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The role of beta- and gamma-ray matrix elements in the determination of wave functions for the s'p' states of mass 14
is examined. The data considered include the Gamow-Teller (beta) matrix elements of "C and '40 and the M1 and E2
matrix elements connecting the lowest four s p" states of "N. The magnetic moment of "N is also discussed. The shell-
model wave functions considered arise mainly from the ssp' configuration but include admixtures of the s4ps (2s, 1d)
configuration. It is found that the data, considered as a whole, cannot be explained if the s4p' components of the wave
functions are derived from a central plus spin-orbit interaction only, but that quite satisfactory agreement is obtained
if the nuclear force includes a tensor part. The bulk of the cancellation of the ' C beta decay matrix element takes place
within the s'p' configuration. In general, configuration mixing is of secondary importance; its most noticeable eGect is
on the M1 decay of the first-excited state of '4N.
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1. INTRODUCTION

Two explanations~ ' have been advanced in recent
years to explain the anomalously long lifetime for beta
decay of the '4C ground state to the '4N ground state
(log ft=9.03).

In one of these, the "C and ' N ground states are
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(1957).
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assumed to be well described as two-hole states in the
"0 doubly closed p-shell, i.e., as p ' (or s'p"). A two-
body interaction including a tensor force provides the
right sign for cancellation of the Gamow —Teller matrix
element. ' ' Cancellation cannot be achieved in the p '
model with a conventional interaction consisting of a
central force plus a spin —orbit term. ' '

The alternate explanation, first proposed by Inglis, '
is that both the "C and. "N ground states are appre-
ciably contaminated by admixtures from con6gurations
other than s p" and that the contributions from these
admixtures to the Gamow-Teller matrix element
cancel the contributions from s'p". Motivated by
experimental results, ' Baranger and Meshkov sug-
gested' that there may be enough mixing from the
s4Ps(2s, 1d) configuration in the '4C and '4N ground
states to provide cancellation mithogt invoking any
tensor force. (This notation is used for the mixed con-
figurations s p s +s p d +s p sd. When no confusion
should arise, we shall leave oG the principal quantum
numbers and the closed 1s' shell. ) However, this
explanation depended on the ttssttrttptiort that the
relative phases of the contributions from p" and
(2s, 1d) are such that cancellation can occur.

It has been shown' ' ' ' that inclusion of a tensor force
into the two-body interaction within the p-shell can
explain the "C lifetime without invoking any con-
figuration mixing. In Sec. 2, we investigate whether the
converse is true, i.e., whether configuration mixing can
cause cancellation without invoking any tensor force.
More speci6cally: There is now 6rm experimental and

6 W. E. Moore, J. N. McGruer, and A. I. Hamburger, Phys.
Rev. Letters 1, 29 (1958).' L. Zamick, Phys. Letters 21, 194 (1966).
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theoretical evidence'~" that the only configurational
admixture which may significantly contribute to the
Gamow —Teller matrix element connecting the ' N and
'4C ground states comes from the s4Ps(2s, 1d) con-
figuration. To provide cancellation by configuration
mixing, the p" and (2s, 1d) contributions to this matrix
element must interfere destructively.

In Sec. 2.2 we investigate this question of destructive
interference by basing the examination on eigenfunc-
tions of a specific model. ' In Sec. 2.3 we then examine
the question in greater detail and ask more g'enerally
whether semi-independently of the spectic model
assumed, an interplay of p-shell and (2s, 1d}-shell
contributions (invoking central and spin —orbit forces
only) is capable of explaining the "C lifetime and,
simultaneously, the lifetime of the '4N 2.3j.-MeV state
(which depends on the same eigenfunctions as the
Gamow —Teller "C—&"N matrix element) .

While the examination in Sec. 2.2 is straightforward
with respect to phase questions because only tmo-

particle eigenfunctions are involved, the more general
investigations in Sec. 2.3 and the inspection of the
"N gamma-ray data done in the subsequent sections
require some care. This is because the generalized
treatment is most conveniently done in hole formalism
(i.e., the low-lying even-parity states of "C and "N
are described as two holes in the "0doubly closed shell
and transition matrix elements are calculated accord-
ingly) . In order to be able to compare at any time the
results obtained in the hole formalism to the straight-
forward but limited results of the two-particle picture
(when the '4C and '4N ground states are described
as two particles in the 1pII3, 2sIIs, and 1d@s orbits outside
a psis' core, with pII33 being the dominant configuration)
we feel it desirable to have a well-defined and phase-
fixed relationship of a/l matrix elements throughout.
That is, we calculate all matrix elements defining
gamma- and beta-transition amplitudes from one phase-
defined set of eigenfunctions which, in the pure jj limit,
represents the simple two particle picture-, and —where
necessary —do particle-hole conjugations phase con-
sistently such that the phase-fixed relationship between
all matrix elements is never destroyed. This implies
that also the ratios of gamma-emission matrix elements
of different multipole order ("mixing ratios" 5) are
given phase consistently, and in accord with the phase-
defined development of angular-distribution theory

' I. Unna and I. Talmi, Phys. Rev. 112, 452 (1958).' W. W. True, Phys. Rev. 130, 1530 (1963).' E. K. Warburton, H. J. Rose, and E. N. Hatch, Phys. Rev.
114, 214 (1959)."E.K. Warburton and W. T. Pinkston, Phys. Rev. 118, 733
(1960)."J.C. Legg, Phys. Rev. 129, 272 (1963).

~ K. G. Standing, Phys. Rev. 101, 152 (1956); E. F. Bennett,
Phys. Rev. 122, 595 (1961).' R. N. Glover and A. D. W. Jones, Nuel. Phys. 84, 673 (1966).

"G. H. Holbrow, R. Middleton, and B. Rosner, Phys. Rev.
152, 970 (1966).

'OM. H. MacFarlane and J. B. French, Rev. Mod. Phys. 32,
567 (1960).

given recently. '~ To give a description, in brief, of how
the phase-fixed relationship of all matrix elements was
established throughout, we shall initiate Sec. 2 by a
discussion (Sec. 2.1), in which eigenfunctions and
operators will be defined explicitly, and in which
tao-hole matrix elements will be related in phase to
two part-zcle matrix elements, making use of the isobaric
spin formalism, and thus extending the interaction
multipole operators of Rose and Brink" into isobaric
spin subspace.

The question we examine in Secs. 2.2 and 2.3 is not
whether there is clear evidence for either a nucleon—
nucleon tensor interaction or for configuration mixing
(there is, in fact, evidence for both, cf., Refs. 6, 8—14,
18—20), but rather which of the two "mechanisms"
gives rise to the bulk of cancellation and what happens
when both are considered simultaneously.

The subsequent sections are devoted to discussing
the significance of further gamma-decay data of the '4N

nucleus, which are of relevance for the cancellation
"mechanism" in the beta decay of the '4C nucleus. In
particular we reinforce our conclusion by showing that
the s4pis wave functions generated" to explain the "C
lifetime, and also the wave functions derived from
recent effective interaction calculations of Cohen and
Kurath" give an excellent account of the electromagnetic
transitions connecting the p ' states of "N. In this
comparison we keep in mind, in so far as is possible,
the effects of configuration mixing. We also—to some
extent —examine results which can be derived from the
recent "first-principles" calculation of Becker and
MacKellar "

2. CONFIGURATION MIXING AND THE BETA
DECAY OF "C

2.1. Phase Relations of Go~ma- and Beta-Decay
Matrix Elements in Particle and Hole Formalisms

The calculation of matrix elements for transitions
between many particle states may sometimes be con-
siderably simplified by using the concept of "hole"
states. It is not the aim of this subsection to consider
phase questions arising from particle —hole conjugation,
in general, when different shells are involved. We limit
ourselves to describing the over-all consistency of
phases used in the present treatment of gamma- and
beta-decay matrix elements between the even-parity
states of mass 14. We consider these states as arising
from 1s'1P" and 1s'1P3/3 (2s, 1d), i.e.,

~
JMTN) =A~~

~
p"; JMTN)

+8 i Psis (2s 1d) ' JMTN)& (1)
VH. J. Rose and D. M. Brink, Rev. Mod. Phys. 39, 306

(1967)."T.Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962}."S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).
"H. Weidenmiiller, Nucl. Phys. 36, 151. (1962)."R. L. Becker and A. D, MacKellar, Phys. Letters 21, 201

(1966).
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where we have introduced E as the s quantum number
of the isobaric spin total quantum number T and
dropped the closed is~~24 shell. Throughout we define
all eigenfunctions in terms of particle creation and
annihilation operators. This means that the symbol
p" actually stands for a polynomial of degree 10 in
terms of creation operators u; „+ (23 being again the
isospin 2' quantum number of the single particle,
dropping its total isospin quantum number -', ), which
create particles in the 1P shell. The symbol P3/23 in
general stands for a polynomial of degree 8 in terms of
p-shell creation operators a, „+, but we assume that
these couple to give the closed P3/2 subshell (we refer to
the closed, inert 1si/2'1p3/2 core as "C). Then the
symbol (2s, 1d) simply stands for a polynomial of
degree 2 in terms of creation operators, which create
particles outside "C in the (2s, id) shell. "C may be
considered as the vacuum state for these operators.

If PM also contains the P3/23 closed shell, then this
polynomial also reduces to a polynomial of degree 2 in
terms of the creation operators, aq~2 „+ and again ' C
may be considered as the vacuum state from which
these operators create particles in the Pi/2 shell. Equa-
tion (1) then takes the very simple form

I
mTx&=a»

I
e+~+

I o&; mTx&
+a»

I
e+u+

I O); m TX&, (2)

with '2C =
I 0) being the vacuum state, and

I
~+~+

I o);m m)
( 2233,nb

I

—TcV) (j j3m,mb
I
JM)

mamb, nang

+/iib b
b+

I 0) (3)

with j =j&
———', for the first term on the right-hand side of

Eq. (2). The second term in Eq. (2) symbolically
st;ands for a sum of terms of the form (3), corresponding
to the di6erent contributions from the mixed con-
figuration (2s, 1d). This term is specified in Sec. 2.2.
The only important fact at this stage is that this term
is defined in particle-creation operators acting on

I 0)="C.We do not make this term subject to particle-
hole conjugation.

In Eq. (2) the coeKcients A» and 8» may be
extracted from a specific model (True), 2 which gener-
ates eigenfunctions of the form (2) . It is now apparent
what is meant by "phase consistency throughout":
Once A~~ and 8~~ are picked from a certain model in
"particle language" ("a+ language" ) we may like to
break with the restriction j =j&=—, and investigate, for
example, what happens to the transition matrix
elements when the simple polynomial Pi/2' is replaced
by the more realistic p' treated in an intermediate-
coupling situation. To evaluate matrix elements
between p" states it is most convenient to apply
particle —hole conjugation and again end up with the
calculation of (only) two-body matrix elements. In the

Sir,+= ( —) 'Sir, . (12)

Throughout we assume the standard time-reversal
properties 8

I
jm)=( —)i Ij —m). E is the rank of

the tensor S~, which acts in isospin subspace.

jj limit an unambiguous phase relation of "two-hole"
matrix elements to the two-particle matrix elements
can be established because the state in the a+ language
describes (in the middle of the pi/2-shell) the same

physical state as the conjugate state in the "hole
language" ("b+ language" ).

We now define conjugate states. If a state
I a) was

described as a polynomial in a; „+ operators we define
the conjugate state

I b) as the same polynomial (with
the same quantum numbers) in b; „+ operators. The
hole-creation operators b+ are related to particle-
annihilation operators by

+ ( ) i—m+1/2 —ng.

The operators b+ obey the same anticommutation laws
as the operators a+, namely,

L&a 1 iiej(+) =brae.

The closed-shell state for the hole-creation operators
in our case is

I
c)=130 (6)

and if we always relate the closed-shell state to the
vacuum state in the same manner, for example,

I e) +1/2 1/2 e—1/2 1/2 iii/2 —1/2 +—1/2-1/2 I 0) (7)

(writing only the 2 quantum numbers as suffixes), then
we obtain in the jj limit

I
b+b+

I c);J3ETN) = ( —)r
I

/3+a+
I 0);Jj/IT/). (8)

Equation (8) connects a two-hole state with a two-
particle state in the middle of the pi/2 shell.

We turn now to the consideration of operators. If we
have an operator of rank l. acting in spin+(normal)
space space and of rank K in isospin space

0=Or.~S~q)

then, in the a+ language this operator has the expansion

{jm I 0~~ Ij' m&( 2I33Srr. I
233'&

jmn, j~m~nI

&«i-+~i - (10)

while in the hole language it has the expansion

0= ( —)'e+~+"+& '+x& g {jm I
013r Ij 'm')

f mn, j~m~nI

X(2'I
I Sir, I

—2,33')b; +b,'„„, (11)

where the phases C, E, C; are defined by the Hermitian
and time-reversal transformation properties

Or, ir+ = (—) Or,—3r,

80r,3re-'= ( )" ~OI. /br&— —

and
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G V2 rIqo Iyy (15)

where r~, and 0-~„are components of the spherical
tensors

rI, ( —q/K2) (r,+——2qr„);

oIn = ( P/~~) (~.+—2p~q)

The interaction multipole operators Tl,~& & of Rose
and Brink, "making use of the isospin formalism, have
the expansion in u+ language:

TLM'= Z(2 ~ ) (jIII
I

TLM'(p)
I
j'~')b-"o~-+op

TLM"=Z I ('—~')
&j~ I

TLM"(P) I
j'~')+(2+~')

X&jqII I TLM (I2)
I
j'qII')}X&..o; .+&I; ., (13)

while, in accord with Eq. (11), their expansion in the
5+ language is

TLM' Q(-'2+——I') (jm I
TLM'(P) Ij 'm')l„„l,„„+bP

TLM"= ZI (2+~') & j~ I
TLM"(P)

I
j'~')+(2 —~')

X(jqII I
TLM"(rI)

I
j'm')} Xb„b; +b,' ~, (14)

because R+C+1=even for TLM& ~ (P) and TLM& ~(n)
(cf. Ref. 17).

The "nuclear part" of the Gamow —Teller interaction
is usually represented by

Eq. (11)

G = (—) I+~2 '( jqII
I o» I

j' III')

X&2~I»&I2e'&*b; +b; ~, (22)

since from Eqs. (16) and (17) it follows that C=O,
2=1, and C;=0. As q=&1 it follows that e/e'. The
isospin matrix element can be worked out explicitly
and is found to be real, so the asterisk may be omitted
in Eq. (22). It is seen that apart from a phase factor
( —)' the operator G has the same expansions in u+ and
b+ language.

Using the definitions of eigenfunctions and operators
of this section, one can explicitly work out the two-body
matrix elements in a+ and b+ language. We obtain for
the TLM& ~ operators (13) in a+ language

((O I
ua; JITIlVI

=O
I I

TLM& &(o+~)
I I

o+~+
I
o&;~2T2&2=o)

= ( —)r'+r'I Formula (4.12) of Ref. 17] (23)

and in b+ language

«c (
bb; JITI1VI

=o
I I

TL„&-& (b+b)
I I

b+b+
I
o);sqTqlq2=0)

ryo =rz fTio = f7'& (16)
=I Formula (4.12) of Ref. 17j. (24)

and r r„r„' o.,o-„g., are the usual Pauli-spin matrices.
While the operator d transforms under time reversal as

Oo 0-'=( —)' "o (17)

= (T»»qq I
TI&I)'

I &ZITI I I
v2 -'~I&I

I I ~2T2) I' (20)

The single-body Gamow —Teller operator may also be
written in second quantization, and in the a+ language
it has the expansion

./

G= QV2-'& jm I o» I
j'm'&(2I2

I rIq I
2II'&a; „+ap-

(21)

Th.e operator is readily obtained in 6+ language using

the isospin operator is invariant under time reversal,
i.e.,

Orgq8 —r]q e
1

If in a matrix element of the operator (15) we always
chose to write the initial state on the left, then q=1
for P decay, while q= —1 for P+ decay. The ft value of
an allowed Gamow —Teller transition is related to the
matrix element of the operator (15) by the following
equations:

ft=B/f (1—2) &F)2+x&6)'}

with 8 2720 sec, @~0.61, and

&G&'= Z (2~I+1) 'I &I G I& I'

The phase factor ( —) r'+rq is irrelevant for the phase-
consistent treatment of Ref. 17 and effectively results
from an (arbitrary) labelling of protons and neutrons in
an approach in which isospin is not used. LThe labeling
of Rose and Brink. is "particle 1 =proton" and "particle
2 =neutron", cf., their Eq. (4.14) . Note that this
choice corresponds to INPUT data "is 1=1"and "is
2 =0"if program D3 (Hauser et al. , compare section 2.2)
is used for the calculation of two-particle (or two-hole)
matrix elements. We have also adopted this choice
here. ) However, for internal consistency "throughout"
of phases in this paper this factor is of relevance. To-
gether with the dependence of the relative phase of
the two-particle and two-hole eigenfunctions on T
according to Eq. (8), it assures that the evaluation of
the two-particle transition matrix element (23) gives
the sumt, result in sign and magnitude as the evaluation
of the two-hole transition matrix element (24) for
AT=1 and AT=0 gamma transitions. In this sense
the gamma-transition matrix element is invariant under
particle —hole conjugation.

This result is essential for establishing an internally
consistent relation between the Gamow —Teller matrix
element and the gamma matrix elements (23) and
(24), when the latter are restricted to M1 transitions.
According to Eqs. (21) and (22) the Gamow —Teller
single-particle operator changes sign under particle—
hole conjugation. This change of sign is again com-
pensated for by Eq. (8) and, therefore, the two-
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particle Gamow —Teller matrix element is also invariant
under particle —hole conjugation in the same sense as
the gamma matrix elements are. A consistent treatment
of both the Gamow —Teller and the gamma matrix
elements, using isospin formalism, thus leads to the
same behavior of the two types of matrix elements
under particle —hole conjugation. Therefore, once a
certain relative phase between them is established in
particle language it is not destroyed when going to a
hole description of the nuclear states involved.

In conclusion, we have shown in this section that we

may ignore effects on phases due to particle —hole
conjugation if we use the proper operators as defined in
this section and also establish properly a phase relation
between particle and hole eigenfunctions. Our proof
holds for the middle of the pt/s shell. However, because
the relationship between I.S- and jj-expanded states is
independent of whether particles or holes are related"
we may extend this conclusion from the jj limit to an
intermediate coupling situation, because we can collect
and define phases in the jj limit, convert to I.S expan-
sion, and then go to any degree of intermediate coupling.

Finally, we quote the relationship between the
matrix elements of the spin part of the M1 interaction
multipole operators and the matrix elements of the
Gamow —Teller operator (15),

«o I
«Jt» Ii Ti '(a+a) II

a+a+
I o&; ~s0»

= —(1/2&2) kg, & &P

X«o I «; ~t11 II G(a+a) II
a+a+

I o) Js0» (25)

with k=8/Sc, P=e5/2mc, and g, &
—&=g, (p) —g, (n) =

9.411 (cf. Ref. 17) .
Because the orbital part of the M1 operator has a

fixed phase relative to the spin part, we can in later
equations also make use of Eq. (25) to split up the
matrix element of the T~ operator into orbital and spin
contributions and replace the latter by the Gamow-
Teller matrix element with a definite phase relative to
the orbital contribution.

2.2, True's Model and the Possibility of Cancellation of
the Gamow —Teller Matrix Element

We now examine the "C~'4N, (J~, T) = (0+, 1)—+

(1+, 0) Gamow —Teller matrix element and the lifetime
of the 2.31-MeV state in '4N, which decays to the '4N

ground state by a M1 transition and which is the
isospin analog to the "C ground state. In this section
we rely on the eigenfunctions generated for the '4C and
"N ground states by the shell-model calculations of
True. ' We recall that this model uses a purely central
force and so it only tests the eGects of configuration
mixing.

The binding-energy calculations of Unna and Talmi
and the shell-model calculations of True predict that

22 J. S. Bell, Nucl. Phys. 12, 117 (1959).

the spectrum of Ps(2s, 1d) levels commences at an
excitation energy of ~6 MeV above the ground state
of "N, which is considerably lower than for any other
configuration. This is confirmed by experimental evi-
dence''~" which also indicates that the "C and 'N
ground states contain admixtures from the Ps(2s, 1d)
configuration of approximately 10% in intensity. This
estimate is consistent with the calculations of True.
LIn detail, his results gave intensities of 1.5% Psst/ss

and 10% p de/s' for the "C ground state and. 0.4%
P'si/s', 3.4% Psd&/ss and 1% Psst/Qds/s in the "N ground
state. This is to be compared with the results of the
various (p, d) and (d, t) pickup experiments, ' " "
which have been analyzed' """to give 0.5% p'st/s'
and ~10% p de/s' in the ' C ground state and ~0.6%
p'st/s' and &3% p'st/sd&/s in the "N ground state. ]

The importance of the configurations formed by
promoting a nucleon from the 1p shell to the 1f or 2p
shell has also been estimated by True, ~' and experi-
mental results'4 indicate as well that these configura-
tions should inhuence the nuclear properties under
consideration to a negligible degree. There have been
no theoretical or experimental studies of the con-
figuration in mass 14 formed by promoting nucleons
out of the 1s shell. However, theoretical results" for
mass 15 and consideration" of the 1s—1p and 1p—1d
energy difference indicate that these configurations
should not give any significant contributions to the
wave functions of the low-lying states of mass 14.

The major weakness in the shell-model calculations
of True is the assumption of a closed ps/ss shell acting
as a 7=0 core for the numerical evaluation of Eq. (1)
(consequently always

I
pm)=

I pt/ss) in True's treat-
ment). The 'removal of this assumption immediately
introduces the complexity of a six-body problem.
However, the reduction to a two-body problem seems
to generate a set of wave functions (1) which approxi-
mates the problem very well. So, True's treatment
was successful in explaining all the bound (and some
unbound) levels of '4N and "C including" the P3/ssPr/, st/,
and ps/s'pi/sde/sT =0 states in "N, with the exception of
those levels previously identified" as arising pre-
dominantly from break-up of the ps/ss "core".

From True' we obtain the numerical values of the
coefficients A~r and B~r of Eq. (1)

A"=0.950

A"=0.966

so~= —0.311

8"=0.255. (26a)

In Table I, first line, are collected the jj-expansion
coeKcients for the wave functions of the (2s, 1d) mixed
configuration as generated by True's model, i.e., we

"W. W. True (private communication).' H. J.Rose, F. Riess, and W. Trost, Nucl. Phys. 52, 48 (1964) ."E. C. Halbert and J.B.French, Phys. Rev. 105, 1563 (1957).
2' T. Engeland, Nucl. Phys. 72, 68 (1965).
27W. Trost, H. J. Rose, and F. Riess, Phys. Letters 10, 83

(1964).
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TABLE I. jj-expansion coefjjIcients for the wave functions of the 34p" (2s, 1d) components in the lowest (J, T) = (1+, 0) and (0+, 1)
states of '4N and "F.The coupling scheme is jl+j2=J and I+s= j.

Calculation

(J~, T) =(0+, 1)

C($1/2 .01) C(d2/2' 01) C(d5/2 01)

(J, T) = (1+, 0)

C(32/2,' 10) C(d2/P; 10) C(d4/2; 10) C(si/2d2/2, ' 10) C(d4/2d5/2,
' 10)

True~
Elliott and Flowers"
Redlichb
ZaxIllck~

Flowers and Wilmore' '

+0.391
+0.39
+0.40
+0.320
+0.392

+0.365
+0.24
+0.31
+0.291
+0.243

+0.845
+0.89
+0.86
+0.902
+0.887

+0.251
+0.55
+0.46
+0.492
+0.350

—0.514
—0.19
—0.16
—0.044
—0.068

+0.718
+0.58
+0.67
+0.572
+0.884

+0.395
—0.02
+0.02
—0.143
—0.036

+0.041
+0.57
+0.56
+0.640
+0.300

a The original coupling scheme is 1+8=y, see Refs. 7, 9, and 35.
The original coupling scheme is I+I=, see Refs. 33 and 34.
The (Jw, T) =(0+, 1) function corresponds to A»V0=40 MeV and

6»/6» = —1 (in the notation of Ref. 35). For the (1+, 0) function

5»p0 =40 MeV and 6»/6» =1. This choice of parameters is adapted to
give the best fit to available experimental data. We thank D. Wilmore
for communicating to us the complete set of eigenfunctions underlying
Ref. 35.

write

[ p3/2 (2s, 1d);J=1T=O)=C(si/2; 10)si/2'

+C(ds/3'; 0) ds/2'+C(ds/2', 10)d5/2'

+C(si/2 ds/2, 10)si/2 ds/3+C(ds/2 ds/2,
. 10) d3/2 d5/2 (26b)

and

j p3/2 (2s, 1d);1=0 T= 1)=C(si/2 i 01)SI/2'

+C(ds/2'; 01) ds/2'+C(d5/2'; 01) ds/2'. (26c)

The over-all phase of these coefficients (given in
Table I) is as to reproduce with the choice C(PI/22; 10) =1
and C(PI/33; 01) = 1 and the coefficients (26a) the
correct relative phase of the two parts of Eq. (2) as
yielded by True's model. The choice of the over-all
phase of the right-hand side of Eq. (2) is the 023ly
"free" choice of phases available. According to Sec. 2.1
all further phases of eigenfunctions and matrix ele-
ments, then, are fixed (and —whenever numerical
values are quoted —they are given accordingly and
consistently throughout) .

For comparison and for later use we have included in
Table I some further values as obtained for mass-18

wave functions. The coupling scheme we use through-
out is ji+js ——J and 1+s=j Li.e., the respective vector-
coupling coefficient is (Es2/3lm,

~j r/3) ].
In the notation of Eqs. (1) and (20} the Gamow-

Teller (reduced} matrix element (G) is given by

(Q) +01+10(G(p—2) )++01+10(G(2s, ld) ). (27)

With the above choice of phases and in accord with
Sec. (2.1) (G(p ') ) and (G(2s, 1d)) are given by

(G(P ') ) = ( v/2v)3c(PI/2', o1)c(PI/2', 10) (28a)

(G (2s) 1d) ) = —(6) ' "C(si/2', 01)C (si/2'; 10)

+P (6) '/'/(5) '/2)C(ds/23 01)C(ds/22 10)

—$(14)I//(5) /sjC(d522 01)C(d522 10)

2t ~3/(5) I"3C(ds/322 01)C(ds/2 d5/si 10)

—2L~&/(5) '"X(d5/2' o1)C(ds/2 d5/2 1o) (28b)

It is seen from Eqs. (28a) and (28b) that indeed the
reduced two-particle Gamow —Teller matrix elements
corresponding to transitions s1/2' —+s1/" and d5/2' —+d5/2'

TABLE II. Two-particle reduced matrix elements of the magnetic-dipole-interaction multipole operator Tl, the magnetic dipole
multipole operator G& ——G1 (spin)+GI (space) for the 2.31~0 MeV, (0+, 1)~(1+, 0) transition in 24K and the Gamow —Teller
operator G = 1/V2~ e for the '4C~'4N (0+, 1)~ (1+, 0) beta transition.

Transition
(T,m )

10 '3MeV/Gcm

(G m)
Nuclear

magneton
p

Dimension-
less

(G2 (~) )
Nuclear

magn eton

(G2 (l) )
Nuclear
magneton

p

Pl/2 ~Pl/2
Pl/2 ~Pl/2

p 2~p 2 8

$1/2 ~$1/2
d3/2 ~d3/2
d5/2 ~d5/2
d3/2 ~d3/2d5/2

dq/2 ~d3/2d&/2

—5.761
—5.761
—4.681

130.006
—4.873

+29.265
+16.993
+13.874

—1.562
—1.562
—1.269
+8.150

1 ~ 321
+7.934
+4.606
+3.761

+0.816
+0.816
+0.709
—2.449
+1.095
—1.673
—1 .549
—1.264

—2. 716
—2. 716
—2.361
+8.150
—3.644
+5.567
+5.154
+4.208

+1.154
+1.154
+1.091

0.000
+2 323
+2.366
—0.547
—0.447

a Intermediate coupling (a/K) =7.
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are considerably larger than the one corresponding to a
transition within P1l2 '. However, inserting the numeri-
cal values for Asr and Bsr from Eq. (26) and the
coefficients C(JT) from the first line of Table I we
obtain

&G) =+0.918(+0.816) —0.0797(—1.526) =0.871

(29)

and we see that not only is the magnitude of the
(2s, 1d) admixture too small for cancellations but also
the sign is wrong. All contributions from (2s, 1d) inter-
fere constrgcti21ely with psl2

We now consider the M1 matrix element for the '4N

2.31~0 transition. The gamma width in terms of
reduced matrix elements of interaction multipole
operators for a transition

~
J1)—+

~
J2) is defined as'2

I'v=4& Z I &J1 II Tc" II J2) I'/(2L+» (30)

where the wave number le= A&/hc, L is the multipolarity
and &sr) stands for either "magnetic" or "electric. "
Numerically F~ is obtained in electron volts from

I'~=3.22X10"E~Q ~
&J1 [[ TB& &

[~ J2) ~'/(2L+1),

(31)

when E~ is in MeV and the matrix element is in MeV/G
cm. Two-particle matrix elements of the operators
Tz& & may be calculated from formula (4.12) of Ref.
17 or, more conveniently, using program D3 of Ref. 28.
To conform with the (over-all) phases of matrix ele-
ments of the isobaric spin extended operators Tl,& &

and the choice of the over-all phase of the eigenfunc-
tions as described in Sec. 2.1 we multiply the over-all
phase of formula (4.12) of Ref. 17 by ( —)r'+rs which
does not affect the signs of the multipole-mixing ratios.
These are in accord with the phase-consistent derivation
of angular distribution formulas by Rose and Brink. '7

In Table II are collected the relevant two-particle
matrix elements for the 2.31—«0, (0+, 1)-+(1+,0)
transition.

Multiplying the transition matrix elements given in
Table II with the amplitudes A~~ and B~~ and the
respective coefficients from line 1 of Table I we have

«o I
« o'1)I T (a+a) II

a+a+
i o); 1+o)

= «c I &f; o'1 II T -(f'f) I] 7+f+
( c); 1+0)

=A01A10&T1na(P1 22) )+B01B10&T1na(2s 1d) )
=0.918(—5.761) —0.079(+22.390) (32)

in 10 2 MeV/G cm. Using formula (31) this gives
I'~(M1) =125.1X10 ' eV. If the ' N 2.31-MeV state
and ground state were described purely as psl22 we
would have obtained I'„(M1)=82.1X10 ' eV.

2'O. Hausser, J. S. Lopes, H. J. Rose, and R. D. Gill, Oxford
Nucl. Phys. Lab. Rept. 1966 (unpublished).

The weighted average of four measurements~~ '2 of
the radiative width of the '4N 2.31—+0 transition is
I'~(M1),„,= (8.1&1.4) X 10 ' eV.

In conclusion, basing the examination of the question
of the vanishing Gamow —Teller matrix element due to a
destructive interplay of diferent configurations on
True's model, we find that the cancellation cannot be
achieved within the framework of this otherwise quite
successful model. Also the lifetime of the 2.31-MeV
state in ' N cannot be explained within the framework
of this model. Consequently either the model is non-
realistic or the mechanism of cancellation cannot be
due to an interplay of different configurations, as long
as the bulk of cancellation has not already been achieved
in the p shell. Therefore, in the next section, we try to
repeat the examination in a model semi-independent
way and examine whether the Gamow —Teller matrix
element can be made to vanish and simultaneously the
M1 width brought into agreement with experiment by
an interplay of the two configurations or vice versa.

2.3. Model Semi-indeyendent Examination of the
(0+, 1)~(1+,0) Beta- and Gamma-Decay

Matrix Elements

To make conclusions independent (or at least semi-
independent) of the specific model which was used in
Sec. 2.2, we now proceed in two steps as explained
below.

(i) Because the major weakness in the shell-model
calculations of True' was the assumption of a closed
Ps/20 shell, we shall remove this assumption and insert
for

~
p"; JMTE) of Eq. (1) the full set of two-hole

wave functions
~ P ', JMTE) rather than

~
Psl22; JMTN).

The phase relationship of hole and particle descriptions
has been establishedin Sec.2.1.We expand

~ P 2;JMT1V)
in I.S coupling and go into an intermediate-coupling
situation as produced by a conventional central plus
spin —orbit interaction. That is we write

i p
2' J=1T=O)=C 1o 25+C 1o 1P +C 1o 2D

~ p ' J=OT=1)=CB"'50+Cs"'Po. (33)

For the Poise(2s, 1d) wave functions we consider
results of shell-model calculations '~'5 for mass 18,
i.e., p"(2s, 1d) as well as those of True. ' We also
consider pure jj coupling of (2s, 1d), i.e., pure dol2.
The coefficients resulting from these various calcula-

"C. P. Swann, K. K. Rasmussen, and F. P. Metzger, Phys.
Rev. 121, 242 (1961).

3 E. C. Sooth, S. Chasan, and K. A. Wright, Nucl. Phys. 57,
403 (1964) .

3' J. A. Lonergan and D. J. Donahue, Nucl. Phys. 74, 318
(1965).

» K. P. Lieb, Nucl. Phys. 85, 461 (1966).
33 J. P. Elliott and S. H. Flowers, Proc. Roy. Soc. (London)

A229, 536 (1955)
3' M. G. Redlich, Phys. Rev. 110, 468 (1958).
35 8. H. Flowers and D. Wilmore, Proc. Phys. Soc. (London)

83, 683 (1964).
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TABLE III. LS-expansion coeScients for the wave functions of the lowest three s'p" states of"¹
Calculation& Cs

Ground state
(J, T) =(1+,0)

Cg CD

2.31-MeV level
(J, T) = (0+, 1)

Cp Cs

3.95-MeV level
(J~, T) = (1+, 0)

jj coupling

Soper

Elliott

Visscher and Ferrell

Cohen and Kurath I

—0.192
—0.204

+0.077

+0.173

+0.088

+0.471

+0.358

+0.179

+0.355

+0.261

+0.861

+0.911
+0.981

+0.920

+0.962

Cohen and Kurath II +0.136 +0.240 +0.962

+0.577

+0.638

+0.805

+0.764

10.865

+0.880

+0.817

+0.770

+0.593

+0.646

+0.502

+0.474

+0.770

+0.907

+0.98

+0.813

+0.963

+0.961

—0.471
—0.281
—0.22
—0.580
—0.272

—0.267

+0.430

+0.314
—0.05

+0.073
—0.014
—0.070

~ The calculations are as follows: Soper, intermediate coupling L/K =6, a/X =7, Ref. 36; Elliott Ref. 2; Visscher and Ferrell, Ref. 3; Cohen and
Kurath I, (8—16)2BME, a =5.67 MeV, Ref. 19; Cohen and Kurath II, (8—16)2BME, a =5.15, Ref. 19.

tions are given in Table I. The reason for considering
these p"(2s, 1d) results as well as those for p'(2s, 1d) is
to examine the sensitivity of the predictions to the
particula, r wave functions assumed. The relative phases
of the individual terms contributing to these wave
functions have been chosen to conform with the coupling
scheme used in this work, namely, 1+s =j and j1+j3——J.
The choice of over-all phase in lines 2—5 of Table I is
made to conform to line 1. As mentioned before, the
choice of over-all pha. se of line 1 for two-particle eigen-
functions is the only arbitrary choice available.

The LS-expansion coefficients CL~r of Eq. (33) for
an intermediate-coupling situation (a/IC) =-7 as ob-
tained by Soper" are given in Table III. The choice of
over-all phase here, is again such that the functions
(33) describe two Particle stat-es. As appaIent from
Sec. 2.1, the phase of the matrix elements of the
Gamow —Teller and the electromagnetic transition
operators is invariant under particle —hole conjugation.

The above substitutions of wave functions for the
p-shell and (2s, 1d) -shell contributions in Eq. (1)
will, at this stage, still be done without changing
True's results for the coefFicients A~~ and B~~. This is
done for the simple reason that all p ' wave functions
for the "C and '4N ground states which give a reason-
able description of experiment have a pI/3

' component
of &80%%u~, so that the inclusion of the small P3/3 PI/3
and P3/3

' admixtures will have little influence on the
small P3/33(2s, 1d) admixtures and vice versa. We also
assume that the restriction of a closed P3/33 core in
p'(2s, 1d) can be relaxed to that of a J =0+ pa core
state without undue influence on the B~~.

(ii) In a final step of generalization we shall then
make the numerical values of A~~ and 8~~ subject to
variation. That is, we determine and inspect the set of
Asr and B~r which yields, by an interplay of P-shell
and (2s, 1d)-shell contributions, a vanishing Gamow-
Teller matrix element a,nd reproduces the (0, 1)—+(1, 0)
experimental gamma width. Because there are four

coefficients A~~, B~~ entering the matrix elements, and
because

(6)=0, (34)

and the two normalization conditions provide four
equations for them, it is obvious that a set of A~~, B~~
can always be found which, in principle, provides an
interplay of the configurations in question so that the
experimental facts (34) and (35) are described. How-
ever, we show that the specific solution so obtained
requires that either the "Cor the "N ground state would
have to arise almost purely from the (2s, 1d) con-
figuration. Because this is quite unreasonable, we then
conclude —model independently (or at least semi-
independently) —that the bulk of cancellation of the
"C beta-decay matrix element cannot be expla, ined
without the use of a tensor force, i.e., as being due to an
interplay of diferent con6gurations only.

We do not discuss the magnetic-dipole or electric-
quadrupole moments of the "N ground state at this
time since these moments are found to be rather insensi-
tive to the presence of both a tensor interaction and
admixtures from (2s, 1d) and give essential agreement
with experiment with or without these refinements to
the wave functions. Neither do we discuss at this time
the electromagnetic transitions originating from the
higher-lying "N states of p '; the reason being that the
other two bound states of p ' which we shall consider
later arise predominantly from p3/3 'pI/3 ' and thus the
coefficients tabulated in Table I no longer give us a
quantitative guide to the p (2s, 1d) eigenfunctions.

We now consider step (i). In LS-coupling Eq. (28a)
is to be replaced by

(6(P 2) ) +~2 I Q OIC 10 y3Q 01C 10
I (3{j)

and (6(2s, 1d) ) is still obtained from Eq. (28b) .
Experimentally, the magnitude of the Gamow —Teller

matrix element for '4C is obtained from the ft value'

36 J. M. Soper (private communication). (6) i
=0.002 for '4C, (37)
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FIG. 1. Total width F and its orbital contribution F~ of the
2.31 MeV~gs M1 transition in '4N vs the intermediate coupling
parameter a/E. The GT matix element, (G), is also plotted.

" G. S. Sidhu and J. B. Gerhart, Phys. Rev. 148, 1024 (1966).

whi1e from the positron decay of '40 it was obtained'7

~ (6) ~

= (0.013+0.004) for "O. (38)

The magnitude of (G) is about seven times larger for
"0 than it is for '4C. This difference is presumably due'
to dynamic distortion effects related to the change of
two neutrons into protons in going from "C to "O.
However for present purposes both (G) values differ
negligibly from zero and can be taken as such. Thus,
we neglect such charge-dependent effects and consider
Eq. (27) to give identical results for all three (0+, 1)
members of the isobaric triplet.

We now evaluate Eq. (27) using the intermediate-
coupling results of Soper" for (6(p ')), the wave
functions of Table I for (G(2s, 1d) ), and the Ao
and BD of True'. This gives

(G)=0.918(G(p ') )—0 079(6(2s, 1d) ). (39a)

The value of (6(p ') ) is found to be quite insensitive
to variation of the intermediate-coupling parameter
a/X. This is illustrated in Fig. 1. The value of a/E
which best fits the energy spectra and other properties
of the mass-14 nuclei is ~7. Figure 1 shows that
(6(p ') ) is quite insensitive to /aIL" in the region from
~4 to 9. Thus we take the value for a/If=7 which is
(6(p ') )=+0.709.

The values of (6(2s, 1d) ) corresponding to the five
sets of wave functions of Table I are listed in Table IV.
(6(2s, 1d) ) is insensitive to the variations in these
wave functions so that we can use True's wave func-
tions with some confidence. Combining these results we
have,

(6)= (0.918)(+0.709) —(0.079) (—1.527)

= (0.651+0.122) =0.773,

TAsI.E IV. The Gamow —Teller matrix element and the space
part of the M1 matrix element connecting the s'p" (2s, 1d) com-
ponents in the lowest ( J~, T) = (0+, 1) and (I+, 0) states of
'4N and '8F.

Calculation' (G(2s, 1d) ) (Gi™E(2s, 1d) )

True
Elliott and Flowers
Redlich
Zamick
Flowers and %ilmore

jj coupling

—1.527
—2.293
—2.347
—2.282
—2. 115
—1.673

+0.976
+0.813
+0.937
+0.830
+1.658
+2.366

The origins of the first five calculations are given in Table I.jj-coupling
refers to an assumption of pure ds/22.

and we see that as in Sec. 2.2 not only is the magnitude
of the Ps(2s, 1d) admixture too small for cancellation
but more importantly the sign is wrong.

We now consider again the Mi matrix element

AoiAio(Tim(p —s) )+BoiB&o(Tim(2s 1d) ). (39b)

From Fig. 1 it is seen that the p
' intermediate-coupling

prediction is FR=55)(10 eV, in disagreement with
experiment by a factor of approximately 6. If we,
again, take the effect of admixtures into account and
use the coeificients of (26a), Table II, and the (2s, 1d)
eigenfunctions as generated by True's model, we
obtain 17=103X10 eV. Likewise the inclusion of
admixtures from (2s, 1d) when these are described by
the other wave functions enlisted in Table I Land only
the coeflicients of (26a) are retained from True's
model) yield an increased gamma width compared to
the pure p ' intermediate-coupling result. This is simply
because the spin contribution to the M1 transition is
dominating the contribution from the space part due to
the relatively large magnitude of g, & '. Because the
matrix elements of the Gamow —Teller operator and the
spin part of the Mi operator have a fixed-phase relation
LEq. (25)j, there will always be constructive inter-
ference of the Mi amplitudes when there is constructive
interference of the Gamow —Teller matrix elements as
long as (Ti ") dominates in magnitude (Ti '). In
other words: as long as (6) cannot be brought close to
cancellation, also the gamma width of the (0+, 1)~
(1+, 0) transition cannot be brought close to its experi-
mental value. The constructive interference with which
we are left is still caused by the sign of the amplitudes
A~~ and B~~ being taken from True's model. As long
as these amplitudes can be believed to be yielded
correctly in sign by the model and at least to be roughly
approximated in magnitude by True's model, the
variation of pi~a

'—&p
' and the replacement of True's

(2s, 1d) wave functions does not lessen the disagree-
ment between experiment and the theoretical results
obtained from an "interplay model" of configurations
excluding a tensor force.
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We now, consequently, proceed to the last step (ii)
of generalizing the "interplay model": that is, we no
longer take the arnplitud. es A ~~ and 8~~ from True's
model but instead choose them as to 6t the experimental
results. By de6nition then, the amplitudes A JT and
13~~ are determined so as to make the Gamow —Teller
matrix element vanish. Consequently the M 1 matrix
element does not involve contributions from the spin
part of the operator T1 and we need consider only
those contributions as arising from T1 '. The following
conclusions could be drawn just as well from a con-
sideration of the matrix element of the (total) M1
operator Ti as entering Eq. (35).The investigation is,
however, more transparent when we consider the space
part only and replace Eq. (35) by

(o111 Gi™'
ll 1o)= (o1 II Gi" II 10)-., (4o)

where we have introduced for convenience the magnetic
multipole operator G1, which is related to the corre-
sponding interaction multipole operator Ti by (cf.
Ref. 17)

and for (2s, 1d)

(01 II 6; II 1O) = —(6(2s, 1d) )Lg'-'/2V2 j
+{I2(7)'t2/(5)'t21C(d0t22; 01)C(d0 22 10)

+I (3%3/5't2) jC(d3/2 01)C(d2t ' 10)

—(5) 't2C(d0t22; 01)C(d2t2 d0t2, 10)

—(K3/v25 )C(d2t2' 01)C(d2t2 d2t2, 10) I. (43c)

Using Tables I and II, the numerical values for the
Gamow —Teller and the space part of the 3f1 matrix
element are easily obtained. They are displayed in
Table IV from which it is seen that (Gi™i(2s, 1d) )
retains the same sign (and also does not vary appre-
ciably in magnitude) . As mentioned earlier the same is
true for (G(2s, 1d) ). Furthermore, from Fig. 1 it is seen
that (Gi '(p ') ) and (G(p ') ) are insensitive to g/E
in the whole of the intermediate-coupling region of
interest and retain their signs throughout this region.
We adopt the values given for a/E= 7 in Table II.

From I', (M1),„0=8.1X10 ' eV, we extract

~1M ~G1M (41) (01 I I
Gi-

I I 10), 0 =0.490. (44)

LWhen in general replacements of interaction multipole
operators T&~& & by multipole operators G&~& & and
replacements of the corresponding matrix elements are
made, great care has to be exercised regarding the
phases of the matrix elements of G~~& & . This is es-

pecially true when particle —hole conj ugations are
involved (cf. Ref. 17). In the case of the magnetic
multipole operator under consideration no "danger"
is involved. 7

The numerical relation between the reduced matrix
elements of these two operators is

(01 II G II 10)=6.26XE '(o1 II Ti" II 1o), (42)

when the right-hand side matrix element is inserted in
eV/G cm, the gamma-ray energy E„ in MeV, and the
left-hand side in units of the nuclear rnagneton P.

In Table II, we have included the reduced matrix
elements of the multipole operator G1 and also split up
its matrix-element phase consistently into the two con-
tributions from Gi ——Gi (spin) and Gi ' ——Gi
(space). The Gamow —Teller matrix element has also
been included phase consistently. From Eqs. (41) and
(25) it is easily shown that the relation is

(G)= (—9.411/2%2) (Gi ~ ), (43a)

when (Gi ) is inserted in units of P.
For p

' in I.S coupling the matrix elements of the
operator

6 m 6 m, a+6 m, i

are given by

«I II Gi" II 10&= —«(p ') )«' '/2~»+6 "'

X {(5) 't2Ci 0'CD"—2' 0iCe"+2&3Ce0iCi "I (43b)

Ke can now determine the sets of A JT, B~~ which
make the Gamow- Teller matrix element vanish and
reproduce the experimental gamma width. Equations
(34) and (40) lead to

A0iAi0(6(p ') &+80i8"(G(2s, 1d) ) =0 (45)

A "A"(Gi"'(p—') )+8"8"(Gi"'(2s 1d) )= (Gi"). 0

(46)
and, in addition, we have the equations

(AOi) 2+ (I101)2 —1 ~ (47a)

(Ai0) 2+ (+10)2 —1 (47b)

Substituting the numerical values for the matrix
elements using Tables II and IV and Eq. (44) (the
final result being not dependent on the sign of (Gi &,„0),
we obtain the result that either the (0+, 1) or the (1+, 0)
state must arise almost purely from the (2s, 1d) con-
figuration, its intensity being between 85% and 95%
from (2s, 1d) for any of the numerical sets of coeKcients
tabulated in Table IV.

To summarize: the "rnechanisrn" which causes this
result is a "mechanism of phases. "Our phase-consistent
examination yielded opposite signs for (G(p ') ) and
(G(2s, 1d) ), which enter Eq. (45). Consequently, in
order to satisfy Eq. (45), the products A 'A' and
8"8"must have the same sign. Destructive interference
is necessary to make (6) vanish. On the other hand, for
any degree of intermediate coupling which could be
considered reasonable and for any reasonable variation
in the (2s, 1d) wave functions the matrix elements

(G,m'(p ')) and (Gim'(2s, 1d) ) have the same sign.
Consequently, because the relative sign of the products
A 'A" and 8"8" is fixed from (G) =0, we have con-



Rosz, HAUSSRR, AND WARnURTQN Nuclear Tensor Force from Moss J4-601

strict'ice interference in the gamma width. The result is
that in order to satisfy Eq. (46) (i.e., to fit the low
experimental gamma width) it is necessary that in
either of the two products Ao~gio and 80igio one factor
must be very small, which —because of the normaliza-
tion—implies that either the "C or the '4N ground
state can riot arise predominantly from p '. We con-
clude, then, that the beta-decay rate of '4C and the
2.31—4 radiative width cannot simultaneously be
explained by a conventional central force plus spin—
orbit interaction together with conhguration mixing.
We now turn to a consideration of the decay of the
second (1+, 0) level of p

' at an excitation energy of
3.95 MeV in '4N, this empirical data providing further
evidence against an accounting of the p ' wave functions
by a conventional intermediate-coupling calculation.

2.4. The Decay of the '4N 3.95-MeV Level

The empirical data relating to the decay of the second
excited state of "N at 3.95 MeV have recently been
combined to give"

1',(M1),„,= (0.140+0.013) eV (48a)

for the 3.95—+2.31, (1+,0)—&(0+, 1) transition and

F,(M1). n
= (5.8+1.2) &&10 ' eV (48b)

and
I'7(E2),„n= (4.81&0.33) &&10 ' eV, (48c)

for the 3.95-+0 transition. Furthermore, the E2/M1
inixing ratio, which is defined (cf. Ref. 17) by

(49)
&~ II

2'i"
II ~ )/(21-+1)"'

&~i II 2 i" II ~s&/(21+1)"'
with L being the lowest-order multipolarity, is given
(cf. Ref. 38 and further references therein) by

6(E2/Ml), ,= —(2.87+0.27) . (50)

The evidence that the '4N 3.95-MeV level is the
second (1+, 0) level of (predominantly) p ' is quite
conclusive. Assuming a wave function for this level of
the form of Eq. (1), the Ml and E2 matrix elements are
of the form of Eq. (39b). Numerically the 3.95~2.31
matrix element can be obtained in eV/G cm, when E~
is inserted in MeV and (Gi ) in units of the nuclear
magneton P from

&1o II
2'i

II o1)= ( —1/~3) X0.159XE,&01 II Gi" II 10),

(51)

and inserting for &01 II Gi II 10) the matrix elements
of Eqs. (43b) and (43c) and the coefficients Cz, of
Table III representing the 3.95-MeV level in. inter-
mediate coupling. The results are tabulated in Table
V. Since True's calculation does not provide any
quantitative guide for the admixtures from (2s, 1d) in

38 J. W. Olness, A. R. Poletti, and E. K. Warburton, Phys.
Rev. 154, 971 (1967).

TABLE V. Two-particle matrix elements of the magnetic-
dipole-interaction multiple operator for the'4N, 3.95-+2.31(1+,0)-+
(0+, 1) transition.

Transition (6&™)
Units P

(Tg ) C(lP 0+1) (Ty~)
10 7 MeV/0 cm

Pl/2 ~Pl/2
Pl/2 P3/2 ~Pl/2

p
—2~p-2 a

$1/2 ~Q/2
d3/2 ~A/2
4/2 ~A/2

d3/2'/2 —+d3/22

d3/2'/2~d5/2

+0.901
—2.803
—2.959
—4.705
+0.762
—4.580
—2.659
—2. 171

+2.351.
—7.310
—7.716

—12.270
+1.989

—11.944
—6.935
—5.663

—4.797
+0.725

—10.093
20 531

—4.785

Intermediate coupling a/K =7.

the 3.95-MeV state we have included in Table V the
products of the (2s, ld) matrix elements with the
corresponding amplitudes taken from Table I for the
' N 2.31-MeV state as given by True's model. Using
the M1 matrix element for u/X=7 and assuming the
3.95-MeV state to arise purely from p ' we arrive at
1'7(M1) =0.105 eV for the 3.95-+231 transition. Again,
this value is found to be insensitive to the intermediate

coupling parameter a/Z in the region of interest. We
see that the experimental value of the 3.95~2.31
Mj.-transition width is roughly accounted. for by the
p-shell contributions. Applying purely empirical knowl-

edge, this is not surprising, since the transition strength
is..1.47 Weisskopf units, "and therefore should be rather
insensitive to small p (2s, 1d) admixtures in both the
3.95- and the 2.31-MeV states. The experimental
matrix element which we may extract from 1'~(M1),„n is

I &10 II 2; II 01) I.„,=8.944&(;10-'MeV/G c

which, considering the experimental errors, may be as
low as 8.53&10—7. This value is to be compared to the
pure p-shell result 7.72&(10 r.

Certainly the discrepancy is not of great signiicance.
For the over-all picture it is, however, interesting to
inspect whether it is likely that admixtures from

(2s, 1d) can completely remove the disagreement. From
the 6rst line of Table I it is seen that the d3/2 d5/2 com-

ponent in the (2s, 1d) part of the ground-state eigen-

function is smallest. As the 3.95-MeV state must be
orthogonal to the ground state we may, therefore,
assume that this component is large in the 3.95-MeV
eigenfunction without inQuencing the ground-state
wave function unduly. An upper limit on the inQuence

of contributions from (2s, 1d) can then be estimated in

a reasonable way from inspection of the last column of
Table V, from which it is seen that the contribution
from (2s, 1d) to the transition rate will be close to its
maximum value if we assume the ps(2s, 1d) part of
the 3.95-MeV eigenfunction to be pure p dsis dsis. We

~9D. H. Wilkinson, in Egcleer Spectroscopy, F. Ajzenberg-
Selove, Fd. (Academic Press Inc. , New York, 1960), Part 3,
pp. 852—889.
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E2—Ml ml~~&g ratio 8 of the 3.95 MeV—+gs transition in ~4N as
obtained from the eigenfunctions of Soper. es

also know (cf. Sec. 2.3) that we can rely with some
confidence on the eigenfunctions of True for the 2.31-
MeV state. Using True's values A" and 8" LEqs.
(26a) j for the 2.31-MeV state and Table V, we then
have

(10 I ~

TI"
I I 01)=L1—(8, oom) 'g'I'(0. 950) (—7.716)

+By oo (—0.311)(—7.316) .

For an approximately 10% admixture of p'(2s, id) in
the 3.95-MeV state we obtain a maximum value for the
transition rate which is not larger than the pure p-shell
value. In fact, if we accept a configurational admixture
of ~10% in the 3.95-MeV state as reasonable, we have

(10 Ij TI" II 01)= p
—6.955&0.720]x 10 ' Mev/G cm.

We now consider the (1+, 0)~(1+,0) transition of
the 3.95-MeV level to the ground state. In LS-coupling
the magnetic-dipole and electric-quadrupole matrix
elements as arising from p

' can be obtained numeri-
cally in 10 ' MeV/G cm from

(10
I I

TI"
I I 10)= 7.836CS"'Cs'o+4 453'"'Cp"

+2 761CDIo'CDIo

=3.383 ICB"'Cs"—-I,
,
CD"'CD" I, (52)

(10 [[ To' I[ 10)= I0.772'"'CF"
—0.690 (CSIo'CDI'+CDIo'CBIo)

0.540CDIo'CIIIo I (1+2n), (53)

where the primed coeKcients correspond to the 3.95-
MeV level.

For the calculation of the E2-matrix elements a
radial fall-o6 parameter 0.595 has been used. This
corresponds in the p shell to a radial integral (r')=
7.06f~; a value which has formerly been used. '" It
agrees fairly well with the value of (6.4&0.5)f' recently

extracted~ from various experimental data by Wilkin-
son. t Wilkinson's recommended value for (r') is
dependent on the binding energies involved. For the
transitions considered here it is recommended that this
value be increased by 5% or 10%, which would bring
it into agreement with our adopted value of 7f' (private
communication from D. H. Wilkinson) .]

The parameter n appearing in the expression (53)
for the electric-quadrupole matrix element is the
effective charge in units of the proton charge, resulting
from the use of the eGective charge parametrization.
In comparing the calculations to experiment we shall
take a to be 0.5. The use of the eGective charge param-
etrization is the most uncertain point in our calculation
of E2 rates. However, it has been shown that some sort
of collective enhancement of the E2 rates is clearly
necessary and recent calculations4' indicate that &x=0.5
gives agreement with experiment for the stronger, less
model-dependent E2 rates in the 1p shell. The 3.95~0
E2 transition is relatively strong, 3 Weisskopf units, "
thus indicating that small configurational admixtures
wi11 have little influence on it.

In Table VI we have tabulated the M1 and I2
matrix elements as they result from a phase-consistent
calculation. For the p-shell contributions we again use
a/E= 7. It is shown in Fig. 2 that (again) in the region
of interest the p ' contributions are insensitive to a/E.
Furthermore, we see from Fig. 2 that the mixing ratio
b is opposite in sign to the observed one and is, as are
the E2 and Mi matrix elements, almost independent of
a/E in the whole region of interest. The calculated E2
width corresponding to a/E=7, considering p-shell
contributions only, is I'~(E2) =5.82)&10 ' eV, which
agrees within the errors with the experimental value.
For the Mi width, however, we obtain (for a/E=7)
I'Y(M1) =5.19)&10 ' eV which is an order of magnitude
larger than the experimental value. Because of the
agreement of the experimental E2 width and the dis-
agreement of the MI width with the calculated value
from p ' we may and shall assume that the E2-matrix
element is well represented (i.e., in magnitude and
phase) by the p

' calculations and the Mi-matrix
element is not.

We now ask. if p'(2s, id) admixtures can resolve
these discrepancies. To reproduce theoretically the
measured sign of the mixing ratio, we must inspect
whether we can change the sign of the Mi matrix
element by an "interplay" of P o and (2s, 1d) con-
tributions. In fact, we even have to "overcompensate"
the p ' matrix element by contributions from (2s, 1d)
in order to arrive at the correct sign and at the finite
experimental M1 width. Remembering the requirement
of orthogonality of the 3.95-MeV state to the ground
state, examination of column 3 of Table VI shows that

"D. H. Wilkinson, Nucl. Phys. SS, 114 (1966).
4'A. R. Poletti, K. K. Warburton, and D. Kurath, Phys. Rev.

ASS, iO96 (~967).
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TABLE VI. Two-particle matrix elements of the interaction-multipole operators T~~ and Tg' for the "N, 3.95-+0 MeV, (1+, 0)~(l, 0)
transition (units: 10 s MeV/G cm).

Tl8llSltIOIl
C (LL'; 10)

X (Ti")
(1+2a) C(ll'; 10)e,,

&((Ts ) b

Pl/2 ~Pl/2
Pl/2 P3/2 ~PI/2

p-2~p-2 sL

$1/2 ~$1/2
~3/2 ~d3/2

d5/2 ~d5/2

d3/2 ~d3Ptf5/2

~3/2d'5/2~d3/2

~5/2~A/2d 5/2

~3/2d5/2~~5/2

d3/2~5/2~d3/2d5/2

Sl/2A/2~$1/2d3/2

$1/2d3/2~83/2

sl/s/f 3/R~sl/2

$1/2 ~$1/2d 3/2

+3.326
—1.128
—1.108
+7.839
+3.777
+5.131
—1.436
—i.436
+1.791
+1.791
+6.146
+2.761

0
0
0

0
—0.772
—0.758
0
+0.865
+0.989
—0.458
—0.458
—0.245
—0.245
—0.540
—0.540
—0.309
—0.977
—0.977

+1.967
—1.941
+3.684
—0.058
+0.738
+0.073
+1.285
+0.252
+1.090

0
0
0

0
—0.889
+1.420
—0.037
+0.470
—0.020
—0.352
—0.044
—0.427
+0.317
—0.490
—0.772

a Intermediate coupling a/K =7. cx 0.5 throughout.

the Mi matrix element for the 3.95~0 transition is
close to its maximum value if the p'(2s, id) admixture
in the 3.95-MeV level is mostly p' ds/g ds/g. Using pure
p' dg/g dg/g for the p'(2s, 1d) part of the wave function
for the 3.95-MeV level and True's wave function for the
'4N ground state we obtain with the help of Table VI

(10 [~ Tt j[ 10)=Ag. gs (0.966) ( —1.108)

+Bs.gem(0. 255) (2.093) . (54)

The 3.95-MeV level would need to have a P
' intensity

smaller than 20% and a ps(2s, 1d) component larger
than 80% in intensity before (Tt ) would change sign
to give agreement with experiment. In fact, the experi-
mental value of (Tr ) is +0.370)&10 r MeV/G cm,
thus requiring Bs gsrg to be of th.e same (positive) sign
as c4 3 95 while to resolve completely by "interplay"
the discrepancies found for the 3.95—+2.31 transition,
they would have to be of opposite sign.

We conclude that the disagreement with experiment
of the intermediate coupling predictions for the mixing
ratio 8 of the 3.95—+0 transition are nearly as signiicant
as that for the "C beta decay: admixtures of p (2s, 1d)
cannot reconcile these disagreements and again a strong
modification of the p

' wave functions is demanded.

3. MASS-i4 %AVE PUNCTIONS PROM MODELS
INCLUDING A TWO-BODY TENSOR

TENSOR INTERACTION

3»I Hlstoflc81

Inglis' first showed that a s'p" model with a two-body
central interaction and a single-particle (or hole) spin—
orbit interaction was incapable of causing cancellation
of the Gamow-Teller matrix element LEq. (36)].
Visscher and FerrelP generalized this proof to hold for
a general two-body spin —orbit force,

Jancovici and Talmi' pointed out that the inclusion
of a tensor interaction into the two-body interaction
could bring about the necessary modifications in the
wave functions so that cancellation can be achieved in
the Gamow —Teller matrix element. However, the
tensor force considered by Jancovici and Talmi' was
large enough to cause severe distortion of the "N
spectrum. Further work by Visscher and FerrelP and by
Elliott' succeeded in reducing the strength of the
necessary tensor interaction to an acceptable level.
These authors gave the matrix elements of the inter-
action which includes a tensor force. The various
quantities entering these matrix elements were deter-
rnined approximately from first principles. Adjust-
ments of the matrix elements to fit the level scheme of
'4N, to make the Gamow —Teller matrix element vanish
(and the use of some further quantities known from
p-shell data), lead to a tensor force contribution to the
two-body interaction which is in reasonable agreement
with the information from two-nucleon data.

The wave functions of Elliott and of Visscher and
Ferrell for the three lowest levels of mass 14 are repre-
sented by the I.S-coupling coeKcients given in Table
III. The other bound. p

g state of '4N has (J~, T) =
(2+, 0) and is described uniquely in I.S coupling by
"D2. %e identify this state with the '4N 7.03-MeV
level.

The LS-coeKcients of Soper for /4/%=7 are also
given in Table III. These represent the intermediate
coupling wave functions discussed in Sec. 2. The Cohen
and Kurath" wave functions are discussed in Sec. 3.3.
From Eq. (36) and Table III we see how the intro-
duction of a tensor force can cause the Gamow —Teller
matrix element to vanish. For the central plus spin-
orbit interaction of Soper, "Cs"/C/'g is always negative
and Csgr/C'est is always positive; while introduction of



604 REYIEw oF MoDERN PHYsIcs ' JULY 1968

a tensor force causes CB"/CF" but not CB"/CF" to
change sign.

The three treatments we have brieQy discussed here
show quite clearly that the introduction of a tensor
force can explain the longevity of "C and ' O. However,
it might be argued that the introduction of the neces-
sary tensor interaction was, to some extent, arbitrary.
Since the time of these early treatments the evidence
for a nucleon —nucleon tensor interaction has been con-
siderably strengthened (see, for example, Ref. 18) and
recent calculations~ "" indicate that the necessary
tensor force is a general attribute of effective two-body
forces in nuclear matter.

3.2. The Two-Body Matrix Elements of
Seeker and MacKellar

Recently Kuo and Brown4' and Becker and. Mac-
Kellar" have extracted two-body matrix elements,
V;;, from a first principles calculation based on the
Hamada —Johnston potential. " This interaction has
central, tensor, spin —orbit, and quadratic spin —orbit
terms and results from a fit to two-nucleon scattering
data up to several hundred MeV. Zamick" investigated
the "C beta decay in relation to the matrix elements of
Kuo and Brown4' assuming pure p ' states and showed
that the longevity of "C followed quite reasonably from
them. It is our intent to show that similar results follow
from the Becker—MacKellar matrix elements. For our
investigation, using the reaction matrix elements V;;
of Becker and MacKellar the (1+, 0) wave functions
are obtained in a jj-coupling basic set (pr/s ', pr/s ps/s ',
ps/s ') by diagonalizing

( —4 00)

z 6—
VJ

O
I- 4
1/rl

O
CL

LLI 2
LIJ

, 0)

which is purely central, cancellation of the '4C Gamow-
Teller matrix element could not be achieved. This is
predicted by the general theorem of Inglis' and Visscher
and Ferrell. '

We have made an investigation similar to that of
Zamick' but using the Becker—MacKellar" matrix
elements, the purpose being to see if this model is
capable of explaining simultaneously the Gamow-
Teller matrix element and the E2/M1 mixing ratio of
the "N 3.95—+g.s. transition at the same time as it
gives a reasonable level scheme for "N. It is at present
still an inherent feature of this first principles approach
that the binding energies (as well as e) come out rather
high. Therefore„agreement in detail for mass 14 should
not be expected to the same extent as in those treat-
ments' ' specific to '4C—"N.

The results are displayed in Table VII for diGerent
radial fall-oG parameters e. Table VII shows that, in
principle, one can produce for a particular & cancellation
of the Gamow —Teller matrix element and obtain
simultaneously agreement with B(E2/3II1) for the
3.95—+gs transition with a=0.5. However, the experi-
mental-level scheme is reproduced better at higher
values of e indicating that the tensor force is too strong
in agreement with the work of Zamick.

(J V)+se ' (55)

0 0 2,
and similarly the (0+, 1) wave functions are obtained
from diagonalizing (basic set PI/s s, Ps/s s)

0.6—

(Ve)+se
—4 0

0 2

h pg
C9

V

X
OJ
Ltf

lQ--I—

where e is the Ps/s —PI/s sPlitting, equal to 3a/2 (where
a is the strength of the single-particle spin-orbit force) .

Zamick treated e as a free parameter (as a/Z is in
intermediate coupling) and showed that the "C

amow —Teller matrix element went through zero at
q=9.2 MeV. Zamick~ remarks that the fact that this
value of e is larger than the experimental splitting of

6.3 MeV (in mass 15) indicates that the tensor part
of the Hamada —Johnston potential is too large. He
also showed that using the Kallio —Kolltveit43 potential,

4~ T. T. S. Kuo and G. E. Brown, Phys. Letters 18, 54 (1965}.
43 A, Kallio and K. Kolltviet, Nucl. Phys. 53, 87 (1964).

0.2—

0 6 7
~ (Mev)

Fro. 3. Results obtained from the (8—16}2 BME matrix
elements of Ref. 19.In the upper half of the 6gure the calculated
level positions of ' N are shown vs the P8/2

—
P1~2 splitting e together

with the experimental-level sheme. In the lower half
~ (G)~ and

the reciprocal of b(3.95 MeV~gsl is plotted vs e. The hatched
area corresponds to the experimental value 8 (2.87&0.27). The
other possible value of b corresponding to —4.3&1/8& —2.3 is
not shown. The meaning of the dashed. lines is explained in the
text.
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The same procedure was repeated starting from the
(8-16)POT matrix elements. The results are displayed
in Fig. 4 and in principle the same conclusions can be
drawn as from Fig. 3 although a comparison of these two
figures shows that the (8—16)POT results are not quite
as striking as the ones arrived at from the (8—16)2BME
case.

When a decomposition of the matrix elements of
Cohen and Kurath" is made in terms of the Hamada-
Johnston potential'3 and Table I of Ref. 19 is used, one
can extract ~=7.5 MeV. This value again seems to
reflect that the strong tensor force in the Harnada-
Johnston potential leads to too large a spin —orbit force
(cf. Sec. 3.2). Probably a smaller value (e 6 MeV) is
better to describe the mass-14 data, because the
p3/3 pl/3 splitting seems to be rather well represented
(near 2=15) by the splitting of the 3/2 and 1/2
states in mass 15 (cf. Ref. 44). However, a strict
interpretation of e as the experimental P3/3 Pi/3 energy
splitting in mass I5 or 14 is probably misleading. In
both the first-principles calculations described in Sec.
3.2 and in the eGective interaction calculation of
Cohen and Kurath, e is an egectiI/e parameter which
bears part of the burden of masking our ignorance of
the forces acting in nuclear rnatter; thus it should not
surprise us when slightly different values of e are
extracted from comparison with diferent measured
quantities.

Figures 3 and 4 show that for a pure p ' model the
experimental data considered here can be almost
exactly reproduced within a small range of variation of

between 5.6 and 6.2 MeV. This was already antic-
ipated by Cohen and Kurath'9 who did not vary e but
did note that only a small perturbation of the mass-14
wave functions was necessary in order to have
(G(p-') )=o

Now let us consider the eGects of admixtures of
ps(2s, 1d). Eqs. (27) and (29) show that our model
for configuration mixing yields (G(p 3) )=—0.132 if
the contributions from p ' and ps(2s, 1d) are to cancel.
The value of e resulting in this value (G(p—') ) is
ind. icated by the vertical dashed line in Figs. 3 and. 4.
For the (8-16)2BME case it is 3=5.15 MeV. At this
value of e the magnitude of 8(E2/M1) for the '4N

3.95—+0 transition is too small by about a factor of 2.
This discrepancy is well within the possible range of
variation due to the effects of ps(2s, 1d) admixtures on
this parameter. To show this we note that for the
(8—16)2BME case with 4=5.15 MeV the 3.95~0 M1
matrix element analogous to Eq. (54) is

(1O ( i
T,- ( [ 1O) =a, .„"(0.966) (O.555)

+83.gsI (0.255) (2.093), (57)

grhere the first part of the term is the p contribution,

44 H. J. Rose and J. S. Lopes, Phys. Letters 22, 601 (1966).

i.e., (8-16)2BME, and the second part is our estimate
of the largest feasible contribution from ps(2s, 1d).
Inserting for A3,95 and B3,9$ the values corresponding
to a 10% (in intensity) contamination of the 3.95-MeV
state from (2s, 1d) we obtain

(10 ~) Ti [~ 10)=0.509+0.169. (58)

It is clear that the ps(2s, ld) admixtures can have a
large effect on this M1 rate and thus on b(E2/M1). In
fact, the numerical value of the Mi matrix element
necessary to fit the experimental M1 width and the
mixing ratio, was +0.370 (cf. Sec. 2.4), which is weL
within the range of values permitted by Eq. (58). We
thus feel that the fact that the right sign of b(E2/M1)
is predicted and that the magnitude is of the right
order of magnitude constitutes satisfactory agreement
with experiment for this highly sensitive parameter.

The wave functions extracted from the (8-16)2BME
two-body matrix elements of Cohen and Kurath"
using 3=5.67 MeV t (G(p 3))=07 and e=5.15 MeV
L(G(p ') )= —0.1327 are listed in Table III as I and
II, respectively.

4. COMPREHENSIVE COMPARISON WITH
EXPERIMENT

4.1. N Electromagnetic Transitions

(20 ~] T '
[[ 10)=0.632X10 'E,'

XL0.782CD"—Ca"7 (1+243) (59b)

for the (2+, 0)-+(1+,0) transitions, and

(20 ([ Tg' [[ 01)=2.465X10 'E„'CF" (60)

for the (2+, 0)-4(0+, 1) transition. The matrix elements
are obtained in eV/G cm when EY is inserted in MeV.
The weak-surface coupling approximation predicts no

In this subsection we compare the predictions of the
various p ' models (Table III) with the known proper-
ties of the electromagnetic transitions connecting the
bound "N states of p '.Actually the three states already
considered and the (2+, 0) state at 7.03 MeU in '4N

are the only mass-14 states which are known to be
predominantly s4prg. The next highest state of this con-
figuration is expected to be a (2+, 1) state. This state
appears to be highly mixed with a (2+, 1) state from
ps(2s, 1d) so that two levels —those at 9.17 and 10.43
MeV in '4N—share the properties of the p '(2+, 1)
state about equally. "'4

The decay of the (2+, 0) p
' state to the three lower

p
' states is described by

(20 [i TI"
] [ 10)=0.0576E,CD"

and
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TABLE VIII. Magnetic-dipole radiative widths (10 s eV) connecting the four lowest e p'e states of"¹

Calculation

Transition

2.31 ~ 0.

(1) (2) 3.95—&2. 31 3.95~0 7.03~0 7.03~3.95

Soper

Elliott

Visscher and Ferrell

Cohen and Kurath I
Cohen and Kurath II 41.5 9.60

54.9 103

16.9

23. 7

18.0

105

159

137

180

5.256

0.491

0.559

0.408

1.321

103

120

106

115

1.035

0.026

0.056

0.002

0 ' 052

Experiment 8.1+1.4 140~13 0.58~0.12 91+13 ((1.1&0.3)

por the 2.31-+0 transition column {1) is calculated from the wave functions of Table III, using Eq. (43b), and column (2) includes th«««s
of admixtures of the Pg(2s, 14) con6guration as explained in the text.

collective enhancement for AT= j. E2 transitions in
self-conjugate nuclei. ~ (However, see Ref. 41.) Thus,
no enhancement is allowed for in the (2+, 0)—+(0+, 1)
transition.

The Mi and E2 transition rates calculated from Eqs.
(43), (51), (52), (53), (59), and (60) for the decay of
the three excited 'eN s'pro states in question are presented
in Tables VIII and IX, and the E2/M1 mixing ratios
for the 3.95—+0 and 7.03—&0 transitions are given in
Table X. The experimental results for the decay of the
2.31- and 3.95-MeV levels are from data presented in
Sec. 2, while those relating to the decay of the 7.03-MeV
level are taken from the results given in Ref. 38.

The experimental and theoretical phases as well as
the magnitudes of the E2/M1 mixing ratios given in
Table X are to be compared since they were calculated
from a phase-consistent theory. '~ The phase of the

E2/M1 mixing ratio for the 7.03~0 transition is
insensitive to the wave functions used and agrees with
experiment, as discussed previously. ' 46

We discuss the E2 rates 6rst since they appear less
sensitive to the details of the calculations. In fact,
Table IX sho~s that all the calculations save that for
intermediate coupling give predictions for the four E2
rates considered which are in adequate agreement with
experiment if collective enhancement is included, and
the predictions of intermediate coupling are not in
severe disagreement with experiment. The limit on the
experimental E2 transition strength for the 7.03—+3.95
transition is due to the fact that I'~(M1) +I'~(E2) was
measured for ttus transition and the E2/M1 mixing
ratio is not known. Tables VIII and IX show that, with
the exception of intermediate coupling, the prediction
is that I'7(E2) should dominate this transition so that

TABLE IX. Electric-quadrupole radiative widths (10 e eV) connecting the four lowest s'p" states in ' N.

3.95—4
Transition

7.03-+0 7.03~3.95

Calculation ba 7.03-+2.31

Soper

Elliott

Visscher and Ferxell

Cohen and Kurath I
Cohen and Kurath II

Experiment

1.47 5.89

1.14 4.58

1.33 5.32

1.21 4.83

1.11 4.43

4.81&0.33

18.46 73.84

10.45 41.80

6.58 26.30

9.70 38.80

8.35 33.40

33~9

0.16 0.62 1.33

0.37 1.47 0.78

0.20 0.81 0.94

0.34 1.35 0.57

0.37 1.47 0.50

& (1.1+0.3) 0.62+0.14

The columns headed (a) have no collective enhancement of E2 rates, while those designated (b) have collective enhancement with a =0.5. The
origin of the calculations is stated in Table III.

4e E. K. Warhurton, Phys. Rev. Letters 1, 68 (1958).' O. Hausser, H. J. Rose, J. S. Lopes, and R. D. Gill, Phys. Letters 22, 604 (1966).
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TABLE X. E2/M1 amplitude ratios for two sIp' transitions in "N.

Calculation
3.95~0

a' b

Transition

7.03~0
a b

Soper

Elliott

Visscher and Ferrell

Cohen and Kurath I

+0.53 +i.06
—i.52 —3.05

—1.54 —3.08

—i.72 —3.43

Cohen and Kurath II —0.9i —1.83

Experiment —(2.87&0.27)

+0.42 +0.84

+0.30 +0.59

+0.25 +0.50

+0.29 +0.58

+0.27 +0.54

+ (0.6&0.1)

~ The columns headed (a) have no collective enhancement, of E2 rates,
while those designated (b) have collective enhancement with n =0.5.

with this exception the predictions for the E2 rate are
to be compared directly to the measured radiative
width of the 7.03—+3.95 transition.

The E2 results presented in Table IX provide rather
conclusive evidence that collective enhancement of the
E2 rates is needed if a pure s'Pie configuration is as-
sumed and that the weak surface coupling approxi-
mation gives an adequate representation of this
enhancement although it is known to fail in other
cases.""This is not surprising. For AT=0 transitions
the E2 matrix element can be written in the form
As+KITS, where Xs and XI are the isoscalar and isovector
components of the matrix element and T3 is the s com-
ponent of isobaric spin of the nucleus in question. In
the weak-surface coupling approximation Xo is enhanced
by a factor (1+2n) and XI is unaffected; while more
realistic approximations predict some enhancement
(or retardation) of )u also.si Thus the weak surface
coupling approximation can fail badly in those cases for
which Xo and X~T3 interfere destructively, e.g., odd
nuclei. "~ However, in a self-conjugate nucleus, i.e.,
T3=0, the collective enhancement enters as a simple
multiplicative factor in any model which preserves
isotopic spin and thus the weak surface coupling ap-
proximation should be quite adequate.

We now consider the M1 rates. Table VIII shows that
the predictions for the 3.95—+2.31 and 7.03-+0 M1
rates are relatively insensitive to the variations between
the calculations and are in good accord with experiment.
This is as expected from the form of Eqs. (51) and
(59a) and the fact that these two transitions are both
strong ones of their respective types (i.e., ET=1 and
0, respectively). For pure s'pie states, the 7.03—+3.95
M1 transition gives a measure of the C~" coefficient of
Table III Lsee Eq. (59a)j and is quite weak and sensi-
tive to the calculation. The presently available experi-
mental information on this transition is not adequate to
test the predictions: in particular a measure of the
E2/M1 mixing ratio is necessary for this purpose. The
3.95—+0 M1 rate has already been discussed.

Two predictions are given in Table VIII for the

"N 2.31—&0 transition. The first (1) is calculated
directly from Eq. (43b) and thus displays the results as
obtained from pure P-shell Inodels. The second, third,
and fourth values of column (1) correspond to p

' wave
functions which make the Gamow —Teller matrix
element vanish. All three values agree closely amongst
themselves and approximate the experimental width
within about a factor of 2. The first value (intermediate
coupling prediction) differs by a factor of eight from
the experimental value and the corresponding eigen-
functions yield a large beta decay matrix element. To
make the Gamow —Teller matrix element vanish, one
must in this case construct a destructive interplayof
p-shell and (2s, 1d)-shell contributions as described. in
Sec. 2.3. To reproduce simultaneously the experimental
value of the M1 width either the 2.31 MeV or the ground
state would have to arise mainly from the (2s, 1d)
con6guration. If we consider the prediction of the
intermediate coupling model regardless of the Gamow-
Teller matrix element and take the effects of admix-
tures from the (2s, 1d) configuration in accord with
True's model calculation, we arrive at the erst number
given in column (2) . Clearly the inclusion of admixtures
of reasonable strength does not improve the agreement
between experiment and the prediction of a model
which is based on conventional central and spin-orbit
interactions only. Finally, we consider the predictions
which are obtained when the effects of (2s, 1d) admix-
tures are included in the more sophisticated models.
Since the (2s, 1d) admixtures as taken from True's
model make a nonvanishing contribution to the total
Gamow-Teller matrix element (6), we must then
compensate for this contribution by inserting a non-
vanishing p-shell Gamow —Teller matrix element so as
to keep {6)=0.Because the contribution from the
(2s, 1d) configuration is small only a slight "over-
cancellation" of {6(p ') ) is needed to reinforce (6)=0.
The calculation was carried out in the Cohen and
Kurath case as described in Sec. 4 and led to the set of
wave functions labelled Cohen and Kurath II. The
pure p-shell prediction (1) for this case is meaningless
and prediction (2) presents the meaningful value
arrived at from this model when (2s, 1d) admixtures
are included. After the bulk of cancellation of the
Gamow —Teller matrix element has been achieved in
the p-shell itself to the extent of a slight "overcan-
cellation", both {6)=0 and the 2.31~0 M1 width are
reproduced. It is obvious from the internal agreement
of the predictions (1) for the Elliott, Visscher —Ferrell,
and Cohen Kurath I cases that a relaxation of

(6(p ') )=0 which is imposed when the eigenfunctions
are extracted from the Elliott and Visscher —Ferrell
models would yield predictions for the width which
are very similar to that obtained when proceeding
from case I of Cohen and Kurath to case II. Thus the
two models which include a tensor interaction and the
sets of wave functions extracted from the Cohen and
Kurath empirical matrix elements give reasonable



Rosm, HXrrssER, ANn Wmar/RTom Nuclear Ter3sor Force from Muss 14-609

agreement with experiment. When, in addition, the
e6ects of con6guration mixing are included, the agree-
ment is almost perfect.

Since the Cohen and Kurath empirical matrix
elements naturally incorporate the eBects of the tensor
force (though they need not to be interpreted in these
terms) we conclude that all the models considered which
explicitly or implicitly invoke a tensor interaction can
at the same time explain the vanishing of the Gamow-
Teller matrix element and reproduce the correct value
for the

Afar

width of the 2.31—+0 transition. The "inter-
play" model which does not use the tensor force cannot
achieve this agreement.

From the results presented in Tables VIII—X we
conclude that the intermediate-coupling predictions are
de6nitely inferior to the other four for the electro-
magnetic transitions as well as for the '4C beta decay.
We have not included the eGects of configuration
mixing in any of the E2 rates or in the Mi rates from
the (2+, 0) state because we do not know how to do so
in a quantitative manner. However, these empirical
rates are all strong ones of their respective types and
are in good agreement with the p

' predictions. It is
unlikely that the eBects of configuration mixing would
be strong enough to seriously perturb this good agree-
ment.

4.2. Magnetic Moment and Other Proyerties of '4N

The magnetic moment of '5N on our model LEq. (1)]
is described by

& =-', +(/+ —-', ) (~2Ic.2—2cn2) ya2Ic(s»2s»2) 2

+5c(d5/2 d5/2) ec(d3/2 d3/2) 2c(sl/2 d3/2)

+2C(d3/2 d5/2) +P C(d5/2 d5/2)C(d3/2 d5/2)

—5~2c(d3/2 d5/2) c(d3/2 d3/2) I 3 (61)

with p+= —', g(+) and p, in nuclear magnetons. All coefli-
cients, of course, are those of the (1+, 0) ground state.

The pure p ' model predictions for /3 of the five sets
of p ' wave functions of Table III are given in the erst
column of Table XI, the second column (a) lists the
predictions of Eq. (61) using True's pe(2s, 1d) wave
functions his values of Acre and Be' and the p ' wave
functions of Table III, while the third column (b)
is similar to (a) but uses the wave functions of Elliott
and Flowers (Table I) for the p (2s, 1d) wave functions
instead of those of True.

Table XI shows that all the models under considera-
tion give predictions for the magnetic moment which
are close to the experimental value. In the first column
of Table XI the predictions of the pure P-shell models
have been collected. On the average these are approxi-
mately 20% below the experimental value and the
variations within this column are in the order of 10%;
that is the magnetic moment as predicted by the pure
p-shell models is insensitive to the specific model

employed. This is obvious from an inspection of Eq.

TABLE XI. Magnetic moment of "N in nuclear magnetons.

Calculation $4p10 55

3 p' +p'(23, 1d)

(a) (b)

Soper
Elliott
Visscher and Ferrell
Cohen and Kurath I
Cohen and Kurath II

Experiment

0.358
0.320
0.351
0.327
0.33i

0.370
0.334
0.363
0.34i
0.345

0.404

0.392
0.356
0.385
0.363
0.367

~ In column 1 are the predictions of the pure p 2 model. In column 2 the
model (a) is that of column 1 for the p 2 wave functions, True's values of
A0» and B0«, and his wave function (Table I) for the p8(2s, 1d) admixtures.
The last column (b) is similar to (a) but with p8(2s, id) wave functions
replaced by those of Elliott and Flowers (Table I).

(61). In any of the p-shell models (cf. Table III) the
"D& term is the dominating one in the "N ground-state
wave function. Even when changing the intermediate-
coupling parameter so as to vary the coupling from pure
I.S (i.e., C&=1) to purejj, the "Di term changes in
intensity by only 25%, this being still a much larger
e8ect than the one caused by including a tensor force
in the interaction, of which the major eGect was the
change of the sign of the (small) "Si term. Because only
the intensities of these two quantities enter the ex-
pression for the magnetic moment and because the
model-insensitive "Dj intensity is dominant in any
case the magnetic moment cannot provide evidence to
distinguish between the p-shell models. However,
intermediate coupling has been ruled out already on
the basis of other evidence (cf. the previous sections) .

Column (a) of Table XI shows the predictions which
are obtained when a (2s, 1d) admixture of the strength
according to True's model Pcf. Eq. (26a) g is taken into
account and when for the (2s, 1d) part the eigen-
functions of True (cf.Table III) are used. The approxi-
mately 6% admixture has the effect of increasing the
magnetic moment on the average by approximately
10%. Column (b) is included to show that the con-
tribution to the magnetic moment from (2s, 1d) is
quite sensitive to the specific set of wave functions used
to present the (2s, 1d) part. In the average the varia-
tion of p, which is introduced when replacing True's
wave function for (2s, 1d) by the mass 18 wave func-
tions of Elliott and Flowers" is approximately as large
( 10%) as the change produced when proceeding
from the pure p-shell models to those which include
admixtures from (2s, 1d) in accord with True's model.
In as much as it is meaningful to attach any significance
to the deviations of the model predictions of Table XI
from the experimental value of the magnetic moment
we can conclude that a small contamination of the '4N
ground state arising from the (2s, 1d) configuration is
not in contradiction to the indications which we have
obtained in the previous sections for the presence oE
such contaminations.

Other measured quantities which bear on the wave
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functions of the p ' states of mass 14 are the electric-
quadrupole moment of "N and the spectroscopic
factors for single nucleon transfer reactions connecting
mass 14 with masses 13 and 15. The electric-quadrupole
moment is insensitive to the wave functions, has a high
degree of experimental uncertainty, and is sensitive to
admixtures of configurations other than p'(2s, 1d) .
Furthermore, it is described satisfactorily by all of the
models we have considered and thus does not dis-
tinguish between them. The direct-reaction spectro-
scopic factors contain the usual uncertainties associated
with our inexact knowledge of the reaction mechanisms.
For instance, the ratio of the spectroscopic factors for
the '4N(d, p) "N reaction leading to the pU~

' and

ps~q
' states of "N is capable, in principle, of giving

specific information concerning the "N ground-state
wave function"; but, in actual fact, the uncertainties in
our knowledge of the Q dependence of (d, p) reduced
widths drastically reduces the usefulne'ss of this in-
formation. A recent study" of the "C(He', d) "N
reaction has resulted in spectroscopic factors which are
in satisfactory agreement with the predictions of the
five sets of wave functions given in Table III. However,
these results are insensitive to the di6erences between
these wave functions and also to configuration mixing.

5. SUMMARY

our conclusions can be briefly summarized as follows:

(1) Wave functions generated by a central plus
spin —orbit interaction and a pure s'p" configuration are
incapable of explaining either the gamma or beta
matrix elements of mass 14.

(2) Wave functions generated by admixing the
s4ps(2s, 1d) configuration with the predominant s'p"

configuration are also incapable of explaining simul-
taneously the gamma and beta matrix elements of
mass 14 if the interaction for the latter is retained as
central plus spin orbit in character.

(3) Previous calculations have shown that the
inclusion of a tensor component in the (largely) central
plus spin —orbit interaction can generate pure s'p" wave
functions which largely account for the Gamow-
Teller matrix element. We have shown that, at the same
time, this modification largely removes the discrepancies
with the gamma matrix elements. This is true for those
wave functions derived7" 4' by "first principles" from
two-nucleon scattering data" and those extracted from
a least-squares fit to a large number of binding energies"
as well as those arrived at by forcing a fit to the beta
matrix elements. '' Thus, inclusion of a tensor part to
the interaction is well-founded theoretically and, as
well, is a sufFicient condition for a rather successful
accounting of both the gamma and beta data.

(4) Admixing small amounts of the s4p"(2s, 1d)
configuration to the "tensor-including" s'pio con-
figuration gives even better agreement with experiment.
All data is accounted for adequately (or better) except
for the AT=0 E2 rates.

(5) The predicted AT =0 E2 rates are about i~ of the
measured rates. This is presumably due to collective
enhancement via configurational admixtures of higher
orbitals —such as s'p'f—which do not have an important
inQuence on the Gamow-Teller or Mi rates. The
effective charge description gives a reasonable account
of this collective enhancement.
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