REVIEWS OF MODERN PHYSICS

VOLUME 40,

NUMBER 3 JULY 1968

Theory of the Ionization of Atoms by Electron

Impact”

M. R. H. RUDGE

Department of Applied Mathematics, School of Physics and Applied Mathematics,

The Queen’s University of Belfast, Northern Ireland

A review of the quantum theory of ionizing collisions is presented, with particular regard to recent theoretical develop-
ments. A discussion is given of quantal and classical approximations and their predictions compared with experimental
data. Some useful empirical formulas are listed and compared, and in conclusion mention is made of the present in-

adequacies in the theory.

CONTENTS
1. Introduction. .....o.ovuiiiit i 564
2. The Quantum Theory of Ionizing Collisions........... 565
2.1, Notation..........oooiiiii i 565
2.2. The Asymptotic Form of the Wave Functions. .. .. 566

2.3. AnIntegral Expression for the Scattering Amplitude. 568

2.4. The Current Operator and Cross-section Expressions. 569

2.5. The Effects of exchange in Hydrogenic Systems... 569

2.6. The Effects of Exchange in Nonhydrogenic Systems 570

2.7. Multiple Tonization..............cooovuiinnn.o.. 572

2.8. Threshold Laws for Ionization................... 573

3. Quantal Approximations. .................. ... ... 574

3.1. Born Approximations............evvvuenieennnn 574

3.2. The Bethe Approximation....................... 575

3.3. The Born-Oppenheimer Approximation........... 577

3.4. The Born-Exchange Approximation.............. 577

3.5. The Born—Ochkur Approximation................ 578

3.6. Improved Final-State Approximations............ 579
3.7. The Distorted-Wave Born—Oppenheimer Approxima-

5 103 + PN 580

3.8. Other Approximations. ............oovvviinnn.. 580

a. Impulse Approximation. ..................... 580

b. Geltman Approximation...................... 580

c. Plane-Wave Approximation................... 580

3.9. Multiple Ionization. ... ........covuienrennnn.. 581

4. Classical Approximations............................ 581

4.1, The Thomson Theory.......................... 582

4.2. Improved Classical Approximations. ............. 583

4.3. The Exchange—Classical Approximation........... 585
4.4. The Exchange-Classical-Impact-Parameter Ap-

Proximation. ...........oiiiiiiiiiiiii 586

5. Empirical Formulas for Ionization Cross Sections. . . ... 586

6. Concluding Remarks. .. ..............oo it 588

Bibliography. ...t 589
1. INTRODUCTION

A great deal of experimental and theoretical work has
been devoted in recent years to the study of ionization
cross sections of atoms or ions by electron impact. The
importance of an accurate evaluation of these cross
sections is evidenced by the wide variety of physical
phenomena, the interpretations of which demand a
knowledge of reaction rates for ionization by electron
impact. Examples of such phenomena arise in the fields
of plasma physics, in the study of stellar atmospheres

* The writing of this review was supported by the JILA
Information Center (University of Colorado, Boulder, Colorado
80302) as a part of a program of critical evaluation of low-energy
atomic collision data. The JILA Information Center is supported
in part by the Office of Standard Reference Data of the National

Bureau of Standards and by the Advanced Research Projects
Agency of the Department of Defense.

and the solar corona, in studies of gas discharges, and of
the passage of shock waves through gases. A good deal
of progress has been made in recent years by a number
of different approaches towards obtaining an accurate
knowledge of ionization cross sections. In the first
place a substantial amount of experimental work has
now been carried out in which single- or multiple-
ionization cross sections of atoms or ions from their
ground states have been measured. This work has been
the subject of an earlier review by Kieffer and Dunn
(1966). The available experimental data are far from
exhaustive however. Many species remain to be in-
vestigated and there are difficulties in the experimental
determination of ionization cross sections from excited
states. Recourse in these cases has been made to theo-
retical studies. On the theoretical side the basic formula-
tion of the problem has received a good deal of attention
and it is found that the theory of ionizing collisions
differs quite markedly from that for collisions involving
excitation. At the same time a number of new approxi-
mate quantal methods of treating the problem have
been investigated. Even so, quantal calculations are
lengthy and not yet as accurate as could be wished.
Alternative approaches have therefore been pursued
with the aim of providing reasonably accurate estimates
in a very simple fashion. Such approaches arise through
using a classical rather than a quantal theory of col-
lisions and from devising semiempirical formulas which
represent known data and may be used, through the
use of suitably defined parameters, to estimate as yet
unmeasured or uncalculated data. This review examines
the presently available theoretical procedures, with
particular regard to the most salient features of the
basic formulation and to deficiencies in approximate
methods.

This article is confined to a study of ionization of
atomic species by electron impact. In Sec. 2 the ap-
propriate quantal theory is reviewed and this is followed
in Sec. 3 by a discussion of quantal approximations.
Section 4 describes classical approximations and Sec. 5
discusses some semiempirical formulas for single-ioniza-
tion cross sections of atoms or ions by electron impact.
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2. THE QUANTUM THEORY OF IONIZING
COLLISIONS

The calculation of an ionization cross section even in
a simple approximation is an arduous computational
task, and on account of this little attention has been
paid until fairly recently to developing the theory be-
yond that which has been described in earlier reviews
by Bates, Fundaminsky, Leech, and Massey (1950)
and by Massey (1956). A more recent and compre-
hensive review of ionization cross section calculations
has been given by Veldre (1965). The problems of
taking into account exchange in ionization processes
and of developing proper integral expressions for the
scattering amplitudes have now been considered in a
number of papers by Peterkop [1960, 1961, 1962(a),
1962(b), 1963(a), 1963(b), 1965, by Seaton [1962(a) ],
and by Rudge and Seaton (1964, 1965).

The theory differs significantly from that for excita-
tion processes and the most important features of the
theory may be seen from consideration of the simplest
case of ionization of atomic hydrogen by electron im-
pact. This case is therefore discussed initially, the
details being first prefaced by a brief outline of the
theory. The discussion throughout is confined to the
theory of ionization of atoms or ions by electron impact
but applies with little modification to the case of ioniza-
tion by other structureless charged particles.

The first step in the theory is to determine the
asymptotic form of the wave function for an ionizing
collision, i.e., the form of the wave function where both
electrons are far removed from the nucleus and from
each other. This involves, therefore, the determination
of the behavior of thewave function where three charged
particles are far removed from each other, in distinction
to the case of excitation processes, where the behavior of
the wave function is sought in a region where a single
charged particle is removed from a neutral or positive
system. The asymptotic form is developed as an ex-
pansion, from which only the leading term contributes
to the current. Subject to boundary conditions, which
define a collision event being satisfied, the coefficient
of this leading term is the scattering amplitude, and
the second step in the theory is to determine integral or
variational expressions for it. The third step is to ex-
press the ionization cross section in terms of the scat-
tering amplitude. Since, for single ionization, there are
two free electrons in the final state, this involves con-
structing a current operator appropriate to the case
of two particles rather than the single-particle current
operator used in excitation problems. Finally, for the
case of ionization by electron impact, consideration
must be given to the exchange problem. Here again the
situation differs from that for excitation, it being
found that the ‘“exchange’ scattering amplitude is
related to the “direct” scattering amplitude.

This is the program carried out in the cited papers by
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Peterkop and Rudge and Seaton, and we first review
their results for ionization of atomic hydrogen.

2.1. Notation

Atomic units are used (e, the electronic charge, m,
the mass of electron, and 7%, Planck’s constant divided
by 2w, are taken as the fundamental units and therefore
have the value unity); E denotes the total positive
energy of the system in these units, and for reasons of
convenience we also define 3X2=E. Cross-section ex-
pressions and cross sections are however expressed in
units of 7ae?, where aq is the first Bohr radius of atomic
hydrogen (mae? is 8.797X 1077 cm?). The coordinates of
the ith electron denoted by r;, ko is the momentum of
the incident electron, and ky and k, are the momenta of
the continuum electrons in the final state.

The electrostatic Hamiltonian of the system is
written as JC, and in general for IV electrons and a
nucleus with charge Z, has the form

N N N1
3C=ZHI+ Z Z?’i]‘“l, (21)
i=1 j=itl i=1
where
H;=—1iV2—7/r; (2.2)
and

7= {ri—r, | .

Bound-state hydrogenic eigenfunctions are written
Y(v|r) (v denoting collectively the quantum numbers
n, I, m) and satisfy

Hy(y|r)=Ex(y|1).

They are orthogonal and are taken to be normalized
to unity. y=0 will be taken to refer to the initial state
of the atom. The continuum eigenfunctions (Coulomb
functions) satisfy

Hy(z k| 1) =3k (3, k| 1)

(2.3)

(2.4)

and are taken to be normalized such that
/¢(z, k| Dy*(s, K | 1)dr=5(k—K). (2.5)

The continuum solutions are not uniquely defined
through the normalization condition (2.3). It is shown
in the cited papers that integral expressions for the
scattering amplitude involve a particular solution of
(2.4) defined by

Y(z k| 1) =(2m)%x(z, —k | 1), (2.6)
where
x(z, =k | r) =[2my/(1—e ™) ]* exp [doo(n) ]

Xexp (—iker) Fi[in, 1, i(kr+k-r)]. (2.7)
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In (2.7) n=2Z/k, ao(y) =arg T'(1—in), and

R T'(a+n)T(b)x»
1Fi(e, 8, ) ‘fv:o T(b+m)T(a) T (nt1) "

Asymptotically

x(z, =k | r)~exp —i(k.r+n In | kr+k-r|)
+[f(0) /] exp i(kr+n In 2kr), r—ow, (2.8)

where cos 6= —k-f and

nT'(1—in) exp 2in In [sin (6/2)]

= 2.9
16 2kT(1+414n) sin? (6/2) (2.9)

The Schrédinger equation is
3@‘1’(1’1, 1'2) -—_—'%XZ‘I’(I']_, 1'2) . (2 10)

It is convenient, when studying the asymptotic form of
the wave function to write (2.10) in terms of hyper-
spherical coordinates. These are the set (61,¢1, 02, b2, @, 0),
where
71=p COS &«
0<a<L7/2, (2.11)

r2=psina

and (01, ¢1, 02, ¢2) are the usual spherical polar co-
ordinates. We also define

¢(Ty, T, @) = (sin a) '+ (cos a)

— (1—cos 012 sin 2)712,  (2.12)
where cos f1,=T1T5, so that
§/p=1/n+1/r2—1/r. (2.13)

2.2. The Asymptotic Form of the Wave Function

The form of ¥ in (2.10) is sought in the region where
rr—®, r9—o, and 7—>. Except at the points =0,
a=r/2 (a=m/4, 61=0), these conditions are met by
taking p—o0. Accordingly (2.10) is written in terms of
hyperspherical coordinates when, on making the sub-
stitution

‘I,(rl; I'g) =@(r1; rz)/p5/2, (2' 14)
(2.10) reduces to
LP=(p2) AP, (2.15)
where
£=8/0p+X2+2¢/p—15/4p% (2.16)
and

A=(sin? @ cos? a) {cos? a Ly?+sin? aL2— (9/dc)

X[sin? & cos? @ (9/de) ]}, (2.17)
with
a a 9?
L2=—(sing;)t 679, (sin 0; (—970—1) — (sin2;)! EYYh
(2.18)

Equation (2.15) may be solved formally by the method

of the Green’s function in terms of the two linearly
independent solutions of the homogeneous equation

F(g, X, p)l
H(?: X: p)

£ =0. (2.19)

These are radial Coulomb functions defined such that
in the asymptotic region

F(3, X, p)~X"sin[f(p)]  p—,
H(g, X, p)~XPexp [if(p)]  p—eo, (2.20)
where
f(p) =Xp+(§/X) In (2Xp) —§r+arg T(3—i/X).
(2.21)

It is readily verified that (2.15) may now be written
as the integral equation

2(6, X, ) ==X (5, X, [ 52F 5, X,
0
XABIp+F (S, X, p) [ 5, X, ) A
P

—~HG, X, [P X, ) A@dp] . 2.2

For large p (and finite X) the first term in (2.22) is the
leading term in an asymptotic expansion so that on
defining

f(Ty, T3, @) = —exp [1 arg T' (‘; — %{)]

X [ 6B, X, ) Avdp
0

and using (2.14) and (2.20) we obtain the result that

3

oo (X2 o 4
‘I,(rh r2)N—'Ll/2 (}) f(rl, Iy, Ol)

Xexpi[Xp+(5/X) In (2Xp)],  (n,r))—>w. (2.23)

Examination of the neglected terms in (2.22) shows
that the complete asymptotic expansion may be
written in the form

3

1/2
W (11, 12)~—1!/2 (—}%) exp 1 [Xp+ £ In (ZXp)]
P X

I A Inp)?
XD D2 Anp(Ty, T, @) ( :) ,  (nyr)—eo. (2.24)
n=0 p=0 P

In (2.24) the leading term A (T, Ty, ) is the scattering
amplitude f(T1, Ts, ) . The further terms A4,, (T1, Ts, @)
may be obtained by substituting (2.24) into the
Schrodinger equation [Peterkop (1960)]. Their values



may be expressed in terms of Ag,(T1, Tz @), (T4, Ta, )
and their derivatives. :

The integral equation (2.22) is valid for all p but the
expressions (2.23) and (2.24) are valid only for
o>t/ X2 1.e., r—> o, 19—, and riy—> as was specified
at the outset. The scattering amplitude f(T;, Tz, @) is
thus defined through (2.24) everywhere except at the
singular points of ¢, viz.,

[a=0, a=7n/2, (a=7/4, 612=0)].

The complete scattering problem is defined once the
asymptotic forms as 7/r;—>c0 and 7y/rr— are also
specified. These are well known and the behavior of the
wave function in the entire asymptotic region is
given by

W (11, 1)~ (0 | 13) exp iKo 11+ D (v | 1) foy (Ko, T1)

exp tkyr1 (/i) —oo
71

exp (ik,r2)
72

~ (v | 11) goy (Ko, To)
(ra/r1)—

. N
il (7) Gy By )

Xexpi[Xp—i—)—gln(ZXp)], (r, m)—0,  (2.25)

where k,2=2( E— Evy) and fo,(ko, T1) and gy, (ko, T5) are,
respectively, the direct and exchange scattering ampli-
tudes for excitation.

The asymptotic form of a symmetric or antisym-
metric solution of the Schrédinger equation (2.10)
may be obtained by appropriately symmetrizing (2.25).
Thus

(11, 1) ~(0 | 72) exp (iko 1) +2 W (v | 72)

XL foy (Ko, 1) 2= goy (Ko, T1) JLexp (ikyr1) /71]

(r/ra)—e
~— L2 X3 /) 112
X[f(i:l) f?) 0‘) :Ef(f% fl; '"'/2—'0‘)]
Xexp {i[Xp+(¢/X) In (2Xp) ]},  (r, ra)—>eo.

(2.26)

The asymptotic form of the wave function at zero
energy requires separate consideration. We define an
operator

£0=0%/3p*+24/p,

where 4 = A(Ty, Tz, @) is for the moment arbitrary. The

(2.27)
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equation
F, 0(0‘, P)
£o =0 (2.28)
Hoy(e, p)
has fundamental solutions
Fo(a, p) = (mp)"2Ju[(84p)"%]  (2.29)
and
Ho(e, p) = (wp) 2 Hi[ (8 4p)*?], (2.30)

where Ji, and H, are, respectively, a Bessel function
and a Hankel function of order one. Asymptotically

Fo(a, p) ] N (L)m {sin {#0(p) } -
247 | —iexpifgo(p)}

(2.31)
Ho(e, p)

where
do(p) = (84p) 2 —%m.

Using the transformation (2.14) we may write
Lo (11, 1) =(Ao/p?) (11, 12),  (2.32)

Ag=A+2(4—¢)p+15/4.
A solution of (2.32) is

where
(2.33)

i#(1s, 1)) =Ho(a, p) | #*Fola, p) Ak (xs, 1) dp
0
+Fola, p) [ ptHo(a, p) As® (11, 1) d
P

—Ho(e, p)/wp"zFo(a, 0) Ao® (1, r2)dp.  (2.34)
p
For large p, (2.34) tells us that
® (11, 1) ~fo(Ty, Ta, @) pH/* exp igho(p) —[(24)~124/24]

X {exp Licbo(p) ]/mp_m exp [—igo(p) JAo[ fo(Ty, To, @)
Xexp (igo(p)) Jo—exp [—igo()] [ 74 exp Lidu(s) ]

AL fols, B ) exp (i¢0(P)):|dp} . (2.35)

where

fo(Ts, Ty, ) = — (2A)—1/4f

0

0

p—2 Fo (0‘7 p)A0<i>(r1, r2)dpi

(2.36)
provided this integral converges.

The choice of A(Ty, Tz, @) is now dictated by de-
manding that the remainder terms in (2.35) should be-
have as p", where n<%, i.e., Ao[ fo(T1, T3, ) exp igo(p) ]
must be of order p™, where m<%. By imposing the
condition that terms of order p=/2 in the first integral of
(2.35) vanish, we find that

A+A-1(DA)2=¢, (2.37)
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where

(D4)2= (gé)z - (cos? &) [(6 > +(sin? 6y) ! (aj> ] +(sin? @)t [(%%)2 +(sin?6,) 1 (g—gz)z] (2.38)

Consideration of terms of order p%, on the other hand, gives us the result

D-{[ fo(Ty, T2, ) D (4)¥2} =0

where

(2.39)

a b a ab 0 ab
. — (< - - 2 o)1 -1 b 29 )1 (g4 —
D- (aDb) = (sin? 2a) "1 — P [a sin? 2« 3 :| +(cos? a) [(sm 6)~ 2%, <a sin 64 60) +(sin2 6;) 3 ( P 1)]

+(sin? @)1 [(sin 6z)1 ;; (a sin 6, 6b> +(sin? 6,) 1 (_a_ a %)] . (2.40)
2

Hence the asymptotic form of the wave function at
zero energy is

U (11, 1)~ (—1) "o (T, T, @) o~ exp i(84p) 2,
p—o, (2.41)

provided Egs. (2.37) and (2.39) are satisfied and
(2.36) converges. In this treatment it has been assumed
that 4>0. Solutions corresponding to negative 4 are
exponentially decreasing at large p and therefore need
not be considered. In a classical treatment of the
problem Wannier (1953) assumed that the whole
reaction at zero energy took place at e=w/4, o=, i.e.,
he assumed that the only path leading to ionization
was that in which the electrons moved in opposite
directions with equal energy. No proof of this has been
given but a particular solution of Egs. (2.37) and
(2.39) is DA =0 which gives, 4 ={(a=%m, f12=1).

2.3. An Integral Expression for the Scattering
Amplitude

Knowledge of the asymptotic form (2.23) permits
integral expressions to be developed for the scattering
amplitude. Peterkop [1962(b) ] and Rudge and Seaton
(1965) have developed such an expression by consider-
ing the integral

I=/\I/(r1, 1) (10— E)®(1y, 1) dridrs,  (2.42)

where ¥(ry, 12) is the exact solution of the Schrédinger
equation and has the asymptotic form (2.23) for
finite energies, while ®(ry, 1p) is a function the form of
which is to be determined, and must be such that
(2.42) converges to an expression involving the scat-
tering amplitude. Equation (2.42) may be written

P o
I=—-1 hmp/(‘lf—— —d —

) sin? & cos? ozdadﬂdf‘g,
dp dp

p—ow, (2.43)
and we consider a ®(ry, 1) with asymptotic form

® (11, 1) ~¢1(z1, — K1 | 11) bo(22, —ks | 1)

p—x,

(2.44)

2 9

where the functions ¢, and ¢, satisfy equations of the
form

I:V2+k2+(22'1 1’) —I—V-,(T) :|¢>,~(zi—k l I') =0.

Vi(r) and Ve(r) are any short-range potentials and the
effective charges z and z; are for the moment arbitrary.
At large distances

(3, —k | 1)~ (2/ikr) {a(k, T)
Xexp i[kr+ (z/k) In (2kr) ]—8(k—1)
Xexp —i[kr+(z/k) In (2k2)]},  r—ow, (2.45)
where
a(k, 1) =8(k+5) + (ik/2m) fu(—k, 7),

and f.; denotes the elastic scattering amplitude.
Jeffreys and Jeffreys (1956) give theorems of
stationary phase, which state that

[ 760 e LiReta aomgta) | |

Xexp i[ g(w0) R+4m sgn(g” (o)) ],

(2.46)

R—x,

(2.47)

provided g'(x9) =0, a<xy<b. If such a point does not
exist or if f(x) =0, then

z=b

b . .
f (%) exp [iRg(x) Jdv~ {fﬁ?_lfﬁ‘@_@}
‘ R¢' (%)

z=a

R—w.

(2.48)
We therefore define

ki=X cos B

0<B<1n, (2.49)

ke=X sin

and use (2.45) and the stationary-phase theorems
(2.47) and (2.48) to perform the integration. It is
then seen that the terms involving a(kl, r1) and
a(kz, T2) give no contribution, while the remaining term
has a point of stationary phase, where a=p3 and may



be evaluated to give
T= — (2) (I, ) (sin §) 542 (cos §) 2
Xlim exp {i[¢ (&, o, )/ X —m/l—m/ke] In (2Xp)},

p—o. (2.50)

In order that the integral I shall have no divergent-
phase factor it is therefore necessary that

2/ kyt20/ k=1 (ky, o, B) /X,

ie.,
Z]/k1+22/k2= 1/k1+1/k2— 1/1 kl—kz l .
The integral expression therefore is

f(ky, k) = — (2) =2 exp [A (ky, ko) ]

(2.51)

X [¥(se— ) @drdrs, (2.52)
where z and 2z, are defined by (2.51) and
A(k1, kz) =2[(21/k1) In (kl/X) +(22/k2) In (kz/X) :I.
(2.53)

The entire contribution to the integral arises from the
stationary-phase point a =g, i.e., from the points

71/k1=7’2/k2=t, (254)

where ¢ is a constant and classically is the time. Equa-
tion (2.51) may therefore be read as

a/ntz/re~1/n+1/re—1/| ri—r1 |,

and the interpretation of the charges z and 2, is that
they are angle-dependent quantities which asymp-
totically take full account of the Coulomb potentials.

The phase factor A(ky, k) is of importance when the
effects of exchange are included (see Sec. 2.5).

(2.55)

2.4. The Current Operator and Cross-section
Expressions

The current operator is

7=(1/20) [T*V¥ —TVI*] (2.56)
and the ionization cross section, in units of wag?, is
given by
Q=(1/7rk0)/j-dS. (2.57)
In the case of single ionization the gradient operator
and surface elements are those appropriate to a six-
dimensional space.
The gradient operator is

Vv =(98/9p) p+{terms of order (1/p)}, (2.58)
and the surface element is
dS=pb sin? & cos? adadtdrs. (2.59)
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Hence
X4

ko

/2
/ sin? o cos? ader / | f(R, By @) PdErdin
0

(2.60)

Expressed in terms of the momenta of the final-state
electrons on averaging over directions of the incident
electron, (2.60) becomes

0= (et [ “bibar by k) (3R, (2.61)
0

where
o (s, ) = (4r) / |k, ) Pakodkodks.  (2.62)

Expressions (2.61) and (2.62) are those appropriate
to the ionization problem when exchange may be
neglected, that is, when dealing with ‘“‘distinguishable”
electrons.

2.5. The Effects of Exchange in Hydrogenic
Systems

We introduce spin variables defining a spin quantum
number p==-3, a spin coordinate ¢==13, and a spin
function 8(u| o), which is unity for p=0, and zero
otherwise. To denote both space and spin coordinates
we use X= (r, o) . The requirement of the Pauli principle
for the e-H system is therefore that

‘I’(Xl, Xz) = —‘I’(Xz, Xl). (2.63)
A total spin function for two electrons is written
X(S: Ms l o1, U2) =ZC(%) %: S5 w1, pe, MS)

Bip2

X8(p1] 01)8(ug| 02), (2.64)
where the C is a Clebsch—Gordan coefficient.
It follows from (2.64) that
x(S, Mg | o1, 03) = (—1)5%x (S, Mg | 02, 01). (2.65)

The asymptotic form of a wave function satisfying
(2.63) is now

V(S| %1, Xo) ~—1i2(X3/p5) 2% (S, Ms | o1, 0)
Xf(S| 1, T2, @) exp i[Xp+(5/X) In (2Xp)]

(r, 72)—x, (2.66)
where
f(S ! fl, i:2; Ot) =f(?1) f27 C!) +(—1) Sf(i:% fl) 7"/2'—0‘)°
(2.67)

Corresponding to a given total spin .S the ionization
cross section is given by

Q(S) = (ko)™ fo o (S | by k) d(3k), (2.68)
where
(S| T, Fo) = (4m) f dkodkodks | £(S | K, ko)
(2.69)
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and
F(S | ke, ky) =f(ky, ko) +(—1)5f(ke, ka) . (2.70)

For random spin orientations the ionization cross
section is given by

B2
Q(E) = (wko)™t| 1 (kiky)

0
X[ (0| By, ko) +30(1 | b, B2)d(3E) ] (2.71)

We must integrate over all distinct final states which
lead to the process of ionization. In (2.68) there is a
distinction arising from the electron spins but in the
case where the spin is not fixed the only distinction is
that between the velocities of the two final-state elec-
trons. Hence the integration is performed only over all
relative velocities of the final-state electrons and the
integration in (2.71) is therefore cut off at E/2 rather
than at E. The integrand in (2.71) is equal to

(kuks/4) {] f (s, o) [+ f(lee, K) |2
—Re [ f(ky, ko) f*(ke, ki) 1}, (2.72)

and from the symmetry of this integrand we may
therefore also write

O(E) = (2nko) [ 1(ksks)

0
X[ (0] ks, ko) 430 (1| ks, ko) Jd(3%), (2.73)

and the distribution in energy of all electrons following
an ionizing collision is symmetric about E/2.
An integral expression for f(S | ky, k,) is

f(S [k, k) =3[ — (2m) 72 ] exp 1A (I, k)

xf\z/(s | 1, 12) (30— E) B(1s, 1)

+ ( — 1)S<I>(r2, r1) ]drldrg (2 . 74)
=1(ki, ky) +(—1)5g(ky, ko), (2.75)
where
g(ky, y) = — (2m) =" exp iA (K, ko) f ¥ (1, 1)
X (5¢—E) ¢n[ 1 (k, ky), — k1 | 1]
><¢2[Z2(k1, kz), —k, [ r1]dr1dr2. (2 76)

‘I’(I‘z, I3; rl)'\'\b(oj Sa | Ty, 1'3) exp (’iko'l'l)—l—le/(%, Sa I Ty I'a)f(m(ko, i:‘1)

In (2.76) 2z(ki, ky) may be replaced by z(k, ki) and
z1(k1, ky) may be replaced by 2 (ks ki), since the
relationship (2.51) will still be satisfied, and A (ky, ko) is
then replaced by A(ks, ki). Thus

g(ky, ko) =f(ks, ki), (2.77)

and the expression (2.74) is in agreement with (2.70).
The exchange states for ionization are those states
wherein the “ejected” electron has a greater velocity
than the “scattered” electron. The effects of exchange
are large when both electrons have similar velocities.

2.6. The Effects of Exchange in Nonhydrogenic
Systems

For single ionization of nonhydrogenic systems there
is a new possibility in that “classical” exchange can
occur, i.e., the incident electron may be captured into
a bound state while two initially bound electrons are
ejected. Let us consider first the ionization of a helium
atom which is the simplest case for which this possibility
can arise. The eigenfunctions of helium may be denoted
by ¥(#n, Sa | 15, 13), where # denotes the configuration
and .Sy the total spin of the atom. Let us now denote by
Y(y|r) the eigenfunctions of Het which belong to
eigenvalue Evy and extend the notation already used by
defining

pift =147,
tan az;=r./7;,
Cii(Ti, Ty, o) = (cos aiz) 71 (sin aiy) ™
— (1 —sin 2a;; cos 6;;) 712,

Si=Xvpii+ ($ii/ Xy) In (2X,p45),

X2=2(E—E,).
The spatial dependence of the wave function
W (ry, 13; 11), which satisfies
U(rs, g5 11) = (—1)54¥ (15, 135 11),  (2.78)

may be investigated in a manner similar to that already
used in studying the ionization of hydrogen. The
asymptotic forms of interest are

Y1—> 0

exp (k1)
7 bl

1

. X2 A A .
~m 28 |22 | o) e3p (0S), ()
¥ 12

X3 o .
~(—1)Satgin Y [——] V(v | 2)fy (B, Fa, a) exp (iSw),  (m, 7s) >0
Y

4
P13

X3 2 a A .
~—V22) [—75] V(v | 1) wy(Ts, Ts, arzs) exp (4.52), (rq, 73)— 0,
Y

3
P23

(2.79)



where the integral expressions are:
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Sr(K, ko) ®(13, 11, I2)
— — (2m) 2 exp iA (K, ks) / W (15, 13; 11) (30— E) drdndr,.  (2.80)
wy (K1, ko) ®(r1, 13, 13)
In (2.80) 3¢ is the Hamiltonian for the e-He system, A(ky, ky) is the phase factor defined by (2.53) and
(13, 11, o) ~Y* (v | 13) $1(21, —Ka | 11) ho(%, —Ka | 12) (r1, 1) >0, (2.81)
where 2; and 2z, satisfy (2.51).
Introducing spin coordinates, a totally antisymmetric wave function is
W (X1, Xz, X3) = 2 x(Sa, Mg, | 02, 03)8(u1 | 01) ¥ (1o, 13; 1), (2.82)

cyclic permutations

which has the asymptotic form

(X1, Xo, X3)~—V2())2 D> 8(ur’ | 01) 8(ps’ | 02) 8(us’ | US)Z[X /015 12 (Say Misy, w1 | wa'u'us’; B, T, ctre)

p1lpolusg!
where, using (2.79),
F2(Sa, Mg, w1 | uug’us’; Ku, ko)

Defining
gk, ko) =[2Q284+D T X

the ionization cross section is given by

2
=2
0B = [
From (2.84) it follows that

Xexp (iS12) (r1, r2) >0,

(2.83)

= C(%? %; SA; MZ” ."‘3,7 MSA) 6#1#1{](1(1(17 k2) +(_1) SAC(%: %) SA} :U"‘,; ”1,)MSA)

gy (b, ko) =| £ (K, ko) 24| £y (b, 1) 24| oy (hy, k) [2—Re [ fy (i, ko) £, * ks, k) ]

X 61“‘1“2f7(k21 kl) +C(2; 2, SA: Ml sl2 )MSA) 6“1“3 w"/(kl’ k2) (2 . 84)
| fo (b1, Sa, Mgy | s’ s Y, o) 2,
BIM S 4,41 p2lug!
112/4
ok () [ 1, ) s, (2.85)
—Re {w,*(ky, ke) [f(ke, ku) +(—1)54 f, (ky, ko) ]} (2.86)

If the “capture” term w.,(ki, Ko) is assumed to be zero, then (2.85) and (2.86) reduces to the same form as for
hydrogen except for a factor of 2, which arises because there are two equivalent electrons. In calculations so far
on two-electron systems this has been assumed to be the case [Sloan (1965) and Rudge (1964)].

In the more general case of ionization of an atom with an outer shell of # equivalent electrons, the scattering
amplitude is given by a straightforward generalization of the theory, so that

fky, ko) = — (27) 2 exp 1A (K, kl)f\I/(xl- **Xnp1) (30— E) B(X1* * * Xny1) dXae + + Xy,

(2.87)

antisymmetry with respect to the core electrons being ignored. Using the symmetry properties of the wave functions,

the integral in (2.87) may be written

1=ﬂ1’2/‘1’(X2' **Xny1; X1) (30— E) [¥(X5+ + *Xnp1) {1—Pro} {121, —k1 | X1) po(22, —k2 | X2) }

+(n—=1)¥(x, x4

If the radial wave functions of the initial and final
bound states are assumed to be identical and are
denoted by P,;(7)/r, then

ail P nl(rz)

Xn+1]H

=3 7i

(2.89)

1P(Xa’° X)) =x["(au, Sy, Ly) Xze -
é1(z1, =k | x1) =1 (21, =k | 11)6 (i’ | 01),

b2(22, —Ka | X2) =2(22, — Ko | 12)8(pa’ | 02), (2.90)

 Xnp1) O1(71, —K1 | Xo) po(20, —Ko | X3) Jd%1e « +dXpya.  (2.88)
and
W (Xz* * * Xnt1; X1) =o(Ko | n)H '”(“) 8(u1 | o) x
X[I*(a, S, L)%s .-:“:,,+1]. (2.91)

In these equations (e, S, L) denotes the initial term of
the atom and (o4, Si, L;) the term of the final state of
the ion.
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Following Racah (1943) we can write

x["(er, S, L)Xe* + +Xn]= D2 ["(cd, S, L')ISL |}irer, S, L]

of 8/, L/

> CW,LL; My, m M)

Mp/Mgrym,p2

XC(S,: %7 S: MS’) M2, MS) Ylm<i:2)3(p’2 I UZ)X[ln—l (0[’, S’y L,) iS' * ';{nrl—l] (292)

using the usual notation for a fractional parentage coefficient. Using Eqs. (2.89)-(2.92), (2.88) may be reduced to
two electron integrals. In particular if the “capture” term in (2.88) is ignored and the wave functions ¢:(—ki | 1),
¢2(—k; | 12) are orthogonal to [P,;(7) /7 ]¥ i (T2), then (2.88) reduces to

I=%1/2[l"_1(0£1, Sl) Ll)lSL I}l"aSL:l Z C(Lly l} L; Ml: m, M)C(Sly %) S; MSU M2,y MS)

m,u2

where

(I, I) =/ PMTW do(ko | 1) Vim(T2) [H(1, 2) +E;—E]

X { Sy Opaps’ [y —Spops Spapa’ In},  (2.93)
(21, =K1 | 71) o(22, —K2 | 1)
drldrg, (2 . 94)

¢1(z1, —K1 | 72) $a(22, —ks | 11)

H(1, 2) being the two-particle Hamiltonian and E; the energy of the final state of the ion. The quantity of interest

in computing the cross section is

2L+ S+ X
MLMS,ML1M sy

Thus, in this case we again reduce to the same expres-
sion as for the ionization of hydrogen, except for the
factor

n[l"_l(oq, Sl, Ll) ISL [}l"aSL:P

Summing over all S; and L, yields a factor of #,
the number of equivalent electrons. The evaluation of
(2.87) can be carried through quite readily when
assumptions of orthogonality are relaxed and when the
“capture” term is taken into account. This term is
essential when considering ionization for example from
an (a, S, L) =P3(4S) state to an (ay, S1, L) =P2(1S)
state.

2.7. Threshold Laws for Single Ionization

The threshold law for ionization has been the subject
of investigations by Wannier (1953), by Geltman
(1956), and by Rudge and Seaton (1964).

The method used by Wannier (1953) consists of
asserting that the threshold dependence of the ioniza-
tion cross section is given by the rate of change of the
available volume of phase space which leads to ioniza-
tion. In order to compute this quantity, he considers
the equations of motion for zero angular momentum
classically and shows that at small energies the reaction
takes place near a=w/4 and 6.==. He then solves
Hamilton’s equations for «, 6 and their conjugate
momenta by using a Taylor expansion for { (T, Tz, o12)
about this point. His method then leads to a threshold
dependence for ionization of atomic hydrogen given by

Qe (E—I)t1,

Wannier considers that the argument is not rigorous but
that nevertheless the above relationship is the correct
one. For the case of a hydrogenic ion with nuclear
charge Z— », Wannier obtains a linear result and as-

| I P=n(i(a, Si, L)ISL [}raSL){| I | I P—Re (LI*) ).

(2.95)

cribes the nonlinearity of the above threshold depend-
ence as being due to the effect of electron correlation.
The assumption of Wannier in applying classical
and statistical methods is open to question and it is
therefore desirable that a quantal derivation of the
threshold law should be given. Such an approach was
used by Rudge and Seaton (1964), who deduce that

for ionization of hydrogenic systems
Qx (E-I) (2.96)

near threshold.
Adopting pure Coulomb functions for the final state,
(2.52) becomes

J (I, ) = (2m) 75 exp (4A(ky, ko) )

1—z 1—3 1
X/‘I’< 1+ 2—_>X(Zl,_k1lr1)
7 72 712
Xx (22, =K | 12)drydrs.  (2.97)
At low velocities
x(z, —k|7) <k1? >0
< k2 exp (—w/k) 2<0. (2.98)

The dominant contribution to f(ky, k») at low velocities
is therefore from the region where 2 >0 and 2>0
and therefore near the threshold

Sk, ko) o (frky) 12,

provided (2.97) converges. This then leads to the
threshold law (2.96).

The result (2.96) does not depend on a knowledge
of the angular and energy distributions of the electrons,
as was needed by Wannier in his treatment of the prob-
lem. In the result of Rudge and Seaton (1964) correla-
tion between the outgoing electrons is accounted for
through the angle dependence of the charges z; and z,.



In their treatment, the effect of correlation does not
change the threshold law from that which arises in
the case Z—, though it undoubtedly exerts some
influence on the shape of the cross section near thresh-
old. The essential difference between the two results
is that Wannier predicts a zero derivative for the
ionization cross section of atomic hydrogen at threshold,
while Rudge and Seaton predict a finite derivative at
threshold.

Earlier, Geltman (1956) also predicted a linear-
threshold law but based his argument on a final-state
wave function with z;=2=1. Such a choice does not
comply with Eq. (2.51) however.

If it were incorrectly assumed that the choice z;=0,
2=1 yielded a proper expression for the scattering
amplitude (this being frequently adopted and referred
to as “Born’s approximation”), then the threshold
law would be

Qo (E—I)*.

A classical analysis of near-threshold ionization of
atomic hydrogen, similar to the work of Wannier, has
been carried out by Vinkalns and Gailitis (1967), who
deduce that there is a departure from linearity of about
1%. The work of Rudge and Seaton (1964) has been
criticized by Temkin (1964) on the basis that the
asymptotic form (2.24) is not valid at 6,,=0; he
derives a § power law for a model problem and infers
that this is the correct result for e-H ionization thresh-
old behavior.
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For detachment from negative ions the situation is
different. Here the only Coulomb potential operating
in the final state is the repulsion between the two free
electrons or, for detachment by positron impact (for
example), there is a Coulomb attraction between the
two free particles. In this case the threshold laws are
[Rudge (1964), Hart, Gray, and Guier (1957)]

Qu (E—I)32 (2.99)

for detachment from a negative ion by a positively
charged particle and

Qx (E=D) exp —[y+(E=D)7#],  (2.100)

where v is a constant, for detachment from a negative
ion by a negatively charged particle.

Little has been predicted theoretically about the
range of validity of threshold laws. The linear law for
example states that the first derivative of the ionization
cross section is nonvanishing at threshold but does not
say what the relative magnitudes of the first to higher
derivatives are in the near-threshold region.

2.8. Multiple Ionization

The simplest case to consider is the double ionization
of helium. Consideration has been given to this problem
by Peterkop (1961, 1965). The theory may be extended
in an obvious manner to the case of double ionization
and the integral expression for this case will take the
form

2712 (ky, ks, ky) = (2m) ~* exp [A (ky, ko, ks) ]/‘I’(rZ, 13; 11) (50— E) 1 (21, —ky | 11)

Xa(22, =Ko | 12) 3(25, —ks | 15)dridredrs, (2.101)
where
% % 23 2 2 2
wtot o =rt ot k[T k—k [~ k—k [ 2.102
k1+k2+k3 k1+k2+k3 | ki—ko [ —| by —k |7 —| ko —s | (2.102)
and
2z (kl) 22, <k2) 223 (ka‘)
A(ky, ko, k3) = — In (= (2 2B (28 51
okt =5 ) o ) o 0109

Making use of the symmetry of the initial state and introducing spin variables, it follows that

272 (Suy My, b 'ps s’ | Ky, Ko, Ks) =0uama’C (3, 5, Sa; mar, psr, Mg, ) f(Ka, K, Ke) +0uipeC (3, %, Sa; par, prr, Ms,)

Defining

it is found that

q(ky, ko, kg) =21 f(ke, ks, k) 24| f(Ky, Ko, Ks) 24| f(ks, ki, ko) [2—(—1)54

Xf(kb k2y k3) +6ﬂlﬂ3’c(%) %y SA} K17y B2, MSA)f(k:)') kl) k2) . (2 . 104)
q(ky, ko, ks) =[2(2S.+1) T > |f], (2.105)
#IM 8 4 11/ 2l pu3!
XRe [ f(ks, ks, k) f* (b, Ko, k) -+ (ko, ks, k) f* (Ks, ki, ko) 41 (K, ke, ks) * (ks, ka, ko) ]}, (2.106)
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As in the case of single ionization the cross-section
expression must represent the number of ions formed
in the final state; or equivalently we can say that
only the electron current corresponding to all possible
relative momenta of the three electrons must be
counted. Defining '

o (f, oy Fs) = / oy, T, k) diadfindls,  (2.107)

we can write the double-ionization cross section in
two equivalent forms. The first of these is

E /3
Q(E) = (wko)™*|  ksd(3ks?)

0

1/4) 2E—k3?)
X/ koo (ky, ks, ks)d(3k:?),
(

1/2)k32

(2.108)

the limits of integration ensuring that ks?<k2?< k2. The
second form is

Q) = (w31k0) 1 [ R (k)

0
E—(1/2)k3?
X/ kzo’(kl, kz, ks) d(%kf) . (2 . 109)
0

The only restriction placed on the limits of integration
in (2.109) are those arising from energy conservation.
Included therefore is a sum over 3! permutations of
the momenta which correspond to identical events. A
division by 3! is therefore included in (2.109) and in
general for an n-fold ionization the corresponding ex-
pression to (2.109) must include a factor of 1/(n-41)!
(Peterkop, 1961).

3. QUANTAL APPROXIMATIONS

Most of the essential features of the various quantal
approximations which have been used may be discussed
for the particular case of the ionization of atomic
hydrogen. In this case, quantal approximations for
the scattering amplitude consist in making a choice of
the functions ¥ and ® of Eq. (2.52). This equation
however, depends on equation (2.51) being satisfied,
in which case the phase factor A(ki, ki) is defined
through (2.53). In many methods which have been
used to calculate ionization cross sections, (2.51) is
not satisfied and hence in these cases approximations
are made to this phase as well as to the functions ap-
pearing in the integral expression (2.52). In describing
each approximation therefore we list the ¥, ®, and
A(ky, ko) which when used in (2.52) give rise to each
approximate scattering amplitude.

3.1. Born Approximations

The usual interpretation of “Born’s approximation,”
as applied for example to excitation problems, is that
separable wave functions are used, which correctly

describe all the long-range forces, and that the effects
of exchange are ignored. In work on ionizing collisions
however the phrase “Born’s approximation” has been
used where this is not the case, but rather the choice
21=0, 2,=1 has been adopted. Thus for atomic hydrogen
the method consists in adopting the approximations

p=y(0 | ;) exp (tko'11),
dp=x(1, —kq | 13) exp (—ik;-11),
A(ky, ko) =0.
This gives

(3.1)

5 (ki, ko) = (27) 52 [ ¢(0 | 1p) exp (iko11)

X[(?’l)—l'— (7’12)_1])((1, —k2 [ rz) exp (—'7:k1'r1) drldrz.
(3.2)

The choice 21=0, z5=1 is not a serious defect at high
energies, since with increasing energy it is found that
the main contribution to the cross section comes
increasingly from the region where %, is small and %
is large. At sufficiently high energies therefore Born’s
approximation becomes exact but at very low energies
(Sec. 2.7) gives rise both to substantial errors in the
cross section and an incorrect threshold behavior.

The second feature of Born’s approximation, the
neglect of exchange, has also been treated rather
differently in work on ionizing collisions from what it
has been in problems of excitation. Referring to Eq.
(2.72) we see that “neglecting exchange” means that
all terms involving f(ks, ki) should be excluded to give
the expression

E/2
Q[Born (b) ]=(mko) ™" |  kikad(3ks?)

0

deﬁldﬁ2 | fo(ky, ko) [2 (3.3)
However an expression frequently used has been

B
O[Born (a)]= (wky)—* / Fakod (32)
[1]

X / ks | f5 (s, k) . (3.4)

Equation (3.4) is the correct expression to use if we are
dealing with ionization involving distinguishable par-
ticles. In the case of ionization by electron impact,
with random spin orientations, (3.4) would correspond
to neglecting only the interference term of (2.72) while
retaining the | g(ky, ko) [2=] f(ks, k1) |? term. This pro-
cedure is clearly inconsistent and Eq. (3.3) is the more
acceptable definition. The Born (b) approximation
should therefore be used if exchange is to be neglected
and will always yield a better result in those circum-
stances when, as is usually the case, the effects of



exchange are to reduce the cross section. In Fig. 1 the
two approximations are compared for the cases of
ionization of atomic hydrogen [Rudge and Seaton
(1965) 7] from its ground state, a curve representing a
mean of the experimental measurements of Fite and
Brackmann (1958), Boksenberg (1960), and Rothe
et al. (1963) being also shown, and in Fig. 2 the same
comparison is shown for ionization of helium from its
ground state [Sloan (1965)].

In the case of ionization of a hydrogenic positive
ion of nuclear charge Z by electron impact, the ap-
propriate expression for f is

fuley, o) = (20)5 [$(0 | r)x(Z— 1, Ko 1)

XL(r) ™ = (r2) ' Ix(Z, —ka | 12)
XX(Z*I, -k [ rl)drldrz. (3.5)

The phrase “Coulomb-Born” approximation is ap-
propriate to this case to distinguish it from calculations
where plane waves have been used to describe the
incident and scattered electrons. This latter treatment
is very unsatisfactory at low and intermediate energies
but becomes equal to (3.5) at high energies. In no
circumstances may plane waves be used to describe the
ejected electron.

Recent calculations in the Born (a) approximation
have been reported by Omidvar (1965) for ionization
of hydrogen from an initial state with principal quantum
number # running from 1-10; for He* in the 1s and 2s
states by Burke and Taylor (1965); for helium in the
ground state by Peach (1965) and by Dalgarno and
McDowell (1956), the latter authors calculating also
cross sections for excited states of the helium ion with
(n, 1) =2p, 3p, 4p, 3d, 4d; for Li by McDowell ef al.
(1965) and by Peach (1965) ; for Be by Peach (1965);
for Ne by Inokuti (1961). Inner-shell ionization of
Ni, Ag, and Hg in the Born approximation neglecting
relativistic effects have been calculated by Burhop
(1940). Arthurs and Moiseiwitsch (1958) have in-
cluded relativistic effects in calculating the inner-shell

12r
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Fic. 1. Ionization cross sections for H(1s) comparing (1) the
Born (a) and (2) the Born (b) approximation [Rudge and Seaton
(1965) ] with (3) ““experimental” data.
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F16. 2. Tonization cross sections for He(1s?) comparing (1)
the Born (a) and (2) the Born (b) approximation [Sloan (1965) ]
with (3) “experimental” data.

ionization of Ni, and Perlman (1960) has similarly
calculated inner-shell ionization of Ni and Hg.

The Born (b) approximation has been used for ioniza-
tion of the following species by the authors indicated:
H(1s) [Rudge and Seaton (1965)7]; H(2s), He*(1s),
and Het(2s) [Rudge and Schwartz (1966a)]; FeXV
and FeXVI [Rudge and Schwartz (1966b)7]; He, Li,
Be [Peach (1965)]; and Na [Bates ef al. (1965)].

In all the calculations of ionization of nonhydrogenic
systems, further approximations are involved in the
description of the bound-state wave functions and the
wave functions for the ejected electron.

3.2. The Bethe Approximation

The Bethe approximation [Bethe (1930) ] is a simple
version of the Born approximation, its chief usefulness
lying in the fact that it allows a determination to be
made of the form of the ionization cross section at
high energies. The principal features of the approxima-
tion may be seen by examining the case of atomic
hydrogen. Performing the integration in (3.2) gives
fporn (1, ko) = (—27277312/¢%) (0 | exp (iq 1) | —ko),

(3.6)
where q =Kko—Kk; and we define the notation
0l exp (ig-1) | —ka)= [9(01)
Xexp (19-1)x(1, —k, | 1) dr.

Expanding exp (¢q-r) as a power series, using orthog-
onality, and assuming ¢ small, we obtain the result that

fpetne (K1, ko) = (—2712772%/q) (0 [ 2| —ko), (3.7)

where @ is taken as the quantization axis. Transforming
the k; integration of (3.3) to one over ¢ gives the
ionization cross section as

71'_3 E[2 ‘Imaxdq PN
Onne= "z [ i) [T ol 0121 1)
0 9min
(3.8)
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In (3.8) gmin=Fko—Fk; and the largest value of ¢ is
ko+ky. Since (3.7) is valid only for g small, the value
of gmax in (3.8) may more properly be taken to be
7(ko+k1), where 7 is a constant less than unity, to give

ek o
0= [ TR 10| k) ks

(3.9)
Since the main contribution to (3.9) arises from the
region where % is small, we may approximate further
by writing

ke — ko2l (3.10)
where 7 is the ionization potential, so that
(ko—kl) _N_zl/(ko"{'kl)
~1I/k, (3.11)

and (3.9) becomes

~3 Yk [E/2
OBethe= Lln( T 0)/ R(U l z| —k) [* dko. (3.12)
oO\NT/)

Writing E;=1/2kg, (3.12) takes the form

0=A In E;/Ei+B/E,, (3.13)
where
E/2
A=3[103] ko) P ey
0
B=AIn (4r/I)+const. (3.14)

The additional constant in (3.14) arises from the
neglected terms in approximating (3.6) by (3.7). The
constant 4 thus depends on the optical properties of
the atom and can fairly readily be evaluated, but the
constant B depends on a full Born calculation since it is
determined through the cut-off parameter r and the
neglected terms. Using sum rules proved by Bethe
(1930) and averaging over the m states, the constant 4
may be written (for large E)

4 +1
= - n2 v - _Rn n/ 141 2
3[<”l>A ;{2#{—1( B )
+ L (R z""l—l)?}] (3.15)
A4+1 " ’
where X
Y(0[ 1) =Ry 1(r) Vin(T), (3.16)
R = f “PRu(r) R (Hdr,  (3.17)
0
and
(raYav= f “HRu(DRu(dr.  (3.18)
0
Alternatively, we may write
fn’l’nl :|
A=45rlt)aw— 2 57— |» .1
[3<7I>A n/EuZ!En-—Enrl (3.19)

where fn1..0 is the average oscillator strength defined
by Bethe and Salpeter (1957). In both (3.15) and
(3.19) the sums over #’ include n=7'.

The Bethe approximation may also be derived for
ionization of ions. In this case an equivalent method may
be used [Seaton (1962)7], which replaces (1/71—1/712)
in (3.5 by —(r/r2)Pi(Ty, T,). The only essential
difference which arises is in the “Gaunt factor”
In 7(ko+k1) (ko—k1) appearing in (3.14). This becomes
modified due to the charge on the ion, and formulas
for the appropriate ‘“Gaunt factor” in this case are
given by Grant (1958).

The Bethe theory applies equally to complex atoms
when the appropriate formula for 4 is

—=4]1 oy, 5 Jwrar
o

In the case of H™ for example it follows from (3.20)
that the constant A corresponding to the total detach-
ment cross section is 4 {(r;+1z)2)ay and is large. In the
case of the alkali metals on the other hand the pre-
dominant contribution to the sum over oscillator
strengths in (3.20) arises from the resonance levels
and in these cases A may be expected to be small. In
the case of hydrogen A decreases with increasing / for
given » [Bethe (1930)] but averaged over I is pro-
portional to # [Kingston (1965b)].

It is often convenient to write the Bethe formula in
terms of the photoionization cross section a(W), where
W is the energy of the ejected electron. Equation (3.9)
may then be expressed in the form [Seaton (1959)]

_ Iu [ErTa(W) <4ET)
OBethe(E) = I—I—Wln AN aw, (3.21)

rall J,
a being the fine-structure constant. The constant 4 may
then be expressed as

© g(W)dW
0

The above and (3.20) are not always equivalent.
Thus (3.20) represents the total continuum contribu-
tion to the sum rule including, therefore, multiple-
ionization processes. The above expression for 4 does
not include multiple-ionization processes if a(W) is
taken to be the single photoionization cross section.
Only in unusual circumstances does the Bethe theory
yield good estimates of the ionization cross section. A
useful procedure has been given by Seaton (1959)
however based on the Bethe theory which allows
reasonable estimates of ionization cross sections to be
made. Referring to (3.21) it can be seen that if we have
two atoms A and B whose photoionization cross sections
have the same slope then, in the Bethe approximation,

14Q4(E)/a4(0) =15Q5(E) /a5(0).  (3.23)

Equation (3.23) is a useful relation since it involves
ratios which may be quite accurate even though the

]. (3.20)

(3.22)



individual cross sections may be a good deal less so.
Equation (3.23) is of most value when considering
ionization of systems where there is a substantial con-
tribution from the optically allowed transitions to the
continuum. Such cases include, for example, the inert
gases or detachment from negative ions but not
ionization of the alkalis. The relationships (3.23) has
been used by Seaton (1959) to calculate ionization
cross sections for Ne, O, and N, and McDowell and
Williamson (1964) have used the Bethe approximation
[Eq. (3.21)] to calculate the detachment cross section
for H-.

3.3. The Born-Oppenheimer Approximation

In this approximation, exchange is taken into account
by adopting the following expression for the scattering
amplitudes:

f(S |k, ko) = — (2m) 72 [ Wp(11, 1) (3C— )

X[@B(rl, rz) + ( —_ 1)5473(1‘2, 1'1) ]drldrg.

The ionization cross section is then obtained through
use of (2.69) and (2.71). From (2.71) it is seen that
k1> ko, and so in this approximation the faster electron
is taken to be completely screened by the slower
one. In other words Eq. (2.51) is approximately
satisfied by excluding, in an expansion of 1/| ki—ke | in
a series of Legendre polynomials, all terms other than
the first. The approximation is inherently bad however,
owing to the fact that ¥5(ry, 1) and $p(ry, 11) are not
orthogonal. The lack of orthogonality means, for
example, that if a constant were added to the Hamil-
tonian (corresponding to a zero force), the cross section
calculated in this approximation would change, a situa-
tion which is clearly absurd [Schiff (1952)7]. Numeri-
cally it is confirmed that, for example, in calculating
an ionization cross section from an initial atomic s
state in the Born-Oppenheimer approximation, con-
tributions to the cross section arising from s states of
the scattered electron are spuriously large. A fairly
typical result in this approximation is shown in Fig. 3.
Equation (3.24) is a poor approximation, although
Burke and Taylor (1965) show that the method is
much better in the case of ionization of positive ions
than it is for neutral species. Some improvement may be
effected by replacing ®z(ry, 1;) in (3.24) by

(3.24)

(1, ) =Fa(tz, 70 —H(0 | 1) [ B2z, H(0 | 12)drs.

(3.25)

The Born—-Oppenheimer approximation has been used
by Burke and Taylor (1965) for calculating the ioniza-
tion cross sections of H(1s), H(2s), Het(1s), and
Het(2s), by Trefftz (1963) for Ot5, by Malik and
Trefftz (1961) for Ot and by Geltman (1960) for H.
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F16. 3. Ionization cross section for H(1s) comparing (1) the
Born-Oppenheimer approximation [Burke and Taylor (1965)]
with (2) the Born (b) approximation [Rudge and Seaton (1965) ]
and (3) “experimental” data.

3.4. The Born-Exchange Approximation

In the Born approximation to the scattering ampli-
tude there are no orthogonality difficulties. An alterna-
tive approximation to the Born—-Oppenheimer method
therefore is to make use of Eq. (2.77), which relates the
exact direct and exchange amplitudes. Although by
using the Born-approximation Eq. (2.51) is not
satisfied, a reasonable procedure is to make use of
Eq. (2.77) for the magnitudes of the respective scat-
tering amplitudes and introduce a phase factor into the
relationship, so that the approximation reads

4B-E (ky, k) = €xp [1:7' (ky, ko) :]f Born (K, ky).

Two distinct approximations are apparent in this
method therefore, one for the magnitude of g(k;, k)
and the other for its phase relative to that of f(k;, k).
The method is an improvement over the Born-Oppen-
heimer approximation in that there are no orthogonality
difficulties, but it suffers from the inaccuracies inherent
in adopting the Born approximation for f(k;, k) and
these are likely to be greatest where k2> %, which is
the region where (3.26) is applied. Thus g(k;, k.)
calculated from (3.26) may not be accurate nor should
it be very inaccurate. The choice of r(ki, k;) decides
the value of | g [*—Re (fg*), and so the approximation
is most useful in those circumstances in which the choice
of 7 (ki, ks) leads to compensation of errors. We mention
three possible choices which have been made for this
phase factor. The first of these, suggested by Peterkop
[1962(a)], is to define

m1(ky, k) =arg f(ky, ke) —arg f(ky, k). (3.27)

This corresponds to maximum interference and there-
fore gives the smallest cross section in any approxima-
tion for f.

A second choice which has been frequently used
[Peterkop (1962a), Geltman, Rudge, and Seaton

(3.26)
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F1c. 4. Tonization cross sections for H(1s) in the Born-exchange
approximation: (1) “experimental” curve, (2) Born-exchange
with phase factor (3.27) [Peterkop (1962) ], (3) Born-exchange
results of Rudge and Schwartz [1966(a)], (4) Born-exchange
with phase factor (3.28) [Geltman ef al. (1963)].

(1963), and Sloan (1965)] is to define
r2(ky, ko) =arg T'(1—iZ/ky) —arg T (1—iZ/ks), (3.28)

where Z is the net change on the new ion produced
(unity for hydrogen).

A third choice, which is useful when partial-wave
expansions are used, has been described by Burgess and
Rudge (1963) and by Rudge and Schwartz [1966(a)].

In Fig. 4, we compare the three approximations for
the case of ionization of atomic hydrogen from its
ground state. Figure 5 shows the results of Sloan (1965)
for ionization of helium using the phase choice (3.28)
and in Fig. 6 we show the results of Rudge and Schwartz
[1966(a)] for Het using the third phase choice.

It can be seen that the Born—exchange method gives a
substantial improvement over Born calculations. This
indicates the importance of including exchange in cal-
culating ionization cross sections. The Born-exchange
method, with various choices of 7 (%, k2) has been used
by Peterkop [1962(a)] and Geltman, Rudge, and
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Fi1c. 5. Tonization cross sections for He(1s?) showing: (1)

experiment, (2) Born-exchange with phase factor (3.28) [Sloan
(1965) 7, (3) Born (b) [Sloan (1965)].

Seaton (1963) for ionization of H(1s), by Rudge and
Schwartz [1966(a), (b) ] for H(2s), He*(1s), Het(2s),
FeXV, and FeXV! by Sloan (1965) for He(1s?), and by
Peach [[1966(a), (b)] for ionization of He, Li, Be, Na,
and Mg from their ground states.

3.5. The Born-Ochkur Approximation

In this approximation, an alternative expression is
sought for the exchange-scattering amplitude, while
again retaining the Born approximation for the direct-
scattering amplitude. A number of different formulas
have been proposed, the first is an expression given by
Ochkur (1964) appropriate to excitation problems and
the second, another formula by Ochkur (1965) ap-
propriate to ionization problems. The expression of
Ochkur for excitation has been modified by Rudge
(1965), who derives a third expression by a different
argument.

Ochkur (1964) and (1965) argues that the Oppen-
heimer expression for the exchange scattering amplitude
[Eq. (3.24)] is correct at high energies and asserts
that it is therefore better to retain just the leading term
in an expansion of gp.o.(Ki, ks) in power of 1/ rather

100

o1 F1c. 6. Reduced ioniza-

< tion cross section for
£ ol Het(1s) in the “Born-
o exchange” approximation
N [Rudge and Schwartz

) (1966 (a))] compared with

experimental data [Dolder
et al. (1961)7.

(Eirp)

than use the full Oppenheimer expression. In the case
of excitation he deduces, by this procedure, the result
that for neutral species

gOch(]'> = (qz/koz)fBorn (3 . 29)

(where ¢=ko—k;). Using expression (3.29) for certain
singlet-triplet transitions in helium, Ochkur (1964)
obtained good results. In the case of ionization Prasad
(1965) has adopted the results (3.29), and refers to
this as the Born-Ochkur approximation, but Ochkur
himself (1965) in extending his analysis to the ioniza-
tion case deduces the expression

goan® (K1, ko) = (¢%/| Ko—Kz |2) foorm (K1, k). (3.30)

Ochkur (1965) further simplifies the result (3.30) by
replacing | ko—k; [2 by (k?—Fks?) to give a third ap-
proximation

goen® (kp, ko) =[¢%/ (B —k22) ] fporn (K1, ko). (3.31)

He argues that (3.31) should differ inappreciably from
the result (3.30).

The derivation of Ochkur’s results is of an ad koc
nature and it is not altogether clear why it yields a



marked improvement over the Born-Oppenheimer
method. The 1/ term in the Born-Oppenheimer
method which gives a large contribution due to the
nonorthogonality of the initial and final states has
simply been discarded in this approach. This probably
accounts for some of the improvement, but in, for
example, the problem of proton-hydrogen atom, charge
transfer, the discarding of this term leads to worse
results rather than improved ones [ Bates and Dalgarno
(1952)7]. It is therefore desirable to reexamine the
approximations from a variational standpoint and find
what approximate wave functions yield results which
are similar to those of Ochkur. With regard to the
excitation problem Rudge (1965) found that a trial
function for the final state could be found which was
orthogonal to the initial state and gave a result similar
to (3.29), viz.,

g=L¢%/ (k> —1I')%] faorm, (3.32)

where I is the ionization potential of the initial state.
Similar, but not identical, considerations apply to the
ionization problem. The result (3.30) can be regarded
as a modification of the Born-exchange method. We
consider the scattering amplitude based on the trial
functions

(1, 1o) =¢(0 | 12) exp (iko+11),
(13, 1y) = —x (22, =k | 12)

Vi{x(z1, —ki | 11) exp (iko-11)7]
exp (ko 11) | ko—k [2

With A(ky, ko) =0 we then have the result that

(3.33)

(1, ) = — (2) 51 [ (30— ) Wi,

—2—1/2—3/2

- Tli——kI[Z/‘P(O | 1)x(22, —ka | 1)
X[x(z1, =k | 1) exp (ko 1) —x (21, —ky | 0) Jdr.
(3.34)

With the choice 2,=1, 2,=0, we regain the Born ap-
proximation, but with the more physical choice

29=1; ;=0 if ky<k,
2,=0; a=1 i k>k,
we obtain the result that
f(ky, ko) =fom (i, ko), i k> ks

=[| ko—ks /| Ko—K1 |*] fBora (Ko, K1), If ki<ks,
(3.35)

provided that the terms arising from the nonorthog-
onality of x (2, —ka | r;) and (0 | rz) are ignored. The
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F16. 7. Ionization cross section for H(ls) (1) “experiment,”
(2) Born-Ochkur [Ochkur (1965)], and (3) Born (b) [Rudge
and Seaton (1965)].

exchange-scattering amplitude is then given by
g(ky, ko) =f(ks, ki)
=[¢%/| ko—ke "] foora (k1, kz),  (3.36)

where k;>k;. This is in accord therefore with Eq.
(3.30). The above derivation shows that (3.30) may
be justified approximately, but that more correctly
in the exchange term x(z, —k. | r2) should be orthog-
onalized to ¢¥(0]|7,) and that then the result shows
the best features of the Born-Oppenheimer and Born—
exchange methods, viz., on the one hand a more
realistic treatment of the appropriate Coulomb fields
and on the other the avoidance of nonorthogonality
difficulties. The results (3.29) and (3.31) are less
satisfactory, though they are the only approximations
for which calculations have been carried out. A com-
parison of results using the expression (3.31) [Ochkur
(1965)] with the Born (b) approximation and experi-
ment is shown in Fig. 7.

The Born-Ochkur method [Eq. (3.31)7] has been
used by Ochkur (1965) for ionization of H(1s); the
Born-Ochkur method [Eq. (3.29)7] has been used by
Prasad (1965) for H(1s), H(2s), and H(2p) and by
Peach [1966(a), (b)] for ionization of He, Li, Be, Na,
and Mg from their ground states.

3.6. Improved Final-State Approximations

None of the previous approximations is in harmony
with the theory presented in Sec. 2 as regards its
treatment of the final state. It is essential however, in a
proper treatment of the problem, that Eq. (2.51)
should be satisfied and calculations have been carried
out by Rudge and Schwartz (1966) in which these
conditions are met. They use the approximation

¥=y(0|r) exp (iko'1y),

P=x(z1, —k1 | 11)x(1, —ko | 12), (3.37)
with

21=1—(k1/1 k;—k, D (3.38)



580 ReviEw oF MODERN PrysIcs - JuLy 1968

10 T T
08(

06}

Q(mag?)
-

04}

02}

R T R TS 7 1

Ein)

F1c. 8. Theoretical calculations for ionization for H(ls)
using an improved final-state function [Rudge and Schwartz
(1966(a))]. (1) Experiment, (2) results without exchange, and
(3) results with exchange.

With this choice a linear-threshold behavior is obtained
but, in order to evaluate the cross section, one more
numerical integration is needed than in the previous
approximations. Results obtained in this approximation
are shown in Fig. 8, two curves being shown, the one
where exchange is taken into account and the other
where it is neglected. Some improvement is obtained
in the agreement between theory and experiment in
the case where exchange is neglected and for energies
below E;/I=1.5, where E; is the energy of the incident
electron, theory and experiment are in accord allowing
for experimental uncertainty. A linear-threshold be-
havior is obtained. At higher energies however there
is a discrepancy and this discrepancy between theory
and experiment is increased with inclusion of exchange,
The reason for this may be due to the choice of charge in
(3.38). Clearly in an approximate calculation of the
scattering amplitude it is advantageous to guarantee
that as k20, z—0 and z5—1 corresponding to screening
in this limit. Equation (3.38) guarantees this behavior
and the nonexchange results are quite reasonable. Also
one should guarantee that as k—0, z—1 and 2,—0.
This is not given by the choice (3.38) and we may
therefore expect the exchange-scattering amplitude to
be less accurate. Further work is needed to establish
what choice of 2z; and 2 satisfying (2.51) is most
appropriate in approximate calculations.

3.7. The Distorted-Wave Born-Oppenheimer Method

In all the above methods the initial state was repre-
sented as a product of an initial atomic function and an
undistorted plane wave for the incident electron. Burke
and Taylor (1965) have carried out calculations in
which the initial state is represented in the form

W (13, 1) =[1+(—1)5Pu] D ¥ (v | 1) Fy (1),

where y=1s, 25, 2p and the F,(r;) are determined
through the Hartree-Fock equations

/ ¥*(v | r2) (H—E)¥(1y, 1) dr,=0.  (3.39)

The final state was chosen as in the Born-Oppenheimer

approximation. A comparison of this approximation
with the Born, Born-exchange approximation, and
experiment for ionization from the ground state is
given in Fig. 9. It is seen that, despite the much greater
complexity of Eq. (3.39), in this case there is little
improved agreement with experiment, indicating that a
better description of the final state is also necessary.
For ionization from the 2s state, however, Burke and
Taylor (1965) find that the effects of close coupling in
the initial state are of much greater significance. Work
similar to that of Burke and Taylor (1965) has been
carried out by Veldre and Vinkalns (1963).

3.8. Other Approximations

a. Impulse Approximation

The approximation has been described by Akerib
and Borowitz (1961) and applied by them to both
excitation and ionization. Their excitation work has
been criticized by Coleman and McDowell (1966).
These criticisms apply a fortiori to the ionization calcu-
lations where a factor of 2 has also been omitted. The
approximation in its present form cannot be regarded
as in any way well founded.

b. Geltman A pproximation

In the work of Geltman (1956) both continuum
electrons were represented as Coulomb waves belonging
to charge Z, with Z the charge on the new ion produced.
This procedure was also adopted by Trefftz (1963)
and by Malik and Trefftz (1961) in considering the
ionization of O*" and O%*. A linear-threshold behavior
is obtained in this way but the effect of this choice is to
overestimate the cross section at low energies. The ap-
proximation has been investigated in most detail by
Veldre and Vinkalns (1963) both including and neglect-
ing exchange. Their results are shown in Fig. 10.

c. Plane-Wave Approximation

In contrast to the Geltman approximation, in this
method plane waves are used to describe both con-

0 3 . ! 1 ' . '
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F16. 9. A comparison of the distorted-wave Born-Oppenheimer

calculation [Burke and Taylor (1965)] (3) with (2) the Born
(b) approximation and with (1) “experimental” data.



tinuum electrons, one of these being orthogonalized to
the ground state of the atom concerned. The approxi-
mation has been used by Michael (1963),who considers
the ionization of hydrogen and cesium. The approxima-
tion is a very poor one. It gives rise to a threshold be-
havior like E?, which yields results which are too low
at low energies, while it overestimates in the region of
the maximum of the cross section. Results of Michael
(1963) for hydrogen are shown in Fig. 11.

3.9 Multiple Ionization

Little theoretical work has been carried out on mul-
tiple ionization owing to the numerical difficulty of a
full quantal calculation. Geltman (1956) has carried
out calculations for the double ionization of helium
taking just the s wave into account, using for the final
state of the atom the function

yratom =x(2, —kg | 12)x (2, —ks [ 13)8(ky+ks),
(3.40)

Q (a,?)
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F1c. 10. Results for the ionization cross sections of H(1s) in
the Geltman approximation [Veldre and Vinkalns (1963)]. (1)
Without exchange, (2) with exchange, and (3) “experiment.”

the insertion of the § function in (3.40) being based on
the assumption that the dominant contribution to the
cross section will arise from states in which two of the
electrons move in opposite directions. Since only s
waves were included the calculations are only useful
very near threshold, where the behavior of the cross
sections is as (E—1T)2. Geltman showed that this was in
accord with experimental data and inferred an (E—I)»
threshold law for #-fold ionization. More recently
Mittleman (1966) and Byron and Joachain (1966)
have given expressions for the ratio of the single to
double ionization cross section valid at high energies.
They use what is essentially a form of the Bethe ap-
proximation. Using a Hartree-Fock function for the
initial state of helium, Mittleman (1966) finds a ratio
Q single/Q double=198, a result which is compared
with experiment in Fig. 12. Byron and Joachain (1966)
show, however, that this ratio is strongly dependent
on the form assumed for the initial- and final-state wave
functions.
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F1c. 11. A comparison of (2) the plane-wave approximation
[Michael (1963)] with (1) “experiment” for H(1s).

4. CLASSICAL APPROXIMATIONS

The use of classical mechanics to describe an ionizing
collision has a greater appeal than it has in the case of
an excitation problem. In the first place, the final
atomic state lies in the continuum, a concept which is
defined both classically and quantally. Secondly, one is
not concerned with a final atomic state having a
definite angular momentum but rather with the sum
over all possible angular momenta, and. moreover, as
quantal calculations show, a significant number of
angular momenta contribute appreciably to this sum.
For these reasons it might be expected that classical
approximations can play a useful role in estimating
ionization cross sections.

In treating ionizing collisions by classical methods
three basic approximations are involved. They are:

(1) A classical description must be found for the
initial state of the bound electron. In practice, several
prescriptions have been used. In the simplest methods
the atomic electron is assumed either to be at rest prior
to the collision or else to have a fixed velocity, an
average then being taken over the direction of this
velocity. A second technique is to ascribe a velocity
distribution to the atomic electron; several such dis-
tributions have been proposed.
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F1c. 12. Experimental results for the ratio of the single to
double ionization cross section of He compared with a theoretical
high-energy limit [Mittleman (1966) J.
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(2) The collision is described in terms of the classical
Newtonian Laws of motion. This implies that no
account can be taken of quantal-interference effects.

(3) For the simplest case of e~H ionization the
classical problem is still a difficult three-body problem,
and so in most treatments the equations have been
simplified further by treating the collision process as
though it were a two-body one.

The classical methods differ from one another in
their choice of approximations (1) and (3). Semi-
classical methods have been introduced which only
partially make use of approximation (2). We consider
first the earliest treatment of ionizing collisions, pre-
sented by Thomson (1912), and then turn to the various
modifications which have been made to his theory.

4.1. The Thomson Theory

Thomson (1912) considered classically the ionization
of an atom by a charged particle of mass m; and
charge ge. He approximates by taking the (classical)
Hamiltonian of the system to be

H=(p2/2m)+(p2*/2m) — (¢¢/| n—12 )  (4.1)

and, assuming the appropriate initial condition to be
that the atomic electron is at rest, calculates the energy
transferred to it in the course of a collision in which
the incident particle has speed v and impact parameter
R (relative to the atomic electron). Classical orbit
theory then gives the result that the energy transferred
is

AT =[4mmi E;/ (m—~+m)*] sin? (0/2), (4.2)

where E;=1m* and 6 is the angle between the initial
and final relative velocities. Expressed in terms of the
impact parameter, (4.2) becomes

_ 2mmy20? (4.3)
() L1+ (R get) (mm/m~4m)¥] "

Thomson’s expression for the cross section is now
given by

AT

Rme
Q=2¢/ RdR, (4.4)
0
with Rmax chosen such that AT=I, the ionization

potential.
Restricting ourselves for the moment to the case of
electron impact, (4.4) gives the result that

Q= (we*/E:) (1/I—1/Ey) (cm?).
Introducing a reduced energy «=E;/I, this becomes
Q=4(In/D*(1/x) (1—1/x) (ras*), (4.5)

where Iy is the Rydberg. Before discussing the result
(4.5) it is of interest to note that (4.4), through the
use of (4.3), can be expressed rather differently. Writing
AT =141k and v?=Fk¢, a change of variable in (4.4)

gives the result that
d(ks?/2)

2 Yhoo®—T
Q‘%A (I+k/2)?"

In this form (4.6) is reminiscent of the Born(a)
quantal expression for the ionization cross section.
Again, if the variable of integration in (4.4) is changed
from R to ¢=6/2, it is found that

4 2 sin (2¢)d¢
)
kO sin—Ll(Z/E)1/2

sin? ¢

Equation (4.7) is simply an integration over the
Rutherford differential cross section. These results are
pertinent to extensions of the Thomson formula to be
discussed in Sec. 4.3. For the present we return to
(4.5). In deriving (4.5) it was assumed that only a
single electron was available for removal from the atom.
For the case of ionization from a shell of # equivalent
electrons (4.5) should be multiplied by #, and the first
prediction of the Thomson theory is that ionization
cross sections obey a scaling law expressed by saying
that

(4.6)

(4.7

Q) =n*(I/In)*Q (4.8)

is a universal function of x. Q(x) is referred to as the
reduced ionization cross section. The result is a useful
one and a comparison with experimental data for H,
He, and Nat is shown in Fig. 13. Similar comparisons
have been effected by Seaton [1962(a), 1964]. It
is seen that for these species at low and intermediate
energies the prediction is in good accord with the data.
(4.5) however does not represent the correct shape
of the ionization curve. According to (4.5) the maxi-
mum of the cross section should occur at x=2, while
experimental evidence shows that this occurs at higher
values. More seriously the Bethe theory shows that at
high energies the cross section behaves like 4 In E;/E;+
B/E;, but in (4.5) there is no such logarithmic depend-
ence. Since for high-enough energies the logarithmic
term is dominant, this is a severe drawback. It is
also of some interest to exhibit predictions of the
Thomson theory for ionization by other particles, for
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F1c. 13. A comparison of some reduced ionization cross
sections showing a mean experimental curve for hydrogen, the
results of Smith (1930) for helium, and the results of Hooper
et al. (1966) for Nat.



example, protons or alpha particles. In these cases the
Thomson formula is

Q= (4Ie*¢/v) { (20*/1) —=[(1+m1) /mT}. (4.9)

Equation (4.9) has one obvious fault in that it predicts
a threshold where

%m1212= (I/4m1) (1+m1)2, (4. 10)

a result which is only correct for electrons with m;=1.
The prediction of an incorrect threshold energy is a

feature of the two-body approximation. Denoting the

mass of the atom by M the correct relationship is

HMm/ (M+m) =1, (4.11)

so that for ionization of atomic hydrogen by proton
impact, for example, at threshold »>~4I/M while in the
Thomson theory v>~I/2. Equation (4.9) is of interest
in that it shows that the ionization cross section is a
function of the velocity of the incident particle rather
than its energy. Thus the cross section for ionization by
proton impact, for example, approaches from above the
cross section for ionization by an electron having the
same velocity, as the velocity increases. This prediction
is compared with experiment in Fig. 14. The same result
may be derived from quantal expressions for the
ionization cross section, but Thomson was the first to
deduce this relationship. Through the ¢* factor in (4.9)
the classical theory is also seen to predict that the cross
section for ionization by alpha-particle impact, for ex-
ample, will be about four times that for ionization by a
proton having the same velocity. Thus an extremely
simple theory makes a number of important qualitative
predictions. It has therefore been of interest to pursue
the theory further with a view to obtaining formulas
whose quantitative aspects are in better accord with
quantal theory and experiment.

4.2. Improved Classical Approximations

Gryzinski (1959), as in the earlier work of Williams
(1927) and Thomas (1927), sought to improve the
Thomson theory by adopting different initial conditions
in the classical description. of the problem. He ascribes
in the first instance an initial velocity to the atomic
electron and then interprets an ionizing collision as
being one in which the incident electron loses an
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Fi16. 14. A compari- 12
son of ionization cross
sections for He(b) by
electron impact [Smith
(1930)] and (a) by
proton impact?[Hooper
et al. (1962)]. The
curves correspond to
equal velocities of the
incident particles.

LI T o R
[ RERN

Q (In Units of 1077 em?)

005 010 05020 030 050 010 10 IS

Incident Proton Energy (MeV)

M. R. H. Rupnce Ionization of Atoms by Electron Impact

583

Q(mag2)
=
T T

N
(I T T S A SO T S

=2
=2
8
s
5
ro
S

Logy (Ei/l)

F1c. 15. Tonization cross sections for H(1s): (1) “experiment,”
(2) Thomson classical theory, and (3) Stabler-Gryzinski classical
theory [Eq. (4.12)7].

amount of energy greater than or equal to the ionization
potential of the atom concerned. A calculation con-
sistent with these assumptions was not carried out by
Gryzinski (1959), who in the course of his analysis
made the simplifying approximation of replacing the
true relative speed of the two electrons V=| vi—va |
by its average value (24v:?)2 This approximation
was later removed by Ochkur and Petrunkin (1963)
and by Stabler (1964). Defining E; as the initial kinetic
energy of the atomic electron, introducing another
reduced variable y=_E,/I, and assuming an isotropic
distribution of electron velocities, the result of Stabler
for the ionization cross section is

Q=4n(Iu/I)*(1/%)[14(2y/3) — (x—y)™]

x> y+1

1<e<y41.
(4.12)

With the further approximation mentioned above and
taking y=1, the Gryzinski result is

Q=4n(Ig/I)*(x/x+1)32
(5/3x—2/2%)

= (8n/3) (In/D)*(1/%) [(x—1)%/y]"?

x>2
(4.13
(4v2/3x) (1—1/x)3/2 :

The effect of the new initial condition is expressed
through (4.12) and, far from improving the Thomson
theory, in fact makes it worse (as shown in Fig. 15).
The shape of the curve is still in error at high energies
and the position of the maximum still incorrect, while
at low energies the behavior of the cross section is now
like (x—1)%? rather than (x—1), as given quantally
and in the Thomson theory. The subsidiary approxima-
tion introduced by Gryzinski to give (4.13) suffers
from the same defects at high and low energies, though
for hydrogen the position of the maximum is more
correct and numerical values are in better accord at
intermediate energies (see Fig. 16).

Neither formula is very satisfactory above the maxi-
mum of the cross section and it may be concluded that
neither (4.12) nor (4.13) represents a substantial im-
provement over the Thomson theory.

1<x<2.
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Fi1G. 16. Ionization cross sections for H(1s) : (1) “experiment,”
(2) Gryzinski classical theory [Eq. (4.13)], and (3) Thomson
classical theory.

In order to obtain a logarithmic decrease in the
ionization section Gryzinski reconsidered the problem
in a series of papers [1965(a), (b), (c)] by assuming
that the atomic electron had a continuous velocity
distribution. He introduced an empirical distribution
function whose form (~v=2) was chosen so that, on
averaging over this distribution, a logarithmic term
would be obtained. Explicitly he assumed that the
atomic electron had a velocity distribution given by

f(@) = (2/v)* exp (=2/v), (4.14)

with 7 equal to the mean velocity. On averaging over
this distribution, he finds that

Q=dn(Iu/I)*(1/x)[(x—1)/(x+1) P2
X {14+2(1—1/22) In [2.74 (x—1) 2]}, (4.15)

Equation (4.15) may be criticized because it again has
an incorrect form at the threshold. At high energies
there is now a logarithmic term, but the coefficient
multiplying it is in general incorrect, the correct factor
being given by the expression (3.15). This is illustrated
in Fig. 17, where x(x+1)Q(x)/(x—1) is plotted
against log (%) for Ar. There is no @ prior: justification
for the averaging procedure or the choice (4.14), which
is simply an ad koc device for producing the logarithmic
term of (4.15). Equation (4.15) may be regarded
however as a semiempirical formula which has some
advantage over that expressed by (4.12).

In a later note Gryzinski [1965(d)] reconsidered
the problem of what velocity distribution should be
used for the atomic electron. He argues that the ap-
propriate velocity distribution is that for an electron
of a Bohr atom in which it has only radial motion, cor-
responding to a degenerate line ellipse. The velocity
distribution in this case is

f(v) = (4/7) v/ (P+2,2)2, (4.16)

where v,2/2=| En |, where En is the energy at the
initial state with principal quantum number #. No

calculations have been reported with this velocity
distribution. Kingston (1964) has made calculations in
which he takes the velocity distribution to be that of
the quantal momentum wave functions and compared
these calculations with various forms of the Gryzinski’s
theory. McDowell (1966) has performed a similar
calculation.

Mapleton (1966) and Abrines and Percival (1966)
have investigated the relationship between quantal
velocity distributions and classical velocity distributions
which are obtained from statistical mechanics. The
quantal distribution for atomic hydrogen is given by
[Fock (1935)]

4r/ n2; | Snim (V) |2 v2dv=[320,50%dv/m (v*+2,2)4],
(4.17)

where ¢,i,(v) is @ momentum wave function.
Mapleton (1966) and Abines and Percival (1966)
show that the result (4.17) is obtained also from the
classical microcanonical distribution provided that an
integration is performed over the classical angular
momentum. On the other hand, if such an integration
is not performed, then, for a degenerate line ellipse,
Mapleton (1966) shows that Gryzinski’s result (4.16)
is obtained. Since the ground state of hydrogen is
known to be spherically symmetric, while classical
states of fixed angular momentum are not, it seems most
reasonable that the averaged classical velocity distribu-
tion, which coincides with the quantal result (4.17),
should be used. The calculations of Kingston (1964)
wherein such a distribution was adopted were restricted
by the approximation of assuming a binary collision.
This approximation is only necessary insofar as it
gives rise to simple formulas for the cross sections.
However, Abrines and Percival (1966), Percival and
Valentine (1966), and Abrines, Percival, and Valentine
(1966) have considered a more precise classical treat-
ment. In their method the classical equations of motion
are integrated exactly, thus discarding the binary-
collision approximation. The initial velocity distribution
was taken to be that given by (4.17) and a Monte Carlo
technique was applied to average over initial classical
states of the system. For p-H ionization Percival and
Valentine (1966) show that the effect of removing the
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Frc. 17. x(x+1)Q(x) /x—1 vs logy « for Ar. (1) experiment,
(2) Gryzinski [Eq. (4.15)], and (3) Gryzinski [Eq. (4.13)].



binary-collision approximation is to reduce the cross
section by a factor of 2 at its maximum. A comparison
of the results of Abrines, Percival, and Valentine (1966)
for e-H ionization with experimental values is shown in
Fig. 18, wherein the error bars refer to the statistical
errors in the calculation. Very reasonable agreement
with experiment is obtained. At low energies however
the results are too high, which reflects the absence of
interference effects in the classical treatment while at
high energies the results are too low reflecting the
wrong asymptotic dependence on energy.

4.3. The Exchange-Classical Approximation

In a treatment of the problem introduced by Burgess
(1963) and (1964), it is argued from the outset that in
order to improve the Thomson theory certain features
of the quantal treatment must be incorporated into
the approximation. The first of these is that the effects
of exchange must be allowed for. This is clearly im-
possible in a purely classical approach but the Thomson
cross section expression in the form of Eq. (4.6) or
Eq. (4.7) make a convenient basis for a semiclassical
modification to the theory. Referring to Eq. (4.7),
it is seen that an integration is performed over the
Rutherford scattering cross section with neglect of
exchange. Including exchange means that 1/sint ¢ is
replaced by the Mott formula

[1/sin* ¢+1/cos* — (1/sin? ¢ cos? ¢)
X cos (€¢2/fiv In tan? ¢) .
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With this substitution in (4.7) the ionization cross
section may be expressed by

8 [ iko-D
- = —2 —2
0= 1 fo {(21+k22> (k)

214k
—[k2(214-k4?) T cos (7670_1 In :12 : )} d(3k?),
(4.18)
with the usual energy relation

k=21 =hi+he,

and where the upper limit of integration has been chosen
to be in harmony with quantal theory. Equation (4.18)
is unsatisfactory however in that the integrand is not
symmetric, i.e., the relationship f(ky, ko) =g(ks, k;) is
not satisfied [Burgess (1963)7]. Alternatively if the
integration in (4.18) is extended over the full energy
range and a factor of % is introduced, this being an
equivalent procedure in a quantal treatment, it is seen
that (4.18) diverges. In order to circumvent this
difficulty Burgess (1963) makes the additional assump-
tion that the incident electron gains an amount of
kinetic energy equal to I, before it interacts with the
atomic electron, and loses an equivalent amount of
potential energy. This procedure is similar to one
employed by De la Rippelle (1949). In this way (4.18)
is replaced by an expression symmetric for interchange
of %y and k.. Explicitly (4.18) becomes

2 (ko®/2~T)
Q = m f { (2I+k22)_2+ (21+k12)'"2— (2I+k12) (2[+k22) -1
0 0

If the argument of the cosine is assumed constant and
equal to v, then (4.19) becomes

Q=4(Ia/I)? (x+1){1—x1—[cos v In z/(14+=x) J}.
(4.20)

In the more detailed treatments presented by Burgess
(1964) and by Vriens (1966) the atomic electron is

F1c. 18. Ionization
cross sections for H(1s) : I
(1) “Exact” classical
calculations of Abrines,
Percival, and Valentine
(1966) and (2) experi-
ment.

0 05 10 15 20

1 214k

X cos ((k92+21) T In 21+k12>} d(k?). (4.19)

assumed to have an initial kinetic energy. This compli-
cates the analysis and the results of Burgess (1964)
and Vriens (1966) do not appear to coincide. However
the result of Vriens (1966), on carrying through the
procedure of Burgess (1964), is

4(Iu/I)?

Omo= oW/ D)

1
[l_x_l+%y(1_x_2) _ M]

14=x
(4.21)

where W is the gain in kinetic energy of the incident
electron and in order to allow an explicit evaluation of
an expression similar to (4.19), the argument of the
cosine has been taken as a constant, which Vriens
recommends be taken as

y=[1/2I(x+1) " In . (4.22)
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F1c. 19. Tonization cross section for atomic hydrogen: (1)
ECIP [Burgess (1964)7], (2) “experimental,” (3) Born (a).

With W=I and y=0 (4.21) is identical with (4.20)
as it should be. Burgess chooses W=1I while Vriens
chooses W=1I(y+1).

The expressions (4.20) and (4.21) are a significant
improvement in the theory, removing as they do one of
the major defects of the Thomson expression. It does
not however have the correct behavior at high energies.

4.4. Exchange-Classical Impact-Parameter
(ECIP) Approximation

Burgess (1963) and (1964) has suggested a means of
improving the Thomson theory further by combining
the previous theory with an impact-parameter formula-
tion. In the previous sections the close electron—electron
encounters have been treated correctly, indeed exactly
if the influence of the nucleus may be ignored. In the
impact parameter method on the other hand [Alder
et al. (1965) and Seaton 1962(b) ], the distant collisions
are treated in a good approximation. A combination of
the two methods has therefore an obvious appeal.
Calculations by Burgess (1964) indicate considerable
success for this method and a fairly typical result is
displayed in Fig. 19 for hydrogen. The method does not
give rise to any simple formula such as those obtained
previously. It is a nice treatment in that the correct
behavior at low and high energies is obtained while the
quantitative predictions are also sound. The exchange-
classical approximation may also be improved in a more
empirical fashion, yielding a simple formula, and a
discussion of this approach is given in Sec. 5. The main
difficulty of the method is that it involves choosing a
value of the impact parameter Ry, such that for R> R,
the impact-parameter method is used, while for R<R,
the exchange—classical method is used. Vriens [1966(a) ]
has suggested an alternative procedure which involves
a cutoff on the momentum transfer.

5. EMPIRICAL FORMULAS FOR IONIZATION
CROSS SECTIONS

In view of the need for reasonable estimates of ioniza-
tion cross sections and the present incompleteness of

experimental or theoretical data, it is necessary to
develop semiempirical formulas. In so doing certain
criteria should be met, these being:

(a) To provide a good fit to the known data. In this
respect it is important that to be of general usefulness
the fit should be good at all energies. This implies that
the functional form chosen to represent the data should
show the correct behavior in the region near threshold
and have the asymptotic dependence predicted by the
Bethe theory at high energies.

(b) To predict variations in the ionization cross
sections for members of isoelectronic sequences.

(c) Todisplay the variations in the cross sections as a
function of the quantum numbers of the initial state.

A considerable number of empirical formulas have
appeared in the literature. Many of them however are
only of limited usefulness and have been superseded
by the later formulas which we discuss here.

The most recent and extensive list of formulas for
ionization cross sections and for reaction rates for
ionization has been compiled by Létz (1967). Lotz
writes the ionization cross section in the form

aln (E/I)

it L<E<I
LE U

Q=¢

_ <, aln (E/I;)) _aln (E/I) . )
_j‘:‘f’ 5 ={ i if  E>Iy.
(5.1)

The formula (5.1) applies to an atom or ion containing
several shells of electrons, the I; being successive ioniza-~
tion potentials; ¢ is a fixed constant, and the ¢{; are
numbers, the relevant values of which Lotz tabulates
for three energy regions of the ionization curve. For
the high energy part of the curve the {; are equal to the
number of electrons in each shell. The constants are
calculated from experimental data and apply to ioniza-
tion from the ground state.

The form of the function (5.1) derives from an
earlier and rather successful formula of Drawin (1961),
who writes the reduced cross section of Eq. (4.8) in
the form

Q(x) =2.66 fi (x—1) /2] In (1.25 fox),

where x is the reduced energy and fi and f; are constants
which, in the absence of further data, Drawin recom-
mends be taken equal to unity. It is seen that (5.2)
has a linear behavior near threshold and a functional
form at high energies, which agrees with the Bethe
theory. The formula (5.2) provides a very reasonable
estimate of the ionization cross section for a large
number of species from their ground states but (with
the recommended choice of fi=f,=1) is less accurate
for ionization from excited states.

(5.2)



Percival (1966) has given formulas which represent
the average cross section for ionization from excited
states of hydrogen and of hydrogenic positive ions.
Percival’s formula for the average ionization cross sec-
tion from a state of hydrogen with principal quantum
number 7 is

Q(x) = (1.19 In £45.26) (x—1) / (22+1.672+3.57)
if n=1
= {[1.28n In (xn2) +6.677/ (a>+1.672+3.57) )

X(x—1) if n=>2. (5.3)
For hydrogen the coefficient 4 in (3.13) of the loga-
rithmic term is well known from oscillator strengths
[Bethe and Salpeter (1957), Kingston (1965)7]. The
appropriate constant in (5.3) has been approximated by
Percival (1966) in the form 1.28/xn. For large #» and
large x, (5.3) gives Q(x)~6.67/x, a form which derives
from the Gryzinski or exchange-classical approxima-
tions when the initial kinetic energy of the bound
electron is taken equal to I. Abrines and Percival
[1966(b)] have shown for large %, the classical and
quantal cross sections are equal when expressed in
terms of the reduced energy, and the calculations of
Abrines, Percival, and Valentine (1966) agree with the
exchange—classical results at high energies. For the
reduced ionization cross section of hydrogenic positive
ions, Percival (1967) writes

23
(1—1/2)°+2(x—1)

where z is the nuclear charge.

The exchange—classical formula (4.20) may be
used as a basis for a semiempirical formula, provided a
logarithmic term is included. Such a formula is

Q(x) =[1/(v+1) [1—1/x—cos v In x/ (1+) ]
X (4a+B In ) ’

Q.=1+ [Qux)], (5.4)

(5.5)

where y=1In x/(14x)/2, « is a constant, approximately
1.5, and B=AI/Ix?, where 4 is given by (3.22). For
ionization from the 1s state of hydrogen, a=1.39 gives
agreement with the greater part of the experimental
data and agrees with Percival’s result a=5/3 for
large values of #. In Table I values of 8 are tabulated
for the first few states of hydrogen.

Table I shows that the logarithmic dependence of the
reduced cross section decreases with increasing # and
for given # decreases with increasing . For ionization of
hydrogen the logarithmic term only begins to dominate
the cross section where x is of the order of a few hundred.
Classical approximations for ionization of atomic hy-
drogen, wherein there is either no logarithmic term or
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TaBLE I. Empirical formula (5.5) for the ionization of atomic
hydrogen (a=21.4).

Initial state
l

1.134
0.824
0.532
0.652
0.552
0.280
0.550
0.512
0.372
0.150
0.482
0.468
0.396
0.244
£ 0.082
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one with an incorrect coefficient appear misleadingly
good on this account.

The reduced ionization cross sections for positive
ions are greater than for the neutral member of the
given isoelectronic sequence as a result of the focusing
of the incident electron beam by the attractive Coulomb
field of the ion. If Z;, is the initial charge on the ion,
then a focusing factor F can be defined by

F=142Z;,/xI'2, (5.6)
and the reduced ionization cross section for the iso-
electronic sequence can be written

@z, (%) =FQu(x).

For the hydrogen isoelectronic series either (5.7) or
(5.4) give a good representation of the variation of the
reduced cross section with Z.

The hydrogen sequence is a special case in that the
constant 3 is the same for all members of the sequence.
In other sequences this is not so and a simple focusing
function does not completely represent the variation of
the reduced cross section. In the neon sequence, for
example, the reduced cross sections for Nat and Ne are
quite different at high energies [Hooper et al. (1966) ].

The only other cases for which these are good theo-
retical data for the high-energy dependence of the
ionization cross section are the inert gases. The constant
A for them has been obtained by Kingston [1965(a)].
A comparison with high-energy experimental data by
Kingston, Schram, and de Heer (1965) shows satisfac-
tory agreement. Vriens (1965) has given semiempirical
formulas for ionization cross sections for the inert
gases. Kingston’s (1965) values for A were used to

(5.7
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TasBLE II. Values of 8 for the inert gases.

Element 7 B
He 0.903 1.76
Ne 0.794 1.75
Ar 0.579 3.17
Kr 0.514 3.78
Xe 0.445 4.21

calculate the values of 8 for the inert gases which are
shown in Table II.

In contrast to the situation for atomic hydrogen, in
the case of Ar, for example, the logarithmic term
begins to dominate the cross section in the region
close to the maximum of the cross section. It is therefore
readily understood why classical theories either with no
logarithmic term or with such a term having the wrong
coefficient, are inadequate in such a case.

In contrast to the inert gases in the case of ionization
of the alkalis there is only a very small coefficient of the
logarithmic term arising from removal of the valence
electron owing to the strength of the resonance transi-
tion for these elements. At high energies there is a
substantial contribution from removal of an inner-shell
electron. McFarland (1966) has computed Gryzinski
cross sections for the alkalis.

Figure 20 shows a comparison of the available experi-
mental data for ionization of H(1s) [Fite and Brack-
mann (1958), Boksenberg (1960), and Rothe et al.
(1962) ] with the Born (b) approximation, the Drawin
formula (5.2), the Percival formula (5.3), and formula
(5.5), with a«=1.39. The earlier comparisons with
“experiment” have been referred to a curve giving
slightly more weight to the data of Rothe et al. (1962)
by taking a=1.3.

In Fig. 21 the formula (5.5) with a=1.3 is compared
with some theoretical results for ionization of H(2s),
and in Fig. 22 are shown theoretical and semiempirical
estimates of the average ionization cross section for the
n=2 states of hydrogen.

Figure 23 illustrates the behavior of the reduced
ionization cross section in the hydrogen isoelectronic
sequence. For other species reference may be made to

— : - : —
& Fite and Brackmann (1958)

© Rothe et al (1962)
L /2 © Boksenberg (1960) Y.
s 4 Fic. 20. Empirical
formulas for ionization

£ wf 1 of H(ls): (1) Eq. (5.5),
s @=1.3925, (2) Percival

s ; 1 (1966) [Eq. (5.3)7, and
> (3) Born (b).
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Fic. 21. Reduced ionization cross section for H(2s): (1) semi-
empirical formula (5.5) with @=1.3, (2) Born-Ochkur [Prasad
(1965) ], and (3) Born (b) [Prasad (1965)].

the work of Lotz (1967). There therefore exists a
number of satisfactory semiempirical formulas. In
order to improve on these, further theoretical work is
needed to establish the high-energy behavior of ioniza-
tion cross sections, while more experimental work is
needed to establish their low-energy behavior.

6. CONCLUDING REMARKS

Theoretical treatments of ionizing collisions have
improved in recent years but many problems remain.
In the first instance, there is still a need for fairly simple
but effective means of performing quantal-ionization
calculations. The Born approximation and its variations
which take account of exchange effects are reasonably
successful in predicting total cross sections, provided the
near-threshold region is excluded. What is needed
however is a treatment which gives the correct threshold
behavior and correct angular distributions of the re-
action products. No discussion has been given of theo-
retical angular distributions because there is at present
no experimental data with which to compare these. It is
clearly unlikely however that theoretical treatments
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F16. 22. Average cross section for ionization from the n=2
state of atomic hydrogen: (1) Born (b) [Prasad (1966)7], (2)
Born-Ochkur [Prasad (1965) ], and (3) Percival formula (5.3).



which do not take proper account of the Coulomb
interactions in the final state will give rise to correct
angular distributions. It is therefore necessary to devise
a technique which will do this. As regards threshold
behavior, there is little doubt that the Born approxima-
tion and its variations are inadequate. There has
recently however been intensive experimental study at
e-H near threshold ionization [ McGowan and Clarke
(1967) 7], which suggests that the linear result, given by
the theory presented in this review, is incorrect. If this
should indeed prove to be the case, then further theo-
retical effort will be necessary to explain the experi-
mental results.

Besides the need for a simple effective theoretical
treatment, there is a much greater need for a systematic
scheme for calculating ionization cross sections whereby,
as in the close coupling method for excitation problems,
a consistent improvement to the calculations may be
effected, both in principle and in practice. Such a
scheme is at present lacking.

For ionization of complex atoms there are further
problems distinct from those arising in the case of
ionization of hydrogen. Thus the evidence of Burke
and Taylor (1965) suggests that coupling in the initial
state for H is of importance for ionization from excited
states, and Bates et al. (1965) conjecture that this may
also be the case for ionization of alkalis such as Na from
their ground states. Again for alkalis it is essential that
an accurate description should be given of the motion
of the ejected electron in the field of the residual ion
and a sensitive test of this is provided by comparison of
theoretical and experimental photoionization data. It is
also of importance in some cases to take account, in
the final state, of doubly excited autoionizing levels.
Kaneko and Kanamota (1963), for example, attribute
structure in the ionization cross section of Ca as being
due to the influence of autoionizing levels.

Thus a really adequate theoretical approach to the
calculations of single ionization cross sections is still
lacking and as regards multiple ionization the situation
is a good deal worse where virtually the only available
estimates are those of Gryzinski.
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F16. 23. Reduced ionization cross sections in the hydrogen
isoelectronic sequence: (1) mean curve for hydrogen, (2) He"
[Dolder et al. (1963)], and (3) theoretical curve for Z=128
[Rudge and Schwartz (1966a) ].
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