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An indirect band-gap semiconductor may be converted to a semimetal, or vice versa, by application of pressure. At
lovr temperature, an excitonic phase or some other anomaly must occur in the neighborhood of the transition pressure.
We also discuss the direct-band-gap case and the case where a band gap is zero by symmetry, as in gray tin.

I. INTRODUCTION

According to the one-electron picture of solids, a
perfect crystal with an even number of electrons per
unit cell is classified as either an insulator or a metal
depending on its electronic band structure. If the mini-
mum energy of the conduction band lies above the
maximum of the valence band by a finite energy gap
Ez&0, then the crystal is called an insulator (or semi-
conductor if EG is small), At absolute zero temperature,
the valence band of a semiconductor is ulled and the
conduction band empty; there are no free carriers and
the dc conductivity is zero. If there is an overlap
between the valence and the conduction band (Eg(0),
then the crystal is considered a metal or a semimetal.
The ground state of the crystal will have a certain
number of electrons in the conduction band and an
equal number of holes in the valence band. At O'K
the material will have a nonzero conductivity whose
magnitude will be inversely proportional to the den-
sity of scattering centers in the crystal, a density which
we assume to be very small.

At Gnite temperatures both semiconductor and semi-
metal mill have free carriers, and will have 6nite con-
ductivities proportional to the number of carriers and
inversely proportional to the scattering rates due to
impurities and/or phonons.

The energy gap Ez, in the simple one-electron model,
will be a function of external parameters such as the
lattice constants, and may be made to vary under
applied pressure or uniaxial strain. (The gap will also
depend somewhat on the temperature because of re-
normalizations in the one-electron potential due to
changes in the occupation numbers of the states. ) We
may easily conceive of a case where E& could be varied
through zero under pressure. The phase diagram for
such a model is indicated in Fig. i. The dotted curve
is the locus of the points where the temperature re-
normalized gap Ea(T) is equal to zero; it divides the
nominally semiconducting region (region 1) from the

nominally semimetallic region (region 2). Of course,
there are no discontinuities in the electrical conductiv-
ity or any other physical properties along the curve
E0(T) =0. There is only a singular point (Eg 0, ——
T=0) where there is a discontinuity in the behavior of
the conductivity.

When electron —electron interactions are taken into
account, the simple phase diagram of Fig. I will no
longer be valid for a semimetal-semiconductor transi-
tion in a pure material. At high temperatures, it should
still be possible to go continuously from region 1 to
region 2. However, we believe that there exists a tem-
perature T~&0 below which one can go from region 1
to region 2 only by passing through one or more phase
transitions. Thus there must be some anomalous re-
gions in the phase diagram at low temperatures, in the
vicinity of the point E&=0. It is the purpose of this
paper to explain briefly why we believe that there must
be an anomaly in this region, and to speculate on some
possible kinds of anomalies that might occur. We also
brieQy discuss the prospects for experimental observa-
tion of these anomalies. We restrict ourselves to ma-
terials having wide valence and conduction bands
compared to the strength of the electron —electron
interaction.

G. ARGUMENTS FOR THE EXISTENCE
OF AN ANOMALY

The erst argument that there must be an anomaly
at the semimetal-semiconductor transition, was ad-
vanced by Mott. ' He considered a semimetal with a
very small number of electrons and holes and noticed
the following: When the number of carriers is suK-
ciently small, the Coulomb interaction between elec-
trons and holes is only weakly screened. An unscreened
Coulomb interaction will always lead to a bound state
between an electron and a hole. Therefore, argued
Mott, when the density of carriers was low enough,

' N. F. Mott, Phil. Mag. 6, 287 (1961).
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FIG. i. Phase diagram for the semimetal —semiconductor
transition in the simple one-electron@&and picture. The abscissa
of this plot measures the density of the crystal and is labeled by
EG(0'K), the value of the indirect energy gap at O'K for a crystal
of the given density. Region 1 is nominally semiconducting, while
region 2 is norminally semimetallic. The dividing line between the
two regions, Eg(T) =0, does not represent a phase transition at
finite temperatures; the only singular point is E~= T=O.

the electrons and holes would spontaneously form non-
conducting bound states, and the semimetal would
become an insulator. Of course, such a transition could
only occur at temperatures smaller than the electron—
hole binding energy.

A second argument was advanced by Knox, ' who
considered the case of an indirect-band-gap semiconduc-
tor. The minimum energy necessary to create an exciton
in a semiconductor is equal to Eg—E~, where E~, the
binding energy of an exciton, is determined by the
eGective masses of the electron and hole, and by the
dielectric constant of the material:

E&= li/mes (rydbergs),

where p, is the reduced effective mass of the electron
and hole bands, e is the dielectric constant, and ns is
the bare mass of an electron. The dielectric constants
and eGective masses may depend sensitively on the
direct energy gap, but not on the indirect energy gap.
Thus we may make Ez arbitrarily small while E& re-
mains finite. When Eg becomes less than Eg, the energy
necessary to create an exciton becomes negative, and
the ordinary ground state of the crystal becomes un-
stable with respect to the spontaneous formation of
excitons.

Before we turn to speculations on the kinds of anom-
alies which may arise, let us note that a crucial point
in the above arguments has been that the dielectric
constant remains finite in the normal insulating ground
state as the semimetal transition is approached. Cer-
tainly this is the case in the Hartree-Fock approxima-
tion for a pure indirect-gap semiconductor with vanish-
ing energy gap, and no arguments have been advanced
that suggest this should not be the case when terms
beyond the Hartree —Pock are included. Nevertheless,
a conclusion of this nature should always be regarded
with some caution.

In contrast to the case of a pure semiconductor,
Mott and Davis' have argued that the dielectric con-
stant does diverge in certain dhsordered insulators when

~ R. S. Knox, Solid State Phys, Suppl. 5, 100 (2963).
s N. F. Mott and E. A. Davis, Phil. Mag. 17, 1269 (1968).

their parameters are varied towards the critical values
for nonzero electrical conductivity at O'K. In particu-
lar, Mott and Davis considered the conductivity of a
doped semiconductor (with fixed energy gap) as a
function of impurity concentration, and found a phase
diagram in which there is a singularity only at O'K,
as is the case in Fig. 1. Below a certain critical doping,
the semiconductor has zero conductivity at 0 K. Above
the critical impurity concentration, the material has
finite electrical conductivity at 0 K. At finite tempera-
tures, however, there is no singularity in the electrical
conductivity or in any other physical property as a
function of impurity concentration.

We believe that a semimetal —semiconductor transi-
tion with no anomaly at 6nite temperatures can also
occur when an indirect energy gap in an impure semi-
conductor is varied through zero, if the scattering is
suKciently great. In this case the simple phase dia-
gram of Fig. 1 is again applicable, except that the
energy gap Eo can no longer be precisely defined.
Very roughly, the criterion for suppression of the finite
temperature phase transitions should be 5/r) EIi, where
r is the scattering lifetime. 4' In addition, if the semi-
conductor is suKciently doped with charged impurities
so that it is degenerate and has 6nite conductivity at
O'K, in the region Eg&)0, then there need be no anomaly
in the dc conductivity even at 0 K, when the energy
gap varies from positive to negative. '

III. SIMPLE FIRST-ORDER TRANSITION

Let us return, now, to the case of the pure crystal,
and consider some of the anomalies that might occur
at the semimetal —semiconductor transition. Conceptu-
ally, the simplest possible anomaly would be to have
a direct Grst-order transition, at low temperatures, be-
tween the semiconductor, region 1, and the semimetal,
region 2. This is the kind of transition which is suggested
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FIG. 2. Phase diagram with direct erst-order transition, at low
temperatures, from semimetal to semiconductor. Region 1 is the
undistorted semiconductor, region 2 the undistorted semimetal.
The shaded region is an area in which no stable phase exists. The
semimetal-semiconductor transition below T is accompanied
by a discrete change in lattice parameter and a jump from one side
of the shaded region to the other.

B.I. Halperin and T. M. Rice ig. Solid Stute Physics, F. Seitz,
D. Turnbull, and H. Ehrenreich, Eds. (Academic Press Inc.,
New York, 1968), Vol. 21.

s J. Zittartz, Phys. Rev. 164, 575 (1967).
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by the original article of Mott. ' The phase diagram in
this situation is indicated in Fig. 2. The shaded region
represents a range of temperature and lattice constant
for which no stable state exists. A crystal subjected to
varying applied pressure, at a constant temperature
below T~, would jump directly from the left-hand
side of the shaded region to the right-hand side at the
transition pressure. Above T~, the crystal would pass
directly from the semiconductor to the semimetal with-
out any kind of phase transition.

The phase diagram of Fig. 2 would be the simplest
way to avoid the excitonic instability of Knox and
Mott, but it is not the kind of anomaly which is most
naturally suggested by these instabilities. Furthermore,
although a "large" first-order transition of this nature
is very dificult to rule out in general, there are cer-
tainly no calculations which suggest that this kind of
transition must occur at the semimetal —semiconductor
boundary.

IV. THE EXCITONIC STATE

A. Description

The type of anomaly which seems most likely to
occur is that there is a new distorted phase of the
crystal, known as the "excitonic state, " which occurs
in a region of the temperature —energy gap plane sur-
rounding the transition point (Eg=o, T=O). The the-
ory of the excitonic phase, in the Hartree —Fock ap-
proximation, was first developed by des Cloizeaux' and
by Keldysh and Kopaev. ~ Further details of the state
have been worked out by Kozlov and Maximov, by
Baklanov and Chaplik, s by Kopaev, 'o by Jerome, Rice,
and Kohn" " by Zittartz "~" and by the present
authors. ' Physically, the excitonic phase is character-
ized either by an antiferromagnetic order or by a lattice
distortion and charge-density oscillation, either case
resulting in a change in the crystal periodicity. ' (We
restrict our discussion, for the present to the case of
an indirect-band-gap material, reserving the direct-
band-gap case until the last section. )

Theoretical study of the excitonic state is simplified

' J. des Cloizeanx, J. Phys. Chem. Solids 26, 259 (1965) .
'L. V. Keldysh and Yu. V. Kopaev, Fiz. Tverd. Tela 6, 2791

(1964) LEnglish transL: Soviet Phys. —Solid State 6, 2219
(1965)g.

8 A. N. Kozlov and L. A. Maksimov, Zh. Eksperim. i Teor. Fiz,
48, 1184 (1965) /English transL: Soviet Phys. —JETP 21, 790
(1965)].' E. V. Baklanov and A. V. Chaplik, Fiz. Tverd: Tela '7, 2768
(1965) LEnglish transl. : Soviet Phys. —Solid State '7, 2240
(1966)3.

'0Yn. V. Kopaev, Fiz. Tverd. Tela 8, 223 (1966) [English
transl. : Soviet Phys. —Solid State 8, 175 (1966)g."D. Jerome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462
(&967) .

'~W. Kohn, in Physics of SoI2ds at High Pressures, C. T.
Tomizuka and R. M. Emrick, Eds. (Academic Press Inc., New
York, 1965).

"W. Kohn, Phys. Rev. Letters 19, 439 (1967)."J.Zittartz, Phys. Rev. 162, 752 (1967)."J.Zittartz, Phys. Rev. 165, 605 (1968)."J.Zittartz, Phys. Rev. 165, 612 (1968).

by the fact that the interband dielectric constants in
semiconductors and semimetals, although finite, are
generally large compared to 1.This means that exciton-
binding energies are much smaller than typical atomic
energies and the exciton radii are large compared to
the atomic spacings. It is then an excellent first ap-
proximation to treat the electrons and holes in an
eGective mass approximation, and to consider only the
long range attractive part of the Coulomb interaction
between electrons and holes. Let us simplify our prob-
lem still further by considering a two-band situation
with a single nondegenerate conduction-band minimum
and a single nondegenerate valence maximum. From
time reversal invariance arguments, it follows that the
band extrema must either lie at the zone center (k=0)
or at a point on the zone boundary (k=w) such that
w divers from —w by a reciprocal lattice vector G; i.e.,
w=-, G. %e assume that the valence maximum is at
k=0 and that the conduction minimum is at k= w.

Let us focus our attention on the crystal at 0 K, in
the semiconducting region with Eg close to E~. For
Eg&Eg, no excitons are present in the ground state of
the crystal, and the nondistorted state is stable. For
Eg&Eg, excitons are present. In this region, treating
the crystal in a Hartree —Fock approximation is roughly
equivalent to treating the excitons as a weakly repulsive
Bose gas."Kxcitons form until the repulsive potential
cancels the negative energy (Eo E&) associated—with
the creation of a single exciton. Furthermore, and most
important, the excitons present will form a Bose con-
densate in the exciton state of minimum energy, namely
the state with wave vector w. I.et A„t be the creation
operator for an exciton with wave vector w. This opera-
tor can be written as

A„t= Q f,.(k)bg"+,.ug. ,

where f.;(k) is an "envelope" wavefunction, peaked
near k=0, and where a~,,t and b~, t are the creation
operators for an electron of wave vector g and spin r
in the valence and. conduction bands, respectively. A
Bose condensate of excitons means that (A„t)&0, and
hence we must also have

for a suitable choice of o and o '. A quantity such as (3)
must vanish in a periodic lattice unless w is the multiple
of a reciprocal lattice vector of the lattice. The excitonic
state must therefore have a period in real space which
is just double the period of the undistorted lattice.

In the Hartree —Pock picture, the one-electron states
of the new distorted crystal are made up of linear
combinations of states of wave vectors k and k+w
from the valence and conduction bands, respectively,
of the old nondistorted crystal. %hen the self-consistent

"Cf. the discussion of L. V. Keldysh and A. N. Kozlov, Zh.
Eksperim. i Teor. Fiz. Pisma 5, 238 (1967) LEnglish transl. :
JETP Letters 5, 190 (1967)g.
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fore a minimum value Eg &0 of the gap Eg below
which the screened Coulomb interaction is too weak
to support an excitonic distorted state, even at O'K. '
Quantitative calculations of the effects of anisotropy
on the value of Ez have been undertaken by Zittartz. '
For moderate anisotropy, the magnitude of Ez is
comparable to the value of E~.

B. Nature of the Distortion

O'K
Ec

EG

Pro. 3. Phase diagram for semimetal-to-semiconductor transi-
tion assuming second-order phase transitions to the excitonic
phase. The abscissa Eg is a function of crystal density, and is
the value of the indirect energy gap in the nondistorted ground
state for the given density. The stable phase is nondistorted in
regions 1 and 2, a simple excitonic distorted state in regions 3
and 4, a doubly distorted state in regions 5 and 6, etc. Regions
1, 3, and 5 are nominally semimetallic, regions 2, 4, 6 semiconduct-
ing. The dividing line (dotted curve) is the place where the
renormalized energy gap Eo(T) goes to zero, and does not
represent any singularities in the physical properties of the
system.

Hartree-Pock potential is calculated for the distorted
state, the exchange potential has terms with periodicity
2w/to; in order for the distorted state to have lower
energy than the nondistorted state, the exchange po-
tential must be strong enough to produce the required
admixture of valence and conduction band states.

The interpretation of the Hartree —Fock excitonic
state in terms of a dilute Bose exciton gas is only
valid for Eg close to Es. As Eg decreases through zero,
the average distance between electrons or holes be-
comes smaller than the radius of the exciton. The
Coulomb interaction becomes more and more strongly
screened as Eg becomes more and more negative, and

significant mixing of valence and conduction band
states becomes restricted to states near the Fermi sur-
face of the nondistorted semimetal. In this region the
Hartree —Fock theory of the excitonic state is mathe-
rnatically similar to the BCS theory of superconductiv-
ity. ' If the electron and hole Fermi surfaces are identical
in size and shape, as occurs in a simple two-band model
with isotropic effective masses, then the nondistorted
semimetal ground state is unstable for arbitrarily weak
electron —hole attraction, just as the normal Fermi sur-
face of a metal is unstable to the formation of Cooper
pairs, if there is an arbitrarily weak attraction between
spin-up and spin-down electrons.

Because of the relative simplicity of the calculations,
many studies of the excitonic state have been carried
out in the limit of the isotropic two-band semimetal
with weak eGective electron —hole interaction. The same
model has also been used by Fedders and Martin'8 in
their study of the antiferromagnetism of chromium.

For a real semimetal, the electron and hole Fermi
surfaces are never identical in shape. There is there-

"P.A. Fedders and P C. Martin, Ph. ys. Rev. 143, 245 (1966).

The nature of the distortion in the excitonic state
depends on whether the expectation value (A„t) is
real or imaginary, and also on whether the macro-
scopically occupied exciton state is a singlet or a triplet.
In a model without spin —orbit coupling, the four possi-
bilities are:

(1) Singlet with real phase —characterized by a
charge-density oscillation.

(2) Triplet with real phas- characterized by an
antiferromagnetic spin density oscillation. "

(3) Singlet with imaginary phase characterized by
transverse currents which change sign from one unit
cell to the next (i.e., orbital antiferromagnetism).

(4) Triplet with imaginary phase —characterized by
transverse spin currents. I In the presence of spin —orbit
coupling, states (2) and (3) would be mixed, as would
be states (1) and (4).j
The energies of these four states are degenerate if one
includes in the electron —hole interaction only the domi-
nant term, the long-range Coulomb attraction. The
energies are split, however, by terms in the Hamilton. -
ian representing interband scattering when the electron
and hole are on the same lattice site. The energy split-
tings are proportional to the ratio of the unit cell
volume to the volume of an exciton: these splittings
are therefore very small for loosely bound excitons.
The magnitude of the spin- or charge-density wave or
current is also very small.

By treating the splitting terms as a small perturba-
tion in the Hartree —Fock theory, we have found that
the lowest energy state, in the simplest models, is
always the spin-density wave state (2).4 If coupling
to the phonons is included in the model, however, and
if the coupling to the phonons is suQiciently strong,
then the charge-density oscillation can have a lower
energy. The charge-density oscillation is, of course,
coupled to a lattice distortion which doubles the lattice
period, whereas in the antiferromagnetic state the lat-

"The idea that, under some circumstances, the energy of the
Hartree-Fock ground state of a crystal could be lowered by the
introduction of an antiferromagnetic spin oscillation was sug-
gested by J. C. Slater, Phys. Rev. 82, 538 (1951).Later, A. W.
Overhauser )Phys. Rev. Letters 4, 462 (1960)g proposed that the
nondistorted ground state of a metal will always be unstable in
favor of a state with a spin-density wave. Although it is in fact
true in the strict Hartree-Fock approximation that the normal
metallic ground state always has this instability, this is not true
when the exchange interaction is screened by the dielectric func-
tion of the electron gas. It is believed by most authors that the
nondistorted state will be unstable only for special kinds of band
structures I,'see, for example, Ref. 18).
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tice period remains the same and only the electronic
period is doubled. In models with more than one
valence-maximum and/or more than one conduction-
minimum, the number of possible states is much greater
than in the two-band model. Some relatively simple
cases have been discussed in Ref. 4. In the absence of
strong phonon coupling, the lowest excitonic states
again seem to involve spin-density waves. The period
of the oscillations is roughly 2x divided by the distance
in k space between some valence maximum and some
conduction maximum, and is no longer simply twice
the period of the undistorted 1attice.

The two possibilities of a lattice distortion or of
antiferromagnetism have also been proposed in con-
nection with the metal insulator transitions in the
vanadium oxides 2'" There, however, the electron —hole
interaction is strong and any excitons are tightly bound.
(In fact, a metal —insulator transition in a model with
an odd number of electrons per unit cell can only occur
if the electron —electron interaction is large compared
to the width of the electron energy band. ) For a
tightly bound exciton, the singlet —triplet splitting will
not be small but may be comparable to the exciton
binding energy itself. The splitting between a spin-
density wave state and a lattice distortion may also
be relatively large in the mode1 of a weakly interacting
isotropic two-band semiconductor. "

Eg &Eg&Eg+=Egg. (4)

For any density in this range there is a 6nite tempera-
ture T„above which the nondistorted state again be-
comes stable. Calculations of T, at various points in
the range (4) have been attempted by a number of
authors'"'4 In all these calculations, the transition
was found to be second order.

The maximum value of T, shouM occur for Eg 0,
or perhaps better, when Eg(T,)~0. Let us write the
value of T, at Eg=O in the form

keg [ Jrg(r~)~ CZny

where C is a constant which depends on the dimension-
less parameters of the model, i.e., on the ratio of elec-
tron to hole eGective masses, on the degree of anisot-
ropy, and on the number of electron and hole pockets
in the Brillouin zone. Zittartz'4 has calculated C by
means of an approximate evaluation of the Hartree-
Fock equations for a number of two-band cases. For

~ D. Adler and H. Brooks, Phys. Rev. 155, 826 (1967)."D. Adler in SoM State PIIys~cs, F. Seitz, D. Turnbull, and
H. Ehrenreich, Eds. (Academic Press Inc., ¹wYork, 1968),
Vol. 21.

ssYu. V. Kopaev, Fis. Tverd. Tele 8, 2633 (1966) /English
transl. :Soviet Phys.—Solid State 8, 2106 (1967)g.

C. Phase Diagram

At O'K, the excitonic state has lower energy than
the nondistorted state for a range of densities given by

isotropic effective masses, with nz, =m~, he 6nds

C 1.4. (6)
Zittartz has neglected, however, the change in the effec-
tive electron —hole interaction at finite temperatures
which arises from free-.carrier screening. When screen-
ing is taken into account, there will probably be a
significant reduction in the value of T,.

When m~ is much greater than m„an approximate
evaluation of the (unscreened) Hartree-Fock equations
gives

C -', flog (ms/m, ) j-'. (7)
On the other hand, if screening is included in the
Hartree —Pock approximation, we Gnd roughly

C —,'/log (ms/m. )j-', (g)

in the limit of ns&)m, . Reasoning beyond the Hartree-
Fock type of approximation leads to still a diGerent
answer. We may estimate the transition temperature
to the excitonic phase by calculating the Bose conden-
sation temperature for a gas of bosons with the transla-
tional excitonic mass, M= m, +m&, at the density equal
to the density of excitons in the excitonic phase at
Eg=O, a density roughly proportional to the inverse
cube of the exciton radius. Since this last quantity
depends on the reduced mass rather than the total
mass, we 6nd

C ~ p/M m./ms. (9)
For T& T, but much less than E~, the electrons and
holes may be strongly correlated, leading to a signi6-
cant reduction in the eGective number of free carriers,
even though no actual transition has taken place. Such
eGects are, of course, outside the Hartree —Pock ap-
proximation.

As we shall discuss in Sec. 5, the excitoruc phase is
probably replaced by another kind of transition if the
mass ratio is too big (my, /m, &100). Thus, the diSer-
ences between Eqs. (7), (8), and (9) cannot be very
great in practice.

We have already indicated that impurity scattering
tends to suppress the transition to the excitonic phase.
Zittartz has calculated the reduction in transition tem-
peratures and increase in Eg when a Gnite concentra-
tion of impurities is added to an isotropic two-band
semimetal.

The phase diagram for the pure material which has
emerged from the various studies of the excitonic phase,
using Hartree-Pock and related approximations, is
given in Fig. 3.The abcissa Eg is here a measure of the
atomic volume of the sample: it is the value of the
energy gap at O'K in a hypothetical undistorted crystal
of the given density. ~ In regions 1 and 2 the undis-

'~ Zittartz obtains the result C=0.7 in the limit m&&m, . He
has neglected, however, the temperature dependence of the Fermi
level, which occurs for nz, /mI, .

~4%e use this convention for Eg in the remainder of this paper.
The renormalized gap in'the'„actual stable phase at a given densit
we denote by Ez(T). The value Ez will coincide with Bg(0'K
if and only if the stable state is nondistorted at the given density.
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FIG. 4. Hypothetical phase diagram for a semimetal —semi-
conductor transition with an excitonic phase, under the assump-
tion of a direct 6rst-order phase transition from a nondistorted
semimetal (region 2) to an excitonic semiconductor {region 3).
Region 1 is the nondistorted semiconductor, while the shaded
region is a region with no stable lattice.

torted crystal is stable. The crystal is characterized
as a semiconductor in region 1 and a semimetal in
region 2. The solid curve marks the location of a
second-order transition to the excitonic state with a
new crystal periodicity in regions 3 and 4. The new
band structure, in the excitonic state can again be
either "semiconducting" or "semimetallic" depending
on whether its new, renormalized energy gap is positive
or negative. The dotted curve in I ig. 3 is the locus of
points where the renormalized energy gap Eg(T) is
equal to zero, and it thus divides the nominally semi-
conducting region from the nominally semimetallic
region. Of course, no properties of the system are
singular along this line at finite temperatures.

The dielectric constant in the excitonic semiconduc-
tor, region 3, will generally be larger than the dielectric
constant in region I, but it will remain finite as the
renormalized energy gap approaches zero. Thus there
will be a new cxciton binding energy EI3 in the dis-
torted phase which is smaller than E~, but greater
than zero. For temperatures much below E~', we can-
not pass directly from region 3 to region 4, but rather
wc must pass thlough a ncw, doubly distorted phase
(region 5 and 6), with a lattice period different from
those in regions 3 and 4 and regions 1 and 2. In fact,
unless some place along the line there is a first-order
transition, directly from a semiconducting state to a
semimetal, we must find an infinite nested series of
second-order transitions at the semimetal-semiconduc-
tor boundary in a perfect, pure crystal. ""We cannot
rule out the possibility, however, that there may always
be a first-order semimetal-to-semiconductor transition
at some point in this nested sequence of transitions.
[A possible 6rst-order transition, which might occur
in a crystal with moderate anisotropy, which would be

~~In a real crystal, of course, there would not be an in6nite
series of transitions, because&&the transitions would be suppressed
as soon as the exciton-binding energy fell below lt/r, where r is
the scattering lifetime due to impurities.

consistent with the occurrence of one excitonic state
state (region 3), but not with an infinite sequence of
nested transitiens, is shown in Fig. 4.j Within the
Hartree —Fock approximation it is relatively easy to
find second-order transitions: one need only show that
the nondistorted state becomes unstable with respect
to an infinitesimal distortion of a certain kind. To show
that such a transition is not actually B.rst-order is much
more dificult, however, since one must calculate the
free-energy of all possible states with finite distortions.
The situation is particularly complicated on the semi-
metal side, if one does not restrict oneself to an iso-
tropic model, since one must then consider all possible
distortions of the Fermi surface. In looking for a first-
order transition it is important to include in the Hamil-
tonian not only the long-range electron —hole attraction,
but also the terms involving the long-range electron—
electron and hole —hole interactions. "[The latter terms
are also the terms responsible for the finite-temperature
renormalization of the one-electron energies, and of the
energy gap Eg(T) in the normal state due to changes
in the occupation numbers of the states. ) The present
authors4 have studied the transition at Eg+ on the
semiconducting end, and have calculated the energy
of the system up to terms quartic in the order param-
eter. The sign of the quartic term was found to be
positive, as is necessary for a second-order transition,
but the coefficient of the quartic term was reduced by
a factor of almost 5 when the electron —electron and
hole —hole terms were included, as compared with the
value when these terms were left out.

Another possible source of a first-order transition is
the fact that in the excitonic state, screening of the
Coulomb interaction is weaker, and the CGective elec-
tron —hole interaction is stronger than in the nondis-
torted state. Kozlov and Maximovs and Baklanov and
Chaplik' have considered this interaction renormaliza-
tion for a two-band isotropic model in the semimetal
limit (Eg«0), and have concluded that the renormal-
ization is too small to aGect the nature of the transition.
Similarly, there is very little change in the effective
electron —hole interaction at the transition near Eg+,
on the semiconductor side. The possible effects of the
change in the interaction on the transition for other
cases does not seem to have been investigated. "

Even if Hartree —Pock calculations did always lead
to a second-order transition, it is not clear that these
calculations would be reliable. We can see, for example,
that the Hartree —Fock approximation does not cor-
rectly describe the physical situation in the immediate

2' Even if these terms are omitted, however, it is still possible
to obtain a 6rst-order transition for certain band structures
Lcf. J. C. Knnball and L. M. Falicov, Phys. Rev. Letters 20, 1164
(1968)g.

~~Adler and Brooks (Ref. 1'7) found that the change in the
screening of the electron-electron interaction was important in
their narrow-band model of the"metal insulator transition in the
vanadium oxides, and could lead to a 6rst-order transition in
that model.
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vicinity of E&+. Whereas the Hartree —Pock approxima-
tion treats the excitons as a dilute Bose gas with
repulsive interactions, we know that in fact the inter-
action between two excitons of proper spin configura-
tion is sufficiently attractive to lead to the formation
of a bound "exciton molecule. '"' At the very least, the
value of E&+ will be modified by this eBect and will no
longer be given by simple extrapolation of the exciton
binding energy E& appropriate to the semiconductor
for Egg)Eq+. ' The exciton —exciton attraction might
also lead, however, to a first-order transition of the
gas liquid type in which there is a discrete jump in the
exciton density. '

Further evidence which raises the possibility of a
first-order transition in the excitonic state is the exist-
ence of a first-order transition at the Neel temperature
of chromium. " For models with complicated band
structures, there are also opportunities for first-order
transitions within the excitonic phase, associated with
changes in the period or polarization of the spin density
wave. '2

D. Detecting the Excitonic State

The best method of detecting the excitonic state, or
any other anomalous state at the semimetal —semi-
conductor transition, is by monitoring the electrical
resistivity as a function of pressure and temperature.
Jerome, Rice, and Kohn" have calculated the electrical
conductivity 0. of the excitonic state for an isotropic
two-band model, in the limit of a very small density
of scattering centers. They find that the electrical con-
ductivity is continuous at the (second-order) transition
between the distorted and nondistorted states, but that
the temperature derivative do/dT is infinite . in the
excitonic phase just below the transition. Zittartz"
has calculated the electrical conductivity for a finite
density of impurities, and finds that there is only a
finite discontinuity in da/dT at the transition. Of course,
if there is actually a first-order transition of some kind,
there will be a finite jurnp in the conductivity at the
transition. In any case, there should be an observable
resistance anomaly at the transition, with the resistance
increasing as one enters the excitonic phase. An anomaly
of this type has been seen in the conductivity of chro-
mium at its Neel point. "
"J.R. Haynes, Phys. Rev. Letters 17, 860 (1966).
"Actually, it was shown in Ref. 4 that even in the Hartree-

Fock approximation, there will be a deviation of Eg+ from the
extrapolated value of Eg, when the singlet —triplet splitting terms,
beyond the dominant term approximation, are taken into account.
That deviation, however, will be proportional to the cube of the
ratio of the lattice constant to the exciton radius, and hence will
be nebligible in the limit of loosely bound excitons.

3 A more detailed discussion of the possible eBects of terms
beyond the Hartree-Fock on our picture of the transition to the
excitonic phase, may be found in Ref. 4.

"A. Arrott, S.A. sterner, and H. Kendrick, Phys. Rev. Letters
14, 1022 (1965).

'~ C. Herring in Mcgnerism, G. Rado and H. Suhl, Eds.
(Academic Press Inc., New York, 1966), Vol. IV.

~ See, for example, D. B.Mohan and T. M. Rice, Phys. Rev.
Letters 19, 846 (1967).

If an anomaly in the resistivity is found consistent
with the phase diagram for the excitonic state, then
one may attempt to verify the existence of a lattice
distortion or spin-density wave by using x-ray and/or
neutron diBraction. If the exciton radius is more than
a few lattice constants, however, the magnitude of the
distortion will be too small to be detected by this
means. A spin-density wave state may be detectable
by its eGect on nuclear magnetic resonance. '4

Despite the formal analogies between the excitonic
state and the theories of superconductivity and of
superQuidity, the excitonic state exhibits no "super"
transport properties. 4' In particular, the thermal con-
ductivity has been calculated by Zittartz, " in a two-
band isotropic model, and has been verified to be quite
finite.

V "CRYSTALLIZED EXCITOMUM"

Regardless of whether the transition to the excitonic
state is Qrst or second order, there are some values of
the model parameters (i.e., of the ratio of electron to
hole mass, number of electron and hole pockets, and
the degree of anisotropy) for which the simple excitonic
phase does not occur at all at the semimetal —semi-
conductor transition.

Consider a two-band model in which the hole mass
is very much heavier than the electron mass, and in
which there are small deviations from isotropy. In this
case, for Eg close to Eq+ the excitons do not form a
Bose Quid, but condense to form a periodic array of
exciton molecules precisely analogous to the array of
protons and electrons in ordinary solid hydrogen.
(When the hole mass is comparable to the electron
mass, such a "solid" array would be unstable because
of zero point motion. ) This state is clearly insulating
at O'K, and is denoted by the symbol A in the phase
diagram, Fig. 5.

If the unperturbed energy gap Eg is decreased fur-
ther, the density of electrons and holes will increase,
and a phase transition will occur to a state where
there is a Wigner crystallization of the holes in a more
or less uniform background of electrons. "This state,
denoted by 8 in Fig. 5, will be conducting, and will
be analogous to the metallic state of hydrogen which
has been predicted to occur at pressures greater than
10' atm. "As E@ decreases still further, the density of
holes will increase until the Wigner array of holes
"melts, " and the crystal becomes a normal semimetal
(region 2) with well-defined Fermi surfaces of elec-
trons and holes. In principle, if the electron and hole

"A spin-density wave commensurate with the lattice will
produce a splitting of the NMR line, while a noncommensurate
spin-density wave will produce a broadening of the line, when a
magnetic Geld is applied parallel to the direction of spin polariza-
tion.I The possibility of such a state was suggested to us by C.
Herring.

3'E. signer and H. J. Huntington, J. Chem. Phys. 3, 764
(1935).
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the transition between states (A) and (1) remains
near Eg= E~.

0

FIG. 5. Hypothetical phase diagram for a semimetal —semi-
conductor transition in which the hole mass is very much greater
than the electron mass (nss/nt, )100). Regions 1 and 2 are the
nondistor ted semiconductor and semimetal. Region A is a distorted
semiconductor characterized by a crystallized array of exciton
molecules. Region B is a distorted semimetal characterized by a
Wigner array of holes in a conducting background of electrons.
The shaded areas are unstable regions of erst-order phase transi-
tions. The nature of the- transition from A to 8 is not known.

band were perfectly isotropic, one could have an exci-
tonic state at very low temperatures on the semimetal
side of region B; even a very slight amount of anisot-
ropy would destroy this state, however.

The transitions between states A and 1, and between
B and 2 are expected to be Grst order, since they are
analogous to a solid —liquid transition. '~ The nature of
the transition between A and B is not known. The new
states A and B are similar to an excitonic state in that
they are characterized by a change in the crystal
periodicity caused by a charge-density oscillation. The
period of this oscillation in states A and B is determined
by the distance between electrons or holes on the
crystallized array, and will be of the order of the Bohr
radius of an exciton. By contrast, the period of oscilla-
tion in the excitonic distorted state will always be of
the order of twice the lattice constant. The two kinds
of states are thus distinguishable theoretically only for
loosely bound excitons.

The states A and B can exist only if the ratio be-
tween the hole and electron masses is greater than
some critical value E,. In order for the state B to
exist, we expect that the screening length of the elec-
tron gas must be greater than the distance between
neighboring holes on the Wigner array, when this latter
distance is at the critical value for melting of the array. "
In this manner we estimate E, 100. For this value of
the mass ratio we Gnd that the transition between
states (B) and (2) occurs at Eg 50K'/s, whereas—

'~An argument that a solid —liquid transition is always erst
order was given by L. D. Landau, Phys. Z. Sowjetunion 11, 545
(1937). This argument depends on the isotropy of the Quid state,
and can be applied to the crystallization of electrons and holes
only if the anisotropy is not too great. The same argument
indicates that if an Overhauser charge density wave could occur
in a free electron gas, it would have to appear as a Grst-order
transition. We are grateful to P. W. Anderson for pointing this
out to us.

~We use the estimate I;=25 for the melting density of a
Wigner lattice, given by H. M. Van Horn, Phys. Rev. ISF, 342
(1967).

VI, CHOICE OF MATERIALS

In order to examine experimentally the possible
anomalies at the semimetal —semiconductor transition,
we must first And a material which undergoes such a
transition under applied pressure or anisotropic strain.
%hen studied at high temperatures or in impure sam-
ples, the material must exhibit a gradual change in
properties from semimetallic to semiconductorlike, or
vice versa, without any polymorphic transition. One
would then hope to purify the sample sufficiently, and
bring it to low enough temperature to observe the
transition to the excitonic phase, or any other anomaly
that may occur.

Jerome, Rice, and Kohn" have suggested two classes
of materials as possible candidates. These are the group
V semimetals (Bi, Sb, As) and the divalent fcc metals
(Ca, Sr, Yb). In the 6rst of these classes only bismuth
has been studied extensively. The resistivity of bismuth
as a function of temperature and pressure has been
studied by Souers and Jura, " Jaggi, es and Balla and
Brandt. "At pressures above 6 kbar, Bi has a negative
temperature coeKcient of resistance, and at a pressure
of 25 kbar, the resistance ratio E4.s K/Rsss'I is 40.
However the appearance of a negative temperature
coefficient of resistance does not necessarily indicate
semiconducting behavior since the temperature varia-
tion in numbers of carriers for semimetals with low
Fermi temperatures can also cause the resistance to
drop as the temperature is raised. ' Balla and Brandt"
have analyzed the residual resistance as a function of
pressure and they find that effective number of carriers
at 4.2'K varies as

ns(p)
~
Eg [3/s —cr(1 p/p )s/2 (6)

where
~

L~'g
~

is the energy overlap and P, the critical
pressure at which Eg(P, ) =0.They find in Bi, P, 24.5
kbar. ~ Recent de Haas —van Alphen studies on Bi, at
pressures up to 15 kbar, ~ give a value for the critical
pressure in good agreement with that found by Balla
and Brandt. No anomalies have been observed in Bi
in the neighborhood of the critical pressure. Jerome,
Rice, and Kphn" have estimated the size of "excitonic
phase" region in Bi and find a maximum transition
temperature, TM 0.05 K. The width in pressure is
very small (~10 s kbar) and the permitted number of
charged impurities is also very small ( 10" cm ').

~9 P. C. Souers and G. Jura, Science 143, 567 (1964).
4 R. Jaggi in Proceedings of the Conference on Senticondgctors,

1964 (Dunod Cie., Paris, 1964).' D. Balla and N. B. Brandt, Zh. Eksperim. i Teor. Fiz. 4'7,
1653 (1964) (English transl. : Soviet Phys. —JETP 20, '$1111
(1965)7.

42The polymorphic transition to the "metal" phase Bi III
occurs at 45 kbar at liquid-helium temperatures.

43 E. S. Itskevich and L. M. Fisher, Zh. Kksperim. i Teor. Fiz.
53, 98 (1967) )English transl. : Soviet Phys. —JETP 26, 66
(1968)g.
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Clearly these values impose conditions that are outside
the range of experimental observation at present.

It is also possible to cause a semimetal to semi-
conductor transition in Bi by adding Sb.44 In view of
the eBects of impurity scattering discussed above, how-
ever, we do not expect to 6nd any anomalies at 6nite
temperature associated with this transition.

The resistances of the fcc alkaline earth metals have
been studied extensively under pressure. The resistance
at room temperature rises continuously with pressure,
in all three cases, until a polymorphic transition occurs
to a bcc phase. In Ca, the pressures required to make
large changes in the resistivity are very large ( 300
kbar), 4s and simultaneous high pressure and. low tem-
perature measurements have not been taken. Mc%han4'
has studied the resistance of Sr as a function of tem-
perature down to 4.2'K at all pressures up to 35 kbar,
where Sr has a polymorphoric transition to the bcc
phase. He 6nds a negative temperature coeScient of
resistance in the vicinity of 32 kbar in some samples,
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'4 D. Shoenberg and M. Z. Uddin, Proc. Roy. Soc. (London)
A156, 687 (1.936);E.S.Itskevich and L. M. Fisher, Zh. Eksperim.
i Teor. Fiz. Pis'ma 6, 748 (1967) I English transl. :JETP Letters
6, 219 {1967)g.

4' H. G. Drickhamer, in Solid State Physics, P. Seitz and D.
Turnbull, Eds. (Academic Press Inc. , Nevr York, 1965), Vol. 17."D. S. McWhan, T. M. Rice, and P. H. Schmidt &to be
published) .

but the samples with largest resistance ratios at j. atm
did not show a negative temperature coefficient of
resistance. None of the samples was very pure, and
it is not clear what wouM happen in pure Sr.

The behavior of the resistance of Yb under pressure
has been studied down to 77'K by Souers and Jura, 4r

and recently from 300' to 4.2'K by Mohan. 4' In
I"ig. 6, the resistivity of Yb at 300' and at 4.2'K, as
measured by Me%ban, is shown as a function of pres-
sure. At pressures in the range 30—40 kbar, the resistiv-
ity at low temperatures reaches a value of 0.1 0 cm,
a value typical of a highly doped semiconductor. 4' This
resistivity is 10' times the residual resistance at 1 atm
and 300 times the value at 300 K at 30 kbar. In this
satne sample, at 1 atm, R4.s K/R3QQ E was ijo.

In Fig. 7 the resistance is plotted as a function of
temperature at selected pressures. The temperature
coefficient of resistance becomes negative around 11
kbar. As we have seen from the example of bismuth,
however, a negative temperature coeKcient of resist-
ance is not a guarantee of a semiconductor. It is not
clear, at present, where (if at all) the semimetal-
semiconductor transition would occur for pure Yb at
O'K. No anomalies have been observed in the resistivity

4' P. C. Souers and G. Jura, Science 140, 481 {1963).
4s H. 1"ritzsche, J. Phys. Chem. Solids 6, 69 (1959).
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which could be associated with the semimetal —semi-
conductor transition.

Interpretation of resistance measurements is always
complicated by the difBculty of separating changes in
the carrier concentration from changes in mobilities.
Measurements of the de Haas —van Alphen eiiect, and/or
Hall eGect under pressure would be very helpful in
clarifying the situation.

If further measurements confirm the existence of a
semimetal —semiconductor transition in Vb, it may be
possible to overcome the difhculties of sample purity,
of pressure control and uniformity, and of low temper-
atures, and observe an excitonic phase. Jerome, Rice,
and Kohn" have estimated an exciton binding energy
of 13'K for Vb, using a dielectric constant estimated
from the optical data of Muller, " taken at 1 atm.
However, there are large uncertainties due to lack of
knowledge of the band structure, its pressure depend-
ence, and the pressure dependence of the dielectric
constant, so that this estimate may be oG by an order
of magnitude.

To the best of the authors' knowledge, no band-struc-
ture calculations have ever been carried out for Vb.
Vasvari, Animalu, and Heine' have carried out band-
structure calculations for Ca and Sr, however, and we
expect Yb to be qualitatively similar. They Qnd that
in the fcc structure, these materials, without spin-orbit
coupling, do not become semiconductors but rather
remain semimetals because of a line of degeneracy
between the conduction and valence bands. The in-
clusion of spin —orbit coupling lifts this degeneracy,
and for sufficiently strong spin —orbit coupling, leads
to a semiconductor. We expect the spin —orbit gap to
be O, i eV in Yb, whereas it is much smaller in Ca
and Sr.

Another possible candidate for an excitonic state is
iodine, 4' which appears to have a continuous metal to
insulator transition in the neighborhood of 160 kbar,
but little is known of the band structure and other
relevant properties of this material.

(b)

00K F

O'K ---— Ie

band matrix element of the momentum operator van-
ishes at the symmetry point. In this case the dielectric
constant and the eGective masses remain 6nite as the
energy gap goes to zero, and an excitonic distorted
state is predicted at low temperatures, just as in the
indirect gap case.

(2) The valence and conduction bands belong to
diGerent irreducible representations such that the inter-
band matrix element of the momentum operator does
not vanish at the symmetry point. In the case of an
s-like and a p-like band with cubic symmetry, it is
easy to show that the eGective masses go to zero as
the energy gap goes to zero, and the exciton binding
energy remains smaller than the gap. No excitonic
phase occurs here, and there need not be any singu-
larity at all in the physical properties at any finite
temperature. We believe this conclusion also holds for
other symmetries.

(3) The valence and conduction band states are
diGerent members of the same irreducible representa-
tion at the symmetry point: here the degeneracy of
the valence band maximum and conduction minimum
are required by symmetry and are not just an acci-
dental degeneracy at one particular pre"sure. A band
structure of this form is in fact believed to occur in
gray tin.""The situation in this case is very compli-
cated, and it is not clear at present whether or not there
should be a transition at Iow temperatures to a dis-
torted phase. '4

I,et us consider explicitly the case of gray tin, whose
band structure is shown schematically in Fig. 8. In the
Hartree approximation, the eGective masses are Rnite

VII. DIRECT-BAND-GAP CASE

Thus far we have considered only the case of a semi-
conductor with an indirect band gap. A semiconductor
can also have a direct band gap go to zero under pres-
sure provided that the gap occurs at a symmetry point
in the zone, and the wave functions of the conduction
and valence bands have diGerent symmetries at this
point. "Three cases may be distinguished:

(1) The valence and conduction bands belong to
diGerent irreducible representations such that the inter-

"W. E. Miiller, Phys. Letters I'7, 82 (1965); and Phys.
Kondens. Materie 6, 243 (1967)."B.Vasvari, A. O. K. Animalu, and V. Heine, Phys. Rev.
154, 535 (1967)."If the valence and conduction states have the same symmetry
then there is zero probability for the energy levels actually to
closs.

[111)-DIRECTION [Oooj [I I i j —DIRECTION [OOO]

Fro. g. Schematic band structure of (nondistorted) grey tin
near zone center at O'K in (a) the Hartree approximation and
(b) the (unscreened) Hartree —Fock approximation. The section
shown is along a L111$ direction, but sections along other direc-
tions are qualitatively similar. The exchange contribution changes
the energy bands from quadratic in k to linear in k, in the limit
4—+0.

~2 S. Groves and W. Paul, Phys. Rev. Letters 11, 194 (1963);
and in I'roceedhngs of the 7th International Conference on Semi-
conductors, Paris, 1964 (Dunod Cie., Paris, 1964), p. 41.

~'The gray tin problem was drawn to the authors' attention
by W. Paul.

'4 The complications occur because the interband matrix element
of the density operator

(k, valence band
I p~ I k+g, conduction band )

does not go to zero, as q
—&0, if k remains of order q and is no(.

parallel to g.
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at z!=0, and the band energies are quadratic in k Dear
the origin. When we compute the exchange contribu-
tion to the Hartree —I ock energies, however, we find

gz —jets~~ (3a e'/32e) P+o(jP) (10)
where the (+) sign refers to the conduction band and
the (—) sign to the valence band s' In Eq. (10), e is a
"background dielectric constant, "and we have assumed
that the interactions between electrons in the valence
or conduction bands behave like es/er for large separa-
tions r.

The linear term in the conduction band energy is
equal to or larger than the quadratic term if

k &s(air) —' (11)
where @II is the nominal Bohr radius for the conduction
band:

air
—=5'e/m. e' (12)

If one forms a wave packet of large radius r from
an electron and a hole, one Ands in the Hartree —Fock
approximation that both the kinetic energy (which is
positive) and the potential energy (which is negative)
are proportional to e'/er. Thus one cannot say without
a more detailed calculation whether a bound state is
formed, and whether the undistorted state is therefore
unstable with respect to exciton formation at low tem-
peratures. "

Further complications will arise if one goes beyond
the simple Hartree-Fock approximation by including
the eGects of screening. The dielectric constant is in6-
nite at O'K, where one includes the effects of virtual
transitions between the valence band and conduction
band near k=0. If the O'K static dielectric function
c(q) is calculated in the Random Phase Approxima-
tion, '7 one finds in the limit ~0,

e(q) e+C'(pe'/P) q
' (13)

"The details of this calculation are presented in another place.
For simplicity we have neglected the possible cubic anisotropy
of the energy bands in gray tin. The singular behavior of the
Hartree-Fock energies near k=0 arises because of the sharp
cutoG of the occupation numbers at the Fermi level and be-
cause of the long-range behavior of the Coulomb potential.
ln this respect it is similar to the singular behavior (de/dk= ~)
of the one-electron energies at the Fermi surface of a metal, in
the Hartree-Fock approximation. The singularity in the metal
case is generally considered to be spurious, because it is removed
when the Coulomb exchange potential is screened by the di-
electric function. If the exchange potential in gray tin is screened
by the static dielectric function of Eq. (13), then the linear term
in Eq. (10) disappears, but a singularity in the second derivative
of EI, at the origin remains. At finite temperatures, the singularity
in Eq is rounded ofF even in the Hartree —Fock approximation,
because the occupation numbers are no longer discontinuous at
the Fermi surface.

5 The usual argument that a coulomb potential always has a
bound state depends on the kinetic energy being proportional to
1jr'."In this approximation, the polarization "bubble" is calculated
using the IIartr ee energies for the electron and hole, and electron-
hole interactions ("ladder rungs") are ignored.

Note added in proof. This result has been obtained independently
by L, Liu and D. Brust, Phys. Rev. Letters 20, 65 (1968), and by
D. Sherrington and W. Kohn (Ref. 58).' D. Sherrington and W. Kohn, Rev. Mod. Phys. 40, /67
(1968), following paper.

where C'~-,sw for ffss/m&)1, as is the case for gray tin.
In Eq. (13), e is again the "background" dielectric
constant, arising from aQ transitions other than those
between the valence band and conduction band near
k=0. The divergent term in (13) becomes larger than
the background term for q &C'(err) '.

In view of the above complications in the non-
distorted phase, it is not clear whether or not an
excitonic distorted phase will occur in pure gray tin
at low temperatures. If an excitonic phase occurs, the
resulting gap will remove the singularities at k=0.
Sherrington and Kohn5S have examined some of the
properties of the distorted phase that may occur.

Regardless of whether there is an actual phase tran-
sition, we would expect to see interesting many-body
e6ects on the transport and other properties of gray
tin at low temperatures in very pure samples. For ex-
ample, at suKciently low temperatures a linear energy
term in the normal state would cause the number of
free carriers to deviate markedly from the T'~' behavior
predicted for parabolic bands in a pure crystal, "
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Discussion of Halyerin and Rice's Payer

J. M. HQNIG (Purdue University): If I understand your model
correctly, you might anticipate some anomalies in thermal con-
ductivity. Can you make a statement about this matters

B. I. HALPERrN: Yes. It was proposed by some of the Russian
authors that there would be an infinite thermal conductivity
in this state. That is not correct despite the fact that there are
analogies with superconductivity and superQuidity. There would
be no supertransport properties of any kind in this state. In
fact, Zittartz has explicitly calculated the thermal conductivity
in a certain excitonic model and, of course, it turns out to be
finite.

J. M. HQNIG: So you don't think that measurements of thermal
conductivity represent a particularly good experimental tool for
looking for such states?

B. I. HALPERrN: I wouldn't think so. I'm sure there would
be some kind of discontinuity in the temperature derivatives of

"In order for the linear term to be important in the conduction
band, the number of electrons in the conduction band must be
small enough so that the Fermi level is less than the nominal
exciton binding energy Zs, calculated from Eq. (1). The value
of ~ is rather uncertain. Sherrington and Kohn estimate Eg=
5'K, using the values @=0.02m, e= 24. The electron concentra-
tion which gives a Fermi level of 5'K is about 10'4/cms, a
concentration which should be reached at a temperature T=1'K
in pure gray tin. Screening of the electron —electron interaction
may reduce observable many-body effects still further. Because
the holes in gray tin are much heavier than the electrons, the
quadratic energy term is much smaller in the valence band than
in the conduction band. A linear term in the valence band could
therefore be important at temperatures larger than E~. It is
relatively difficult to study the heavy carriers experimentally,
however, and it is not clear whether there would be any observa-
able eGects. The e6'ects of impurity scattering on the linear
energy term have not been studied, but it seems most likely that
the linear term will be destroyed by very small concentrations of
scatterers.
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the thermal conductivity at the phase boundary, but I would
imagine that it is harder to do that sort of measurement than an
electrical resistance measurement.

R. W. Kzvzs (IBM): Electrical noise should be a useful tool
for looking at these things. When one is at the border of some
kind of transition, there is an additional possibility for Quctua-
tions and one might expect that noise voltages would be increased.

3.I. HALPERIN: That might be a possibihtty.

M. A. LAMpzRT (Princeton University): It seems to me that
your discussion is incomplete and if so your phase diagrams
would also be incomplete on the following basis. The excitons are
not interacting yet, in fact, two excitons are unstable against the
formation of an excitonic molecule. It is particularly easy if the
hole mass is somewhat bigger than the electron mass, by the
analog of two hydrogen atoms forming a hydrogen molecule.
You have left that out of your discussion completely. I thought
you were going to get to it when you came to the hydrogen atom
metallic phase, but you didn't mention it there either. Could
you comment on this?

B. I. HALPERIN: Actually this was discussed in a paper that
Rice and I have written [B.L Halperin and T. M. Rice in Sohd
State 2'hysics, F. Seitz, D. Turnbull, and H. Ehrenreich, Eds.
(Academic Press Inc. , New York, 1968), Vol. 21] which will be
coming out shortly. We actually considered this, and this is
why I mumb)ed something about the phase diagram not being
quite right near the point E,+. The interactions cannot be
neglected. They can change the transition from second order to
Grst order or they could have various other effects. They will
certainly displace the position at which the transition will occur:
it will not occur exactly at Eg=E~. When E~ is substantially
smaller than FJ3, however, there is a rather large density of
excitons. We believe that the excitonic molecules will then
dissociate, because the binding energy of an exciton molecule is
much smaller than the binding energy of an exciton, if the electron
and hole masses are not too different. We believe that there will
then be a Bose condenstate of unpaired excitons, although we
can't prove that rigorously.

G. J. HvLANn (University of Liverpool): You draw the analogy
between the phase transition in the system of noninteracting
excitons and that which occurs in an ideal Bose gas; there is,
however, a difference. You claim that in the case of excitons the
transition is of second order —the condensation of an ideal Bose
gas is, however, a first-order transition. Have you investigated
Quctuations at all? As you know, inflnite Quctuations are the
precursors of a second-order phase transition.

B. I. HALPERI¹ No. Any calculations that have been done
have been restricted to Hartree-Fock. We have used our know-
ledge of the way in which the Hartree-Fock calculations relate
to actuality in other transitions; however, in forming our qualita-
tive picture of the transition to the excitonic state. I don t under-
stand your comment that the Bose transition is a Grst-order
transition in the noninteracting case. If you have a repulsive
gas it will certainly be a second-order transition.

W. KoHN (University of California, San Diego): Since we are
talking about Bose transitions, and it is quite useful in some ways
to compare this phenomenon with Bose transitions, I do want
to make a remark. We have here formally a situation which is
analogous to a Bose transition, but I want to emphasize that the
analogy is formal and it would be a mistake to look for anything
like the superQuid properties that one Gnds in a real Bose transi-
tion. It is perfectly all right to use the terminology "Bose conden-
sate of excitons, " if you happen to like that, but this is the same
kind of Bose condensate that, let's say, a NaCl crystal is, which
you can also look at, if you wish, from the same standpoint. So,
if you think of this as a Bose condensate, you should have in
the back of your mind "like NaCj. "

R, W. KEvzs: In an anisotropic semiconductor where the
minima of the conduction band are at the zone edge, for example,
one has really a multivalley semiconductor. In the case of a
bound state like a donor or an exciton, the lowest state of the
exciton would be more complicated than simply one state from
a valley and, in particular, would be a mixture of states from
many valleys. That entirely changes the effect that perturba-
tions can have on such a state because, in addition to just per-
turbing the energy of the valley, it can change the mixture of
the states between the different valleys. Is that taken into ac-
count in your calculations, and what sort of effects does it have on
the excitonic insulator?

B. I. HALPERIN: The perturbations are just the splitting term
that we talked about. In the simple two-band model where you
have a single conduction minimum at the zone boundary, it is
not a multivalley situation. In the case where you have more than
one minimum, it is a multivalley situation. You have to take the
splitting terms into account to decide which of the many possible
kinds of states will be lowest„whether it be a single spin-density
wave or a double spin-density wave, or various other possibilities.
Some of these possibilities have been considered by Rice and
myself in our article in Solid State I'hysics.

D. S. LrznzzMAN (University of Illinois, Urbana): The idea of
using a generalized phase diagram of temperature and other
thermodynamic parameters is a very attractive one and it may be
profltable to reexamine the works of Willard Gibbs and others on
the relationships among the various derivatives of the free energy
and their implications, the conditions on the coexistence of
phases, the "phase rule, " etc. , to see how far one can really
extend the concepts to such systems as the author proposes. Rela-
tive to this diagram and others which you have sketched, I'd
like some clarification about what you mean about a "phase
separation, " "miscibility gap" and something about "shifting
over. "Does it go to a two-phase mixture with regions consisting
only of semimetal or semiconductor or does the whole thing go
in some way throughout the volume? The second question
relates to the possible instability and Buctuations implied by
your diagram. This kind of diagram with a miscibility gap is
associated with the phenomenon called spinodal decomposition
which is related to a change in sign of the second derivative of
the free energy with respect to composition. This has been
discussed and reviewed most completely and clearly by Calm
[J. W. Cahn, Trans. Am. Inst. Min. Metal. Engrs. 242, 166
(1968)].Ben-Israel [D. H. Ben-Israel, abstract in J. Metals 67A
(Jan. 1968)] has reported an extension of Cahn's model to more
generalized variables. I was wondering whether such instabilities
and Quctuations in other parameters have been considered be-
cause they might produce an interesting kind of structure and
related properties or perhaps aid in the interpretation of some
of the phenomena.

B.I. HALPEzrN: In answer to the Grst question, as to whether
you would get a jump or a two-phase region: that depends on
the boundary conditions. At a Gxed pressure you would get a
jump. If you conflned your sample in some way, so that its total
volume was flxed, then you would get a two-phase or a domain
structure.

D. S. LrzBERMAN: A total semiconductor or total semimetal
in the whole specimen?

B. I. HAxxEurN: Yes. Under Gxed pressure the whole piece
would jump at once from a semiconductor to a semimetal, This
is assuming there would be no strains in the samples. If you have
a large sample and surface effects weren't too important, I
believe that's what would happen.

We have not considered the possibility raised by your second
question. Perhaps that might be an interesting one to look at.


