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I have been asked to summarize this conference. I
shall do this by classifying the various contributions
and by picking out points that expecially interested
me.

I want to make a classification very much cruder
and coarser than the one used previously.! The transi-
tions discussed here fall into three cases: (1) the
narrow-band case, (2) the wide-band case, and (3)
those substances containing transition metals where the
categorization of the metal-nonmetal (M-NM) transi-
tion must be done almost on a compound-by-compound
basis.

What does one mean by wide- and narrow-band
cases? As far as metals are concerned, it really doesn’t
make any difference. Metals are metals. We can agree
when something is metallic in character simply by
looking at the transport properties, the optical pro-
perties, or a variety of other indicators. The narrow-
band case gets distinguished from the wide-band case
when one begins to look at the insulating state, or the
nonconducting side of the transition. There we think
we understand very well what wide-band insulators
are, such as, say, the covalently bonded semiconductors.
We also have a pretty good idea of what the narrow-
band insulators are, although generally those are the
materials about which we say that band theory breaks
down. It does not seem entirely satisfactory to use a
band-theory classification when the band theory is
supposed to break down.

Let me start with the narrow-band case by recalling
the talks that started the conference. Professor Mott’s
talk was largely concerned with the narrow-band case.
Dr. Kasuya made an extremely interesting discussion
of europium chalcogenide-based alloys, in which,
instead of having impurity states of the ordinary type
that we have in semiconductors, we have magnetic
impurity states. The fact that these impurity states
have a magnetic moment is of profound importance
for discussing the over-all properties. There, in contrast
to many other cases, the band narrows as the tempera-
ture rises because the spin disorder, in effect, reduces
the number of neighbors to which a given electron
associated with a magnetic impurity state can couple.
Dr. Methfessel commented in the discussion that

1 M. H. Cohen, Bull. Am. Phys. Soc. 12, 187 (1967).

magnetic polarons could give a good account of the
temperature dependence of the conductivity for the
more concentrated alloys. These substances present a
marvelously interesting system for further investiga-
tion. Franck’s paper on transitions in liquid mercury
belongs in this category of narrow bands. Thompson’s
and Mabhaffey’s discussions of metal-ammonia solu-
tions, the papers on theory, for the most part concerned
with the Hubbard model, by Kemeny, Lange, Pratt
and Caron, Horwitz, and Edwards, and then the papers
on the doped semiconductors by March, Holcomb,
Mikoshiba, and Jérome, all focused in considerable
measure on the narrow-band aspect.

The broad-band case was represented by the review
of the excitonic insulator given by Halperin, the
singular case of grey tin discussed by Sherrington, the
bismuth-antimony alloys discussed by Lerner, the
band structure calculation on the pressure dependence
of the energy bands of the alkaline-earth metals by
Vasvari, and the interesting alloys cesium-gold and
lithium-silver by Amar. Then the mixed case of the
transition-metal oxides, sulfides, etc., was reviewed in
detail by Adler and specific substances were discussed
by Barker, Powell, Hyland, Hanamura, and Sparks.
The papers of Professor Mott, of Dr. Halperin, and
of Dr. Adler by and large make a systematic review of
those same areas unnecessary, and to some extent
justify my picking out only particular points.

In the narrow-band case, we are used to thinking of
a metal-nonmetal transition occurring as we vary
some parameter; in particular, the variation of separa-
tion of impurities in semiconductors has been most
frequently discussed. Professor Mott emphasized that
we could in fact keep the impurity separation fixed
and vary the degree of randomness of the potential
fluctuations that are seen by individual electrons.
Professor Mott showed a slide? in which the activation
energy was plotted as a function of the impurity separa-
tion. There were a whole series of traces taken from
the experimental data in which the parameterization of
each trace was given by the compensation. As the
compensation systematically increased there must
have been a transition at some as yet undetermined
compensation below the 0.8 value at which (in the

2 N. F. Mott, Rev. Mod. Phys. 40, 677 (1968), Fig. 6.
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region that would have been metallic before) we found
a definite activation energy. This suggests a transition
of the Anderson sort. In other words, the band is
simply torn up into localized states by the randomness
of the potential. This is an extremely interesting thing
and one that should be borne in mind whenever one
tries to carry over arguments that relate to essentially
periodic structures to a discussion of materials where
the arrangement of impurities is random. There are
many such substances where we see metal-nonmetal
transitions, e.g., the sodium tungstate bronzes. From
the recent work on rhenium trioxide by Feinleib et al.,?
one can easily imagine transition metal alloys based on
tungsten trioxide where one would see a similar transi-
tion and where the randomness may play an essential
role.

Another system in which this kind of randomness
occurs is in the metal-ammonia solutions, where one
sees a well-defined metal-nonmetal transition as
discussed by Thompson. But here the structure is not
tied down. The structure can readjust itself so as to
minimize its free energy as the concentration and tem-
perature vary. One does not have anything like the
rigid framework that exists for the impure semicon-
ductors. As a consequence one finds somewhat the
reverse occuring. That is, the phase diagram in the
temperature—concentration plane shows a phase separa-
tion curve and, insofar as we can determine, the locus
of the metal-nonmetal transition appears to go rather
near the consolute point of this phase separation curve.
But it turns out, as emphasized by Thompson, that
the concentrations at which the metal-nonmetal transi-
tions occur are somewhat lower at higher temperatures.
Since an increase in temperature increases the ran-
domness, this is a case where the effect of randomness
apparantly is somewhat different than in the semi-
conductors. This may have to do with the fact that the
overlap integral tends to get rather large as individual
cavities approach one another, so possibly this is
simply a consequence of an increased average overlap
with increasing temperature.

The beautiful results in the paper by Franck and
Hensel on the pressure dependence of the resistivity in
liquid mercury and in cesium-doped mercury raise
another chicken and egg question. As mentioned before,
the locus of the metal-nonmetal transition in metal-
ammonia solutions appears to go rather near the con-
solute point. Professor Mott*and Professor Krumhans]®
pointed out quite a bit earlier that there may be a
significant correlation between the metal-nonmetal
transition and the phase separation. That is, the
anomalous part of the free energy which is responsible
for the phase separation may well come from the metal—-

3 J. Feinleib, W. J. Scouler, and A. Ferretti, Phys. Rev. 165,
765 (1968).

4N. F. Mott, Phil. Mag. 6, 287 (1961).

5]J. A. Krumbhansl, in Phkysics of Solids at High Pressures,

C. T. Tomizuka and R. M. Emrick, Eds. (Academic Press Inc.,
New York, 1965), p. 425.

nonmetal transition or alternatively the phase separa-
tion simply disrupts the structures in such a way that
one gets a metal-nonmetal transition. The data of
Franck and Hensel show a very similar correlation. The
temperature range was fairly limited, but a locus of
metal-nonmetal transitions in the vapor phase would
surely come rather close to the critical point. There
seems to be a good correlation between the phase
separation which we call condensation and the metal-
nonmetal transition. So one raises the question, with
Krumhansl particularly, as to whether a part of the
driving free energy for the condensation does not
come from the metal-nonmetal transition. This question
was raised again in discussion by Cutler, who called
attention to a similar correlation between a phase
separation in liquid semiconductors (in the tellurium-
thallium system) and the metal-nonmetal transition.
This is a point towards which more experimental work
could be directed.

The metal-ammonia solutions form a very old and
very rich field. It is perhaps the oldest field discussed
at this conference. The quantitative data go back
perhaps 100 years in this area. Professor Onsager sug-
gested the possibility that the dielectron, that is, a
cavity containing two electrons, may be responsible for
a number of the anomalous properties of the solutions
in the low concentration region and may also play an
interesting role in the metal-nonmetal transition. This
may be. It depends on the way one reads the experi-
mental data and, without attempting to contradict
Professor Onsager, let me say that I read the experi-
mental data somewhat differently. Emphasizing the
optical abosrption, I note that in the region in which
diamagnetic species appear to be forming very rapidly
(the susceptibility is rapidly reduced) one notices that
the optical absorption changes neither in frequency nor
in oscillator strength to any appreciable degree. The
detailed calculations of Land and O’Reilly® give a 1-eV
instability of the dielectron cavity relative to two
separate, one-electron cavities, primarily because of the
electron—electron repulsion. So I prefer to discuss the
metal-ammonia solutions within the framework of a
model in which the one-electron cavities, although they
rearrange themselves and associate and form complex
structures, at least preserve their integrity past the
metal-nonmetal transition. Professor Thompson men-
tioned that in a more concentrated range the transport
properties could be explained to some extent by
supposing that the electrons had become very nearly
free, giving quantitative agreement in a simple cal-
culation. This is a little puzzling to me. The remark
may well be completely correct, but at least in the
lower concentration region or in the concentration
region around 8 MPM, there is essentially no apparent
loss of the excess volume associated with the cavity, so
the cavity structure appears still to be there. Another

¢R. H. Land and D. E. O’Reilly, J. Chem. Phys. 46, 4496

(1967).



possibility as to the origin of the nearly free-electron
behavior can be raised. It is simply that the band which
we think of as a tight-binding band has already over-
lapped with the band which comes from the excited
state of the electron in the ammonia cavity that is
responsible for the optical absorption, and that this
band in turn overlaps with the continuum. We would
then have a normal simple metallic-band structure
without loss of the cavity, and without loss of the
excess volume. This would explain why the peak in
the optical absorption appears to be gone at that con-
centration. This does not preclude the disappearance
of the cavities at still higher concentrations.

Regarding the theoretical papers, it was encouraging
that Dr. Arai attempted to go beyond the Hubbard
model by taking much more explicit account of the
actual interactions that occur in these materials. That
is, we did see matrix elements of €2/, written down.
Nevertheless, as pointed out by Lange, it is really im-
portant to find the physical content of the Hubbard
model in a quantitative sense. This is distinct from
spurious effects introduced by faulty analysis of the
model itself. Edwards’ paper illustrated this point very
well by demonstrating that one of the things we thought
we understood, namely the metallic state, was not
properly described within the framework of the Hub-
bard model if one uses the decoupling scheme that
Hubbard used. Lange, of course, took the very solid
point of view that one simply goes ahead and does a
proper perturbation analysis to first and possibly to
second order in the coupling constant (that is, in the
hopping integral). I hope he will not stop with first
order and we will at least see whether we can get some
of the superexchange interactions, some of the magnetic
effects, taken into account within this same framework.
Edwards and Horwitz applied somewhat more conven-
tional and less special many-body techniques to the
Hubbard model than did Hubbard himself. They arrived
at what I regard as interesting and sensible results
relevant to the problem of the metal-nonmetal transi-
tion. This suggests that the conventional wisdom
within the framework of many-body theory is by no
means exhausted as far as its applicability to the
Hubbard model is concerned. I do not think we have
to become more sophisticated than we are, as far as
handling the many-body problem is concerned, to
resolve a number of the difficulties that now exist. As
Kemeny has emphasized, the electron-hole short-range
correlation is really very important, and there are very
powerful ways of taking this into account.

What I have in mind has been discovered indepen-
dently by Garland, Rajagopal, and myself, and es-
sentially represents a very simple self-consistent-field
generalization of the ladder-bubble approximation.
If one makes the transformation that Kemeny used,
where one talks about up-spins as electrons and down-
spins as holes, then the remarks that I am going to
make are quite pertinent to nearly half-filled bands. If
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one writes down just symbolically an expression for
the self energy =, or the mass operator as it was called,
3 =Vg+uGT, there will be a Hartree term Vg (omitting
all integrals, and 4’s and A’s and things like that) and
something like a Hartree-Fock exchange, vGT', where
v is the bare Coulomb interaction and G replaces the
occupation number for many-body problems. It would
be just the Hartree-Fock exchange were it not for
the vertex correction I' which hides all the many-body
effects. Now one can write down an equation for the
vertex function I'=¢14-9GI'GT+ O (dI'/dV exs) in which
the leading term involves the microscopic dielectric
function e. If we only kept that term, we would simply
have dynamically screened exchange in Z. However,
the term 9GT'GT is essential in the present context. The
remaining term in I' involves a second-order vertex
function (a functional derivative of the vertex function
with respect to an external field). If one neglects that
term, one has still taken into account self-consistently
and completely all electron-hole pair-correlation effects,
including the type of long-range pair-correlation effects
that give rise to screening in metals and the type of
short-range electron-hole interactions that give rise
to excitons, spin waves, magnetic transitions, and
other things of that sort. The equation for I' can now
be solved formally giving R~71, where R=1+49GXGT.
The details are not important; it is just that ¢! takes
care of screening and R~ takes care of short-range
correlations such as arise from repeated scattering of a
given electron by a given hole. Rajgopal and others
have developed double dispersion relations for the
description of vertex functions as well as sum rules on
the spectral density functions entering them so that
it is possible to make some fairly consistent and not
too complicated arguments about R itself. Somebody
should look at these more complex vertex corrections
with an eye toward extracting some information about
the metal-nonmetal transition. The work of Dr.
Horwitz was an analysis of terms in R™; the pole that
he talked about corresponds to poles in R, and there
are systematic techniques for analyzing it self-con-
sistently. The self-consistency is extremely important,
as in connection with Dr. Horwitz’s paper, in relation
to the strength of the poles themselves.

It has been stressed repeatedly that the ground state
can not be described within the band model in the low-
density limit, and this is probably right because of
degeneracy. But that does not mean that one has to
eschew, for simple-minded arguments, all aspects of the
band picture. It is possible to make a simple quasi-
particle band model as discussed by several authors,
which will help one to see what is going on. This was
implicit in Dr. Kemeny’s talk, and I want to make it
more explicit.

Suppose we start with a band as in Fig. 1(a); we
can even think in one dimension, but I do not intend
this to be a discussion in one dimension. Now we
increase the separation between the atoms, the band
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Fic. 1. Quasiparticle band scheme valid for the metallic and
the nonmetallic states. (a) Energy E vs wave number £ schema-
tically for a nonmagnetic metal. The spin-up ( T ) and spin-down
(l) bands are degenerate. Ep is the Fermi energy appropriate
to a half-filled band. (b) The same with the spin-down band
replotted as a hole (£) band and the spin-up band left as an
electron (¢) band. (c) Quasiparticle bands after electron-hole
pairs condense, lifting degeneracy at the Fermi energy to give a
nonmetallic state. The designations A and B are discussed in the
text.

flattens and something is going to happen. Figure 1(a)
shows both up-spin and down-spin bands, assuming a
nonmagnetic state so that they are degenerate. If we
follow Kemeny it is easier to describe what is going to
happen by replotting the bands [Fig. 1(b)] as an
electron band for up-spin and a hole band, in which I
reflect the energy about the Fermi energy (assumed at
the midpoint), for the down-spin band. With Herring,”
I suppose that the system can be at a temperature T°
which is smaller than the metal-nonmetal transition
temperature but greater than any magnetic-ordering
temperature. I suppose, for the sake of argument and
not because I really believe it, that this is the case so
that I do not have to worry about the spins. The type
of bound state that Dr. Kemeny was talking about
involves, basically, a mixing between the electrons and
the holes. That is, we find an electron of up-spin and
a hole of down-spin on the same site. With a weak
interaction this mixing lifts the degeneracy in the
neighborhood of the crossover, and we get a splitting
in the band structure, Fig. 1(c). Thus, one can continue
with the band scheme as long as one reinterprets the
band picture properly on both sides of the transition.
“A” marks the band for propagation of a hole at low
k and an electron at high %; “B’’ marks the band for
propagation of an electron at low % and a hole at high
k, and at the Fermi surface we have a gap and a
gradual transition from electron to hole character.

7 C. Herring, in Magnetism, G. T. Rado and H. Suhl, Eds.
(Academic Press Inc., New York, 1966), Vol. IV.

This is essentially identical to the picture of the
excitonic insulator that was discussed, and is very
similar to what occurs in superconductivity. The
essential point in both cases is that one can use a
simple band model as far as the one-electron excita-
tions are concerned. Although straight-forwardly
applied band theory gives the wrong answer as to
whether a metal is an insulator or a conductor, a
small twist following the suggestions of Kemeny can
describe the whole thing within a somewhat generalized
band picture. What would spoil this picture, of course,
would be any kind of polaron effect (which we would
expect to be very strong when we get to the narrow
band limit). There, bringing in additional coordinates
requires that the phonons be included from the begin-
ning.

The wide-band case involves the relationship
between phonon instabilities and the metal-nonmetal
transition. Provessor Mott discussed the order of the
transition, revised his first arguments, and came out in
favor of a higher-order transition on the argument
that in the excitonic binding energy, schematically
¢*/er, € tends to infinity on approaching the transition,
giving essentially a zero binding energy. Although the
remark was not made explicitly, let me do so since I
will come back to this several times: When the frequency
of an exciton tends to zero, then indeed the static dielectric
constant must tend fo infinity. This is completely equi-
valent to the polarization catastrophe that was much
discussed during the early days when ferroelectricity
was an exciting and novel subject. This leads to a
point stressed by Halperin, by Sherrington and Kohn,
and most explicitly and beautifully by Hanamura:
that is, that phonons must be considered at the begin-
ning. Excitons are, in fact, simply charge density waves;
a wave-like disturbance in which an electron and a
hole are coupled. That means taking charge from one
region and replacing it in another. The charge density
wave produces an electrostatic potential with which
the ion cores can interact, giving a strong exciton—
phonon coupling. This can be discussed from a slightly
different point of view® which makes explicit the
relationship between phonon instabilities, exciton
instabilities, and the infinities in the dielectric constant.
An exact form for the analog of the Born-Mayer
constants can be written down, even in a situation in
which the Born—-Oppenheimer approximation breaks
down. One has the possibility that the C;; are complex
in that case. C;; is given by

C1j= (62/6_R16.R,) V{TIG_IVJ',

where R; and R; give the positions of the ith and jth
atoms, respectively, and V; is the exact electron-bare
nucleon potential. The operator v~! is the inverse of
| 7—7" [, (47)~1V2, and €1 is the inverse of the micro-
scopic dielectric function € of the electrons. Integration

8 M. H. Cohen, R. M. Martin, and R. Pick (to be published).



over the electronic coordinates is implied. One can go
ahead by means of less secure arguments close to those
used for doing the pseudopotential theory of the lattice-
vibration spectrum of simple metals in recent years.
One can replace V; by a bare ion pseudopotential and
similarly V; Whereas e was the entire dielectric
function of all the electrons including the core electrons,
one now uses just the dielectric function of the valence
electrons. This approximation would work rather well
in materials of high valence where the cores are very
tightly bound and rather small in extent. Now € has two
parts, e=ea~+e.q. €g is the part given by a random phase
approximation, in other words, by neglecting Umklapp
terms and local field corrections; ¢ is diagonal in
the wave number. The other terms e,q are off-diagonal
in the wave number. These take into account Umklapp
processes in the motion of the electrons and so on. The
processes that give rise to this are responsible for
building up the covalent bond, as Phillips® has em-
phasized in his recent discussion of covalent bonds. One
can essentially make a kind of justification of Phillips’
recent arguments by a sum rule (indicated sche-
matically)
lim [Aed“l—I—EBeod‘l]:O.
g0

This is not to be confused with the translational in-
variance requirement which is already satisfied precisely
at ¢=0. This is separate and distinct, and refers to the
requirement that the limiting value of the frequency
as ¢ tends to zero must be zero for the acoustic modes.
One can then make an argument that Phillips’ bond
charges are related to terms in €4 ! so that one can
construct a lattice-vibration theory in which one
simply takes the usual diagonal part of ¢! to screen
the pseudopotentials, and adds to that bond charges of
appropriate magnitude at points halfway between the
atoms. The size of the bond charge is obtained from
the dielectric function according to Phillips’ prescrip-
tion. Richard Martin!® has developed a theory of lattice
vibrations along these lines and has been able to fit
the lattice-vibration spectrum for silicon quantitatively
in all directions for which the measurements have
been made.

Grey tin is extremely interesting from this point of
view. As Liu and Brust! have shown, e=constant--
O(g™) for small g. The constant term would give the
bond charge in Phillips’ theory, but the whole picture
becomes uncertain because of the ¢~ term arising from
the contact between valence and conduction bands.
The infinity in the dielectric function for zero frequency
and wave number does suggest ¢=0 exciton condensa-
tion, as already discussed in the Conference, but one
has to worry just as seriously about the elastic constants
and the velocity of sound. One must get phonon

¢ J. C. Phillips, Phys. Rev. Letters 19, 415 (1967) ; Phys. Rev.
166, 832 (1968).

10 R. M. Martin (to be published).

17T, Liu and D. Brust, Phys. Rev. Letters 20, 651 (1968).
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instabilities simultaneously. That can be made explicit
for grey tin and the other cases, the excitonic in-
sulators. When one has excitons, one has an infinite
dielectric function. When one has an infinite dielectric
function, one has a set of vanishing force constants
(zero frequencies for some phonon or phonons) and
therefore phonon instabilities. In the present point of
view, it is necessary to do completely self-consistent
calculations which include both the influence of the
excitonic instability on the phonon frequencies and
the influence of the phonon frequencies on the excitonic
instability.

The grey tin problem is particularly interesting
because of the way its anomalous band structure forces
a singularity in the dielectric function. Possibly a
lattice distortion accompanies the excitonic-insulator
transition. Perhaps there will not be for the following
reason. Displacive transitions arising from phonon
instabilities have been likened to Jahn-Teller transi-
tions. Suppose one has a displacive transition which
carries one from a metallic to a nonmetallic state.
Whereas before the transition the electron states just
below the Fermi energy are degenerate with the hole
states just above, that degeneracy is lifted completely
by the distortion, just as in the atomic or molecular
Jahn-Teller effect. In the case of grey tin, the de-
generacy is forced by symmetry considerations that
involve the spin-orbit coupling in an essential way. In
the corresponding case of an atom or ion having a
ground state of the same symmetry as the I's state
responsible for contact of valence and conduction bands
in grey tin, no static distortion occurs. Instead, a
large spin—orbit coupling leads to the dynamic Jahn-
Teller effect in which the axis of distortion of the
crystal rotates. In grey tin, we therefore expect no
static distortion, but a modification of the acoustic
modes instead. Clearly, no theory of an excitonic-
insulator phase of grey tin can be constructed without
including electron-phonon coupling from the start.

Adler gave an excellent summary and analysis of
the present situation of the transition metal oxides.
There are two obvious points on which further work is
necessary. First, it was shown repeatedly by the experi-
mental talks that there must be more work on specimen
preparation. The tests for metallic or nonmetallic
concentration, whether we have polarons present or
not, depend in an essential way on the quality of the
specimen. A clarification of the experimental situation
often requires improvement of the quality of the
specimens. So, for the lowly art of specimen preparation,
I hold out the highest of praise. As far as characteriza-
tion of the state is concerned, it is easy to do this on
the metallic side. One measures the transport properties,
and most of us can agree on what is metallic and what
is nonmetallic behavior of a transport property.
Magnetic structure, etc., is very important. It is
essential to have all measurements made on the same
or as nearly similar as possible specimens. In other
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cb F1c. 2. The energy E of the

/ ex bottoms of the conduction band
(cb) and the Frenkel exciton band
(ex) as functions of lattice con-
stant ¢ for the tight-binding case.
words, for one investigator to focus experimentally on
one type of measurement is unfortunate in this parti-
cular subject. A concerted broad-range attack is needed
until one can prepare or buy specimens in a routine
fashion that one knows are largely identical in character.
The progress made on conventional semiconductors
counterpoints these remarks dramatically.

I was pleased to see at least one band structure cal-
culation shown in detail at this conference, the band
structures of the alkaline-earth metals presented by
Dr. Vasvari. We need a great many more band
structures, and we need more than one individual or
more than one group making the band structure cal-
culations. Often progress on band structure calculations
in complicated substances has been made only after
disputes between different groups have been resolved.
The techniques for calculating band structures have
now proceeded to the point where one can tackle quite
complex structures and quite complex materials. The
degree of precision that has been achieved is, in fact,
scarcely necessary for the problems that we have here.
Indeed, the power of the band structure calculations
has developed for beyond our understanding of the
crystal potential that enters them. To do band structure
calculations alone for that reason is not terribly
fruitful particularly in these transition metal oxides
where we do not know the degree of ionicity and there
are serious problems of self-consistency. They have to
go hand-in-hand with the kind of systematic and careful
experimental analysis of the optical constants that we
have seen develop in the group IV semiconductors and
spread throughout the nearby portion of the inorganic
compendium. Here we can also carry out Fermi surface
studies on those metallic compounds for which crystals
of suitable quality can be prepared.

As to general comments, first, regarding the question
of the relation of the dielectric constant to the metal-
nonmetal transition, there is a paper by Herzfeld? in
1927 in which he says (he talks about the refractive
index instead of dielectric constant) that when the
dielectric constant goes to infinity perhaps the bound
electron becomes free and we get a metal-nonmetal
transition. In addition, he commented in the same paper
on the metal-ammonia solutions. The degree of

a

12 K. F. Herzfeld, Phys. Rev. 29, 701 (1927).

sophistication then extant was such that these remarks
were not picked up at the time, and they have become
lost. I found out about it because Professor Herzfeld
wrote me a charming letter when he discovered that I
was going to give a review talk on metal-nonmetal
transitions at an American Physical Society meeting
last year.! I am grateful to him.

Dr. Hyland mentioned that Professor Fréhlich had
emphasized that a ferroelectric phase may, in fact,
precede the metallic phase as one passes from the in-
sulating to the metallic phase in a metal-to-nonmetal
transition. This notion is really identical with that of
the excitonic insulator. Suppose, for example, one
takes a narrow-band case where one has a Frenkel
exciton as in Fig. 2. Let us suppose the frequency of
the Frenkel exciton goes to zero as the lattice constant
a decreases. This would correspond precisely to the
Lorentz or ferroelectric catastrophe in the dielectric
function in the tight-binding approximation. Suppose
one has several species of atoms or ions of density NV,
polarizability «;, the dielectric function e is

e=[1+87 2 NiaJ/[1—4r 2. Nial.

€ goes to infinity just at the point that the frequency
of the Frenkel exciton goes to zero. As mentioned
before, at that point one must also have a phonon
instability. In this case, there would be an instability
in the transverse optical mode. One gets a conventional
ferroelectric with a displacive transition plus an elec-
tronic polarization out of the excitonic instability. If it
is a finite ¢ exciton whose frequency goes to zero, one
gets the antiferroelectric phase that was discussed,
using the very word antiferroelectric, by Dr. Halperin.
The development of the notion of the excitonic in-
sulator fits in very well with a fairly coherent and
consistent series of developments in the recent history
of physics; it ties a lot of these together and makes the
proper connection to the metal-nonmetal transition.

As to impure semiconductors, we have just heard
about them and the subject is fresh in our minds. The
model Dr. Mikoshiba introduced, as well as a related
one talked about by Dr. Holcomb, in fact, is quite
close to the models that Professor Thompson and
myself have been studying for the metal-ammonia
solutions. In both groups of substances in the transition
region between what is clearly nonmetallic and what is
clearly metallic the randomness in the structure plays
an essential role.

I am grateful to the National Aeronautics and Space
Administration for support of my work on the metal-
nonmetal transition and to the Advanced Research
Projects Agency for general support of materials
research at the University of Chicago.



