5)

From the results of Sec. 6, we know that the eigen-
values of these operators are all positive with the
exception of g™ which may assume both positive and
negative values corresponding to the sign of the
invariant £;....,2,. Thus we obtain

Mona = (n—f), AP = (n—f+3),
for all f=1, 2.+ (n—1) and
Non® =1,

Substitution of these into (6.30), (6.33), and (6.37)
gives the following expressions for the nonzero matrix
elements of Lyn— 20 and Lo, 2n418

{(Mamy Mon—1, Man—2), Lon1 20(Man, Mont, Donsz) )

= 2)\2,, <")A2n_2 (1) N ( 7 6)
((Mant1y Menzt15,20-1) Lon 2041 (Aont1, Momy Mono1) )
=% %:F)Qn(n))' (7'7)

We may use (7.1), (7.6), and (7.7) to write down
matrix expressions for the spin algebra. These take the
form

o12=0:Q 1n,

(7.8)

Oom 2m41= 1m—1®0'x® 1n—-m+l,
Tom+t1 2m42 = 1m—l® 0:Q0.Q ln——m;

where m=1, 2++-n, ® denotes the Kronecker product
and 1,, the unit matrix of dimension 2™, ¢, g, and o,
are twice the Pauli spin matrices being defined as

(0 1 (0 —-i) (1 0)
“\4 0)’ “\i o) "\o -1/
(7.9)

When the dimension of the space is odd, (7.8) de-
scribes the one and only irreducible representation (to
within equivalence) of the spin algebra. On the other
hand, for a space of dimension (2#-2) there are two
irreducible representations and these are indexed by the
eigenvalues of the single nontrivial invariant ay5,... (2n49).
From (7.8) this is seen to take the form

(7.10)

an expression which enables us to decompose the matrix
representation (7.8) into its irreducible parts.
Inspection of (7.8) shows that the dimension of the
spin matrices is doubled as # is increased by two units.
This result blends in nicely with the corresponding
increase in the number of Casimir invariants of the
angular-momentum algebra. In particular it is just
what we need to describe the decomposition of the eigen-
space of these invariants by the Casimir factors. The
form that this takes can be deduced from (6.19) in
which the eigenfunctions ani1, Bnpr Of the invariant
o1,2,.-,ensn Were introduced explicitly. Now from
(7.10) it follows that these are spinors with two inde-
pendent components. Consequently the eigenfunctions

01,2, ,(2n42) = 1n®0's,



of the Casimir factors in (2#4-2)-dimensional space are
spinors having 2**! independent components which are
in fact eigenfunctions of the Casimir invariants. They
may be constructed explicitly by use of the matrix
transformations described by B(j, i) and C(j, i) as
defined in Sec. 6.

The above result is of some interest from the point of
view of addition of angular momentum, that is the
problem of determining the Clebsch—Gordon coefficients
in the restriction of 0(%) X0(%) to 0(n). Let us recall
the form taken by the Ladder invariants (%.,®)2:
f=1, 2---n. From (2.21), (2.25), and (5.12) it is not
difficult to see that these are just the Casimir invariants
corresponding to the addition of spin and angular
momentum. On account of (4.12) the eigenfunctions of
these operators are precisely the eigenfunctions of the
Casimir factors and their eigenvalues determine the
different possible final quantum numbers. Now we
have described above an explicit construction of these
functions from the eigenfunctions of the Casimir
invariants of the spin and angular-momentum algebras
(and subalgebras). The coefficients in this expansion,
obtained as above from the set of B(j, i) and C(j, i)
matrices, are just Clebsch—Gordon coefficients for the
addition of spin and angular momentum, for which
explicit formulae are given in Appendix D. Though this
is by no means the whole of the Clebsch~Gordon series
for the addition of angular momentum, a generalization
of the above procedure may help to solve this difficult
problem.?* Moreover it may prove useful in revealing
some of the symmetries contained in this transforma-
tion, which even in three-space are not yet fully under-
stood.? From the point of view of the factorization of
the Casimir invariants of an arbitrary Lie algebra these
results are particularly encouraging. For since the
Clebsch-Gordon series can be defined for any Lie
algebra there is no reason to suppose that there is
something special about the angular-momentum algebra,
which permits the use of factorization techniques.

Finally we remark that from the spin-algebra repre-
sentation we may derive the familiar mutually adjoint
pairs of ladder operators which are customarily used in
studying the angular-momentum problem. This was
discussed in I, (1.13), for the three-dimensional space.
As a further example we compute the form taken by
Lo,

% For =3, this problem was first solved by E. Wigner, Gruppen-
theorie (Frederic Vieweg and Sohn, Braunschweig, Germany,
1931), Chap. XVII, pp. 198-208, and later by G. Racah, Phys.
Rev. 62, 438 (1942) who put the results in a simpler and more
symmetric form. A lucid account of Wigner’s approach is given
in L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Per-
gamon Press Ltd., London, 1958), Chap. XII, Sec. 97, pp. 353-
360. Racah’s method and related results can be found in A.
Messiah, Quantum Mechanics (North-Holland Publ. Co., Amster-
dam, 1962), Vol. II, Chap. XIII and Appendix C. For n=4, a
complete solution is available on account of the isomorphism
between the Lie algebras of 0(4) and 0(3) X0(3), L. C. Bieden-
harn, J. Math. Phys. 2, 433 (1961) and references therein. For
n=35, a partial solution has been given by K. T. Hecht, Nucl.
Phys. 63, 177 (1965).

% T. Regge, Nuovo Cimento 10, 544 (1958); 11, 116 (1959);
V. Bargmann, Rev. Mod. Phys. 34, 829 (1962).
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From (2.7¢), (7.9), and (7.10) it is easily shown that
ou=0,Q0;,
ou=0yQ0;,
034=0,Q 0.
Substitution of this result in (2.16a) then gives

L34 (:914 - 1:5824) 1 0
L®= ®
(£14+ 1L04) — L34 0 —1

The operators (£uz=7Ls) which respectively step
up and down the eigenvalues of £;, are immediately
recognized. Similar results hold in higher-dimensional
space. Pursuing this line of reasoning one might hope
to reveal the connection between the ladder operators
used here and those developed by Nagel, Moshinsky,
and others.89:%

VIII. SUMMARY

We have derived all the irreducible unitary representa-
tions of the Lie algebra of 0(%) in the canonical group
chain 0(%#) D0(n—1)D+-+D0(2) and the correspond-
ing Clebsch—Gordon coefficients for the addition of spin
and angular momentum.

In the Introduction the motivation for this study is
outlined. In Sec. 2 the basic operators used throughout
this paper are defined. These are: the angular-momentum
components which form the Lie algebra of 0(n), the
spin components, which are used to factorize the
Casimir invariants, and the Dirac algebra which derives
from the addition of spin and angular momentum. The
ladder operators, Casimir factors, and ladder invariants
are then constructed and their basic properties examined.

In Secs. 3 and 4 the (2#+1)- and (2r+2)-dimen-
sional problems are separately studied, though attention
is paid to the close relationship which exists between the
two. It is shown in both problems that the Casimir
factors can be expressed as symmetric functions over a
commuting set &, f=1, 2. -[ /2] of operators which
have the important property of being linear in the basic
angular momentum components. A corresponding
decomposition of the simplest of the ladder operators is
given, and the commutation relations between the two
sets determined. From these results the selection rules
for the matrix elements are derived. When the angular-
momentum components are represented by differential
operators then this procedure corresponds to the factori-
zation of the resulting differential equations as is, for
example, described in I, Sec. 5. In this respect it is
unfortunate that we are unable to given explicit
expressions for the %,9, though these operators are
determined uniquely by the relations they satisfy.?

In Sec. 5, explicit relationships between the Casimir
factors, the Casimir invariants and the ladder invariants
are derived. These results are used to show that the

% When #n=4, one may realize these operators explicitly by
making use of the isomorphism 0(4) 220(3) X0(3). This provides

a pleasing description of the factorization procedure, and the
ladder operators it involves.
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anticommutation relations which exist between the
components of the ladder operator L;,1® and the
k. imply that they may raise or lower the eigenvalues
belonging to suitable eigenfunctions of the Casimir
invariants.

In Sec. 6, the details of the irreducible representation
are worked out. The argument divides into three main
parts. First the eigenvalues of all operators diagonal in
the representation are computed. In this a slight
ambiguity, which is characteristic of the method, is
noted. It concerns the factorization of the Casimir
invariants £9,.2": m=1, 2,+++, n, of the 0(2m) sub-
algebras, which can be carried out without reference to
the spin algebra. It results in the corresponding eigen-
values admitting a negative as well as a positive range
and this augments the representation which has then
to be shown to be still irreducible. It is of some interest
that the factors £1,2,...,0m: m=1, 2+ +n, which are also
invariants of the 0(2m) subalgebras, have esesntially
the same form as the nontrivial invariants gi,s.... 2m:
m=1, 2+«+n of the spin subalgebras. This is no mere
coincidence. Indeed it reflects the fact that representa-
tions of the angular-momentum algebra are not con-
structed directly; but are derived by a procedure which
involves addition of spin and angular momentum.
Consequently the representations of the angular-
momentum algebra are mixed in with those of the spin
algebra. The difficulties that this introduces are resolved
by the use of additional commutation relations which
are independent of the spin algebra.

The second stage in the construction of the representa-
tion involves a determination of the relationship between
the eigenfunctions of the Casimir factors in spaces of
different dimension. This is described explicitly and in
the third part these results are used to derive the matrix
elements for all the basic angular-momentum com-
ponents.

In Sec. 7, we show that the spin algebra is a special
case of the angular-momentum algebra and use this
result to derive all the irreducible unitary representa-
tions (to within equivalence) which may be afforded to
it. The relationship between the present method of
construction of ladder operators and the theory of
addition of angular momentum is pointed out. This
observation enables us to derive explicitly the Clebsch—
Gordon coefficients for the addition of spin and angular
momentum in a space of arbitrary dimension. It also
suggests some further generalizations of the present
theory, though these are not pursued in detail. Finally
the ladder operators discussed here are related to those
customarily used.
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APPENDIX A

In the following we show that the double summation
Lyny1(2) defined by

Ionya(x)
_ 5‘: T'(x+n—f+3)T(—x+n—g+3)
T(x4+HT(—x+3)

£2n+1(f)£2n+1(”),
f,9=0

(A1)
commutes with all the spin operators oj: 7, k=1, 2+« -
(2n+2). That is

[T2n1 (%), o]=0, (A2)
and establish a similar result for the Dirac algebra.
From the defining relations for the £9,11%? and the
Ly, 1@ it is easy to show that
[0'2n+1 2n4-2y °B2n+1(f)] =2 2n+41 2n+2L2n+1(f);
forall f=1, 2+« +n. Hence, recalling (2.14) and (2.153), it
follows that
Lovnit 2nt2y Lonp1PLoni19]
=011 2042 ([L20 P, Lony1@ 14 +[L22@, LoniaP]4),

(A3)
for all f, g=1, 2+ + . Now from (2.20), with n=2n, we
obtain, after some reduction
3 Datn—ft)
f=0 T'(x+3)

n T — 1
o f D
f=1 T'(x+3)
for all g=1, 2+« -n. A similar expression
)3 I(—x+n—g+3)
=0 I(—x+3)
2 T(— —_ 1
gy 3 Hadn—ets)
g=1 I'(—x+3)
for all f=1, 2+ - -, derives from (A4) by replacement of
x by —x, and interchange of f and g.
The identity
[0’7 [b7 G]+:|+=I:b) [a’} C:I+]+)
which holds for arbitrary operators g, b, ¢ given that a
and & commute, implies, recalling (2.14), that
(€2, [£?, Lpnta® 11 1+ =[£2?, [Ln”; Lont1® ] -

This result, suitably combined with (A4) and (AS),
shows that those terms involving this double anti-
commutator can be eliminated, leaving
2 }'f: I'(a+n—f+3) T(—2+n—g+3)

I(a+3) T (—2+3)

f.9=0

X {[£209, Lon1® Lo 4[ LY, Lona @1} =0.

[ @, [€2, Lonn® ]+ ]+

l:"e?ﬂ(g); L27H~1‘f)]+, (A4)

[L2a?, [£22@, Lon 1@ ] 1y

(€Y, Lynpa @]y, (AS)

(A6)



From Egs. (A1), (A3), and (A6) we thus obtain

[oont1 onte; Lonpr(x) ]=0. (A7)

Now since Ipq.1(x) is symmetric in all the indices

2¢++(2n+1) used to label the spin and angular-
momentum algebras, (A7) may be expressed in the
more general form

Loj mt2, Lonia(2) 1=0,
for all j=1, 2.++2n+41, which, in view of (2.7c),
establishes (A2).

The above result was used in Sec. 5 to verify (5.3).
We now wish to establish the related identity, namely
(5.11). Despite the close similarity between these
expressions, the interdependence of the spin and Dirac
algebras would seem to imply that the argument used in
Sec. 5 is no longer appropriate. However we show that
it is applicable if suitable modifications are made. We
describe these below.

In attempting to establish (5.3) by direct computa-
tion, we make use of a contraction relation having the
form

—~1(n—=2) X' oulu,

k,l1=1

2 onLacalu=
3.k, 1=1
a result which is a direct consequence of (2.1b) and
(2.7¢).
Similarly in establishing (5.11), an analogous con-
traction relation is used. However, this now takes the
form

2 oalnoali=%(n—2) 27 oulu,
7.k, 1=1 k,l=1
in which a plus sign has replaced a minus sign on the
right-hand side. Since this is the only part of the com-
putation for which the different algebraic properties of
the £; and the Jj; lead to different results, it is easy to
see that (5.11) can be reproduced if the Jj are replaced
by the elements of a spin-independent algebra satisfying
(2.1), but with (2.1b) replaced by
[La', £i1']=—iLw,

forallj, &, I=1,2--+n

Let us now recall that in establishing (A2) we made
use of the algebraic properties of the angular-momentum
components only insofar as (2.14) and (2.20) were
employed. The alteration in this algebra implied by
(A8) affects only the latter and results in a plus sign
replacing the minus appearing on the right-hand side.
Repetition of the argument, given in the first part of
this Appendix, with this change shows that (A2) holds
if the term (—1)/*7 is included in the double summa-
tion. Using the independence of the spin and this
modified angular momentum algebra, as in Sec. 5, it
follows that this result implies (5.11) as required.

APPENDIX B

In the following we establish two identities involving
summations over gamma functions, namely (5.9) and
(7.3). We start with the former which is the simpler.

(A8)
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Applying Leibnitz’s rule to #-fold differentiation of
the product z*zf and setting z=1, we obtain

{2 n! I'(a+1)T(8+1)
= fi(n—=) T (a+1-f)T(B+1—n+f)

_ T(at8+D)
T(atpti—n’

where I denotes the gamma function. It should be noted
that this holds even for negative integer values of
(a+B) resulting in the gamma functions having nega-
tive integer exponents and consequent singularities.?

Replacing # by (n—g) and the summation index f by
(rn—f) in (B1) gives

(B1)

o (=gl T(akDT(EHD)
= =D~ Tt —nt)TB+1+5-)
I(a+6+1)

= . (B2
I'(a+B+1—n+g) (B2)
Setting a=wx, 8= (n—g—1/2) in (B2) and rearrang-
ing we obtain (B1).
To verify (7.3) alittle extra manipulation is required.
We start from the partial-fraction? expansion

TT(y—a)— H(y b;)

7=1

= Zn: (bj—a;) ﬁ

=1 k(=i)=1

bj—dk
(=) o-s0 9
which holds identically in the continuous variable y. It
will be noted that the right-hand side is a sum of
polynomials of degree (#—1) in y. We wish to rearrange
this to give a sum of polynomials of decreasing degree.
To do this we substitute the easily verified identity

— by n—
I {2=4- S 0T -0/ 1T ¢

I=j—1 k=1 B(%5)=1

into (B3). After a minor rearrangement of the sum-
mations involved this gives the required expression,
namely,

H(y a;) — H(}’ b;)}

=1

"‘;STI_IIu 5))+Sy (B)

where S, takes the form

s= 301 G—a/ 1T G007, (85)
= k=l k(G)=1

for all =0, 1.+« (n—1).
We now evaluate S, for the special case when
a;=(j—3%)?%  b=(j—1)3

% E. T, Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, Cambridge, England 1965), 4th ed.
reprmted Chap. XII, p. "236.

28 W. L. Ferrar, Hzgher Algebra (Clarendon Press, Oxford,
England, 1958), Cha.p XXII, p. 214.
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holds for all =1, 2-..5. It is not difficult to see that

these substitutions will give rise to gamma functions

appearing in (B5). Indeed a fairly elementary manip-

ulation of this expression reduces it to

_Y r(j+n+3) (=)~
ET(—ntD) () =) 1

in which to obtain the summation over the range —r

to » we have made use of the symmetry in j. Equation

(B6) may be rewritten in a form which admits applica-

tion of (B1). This is

. <—1>n-f( r@) ve (0!

2! r(r—n+%)) i (r+7) (r—4) !

{T(r—n+3)}*
T(j=n+3T(—=j—n+3)
Now, choosing a=g8=(r—#n—%) and rearranging the
gamma functions on the right-hand side, we obtain
Sr= (I‘(ﬂ—7+%))2(_1)n_r' (zn) ! .
) 2n—27)1(27)!
Substitution of (B7) back into (B4) and setting
y=22, reduces the latter to

11 (x2—<j—%>2)—I:Il @—(j—1)?)

=1

Sy

(B6)

(B7)

S [(re=rthy o -0

—_ ING)) (2r)'(2n—27) !
] (T
Xg(x (7 1))}+< e )

Replacement of the summation index 7 by (n—f) and
identification of the products over j as gamma functions
gives (7.3) as required.

It is worth mentioning that the resulting summation
over f involves at least five gamma functions. The
above procedure has enabled us to carry out such a
summation using only a summation over four gamma
functions, namely (B1). It is as far as we know a new
identity for gamma functions.

APPENDIX C

We establish two identities satisfied by the B(j, ).
The first is (6.13) which expresses the normalization of
these coefficients. We prove it by induction.

Starting? with n=1, (6.13) reduces to

1

22 { (= D)Moy ® (= D) Rea®} (= 1) 72N ® )1 =0,
21=0

which holds trivially. Now consider the expression

n—1

(T ((u2)— Gl 35 (1503, 1 -1]=0.

7=1
(C1)

This may be shown to be a polynomial of degree

» These choices of # do nof apply to the subscripts in Agna
and Az,

(2r—1) in Xy as follows. Observe that the terms in
Xen™ which appear in the denominator of [B(j, i)
cancel, irrespective of the value of i, with the product
in curly brackets. This reduces the latter to a poly-
nomial of degree (#—1) in X;,™. Since the numerator is
itself a polynomial of degree #, the over-all expression is
a polynomial of degree (2n—1).

We now show that the square-bracketed term
appearing in (C1) has at least 2% zeros in X»,,™. To do
this we set Apgn™ =Xg.1™ and observe that half the
terms in this summation (namely, those corresponding
to i,=jn) become identically zero. Furthermore the
remainder reduces by cancellation in the numerator
and the denominator to give an expression corresponding
to the replacement of # by (#—1). Thus if (6.13) holds
for (n—1),Agny1™ is a zero of (C1). Using the symmetry
of this expression it is easy to see that this implies that
the set d=Agn1: f=1, 2+« -n are the required 2% zeros
in Az,™. Finally since a polynomial of degree (2n—1)
has at most (2#n—1) zeros, it follows that the square-
bracketed term in (C1) is identically zero. This
demonstrates the validity of (6.13).

A similar argument can be used to verify the identity

. ]Z =0[5 B(j, 1) Wr;]t1 {(=1)iNgn 1P +35}]

n (((—1)iR 0 —1)
= {W’ZT} =0, (C2)

which is used to establish (6.36). Thus when =1, we
obtain

Xl

51=0

((=1) MAgnyy® (—1) 4%, ®)
2(—1>ﬂxm1<1><(—1)ﬂx2n+1<1>+%)}
((—1)"Reu®—1 }
- { (Moara®)2—1))

which holds trivially. Then multiply (C2) throughout
by

b

n—1
IT (1) #Ren (= 1) R}
7=1
Remembering that the summation is now over j, we
see that this reduces (C2) to a polynomial of degree
(2n—1) in X2, ™. As before the fact that (C2) holds for
n replaced by (z—1) implies that this polynomial has
the 2% zeros #=Aon 1@ : f=1, 2+ - +x. Thus (C2) holds for
all n.
The use of an induction procedure betrays a lack of
understanding of the nature of these coefficients, which
a more direct proof might reveal.

APPENDIX D

We write out below the Clebsch—Gordon coefficients
for the addition of spin and angular momentum, as
computed by the method described in Sec. 7. We use
the following notation for the eigenvalues:

Qom= ()\2m(1), >\2m\2),' *% )\2m(m)) )

Aomp1= (>\2m+1(1), )\anri-l(2),‘ .., )\2m+1(m)) s



for m=1, 2++-n. A similar meaning is given to Xm,
Xemy1, [recall (4.13)7]. In addition we define
i2m= (iﬂma)y 1:2m(2)’. *%Y iZm(m)) i

@)

Tomi1= (Tomp1®, Tom 1@, e+ ) Gom ™),
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where m=1, 2+ - «n and where the individual coefficients
7, each take the values 0 and 1. Then combining
Egs. (6.10), (6.12), (6.17), (6.20), (6.21), and (6.22)
we readily obtain the following expression for the
Clebsch—Gordon coefficients G(+++) for 0(27) X0(2x):

n
G(D"2; Ag,e oo ) 9'n) i2; i3;' M) i2n; il(Z), ":3(4),' °°y i2n—1(2n)) = {H Cn (Mm, ()\2m—l—i2m—1) 5 izm, izm._1, 1:2",,._1(2'”))}
m=l

where

m—3 m—1

X {TI B (am—1, (Nom—2—1lom—2) ; fom—1, lom—2)}, (D1)
m=2

Cm(3~2my XZm—l; i2m, i2m—1, i2m_1(2m)) = {IIH (_1) "2"'(/).1:’""'1(0)}

o=f f=1

m m—1 m_m
X (TIT{(=1)m PN (—1) 2m1 DX, @} 11 II ((=1) 2mPn, 0 (—1) 2m @), (00)

I=1¢g=1 g=/+1 f=1
m—1 m—1
XH 11 ((—1)izm= DRoma 4 (—1)i2m1 @F,, @) )12,
o=/ f=1 ’
when
Toma®™ 4 D 1P =0 (mod 2),
f=1
where
Cn(+++) =0,
when
Gama®™ 4 D imP =1 (mod 2),
J=1
and where

n m
B (:},2",_*_1, sz; i2m+1’ izm) = {II H( — 1) S2me1 P igm (@) }

9=/ f=1

X (ﬁﬁ{ (-—- 1) I'2m+1(f))\2m+1(f)+ ( — 1) ‘2m(”)7\2m(")} /

g=1 f=1

m_m

TLIT{(—1)imu@pgp s (—1) 2mar @y, @}

o=f f=1

X TT TT((= 1)t Kan® (= 1)m R, @} it

o=f+1 f=1

In (D1) the set An: m=2, 3-+-2n determine the eigenvalues of the angular momentum operators as
described in Sec. 6. The numbers fom—1®™: m=1, 2+« -n, which each take the values 0 and 1, determine the eigen-
values of the spin components ay,2,...,2m¢ 7=1, 2+ 25, by the rule

012,00 2m ]...):(_1)izm_1(2’") [oee).

The eigenvalues (\»."?)’ of the operators describing
the addition of spin and angular momentum are deter-
mined by the set of integers in: m=2, 3-++2n. This
takes the form

Mm@ = (Rem®? —i2m®) ;
Momp1¥) ' = (Xle(f) —tomp?),

for f=1<-m; m=1, 2---n. Like their precursors, the

(D2)

(Mn®)’ must satisfy the ordering described by Egs.
(6.1) and (6.2). All other Clebsch—Gordon coefficients
for spin coupling are identically zero. In determining the
form taken by a final wave function with a given set of
eigenvalues, one must sum over all possible starting
wave functions which can give rise to that function as
determined by (D2).

Finally we remark that the Clebsch—Gordon coeffi-
cients for 0(2z—1) X (2#—1) can be determined from
(D1) by omitting the factor C,(-++) in the product
appearing on the right-hand side.



