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The Mott-insulator and paramagnetic metal ranges of the half-filled energy band, governed by the Hubbard Hamilton-
ian, are discussed in terms of an electron —hole picture.

About 20 years ago a simple model was introduced
by Mott for the insulator-metal transition. He con-
sidered a lattice of hydrogen atoms arranged in a
regular lattice. With only one electron per atom, but
two is states available for them, such a system consti-
tutes a half-6lled band, according to band theory. Thus
it should be a metal. It is physically clear, however,
that for large values of the lattice constant we have a
system of independent hydrogen atoms and this should
be an insulator. Band theory alone cannot describe the
insulating state. Some generalization is necessary.

We may imagine this system as a lattice of electrons
and holes. The holes are all the atomic states not occu-
pied by electrons. If an electron wants to leave its
atom, or rather its hole, it feels an attractive potential.
For a large lattice constant this is a Coulomb attrac-
tion which can keep the electron and the hole bound.
Also the overlap of wavefunctions from one atom to
the next is small, so the electron and the hole are not
much inclined to move. As the lattice constant dimin-
ishes, the Coulomb attraction becomes screened and
also the atomic wavefunctions overlap more. So the
electron —hole attraction is diminished while their mo-
tion is enhanced. Eventually a bound state cannot be
maintained and the material becomes a metal. By
considering bound states we go beyond band theory.

This conceptually simple model is mathematically
very complicated. Its investigation with the complete
Coulomb interaction is hopelessly dificult. Therefore
it is preferable to investigate it with the simplest Hamil-
tonian that exhibits the most important features of the
model. This Hamiltonian was introduced by Hubbard
for hydrogenlike atoms. ' Hubbard himself and also
many other people have investigated the consequences
of this Hamiltonian. Some approaches are given later
in the conference. We discuss here only one particular

approach to this problem. The Hamiltonian is given by

e= QZ;, c,. c,.+Zgm, „n, . (1.)

The subscripts indicate lattice sites and. spins. Elec-
trons can hop between nearest neighbors. This is de-
scribed by the erst term. The interaction term shows
that two electrons repel each other on the same atom.
If we describe the negative spin states by holes, but
continue to describe the positive spin states by elec-
trons, the Hamiltonian appears in the form

&= Z (h's+0'++Ps'+he 0* +Ps ) J-Z-rt*+-&+—'. (2)
'v

where
hg-= —kg+.

*Present address: Department of Electrical Engineering,
Michigan State University, East Lansing, Michigan 48823.

~ References to the literature can be found in G. Kemeny and
L. G. Caron, Phys. Rev. 159, 68't (1967).

The hopping energy of the holes is negative and the
interaction between electron and hole is attractive.

The physical content of this transformation can be
seen on Figs. 1 and 2. In Fig. 1 each atom has one
electron and one hole. This we use as a reference state.
Figure 2 shows that an electron moved from its own
atom to another atom. It experiences a repulsion there.
In fact it would experience a repulsion on any atom
but on its own. This is equivalent to saying that it
would be attracted to its own atom. If this attraction
is strong enough, a bound state forms. Mathematically
speaking, we are looking for an isolated pole of the
3 matrix or of the two-particle Green's function or, in
more conventional terms, for a bound-state solution
of the two-particle Schrodinger equation.

The bound state can be considered an exciton. It
can be described in terms of the difference coordinate
and the center-of-mass momentum. The energy and
the binding energy of the exciton depend on the choice
of this center-of-mass momentum. This is very impor-
tant. We choose it such that the energy should be
minimum. Then we And, for a simple cubic lattice in
the tight-binding approximation, that the binding en-

ergy vanishes when the bandwidth/potential-energy
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FIG. 1. The reference state with one electron and one hole on

each atom.

ratio reaches the value 1.5. The wave function of the
bound state decays essentially exponentially as a func-
tion of the di f1erence coordinate. The electron and
the hole can be very far from each other and still be
bound, because the exponential decay can be very slow
if the binding energy is small.

This can hardly be an adequate approximation. There
are many pairs between an electron and a hole if they
are widely separated. The motion of these inbetween
pairs would disrupt a bound state.

In order to find a better approximation let us exam-
ine Fig. 3. Each atom, except the two at the center,
has one electron and one hole. At the center one atom
has two electrons, the otber has two holes. Let us con-
centrate on these two atoms. If we consider one of the
electrons and one of the holes to form an exciton, then
we should consider the other electron and other hole
also to form an exciton. The spatial wave function of
these two excitons should be the same and their spins
should be opposite. We have here a requiremen t of
self-consistency. Each exciton is described by a pair
wave function, or pair correlation and two such pair
correlations must be determined seH-consistently.

t 1

t Olt [(0

FIG. 3. The two atoms at the center have two electrons and. two
holes, respectively. The other atoms have one of each.

Figure 3 shows a configuration in which the se1ected.

electron —hole pair feels the entire attractive potential.
This is due to the fact that the other electron —hole

pair occupies exactly the same two atoms, But there
are other conhgurations possible. On Fig. 4 we show

such configurations. In configuration 1 the selected
electron and hole are on the same atom and the other
atom has two holes. In con6gur ation 2 the electron
and the hole are on different atoms. We see that the
electron gains no potential energy by returning to the
left atom. These two configurations would not occur
if the medium did not move. The medium consists of
excitons similar to the selected one. Thus the total
potential energy of a pair should contain a term which

rejects the fact that the motion of the medium reduces
the attractive potential. The medium has to be repre-
sented. by a wave function similar to the wave function
of the selected pair, since the medium also consists of
exci tons.

Let us now see what mathematical tools are required
to handle this problem. Wc require an equation of
motion for an electron and a hole interacting with each
other and the medium. The two-particle Green's func-
tion equation is

t-i(B/Bti) hi+]['s(8/Bt,—) h~fL2(1+2-—; 1~'2 ')

+i'(1—2)G, (1 2; 1 '2 ')

= —~'{G4(1+2 1 2.; 1+'2 '1 +2++)

—Gg(1+1; 1+'1 +)G2(2 2+, 2 '2~+) I, (4)
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~ ELECTRON
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CONFIGURATION P

FIG. 2. One electron transferred to another atom.
FIG. 4. Electron —hole configurations illustrating the effect of the

medium.
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where

Q(1~2; 1~'2 ') =G,(1~2; 1~'2 ')

—Gg(1+, 1+')Gr(2 '2 '). (5)

Here 1+ and 2 are the space, time, and spin coordinates
of the electron and hole, respectively. Equation (4)
contains the possibility of free-electron and hole motion
due to the presence of the so-called inhomogencous
terms. We do not need these in discussing the range of
bound pairs. So the GjG~ product can be omitted and
so can the G2G2 product. The terms 1eft over have the
following meaning: 8/Bt~ and 8/Bts are the time deriva-
tives; h~ and h2 are the hopping energies; Jb is the
direct interaction of the electron and the hole forming
the pair, if they are on the same atom; the right hand
side diGers from zero only if 1 and 2 are not the same
atom. In that case we must consider four states, hence
the four-particle Green's function.

If we utilize the requirement of self-consistency, the
four-particle Green's function can be expressed in terms
of two-particle Green's functions. After some manipu-
lations we arrive at the self-consistent equation for the
pair wave function:

Pro —hr —hs —J8Rgas]f(Rg+Rp )

=O'I.
I 0(R~+R~-) I'—

I 4(R~+Rs-) I
sl

XL(-',~—4+)-'+ (se —h )
—'Q(Rr+Rs ). (6)

Here we substituted the eigenvalue in place of the
time derivative. If we omit the right-hand side, we get
back the approximation we discussed at the beginning.
The inRuence of the medium is ignored. This is the
nonself-consistent approximation. Qnly the direct elec-
tron-hole interaction is considered. The right-hand side
vanishes, as required, if the electron and the hole are
on the same atom because then neither is in contact
with the medium. If they are not on the same atom, it
represents the inhuence of the medium by the self-
consistent potential and the motion of the medium.

The solution of Eq. (6) shows two features. First
that the transition from insulator to metal occurs at a
smaller value of the bandwidth/potential-energy ratio,
namely at 1.26 rather than at 1.5. We anticipated this
when we said that the motion of the medium reduces
the attractive potcntia1.

The second. feature is that even at the weakest bind. -
ing, more than 94% of the pair-wave-function ampli-
tude corresponds to the electron and the hole being
on the same atom, and the amplitude for being on
different atoms is less than 6%. This result is much
more satisfactory than what we obtained before, where
the amplitude could decrease very slowly for weak
binding. Thus the cxcitons, if they can exist at all, are
very compact. This calculation then shows that the
binding energy goes to zero continuously, as Professor
Mott has stated, but the wave function changes dis-
continuously at the transition.

We have shown how the self-consistent pair-correla-
tion approach can be applied in the Mott-insulator
range. Let us discuss now the application of this method
in the metallic range. Our problem can be usefully
compared with the Brueckncr theory of nuclear matter. '

In nuclear matter, as in a narrow energy band,
fermions interact with strong short-range repulsive
forces. This excludes the application of the Born
series. In the nucleus the noninteracting Fermi sea
is always used as the reference state. This involves
the assumption that there is no clustering in the nu-
deus. We just saw that clustering does occur in the
narrow energy band in the form of excitons. But the
metallic range is presumably characterized by the ab-
sence of clustering and the noninteracting Fermi sea
can be used at the reference state.

Nuclear matter has a low density. Therefore two
nucleons separating after a collision will probably not
collide again before their relative wave function can
resume its precollision asymptotic form. The pre- and
post-collision asymptotic forms are identical, because
collision with phase shift is impossible for particles in
a Fermi sea. This means that the particles must end. up
in the same state they started from, since all other states
with the same energy are occupied. At small distances
the relative wave function has a decreased amplitude
because of the repulsive interaction. The distance at
which the relative wave function erst resumes the
value it would have in the absence of repulsion is
called the healing distance. ' The healing distance is
somewhat smaller than the average distance between
nucleons and thus subsequent collisions are independ-
ent of each other in a good approximation. This is
made possible by the small radius of the repulsive
potential, which in the nucleus is taken to be a hard
core. The ratio of the average interparticle distance to
the radius of the potential is almost 4. In a half-&lied
narrow band the same ratio is 1, since there are enough
particles present to cause interaction virtually every-
where. There is no "free Right. " Thus the half-filled
narrow band is a high-density system compared to a
nucleus. (Not in the sense of the electron gas. )

The hard-core repulsion does not allow nucleons to
approach within the radius of this potential. Thus if
the amplitude of the noninteracting wave function is
unity, then the change introduced by the hard core
ls also unity. It has bccn shown ln thc theory of nu-
clear matter that this precludes an expansion in terms
of the 3 matrix. By inserting one more t matrix into
any diagram between two nucleon lines one finds that
the ratio of the new and the old diagrams is unity and
thus there is no convergence. This is the consequence
of the complete expulsion of the wave function from
the hard core. Expansion in terms of the density,

' A very good review of this subject was given by 3. D. Day,
Rev. Mod. Phys. 39, 719 (j.967).

3 The 6gures in L.C. Gomez, J.D.%alecka, and. V. P.Keisskopf
(Ann Phys. (N.Y..) S, 241 (1958)j are very instructive.
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Fro. S. (a) A con-
figuration of more than
average amplitude in
the metal. (b) A con-
figuration of less than
average amplitude.
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however, proves to be possible because the density
is low.

We wish to argue that in the metallic range of the
half-6lled narrow band the situation is just the re-
verse. Expansion in terms of the density is obviously
not possible, but expansion in terms of the t matrix
could be convergent. In the electron —hole representa-
tion the interaction term becomes attractive. A hard-
core repulsion would transform into an indnite attrac-
tive potential. Even if the attractive potential is not
infinitely strong, but only strong enough for electron—
hole pairs to form, the system is an insulator by the
formation of excitons. In this range the Fermi sea is
unstable and cannot be used as a reference state. So the
analogy to nuclear matter breaks down. But this is
not the range we are talking about, anyway. The
potential has to be sufficiently weak not to cause in-
stability and allow the Fermi sea to be used as a reference
state. Still it may be strong enough not to allow the
application of the Born series. In this range, expansion
in powers of the t matrix seems to be the only possible
course of action.

It seems likely that not too many terms in such an
expansion need be taken into account and that the
treatment can be based on Eqs. (4) and (5). This
time we need the inhomogeneous terms, i.e., the entire
equation, because we are dealing with free particles.
The self-consistent pair-correlation approach to this
problem appears to be useful again. Because of the
attraction between electrons and holes the conlgura-
tion on Fig. 5(a) has more than average amplitude.
Now as the electron and the hole on, let us say, the
left atom separate after collision, conlgurations like
the one in Fig. 5(b) occur, which have lesser ampli-
tudes because the potential energy is unfavorable. If
we compare the wave functions in the absence and in
the presence of interaction, we expect the wave-function
amplitude to increase for small separations due to
electron —hole attraction. This increase, however, is

EFFECTIVE
POTENTIAL

-2
I R = I NTERPARTICLE
2 DISTANCE

Pro. 6. The effective potential for an electron —hole pair in the
metal.

Discussion of Kemeny and Caron's Payer

J. B. GoonENovoH (M.I.T.):As one who has been concerned
from the experimental side to see what we can learn about this
transition, I find it useful to construct an electronic phase dia-
gram. We consider only that cut in the phase diagram corre-
sporlding to a single electron in interacting orbitals. We plot
temperature T versus the transfer integral b;;, which you had
written as T;;. I would like to distinguish two critical regions,
not just one. In one limit (b;;(b,) we talk about a "localized-
electron regime" in which we use crystal-field theory to describe
electrons localized at specific atoms. In this limit we use super-
exchange theory to describe the interactions between the atoms.
According to superexchange theory, we expect an increase in the
Noel temperature with increasing b;;. At the opposite limit
(b;;)b ) we are in the broad-band region, and in this collective-
electron region we have Pauli paramagnetism with, at lowest
temperatures, a possible transition to the superconducting state.
As b;; decreases in this limit, there should be a band criterion for
a transition from a nonmagnetic to a spontaneously magnetic
state, a band criterion of the Stoner type for ferromagnetism
or, for the case of a half-filled band under consideration here, the
point b;g=b where the band becomes split into taro discrete
bands, one filled and one empty, as has been derived from the
Hubbard Hamiltonian. In the intermediate interval b, &b;y&b~,
we expect the Neel temperature to decrease with increasing b;; or
decreasing band gap, since thermal excitation across the gap

going to be diminished by the unfavorable effective
potential energy at separations by one lattice site,
which comes about by the correlations in the medium.
So the effective potential energy for a pair ought to
have the form of Fig. 6. It seems likely that the healing
distance, which must exist in view of the Fermi sea,
should not be more than two lattice constants. The
equation describing this situation is the inhomogeneous
version of that exhibited for the Mott insulator in Kq.
(6) and we do not dwell on it.

Finally we wish to add that after completing the
work on the metallic range, which is paramagnetic,
we intend to generalize the method to antiferromagnet-
ism. This will probably require only slight generaliza-
tion. The amplitude of incoming waves with either
spin will have to take on different values on the two
diGerent sublattices. Such distinction is unnecessary
for the paramagnetic solution.
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destroys increased stabilization due to antiferromagnetic ordering.
Now I mention this because it seems that b, &b;;&5 represents
a transition region. If the electrons go from a semiconducting
state (a nonconducting state) having localized electrons directly
to a metallic state, they must pass directly through this inter-
mediate region. The transitional region b, &b;y&b, on the other
hand, represents a region of spontaneous band antiferromag-
netism. If this is included, the electrons pass, with increasing
b;;, from a semiconducting state with localized electrons, where
we can use crystal-field theory, to a semiconducting state with
co)lective electrons and spontaneous magnetism, where we should
use a band theory that includes electron correlations, to a
metallic state with collective electrons and no spontaneous
magnetism, where Hartree-Fock theory may be sufhcient above
~CI.

Q. KEMKNY: Well, what I would like to say about this inter-
mediate range is that the question of antiferromagnetism in a
narrow band has been handled before several times, and there is
one conclusion which comes out of those calculations which is the
following: If the temperature is at absolute zero, then no matter
how weak this interaction may be, you always get antiferro-
magnetic order. Maybe a very weak antiferromagnetism. , but
some. We were trying with Laurent Caron to make an improve-
ment on this calculation and we wanted to simplify things and
after a lot of work we came out with the same result that people
came out with before. Then we realized that we were such eager
beavers that we made the same approximation in the end that
other people made before. What happens is very much like the
case of superconductivity. You put your electrons into certain
k states and just each electron into one k state without any
spread. Then you come up with the superconductive type of
solution which is that at absolute-zero temperature you get these
superconductive pairs no matter how small the interaction may
be. Now the trouble is that one does not take scattering into
account correctly and what I mentioned at the end of my talk
about antiferromagnetism is, that next time we want to do
better, but we first have to have the metallic solution. The
trouble with the prediction of these previous theories is that the
result would be that you would always have antiferromagnetism
at absolute-zero temperature. I don't think that is correct. I
mean, there should be a certain minimum interaction required
to get antiferromagnetism and, as I say, all of these previous
theories because of approximations do not give rise to such a
minimum. I hope that when we will be able to do this better,
we will come up with a minimum.

G. J. HYLAND (University of Liverpool): Dr. Goodenough's
suggestion of an intermediate (transition region) state between
the localized and collective electron limits reminds me of an idea
recently put forward by Frohlich fin Ferroelectricity, E. F. Weller,
Ed. (Elsevier Publ. Co., Amsterdam, 1967), pp. 9-15] that the
onset of the metallic phase might be preceded by a ferroelectric
or antiferroelectric phase. The electrons which, for large inter-
center spacing g, are localized can carry out collective longitudinal
and transverse vibrations with frequencies 8'z and 8"z, respec-
tively; with decreasing a, however, overlap increases, the Coulomb
attraction of the localized electrons to their centers becomes
screened, and eventually the localization can no longer be main-
tained, i.e., 8'~0 as e-+eo, say. This does not necessarily mean,
however, that for a &a& the system is metallic, i.e., that the band
model is now valid; such validity requires that the short-range
interaction between electrons (left over after the long-range part
has been treated in terms of a plasma —as can always be done)
be negligible in comparison with the bandwidth; it might mell
be that this requires a much higher density u&, where a&&ao.
Now the vanishing of Wr (as a-+g& from above) implies a large
increase in the static dielectric constant, such as is typical of the
onset of the ferro/antiferro/electric state; there would then be
three phases: the insulating phase (u&uo), the ferroelectric phase
(or&a&ay), and the metallic phase (a&a'). It is of interest in this
connection to point out that Umeda et al. [J. Phys. Soc. Japan
21, 1461 (1966)] have observed a new phase (the T phase) in
VO2 in a narrow temperature range between the usual semi-
conductive and metallic phases, which as far as I know has not
yet been investigated for ferroelectricity.

J. B. GooDENQUGH: If I may continue, I would like to mention
some experiments. However, first I would like to distinguish the
type of lattice instability that occurs in a collective-electron
region (b;;&b,), the type of instability that Dr. Adler talked
about yesterday where changes in the lattice periodicity stabilize
the electrons, from the type of instability that occurs with localized
electrons. This latter type of instabiTity is illustrated by Jahn-
Teller distortions or by spin-orbit coupling distortions below a
magnetic-ordering temperature where the orbits are aligned
by a collinear alignment of the spins. J. M. Longo, J. A. Kafalas,
and myself have examined several oxides with the Perovskite
structure. BrieQy, let me mention a single series. In each ABO~
compound of this series, the transition-metal B atom has two
outer d' electrons, so we are dealing with the same d-like band
in all cases. These compounds, together with some physical
properties, are listed in the table in the order of decreasing b;;:

Physical properties of Perovskites with d~ configuration at the B cations.

Compound T"('K) dp/dP'
Symmetry

300'K Remarks

8aMoOg

SrMoO~

CaMo03

SrCr03

CaCrOg

PbCr03

LaUO3

Pauli'

Pauli'

Pauli"

Pauli'

90

240

f37

&0

&0

&0

&0

&0

&0

&0

Cubic

Cubic

Ortho.

Cubic

Ortho. dT~/dP= —0.23'K/kbar

Cubic Collinear-type-G order T& Tg

(Cubic) Tet. (c/a&1) ~~Cubic at T»

YVOS ii0 &0 Ortho. DTA anomaly at X&=73 K

' Pauli=temperature-independent y~ and no spontaneous magnetic order.
b p =electrical resistivity: Metallic {d

p/fdic

&0) vs semiconducting (dp/d Z" &0).
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In the Perovskite only 180 cation-anion-cation interactions
are important, and b;~~X ', where X is the covalent mixing
parameter. Clearly 'A is larger for 4+ than for 3+ ions, for 4d
orbitals than for 3d orbitals. In addition, ) is reduced by covalent
A-0 bonding, which increases in the order Ba, Sr, Ca, Pb. All
the molybdates (BaMoOs and SrMoOs first examined by Brixner)
are metallic and Pauli paramagnetic. So also is SrCr03, which
was Grst investigated by Chamberlain of Du Pont. This indicates
that these materials all correspond to b;;)b . All the rest are
antiferromagnetic semiconductors corresponding to b;;&b . In
LaVOg we Gnd that below the Noel temperature there is a spon-
taneous distortion of the crystal from cubic to tetragonal sym-
metry, characteristic of a spin-orbit coupling distortion where the
electrons are localized (b;;(b,). PbCrOs, on the other hand,
remains cubic below TN. This has been investigated by Roth
of G.E. with neutron-di6raction data, he found collinear spins,
but no distortion of the crystal from cubic symmetry down to
the lowest temperatures. Therefore with spontaneous distortion
as a criterion for a localized electron regime versus a collective-
electron regime, we place the critical transfer integral b, between
LaVO3 and PbCrOg. Now, if we look at the Noel temperatures,
we Gnd a maximum in Z'~ about where we have placed the
critical distance b„which corresponds to the general prediction
of the Ggure:

LOCALI ZED )
ELECTRONS

SPON
MAG

COLLECTIVE
ELECTRONS

LI
NETISIVI

DUCTING

'c bm

TRANSFER ENERGY b

Because the Perovskite structure is not indicative to cation-cluster
formation, we are not plagued with narrow-band instabHity of the
type found in VO2. As a result it is possible to obtain this good
indication of a transition region b, &b;;&5 . Certainly the d-like
wave functions in PbCrO& are quite different from those in
LaVOg insofar as the structural-instability criterion is concerned.
However, these data also indicate that the transitional region is
narrow, so that we should not be surprised to Gnd spontaneous
band magnetism a relatively rare phenomenon in the periodic
table.

G. HozwITz (Yeshiva University): I think it is rather important
to clarify the relations within the model. I think that one has to
realize the following: There is a possibility of metal-insulator
transitions being associated with a magnetic state as well as
nonmagnetic and these would, of course, imply different condi-
tions. There might be a range of values in which this state would
be antiferromagnetic and another range where not. Similarly,
there is a possibility of the band-type antiferromagnet as an
alternative to this localized kind of antiferromagnet and here
again the question as to which states dominate or to whether
there is some kind of intermediate region is another kind of
problem which hasn't been explored. We' ll have to look at these

alternative kinds of solutions as a function of the ratio of the
parameters and then determine which is the most stable state.
And then one could get a real phase diagram of the various
regions in a meaningful way in terms of the model.

G. KEMENv: Well, I agree with this, except for possibly one
point, which is this: I don't know whether in this model we
could get something like band-type antiferromagnetism and
localized-type antiferromagnetism. I don't see that one could
reasonably make such a distinction because a solution of the
problem would simply have to be that there is some up-spin
sublattice and down-spin sublattice. I mean sublattices for just
some preferential occupations. This has to build up somehow in
terms of Bloch waves and I don't think that such a distinction
can be made.

H. BRoors (Harvard University): Can I comment on that?
I think what you said is exactly right. As a matter of fact, if the
antiferromagnetic state in the band approximation is described
as a full band, as it will be, the localized model by the usual
Wannier transformation is entirely equivalent to a band model,
so I think the distinction is not a meaningful one.

G. HORwnz: I do feel there is a distinction. Although in the
one-electron description of the ordered state a full antiferro-
magnetic band is equivalent to the usual Wannier states, the
correlations bring about a distinction. As Grst suggested by Mott,
a criterion would be whether or not the Noel temperature is
associated with the metal —insulator transition. If there is an
antiferromagnetic transition when you go from insulator to
metal, then either description will do, but if the Noel temperature
is lower than the metal-insulator transition temperature, then
there is, effectively, a distinction.

G. KEMENv: I think the point is that if we look at this as a
function of temperature, we may come to the following con-
clusions, although you cannot demonstrate this mathematically:
We start out with a system in which there is long-range order
and therefore there is antiferromagnetism, but if we look at the
short-range order, then we Gnd that an electron and a hole,
which are on the same atom, cannot separate from each other
too far. So the long-range order is the magnetic order, the short-
range order is, if you wish, a Mott-type order. But if you raise
the temperature, it is possible that the long-range order, the
antiferromagnetic order, cannot be maintained and you get a
magnetically disordered system but you stiQ have the bound
pairs. left. So in nickel oxide it is quite possible that this is the
mechanism. The problem here is that one has to consider both
the long- and the short-range order. What I was concerned with
in my talk was only the short-range order and we assumed that
there was no long-range order at all. Now on the other hand,
when I said at the end of the talk, that after we get a solution
for the metallic range we may look at the antiferromagnetic
solution, what I implied there was that you start out assuming
that you have a long-range antiferromagnetic order and then
you put in the short-range correlations and then you would
have both aspects of it. But that's not very easy.

T. AzAr (Argonne National Lab.): After the intermission, I
will try to explain how I can get a metallic antiferromagnet from
an insulating antiferromagnetic state by compressing the lattice,
in other words, by decreasing the lattice constant.


