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The "atomic limit" (kinetic energy zero) of the Hubbard Hamiltonian has extreme degeneracy under very general
circumstances. The kinetic energy or hopping term removes this degeneracy. Et has been shown by Harris and Lange
that there are important first-order manifestations of this fact. For instance, nonlocal correlations exist which invalidate
usual Green's function truncation schemes. We present a mass operator perturbation scheme devised on the principle
that, first of all, the role of kinetic energy as a breaker of degeneracy must be accounted for. A sort of Taylor's expansion
of the mass operator in terms of the kinetic energy is found, the coefficients of which are functionals of the exact Green's
functions at zero kinetic energy. The ambiguity due to the degeneracy is removed from these functions self consistently
and thereby the degeneracy properly treated. We present a Green's function which accounts for all first-order effects of
the kinetic energy.

I. IÃTRODVCTION

The Hubbard model' invites the attention of theorists
because of its simplicity and richness. If we could com-
pletely understand the physical predictions of this
~odel, we would be helped in the establishment of
minimal requirements for metal —nonmetal and magnetic
transitions. Once we have decided to analyze a model,
however, it is required of us to make no distorting ap-
proximations. Little real progress can result from an
uncertain treatment of a simplified model. In this brief
paper, a method for calculating the true properties of
the Hubbard model is outlined.

If one is in the small kinetic energy range of the
model, it is natural to begin as Hubbard did and do
perturbation theory in the kinetic energy. Xf there is
less than one electron per site there is a degeneracy re-
jecting the freedom of locating the empty sites in the
ground state when the kinetic energy is zero. Even with
one electron per site there is a spin degeneracy in the
ground state. Therefore, turning on the kinetic energy
as a perturbation involves a problem in degenerate per-
turbation theory.

Harris and Lange' have shown that there are physi-
cal manifestations of degeneracy which are first order
in kinetic energy and are analogous to those associated
with choosing wave functions which diagonalize the
perturbation in conventional degenerate perturbation
theory. The methods they used did not provide, how-

ever, a technique for calculation of these eGects in
detail. We have developed such a technique. It is the
first step in a clear sequence of approximations which

tend toward an exact treatment, and within it, a proper
degenerate perturbation theory can be constructed.

II. DEFINITIONS

The Hubbard Hamiltonian' is

H=Q 1;;C;,+C; +Hp,

where
Hp ——-',I Q n;.n;

and we choose t;;=0.
The summations are over a lattice of sites and C;,+

and C;, create and destroy electrons of spin 0. on the
ith site. The first term in H describes hopping or ki-
netic energy and Hp is a respulsion between two elec-
trons on the same site.

The one-particle Green's function we use is defined
by the following equation:

. (0I (s(U)c;.(1)c;.+(1')) IO)

(0 I (S(U) )„I 0)
The state

I 0) is a ground state of Hp. Since Hp has de-
generate ground states, the choice of the state

I 0) must
be made with care, and this may be considered the key
to the problem. The ( )+ symbol signifies usual fermion
time ordering' and

(S(U)C (1)C;.+(1') )+
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XC..+(&')C~. (&,) C;.(1)C,.+(1')
I
. (4)

+

The time dependence in the C's is generated by Hp.

3 P. C. Martin and J. Schwinger, Phys. Rev. Il5, 1243 (1959).
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The function U&& '(t'ltl) is an arbitrary external field
but note that if

Ukl (t ltl) tkl b(t 1 tl) p (5)

the S(U) is the S matrix which makes G the correct
Green's function for the full Hubbard Hamiltonian so
long as the ground state

~
0) is the one such that

~
exp i dt'—g t31Cg...+(t') Ci,.(t')

~
0)~

~
0).

kE '

The first-order term in a functional Taylor's expan-
sion for the mass operator in which we sum over re-
peated space and spin indices and integrate over re-
peated times is as follows:

Xi' (tltl ) Xi' (tltl )~(tjhije(tltl )/8Uhn (t2 t2) )Uq

X (U,„-'(t,'t, ) —U, ,„-'(t,'t, ) ). (10)

Functionally differentiating Eq. (8) and using Eq. (7)
we can express (hZ/8U) « in terms of the one- and
two-particle Green's function for the Geld Up. Putting
this into Eq. (10) and then plugging the resulting form
for Z into Kq. (8) we get the form for the inverse of the
one-particle Green's function correct to first order in
the change in external field, (U—Uq):

G -1&(t,t,') =G o-'(t, t,') —U '(t,t,') —Z,j.«(t,t,')

(tlt3 ) Gylqk (t3t2t3 t2 )G (t3tl )

+G3jq (tltl ) Glkr' (t2t2 )

—g, g;183jg(tl—t2') 8(t2—tl') j

The two-particle Green's function is given by

G1.3-'~(tltqtl't2') = PG;;. (t—ltl )/&U31 (t2't2) j
+G- (tltl') Gla (tqt2') (7)

The mass operator Z is defined by

G;P-'(t, t,') =G; '(t,t,') —Ui;.(t,t,') —Z;j.~(t,t,'), (8)

where

Gq;j '(t tl') =g;jg(tl —tl') i(8/Nl).

III. THE MASS OPERATOR EXPANSION

Fq. (5). To evaluate the terms appearing in Eq. (11)
we then need Z and the one- and two-particle Green's
function at zero kinetic energy, that is at Up where
Up=0.

But, there are no unique Green's functions at zero
kinetic energy because of the degeneracy in Bp. Thus,
we essentially need the Green's function for Up—4
rather than Up=0.

Hubbard wrote as his solution for t;;=0 the Green's
function

(n ) 1—(n, .)
Gijr ~ = tjij +

(u I—
This solution is not unique and the most general solu-
tion for the one-particle Green s function for t;;=0 is, in
fact,

G,;.(co) =8,j — . + . +22rib(~) g;;., (13)
(n ) 1-(e .)

id I+33— co+33

where

giia = (eirr)y

and, otherwise, g;; is an arbitrary real symmetric func-
tion of i and j.Thus, in the atomic 1imit there can be
spatially and spin-dependent static correlations which
are arbitrary and the specification of which is equiva-
lent to fixing the ground state

~ 0) in the Green's func-
tion definition.

Sy a careful analysis of the equations of motion at
zero kinetic energy, we were able to show that all
ambiguity in the two-particle Green s function can be
completely expressed in terms of the same function,
g,;, for its Fourier transform, g, (k) j. Thus, all the
functions needed to specify the right-hand side of
Kq. (11) can be expressed in terms of the function
g;;,. To choose this function prematurely would be to
prejudice the possible manifestations of the degeneracy
of Hp.

V. RESULTING GREEN'S FUNCTION

%hen all the steps introduced up to now are carried
out, we arrive at the following form for the space and
time Fourier transform of the inverse Green's function
from Eq. (11) for the case (e )=(e,)=n:

,
( ) (

eI(o I2(T—L(k) )
M I(1 e) fid ——I(1——e) )2

XfU33 '(t2't2) —Uo~l" (t2't2) j. (11)
In this expression,

(15)

IV. PERTURBATION THEORY IN THE
KINETIC ENERGY

In order for our change in external field to represent
turning on the kinetic energy in the Hubbard Hamil-
tonian, we must choose Up=0 and U must be given by

(16)8(k) =N ' g exp f—ik (R, R,) jt,;, —
T=N ' Q t,&(C, +C; ),

I,(k) =N ' Q exp f—ik (R; R;) jt,;fD,; '+ ST. '), —
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where I'"or finite t,; and less than one electron per site,

(ep(k) )=Zi(k), Ei(k) &p

g,;—.=(C„.C +C; C;,+). (20) =0, Ei(k) )p, (25)

p can be simply expressed in terms of g;;—,.
D and p are particular projections of the two-particle

Green's function which can also be expressed in terms
of g;;,.Since the expressions for D and 5 are complicated
and will not be explicitly analyzed further in this
paper, we will not write them out here. What is most
important to notice is that a momentum-dependent
term proportional to particular density and spin cor-
relations does come into the inverse Green's function
to first order in kinetic energy. L, (k) is nonzero precisely
because of the degeneracy in-BO.

The spectral weight function corresponding to the
Green's function in Kq. (15) and correct to Grst order, is

g(k )/2 =Z (k) 8( —E (k) )+Z (k) ~(~—E (k)»

(21)
where

E,(k) = (1—s) 8(k) —P'—~(k) ]L1

Z, (k) =1 ~—2~(1—~) g(k) I-'—2P'-L(k) 3-'

E,(k) =I+«(k) —L2'—~(k) &~ '

Z, (k) =++2m(1—e) 8(k) & '+29'—I-(k) jI ' (22)

As 6—+0, p, must tend to zero so that

Z (~.(k) )=~. (26)

g.(k) =1—e, ( k )&L67rN/(1 —I)y'
=0,

(
k (&(6~~/(1—~) j'». (27)

If a calculation of 2', L(k) and therefore Ei(k) using
this simple g, (k) should yield anEi(k) which is not
monotonic, then the determination of g, (k) would have
to be done self consistently. Also, of course, lack of
spherical symmetry in the lattice must also complicate
the calculation. In general, one must solve the equations,

g.(k) = (1—e) e(ti —Ei(k) ) (28)

Since at 6=0, Zi(k) =1 n—, p, must tend to zero in
such a way that those k for which Ei(k) &ti must fili
a volume in momentum space equal to (2&) 'z(1—I)—i.

To simplify the present analysis, assume Ei(k) is
monotonic in

~
k

~

and spherically symmetric. Then we
will have Ei(k) &ti for

~
k

~
&ko, where

s.~ko' =e(1—n) —'(2m ) '

and therefore

(29)

We have not completely analyzed in this brief paper,
the full implications of the Green's functions we have
found. They do contain the subtle eGects which we
knew must appear in a good solution of the Hubbard
model. ' What is established here, is a method which
gives an accurate statement of the content of the model
to the order it has been applied, and which when ana-
lyzed in detail and carried out to higher orders will tell
us how a Hubbard metal would really behave.

VL CALCULATIO& 0& g (k)

The final task in this program is to determine g (k) .
prom Kq. (1.3), one can show that

(23)g.(k) =(N.(k) )

at zero 'ki~etic energy. But we can calculate from our
G, (kco) the quantity (e,(k) ) for finite t,; and then take
the limit 6—4 where
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and
The energies Ei(k) and E2(k) are the wave-number-

dependent energies in the lower and upper parts of the
band split by I. The numbers Zi(k) and Z2(k)', ,'give ~(1—~)-'(2~) '= d'ke(& —E,(k) ),
their respective weights. We 6nd no broadening of the
peaks in the spectral weight function to 6rst order. where~ o«o«se, Ei(k) is the functional of go(k) deter-
Pursuing the next order in,„the functional Taylor's m»edbyKqs (1&)-(20) and Kq. (22).
expansion ofj~Kq. (10) will introduce this eGect. We
emphasize that even to first order there are important VII. CONCLUSION
renormalizations to both the energies, E, and the
weight, Z, due to the degeneracy.

This properly breaks the degeneracy and gives us an
equation for g (k) since all the quantities appearing in
G, (k~) are known functionals of g.(k) .

Discussion of Esterling and Lange's Payer
G. W. PRATT (MIT): I'd 1ike to say I agree with your approach

of looking at this thing as a quantum mechanics problem. I'd
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like to make a suggestion. Mattheiss has carried out the solu-
tion of six hydrogen atoms on a ring, where he has taken all
possible states into account at all interatomic distances and so
forth and he gets the sort of thing you are talking about, a very
highly degenerate ground state when you pull these hydrogen
atoms apart. He seems to get this spectral weight function which
develops as you suggested it vrould. I think it would be a very
interesting thing to take Mattheiss' solution, where all the
eigenstates and energies are known, and translate it into Green's
function language and just see how it turns out. I think it would
be a rather instructive thing to do.

R. V. LANGE: Brooks Harris and I published a paper which I
understand is unreadable, but we tried. Anyway, we published
a paper in which we derived a moment technique which gives
these same things phenomenologically. It shows that the weights
and the bands must be related to correlation functions but it was
not microscopic in the sense that we could not also calculate
the correlation functions. In this new work vre have the function
g and everything is in terms of it; g can be determined at the
end of the calculation vrithout much difBculty because all you
have to do is take your answer for the one-particle Green's
function, take the atomic limit of it and you get an equation for
g and hence for all those correlation functions and the Green's
functions which are then determined. We have checked this
against the rigorous moment results that Harris and I got and
it does check those out exactly. So this is a microscopic Green's
function now which reproduces all of that complicated phe-
nomenology that we had previously produced.

D. ADLER (Massachusetts Institute of Technology}: I'd like
to point out that for the case of an initially half-Sled band the
average kinetic energy term vanishes, and there is neither a
shift in vreight between the bands nor a shift of the band centers
oi gravity. Consequently, when there is exactly one electron per
atom present, the material vrill be a Mott insulator, at 1east near
the atomic limit. In this respect the solution presented here
is better than the one originally suggested by Hubbard.

R. p. LANoE: Justiet me t, ake one minute to illustrate just
what that band-shift effect does. If you have an exactly half-
Slled band, you do get an energy gap. If you have one half an
electron per site of each spin and you analyze those moments
vrhich I threw on that slide, you will find you have a separation
between the full and empty parts of the spectral weight function.
Hovrever, if you have anything but a half-filled band, one can
see just hovr band theory doesn't work. Imagine we remove one
electron from a lower subband. We can see that band theory is a

dangerous point of view because in the first place, Hubbard
shovred that one state drops down so that where your holes are
depends very much on vrhere your electrons are. Not only that,
the rigorous results show that more than one state dribbles dovrn.
It isn't just one. How much more comes down is just a function
of the kinetic energy of the opposite spin electron. That has a
very simple physical interpretation. The vreight in the lower
subband is related to "what's the chance I can stick in an electron
and land on an empty site." Then I don't have to add much
energy. The weight in the upper subband is related to the chance
I can stick in an electron and force a double occupancy. Then
I'1l have to add energy I. But if there is hopping, then what
can happen? If I toss an electron on an empty site, an electron
could hop over real quickly and force me to add energy I. As
iong as it hops over within a time less than 1/I so to speak, I
might, have to add energy I even though I put the electron on
an empty site. Likewise, if I put the electron on a full site, then
the other one could hop avray and I don't have to add energy I
after all. Now which of those two effects is more likely? Obviously
the second one is, because these are repulsive particles and it is
more likely that adding an electron to an occupied site mill drive
the other one away than adding an electron to an empty site
will suck one over to form a double occupancy. So that means
that it is a little bit easier to put electrons into this system with
lovr energy than you would expect due to the correlation effects.
Now that's a very physical process. At this stage is where I
want to start using physical intuition. Now we have got the
problem vrhere vre can maybe think about the true properties
of the mode) and start using physical intuition at this point
and ask vrhether these processes carry over into more realistic
models. One shouldn't guess too early in the game.

A. KapLaN (hi&& Lincoln Lah): Buried in your results
should be an antiferromagnetic order and a spin vrave spectrum,
at least for the case of one electron per site. Have you looked
into this?

R. V. LANGE: If we have one electron per site, then you have
to choose a properly generalized spin-dependent function g. You
see the degeneracy is removed in a different way. In other words,
you can put it in this same ambiguous function and determine
it at the end of the calculation, but now the degeneracy refers
to spin arrangement. But I haven't pushed it as far for the one
electron per site as I have for the fewer than one electron site.
The hopping breaks the degeneracy to second order here. But
if you have fewer than one electron per site it breaks the de-
generacy to first order and you get all sorts of wild things to
first order.


