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A survey of theoretical and experimental methods now available for calculating, producing, and measuring high-energy
coherent bremsstrahlung (HEB) and electron pair production (EPP) is presented.

After an introduction in which the historical development of the subject matter is sketched, a preliminary theoretical
approach is outlined. A rough classical argument is shown, and a formal expression of the Laue —Bragg law suitable for
the next calculation is deduced, together with some fundamental kinematics of the HEB and EPP processes. The structure
factors for the cubic, face-centered cubic, and diamond lattice are deduced and some qualitative features of the inter-
ferential cross sections are shown.

A complete calculation of the HEB and EPP cross sections is carried out. HEB polarized and unpolarized cross sections
as functions of recoil momentum are obtained and then integrated over all the reciprocal lattice space. Corresponding
results for EPP cross sections are expressed and numerical calculation results are shown.

The last part of the paper deals with experimen& methods and techniques used in different laboratories in order to
produce and measure high-energy coherent bremsstrahlung suitable for photoproduction experiments by polarized pho tons.
Experimental apparatus and results are described in some detail. Finally, concluding remarks are made concerning the
topics omitted.
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A. Preface

I. INTRODUCTION

This paper presents a survey of the high-energy
bremsstrahlung and electron pair production in crystals,
containing important information on the theoretical
basis and experimental methods of calculating, pro-
ducing, and measuring coherent bremsstrahlung beams
from high-energy electron machines.

This survey presents the most (not all) important
work on the subject matter from a uni6ed point of view.
The next paragraph outlines the chronological develop-
ment. Some topics are not treated: in this case suitable
references are listed. As far as the pioneer work of the
Frascati sta6 is concerned, a survey paper will soon be
ready.

B. Historical Background

Perhaps the erst idea about these processes may be
found in a work of Williams. ' Ferretti' developed semi-

' E. J. Williams, Kgl. Danske Videnskab. Selskab. , Mat. Fys.
Medd. 13, 4 (1935).

~ B. Ferretti, Nuovo Cimento 7, 118 (1950).
611

qualitative calculations based on the Weizsacker and
Williams method of the virtual quanta. Also Ter-
Mikaelian and PurcelP performed calculations based
on the virtual quanta method. The Ter-Mikaelian
paper presents a very complete calculation, taking
into account the actual structure of the crystal and the
temperature e8ects. Unfortunately this paper has been
unknown until now to this author and to the Frascati
group, except by title. Feinberg and Pomerranchuk
and Dyson and Oberall' presented other arguments.
More recently, Uberalls' carried out the full calculation
by using the Born approximation and by obtaining
results on the cross sections and polarization which
could be compared with experiment. These theoretical
results stimulated the performance of experiments by
means of the high-energy electron accelerators. Some
qualitative measurements was carried out by Frisch
and Olson~ at Cornell and by Panofsky and Saxena' at
Stanford. The first two authors showed an enhancement
in the low region of the bremsstrahlung spectrum for a
certain crystal orientation. Owing to the poor energy
resolution of the measurements, the expected central
minimum washed out. The same result was obtained
some time later by Saxena. '

At the end of 1958 this author developed at Frascati
a research program whose 6nal aim was the production
of a polarized photon beam useful for experiments in
high-energy physics. The experiments at Frascati were

3M. L. Ter-Mikaelian, Zh. Eksp. Teor. Fiz, 25, 296 (1953);
E. M. Purcell (private communication, 1955) .

4 P. J. Dyson and H. Uberall, Phys. Rev. 99, 604 (1955);
E. L. Feinberg and I. Pomeranchuk, Nuovo Cimento Suppl.
3-X, 652 (1956).

s H. ()berall, Phys. Rev. 103, 1055 (1956).
6 H. Uberall, Phys. Rev. 107, 223 (1957).
~O. R. Frisch and D. H. Olson, Phys. Rev. Letters 3, 141

(1959).
W. K. H. Panofsky and A. N. Saxena, Phys. Rev. Letters 2,

219 (1959).' A. ¹ Saxena, Phys. Rev. Letters 4, 311 (1960).
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carried out first by Bologna, Diambrini, and Murtas. ' "
They showed in both the electron pair production" and
bremsstrahlung" the expected central minimum and
only a qualitative agreement with the Uberall results,
with also systematic diGerences. A further experimental
investigation, carried out with a better angular resolu-
tion, showed an unexpected Qne structure in the
angular dependence of the bremsstrahlung cross sec-
tions, It was realized"" that the approximation of
continuous lattice planes used in the previous calcula-
tions was unsuitable for bremsstrahlung in the giga-
electro-volt region, and new calculations were necessary
by taking into account the actual structure of the
lattice planes.

It was clear that also the bremsstrahlung spectrum
wouM have large peaks with high polarization. "
Detailed calculations have been carried out."'~"
Barbiellini, Bologna, Diambrini, and Murtas carried
out measurements on the coherent-spectrum brems-
strahlung" and on the polarization, ' finding good
agreement with the new theoretical results. These
authors also proposed a new method for measuring the
polarization of very high energy photons by using a
second crystal as analyzer. ' At this point it was clear"
that coherent bremsstrahlung beams could be obtained
also in the multi-giga-electron-volt electron accelera-
tors, without important experimental difhculties. Then
this author proposed an experiment at the Desy 6-GeV
electron syncrotron in order to get 2—4-GeV polarized
photons suitable for experiments. A staG of physicists
from Frascati and Desy" carried out the experiment
successfully, by getting one lattice point photon peak
at 2-GeV with 70% polarization. After this they
measured'4 the polarization by means of the method
proposed by the Frascati group. A group of 10 Japanese
researchers of the Tokyo Institute for Nuclear Study
measured coherent bremsstrahlung from silicon crystal

' G. Bologna, G. Diambrini Palazzi, and G. P. Murtas, Phys.
Rev. Letters 4, 134 (1960).

"G.Bologna, G. Diambrini Palazzi, and G. P. Murtas, Phys.
Rev. Letters 4, 572 (1960)."G. Diambrini Palazzi (unpublished)."G. Diambrini Palazzi, Nuovo Cimento Suppl. 25X, 88 (1962).

G. Barbiellini, G. Bologna, G. Diambrini Palazzi, and G. P.
Murtas, Phys. Rev. Letters 8, 112 (1962).

"G. Barbiellini, G. Bologna, G. Diambrini Palazzi, and G. P.
Murtas, Natl. Lab. Frascati Rept. 62/10, February 1962.

'6 G. Barbiellini, Natl. Lab. Frascati Rept. 62/49, June 1962.
'~ G. Bologna, Natl. Lab. Frascati Rept. 62/56, June 1962.
"H. Uberall, Z. Naturforsclr. 17a, 332 (1962).' G. Barbiellini, G. Bologna, G. Diambrini Palazzi, and G. P.

Murtas, Phys. Rev. Letters 8, 454 (1962).
"G.Barbiellini, G. Bologna, G. Diambrini Palazzi, and G. P.

Murtas, Phys. Rev. Letters 9, 396 {1962).
~' G. Barbiellini, G. Bologna, G. Diambrini Palazzi, and G. P.

Murtas, Nuovo Cimento 28, 436 (1963)."G. Diambrini Palazzi, Proc. Conf. Photon Interactions in the
BeV Energy Range, Cambridge, Mass. , 1963, p. VI-4.

~3 G. Bologna, G. Lutz, H. D. Schultz, U. Timm, and W.
Zimmermann, Nuovo Cimento 42, 844 (1966).

'4L. Criegee, G. Lutz, H. D. Schultz, U. Timm, and W. Zim-
mermann, Nuovo Cimento 16, 1031 (1966).

at the Tokyo 720-MeV electron syncrotron. ""They
showed also the effect of the collimation on the width
of the peaks, as expected from the paper of De %Pire
and Mozley.

Finally, we consider the works of Cabibbo, Da Prato,
De Franceschi, and Mosco'~ 28 concerning the produc-
tion and the analysis of linearly and circularly polarized
high-energy 7 rays by using very thick crystals. The
conclusions of these authors have not been tested
experimentally until now.

II.PRELIMINARY THEORETICAL APPROACH

A. A Classical Argument

The calculation of the coherent bremsstrahlung and
electron pair production in crystals has some formal
complication. At the end it may be dificult to take
up a simple physical interpretation of the classical kind,
as it is dificult to gather a Gower concealed below a
bramble of thorns. However, it is possible to deduce
some important feature of the coherent bremsstrahlung
by using classical arguments only. As far as the brems-
strahlung intensity is concerned, we shall use a modified
Frisch~ argument. Let us consider two nearest parallel
rows of atoms of a cubic crystal of lattice spacing a
P'ig. 1(a)j.

Let a relativistic electron (speed n) move along a
direction forming a small angle |I with the rows of
atoms. When the electron reaches the atom A (supposed
to be a pointlike charge), it will emit an electromagnetic
wave train which we suppose to propagate with speed c
along the same direction of the electron. %hen the
electron reaches the atom B of the second row, its
distance from the beginning of the first wave train
will be

hl=(C —I) (1/I)

= (1—8)l/P~ (1—P) l~~l/2y'~~l/2E'= a/2E'tl, (1)
where 1=a/(l is the distance A-+B and y= (1—p') —I~'~
E, E being the electron energy in mc' units, Therefore,
in the new wave train emitted in the interaction of the
electron with the atom B, the wave of length X will have
a phase shift Ay =2~(hl/X) .A constructive interference
happens when hy=N2z (e is an integer number) or
hl=eX. By using the relation X =2rr/X, where E is the
photon momentum (units S=c=1), and Eq. (1), we
get

~'S. Kato, T. Kifrne, Y. Kimura, M. Kobayashi, K. Kondo,
T. Nishikawa, H. Sasaki, K. Takanratsu, S. Kikuta, and K.
Kohra, J. Phys. Soc. Japan 20, 303 (1965)."T. Kifune, V. Kimura, M. Kobayashi, and K. Kondo, J.
Phys. Soc. Japan 21, 1905 (1966).

27 X. Gabibbo, G. Da Prato, G. De Franceschi, and U. Mosco,
Xuovo Cimento 27', 979 (1963).

8 N. Cabibbo, G. Da Prato, G. De Franceschi, and U. Mosco,
Phys. Rev. Letters 9, 270, 435 (1962).
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--B

Fro. 1. (a) A-+8 represents the direc-
tion of the incident electron between
taro parallel rows of atoms in a cubic
crystal. (b) P, P' are the incident and
reQected momentum vectors of the
incident and reflected particle (or
radiation) on the crystal; S Sp are the
respective unitary vectors; I P ~=( P' ~.
In the figures, overbars denote the vec-
tors used in the text. (c) The recoil
momentum q=P —P';

~
tl =2p sin 8.

t
t

I
I

I I
$««««««W«« ~«««0 f«« ~
t l
I I

or

Ol

a/2278 = tt (2rr/E )

E/2E' = I (2rr/a) .
Now E=Ep—E, if Ep is the primary energy of the
electron, and so E/2E = (E/2Eps) f1—(E/Ep) 7 '. But
the minimum transferred momentum at the nucleus in
a bremsstrahlung process is 8 =Ef 2Eps(1 —E/Ep) 7 '; so
for E/Ep&(1 (low-energy photons) we get

s(27r/a) 8 E/2Ep' 8 (E/Ep&(1) . (2)

As we shall see, the relation N(2rr/a) =8/8 represents
the exact solution. So we have shown that the relation
obtained by a simple classical I'risch-like argument
gives the right result only when E/Ep(&1.

B. Physical Meaning and Kinematics

Now let us consider in a cubic crystal the Bragg
scattering of a particle beam of momentum y before
scattering, andy' after. We have

( p (
=

~

p' ~. The con-
dition for the coherent reQection from the set of planes
with spacing a is given by the well-known Bragg
condition fsee Fig. 1(b) 7

2a sin 8=v)t or 2 sin 8/)t, =n/a (3)

by remembering that in this case X=1/p is the De
Broglie wave associated to the particles (units in which
h=1), and we may write

2 sin 8/X=2p sin 8=q; I/a =g,

where we mean by q the recoil momentum transferred
to the crystal, and by g a vector in the cubic reciprocal
lattice of a reciprocal basic vector 1/a. Thus the Bragg
condition (3) may be written now:

V=K. (2')

In order to obtain a more general and rigorous deriva-
tion of Eq. (2'), we will now start from the phase
equation

L f(s—sp)/)t7=hmr+hrrs+les, . (4)
here mj, ~, e3 are a triplet of integer numbers describing
the direct lattice, L=nra+~b+esc is a direct lattice
vector, (h, h, l) is the Miller index, and sp, s are unit
vectors along the incident and reQected directions of
the particle beam that interacts with a crystal fsee
Fig. 1(c)7. We remember the condition L (s—sp) =
const, and. so, for constant X, hnr+hes+lms= const
gives the equation of a plane, the so-called reflection
plane, perpendicular to the direction of the vector s—s0
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and placed at a distance d21, 1=Lg&1 ~ 1&j
—' from the

origin, where gp„J, , ~~ is the reciprocal lattice vector per-
pendicular to the plane (k, k, l).

Since L (8—8,) represents the difference between
the path of the beam rejected by this plane and the
path of that reQected by the parallel plane through the
origin, it follows that L.

t (s—so)/Xj is the phase
difference between the beams. But, also, we have
)see Fig. 1(c)$ (s—so)/X=p —p'=q, where g is the
recoil momentum transferred to the crystal. On the
other side we may write

h221+ k222+ 422 (e1a+——n2b+212c) ~ ( a*k+b*k+c*l);

here (a, b, c) and (a*, b*, c*) are two triplets of basic
vectors of the direct and reciprocal lattice, respectively.
In fact from the definition of the reciprocal lattice we
have the following relations:

a«a*=1 b*=c c*=i
a b*=a*.b=c b*=c*.b=a c*=a* c=0.

and with the help of these relations we may obtain (4') .
Thus the expression (3) may now be written as

L q=L.g

where we put the vector g= a~k+ 1*k+c*/ in a general
reciprocal lattice.

Because (5) must be valid for each L value, the
relation follows

(6)

This relation has a more general physical meaning
than (3) or (2'), because in (6) there is no explicit
reference to the parameters of the incident beam. Here
we have only the transferred momentum to the crystal,
whatever the responsible interaction was. So it is
possible, of course in principle, to have interference
eGects for any kind of interaction. But these e6ects
are large enough only if the recoil momentum q is of
the order of the minimum reciprocal lattice vector. Or,
in other words, when the wavelength X, associated with
the recoil q, is of the order of the lattice spacing ~a.
This condition is fulfilled in the bremsstrahlung and
electron pair production at high energy. In these
reactions, in fact, we have A~=i/q„~a. .. where q„ is
the most probable recoil momentum value and a„ is
the screening radius of the atom. In the following we

explain the way in which the interference phenomena
of these two processes may be calculated and under-
stood. Let us consider erst the bremssrtahlung process
originated by a fast electron (momentum P1, energy E1)
in the Coulomb 6eld of the nucleus. From momentum
conservation we have the Ielation q =py

—p2 —K=
p~—y', where y2 is the momentum of the electron after
the emission of a quantum of momentum K, q is the
recoil momentum of the nucleus, and y' is the vector
y2+K (see Fig. 2).

Let us now suppose that the bremsstrahlung process
occurs in a crystal. Then condition (6) imposes certain
kinematic conditions that may be derived, for example,
by using something like the Kwald construction.

For this we may take the incident and "rejected"
vector p& and y', respectively. In Fig. 2 the point 0
represents the origin of the reciprocal lattice, and g is
just a vector of this lattice. For a permitted event of
bremsstrahlung the top of the vector q must coincide
with a point of Fig. 2.

Now we look at the distribution of the q vectors in a
semiqualitative way. From the energy and momentum
conservation laws we may easily derive the order of
magnitude of q~ and q„ the components of q perpen-
dicular and parallel to the direction of y1 (see also
Ref. 5).

The first important quantity to be determined is the
minimum momentum transferred to the nucleus in a
bremsstrahlung event. Let us assume that the primary
momentum y1 (and so E1) of the electron, the energy
of the emitted photon E, and the energy E2 of the
scattered electron (momentum P2) are held constant.
The vector p'=K+y2 reaches its maximum value po
when K and y2 are parallel. In this situation the vector
q, for any 6xed direction of y, reaches its minimum
value qp=y& —yp. The vector qp has its extremity on a
spherical surface of radius Po ——P2+X, as shown in Fig. 2.

When we also take yp parallel to y~ we may compute
the minimum momentum transferred to the nucleus
gp=5. This ls

&=P1-PO=P1-P2-&,

and by remembering

P1,2 = (E1,2' —f) '"—E1,2( 1——,'E1,,—')

we obtain
8 =E/2E1E2 =x/2E1 (1—x),

where x=E/E1. This is also the minimum value for g,.
The order of magnitude of the maximum value of q, is

P
Po- K+ P2

FIG, 2. The Ewald construction for the bremsstrahlung in
crystals. 0 is the origin of the reciprocal lattice. I ~ is the incident
electron momentum vector; P'= K+0m is the "rejected" vector;
q=P& —I" is the recoil momentum, which has the minimum
value q; =b=I'~ —E—I'2,. and K and P2 are the photon and
secondary electron momenta.
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ea,sily obtained by using for 8i+(K, pi) the value
8i 1/Ei, the most probable angle of emission of the
photons, and the small-angle approximation, by which
we have 83=+(p2, pi) 8iE/E2 E/EiE~ (Fig. 2).
Thus, we have

q, =p,—p2 cos 83—X cos 8i~E/EiEg~28.

The minimum value of q~ is 0; it is also possible to
show that the maximum value of qi is about 2 (in our
units this means 2') .

The results are summarized as follows:

+I
(GeV)

1

1

6

6

20

20

0.8
0.3
0.8
0.3
0.8
0.3

3remss.

1.02X10 '
1.09X10 4

1.70X10-4

1.8X10 '
5.1X10 5

5.4X1o '

1 0.2
1 0.5

6 0.2
6 0.5

20 0.2
20 0.5

TABS.z I. Typical values of b.

Pair prod.

1.60X10-3

1 02X10 '
2.6X10 '
1.7X10 4

8X10~
5.1X10 '

8&q, &28

0&qz &2
8 = (1/2Ei) t x/(1 —x) j (bremsstr. ) .

As far as the electron pair photoproduction is con-
cerned, we may use the same procedure as for the
bremsstrahlung, by starting from the momentum
conservation equation

q=K p& p

where K is now the momentum of the incident photon,
pI, p2 are the momenta of the electron and positron
emitted, and q is the momentum transferred to the
nucleus in this process.

Also, for the electron pair production we obtain the
results given by (7), where now the minimum trans-
ferred momentum is

8=+/2E, E,=1/2Zy(1 —y),

where E, E», E2 are the energies of the incident photon
and of the two electrons of the pair, and y=Ei/I . In
the Table I are reported some typical values of the very
important parameter 8. It is seen that the ratio q,/qi
is in the range 10 '—10 '. So we eventually may
conclude that the extremities of the vectors q from
the origin 0 of the reciprocal lattice must lie in a disk-
shaped region of thickness 8, perpendicular and coaxial
to the pi (or K for the EPP) direction, placed at a
distance 8 from the origin. Incidentally, the existence
of a minimum recoil momentum when all the secondary
particles are aligned with the primary beam, gives the
possibility of obtaining a kind of interference eGect
that has no analog in classical Bragg scattering. For
the latter, we have q=pi —p'=0 LFig. 1(a)g when the
two vectors p~p are aligned. This is an interesting
feature of the high-energy interference eGects we are
studying. Let us consider again our disk of the momenta
in the reciprocal lattice space. If we rotate the crystal
each time a reciprocal lattice point enters or leaves the
momenta region, the cross section for the process is
enhanced or reduced. This variation is important only
if the condition 8«

~ go ) =2~/a is fulfilled. In our units
(that is, by measuring the lengths in units of fi/mc=
0.024/2n. X) by taking, for example, a diamond crystal
with a=3.56 L, it will be 2~/a= (0.024/3. 56)(2x/2m) =
6.8X 10 Q)B for most of the values reported in Table I.

Kith an ideal crystal without thermal motion, the
recoil is taken by all the crystal and the transferred
energy E', =q'/2M„vanishes. The approximation used
in the calculation of the cross section of an infinitely
heavy nucleus is in this case an exact approximation.
We may call it a "recoilless" interaction, using the
language of the Mossbauer e8ect. If we consider an
actual crystal with some thermal motion of the atoms
always present, only a fraction fN of the N atoms of
the crystal does not recoil and does produce inter-
ference effects. The remaining part (1—f) N of the
atoms recoils without any interference eGect. The
fraction f is given by the factor f= exp ( —Aq'),
where A is the mean-square value of the thermal
displacement of the atoms given by

A = (3~'c'/4iVZe) $1+4(r/e)1 (e/T) j,
where M is the atomic mass, E is the Boltzmann
constant, 8 is the Debye temperature of the crystal at
the absolute temperature T, and

r —~=-
Tj 8 o

e' —1

is the Debye function.

C. Structure Factors of Some Crystal Lattices and
Qualitative Feature of the Cross Sections

In order to derive the cross section for bremsstrahlung
and pair production in a crystal, as shown by Uberall, '
we have to multiply the Debye —Wailer diGraction
factor by the differential cross section for a single atom
expressed as a function of q. We get

do„„=I~ g exp (iq.L) ~'exp (—Aq')
L

+NL1 —exp (—Aq') 3}a~(a) (7)

We showed before the physical meaning of the term
exp (—Aqm). Now we calculate the Laue —Bragg inten-
sity term

~ gL exp(itl L) ~' for some simple but very
diffuse lattice structures such as simple-cubic (sc),
face-centered cubic (fcc), and diamond lattices. The
simple-cubic structure is important because it is useful
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in order to calculate the other structures. Let us first
consider a fundamental cell, parallelepiped, with lattice
Constants al, a2, as along the three perpendicular axis,
and so let L=n~a~+~a2+eaaa. Let Nr, N2, Na, be the
number of cells along the directions of al, a2, a3, thus,
by putting

q' Ri=glCl Q R2=q2~, q Rs=gea3,

we have

¹

exp (iti L) !' = ! g exp (ingqgug)
fQ ~np, n3

=!Lexp (iN~q~«) 1]/!:exp (iq~u, ) —1]!'

N3

X!Q exp (ie2q.ug) !'!Q exp (iegqgua) !'. (8)
n3=1

Now, a short mathematical digression: We have

! Z exp (iN&q&u&) !'

we may write, by introducting the Dirac b function,

sin' —,
'

(N~q~u~) /sin' —', (q~u~) =CbL(-,'q~u~) —km]

= (2C/«) SLY—(k2~/ug) ].
(10)

The normalization constant C is found by integration
through the h=0 peak:

x/2

C= Cb(-', q&u&) d(-', q&u&)—x/2

~' sin' Ng2(qgu))
d(28«) .

—/2 sin 2 (qlul)

By putting lV&q&u&/2=@, always because N& is very
large, we obtain

+~ Sin' h
C=Al Ch=mSl. (11)—CO

By substitution of (11) m (10) and of (10) in (9), we
get

= sin' -'(Ngqgug) /sin' -', (qx«) . (9) ! g exp (iejqzu&) !~ = (2'r/u&) N&bLq&
—k(2'r/ug) ].

ng 1

but, because Nz is a very large number, this is a very By substitution in (8) of this result for the three
peaked function for q~u~/2=km (k=0, 1, 2, ~ ~ ~ ), and indices, we eventually obtain

Z exp ('q'L) !' =L(2s)'/u~u2u3]N~N2NIZ~! q~
—k(2~/u~)]bEq2 —k(2~/u2)]bLq3 —i(2~/u3)]

nJ gnggn3

=L(2~) '/&]N Q & (qg
—khan') & (q2

—kbm') &(qa —lb3') ) (12)

where h=ui~a3 is the volume of the fundamental cell and X&X2S& is the total number of cells in the crystal that
may be expressed as a ratio of the number of atoms X in the crystal to the number v of atoms in the cell. In
our case N~1V2N& Nbecause v=1——(one atom at each corner of the parallelepiped).

The previous expression represents the diQ'raction factor computed by respect to the main axis of the cell,
a~! 100], a2L010], agL001], where! k, k, l] are the Miller indices of the axis (or of the plane perpendicular to this
axis). The prime on the b; indicates this choice. But we may choose another triplet of axes characterized by
the Miller indices h;, k;, l; for i = j, 2, 3. In this case we must put

/k2 k2 $2 )-1/2
b = 2''/dying where dye~ =

!
—+ —+ —

!
~32]

is the distance between the plane (kkl) and the origin. If we impose the further restriction u~
——u~

——u&=u (con-
sidered for a cubic cell), we have the more simpli6ed relation

d =u/(k'+k'+P)"

for example, if we choose the axis! 110],L001], L110],we have b~ (2s/u)v2=bs, bg=——2n/u Thus, a more g. eneral
expression of (12) is

exp(ie L) !' =L(2~)'/~]N Z b(8—e) b(q~ —
g~) b(A —Ka), (13)

n1,ng, n3 gl rl72tg3

where gl=hlbl, g2=h262, g3=hsbg, and hl, h2, h3 is a new triplet of integers.
Now let us calculate the Laue —Bragg term (8) for a face-centered cubic (fcc) lattice. Such a lattice may be ob-

tained by summing up four simple cubic lattices, three of which are translated with respect to one-fourth of the
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quantities (-'„-',, 0), (0, -'„-',), (-'„0, -', ). By writing L=a(e&i+~j+nmk) (with i, j, k versors), we have

F&.,=P exp (iq L) =g exp (iq L)+P exp {iq [L+-',a(i+j)]}
fee

+g exp {iq [L+-',a(j+k)]}+Pexp {iq [L+-',a(i+k)]}

=g exp (iq L) {1++exp fiq ,'a-(i+j)]++ exp fiq —',a(j+k)]++ exp fiq —',a(i+k)]}. (14)

We know that the reciprocal lattice of a simple cubic lattice of side a is again a cube of side 2m/a. So, the condi-
tion q=g gives q= (h2mi/a) + (k2~j/a)+ (12m k/a) . By substitution in (14) we obtain

F& =[+exp (iq L)]{1+exp [i2+', (b-+0)]+ exp [i27r ', (0-+t)]+ exp [i2m-', (b+f)]}.

The second factor may be called the structure factor of the face-centered cubic lattice. The expression

~ P., exp (iq L)
~

is given by (12) or, if we choose an arbitrary triplet of axes, by (13), and in this case instead
of (h, k, i) we have another triplet of integers (h~, h~, hm).

The structure factor of the diamond lattice may be obtained by summing up two fcc lattices displaced along
the diagonal by (-,', -4, x~) . Thus, we have for the displaced cube

Fq„' +exp ——{iq [L+~a(i+j+k)]}=fP exp (iq L)] exp fiq ~a(i+ j+k)]=Fq~ exp fi(m/2) (h+k+l)],

and for the diamond lattice

Fg;,=Fr +Fg„' Fg„{1+e——xp fi(m/2) (b+k+f)]}.

By remembering (13) and (15) and by supposing an arbitrary choice of the reference axes, we obtain for the
intensity factor for the diamond

) pe"p (iq L) )' =[(2m)'/5]8N [ S )' Q b(Vg —fg)b(8 —
gg) (Vg

—fs),

with

S={1+exp [i2~', (h~+h-~) ]+ exp fi2~-', (h~+h3) ]+exp [i2vr& (h~+h3) ]}{1+ exp fi(~/2) (h~+b&+hs) ]}. (16)

We call
~
S ~' the structure factor of the diamond

lattice. This factor diminishes or increases the contri-
butions from some points (or rejections) of a simple
cubic lattice. Now we have v=8 atoms in the funda-
mental diamond cell.

There is evidence from (13) that the interference
part of the cross section increases when the volume 6
decreases with respect to the incoherent part. For
example, the ratio 6„./hq;, for silicon and diamond
crystals is about 3. It is also important that the thermal
motion amplitude A be as small as possible, or the
Debye temperature 8 as large as possible. For diamond,
6=1870'K, 3=126; and for silicon, 8=645'K, A=
282, all values at room temperature (T=293'K) .
Thus a diamond crystal shows a larger interference
cross section than a silicon crystal.

In order to derive the semiqualitative features of
the interference effect we may choose a certain crystal
lattice and then calculate, using (16), the reciprocal
lattice and eventually represent in this space the recoil
momentum vectors.

I et us choose a diamond lattice. Now the following
case is considered. Let the primary electron (or photon)
momentum p~ (or K) make a small angle 0 with the

~ ~ ~ 002 i12 222 332

~ ~ ~ ~ ~ ~ ~ ~ ~ 00i ili 22i 33i

830 220 li0 000 il0 220 330
f110]=b,

E ~

~ ~ ~ ~ ~ e ~ ~ ~ 00$ ~ ~ ~ ~ ~ ~ ~ ~ ~

002

axis [110]=bq. Thus, we are interested in knowing
the 6rst reciprocal lattice planes normal to this axis.
In fact, the main experimental measurements used this
orientation in order to obtain larger-spaced reciprocal
lattice points. As in the previous example, for the axis
[110],[001], [110], the spacing is b~=b~= (2'/a)v2,
br 2~/a. ——

Thus, we obtain the reciprocal lattice plane [001],
[110] through the origin (000) (h~=0) and through
the (110) point (b&

——1) by using in the structure
factor (16) the triplets of integer numbers:

[001]=b3 l
~ ~ ~ PQ3 ~ ~ ~ ~ ~ ~ ~ o ~
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different from that of the Uberall paper. We have seen
that the crystal allows only those processes in which the
recoil momentum has some de6nite value equal to the
vectors of the reciprocal lattice (g;=g,).We begin from
the bremsstrahlung and compute the cross section do. for
the total intensity for a single atom as a function of q
and compute the polarization of the p-ray beam by
reference to the plane (pt, tl) determined by the direc-
tions of the incident electron and of the recoil momen-
tum. After this we are ready to sum up the cross
sections over all the points of the reciprocal lattice in

order to obtain the coherent part of the cross section,
Gnally adding the incoherent part.

We start from the differential cross section for
bremsstrahlung, linearly polarized, that has been com-
puted by May" using the Born, small-angle, and
high-energy approximations. This expression is the
cross section for production of a photon of momentum
K at a hxed direction, with the polarization s and the
momentum p2 of the scattered electron at fixed direc-
tions. The May" cross section, by neglecting a second-
order q' term, is

d o'sr = (o'p/x' )F(q ) (Eo/EEt) 4Et Es dE8td8t8sd8s@t@sI (A cos M+8 stn a&) +CI,

where, in May's notation, the coefBcients A, 8, C, are defined by the following expressions:

A = [Es8s cos q/(1+8$ Es )] [8/Et/(1+8PEP) ];
8=Es8s sin P/(1+8s Es');

C=Eb[(8PEP+8s'Ess 28t8sEtEs —cos $) /2 (1+8t'EP) (1+8 'EP) j
and

os ——(Z /137) (es/mc')'=0. 5794)&10 'rZ cms

F(q') = atomic form factor,

b =E/2EtEs = minimum recoil momentum of the nucleus.

(17)

The variables used in these relations are (Fig. 7)
+1p p&, Z2, p; E, K: energy and momentum of the
primary electron, of the scattered electron, and of the
emitted photon. q=p~ —pg —K: recoil momentum of
the nucleus. 8t= gptK; 8s= +psK: angles of the pri-
mary and scattered electrons with respect to the photon
direction. pt ——g(pt, K) (bt, K); g=g(ps, K) (bt, K):
azimuth of the plans of the primary and scattered
electrons (through the K direction) with respect to the
(bt, K) plane, where bt is an arbitrary fixed vector.
p =ps —pt ——+ (ps, K) (pt, K): angle between the planes
(through K) of the primary and scattered electrons
directions. co=/(pt, K)(e, K): angle between the
planes of the primary electron and polarization (always
through K) .

It is important to measure the angle with reference
to the direction of the incident electron for experi-
mental reasons. In fact we have to use the well-colli-
mated electron beam of a high-energy accelerator by
integrating over the emission angle of the photons.

FxG. 7. Graphic sketch for
angle definitions in the brems-
strahlung process (see text).

As the next step, we express the cross section through
the three components of q or equivalent variables.
Also, we want to refer the polarization plane (e, pt) to
the plane (ci, pt). For these changes, we use a new set
of angles (see also Fig. 8):

8s= +p4 ps'

81 4K pt

8s= %ps, K;

4=4(K pt) (bt pt) '

A=4(p, p)(b, p);
4 =A—@=4(p., pt) (K, pt);

~'=4(pt K)(e, pt);

7=4(e, pt)(K, p);
v =A+v=4(a, pt) (bt, pt)

In a good approximation we may take co=co'. In fact
the cosine of the angle between two unitary vectors
nt, ns normal, respectively, to the planes (e, pt) and
(e, K) is given by

cos (nt, ns) =[(expt) ~ (e x Z) j/~ s xpt ~, (18)

where 8, p~, X are unit vectors along the directions of
a, pg, K.

By reference to Cartesian axes x, y, s, by taking the
axis',.'s 'along p&, and by taking in account sJ K, we may
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These coeKcients are

+1~1

1+EI2822

E2 (OI—83 cos f)
D

E283 sin f
7

FIG. 8. Graphic sketch for angle de6nitions in the brems-
strahlung process. The plane of the drawing is perpendicular to
the @ direction (momentum of the incident electron, see text).

obtain from (18)

COS (nI, n2) = COS OI/(1 —e,')'"

beCauSe 822~0 2~1/EI2
The erst step is the change of the variables 02—+83,

~P that operate the transformation from the May
cross section (17) to the following new expression, in
which all the angles have reference to the p~ direction:

d o0 (o'0/2r )F(q ) (E2/EEI) 4EI E2 IfxgjdgI83d83@1@3

E'OI'+E2'832+2EE28I83 cos pO'=K&
2 (1+EPHI2) D

where

D= 1+E2 81 +83 E2 2E2 8381 COS f= 1+E2

)((OI2+832—2838I cos f) .
The second step consists in changing the variables

again in order to obtain for (19) an expression as a
function of 8~ and of the three components of q or
three other variables directly depending on those. It
is convenient to use the quantities 0&', q„q~', p, where

q„q~ are the components of q parallel or perpendicular
to the p~ direction and p is the azimuth angle de6ned
as before.

Thus, for this aim we must make the change

(OI, 83, QI, f3)—&(u2, q., qi2, y) .

)( I (g cos ~++~ srn ~) 2+CII (19) It is convenient to put u=XOI, e=E283, and to use
the relations'

We may obtain the new coefficient A', 8', C' by using
the relations

82'=Or'+8 '—28I83 cos f,
82 cos Q=OI—83 cos tj/,

82 sin / =83 sin f.

0'=2E2(q, 8) —(E2u2/—E),
ue cos P=-2, (qi2 —u' —02)

=-', (qi2 —2E2(q.—8)+t (E2—1)/E/u2}. (20)

For substitution of the diGerential factor we have to
use the Jacobian

Z=
~
8(g„g„y„y3)/a(u', q., qi', q ) ~

= (4Eu202 sin f)—'

=$2Eue(au'+bu'+c) "'g

where a= (EI2/E2); b=2L(e/8)+ (q3.'—1)g; c=2E2(rf —8); rf =q,—(qL2/2E2); e=q, —(q32/2EI).
After these substitutions we obtain from (19) the expression

d3o3 (00/42r) ——F(q') L16EI2E2'/2E3EI(au'+bu'+c) I~2)f(2" cos oI+8" sin oI) '+C"gdEdu2dq, dqi2dq (21)

where 3",J3", C" are functions of the new variable. But this is always the cross section for bremsstrahlung of a
photon with the polarization vector e making an angle 0& with the emission plane (K, pI) .

Instead we want to obtain the two cross sections for emission of a photon with the polarization vector parallel
and perpendicular to the plane (il, pI) .

From Fig. 2 we see that we may take co= —y (thus, cos co= cos y, sin &0= —sin p) for d'o~
~

and oI= 22ry (thus,
cos a&= sin p, sin co= cos p) for d'o 3.. After substitution in (21) we may eliminate sin p, cos p by the relations

sin y = (v/q3. ) sin P; cos p = (u+ 0 cos lt ) /qi;

and again by the relations (20) .
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Eventually we obtain

gp 1
2 l2 E12 -b n2k1 2E—E2

d"o~
~ (q, yi) = — F(q') (au'+bu'+c) '" — —qi' —2E,,(q,—8)

~4& 2E1E' qj.92 ~ X E )

KP,Ei, . l ' 4EiEpK4bqi'
u' —+q" 2E—,(q, 8) —

~
dEdN2dq, dqi2dp,

K2+ Eipup K ] (K2+Eipup) p

d' oi(q, yi) = (op/4/r) F(q') (2K'Ei)-'(au'+bu'+c) '"
(22a)

EP b K' &', , 4EiEpK48qi'

These formulas are cross sections for emission of a photon with its polarization vector parallel or perpendicular
to the plane (q, yi) at the angle 8i u/E. ——But for experimental reasons we need an integration over the angle 8i
or I'. It is convenient to obtain the integrations

dOy= do~t dog

P,d'ag —— d'ri —d'0
) (,

Q2

(23)

where Pp=[(d'oi d'ou)/(d—4oi+d'o~~) 7«, pi& is the polarization of the whole bremsstrahlung cone related to the
plane through the recoil momentum of the nucleus and the incident electron direction. It would be possible to
derive the first of (23) directly from the differential Bethe and Heitler cross section, as Uberall did in his paper.
It is possible to integrate (23) analytically by appropriate change of variable. The results are

op E 1 {1+pb) q J.'+ 2 p+bql. '

=op([1+(1—*)'7F,——;(1—x) F,}dq, dqi'dq dE, (24a)

( 2+482 ~2) 1/2 p ( 2+ 482 ~2) 1/2 [( P+4b2 2)371/2

where
~~o'p2(1 —x) Fpdq, dqL dqrdK,

x=K/Ei,.

Fi= (2~)-'F (q') (bq"/q')

Fp = I6b'q" (q*—8) /2~[F(q') 7 'q*4}

F,= —[b'qi'F (q') /2m q,47 =—F&(5'/q. ') .

(24b)

Thus, we may derive the interesting value

Pp=[(d'o~ —d'oil)/(d'o~+d'oil) 7

= —2(1—x) Fp/I [1+ (1—x)'7Fi——,'(1—x) Fp}

2(1—*)8'/q.

[1+(1—x) '7—4(1—x) (8/qP) (q,—b)
(25)

This expression represents the polarization of photons
with fractional energy x, emitted when the recoil
momentum of the nucleus has components q„q~. Since
the polarization is computed with respect to the plane
(q, yi), the angle y does not appea, r. The photons are
polarized in this plane because of the minus sign in

(25). It is easily seen that for x~0 (very low energy
photons) we have 0.5& P,& 1 for —B&q,&25.

Now let us consider the case of the bremsstrahlung
in a crystal. %e may choose a certain crystal orienta-
tion by which the intersection of the pancake surface
with the plane through (h=0) passes through only a
point of the reciprocal lattice. This is actually possible. "
In this case we have q„=b and. (25) becomes simply

Pp, ———[2(1—x) /1+ (1—*)'7 -1. (26)
~~p

This is the polarization value with respect to the plane
(yi, q), when we take in account only a point of the
reciprocal lattice and the coherent part of the cross
section only just at the peak (q, =b) of the brems-
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strahlung intensity. A surprising property of (26) is its
independence from all the parameters except x. This
means that, under the limitations listed above, this
polarization value is independent of the crystal struc-
ture, of the

~
tl

~

=
~ g ~

value chosen, of the atomic
number Z, and of the crystal temperature.

The total number of photons JVi+JVu is different,
but not the P„v al ue given in (26). Also, if we obtain
the contribution of only a point of the reciprocal lattice,
as far as the experimental conditions are concerned, we
have always a contribution of the incoherent and un-
polarized part of the cross section which depends on
the above parameters. In any case it is important to
know that the expression (26) represents the theo-

retical maximum value available for the polarization
of the bremsstrahlung in crystals.

Now we proceed to calculate the general and com-
plete expressions for the intensity and polarization in
crystals.

As we have seen in Sec. II.C, Uberall has shown
that the condition q=g;, the thermal eBect, and the
weight of the contribution to the bremsstrahlung or
pair production from each single point g of the recip-
rocal lattice may be taken into account by using the
diGraction factor and integration over the all q values,
for all g values. So, by putting the expressions (24a),
(24b) into Eq. (7) we obtain for the intensity and
polarization of the bremsstrahlung,

da;„-= (o 0/E) (2s/a) 'EgX2/gg
~
5 P 8(g—g) exp ( Aq') o (—rf) dqi'dq d(pdE

+XfLl.—exp ( —Ag')7~(q)dq 'dg. dqdZ=du;+d .,
q

(27)

where
~(rl) =L1+ (1—x) 'gP, ——;(1—x)P,.

For the polarization we get

(d0'J. do~~) =Pdoc»= (00/E) 2(1—x) (2'/a) 'tV&1V21V3+
~

S p B(tl—g) exp (—Aq') cos 2y'F3dq dqi'dq dE. (28)
g q

We see (27) splitting into two terms; that is, do„~=
da;+do;, the 6rst of which represents the coherent or
interference part of the cross section, and the second
one represents the continuous or amorphous part,
dependent only on the temperature through A.

The value for do;, computed in Uberall's paper, '
gives

do. = (oo/E) I )1+(1—.x)'gfg. —-', (1—x)$2, I dE; (29)

in the complete-screening approximation (BP((1) the
functions are

P„=2)2 ln P+(1—D) snE, (—D)+2),
$2, ——2L2 ln P+ (1+D)s E;(—D) +g,

Co g
—4

P=111s '" D=AP ' E (—D) =— —dt. (30)

b3

b2 b2

P)

6)

These functions, upon fixing the temperature, crystal
(that is, A), and atomic number Z (that is, P), are
constant. In (28) the continuous part disappears
because

cos 2y dp=0.
0

Now we consider the polarization with respect to the
plane (p~, b~) (which we call the incidence plane)
instead of to the plane (g, pq) (recoil plane). We call
q' the angle between the two planes, and so we have
y'=y —0. )see Fig. 9(b) $, where n is the angle between

FIG. 9. (a) The case in which the incidence plane is coincident
with the crystal plane, or (b1', b&') =—(p1, b1'); the primes denote
the special case we have chosen. (b) General case for which the
plane (p1, 11) makes an angle a with the plane (b2, b~). In both
&gures gp=gp'= (g2+gg ) 2 qz. The vertical hatched line is the
intersection with the plane (y1, b1).
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the crystal plane (b&, b&) and the incidence plane, and p
is the angle between the recoil plane and the crystal
plane (bq, 12). In doing so we take the vector bq~

(Fig. 8) in this crystal plane. In order to understand
the reason for the factor cos 2y' in (28), we remember
that if Po, P are the polarizations of a beam of particles
with respect to two planes mo, m, making an angle y' in-
between, then the following relation holds: P=PO
cos 207 .

As far as the interference part of the cross section is
concerned, the 6rst integration in (27) and that in (28)
consists in evaluating the integral

8(q&—
g&) 8(q,—g2) 8(q,—g,) F& exp ( Aq') d—q,dqi'dp

(31)

and two others for Ii2, Ii3 cos 2q' functions. Here
q&, q&, q3, g&, g&, g3 are the components of the recoil
momentum and of the reciprocal lattice vectors along
the axis b~, b2, b3 of the lattice. In the erst Uberall
papers' ' an approximation was used in which the lattice
planes perpendicular to.the b~ axis were considered as
continuous planes. This corresponds to taking as the
Dirac function b(q —g) =b(q& —

g&) and integrating con-
tinuously over q2, q3. In the experimental research of
the Frascati group, it was shown that this approxi-
mation does not work for 1-GeV bremsstrahlung and
that it is necessary to take into account the actual
structure of the lattice. In this way higher polarization
would have been available at the top of very large and
sharp peaks in the bremsstrahlung spectrum.

After this the intensity and polarization were com-

puted and measured'4 "'~'~" at Frascati. A contem-
porary calculation of the polarization has been com-
puted by Uberall. ' In the following we show the
calculation of the intensity and polarization by using
the complete Dirac function

b(q g) b(q1 gl)b(q2 g2)b(q8 g3) ~

In order to perform the integrations (31), with the
help of the Dirac functions, we have to express q] qQ q3

(in the arguments of the Dirac functions) through the
variables of integration q„q&', y.

Also, we have to introduce the fundamental "inci-
dence angle" 0=+(p~, b~). Since 0 ba„~ this is a small
angle, and so we may put sin 1~8, cos 0 1.

For this, we proceed through a two-step process.
First, suppose the crystal plane (b2, b&) is coincident
with the incidence plane (p~, bq). From an inspection
of Fig. 9(a) we obtain

q, =q&'+eqp', qi'=q2'2+qa",

c» 2v '= (q2"—qa")/(q2"+q~")

cos p =q2/(qg +q3 ) ~q2/q&s ( 2)

where the primes indicate the special condition chosen.
As a second step, rotate the reference axes (bq', bm', bq')

of Fig. 9(a) by an angle n around the axis b~'. We
obtain the new axis b~' =—b~, b2, bq of Fig. 9(b). The old
coordinates as a function of the new axis are

qg =qy, q2 =q2 cos tx+qs slI1 cx,

q3 =q3 cos n —
q2 sin n.

Thus, the expressions (32) become

q, =q~+8(q2 cos n+qs sin n), qi'~~q22+qam,

cos 2p'= cos 2(q —n) =
j (q22 —q32) /(q22+ q32) ]cos 2n+2 sin 2nLq2q&/(qP+q32) j,

cos q'= (q2 cos a+qs sin n)/(qP+qP)'I' (33)

By using (33) and the properties of the Dirac functions we obtain

'5(qg g$) b(q2 gQ) b(qa g&) =8 sin 2—y'8{q,—{8(gg cos cx+gg sin n) +gpss j

Xb(cos 2p' —{L(g2'—gP)/(gP+gP) g cos 2m+{ g2ga/(gP+gP) j2 sin 2nj)5{ qi' —(gP+gs') j. (34)

To complete the integration, it is su6icient to make (multiplied by 2) the following substitutions in the functions:

q*~P(g c» +g»'no')+g~3 q
' (g'+gi')

cos 2y'-+{ (g22 —gP) cos 2a+g2gs2 sin 2ng/(gP+gP) .

We summarize the results for the bremsstrahlung cross section and for polarization'.

da„,&'&/dK = (da;/dK) + (do;/dK)

=( o/K) {E1+(1—*)'j(6+4 ) —l(1—*)(@+A.) j

P(dao, y+~/dK) = [(daJ/dK) —(do ( [/dK) .j.,y
= («/K) 2(1—*)A.
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Putting 8=4(1Vj&/N) L(2m)'/u'j, the functions P, are

fi=BQ
~
S P exp (—Ag') F(g') 8(goo+go')/L8(go cos n+go sin 0)+gi7',

68+
~
S (' exp ( Ag—') P(q') P(go'+go') L8(go cos n+gi sin e)+gi—8$/$8(go cos a+go sin a)+gi7',

Po =2lg
~

S ~' exp (—Ag') F(g') O'P(goo —goo) cos 2m+ sin 2ngogog/L8 (gm cos ++go sin n) +gig'. (36)
8

We remember that g;=h;(2m/d;) (h, is an integer number) and the sums in (36) are extended over the triplet
g(gi, go, go), under the condition g,&8; that is,

gi+ (go cos n+go sin a) 8&8.

The functions (36) may be simplified by using the approximation of considering as effective only the first
plane of the reciprocal lattice and by choosing the orientation of the crystal represented in Fig. 9(a).

In this way we have gi ——0 and a=0. The gi ——0 approximation is justifmd by the g, ' or g, 4 dependence of (36) .
Thus we get, after putting r =8/8,

xi'(r) =I'VE I
S I' exp ( Ag') F—(V') (g'/go'r') =Pi'8

gSigs

» (r) =6BZ
I
S

I exp ( Ago) F(q ) (g /go r ) (rgo 1) =goo—8
02)g8

»'(r) =&Z
I
S I' exp (—Ag') F(~') (go' —go'/go"') =A'8, (38)

Smudge

where the index (0) indicates that the xo functions are related only to the plane gi ——0. For bremsstrahlung in the
range of 1 GeV or more, the contributions of the planes gi ——hi(2'/ai) for hiQO are completely negligible. The
condition (37) now becomes go))1/r.

The polarization I' of the coherent bremsstrahlung with respect to the incidence plane (pi, bi) may be derived
from (35b). We get

I'= 2(1—x)Po (38')
D+ (1—*)'j(@+A.) —

o (1—*)(@+A.)
Let us suppose again that fi, 1to, 0, corresponding to a high Debye temperature and a low crystal temperature,
and that only the point of the reciprocal lattice g'= gi'+g2'+go' be effective. Also let us consider the polarization
value just at the top of the corresponding peak, by which we have q, =8 or

gi+(go cos n+go sin n)8=8.
Under these limitations we have

2 (1—g) fgo'o go'o —2go'g, ' . 2 (1—x)

For p'=qr —a =0 this expression reduces to (26) .

(39)

B. Electron Pair Production in Crystals

Calculation of the coherent electron pair cross section
may follow, step by step, the same procedure as for the
bremsstrahlung case.

Let us suppose an incident polarized photon beam of
momentum K is hitting an amorphous target. Let us
call s the polarization vector normal to the photon's
direction and consider only those electron pair produc-
tion processes in which the recoil momentum has the
same well-dehned value q. %e can express the May"
cross section, as in the bremsstrahlung case, as a
function of the variables gi', q„q, p, where now

q~, q, are the components of q perpendicular and
parallel to the K direction, y is the angle between the
(K, q) plane and a fixed plane, and P is the angle
between the polarization plane (z, K) and the recoil
plane (q, K). If we put, in this expression, P=0 ore/2,

we obtain for the corresponding cross sections 0~~ and
O.i two expressions similar to those in the bremsstrah-
lung case. The results concerning the sum and di8erence
are

d'~ii+d'~. =~oILy'+(1 —y)'jFi+2y(1 —y) FoI

Xdg zdq~2dgdg,

d'o
~~

d'n~ = ~—o2y(1 y) Eodq, dg~'dpdy. —(40)

Here, y=E+/Z is the ratio between the energies of one
electron of the pair and of the photon producing the
pair. The functions Ii~, Ii2, F3 are exactly the same
functions we have seen in the bremsstrahlung case,
(24). But now we have B=t 2Ey(1—y) $ '. Since the
second (20) is always negative, it follows that the
cross section for emission of electron pairs is higher
when RJ qL than in the case when R

~~ qi. As in the
bremsstrahlung case, we now consider the electron pair
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production in a single crystal. As before we consider
first that only a point of the lattice be effective and
that there is no contribution from the incoherent part
of the cross section (no thermal vibrations at all).
Then, we may write immediately the asymmetry ratio
R~ for the electron pair production in a crystal under
the previous restrictive conditions; that is,

~or =L (d'o
l I
—d''ri ) /(d'o'l l+d'~x) 7(o~.K)

A

6.10 .

3

2y(1—y) Fs

Ly'+ (1—y)'7Pt+2y(1 —y) P,
(41)

This asymmetry ratio is computed with respect to the
plane (K, tl) . Also in this case, if we consider this ratio
in correspondence of peak of the EPP cross section, in
which g, =b, and thus F2=0, Fj.=F3, we obtain

y(1—y)/I y'+(1 —y)'7=1 for y=-', .

The conditions in which these asymmetry ratios are
valid are much more unrealistic than in the bremsstrah-
lung case.

It is interesting to k.now, in any case, that the
existence of an asymmetry ratio in the high-energy
EPP allows us in principle to use a crystal as analyzer
for measurements of the polarization of high-energy
photons. We now derive the general expression for the
cross section of the EPP in a single thin cubic crystal.
Let. us have a high-energy photon beam of momentum
K linearly polarized in the direction a and striking the
crystal at a small angle 8 (&0, 1 rad) with a reciprocal
lattice axis b~. Let us call q the angle between the plane
(il, K) and the plane (bs, bi) t see Figs. 9(a), 9(b) 7.
If we proceed exactly in the same way as in the brems-
strahlung case, we obtain

&o ii
—&o i =o'o2y(1 —y) A(8, &, rr) ~y,

&~ii+ &« = I gy' —(1—y) '71St(8, ~, ~)+Pi'(8) 7

(42a)

+ y(1—y)Bs(8»~)+A'(~)7I«dy (42b)

where the functions fi, fs, Ps and fi', P" are given in
(36) and (30), and where 8=f2Ky(1 —y)7 '.

C. Some Numerical Results

In order to obtain numerical results it is necessary
to choose an actual crystal. Only crystals with a dia-
mond lattice were used in the experiments performed
until now, i.e., germanium, silicon, and diamond. We
show examples related to diamond crystals extensively
used in the experiments on the high-energy coherent
bremsstrahlung by 1- and 6-GeV electrosynchrotrons.
This choice was made because the diamond lattice has
a high Debye temperature 8=1860'K, and thus a low
value of the quadratic thermal displacement A = 126K.',
and a relatively small lattice constant a =922K,=3.56 L.
We need to take an explicit expression for the form
factor of the carbon atom. For a 6rst approximation
it is sufhcient to take the SchiG exponentially screened

o)
%)~] ' ~
fl jll ./jl) I.

-2 ~ . ~

50 100 150 200 250 &
FIG. 10. Numerical values of the functions xP ( ),

x20(- —-), xP= (—~ —~ ), versus r=gJB. The incident electron
momentum pi lies in the L110]$110] plane; that is, a=or/2
(exponential screening) .

model of the form factor; that is, F(g') = (P '+g') ',
where P=1110(s 'I'. This model was used in all the
6rst calculations of the Uberall and Frascati staGs.
Some more sophisticated models have been used in
more recent work. "'4" The following results are
presented.

Figure 10: The functions Xis, Zse, use given by (38)
are reported versus r=8/h. The incident particle's
momentum pi lies in the plane L1107/1107. Only the
plane through (hi ——0) is taken into account. Exponential
screening is used. This is essentially the situation of
Fig. (3).

Figure 11:The same functions are obtained as'in Fig.
10, but the momentum pi now lies in the plane I 1107
$0017. These curves are obtained by substituting gags
in (38). For r=146 (Fig. 11) there is a sharp discon-
tinuity due to the row of reciprocal points nearer to
the origin. In a situation in which this discontinuity
appears, the conditions 8i=146Lx/2E, (1—x) 7 and 8i=
146(1/2X) t 1/y(1 —y) 7 must be fulfilled: For fixed x
and y values the angle 8& decreases when the primary
energy increases.

Figure 12: A bremsstrahlung spectrum and polariza-
tion is shown at ED=5.5 GeV, 8=8, 18 mrad, calculated
with exponential screening (solid line) and with a
Hartree-type model (dotted line) of the form factor."
The orientation is the same as in Fig. 11.As was shown
in the previous sections, higher polarization values
could be obtained by choosing a crystal orientation by
which only a point of the crystal lattice is effective. A
Desy group of physicists" showed that this goal is
reached by choosing a very large angle 8 and by
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FIG. 11. The same as Fig. 10, but now the p1 vector lies in the
plane L'110$LOOij; that is, o.=0.

rotating the crystal by an angle o. around the y& direc-
tion.

Figure 13: The functions 5/I, hifs, de, are shown as
given by (36), obtained for n=13' 26'. For 7 =226 we
have the main peak of gt, gs functions which give, in
the 1-GeV bremsstrahlung spectrum, a peak at x=0.150
with 75% maximum polarization, mainly due to the
point h1 =h2=0, h.„=2; that is, the second point along
the L1101 axis (see Fig. 4). Bremsstrahlung spectra
and polarizations of this kind are shown in the next
section, together the experimental results.

first may be accomplished in two ways:

(a) By measuring directly the photon energy by
converting it in electron pairs inside a good magnetic
spectrometer, or

(b) by measuring the energy E of the recoil electron.

In fact E=EO—E—E„but the very small energy of
the recoil nucleus E,=q'/2M may be neglected and the
primary energy Eo is the usually well-known energy of
the electron accelerator. For circular accelerators with
an internal electron beam and a large duty cycle, the
solution (a) is convenient. In fact the large duty cycle
allows measurements with good statistical accuracy,
low accidental counting rate in electron-positron coin-
cidences, and high-energy resolution. On the other hand,
if there is only an internal electron beam, it is dBBcult
to pick up the recoil electrons from a crystal placed
inside a straight section. On the contrary, when external
electron beams and short duty cycles are available, as
in the linear-accelerator case, the method (b) could
possibly be used. Because of the short duty cycle both
methods of measurement require some reduction of
the bremsstrahlung intensity, i.e., of the crystal thick-
ness or of the electron beam intensity, or of the con-
verter thickness and detection eKciency.

The Frascati measurements and those of other
1aboratories have been carried out until now by the
electron pair conversion method only. The primary

20.

0,8

Figure 14: In Fig. 14 the ratio

E,= (do (( do L) /—(do ((+do L)

Lgiven by (42a) and (42b) ] is shown as a function of
the angle 0, together the electron pair production cross
section values for X=3 GeV, y=-,', and +=0.

IV. MEASUREMENTS OF COHERENT ELECTRON
PAIR PRODUCTION AND HIGH-ENERGY

BREMSSTRAHLUNG CROSS SECTIONS

O.
'2

~ r(X)
120.

100.

80.

0.4 0.6 1.0 X

—&(X)---. I (X)/10X
-----

& (X)
"——I (X)/10 X

The next section deals with the experimental problem
involved in the measurements and exploitation of the
coherent HEB and EPP. Let us consider first the
measurements on the unpolarized bremsstrahlung and
EPP cross sections. The main task is the measurement
of the energy dependence of the bremsstrahlung and
EPP cross sections for fixed angle of incidence 8 and
the 8 dependence of the cross sections for fixed photon
energy E.

Mainly in the bremsstrahlung case high-energy reso-
lution is needed, of the order of few percent in AX/E,

'

and also an accurate measurement of the angle 8. The

40-

20. r grr~ ~ r

0.2 0.4

«rL L

0.6 08 1.0

FIG. 12. Bremsstrahlung spectrum and ploarization at +=5.5
GeV, 8=8.176 mrad, computed with an exponential form factor
(E-Pot.) and with a Hartree-type model (H-Pot. ) of the form
factor (see Ref. 23). The vector pi lies in the plane L110)L001j;
that is, a=0. Only the plane through h1 =0 is taken into account.
The values gq'=14.60, Ps'=13.90 are used. (Courtesy of G.
Bologna. )
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electron beam divergence and Coulomb scattering in
the crystal target befoxe radiating causes a spread in
the values involved in each bremsstrahlung process.
I.et us suppose we have a pointlike radiator and an
infinitely narrow collimation angle e, or, experimentally,
n,«ns=mc'/E. , where o.s is the "natural" angle of the
bremsstrahlung. Then the parent electrons of the
photons in the collimated bremsstrahlung make a
maximum angle of crs—1/E, with the photon beam
itself. Thus, the relative spread in the angle 8 is o.s/8cc

2(1—x)/x, no matter how large the primary electron
divergence or the Coulomb scattering in the crystal
(pointlike radia, tor). Moreover, the ratio rrb/8 is inde-
pendent of the primary energy E of the electrons. This
is the main reason by which large and polarized peaks
of photons are expected up to very high energy of the
primary electrons. "In Fig. 15 the experimental arrange-
ment used by the Frascati sta6" """at the 1-GeV
electron synchrotron is shown. A crystal CR is placed
inside a straight section of the Frascati synchrotron.
The collimated Bremsstrahlung beam enters a vacuum
pipe and the vacuum chamber of a pair spectrometer
and dies in a Wilson quantameter. At the entrance of
the vacuum chamber a converter is located. The sym-
metrical electron pairs produced in the converter are
detected by plastic scintillators A&, A2, A3 placed along
two electron trajectories of the same energy and oppo-
site charge, at 1 m from the end of the magnet. This
energy is fixed by the magnetic-field value inside the
pair spectrometer and so the photon energy E=E++8
is known. C~, C2, C3 are three lead collimators with
diGerent tasks. The collimator C. which actually
defines the y-beam dimensions has a variable aperture
of 0.2—1 mrad with respect to the radiator position.

4 10-

E-

I

", &i'

l II
V

l f

50 l00 150 200 250 300 350 400 'Y

Fro. 13. Numerical values of the functions bg'( ),
'5/2 ( ) Sfs'(-- -), versus r=8/S, for n= 13' 26', exponentiai
form factor. Only the plane through h&=0 is taken into account.
(Courtesy of G. Bologna. )
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FIG. 14. Electron pair production from E=3 GeV linearly
polarized photons in a diamond crystal. "The solid line represents
the asymmetry ratio E, given in the text (read at the right scale) .
The photon momentum K lies in the plan L110)$001].The dashed
curve is the EPP cross section for unpolarized photons (read at
the left scale) for symmetrical pairs. The abscissa gives the 8
values, angle $110), K. (Ref. 22.)

C~ has an angle of 2.5 mrad in order to decrease the
number of photons hitting the lead of C2. In fact these
photons generate electromagnetic showers in C2, and
this collimator becomes a source of particles and
photons of degraded energy so that the broom magnet
3 is unable to sweep out. The collimator C3, with an
aperture angle of 3 mrad, stops most of these par-
ticles. The vacuum chamber is closed in the back by a
Mylar window of 5&10 4 radiation length. The electron
pairs generated in this unwanted target and deRected
by the fringing field of the magnet are stopped by two
lead vertical plates P. Of course this experimental
arrangement is suitable for both bremsstrahlung and
EPP measurements. First we report the results obtained
by the Frascati sta8 concerning the coherent EPP
measurements. A silicon crystal in the form of a plate
18 mm diam and 0.08 mm thick was placed at the
entrance of the spectrometer vacuum chamber, as an
electron —positron converter.

The radiator inside the synchrotron-producing
bremsstrahlung is a usual tantalum plate of 0.13
radiation length. A goniometric device allows the
crystal to be rotated around a vertical and an hori-
zontal axis. The first experiment consisted in measuring
the number N(8) of symmetrical pairs per axed number
of monitor units as a function of the angle 8 between
the crystal axis $1007 and the photon direction. In
Figs. 16(a), (b) the results" relative to rotation of the
silicon crystal about the horizontal and vertical axis
are shown. The points of the figures are given by

p(8) = )N(8, E) —N(0, E)7/N(0, E),
where

N(8) =Np(8) Nd(8)+(Nr, Nrs—). —
Nr (8) =At+As+As and Na(8) =At+(As+As)s are
the numbers of prompt and delayed coincidences due
to the single crystal and Ey„, Xy& the same quantities
due to the background without crystal. At the time of
these experiments the problem of the 6ne structure
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F&G. 15. Experimental setup used by
the Frascati group for measuring the
coherent HEB and EPP (see text).
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was not raised. Therefore, the continuous curves in
the figures are derived from the Uberall result con-
cerning continuous lattice planes. The function repre-
senting the curves is

~y„(8)+q.j(1+,'8s) -q„(0—)+ q.
~:(0)+~.

where P„(8) and P, are quantities proportional to the
EPP cross section in the field of the nucleus and elec-
tron, respectively. $„(8) is defined by

4 (8) =Ly'+ (1—X)'jLPI'+A'(8/8) j
+-:y(1-y)8"+6'(8/8) 3,

P(e)
(1)

where y=E+/E=0. 5, E~——455 Mev is the central
energy of the electrons, and E=910 MeV the photon
energy; QI', lt, ', QI, ps are Not the functions computed
before in Sec. II, but those calculated by Uberall. ' The
contribution of the atomic electrons is taken from the
Wheeler —Lamb formula

y, = (1.33/Z) ysH,

where pHH is proportional to the Bethe —Heitler EPP
cross section. The factor (1+sr8') takes into account
the variation of the effective thickness due to the rota-
tion of the angle 8((0.07 rad). In fact the minimum
recoil momentum is much larger than in the brems-
strahlung case. We have (see Table I) 8=10 ' and
2x/a=4. 5X10 ' for a silicon crystal. Thus the ratio
2Ir/a8 4.5, and if we consider 8=0.02 rad, there will be
about 10' reciprocal lattice points in the recoil momen-
turn. region, and so discontinuities due to the displace-
ment of single points are undetectable by this experi-
mental resolution. This experiment showed for the erst
time the existence of the central minimum expected
according to the Uberall calculations.

Other sets of measurements have been carried out by
the Frascati staff at fixed 0 for different energies of the
photons, obtained by changing the magnetic field in the

p(K) 8-
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b

Fio. 16. Relative variation of the electron pair production
cross section in a silicon single crystal versus 0 (angle between
p-ray direction and the crystal axis L100)). The solid line rep-
resents the function g(0) given in the text. The central energy
of the incident photon is %=910MeV. The experimental points
represent p (0) given in the text. Different runs of measurements
are related to different shape of the dots. Parts (a) and (b) refer
to rotations of the crystal about the horizontal and vertical axis,
respectively (see the text or Ref. 10). The!x value is unknown.

200 400 600 800 1000
K =-~

FIG. 17. The ratio p =EL(80, IC) —lV(0, E) j/X(0, E), with
8&=60 mrad, is given versus the photon energy E1, for a silicon
crystal. Solid line gives the theoretical curve computed by using
the Uberall functions. ~ The inversion in the sign of p is due to the
second lattice plane. The different shape of the dots refer to
different experimental runs (Frascati results) .
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pair spectrometer. More exactly, the ratio p(8, K) has
been measured for 8=0 and 8=60 mrad at different E
values. The results are reported in Fig. (17).There is
agreement with the theoretical curve again computed
with the Uberall functions. ' The inversion in the sign
of p(8, K) and its sharp discontinuity are very interest-
ing. Both effects are due to the existence of the second
lattice plane through hi=1. As K decreases, 8~ (1/K)
increases and the recoil momentum region goes over
the second lattice plane. In this situation, for |t=0 we
have just a central maximum for the cross section, i.e.,
iV(8=0, K))E(8=60 mrad, K) for K small enough
or for 8 2'/u.

When 8 becomes equal to the distance between the
planes through k=0 and h=1, the second lattice
planes leave the recoil momentum region, and for 0=0
we get a new central minimum. This happens when
8=2s/a, or K=2(a/2x) mes=226 MeV for the silicon
along the f100j axis. We reported these results here
because they are the only clear experimental evidence
of a second lattice plane interference effect.

Now we summarize and comment on some of the
experimental results obtained on coherent HEB. We
begin with the results of the Frascati sta6"" which
showed, as was stated before, the inQuence on EPP
and HEB of the actual structure of the lattice planes.
One of the first important results' concerning the inter-
ference bremsstrahlung spectrum with the typical
peaked structure is shown in Fig. 18. In order to do
this experiment, a diamond crystal having a shape of a
(10XSX2) mm' parallelepiped was placed in the
straight section of the I"rascati synchrotron as a
radiator. It was mounted in a remote-controlled
goniometer in order to make possible and to measure
rotations about horizontal and vertical axes, both
perpendicular to the electron beam direction. The
crystal axis $110$ is placed along the former direction
and the axis L0011 along the latter within &2'. The
axis $110j is perpendicular to the widest faces of the
diamond and makes an angle 0 with the electron beam
striking the crystal. The goniometric device was much
improved with respect to the preceding one used in the
first interference bremsstrahlung measurements (see
Ref. 11).It now has a sensitivity of 0.1 mrad and the
angles are measured with a relative systematic error
of +0.1%.The y-ray beam strikes an aluminum con-
verter 1.1X10 ' radiation length in thickness. Accord-
ing the to crystal orientation explained before, when the
crystal is rotated about a vertical direction, the inter-
section' of the momentum space region with the lattice
plane is a line parallel to the L001j axis as in Fig. 3.

The spectrum showed in Fig. 18(a) has been meas-
ured, with the above condition, at an angle 0=0i=
4.6&0.1 mrad, and the others in Fig. 18(b) at angles
8=82=11.3&0.1 mrad and 0=03=22.9&0.1 mrad. The
experimental data represents the quantity

&expti (Ki 8)

=PiV(K, 8) op(Ks)/E(Ks, 8) op(K) jLf(K) j,

J (X,e)
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Fin. 18(a) liremsstrahlung intensity for Ep=1 GeV in a
diamond crystal. The incident momentum P~ lies in the p]ane
L110j)110jand makes the angle t|=th=4.6&0.1 mrad with the
axis L110j, i.e., o.=s/2. Solid line is the theoretical curve without
any correction. The experimental points are given by the expres-
sion J„~&|.given in the text. (b) The same situation as in (a), but
8=82=11.3~0.1 mrad for the dots and solid line, and 8=83=
22.9+0.1 for the triangles (Frascati results, Ref. 19).

where ED=900 MeV is the photon energy at which
normalization is performed. By op(K) we mean the
symmetrical pair production cross section in aluminum,
viz. , the sum of the contribution due to nuclei and
electrons.

The correction factor f(K) takes into account the
scintillator vertical counting losses. The solid curves
represent the theoretical quantity

Jtg (x, 8) = I (x, 8) /I (xs, 8),
where xe=Ks/Ei, @=K/Et with Ei=1 GeV the electron
energy, and I(x, 8) =K(do„r/dK), with do„r/dK given
by the first of (35) and from the first two equations of
(38).The agreement is quite good also, if the following
remarks are kept in mind:

(a) The theoretical curves are not corrected for the
energy spread of the photons nor for the angular
divergence of the primary electrons.

(b) The exponentially approximated atomic form
factor has been used, F(gs) .

(c) The bremsstrahlung in the field of the electron
has not been taken into account.

Now we consider, essentially, the experimental re-
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momenta region, causing a new rise in the bremsstrah-
lung intensity for x~0.

It has been shown (see Sec. III.A) that the one-point
spectrum gives the maximum polarization value avail-
able in principle. In Sec. III.C numerical results con-
cerning the choice of a certain crystal orientation are
shown. The Desy group" showed that this goal is
actually reached by choosing a very large angle 8 for
the crystal, and by rotating the crystal by a small
angle 0. around the pz direction. Figure 20 shows the
situation in the reciprocal lattice plane chosen by
Desy group. Only the point hs=0, hs ——4 is effective.
Figure 21 shows the experimental results in comparison
with the theoretical calculation. The theoretical value

0
0

50.K

CL

Fn. 19. HEB intensity from diamond crystal, for a =0,
/=3.44 mrad, Ep=4.8 GeV. Experimental data are compared with
theoretical intensity not corrected for experimental resolution.
(Desy-Frascati collaboration, Ref, 23.)

100

80-

suits obtained at Desy" by a group of physicists from
Desy and Frascati. The Desy synchrotron has an energy
of E~=6 GeV, and the angles 0 corresponding to the
previous ones are 6th of those. But, the relative average
LN/8 due to the scattering in the crystal is not larger
than in the 1-GeV case if a suitable collimation angle
is chosen, as shown before (see also Ref. 22). Good
coherent spectra have been obtained at Desy. We
present here the following results. " In Fig. 19: E» ——

4.8 GeV, 8=3.44 mrad, and the angle n—= (pt, bt)
(bt, bs) =0. The angle a is a very important one. In
fact while averaging over 0 only smoothes the spectrum,
averaging over n causes the disintegration of the main
peak in many other unresolved peaks. Moreover, for
very small x values, i.e., x&0.05, if there is a spread
in 0., other points of the row 62=0 may enter in the

b 3

60.

40-

20-
~4+i4~~

0.5 i.0

of the polarization is shown at the top. The following
remarks are important:

(1) The polarization at the top of the peak has a
theoretical value of ~80%.

(2) The 8 value is 50 mrad, and rr =26 mrad. The 8
value is larger by a factor of 10 than that of the previous
spectrum. This almost gives the certitude that this
method would work at much higher energies.

(3) The height of the peak and the polarization
value at the top are much more insensitive to a slight
accidental misalignment of the crystal than in multi-
points peak case.

(4) There is better agreement by using the Hartree
atomic form factor.

0
x = k~Eo

FIG. 21. HER intensity and polarization from a diamond
target. Experimental "one-point" spectrum compared with the
averaged intensity and theoretical polarization values; a=1.5',
=30 mrad, EI 4 8GeV ( -) Har—t—ree. potential, (———).
8 exponential potential. (Desy—Frascati collaboration results, Ref.
23.)

Fn. 20. Intersect'on of the mom~~turn space with the fI st In j963 the Frascati group" proposed the measure-reciprocal lattice plane of a diamond crystal for the case at which
the HEB spectrum of Fig. 21 was measured (a schematic drawing) . ment of polarization of high-energy y rays by measuring
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FIG. 22. Measurement of the polarization of the coherent
HEB by the analyzing crystal method. (a) "One-point" spectrum
obtained with 8=50.5 mrad, ca= 23.1 mrad, Eo= 6 GeV. (b) Re-
sults of the polarization measurements along the former spectrum.
(Desy results, see Ref. 24.)

the electron pair photoproduction in a crystal, now used
as analyzer. This group computed the asymmetry ratio
(o'~

~

—or) /(o'~ ~+o'~) =R, where o'~
~

and o z denote cross
sections with the polarization vector of the incoming
photon parallel or perpendicular to the "incident plane"
(K, b), where E is the momentum of the photons and
b the crystal axis (see Fig. 14).

The "asymmetry ratio" R is an increasing function
of the photon energy E.The angles involved in the pair
production are larger by a numerical factor than those
of the bremsstrahlung. The R value is too small at
E&1 GeV, and it is higher at E~&1 GeV; for example,
R&20% at 3 GeV. Below 1 GeV the polarization of
the Frascati coherent beam has been measured by
angular analysis of the electron pair production in an
amorphous target by the Frascati group. "The Desy
group successfully carried out the measurement of the
2-GeV photon peak from 6-GeV bremsstrahlung from
a diamond crystal by the analyzing crystal method.
They used as an analyzer a second diamond crystal
inside the vacuum chamber of a pair spectrometer.
They observed the number Ei of detected symmetrical
electron pairs with the photon polarization vector e,

perpendicular to the reference plane. Then they ob-
served the counting rate E~

~
after a rotation of the

analyzer diamond by 90 . The polarization values
I' = (1/R) f (1Vi—X~ ~) /(1Vi+E~ ~) g obtained are shown
in Fig. 22 together the theoretical expected values and
the spectrum of the incident photon beam, Good
agreement is found. Also here a "single 1-point" asym-
metry ratio R has been used. This experimental method
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has the important experimental advantage of avoiding
any dBBcult angular selection.

Coherent bremsstrahlung from a silicon single crystal
has been extensively studied'5" by a collaboration of
10 physicists at the Tokyo 720-MeV electron —synchro-
tron. They obtained spectra in agreement with the
theoretical calculation in which an experimental form
factor has been introduced (Fig. 23) .

V. CONCLUDING REMARKS

A. Topics Omitted

First we refer to a number of informative theoretical
papers of Cabibbo and co-workers, '8 according to which
a polarized HEB could be produced by using very thick
crystals. The authors show that HEB with linear or
circular polarization could be obtained by using crystals
of suitable thickness.
Another topic concerns the production of very narrow
peaks of coherent HEB by using very thin crystals. """
Eventually the problem of measuring the polarization
of the HEB calls for a more extensive treatment. In
fact these topics, mainly the 6rst two, can best be
treated in a survey concerning a more specific compari-
son between the diGerent methods for producing mono-
chromatic and (or) polarized y-ray beams, in order to
use them in photoreaction experiments. Such a survey
may be found in Refs. 33 and 34.
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FIG. 23. Intensity of the HEB in a silicon single crystal;
8=15.6 mrad, 0.=0, Ep=720 MeV. The circles are the experi-
mental points corrected for vertical losses of the counters. (Tokyo
results, see Ref. 25.)


