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Some basic properties of the Kelvin-Helmholtz instability are reviewed, and some papers dealing with various re6ne-
ments of this phenomenon are discussed.

I. INTRODUCTION

The problem reviewed here is the stability of a plane
interface between two Quids. If they are in relative
motion parallel to their interface, the latter may become
unstable under certain conditions. This type of in-
stability is commonly known as the Kelvin —Helmholtz
instability.

There is a large body of recent literature on this
subject and on the related topics of the stability of
jets and of shear Rows, both in the "ordinary" MHD
and plasma situations. '—"'~" The problem has been
considered in connection with the stability of the earth' s
magnetosphere in the solar wind, "b the stability of
streams of charged particles emanating from the sun, "
the excitation of water waves by the wind, 4~ the
stability of jets' ""and of plasma jets, '9 as well as the
stability of other kinds of laboratory plasmas. '~'8'~"
The phenomenon is also thought to be a factor in-
Quencing the melting surface of an object falling into
the atmosphere. "

II. SURVEY OF PREVIOUS WORK

A. Incompressible Fluids

the density to zero. The second equation balances the
Quid inertia against the pressure gradient.

Assuming that all perturbation quantities depend on
(y,s, t) through expLi(k, y+k, s—cot) $, Eqs. (1) and (2)
imply

where

v&= &p2/(tco p)

Ps~e ~, x)0,

k=—(k„'+k,s) 'ts) 0

(3)

(4)

Cd =M —k N. (6)

For Quid 1, at rest in the space x(0, Eqs. (3) and (4)
are to be replaced by

v =&p/(i ts)

pg ~ e+'*, x(0.
The boundary conditions are pressure balance

pg= ps at x=0

(7)

(g)

and the kinematic conditions, namely, that the normal
velocity of the Quids, at x= 0, match the rate of change
of the interface displacement P(y, s,t). These conditions
can be written

The Kelvin —Helmholtz instability between incom-
pressible Quids has been studied by Lamb, ' where
earlier references may be found. The situation under
consideration is shown in Fig. 1. The equilibrium inter-
face is the (y,s) plane. Fluid 2, Qlling the region x)0, is
Rowing in the s direction with velocity N. Without loss
of generality, Quid 1 is assumed at rest. In the presence
of a small-amplitude perturbation, the equilibrium
surface suffers a normal displacernent P(y,s,t). For
simplicity, it is here assumed that the two liquids have
the same uniform density p and that gravity, surface
tension, and viscosity may be neglected.

The linearized equations governing the perturbation
pressure p2 and perturbation velocity vs in Quid 2 are

vt&=Dt's= —uo$,

vs, = (ctt+u8, ) $= ice'$, —at x=0. (10)

The term u8, $ in Eq. (10) occurs because the
perturbation velocity in Quid 2 at x= 0 is partly due to
the slight angular deviations of the steady Qow as it is
forced to stream along the actual ripples in the surface,
as indicated in Fig. 1.

If one uses Eqs. (3), (4), (7), and (8) in the bound-
ary conditions (9) and (10) and eliminates g, one
finds the dispersion relation

M = —6) (11)

Recalling Eq. (6), this has the solutions

V v2 ——0 =co', , k(1u&i), - (12)
p(8t u8. v2+& s=0. 2

one of which is unstable.
The first equation is the usual condition for incorn- The conclusion is that any relative tangential motion
pressible Quids, obtainable from the conservation-of- between two uniform regions of a liquid (in the absence
mass equation by setting the convective derivative of of gravity, surface tension, and viscosity) causes the
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interface to be unstable to all perturbations whose wave
vectors have a component along the Qow. The surfaces
of constant phase, as seen by the s axis, move with the
velocity u/2.

Esch5 considered a smooth velocity transition u(x)
from the motionless region to the Qowing region, also
including viscosity. His results indicate that, when
viscosity is negligible, only wavelengths larger than the
order of magnitude of the shear layer thickness are
unstable. He further found that viscosity tends to
stabilize somewhat larger wavelengths. (But note the
anomalous region in his Fig. 5.)

Menkes' considered an inviscid liquid, also with a
smooth velocity transition between uniform regions.
Like Esch, ' he found that wavelengths less than the
width of the transition region are stable. He included
a density gradient as well and found it to have a
stabilizing effect.

One might think that water waves generated by the
wind furnish an excellent example of the Kelvin-
Helmholtz instability between incompressible Quids.
However, when one includes surface tension and
gravity, which are stabilizing, one finds that the
minimum wind speeds necessary to initiate water
waves by this mechanism are about 600 cm/sec, whereas
observation indicates that water waves are generated at
wind speeds of about 10 cm/sec. '7 Miles'" developed a
theory essentially different from the Kelvin-Helm-
holtz type, in which the wind-shear profile plays an
important role. A matching between the wind velocity
at a certain height in the wind profile and the phase
velocity of the water waves constitutes a resonance
effect which leads to a minimum wind speed of the
right order of magnitude. Miles7 also cites another
promising theory of Phillips based on turbulent
Quctuations of the wind.

Amsden and Harlow' considered a viscous incom-
pressible Quid with a shear layer of initially zero
thickness. They solved the nonlinear Quid equations
numerically and were able to follow the development of
perturbations as they grow to large amplitudes.

Returning to the dispersion relation equation (12),
one expects that if there is no relative velocity (u=0),
then there is no growth of a perturbation. However,
this is not the case. If one considers again the system of
original equations (1) and (2), with the corresponding
equations for fluid 1, and the boundary conditions (9)
and (10), with u=0, so that the mathematics is done
in the frame of the Quid, and if one again specifies a
space dependence of the form exp/i(kvy+k, s)) but
leaves the time dependence open, then one finds that
if the interface is given an initial normal velocity
8 g$ (y s t) g=p the displacement & (y,s, t) actually in-
creases linearly with time. This surprising result was
thought to be the explanation for the Qapping of sails
and Qags. ' In this case, the perturbation pressures
vanish and the perturbation velocities are localized to
within a distance of order k ' of the interface.

FIG. 1.. Geomet-
rical layout for the
Kelvin-Hebnholtz
instability.

u in Equlltbnum
Stet te

Fluid 1

x& 0

Fluid 2

x~0

Whether or not imaginary surfaces in the air (since
with no relative velocity there is now nothing that
physically distinguishes fluid 1 from fluid 2) suffer
these kinematic distortions that increase linearly with
time is a matter that would be hard to settle experi-
mentally. To identify such distortions with the in-
stabilities of wind-blown sails and Qags' is to lay oneself
open to the objections that (a) the mass of the flag
has been neglected, (b) the result is physically un-
realistic because the rate of distortion proves to be
independent of the wind speed.

One can solve in a straightforward way the more
realistic problem of an infinite surface with a mass per
unit area p, past which a wind is blowing on both sides
with speed N. One then finds the phase velocity for a
wave number k to be given by Re(&o)/k=u/(1+
ktt/2p) and the exponential growth rate to be Im(to) =
ku/[(ktt/2p)"'+(2p/ktt)'t'g. For realistic densities p
and p and wave numbers k, the phase velocity given
above is much smaller than the wind speed, whereas
in the "imaginary surface problem" the disturbance
velocity proved to be equal to the wind speed.

The author has not followed the latest literature on
this particular topic, but it seems clear that the time-
proportional distortion mentioned in Lamb's book'
can have little or nothing to do with the Qapping of
sails and Qags.

or
(~~+V2 &) (Ap~ ') =0

(a,+V,.V) P, =v(I', /p, ) (a,+V, p') p2,

where y is the ratio of specific heats, assumed to be the
same for both Quids. The linearized version of this
equation is

(8,+u8, ) P2 s'(8~+uB, )
——p2,

B. Compressible Fluids

When both Quids are compressible, there are density
perturbations in each of them, denoted here by p~ and
p2. Equation (1) must be replaced by the full, linearized
continuity equation, namely, for Quid 2,

(Bg+uB~) pg+pV'v2= 0. (13)

If the adiabatic law holds (thus neglecting production
and conduction of heat in the Quid), then the total
pressure, density, and velocity are related by



where
p2 ~ exp (—q2S), s) 0,

q Lk2 —(~~) 2/s2$1/2

(16)

(17)

If q2 is complex, it must be chosen to have a positive
real part to prevent blowup at x—+~. If q2 is imaginary,
its sign must be determined by proper application of the
Sommerfeld radiation condition, as discussed shortly.

A similar procedure applied to Quid 1 shows that
Eqs. (16) and (17) are to be replaced by

where
pi~ exp (+qix), x(0,

(k2 M2/$2) I/2 (19)

Again q~ must have a positive real part. If, however,
it. is strictly imaginary, the correct sign of the root
niust again be determined by proper application of the
Sommerfeld radiation condition.

If one now uses Eqs. (3), (7), (16), and (18) in the
boundary conditions (9) and (10), one finds the
dispersion relation

(d q2= (N ) qi. (20)

As the speed of sound becomes infinite, q~ and q2 reduce
to k, and this relation reduces to Eq. (11) for in-
compressible Quids. Although there are many param-
eters here (o&, k, k„ I, s), it is possible to go to just two
dimensionless va, riables, a phase velocity 1)) and
effective Mach number SIC, de6ned, respectively, by

(t —=co/ks, N= uk, /ks= icos ()/s, —(21)—
where 8 is the angle between the vector k=—(0,k„,k,)
and ll.

Recalling Eqs. (6), (17), and (19), one can then
convert Eq. (20) to the form

y2p (@ /If') 2)1/2 — (y /III) 2 ( 1 y2) 1/2 (22)

The most striking difference between the behavior
of two uniform liquids and two uniform compressible
Quids, as regards the K—H instability, is that the former
are unstable for all (except uJ Ir) wave vectors and all
(nonzero) relative velocities, whereas the latter are
stable for all those K modes whose effective Mach
number is larger than a certain critical value. (This
statement refers to idealized situations where gravity,
surface tension, and viscosity are neglected. )
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where the speed of sound s is de6ned by

s'= y I'/p.

Here I' and p are the equilibrium pressure and density,
assumed to be the same in both Quids. When all
perturbation quantities depend on (y,s,f) through the
factor exp Li(k„y+k,s—&u/) j and the velocity and
density perturbations are eliminated from Kqs. (2),
(13), and (14) in favor of the pressure perturbation,
one finds that

where the square roots here are to be taken as positive.
This equation is of fifth degree in p.

The function F(1t) defined by Eq. (23) is plotted
schematically in Fig. 2 for M greater than a critical
value that is given below. For values of M larger than
about 3, the four outer roots lie very close to 1t1= —1,
+1, J(/I 1, and —35+1. These four roots are associated
closely with backward and forward sound waves in
Quids 1 and 2, respectively. Moreover, there is a new
wave uniquely due to the presence of both Quids,
represented by the center root of Fig. 2.

When one considers the outer roots of Fig. 2, namely,
—1 and /~&+1, one finds that they are not

acceptable. For all Ave of these real roots, q~ and q2

are purely imaginary. Therefore, the perturbation,
proportional to exp (—q2x) for x)0 and exp (+qix)
for @&0, does not die away as x—+&~. Thus, a bound-
ary condition at infinity has to be applied. The usual
method in such cases is to state that one has only out-
going waves at in6nity. Miles" has emphasized that this
Sommerfeld radiation condition, to be applied in each
Quid separately, must be used in a reference frame that
moves with each Quid (or is at least subsonic with
respect to the Quid) . Moreover, one must take care
that if the frequency relative to a Quid is negative,
then a right-moving wave, for example, is given not by
exp(i kx) with k,)0, but rather by exp( ik,x).W—hen
one does this, one Ands that only the three center roots
of Fig. 2 are valid, which one intuitively expects.

As Jtl~s'", from above, the two roots adjacent to the
center root approach it. When 3E crosses below the
critical value 8'~', those two roots disappear into the

F(()()—:()) )/(()) —M) 1 —())(-M) V()( —1

Backward
Sound Wave

in Fluid I

Forward
Sound Wave

in Fluid I

—1 0-+1

Backward
Sound Wave

in Fluid 2

l
Forward

Sound Wave
in Fluid 2

M—
1 M M+1

FIG. 2. The roots of the dispersion relation F(p) =0 for super-
sonic relative Row (3f&8' '} between two compressible Quids of
equal densities and sound speeds.

Suppose p is real. If the square roots appearing in Eq.
(22) were then real, they would have to be positive to
satisfy the conditions on qi and q2. But then (22) could
not be satisfied. Therefore the square roots in Eq. (22)
must be purely imaginary and of mutually opposite
sign. Thus, when @ is real, one can write Kq. (22) as

~(4) =—O'E(4 —/1f ) '—17"—(&—/lf) '(4' —1)"'=0

(23)
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complex plane as complex conjugates, and the system
becomes unstable to one of those modes.

It is possible to solve the fifth-degree Eq. (22) for g
exactly. Miles ' has done so in solving the initial-value
problem.

Miles and Fejer" have emphasized that the interface
is stable only to wave vectors that make a suKciently
small angle with the stream velocity. From the defi-
nition of effective Mach number in Eq. (21), one notes
that 3E can be made less than 8'~' simply by taking the
propagation angle 8 large enough. Thus, those modes
propagating almost directly across the stream are
always unstable.

Plesset and Hsieh have included gravity g in their
treatment of this problem. They claimed that the
stratification of the upper Quid, induced by even the
slightest amount of gravity, gives rise to instabilities of
Gnite growth rates at all speeds of supersonic Qow, for
modes propagating exactly in the stream direction. (In
fact, they considered ortly that propagation direction. )
Their paper' has been criticized by Miles, ' who pointed
out that a more likely cause of instability at low gravity
is to be found in the ordinary Kelvin —Helmholtz modes
that propagate almost transverse to the Qow direction.
He showed that the growth rates of the unstable
gravity-induced modes vanish as g—+0, in contradiction
with Plesset and Hsieh. Miles claimed that their
dispersion relation was incorrect because their solution
Of the differential equation in the upper Quid, was
wrong. However, Miles asserted. that even their in-
correct dispersion relation should lead to vanishing
growth rates of the gravity-induced modes as g~0. He
is unable to follow their arguments to the contrary. He
concludes by noting that the vertical wavelengths of
the gravity-induced modes become vanishingly small
as g—+0, so that these waves shouM be strongly damped
by viscosity in a real Quid.

Also, Gill" studied a stratified situation consisting of
a jet of compressible Quid shooting through a back-
ground of compressible Quid. For both the slab-ge-
ometry and cylindrical jet models, he found the Qow
to be unstable at all Mach numbers.

Chang and Russell"' studied the stability of the inter-
face between an incompressible Quid (liquid) and a
Qowing compressible fiuid (gas), including the effects
of gravity, surface tension, and viscosity. In the non-
viscous case, they also allowed the liquid to have a
finite depth. LOne should beware of misprints here; for
example, their Eq. (2.8 a,b).j In the nonviscous case,
they found that the supersonic Qow was always un-
stable, but that the subsonic Qow could be stabilized if
the product of gravity and surface tension exceeded a
critical value. They find these qualitative conclusions
are unaltered when the liquid has a finite depth. In
the case of a highly viscous liquid, they find the super-
sonic Qow to be stable (when gravity is directed toward
the heavy liquid), and that the subsonic Qow is again
stabilized when the product of gravity and surface

tension exceeds a critical valu" which is the same
critical value as in the nonviscous case. )Their damped
solutions e& to the viscous problem always violate their
required inequality (3.14).$ All of the stability con-
clusions of Chang and Russell apply only to waves
propagating along the Qow direction. This work has
recently been extended for arbitrary viscosity by
Killson and Chang. "~

C. Incompressible MHB

In reviewing the K—H instability in conducting Quids
in magnetic fields, the mathematical details will be
omitted, as they are complicated. and would make this
review too long.

Sen" has included gravity and surface tension in his
discussion, as well as allowing for different densities
and different magnitudes and directions in the uniform
magnetic fields on each side of the interface separating
the incompressible Quids. As usual in treating this kind
of problem, Sen assumes the Quids to have infinite
electrical conductivity. He found the conditions under
which the interface would be stable to all possible modes
of perturbation, that is, stable for all possible magni-
tudes and directions of propagation vectors. As a
special example, consider Quids of equal densities con-
taining identical magnetic fields in the absence of
surface tension and gravity. He found the interface to
be unstable except when the moving Quid Qows exactly
along the field lines. The stability criterion for this
aligned case is that the Alfven speed should exceed
half the relative Qow speed.

In the more general case in which surface tension
and gravity may be present, and the densities and
fields are discontinuous across the interface, Sen
found that two inequalities must be simultaneously
fulfilled for a stable interface, rather than just one.
In the absence of surface tension and gravity, Todd'
has derived the same two stability criteria using a
physical argument that balances the tension, exerted on
the Quid by the bent field lines, against the centrifugal
force of the Quid Qowing along those curved lines.

Finally, Sen found that surface tension and gravity
have a stabilizing effect (with the heavier Quid on the
bottom) provided (i) that they are both present and
(ii) that the fluids have unequal densities. His paper
concludes by giving expressions for the wavelength,
propagation angle with respect to the Qow, and phase
velocity of the wave which first grows when the
stability conditions are slightly violated.

D. Compressible MHD

Neglecting surface tension and gravity, Sen" has
included compressibility in his study of the K—H
instability of the interface between two perfectly con-
ducting Quids. The zero-order magnetic field vector, the
sound speed, and the density were at first allowed to be
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discontinuous at the interface. Sen then found that a
slight amount of compressibility always destabilized
an otherwise marginally stable perturbation.

Specializing next to the case in which the zero-order
densities, sound speeds, and magnetic 6eld vectors
were identical in both Quids, Sen then studied the
e8ect of large compressibility (supersonic flow). In
fact, in this part of his paper he apparently set the
sound speed to zero. With the magnetic field exactly
parallel to the Qow, he found the interface to be stable
for all wave vectors, provided the Qow speed was less
than twice the Alfven speed. This stability criterion is
identical to that for the corresponding situation in
incompressible Ruids.

For Qow speeds exceeding this critical value, the
interface becomes unstable. However, those modes
propagating at a small enough angle to the Qow are still
stable. If u denotes the relative Qow speed, o. the
Alfven speed, and 8 the propagation angle, Sen found
the stability criterion to be

of the interface in a Quid characterized by a nonscalar
pressure. The uniform magnetic field was aligned with
the Qaw, and he considered perturbations propagating
only in this direction. Denoting the parallel and
perpendicular sound speeds by S~l,i, where S~~,i'=—
P~~, i/p, Talwar found this class of modes to be over-
stable, provided both (i)

and (ii)
n( Si'/Si iv3

~'+25''g Si4(45~~'+Si')
(iii)

L;(~u' —35( (') '+ Si'g

unstable,

stable.

n'+25'') Si'(Si'+45)(')/(Si' —35(('z')

where I is the relative Qow speed and n is the Alfven
;speed. If either of these criteria for instability is violated,
Talwar found that these modes are rnonotonically
unstable or stable, according to the following criterion. '

I cos ebs n,

provided N&)o. . This becomes identical to the stability
criterion for the nonmagnetic case (Sec. IIB of this
paper), namely 3I)8'", if we replace the Alfven
speed by the sound speed.

In the case that the Qow is not parallel to the 6eld,
Sen found the interface to be always unstable. However,
as in the case of field-aligned Qow, there were again
found to be sets of stable modes within certain propa-
gation angles that depend on the Qow speed.

Fejer"" had studied the same problem before Sen,
solving the dispersion relation numerically for an
arbitrary amount of compressibility. He obtained
results that di6er from Sen's. Both authors consider
the case of identical densities, sound speeds, and
magnetic 6eld strengths on either side of the interface.
They both work in a frame of reference stationary with
respect to one of the Quids. They both consider the
special case in which the magnetic fields are parallel to
the Qow vector. Sen" found, for this special case and
zero sound speed, that the modes propagating directly
along the Qow are s1able for any ratio of Qow speed to
Alfven speed u/n. Fejer" found, for this special case and
zero sound speed, that the modes propagating directly
along the flow are Issuable when I/n)1. This dis-
crepancy is apparently still not resolved. One point
favoring Fejer's result is that his numerical calculations
show that his stability condition 0.)I goes over
smoothly, with increasing sound speed, into the stability
condition known to hold for incompressible Quids,
namely, u) n/2. The origin of the discrepancy may be
that either (or both) of these studies fails to check that
the modes whose stability is being considered actually
remain bounded at large distances from the interface.

Talwar, 23' using the adiabatic equations derived by
Chew, Goldberger, and Low, '4 has treated the stability

U~fU, O)

(B~,O)
/~+00

""'IIIIIdljl(

'"

'Il(j

U, B

U~B

3 The MHD haH
jet. The floe u and the
field 8 are vector functions
of (x, y), and are assumed
to have no s components.

U~0
00 f ~~00e-Q

In view of the results of Sen, '4 who found that at
large Qow speeds those modes propagating almost
transverse to the flow are unstable (see his Fig. 1), one
wonders about the importance of the stability criterion
(iii) above, which applies only to those modes propa-
gating along the field and Qow.

An attempt at a more comprehensive and realistic
treatment of the interface between two magnetoQuids
in relative motion was made by Lessen and Deshpande. '
Rather than assume a uniform velocity discontinuity
between the two Quids, they undertook. first to calculate
what the steady-state shear layer would look like if
one of the Quids were Rowing past a sharp edge, as
shown in Fig. 3, the other Quid being at rest far below
the edge. They allowed the compressible Quid to have
both viscosity and thermal conductivity. Assuming the
Quid to be a perfect conductor, they sought a solution
characterized by a uniform aligned magnetic 6eld far
above the edge, which decreased to zero far below the
edge. The numerical solution of the full set of non-
linear equations showed that, for an incompressible
Quid, the shear layer became in6nitely thick as the
magnetic field was increased to the point at which
ao ——No, these quantities being respectively the Alfven
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speed and the Qow speed far above the edge. A similar
result had been derived by Greenspan and Carrier" for
the incompressible Qow past a Qat plate, even allowing
the Quid to have any finite conductivity. Thus the Qow

appears to be blocked when O.p
—+Up. No calculation was

performed for the case O.p&up although the authors of
Ref. (35) state that no steady flow is possible in this
case.

Allowing the Quid to be compressible and denoting
the Mach number by Mp-ttp/(PPp/Pp)'te far above the
edge, Lessen and Deshpande found in this case also
that the transition layer becomes in6nitely wide when
the magnetic 6eld approaches a value determined by

where y is the ratio of specific heats. No experiments
have been performed to 6nd the blocking of the Qow
at the critical magnetic 6eld strengths, as predicted
by the above theory.

In their following paper, Lessen and Deshpande
studied the stability of the above-mentioned steady
state to small perturbations propagating along x.
Specializing to an incompressible Quid, they found
numerically the frequency and wave number for
marginally stable modes. The frequency and wave
number of the marginally stable modes are eigenvalues
obtained from the requirement that the perturbation
should vanish properly far above and below the transi-
tion layer. They treated only the case where up&up.
In dimensional form, the frequency and wave number
are only valid locally; that is, they are dependent on
the coordinate in the stream direction. This work has
been extended to the stability of compressible magneto-
Quids. "

A quite different approach was formulated by
D'Angelo, "which perhaps explains an instability ob-
served by him and von Goeler in a thermally ionized
cesium plasma. '~ The basic difference between this
theory and the others reviewed here is the neglect of the
perturbation magnetic fields associated with plasma
perturbation currents. The usual theories may be
characterized by a magnetostatic approximation
(V' x 8= 4'/c) that neglects the displacement current
c 'B&E and is appropriate when the electromagnetic
energy storage resides primarily in the magnetic 6eld.
In D'Angelo's theory, on the other hand, the electro-
static approximation was made, V x E=0, that neglects
the induction —c '8&8 and is appropriate when the
electromagnetic energy storage resides primarily in the
electric field. (Both approximations require the speed
of light to be large compared to the wave velocity. )

D'Angelo" considered a steady state characterized
by a uniform longitudinal magnetic field Bp and a
transverse plasma density gradient. The thermal
motions of the electrons and ions and their extremely
different masses prevent them from completely shield-
ing each other, so that there is a transverse space —charge

electric field Ep associated with the density gradient.
Moreover, the ions are assumed to stream along the
field lines with a velocity that has a transverse gradient
in the same direction as the density gradient. The
space —charge field Ep is assumed to be uniform, and the
plasma density inhomogeneity is taken to have an
exponential space dependence.

The theory next considered small perturbations of
this steady state propagating in a plane perpendicular
to the direction of the gradients. Because of the small
electron mass, the electron density perturbation is
assumed to be in Boltzmann equilibrium with the
electrostatic potential perturbation at the ion tem-
perature (T, T; in the cesium plasma). Quasi-
neutrality is assumed (tt, rt;) and the ion continuity
and momentum equations are solved, subject to the
relation between ion perturbation pressure and density
p;=ET;rt, , where the ion temperature is supposed to
be a given constant, not subject to perturbation. The
restriction that the perturbation quantities be inde-
pendent of the coordinate along the gradients then
leads to a dispersion relation f(co, lr) =0. Supposing the
wavelength of the perturbation is large compared to
the thermal ion cyclotron radius and that the perturba-
tion frequency (as seen in a frame moving with the
ions) is small compared to the ion cyclotron frequency,
the dispersion relation is then solved explicitly for or,

with the fol1.owing results.
Seen from a frame moving along the field lines with

the local ion longitudinal velocity component, the
marginally stable modes are found to propagate in a
direction perpendicular to Ep and Bp with the crossed-
field drift velocity cEp/Bp. These modes become
unstable when the ion gradient of longitudinal velocity
exceeds (v2c,/L), where c; is the ion sound speed,
c„2=—nT, /m;, and I. is the characteristic length of the
density gradient. The density gradient is thus seen to
be stabilizing.

As seen from a stationary frame, the marginally
stable modes are found to propagate at an angle 0
with the field lines, where 0 is determined by tan9=
Iv2/r;, where r; is the thermal ion cyclotron radius.

An experiment was performed~ in a cesium plasma
in which a gradient of longitudinal velocity was imposed.
Qualitative agreement with the theory was obtained.
The biggest discrepancy between the theoretical model
and the experiment seems to be the assumption that the
perturbations are independent of the coordinate along
the gradients. However, as can be seen from Fig. 9 of
Ref. 27 and the accompanying text, the perturbations
are actually localized in a domain of about the same
length as the density and velocity gradient regions.
O'Angelo's theory apparently has not yet been usefully
extended to include this effect.

Other, more sophisticated and more complicated
theories relating to the Kelvin —Helmholtz instability
in a plasma have been formulated by Rosenbluth and
Simonse 'r and by Stringer and Schmidt. " These
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theories again make the electrostatic approximation,
but are more general than O'Angelo's theory since
they include at once the effects of (a) nonuniform
electric fields in the steady state, (b) finite ion cyclotron
radius, (c) deviations from quasi-neutrality, and
(d) nonuniform steady magnetic fields in the guise of
an imposed gravitational drift. Finally, these theories
allow the perturbations to depend on the coordinate
along the gradients. The end result is a very compli-
cated second-order differential equation for a per-
turbation quantity, in which this coordinate is the
independent variable. For a given wave number in the
plane perpendicular to this gradient coordinate, one
should, in principle, solve for the eigenfunctions that
represent perturbations localized in this direction and
for their corresponding eigenfrequencies. By examining
all such possible eigensolutions, one should then be able
to classify them into stable and unstable modes, with
their concomitant growth or damping rates. In practice,
this approach has proved to be impossible (although a
numerical method might be feasible here, to find the
marginally stable modes, as in the work of Lessen and
Deshpande"). instead, Rosenbluth and Simon" si have
worked directly with the differential equation, and have
managed, at least, to obtain sufhcient conditions for
stability to all those modes of perturbation repre-
senting propagation across the magnetic 6eld. Their
method was an extension of the usual calculus of
variations technique applied to self-adjoint differential
equations. " In some special cases, they were able to
obtain necessary as well as sufhcient conditions for
stability. Their results are too complicated to give here.

III. CONCLUDING REMARKS

This paper is neither a complete nor an up-to-date
review of the literature on the K—H instability. Never-
theless, this survey may be a useful guide"for those who
are not specialists in the field. It seems clear that there
yet remain many unanswered questions connected with
the K—H phenomenon.
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