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Correlation and magnetic effects in narrow bands are studied using a generalized self-consistent cluster treatment
of the narrow-band Hamiltonian. Here the dynamics consists of electron hopping between nearest-neighbor sites and
Coulomb interaction between electrons on the same site and nearest-neighbor sites. In the simpler case, where the neighbor
interactions are neglected, i.e., the Hubbard model, the environment of the cluster is regarded as a particle reservoir,
one for each spin. Hopping between the cluster and reservoirs is described by fermion source terms. It is required that
the thermodynamic average of the particle currents of each spin within the cluster equal the corresponding particle
exchange between cluster and reservoir. Electron motion in the system is examined for varying ratios of the strength of
the hopping to the intrasite Coulomb repulsion. A discontinuous transition from an antiferromagnetic insulator to a
metal is found under dynamical conditions close to those predicted by Hubbard and Kemeny. The eGect of the intersite
Coulomb interaction on the transition is next studied. These added terms are seen greatly to inQuence the transition and
the magnetic properties of the cluster.

The metal —nonmetal transition is very intimately
entwined with the electron-correlation problem. Since
band theory has failed to account for the discontinuous
transition from insulator to metal with increasing
bandwidth as postulated by Mott' for partically filled
bands, correlations brought about by electron —electron
interaction have to be considered as active ingredients
for the phenomenon. The narrow-band Hamiltonian
introduced by Hubbard' proved to be a breakthrough
in the correlation problem because of its apparent
simplicity and inherent physical value. Itinerant
electron as well as localized approaches have been
tried on this Hamiltonian using various techniques of
modern many-body theory. What we propose is a
generalization of the self-consistent cluster theory of
spin-interacting systems' to correlation in narrow
bands. 4

MODEL HAMILTOÃIAN AND THE CLUSTER
APPROXIMATION'

BC= T g g c;,+c,.+E g g (c;,+c;,rtj .+h.c.)
ij d tg d

+-,'I g QN;.n, .+-',c g gn, .n...
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apart from a constant. In the Hubbard notation

T= Jt'f ' Q exp [zk (R;—Rj) j
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it to nearest-neighbor interatomic terms. This is
justifiable in narrow energy bands:

c=(~iI 1/r I ~i)
As was Hubbard, we are interested in the problem

of a narrow band. We write down a narrow-band
Hamiltonian in the Kannier re resentation restrictinp g

(ij ~
1/r ) kl) =e' dr&'
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We propose to approximate a solution to this Hamil-
tonian by a self-consistent cluster treatment. In the
spirit of the cluster theories, let us look at one parti-
cular atomic site. Electrons can interact with one
another on this site but they are not stationary. The
hopping terms in the Hamiltonian allow them to jump
on and o6 the bordering sites. The immediate and
crucial consequence is that electrons are not conserved
on this site. Moreover, the intersite exchange me-
chanism will couple the spins of the site electrons to
the neighboring ones. What is sought is a way to pull
the cluster out of its environment and replace the
severed links between it and its surroundings by
coupling to electron reservoirs and eGective Gelds.
The reservoirs would ~~ve and take electrons from the
cluster site thus preserving the physical picture of
electronic motion, while the

effective

Geld. would
describe the exchange coupling with the environment.
Conventionally the cluster technique consists in thermo-
dynamically averaging over the operators outside the
cluster. Those terms that are independent of the cluster
indices can be regarded as constants and dropped.
Doing just this, the resulting tentative cluster Hamil-
tonian is

'nn

+Z Q Q (c;.+(c,n .)+c;.+n; .(c.,)
+ (c,+n )c;,+ (c.,+)c;.n; .) +-;'I g n,,n, .

ne nn

+c Q Q n;. (n, )—J Q Q n;, (n .), (3)

(n.,)= (n,.); I «-)l=l(c'. )I;

The absolute value on the unconventional reservoir
averages comes from the fact they cannot be assigned
a deGnite phase on each site.

Finally, as was pointed out previously, the cluster
does not conserve particles. This implies particle
Quctuation and, as such, grand canonical statistics
must be used. This demands the introduction of a
chemical potential p,. ID. view of this and the self-
consistency conditions, the Anal form of the cluster
Hamiltonian is

X,i ZT Q (c;,+——(c;,)+ (c;.+)c;,)

+ZE g (c;.+(c;.n; .)+c;.+n; .(c;.)

in the cluster. It is this new concept in cluster theories
which will allow electron correlation to be preserved
between the cluster site and its surroundings. Since
electrons are not conserved within the cluster, such
cluster averages as (c;,) and (c;,n;, ) do become
meaningful in the cluster context. These averages are
a measure of the likelyhood for an electron to move
o8 or onto the duster site. The fermion anticommuta-
tion rules and the requirement of Hermiticity for the
cluster Hamiltonian imposed the rule used in the
cluster separation in Eq. (3). The fermion source
turns out not to be simple dassical reservoirs.

The self-consistency conditions directly follow the
lines of conventional cluster theory. The reservoir
averages shouM be set equal to their cluster counter-
parts. The following self-consistency rules are then
proposed:

where the Latin index refers to the cluster site and the
Greek one to sites outside. The (~ ~ ~ ) terms are thermo-
dynamic averages.

(1) That part which involves the term

i.e., the exchange between like-spin electrons, is the
familiar molecular-field approximation. The (n, )
averages act like a magnetic field trying to line up the
cluster electrons. On the other hand, the

nn

C
0. pro&

term contributes only a constant to the cluster Hamil-
tonian and can thus be dropped.

(2) The hopping between the cluster and the im-
mediate neighborhood has been replaced by fermion
source terms which can create or annihilate electrons

+ (c;.+n;, )c;.+ (c;.+)c;,n; .)
+-,'I gn, .n, .—ZZ g n,.(n,,)—t gn... (S)

where Z is the number of nearest neighbors.

HUBBARD HAMILTOHIAH

By far the simplest application of this new cluster
approach is to the model used extensively by Hubbard
and followers, that is, an s band where the only form
of interaction considered is between electrons on the
same site. The corresponding cluster Hamiltonian is

30, =Z2' Q (c„+(c;.)y (c„+)c;.)

+-,'I Q n;,n; . ts Q n;.. —(6)

We now proceed to Gnd the free energy of this single-
site cluster Hamiltonian. The unperturbed cluster
states are

I 0) cluster empty, I f ) spin-up electron in
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the cluster,
~ J, ) spin-down electron in the cluster, and

~ T J, ) cluster full. Thus the energy matrix is

I0) IT) Il) IT l)
ZT(c;,+) ZT(c;)+) 0

ZT(c'~ & ZT(c—;(+)

ZT(c;,+)

IT l) ZT(—c;)) ZT(c;t ) Zp+—I

Fortunately this energy matrix can be easily di-
agonalized and the self-consistency condition easily
satisfied at absolute zero. For the interesting case of a
half-611ed band for which p, =I/2 the zero-temperature
free energy Ii and reservoir coupling (c;,) are

if Z ) T ~/I&-',

——', (Z )
T [

—I/2) if Z [ T I/I &

Z
i
T jI/I&

(c*.)= (8)
(1/2v2)(1 —(I/2ZT)sj'is Z

I
T I/I&1'

These results are shown in Fig. i.
It is seen that below a threshold value of Z ( T/I =

the interaction with the reservoir is zero. There is no
electronic motion in or out of the cluster and as such
the system can be labeled a nonmetal or an insulator
inasmuch as there are no transport properties. But past
this threshold value, the reservoir coupling increases
very fast. There is then electronic motion in or out of
the cluster. This is our criterion for labeling the cluster
metallic. Since the derivative of the free energy is
discontinuous at the threshold point, we have a Grst-
order transition from the insulating to the metallic
state. The slope of the reservoir coupling is also infinite
at the transition.

In the insulating region there is no real electron
motion, although we know there can be virtual hopping.
This will tend to lower the energy of the antiferro-
magnetic state in which the cluster spin is opposite to
the spin of the neighbor. It can be shown that in the
insulating region the eGect of the virtual hopping is
equivalent to a zero-point energy

solution, in Fig. 2. The degeneracy has now been lifted.
The eR'ect is to shift the transition point to

(Z ( T [/I), =0.63, (11)

at which point the transition is definitely Grst order
with a noticeable discontinuity in the slope of the free
energy and. in the coupling to the reservoir. This
critical value compares favorably well with those
obtained by Hubbard' and Kemeny':

(Z ( T )/I), =0.577 (Hubbard), (12)

(13)(Z ( T )/I), =0.63 (Kemeny).

This simple cluster theory has yielded a discontinuous
transition from an antiferromagnetic insulator to a non-
magnetic metal for a narrow half-61led band. %e now
proceed to study the effect of the other terms in the
general-cluster Hamiltoman, Eq. (5) .

—ZJ Q e;,(n;.) pQ g;.—. (14)
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After adding exchange to the Hubbard Hamiltonian,
the resulting cluster Hamiltonian is

X.i=ZT Q (c;.+(c;.)+(c;.+)c;.)+,'I Q e;.e; . -

and an antiferromagnetic "kinetic" virtual exchange

2Ts/I. —

~-e O

4.

-.2—

FREE ENERGY

FERROMAG NET IC STATE ~

At zero temperature the free energy of such a state
would be given by Eq. (9). This is plotted for the
simple cubic structure (Z= 6) against the cluster

FIG. 1. Zero-temperature results to Hubbard's cluster
Hamiltonian.

~ G. Kemeny and L. G. Caron, Phys. Rev. 159, 768 (1967).
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At zero temperature there are three possible solutions
to this cluster problem, neglecting kinetic-exchange
effects.

(1) A totally magnetic solution with free energy:

for antiferromagnetic exchange

for ferromagnetic exchange.

(2) A nonmagnetic solution with free energy:

R ESERVOIR

ANTIF ERROMAGNETIC INSULATOR

A
NO ELECTRONIC MOTION

b
O
Y

.5
ZiTi/ I

0-

METAL

ELECTRONIC MOTION

F=—ZJ/2 Zl T I/I&4
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4.
-.I (KINETIC EXCHA

= —ZI/2 —',(Z [ T
I
—I/2) Z

I
T [/I&

(c; )= (1/242) t1—(I/2ZT)'g't' Z
I

T [/I&g'. (16)

(3) A partially magnetized solution. However, its
free energy is always greater than the nonmagnetic
one and so it is rejected.

FREE ENERGY

FIG. 2. Zero-temperature results to Hubbard's cluster Hamil-
tonian including kinetic-exchange effects.

These results are shown in Pig. 3, where for purposes
of illustration the zero of the free energy has been
put at the nonmagnetic cluster solution Z I T I//I=O
limit. Again the discontinuous 6rst-order transition is
observed from a totally magnetized insulator to a non-
magnetic metal. The magnetic state is seen to be
stabilized against hopping. This has the effect of dis-
placing the critical Z

I
T I/I ratio to larger values, the

larger J.
INTERSITE SCATTERING
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Finally, the only term left untouched is the intersite
scattering E. In its presence the cluster Hamiltonian
becomes

Se.g ——ZT Q (c;.+ (c;.)+ (c;.+)c;.)

+ZE Q (c;.+(c;.I; )+c;.+tt; (c;,)

MAGNETIC STATE F=- Z IJI/2
4

CLUSTER NON MAGNETIC STATE F =

FREE ENERGY

FIG. 3. Zero-temperature results to Hubbard's cluster Hamil-
tonian including exchange.

+ (c;.+tt; .)c;.+ (c;.+)c;.I; )

+-',I Q I;.n; tt Q I—;,. (17) CONSTANT RESERVOIR CURVES

Here we have added a minus sign in front of T since it
is normally negative whereas X is positive. By doing
this we ensure a correct relationship between 2' and IC.
The zero-temperature solution is a bit tedious to
obtain. The results of the numerical computations
are in Fig. 4, where we have plotted the constant-
reservoir coupling curves in the positive ZT/I-versus-
ZE/I quadrant. The relationship is surely far from
linear, as would have been expected from band theory.
The rate of increase of the reservoir coupling is also
very strongly affected. We would expect large shifts
in the transition point. T and X being of opposite sign,
the effect of X is to reduce the effective value of T
and thus push back the outset of the metallic phase.
Note the region E&T is unphysical. Moreover, the
cluster solution is partially ferromagnetic throughout

ZK/I

Fr@. 4. Zero-temperature results to Hubbard's cluster Hamil-
tonian including intersite scattering.



806 REvIEws Oz MoDERN PHYsIcs OGTQBER f968

the whole plane except, of course, when E=0 and in the
insulating region where second-order perturbation
theory yields an antiferromagnetic state. T and J
being of opposite sign, this seems to disfavor hopping
from a doubly occupied site or onto an occupied site.
The cluster reacts to this by partly polarizing the
spins and thus reducing the number of doubly occupied
sites.

Extension of the theory to multiband systems as well
as larger clusters is quite straightforward. %e will

shortly present some work on the thermal behavior of
certain interesting systems in the cluster approximation.
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Discussion of Caron and Pratt's Paper

W. KOHN (University of California, San Diego): Do you
share my feeling that, while I think this is very physically inter-
esting (I am going to ask you for a copy of your paper), I think
that just in trying to determine the order of transition these
cluster molecular Geld methods are generally quite unreliable.

L. G. CARON: I quite agree. As it so happens, I consider this
as a zeroth-order approximation to the problem. If it did not
give rise to a Grst-order transition, then it would have been
very meaningful. It would have meant that probably such a
transition did not occur, but since it does give a Qrst-order
transition, this means that such a transition is not at all un-
likely. It doesn't reject that result,

G, W. PRATT: I'd like to make a pedagogical point. It seems
to me it is of interest here beyond the Mott-transition problem
that the machinery of statistical mechanics which is used in
magnetism, that is, the Bethe-Peierls-Weiss theory, can be re-
oriented and steered in the direction of this kind of problem
and used to treat correlation. I agree that one has to be very
careful to trust it too far, but it's rather an amusing thing.


