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The eQ'ects of the isotropic, anisotropic, and vibrational intermolecular forces on the rotation —vibration energy levels
in solid parahydrogen are investigated theoretically. The main part of the shift of the rotation-vibration levels is due to
the stretching of the molecules by the isotropic intermolecular forces. These shifts are calculated using a vibrating-rotor
model for the hydrogen molecule, containing four anharmonicity constants determined from the spectroscopic data on
gaseous hydrogen. The next most important interaction is the quadrupole-quadrupole interaction. For the matrix elements
of the quadrupole moment between the rotation-vibration states we take the theoretical values calculated by Karl and
Poll for an isolated molecule. On this basis a satisfactory account can be given of the shifts and splittings of all the zero-
phonon features in the infrared and Raman spectra of solid parahydrogen and of ortho-para mixtures at low orthohydrogen
concentrations. Of particular interest is the verification of the predicted shifts of the S~ (0) and Se (0) lines, arising from the
imperfect localization of the J=2 excitation on the vibrating molecule in the upper states of these transitions, and of
the self-energy shifts of the rotational states due to the interaction with the lattice vibrations. The 6ne structure of the
S~ (0) line at low ortho concentrations, and the splitting of the S& (0)+Sq (0) doublet in the overtone infrared spectrum
can also be understood using the unperturbed quadrupole moments and. taking into account the imperfect localization
of the rotational excitations. The complete frequency analysis yields empirical values of the vibrational coupling constant
(e'=0.49 cm ') and the crystalline field constants (~&= —0.03 cm, @,= —2.60 cm '), and leads to predictions con-
cerning the frequency of the Se(0) infrared line, the splitting of the S&(0) Raman triplet and the position of the as yet
unobserved third component, and the frequency of the Q&(0) +Qq(1) line. For the remaining three unknown interaction
parameters, six relations are derived of which the consistency is (Vkcussed in relation to the available experimental
data.

1. INTRODUCTION

The rotational and vibrational motions of the mole-
cules in solid hydrogen, and their infrared and Raman
activity, have been investigated extensively in recent
years, both experimentally' and theoretically. ~' The
infrared activity in solid hydrogen is due to the dipole
moments induced in pairs of neighboring molecules by
the intermolecular forces, and is analogous to the
pressure-induced infrared activity of hydrogen observed
in the gaseous state. ' " The spectra of the solid are
characterized by the appearance of a number of sharp
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zero-phonon lines and more extended zero-phonon
bands, which are accompanied by broad and relatively
intense phonon branches. These phonon branches arise
from the strong dependence of the induced dipole
moments on the intermolecular separations. The ob-
served zero-phonon absorption features, together with
the rotational and vibrational Raman spectra, which
contain no phonon branches, have yielded detailed
information about the shifts and splittings of the ro-
tational and vibrational energy levels in solid hydrogen.
The spectra of solid HD and D2 are very similar, but
the available experimental data are not as accurate
and complete as for H~, and we shall restrict ourselves
to H2.

The work described in this paper is aimed at investi-
gating in how far it is possible to -account for the ob-
served energy levels in terms of the known properties
of the isolated molecules and the known nature of the
intermolecular forces, to an accuracy of a few tenths
of a wave number, or about one part in 10'. The
number of unknown parameters characterizing the
strength of the various parts of the intermolecular
interaction in solid hydrogen relevant to this analysis
is less than the number of available independent experi-
mental data. A successful analysis of the data is there-
fore an indication of the adequacy of the theoretical
model used to calculate the effect of the intermolecular
forces on the rotational and vibrational levels of the
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molecules in the solid. As is shown, such an analysis
can be carried out for solid parahydrogen, to the
accuracy stated, by taking into account all relevant
intermolecular forces of the electrostatic and van der
Waals types. On the next level of accuracy, of a few
hundredths of a wave number, a host of additional
interactions of the nonadiabatic and magnetic types
come into play. A general analysis to this accuracy
appears to be completely out of reach, and the dis-
cussion of eGects of the order of 10 2 cm ' must there-
fore be limited to specific features.

Of particular interest is the fact that the rotational
motion of the molecules in the solid is free in the sense
that the quantum number J= P,J;, where J; is the
rotational quantum number of molecule i, is a good
quantum number also in the solid. This free rotation is
an "inertial" free rotation and is quite different from
the free rotation observed in many molecular crystals
at suKciently high temperatures, which is a "relaxation"
type of free rotation. The "inertial" free rotation is
characteristic of the molecules H2, HD, and D2, and
persists down to absolute zero. Because of the small
moment of inertia of the molecules, the anisotropic
intermolecular interaction in the solid is so weak relative
to the spacing of the rotational levels that states corre-
sponding to different values of J are not mixed ap-
preciably. Thus, in the ground state of solid para-
hydrogen all the molecules are in the state J=0. In
the first excited rotational state one of the N molecules
in the crystal is in the state J=2, and this level is
5N-fold degenerate. This degeneracy is removed by the
anisotropic intermolecular interaction (mainly the
quadrupole —quadrupole interaction), and the J= 2 level
is spread out into a band of levels about 20 cm ' wide,
whereas the separation between the J=2 and J=O
levels is 356 cm '. The states in this J=2 band corre-
spond to traveling rotational excitations which we shall
call rotational excitons, or rotons for brevity. The
dynamics and the infrared and Raman activity of these
excitations have been discussed previously. "

The rotons introduced here are not analogous to
magnons, or spin waves, but rather to the quantized
vortices, or rotons, which can exist in liquid helium. A
magnon in a ferromagnetic system of spins of magnitude
—,say, is a traveling spin deviation, or spin reversal.
In the presence of one magnon there is one spin with
S,= —s' rather than 5,=+s', a different spin at difFer-
ent times, but the magnitude of the angular momentum
of each spin is equal to 2 at all times. In the presence
of one J=2 roton in solid parahydrogen, on the other
hand, there is one molecule in the J= 2 rather than in
the J=0 state, a diGerent molecule at diferent times,
and only the magnitude of the total angular momentum
of all the molecules in the crystal is constant. Such a
roton is analogous to a roton in liquid helium to the
extent that in both cases the total angular momentum
is located at different points in the system at different
times. The similarity of the two types of roton can be

seen more clearly when solid parahydrogen is regarded
as a liquid of hydrogen atoms in which strong corre-
lations are present corresponding to the existence of
hydrogen molecules located at lattice points.

The internal vibrational motion exhibits similar col-
lective dynamical properties. In the ground state of the
crystal, all the molecules are in the ground vibrational
state corresponding to v=0. In the first excited vi-
brational state one of the N molecules is in the state
v= 1 and this state is E-fold degenerate (assuming that
J=O). The intermolecular forces do not appreciably
mix states corresponding to different values of v= g;v;,
and v is a good quantum number also in the solid.
The purity of v, in contrast to that of J, is a common
property of most molecular crystal, since the intra-
molecular forces are in general large compared with
the intermolecular forces. The part of the interaction
between two neighboring molecules, which depends on
the internuclear separations in both molecules, produces
a coupling between the vibrational motions in the two
molecules. This coupling removes the degeneracy of the
v=1 level in the crystal and produces a v=1 band. In
solid hydrogen this ~=1 band is about 4 cm ' wide,
whereas the separation between the v=1 and v=0
levels amounts to 4153 cm '. The states in the v=1
band correspond to traveling vibrational excitations
which are called vibrational excitons, or vibrons, for
brevity. In the language of second quantization the
vibrons are spinless particles, whereas the rotons are
particles with spin 2. All these "particles" are, of course,
bosons.

Apart from electronic excitations, which are not con-
sidered, three dift'erent types of excitation can thus
exist in solid H2, HD, and D2. phonons, rotons, and
vibrons. The interaction between these various excitons
gives rise to a number of interesting scattering and
bound-state problems some of which have been dis-
cussed previously. ™Since the interaction is known in
detail, in contrast to, e.g., that between an electron and
an impurity in a metal, the study of the rotons and
vibrons in solid hydrogen provides a most useful test
for solid-state scattering theories. This lends a special
interest to the investigation of the infrared and Raman
spectra of solid hydrogen and its isotopes. Thermal
excitation of the rotons and vibrons is impossible be-
cause of the high excitation energies involved, and
even the phonons can be excited only weakly by thermal
means since the melting temperature (14'K in H2) is
an order of magnitude smaller than the Debye temper-
ature (100'K in H2).

The main e8ect of the intermolecular forces on the
molecules in the solid is a slight stretching of the inter-
nuclear axes of the molecules. Because of the rotation—
vibration coupling and the anharmonicity of the intra-
molecular potential, this stretching causes a rather
complicated shift of the rotation —vibration levels of
the molecules. To account for these shifts, a dynamical
model of the hydrogen molecule must be constructed
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(Sec. 2). In Sec. 3 we discuss the nature of the ani-
sotropic and vibrational intermolecular interaction re-
sponsible for the shift and splitting of the rotation—
vibration levels in the solid. The effects of the isotropic
intermolecular forces are calculated in Sec. 4. In Secs.
5, 6, and 7 we discuss in detail the pure rotational,
the pure vibrational, and the mixed rotation —vibration
excitations, and in Sec. 8, the overtone and double
vibrational transitions are discussed. In Sec. 9, a fre-
quency analysis is given of all the zero-phonon features
in the infrared and Raman spectra of solid parahy-
drogen and of ortho —para mixtures at very low ortho-
hydrogen concentrations. Finally, in Sec. 10, the results
are summarized and the consistency of the model
underlying the calculations is discussed. .

2. DYNAMICAL MODEL OF THE H2 MOLECULE

The energy levels of the free H2 molecule have been
determined experimentally from the Raman, " infra-
red, " ' and ultraviolet" spectra of gaseous hydrogen.
We are interested here only in the rotation —vibration
levels belonging to the ground electronic state. In the
adiabatic approximation these levels are obtained by
considering the motion of the nuclei in a potential
U(r) provided by the electrons and the Coulomb inter-
action between the nuclei. This model contains only
the nuclear degrees of freedom and is called the vi-
brating-rotor model. "' The most accurate calculation
of the potential U(r) from first principles is that of
Kolos and Wolniewicz. ' The calculation of the vi-
brational levels for this potential has been carried out
by Poll and Karl" who have also calculated the contri-
bution to the energies of the nonadiabatic effects. For
the lower vibrational levels the energies calculated using
the adiabatic approximation diR'er from the observed
levels by about 1 cm ', and this is also the order of
magnitude of the nonadiabatic effects. Thus, even for
the relatively fast vibrational motion in H2 it is a good
approximation (1 part in 4000) to treat the motion of
the electrons adiabatically, at least as far as the calcu-
lation of the energy levels is concerned.

We do not use the Kolos and Wolniewicz potential,
but we determine an empirical potential by Qtting the
energies of a number of selected levels, calculated on
the basis of the vibrating-rotor model, to the corre-
sponding observed values. For the lower vibrational
levels it is possible to construct in this way a model

"B.P. Stoicheff, Can. J. Phys. 35, 730 (1957).
'3 G. Herzberg, Can. J.Phys. 28, 144 (1950).
'4U. Fink, T. A. jiggins, and D. H. Rank, J. Mol. Spectry.

18, 384 (1965); J. V. Foltz, D. H. Rank, and T. A. Wiggins,
ibid 21, 203 (196.6) ."G. Herzberg and L. L. Howe, Can. J. Phys. 3'7, 636 (1959)."G. Herzberg, Spectra of Diatomic Mokcgles (D. Van Nostrand
Co., Inc. , New York, 1950).

'~ C. H. Townes and A. L. Schawlow, Microwave Spectroscopy
(McGraw-Hill Book Co., New York, 1955)."%'.Kolos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964);
43, 2429 (1965)."J.D. Poll and G. Karl, Can. J. Phys. 44, 1467 (1966).

U(r) =hcapx'(1+aix+a, x'+ ~ ~ ). (2)

The potential (2) contains the parameters r, and ap,

defining the harmonic potential, and the dimensionless
anharmonicity constants a&, a2, ~ ~ ~ . For a given value
of the rotational angular momentum, J, the total po-
tential appearing in the radial Schrodinger equation is
given by

where

V (r) = U (r) +hcBJ(J+1) (1+x) ',

B.= (fi/4srmcr, '),

(3)

(4)

m being the reduced mass of the rotor. The amplitude
of vibration is small compared with the equilibrium
distance r„ i.e., we have (x')«1, where x is given by
(1), and we may therefore expand the second term in
Eq. (3) in powers of x. To see more clearly the nature
of this expansion and of the approximation method
based on it, we introduce the length / dehned as

1= (fi/2srmc(o, ) '",
where ceo, is the cia,ssical frequency of vibration (in

sP J. L. Dunham, Phys. Rev. 41, 721 (1932).

which reproduces the observed levels to an accuracy
of better than 0.1 cm '. Since the nonadiabatic eGects
are of the order of 1 cm ', the resulting potential
should be regarded as an effective one and not as the
true potential de6ned for clamped nuclei. Strictly
speaking, the dynamical response of the real molecules
to external forces will therefore not be given entirely
correctly by the model. However, in our applications,
this difference is expected to be an order of magnitude
smaller than the accuracy of 0.1 cm ~ we are aiming
at and hence immaterial. The energies involved are of
the order of 1000 cm—'. In the solid, the shifts induced
in the levels by the intermolecular forces are of the
order of 10 cm ', or 1%%u~ of the total energy involved.
The contribution of the nonadiabatic effects to the
shifts can therefore be expected to amount to about
1%of the nonadiabatic contribution to the total energy,
or about 10 ' cm '. Hence we may assume that our
model does not only reproduce correctly the energy
levels of the free molecule but also the shifts induced
in the levels in the solid, at least within the accuracy
of 0.1 cm '.

To obtain analytic expressions for the energy levels
of the rotor in terms of the parameters characterizing
the model, it is necessary to assume a simple expression
for the potential U(r). Since we are interested only in
the first few vibrational states (v=0, 1, 2), it is most
convenient to use the Dunham model, '0 in which the
potential is expanded around its minimum at r=re in
powers of r—r, . In terms of the dimensionless variable

g r 're rey

this expansion can be written in the form
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TAsx,z I. Spectroscopic constants of the H2 molecule (in cm-') .

Experimental
values'

Calculated values

1

g4
X4

$8
$8

ys
F10

P,IO

Fm
~SO

FOI

73o
~&i
I'e
~3&
I"n
I'03
I'n

4401.21—121.34
60.853—3.062
0.813

5 8X10 ~

—4.6'PX10-~
5.1X10 8

1.8X10-3
SX10-8

—1.4X10-~

(4401.21)
0
0
0
0
0
0
0
0
0
0

(4401.21)
(—121.34)

(60.853}
0
0
0
0
0
0
0
0

(4401.21
(—121.34}

(60.853)
(—3.062)

(0.813)
(5.8X10 ')—4.65X10 ~

(S.1X10-3)
1.8X10 3

5X10-~
—2X10-8

~ The experimental values are from Rank et al. ,14 except for &22 which is from Herzberg and Howe. »
The values in parentheses are fitted to the experimental values.

sec ') in the potential (2) for infinitesimal amplitudes,

44, = (flap/mrlcr, ) '~2. . (6)

The amplitude of vibration in the low vibrational states
is of order /, and the range of the dimensionless variable

where

P= (r—r,)/l=*/X,

),= 1/r.

(7)

where X„ is dehned as

X„=-,'A "a„. (10)

The expansion of the rotation —vibration interaction
represented by the last term in Eq. (9) is an expansion
in terms of the parameter X. One should therefore regard
P as a small parameter which is imagined to vary from
zero to its actual value (0.17 in H2) . One could consider
a rotor with a axed value of 8„ i.e., with constant m
and r„and a varying amplitude l of vibration, i.e.,
varying X. However, the quantities or„B„and A. are
not independent but are connected by the relation

Be= gX (de)

which follows from Eqs. (4), (5), and (8). Regarding
8, as fixed therefore implies that co, is of order X '.
This is inconvenient, since we want to regard the last
term in Eq. (9) as the perturbation and the first two
terms as belonging to the unperturbed Hamiltonian
which would then be of order ) '. It is therefore better
to consider co, as Axed, X as varying, and 8, as given
by Eq. (11). It is true that the second unperturbed
term in Eq. (9) is then of order X2, but this dependence
of the unperturbed Hamiltonian on X is harmless since

is therefore of order unity. Introducing (6) and (7)
into (3) and expanding the last term in Eq. (3) in
powers of x, we get

U(r) /bc= 4p. (2/+ ZIP+4&4+ ' ' ')+&Z(7+1)

this term is independent of P, so that it has no effect
on the wave functions, and its effect on the energy
levels can be taken into account exactly. We therefore
adopt as the final expression for the potential energy

U(r)/he=44. (2p+)Rp+}Rp+ )+-',) 2pp,J(J+1)
+ -') '~g(J+1) (—2}p+3}~@+ ") (12)

where X is regarded as a small parameter.
Two expansions are involved in the expression (12)

for the potential: the Dunham expansion involving the
anharmonicity constants X„and the expansion of the
rotation —vibration interaction in powers of X. In prin-
ciple these two expansions are not related and may show
different degrees of convergence. However, for the H2
molecule, the constants a„ in Eq. (2) are of order unity,
and according to Eq. (10) this means that the coeK-
cients X„are of order X". Using this fact we can make a
systematic expansion of all quantities of interest in
powers of X.

Dunham has shown, ' using the WEB method, that
the energy levels, E,z= hcF,&, of a vibrating rotor can
be expressed in the form

~ ~= Z Yi-(v+-') 'J-(~+1)- (13)
l,m

where the spectroscopic constants Yt are definite ex-
pressions involving the parameters co„X, a~, ag, .
characterizing the potential (12), which have been
derived by Dunham in the form of power series in )
(actually in X4). The leading terms in the expressions
for the seven most important constants are given by

Y'.
o
——4o.E1+r'p)4~&o(ai, ~, a4) j,

Y2P= —4X'4P,A2o(ai, a2),

Ypg= ~A.'cv. )

Yll= 2~'op@All(al), (14)
Ypp= s, X4ppApp(ai-, ~ ~, a4),

YP2= —
~ X'Cue)

Y21 p 4p421(al& a2) a3) ~
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The quantities A& are polynomials in the u„, which
are given by Dunham. '~" Empirical values of the con-
stants I'& can be obtained by fitting the observed
energy levels to the expression (13), and empirical
values of the molecular constants ~„X, a», a2, ~ ~ ~ can
then be obtained by solving Eqs. (14). Unfortunately,
this procedure is not entirely unambiguous and has a
limited range of applicability. In the first place, if one
tries to include all the pure vibrational states (J=O),
the expansion (13) does not converge, and one finds
that the values of the V~p depend on the number of
levels and terms one includes in the expansion. "This is
clearly due to the fact that Eq. (13) is based on an
expansion of the potential around the equilibrium po-
sition, and this expansion converges only for small
displacements and not for the large displacements in-
volved in the higher vibrational states. The represen-
tation of the levels by the formula (13) is therefore
useful only for the lower vibrational states. For these
states it is possible to arrive at a definite set of empirical
constants I'~ . The most accurate values are perhaps
those derived recently by Rank et a/. ,

" which are
reproduced in Table I and which are used in this paper.
These values agree closely with those obtained earlier
bv Stoicheff, "and by Herzberg and Howe. "In Table I
the I"g 's are arranged in order of ma, gnitude, and
from the first column it is evident that this agrees with
an ordering according to powers of ) . This agreement
confirms the fact expressed by Eq. (10), that the
anharmonicity constants X„ in H2 are of order X".

A second ambiguity arises in the determination of the
molecular constants co„X, a», a2, ~ ~ ~ from the empirical
values of the Yi using the Dunham formulas (14).
This determination must also be carried out in steps
corresponding to increasingly higher powers of X. We
will include terms of order v=4, but to illustrate the
procedure, we also discuss the cases n=O and n=2.
For 22=0, the set (14) reduces to the single equation
I'»p ——~,. In this approximation we thus have co,= I'»p

and X=O. The constants u„remain undetermined, but
this is irrelevant since X=O. For I=2, the set (14)
reduces to the three equations

I »p +ep

Y20 4~ 40eA20 (+11 a2) 1 (15)
I p»= gX GO'g)

TAnr. E II. Molecular constants of the Hi molecule (~0, in cm 1) .

00,= F10[1—I'E-X4A10(ai, ~ ~, a4)]. (1'7)

The lowest nonvanishing terms in the remaining equa-
tions are then given by

Fsp/Fip = —
4 l~2A20 (aii a2),

Fpi/Fip= 2&',

Yll/Ylp 2~ All(al) )

Ypp/Fip= -',
X4A 00 (ai, ~ ~ ~ 424)

Y21/Ylp 4li A21(+1) a2i +0) ~

in the three unknowns co„X, A2p. Hence a» and a2

cannot be determined separately in this approximation,
only the combination A2p. The value of A&p turns out
to be the same for e= 2 and e= 4, and one may therefore
assume that a» and a2 for m= 2 have the same values as
for m= 4, and this is done in the column n= 2 in Table
II. Although much better than the e=O model, it is
clear that for our purpose (0.1 cm ') the I=2 model is
not adequate. For m=4, we get the five equations

F =40,$1+~'gX4A (u, ~ ~, a )j
Y20 ———04X240,A2p (ai, a2),

I 01 g~ +ey

Fii———20) 440,A 11(ai),

Fpp= -', F440,A20(ai, ~ ~ ., a4)

in the six unknowns co„), A»0, A2p, A»», A3p, or co., ),
a», ~ ~ ~, a4. We now need one more relation to get a
definite set of values of the molecular parameters, but
all relations of order X4 have been used. The only way
to proceed is to use one of the relations of order X .
This is slightly inconsistent, since we have already
neglected terms of order )' in the expressions for I'2p

and Fii in the Eqs. (16),but this procedure leads none-
theless to a practical model. There are two relations of
order Xp, viz. , the last two in Eq. (14). From F02, in
conjunction with I'p», one can obtain directly a value
of X. However, it is much more convenient to use I'g»

and to determine P from I'»p and I'», in a way to be
explained presently, which also leads to a, more accurate
value of X. We therefore add the last relation in (14)
to (16). To solve the resulting six equations in the
six unknowns co„X, a», ~ ~ ~, a4, we write the first
equation in (14) in the form

Gael

C1

Cg

C3

C4

C5

=0

4401.21
0

4401.21
0.1663—1.607
1.898

4402. 84
0.1663—1.607
1.898—2.060
1.965
0.11

From these equations, one can easily obtain the con-
stants ), a», ~ ~, a4 in terms of the spectroscopic con-
stants appearing in the left-hand members, and or, can
then be calculated from Eq. (17). The resulting values
of the molecular constants agree closely with those
obtained by Rank et al." and are shown in the last
column of Table II. To test the consistency of the
model, one can calculate some of the remaining con-
stants Y&„ from Eqs. (14) using the molecular constants
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TABLE III. Frequencies of a number Of transitions in the this model are given in Table III together with th e
free H~ molecule calculated using the m=4 model, and the cor-
responding experimental values. available experimental values.

Line

Obser veda
frequency

incm '
Calculated
frequency

incm '
3. THE ANISOTROPIC AND VIBRATIONAL

INTERMOLECULAR INTERACTION IN
SOLID HYDROGEN

Sp(0)
Sp(1)
O. (0)
O (1)
Sg(0)
Sg (1)
q. (0)
q. (1)
S&(0)
SR(1)

~ From Refs. 12, 13, and 14.

354.4
587.0

4161.2
4155.3
4497.8
4712.9

~ ~ ~

8075.4
8406.4
8604.3

354.4
586.9

4161.2
4155.3
4497.8
4712.4
8087.0
8075.5
8406.8
8604.6

We must now investigate how the rotation —vibration
levels of the molecules discussed in the preceding section
are affected by the intermolecular forces operative in
the solid. We ignore the lattice vibrations for the time
being and we assume that the centers of mass of the
molecules are arranged on the sites of a rigid hcp
lattice which is the crystal structure of solid para-
hydrogen. " The interaction between two molecules,
1 and 2, in the solid can be decomposed in the form

given in Table II. The values calculated in this way are
shown in the last column of Table I by the numbers
not enclosed in parentheses. Of particular interest is the
fact that the calculated value of Y02 agrees within the
limits of accuracy with the experimental value. This
agreement makes possible the procedure outlined above
of adding one 22=6 relation to Eqs. (16) which are of
order n=4. We remark that the constant Y31 contains
a5, and hence Y3~ can not be calculated in the n=4
model. It is, of course, possible to use the experimental
value of Y21 to obtain a value of ap (which is equal to
a2=0.11), but this value is not very reliable because
it is quite sensitive to the small corrections which
have to be applied to the molecular constants given in
Table II when terms of order X', i.e., of the same order
as Y3&, are taken into account in the right-hand members
of Eqs. (16).

When one constructs the next approximation corre-
sponding to m=6, by taking into account all terms of
order &2, one obtains eight equations of the type (14)
in the eight unknowns co„~, c1, ~ ~, a6. In principle
this yields a unique set of values for these constants,
but in practice one runs into the difhculty that no
experimental value can be obtained for Y4~ in spite of
the fact that all the pure vibrational levels have been
observed. "This situation can presumably not be im-

proved by making more accurate measurements, and
is rather to be interpreted as an indication that for the
H2 molecule the Dunham model ceases to be useful
for e)4. Thus, the approximation corresponding to
m=4 appears to be a natural limit of the model, at
least for the H2 molecule, and it is fortunate that this
gives an accuracy adequate for our purpose.

In summary, the model we use for the H2 molecule
is a vibrating rotor with an effective potential given
by Eq. (12) and characterized by the constants co„),,
a1, ~ ~ ~, a4 given in the last column of Table II. The
energy levels of the rotor are calculated by including
in the Dunham formula (13) the first seven spectro-
scopic constants Y& listed in Table I. The frequencies
of a number of transitions calculated on the basis of

V12 L12+fi (»i) +fi (»2) +f2 (»1 »2)

+g(&1)+g(ID2) +g (»1 &&I) +g (»2 222) +ap(ill pp2)

+al(»i; ppi, pp2)+al(»2 Ie12 ppl)+a2(rl »2 ppl pp2) ~ (19)

The orientation of the internuclear axis of molecule i
in a frame whose s axis is the intermolecular axis, R1~,
is denoted by pD;= (8,, p;), and the orientation in a
frame which is the same for all the molecules, e.g.,
with the s axis along the hexagonal axis of the crystal,
will be denoted by Q;. All the quantities in Eq. (19)
are, of course, also functions of R~~, but this dependence
will usually not be indicated explicitly. The term c»
in Eq. (19) is independent of r; and pp;, and is defined as

&12 (V12(ret »e j pply pp2) )i (20)

fl(» ) «f2(». , »2) =f2(»1» ) (g(ppl) )
=g'(». ; ~I) =

&g (ri; ~I))=".
= (a2(rl, »2, (pi, pp2) )= 0. (21)

It is easy to show that the decomposition (19) is
determined uniquely by the Eqs. (20) and (21).

The total energy of interaction in the solid is equal
to the sum of the pair potential (19) over all pairs of
molecules,

V=+ V;e(r;, r;; pp;, s);)
i(j

=6+F1+F2+6+6'+A2+A l+A2. (22)

Corresponding terms in Eqs. (19) and (22) are denoted
by small and capital letters, respectively. The term C
is the total cohesive energy of the crystal and is of no

2' J. Van Kranendonk and H. P. Gush, Phys. Letters 1, 22
(1962).

where r, is the equilibrium value of r, in the free mole-
cule, and the sharp brackets indicate an unweighted
average over all values of ppi and ip2. The term fl(rl)
in Eq. (19) depends only on rl and is defined such that
fl(r, ) =0. The remaining terms in Eq. (19) are defined
in a similar way and the complete set of defining
equations is
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interest in the present context. The term Ii& is given by

~~= Z Zf~('; ~'~) —= Z U~(~') (23)

which is also the de6ning equation of the function
U~(r). The interaction (23) changes the effective intra-
molecular potential of each molecule from the value
U(r), given by Eq. (2), characteristic of the free rnole-
cule, to U(r)+ U, (r). The effect of the resulting slight
stretching of the molecules on the rotation —vibration
levels is discussed in Sec. 4. The term F& in Eq. (22) is
defined as

and gives rise to a coupling between the vibrational
motions in neighboring molecules. This coupling causes
a broadening of the excited vibrational levels of the
crystal into vibrational exciton bands, as explained in
Sec. 1. The interaction (24) is mainly due to the de-
pendence on the internuclear separations of the at-
tractive van der Waals forces' and is essentially oper-
ative only between nearest-neighboring molecules. The
coupling (24) has recently been discussed in detail
by James and Van Kranendonk" in connection with the
observed4" anomaly in the intensity ratio of the vi-
brational Raman lines of ortho and para molecules in
solid H2 and D2.

The term G in Eq. (22) is given by

G= Z Z g(-„R„)-=Z l.(~.), (25)

and this equation deanes the function V, (Q), where Q
denotes the orientation relative to the hexagonal axis
of the crystal. The interaction (25) is of the crystalline
Geld type in the sense that each term in Eq. (25)
depends on the orientation of only one molecule, but
no true crystalline 6eld is involved. The interaction
(25) is partly due to the anisotropic part of the van der
Waals interaction which comes into play as a result of
the blowing up of the crystal by the zero-point lattice
vibrations and partly to the polarization, or self-energy,
effects resulting from the coupling of the rotational
motion of the molecules and the lattice vibrations, as
discussed elsewhere. ' The main e6ect of the interaction
(25) is a splitting of the localized rotational states of
the molecules in the solid. The term G' in Eq. (22) is
also of the crystalline field type except that it acts also
on the vibrational motion. It can be expected to be a
factor of order A=0.17 smaller than the term G and
will therefore be neglected. The next term in Eq. (22),
Ao, is given by

~o= Q ~o(oo~'i oui R'i) ) (26)

and this interaction is responsible for the broadening of

"H. M. James and J. Van Kranendonk, Phys. Rev. (to be
published) .

'3 A. H. M. Rosevaer, G. Whiting, and E.J.Allin, Can. J. Phys.
{tobe published) .

the rotational levels in the crystal into rotational exciton
bands. The term Ao is mainly due to the electrostatic
quadrupole —quadrupole interaction between the mole-
cules and has been discussed in previous papers. ' '
Finally, the terms Az and A& are de6ned in a similar
manner but are not very important and are not written
down explicitly.

We now discuss brieQy the role of the lattice vi-
brations in determining the rotation —vibration levels in
the solid. ' We are interested in temperatures ((O'K)
which are very low compared with the Debye temper-
ature ( 100'K), and we may assume that the crystal
is at absolute zero. First, in a nonrigid lattice, the po-
tential energy introduced in Eqs. (19) and (22) is not
equal to its value in the rigid lattice but rather to the
expectation value of the instantaneous interaction over
the zero-point lattice vibrations. However, this does not
a6ect the nature of the decomposition de6ned by Kqs.
(19), (20), and (21), and these equations are valid
also for the nonrigid lattice. The magnitude of the
interaction (22) in the solid is, of course, different for
the rigid and nonrigid lattices. However, we do not
calculate the magnitude of the various terms in Eq.
(22) from the corresponding terms in the pair potential
for isolated molecules, since this potential is not known
sufficiently accurately, but we obtain instead empirical
values for the coupling constants from an analysis
of the observed infrared and Raman spectra of the solid.
These constants therefore refer to the nonrigid lattice,
but this need not be indicated explicitly in the notation.
The only exception is the quadrupolar interaction for
which we take the electrostatic interaction between
the known quadrupole moments of the free molecules,
calculated for a rigid lattice. The justification for this
procedures rests on the fact that the quadrupolar inter-
action, P~o, between two molecules situated at R~ and
Rg, is a potential function as far as its dependence on
both R~ and R, is concerned: A~P~o ——Aop~o

——0. When
we expand g~o in powers of the displacements uq and uo

of the molecules from their equilibrium positions, it is
clear that the linear terms vanish upon taking the
expectation value over the ground state of the lattice.
To estimate the contribution of the quadratic terms to
the expectation value, we may assume in 6rst approxi-
mation that the lattice vibrations are isotropic in the
sense that (u; ')=u' is independent of n=x, y, s, and
that the displacements of different molecules are un-
correlated, (I, u, s)=0 if i'. The contribution of the
quadratic terms to Q») is then proportional to
(4~+Ao)g, o and hence vanishes. Thus the effect of the
zero-point lattice vibrations on the quadrupolar inter-
action is a higher-order eGect depending on the ani-
sotropy and correlations in the displacement distri-
bution. We neglect these small effects and assume that
the quadrupolar interaction is given by its value in
the rigid lattice. The same argument applies to all the
other multipole interactions. The effect of the lattice
vibrations on the other interactions, such as the ani-
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sotropic dispersion interaction, E I'20(8), is not small,
as discussed in detail elsewhere, ' and it is therefore
important to realize that the coupling constants we
obtain refer to the nonrigid lattice. Finally, we mention
that the coupling between the lattice vibrations and
the rotational motion of the molecules gives rise to
polarization, or self-energy, effects' which produce
shifts and splittings of the rotational levels which are
di;-cussed in subsequent sections. The corresponding
effects due to the coupling of the internal vibrational
motion of the molecules and the lattice vibrations are
completely negligible because of the large difference
between the internal vibrational frequency and the
D ebye frequency.

r, ' = r, (1+X'pg) . (31)

Since p~ turns out to be positive in solid hydrogen, the
effect of the interaction (23) is to stretch the intra-
molecular bond of the molecules. With the new variable

5'= (~/~') (5 b—) = (~.'/~. ) ((—(0)

we can write Eq. (29) in the desired form

(32)

The minimum of U'(r) comes a.t )= $0, where

b= (r„'—r,)/l=hp, , (30)

and the new equilibrium internuclear distance is there-
fore given by

4. EFFECT OF THE STRETCHING OF THE
MOLECULES IN THE SOLID ON THE

ROTATlON-VIBRATION LEVELS

The most important term in the expression (22) for
the interaction energy in the solid, apart from the
constant term C which does not affect the rotation—
vibration levels, is the term Il& defined by Eq. (23).
This term does not give rise to a coupling between the
molecules but to a change in the effective intramolecular
potential of each molecule. Following the approximation
scheme outlined in Sec. 2, we expand the change
EU(r) = Uq(r) in the potential U(r), due to the inter-
action (23), in powers of r r, Wr—iting. this expansion
in the form

where

6N~= X (Sappy —pn) co~,

AX = —X'L (1+4ag) pg
——,

'
p2]X,

+an ~ (aelpl+ an2p2)

a„=Na„3a,a„+—(m+3) a~„
~n2= 2&n.

(35)

(36)

Introducing the new anharmonicity constants a ' by
the relation analogous to Eq. (10),

(34)

we And that the changes, h~, =co,'—co„etc., in the
molecular constants listed in Table II, as far as the
terms linear in p& and p2 are concerned, are given by

6U (r) = hc(u, (Xpg$—+X'p2P+ ~ ~ .), Ilecause of the identical form of the old and new
27

U(r) = hc(. ,(-'P+X P+ ~ ~ ~ +P, ta) (28)

where $ is given by Eq. (7), one can easily see that the
dimensionless constants p; characterizing the strength
of the interaction should be regarded as being inde-
pendent of P . We retain only the 6rst two terms in
Eq. (27) and calculate the resulting changes in the
molecular constants and energy levels up to terms of
relative order of magnitude X', i.e., we retain terms
linear in p~, p~', and p2. However, it turns out that the
terms containing p~' are insignificant, and we therefore
give explicit expressions only for the terms linear in

p~ and p2.
The intramolecular potential of a molecule in the

solid is given by the sum of the potential (2) of the
free molecule

potentials (28) and (33), the energy levels of the
perturbed rotor are given by the Dunham formula
(13) with F&~ replaced by 7'& ', where Y&~' is the same
function (14) of the new molecular constants rv, ', X',

a~', - ~, a4' as Y~~ is of the unprimed constants. The
resulting changes, AY~ ——Yg

'—Y~, in the spectro-
scopic constants can be calculated from Eqs. (14) and

(35), and the result can be written in the form

~ l'~m =&~mui+ Gmp2. (37)

The quantities 8~ and C~ are of the order of magnitude
X'Y~ and are obtained in the form of power series in

TABLE IV. Numerical values in crn ' of the coefficients Bf
and Cg, in the expression AFq ——B~ p1+C~ p~ for the change in
the spectroscopic constants F~m.

and the perturbation (27), and is given by

U'(~) = hc~, (-'P+& 8+ +~48—~w$ —&'u P) (29)

All quantities pertaining to the perturbed molecules are
indicated by a prime. To find the energy levels of the
rotor with the potential (29), we write Eq. (29) in the
form of Eq. (28) by introducing a change of variables.

i0
20
Oi
11
30
2i
02

—293.3—4.48—3.37—0.iii
+0.78

0
0

Cim

—i2i. 7—23.0
0—0.533—0.77
0
0
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)4. Retaining only the terms of order VF&, we find

810=—,'~2a, I'10, C—1o—&'Y~o,

820= 2X V20 QX (Qcii~ill 1121) V01&

C20 0 ~ ( 0 ciiii12 ii22) VQlc

~01 2~ I 01y C01=0,

+11 ll (4+ 0~1) Vii+3~ iillV01&

Cll ~ Vii+3~ ~110V01

&00= —~'(4+)iii) VQQ+ &~'I'Qi

XL10a41—35 (cla01+a0ail) —17aia01+ (225/4)

(3g)

(39)

(40)

(41)

S. THE PURE ROTATIONAL EXCITATIONS

Now, we consider the eGect of the intermolecular
interaction on the pure rotational states of the solid.
In these states all the molecules are in the ground
vibrational state v=0, and we restrict ourselves to the
rotational states J=O, 1, and 2. Apart from the terms
C and Ii1, which were discussed in Sec. 4, the only
terms in the expression (22) for the total interaction
which have nonvanishing matrix elements within the
manifold of the pure rotational states are the terms G
and AQ defined by Eqs. (25) and (26), respectively.

We consider first the eGect of the crystalline field
term G in the absence of the coupling term Ap so that
we may assume that the rotational excitations are com-
pletely localized. The function V, (Q), defined by Eq.
(25), which is the energy of the central molecule in the
total crystalline field, can be expanded in terms of the
spherical harmonics Yi (D). Because of the homo-

X (2&i&2cill+ ill ~121) (~05/g) ill ~lljc (42)

C30 X F30+0K PQ]L10a40 35 (81800j83010)

17112li22+ (225/4) (2cil+2~110+ 111 ci22) (705/8) ~1 ci12)c

~21 C21 ~02 C02

The numerical values of these coeKcients, correspond-
ing to the values of the spectroscopic and molecular
constants given in the columns e= 4 in Tables I and II,
are shown in Table IV. Using these values and the
Dunham formula (13), one can calculate the shifts in
the energy levels of the molecules as functions of p1
and p2. The parameters p1 and p2 cannot be calculated
su%ciently accurately from first principles, and we
therefore regard p1 and p2 as adjustable parameters.
The value of p1 was estimated in a previous paper' to
be about 4&10 ', and this can be expected to be the
order of magnitude of pl. (Note that the definitions of
p1 and p2 given here diBer from the previous ones' by
the factors X and X', respectively. ) The shifts in the
vibrational levels due to the interaction (23) are
therefore of the order of 10 cm '. The determination
of empirical values of p1 and p2 is discussed in Sec. 10.

where e2, and e4, are constants. The origin of the 3=2
term has been discussed in Ref. 9. It arises from the
I= 2 anisotropic van der Waals interaction between the
molecules. In a lattice of the hcp structure, the sum of
this interaction over the twelve neighbors vanishes.
However, solid hydrogen is blown up considerably by
the zero-point lattice vibrations, and, because of the
anisotropy of the elastic properties of the crystal, one
must expect that the blowing up is not perfectly iso-
tropic. The result is a uniform deviation of the axis
ratio (c/a) from the value (8/3)'10 characteristic of
the hcp structure, and this leads to a nonvanishing
value of e2.. A second contribution to e2, comes from
the local distortion of the lattice resulting from the
coupling between the rotational motion of the molecules
and the lattice vibrations. ' The two contributions to
e2, are of the same order of magnitude but of opposite
sign, so that the resulting value of e2, is very small.
The term 04, in Eq. (44) arises from the l= 4 anisotropic
van der Waals forces. This term does not vanish when
summed over the twelve neighbors in a hcp lattice, and
the constant e4, can therefore be expected to be corre-
spondingly larger than e2,. It is not possible at present
to make reliable theoretical estimates of the values of

and e4„and we therefore regard these constants as
adjustable parameters to be determined from the experi-
mental data.

The effect of the interaction (44) on the localized
rotational states can easily be calculated. The eigen-
states are clearly the states

~
Jm), where nz refers to the

hexagonal axis, and the eigenvalues of V, are given by

E.(Jm) = g QicC(JIJ; 000)C(J/J; mOm), (45)
2,4

where the C's are Clebsch —Gordan coefficients. For
J=O we have E,(00) =0, and for J= 2 we get

where

+c(2111) T&cc&2c+YT&cc&4c&' (46)

8~2= 1q

Cg2= 1,

up= 6,

co= —1. (47)

In addition to the splitting (45), which leaves the
average energy unchanged, the rotational levels suffer
a shift arising from the self-energy of the rotational
states due to the coupling with the lattice vibrations.
This effect has been discussed by Van Kranendonk

nuclear character of the central molecule, only the
terms corresponding to even / appear, and since we
are interested only in the states J=O, 1, 2, we need to
consider only the terms 1=2 and l=4. Finally, because
of the point symmetry of the hcp structure, only the
m=O terms appear. The function V, (Q) can therefore
be written in the form

Vc(a)= 0.(4~/5)'" 00(&)+ 4c( ~/ )'" 40( ) ( )
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and Sears' and the resulting shift in the energy is given
by

E.(J)—=—', Q E,(J, m) = —0,
7J(J+1)

2(2J—1) (2J+3) (48)

e4 is different from zero, and we get

Gp= 42I 04c24 f4p (001, 002)

=42I 0 Q GmV2m(&1) F2m (&2) ) (54)

The constant e, has been estimated in Ref. 9 and is of
the order of 1 cm ' (0,=2E in the previous nota-
tion) .

The coupling term Ap defined by Eq. (26), is re-
sponsible for the hopping of the J=2 rotational exci-
tations in solid parahydrogen. We first ignore the inter-
action (44), i.e., we consider free rotons. The interaction
&0(001, 002, R12) between two molecules can be expanded
in terms of products of spherical harmonics, F I, , (001) X
lrI~2(002). Within the subspace corresponding to the
presence of one J=2 excitation in a crystal of pure
parahydrogen, only the terms corresponding to l& ——12 ——2
have nonvanishing matrix elements. For the calculation
of the J=2 band, the interaction ap may therefore be
assumed to be given by

+2
ap(001) 002, R12) =42rp Q c„V2 (02,) F'2„*(012). (49)

where the coeflicients a = c (4) are given by (47), and

0= (Q1Q2/5&»'). (55)

The fact that, for the quadrupole coupling, only the
term in Eq. (51) corresponding to the maximum value
of j appears is characteristic for multipole interactions.
Thus, for /~

——32=1, there are two terms corresponding
to j=0 and j=2, and the latter is the dipole —dipole
interaction. Likewise, for 1~=2, l2=4, the term corre-
sponding to j= 6 is the quadrupole —hexadecapole inter-
action, ~ etc. In the case of the /~=It'2 ——2 interaction,
the terms j=0 and j= 2 arise from the higher-order
anisotropic overlap and dispersion forces. We assume
that at the nearest-neighbor separation in solid hy-
drogen these terms are negligible compared with the

j=4 term and that this term is equal to the quadrupole-
quadrupole interaction. We thus adopt for ap the ex-
pression

Since c =c, the coupling of the type t&
——l2=2 is

characterized by three independent parameters. A more
significant characterization of the three types of inter-
action can be obtained by introducing the functions'

f,p(001, 002) = p C(22j; m, —m) F'2 (001) V2 m(012), (50)

Gp(ppl) 012) R12) = 42I 000(G/812) Q GmF2m(ppl) V2m, (022) )

(56)

where the a are given by Eq. (47), and a=3.75 A is
the lattic constant.

The matrix element, (2IJ
~
Q(r)

~

2I'J'), of the quad-
rupole moment, Q(r), of an isolated H2 molecule be-
tween the radial rotation —vibration states,

~
2IJ), have

been calculated by Karl and PolP4 using the function
Q(r) calculated. by Kolos and Wolniewicz. " One can
easily verify that the stretching of the molecules dis-
cussed in Sec. 4 has a negligible effect on the quadrupole
matrix elements. It is, of course, possible that the
quadrupole moment Q(r) of a molecule in the solid,
for a given value of r, is different from that of a free
molecule as a result of the distortion of the electronic
wave function by the intermolecular interaction. This
effect has been investigated by one of us,"and it turns
out to be quite small. We therefore assume that in the
solid the quadrupole matrix elements have the same
values as for the isolated molecule. For the J= 2 band,
the coupling constant ppp in Eq. (56) is then given by

which are eigenfunctions of J' and J„where J=Ji+J2
is the total rotational angular momentum of the two
molecules. Using Eq. (50), we can write Eq. (49) in
the form

I20=42r Q &rc2I fIp(001) 022) ~ (51)

(52)

where the numerical constants np=5I~2, DI2 12(7)'I-', ——
ap ——(70)'I' have been introduced for convenience. The
interaction ap is hence characterized by the three pa-
rameters 6p 62 and ~4. The relation between the coefFi-

cients pc in Eq. (49) and 0; in Eq. (51) is

pc =(—1) QDI, C(22j; m, —m)0,

where in the last member we have introduced the
notation

.00= (oo
~ Q ~

02)2/5~0, (57)

c ( j)= (—1) a, (22j; m, —m). (53)

In virtue of our choice of the coefficients u;, the coe%-
cients (53) satisfy the relation cp( j) =1. In general,
one must expect that all three coeKcients e; are different
from zero. In solid hydrogen, the molecules are rela-
tively far apart and the main contribution to the
interaction (49) comes from the electrostatic quad-
rupole —quadrupole interaction. For this interaction only

and for a=3.75 A. and (00
~ Q ~

02)=0.4858 a.u. , this
gives epp=0. 580 cm '. This value is rather different
from the value 0.50 cm ' used previously, ' ' but there
is no doubt that the present value is the correct one.
One of the aims of this paper is, in fact, to investigate
whether it is possible to give a complete analysis of the
observed infrared and Raman spectra by assuming

'4 G. Karl and J. D. Poll, J. Chem. Phys. 46, 2944 (1967) ."G. Karl (to be published).
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that the various quadrupolar coupling constants have
the theoretical values.

The wave functions and energy eigenvalues of the
states in the J= 2 band in pure parahydrogen have been
discussed previously. 5' The wave functions describing
the motion of the J=2 excitation through the lattice
are Bloch waves and are characterized by a wave
vector k. Since there are two molecules per unit cell
in a hcp lattice, there are ten J=2 states for each
value of k. Because the wavelength of the exciting
radiation in both infrared and Raman experiments is
very large compared with the lattice constant, only
the states with k=0 are optically active. Of the ten
k =0 states, five are even and five are odd with respect
to an inversion at a point midway between the two
molecules in a unit cell. ' The corresponding energy
levels are given by

E +(0) =0.903tt epp, E (0) =4.20tt„coo, (58)

where the constants a are given by Eq. (47). The
numerical factors in Eq. (58) are lattice sums which
come in because the quadrupolar interaction between
all pairs of molecules has been taken into account. The
quantum number m in Eq. (58) is the component of J
along the hexagonal axis. For k=0, but not for k&0,
the J=2 band eigenfunctions are therefore also eigen-
functions of the crystalline field interaction (44), and
we can simply add the energy perturbations (44) and
(46) to (58) to obtain the total energies of the lr=O
states due to the anisotropic forces.

The even k=0 states are Raman active and give
rise to the rotational So(0) Raman triplet' shown in

Fig. 1. The three components in the order of increasing
Raman shift correspond to m= &1, &2, 0. This assign-
ment follows from the fact that the main contribution
to the splitting of the So(0) level comes from the
quadrupolar interaction. With the positive coupling
constant (57) one gets the given order of the levels.
The frequencies, in cm ', of the three Raman com-
ponents will be denoted by vtt[So(0) $ . Combining the
results (37), (45), (46), and (58), we obtain the

following expression for these frequencies":

»[Ss(0)$-=v, [So(o)1—17.1t i—1.3t s

+ ttrn (0 903e00+YT&4c) 7 om&2c ea y (59)

where vo[S&(0)] is the frequency of the So(0) transition
in a free molecule, observed in the spectra of gaseous
hydrogen, and the coe%cients a and c are given by
Eq. (47).

Of the five odd k=0 levels only the level corre-
sponding to en= ~2 is infrared active' as a result of
the point symmetry of the lattice. For the frequency
of the So(0) infrared line in pure parahydrogen we
therefore obtain the expression

via[So(0) ]=v, [So(0)]—17.1tti —1.3tts

+4 20eps+.~pe4, 7es, e8(60),
The coeflicient of tts in Eqs. (59) and (60) is equal to
—68.3+67.0 and is not known more accurately than
to two significant figures. The discussion of the formulas

(59) and (60) is continued in Sec. 9.

6. THE PURE VIBRATIONAL EXCITATIONS

We now consider the manifold of states of a crystal
of pure parahydrogen corresponding to the presence of
one vibrational excitation

(v—= g v, = 1)

and no rotational excitations (all J,=O). In the ex-
pression (22) for the total interaction energy only the
term I' s, defined by Eq. (24), has nonvanishing matrix
elements within this manifold of states, apart from
the terms C and Ii~ which were discussed in Sec. 4.
The pair interaction fs(ri, rs) appearing in Eq. (24) is
due to the dependence of the isotropic van der Waals
interaction between the molecules 1 and 2 on r& and r2,
and is appreciable only for nearest-neighbor (nn) mole-
cules. We expand fs(r, , rs) in powers of r, r, and-
r&—r, and retain only the first nonvanishing term,
which is

(61)

I
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F&G. 1. The So(0) line in the rotational Raman spectrum of
solid parahydrogen observed by Bhatnagar, Allin, and Welsh
(Ref. 3). The three components in the order of increasing fre-
quency correspond to transitions to the even m= &1, %2, 0 sub-
levels+of the k=0 state in the J=2 rotational band, where m
refers to the hexagonal axis. The fact that the SO(0) Raman line
is split into a triplet rather than a doublet confirms that the
crystal structure of solid parahydrogen is hcp rather than fcc.

where / is given by Eq. (5) and e' is the vibrational
coupling constant for nn molecules. The total vibra-
tional interaction is

(62)

where the sum extends over all nn pairs.
If

~
1,) is the state of the crystal in which moleculei,

at R;, is in the state v = 1 and all the other molecules
are in the state v=0, the stationary states in the pres-

"In Eq. (59) and in all further expressions for the frequencies
of transitions we assume that the coupling constants &00, etc. , are
expressed in units cm, i.e., a quantity e in an expression for a
frequency is actually /h . eo
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LLJ
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Fro 2.. The Qi (0) line in the
vibrational Raman spectrum of solid
parahydrogen observed by Soots,
Allin, and Welsh (Ref. 4). The three
weak components accompanying the
main line are due to the hyperfine
structure of the exciting mercury line
used in the Raman experiment. The
Qz(0) line is due to transitions to the
even k=O level in the v=1 band.
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ence of the coupling Ii2 are given by

( r)= Q U, (R;) ( 1;). (63)

U„(R,) is the amplitude, or wave function, describing
the motion of the excitation through the lattice and
satisfies the set of difference equations

——,'s' g U, (R,+d;) =E,U, (R;), (64)
dt',

where the sum extends over the vectors d; connecting
molecule i to its twelve neighbors. For a fcc lattice the
solutions of Eq. (63) are the Illoch waves

Ug(R;) =E "' exp (zk.R;), (65)

and the corresponding energy eigenvalues are

E~= ——',s' g cos (k d), (66)
d

relative to the unperturbed energy of the v=1 state.
For e'& 0 these energies form a band extending from a
minimum equal to —6e' reached at 4= 0 to a maximum
equal to +2e' assumed on a set of lines in k space.
In an hcp lattice there are two molecules per unit cell,
and the v=1 band consists of two overlapping sub-
bands. ' Nevertheless, as shown by James, ~ the over-all
energy-level density is exactly the same in the two
lattices and in fact in all close-packed lattices formed
by stacking close-packed planes in arbitrary order.

In hcp parahydrogen the Raman active vibrational
state is the even k=0 state which is shifted by the
vibrational coupling by the amount —6e. Combining
this result with Eq. (37), we get the following expression
for the frequency of the Qr(0) Raman line which is
shown in Fig. 2:

[Q (0))=,LQ (0))—299.8p, —170.8Iz —6 '. (67)

The infrared Qt(0) line corresponds to transitions to
the odd k=0 state in the v=1 band. In pure para-

"H. M. James, Phys. Rev. 16/, 862 (1968).
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FIG. 3. The Q& branch in the infrared spectrum of solid hydrogen
at a concentration of 2% orthohydrogen observed by Gush, Hare,
Allin, and Welsh (Ref. 1). The low-frequency component is the
Q&(1) line due to single orthohydrogen impurities. The main
peak is the Q&(0) line due to the creation of a v = 1 exciton of any
wave vector in the parahydrogen host crystal, accompanied by
an orientational transition in an isolated orthohydrogen impurity.
The high-frequency component corresponds to the same v=
0~v=1 transition in the host crystal but accompanied by an
orientational transition in a pair of neighboring ortho molecules.
(See Ref. 8 for a detailed interpretation of the infrared Q branch. )

hydrogen this transition is not infrared active because
of the point symmetry of the hcp lattice. ' However,
the Qr(0) line becomes infrared active in the presence
of orthohydrogen impurities, as shown in Fig. 3. At
low ortho concentrations the Qr(0) line arises from
transitions to the e= 1 band of states in the host crystal
accompanied by an orientational transition (AJ=0,
hzrz&0) in one of the ortho molecules. The presence
of the ortho impurities spoils the selection rule lQt=0
and transitions are possible to all the states in the
v=1 band. The part of the Qt(0) line due to single
ortho molecules has a definite line profile which is
characteristic of the parahydrogen host crystal and
which has been worked out in Ref. 8 using some
simplifying assumptions. The result is a line profile
extending from —6c' to about 1.2e' following a 5v'"
law, where Dv is the frequency measured from the low
frequency end of the line. %hen this profile is smeared
out to take into account the finite resolving power used
in the infrared absorption experiments, a profile peaked
at about 0.6e' is obtained. Identifying the observed
frequency with the peak of this profile, we obtain the
following expression for the frequency of the component
of the Qt(0) line due to the presence of single ortho-
hydrogen impurities:

p,nLQr (0))= vgt Qr (0)g —299.8Izt —170.8Izz+0.6s'. (68)

The last term is somewhat uncertain and should be
given an error margin of &0.2e'.

Finally, we consider the Q&(1) line at very low ortho
concentrations, which arises from v =0—+v= 1 transitions
in isolated orthohydrogen impurities in a parahydrogen
matrix. These transitions are governed by the selection
rule 6m=~2, so that only the transitions ms=~1—&

m= ~1 occur. ' The splitting of the J=1 level into the
two levels zN=O, m= &1, given by Eq. (45), therefore
does not give rise to a shift or splitting of the Q, (1)
line. The v=1 excitation on an ortho molecule in a
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W' = We'+ 0.2tt t+0.5tt2, (70)

where W, '= t LQr(0) j—t,LQr(1) j=5.93 cm ' according
to the measurements of Stoicheff. "The order of magni-
tude of ttr and tt2 is ttr= 3X 10 ' and tt2

——0 (cf. Sec. 10),
and we therefore have that W'= 5.94 cm '. The energy
E» of the localized state has been calculated previously'
and in second order is given by

para surroundings is not perfectly localized on the
ortho molecule. The wave function Uq (R;) of the vi-
brational impurity state is a solution of the equation

——',e' Q U(R;+d;) —W'b(R;; 0) Ut (0) =Er Ur (R )
d?',

(69)

where H/" is the difference between the v= 1, J=0 and
m=1, J=1 states of a molecule in the solid in the
absence of the vibrational coupling, which is given by

FIG. 5. The S&(ol line in the rota-
tion-vibration Raman spectrum of
solid parahydrogen observed by Soots,
Allin, and Welsh (Ref. 4). Theoreti-
cally there should be three com-
ponents corresponding in the order of
increasing frequency to transitions to
the sublevels ms= 0, &2, &1. As
explained in the text in Sec. 9F, the
main peak should be identified with
the m=%2 component. The m=0
component is clearly visible, but the
tv= &1 component has not yet been
resolved experimentally.

I
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Er= —W'L1+ 3 (e'/W') ']. (71)
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FxG. 4. The zero-phonon rotation-vibration band in the
infrared spectrum of solid parahydrogen observed by Gush, Hare,
Allin, and Welsh (Ref. 1). The broad absorption feature is the
Q1(0)+S0(0) combination band due to the creation of pairs of
v=1 and J=2 excitations with arbitrary wave vectors k and —k.
The sharp feature is the Sq(0) line which is due to transitions to
the m=&2 sublevel of the k=0 state in the band of the bound
v= 1, J=2 complexes. Because of the imperfect localization of
the J=2 excitation on the v= 1 molecule in the bound complexes,
the frequency of the S& (0) line is lowered by 3.5 cm ~, as discussed
in the text in Sec. 7A.

Terms of higher order in (e'/W') can most easily be
calculated using the walk-counting method, "but these
terms give no appreciable contribution to E». From
Eqs. (37) and (71) we obtain the following expression
for the frequency of the Q&(1) infrared line in the limit
of very small ortho concentrations:

&IRLQ1(1))= t'e)Qr (1))—300.0ttt —171 3it2 3. (e'/—W') e ~

(72)

where 5"=5.94 cm '. Anticipating the result that e' is
of the order of 0.5 cm ', one may replace the last term
by —~~a', since this term is only a very small correction.
The expressions (67), (68), and (72) for the various
vibrational frequencies are discussed further in Sec. 9.

'7. THE MIXED ROTATION-VIBRATION
EXCITATION S

In the manifold of states OR=ORr+OR2 corresponding
to the presence of one v= 1 and one J= 2 excitation in
a crystal containing X parahydrogen molecules, there
are 5Ã states in which the two excitations are on the
same molecule (manifold ORr) and SX(X—1) states in
which they are on different molecules (manifold OR,).
The state of the crystal in which the v=1 excitation is
localized on molecule i, and the J=2, J,=an excitation
on molecule j will be denoted by

~
1;; 2,m), where s

and m refer to the hexagonal axis of the crystal. Tran-
sitions from the ground state to the states

~
1;; 2;nt) in

OR& give rise to the S~(0) —,those to the states
~

1;;2,?N),

?Wj, in OR2 to the Qr(0)+So(0) absorption feature
(cf. Figs. 4 and 5). In the absence of the rotational
and vibrational couplings, the states in 5g» and those
in BR2 are degenerate, but are separated from each
other by an energy S"» which for free molecules" has
the value 17.95 cm ' and which in the solid is increased
by the amount 0.6tt&+2.7tt&, as follows from Eq. (37).
The order of magnitude of this correction term is
0.02 cm ', and we therefore adopt for the rotation-
vibration interaction in the solid the value 8'»=18.0
cm '.

There are a number of ways in which the eGects of
the various interactions on the levels in the manifold
5K can be calculated, depending on the order in which
the interactions are introduced. If carried far enough,
the different methods, if convergent, should lead to the
same result. In the 6rst method, one begins by ne-
glecting the rotation-vibration interaction 8'», and one
considers the manifolds 5R» and 9R2 as degenerate. One
introduces the quadrupolar interaction and the vi-
brational coupling as perturbations, and one obtains a
rotation —vibration band consisting of a pure J= 2 band
overlapping a pure v=1 band. The over-all width of
this band is clearly the sum of the widths of the J=2
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and v=1 bands. One then introduces the interaction
W~, which gives rise to scattering processes of the roton
and vibron and to the formation of bound complexes.
This method is most convenient when one is interested
in obtaining the scattering wave functions, but is less
convenient when one wants to investigate the structure
of the bound complexes. We are interested mainly in
the latter, and we therefore follow the second method
in which one begins with the manifolds 5Ki and 5R2

separated by the rotation —vibration interaction energy
5&. One first introduces the quadrupolar interaction,
which transforms the states in 5Eo,

~
1,; 2jm) (i&j),

into scattering states describing the scattering of a
J=2 roton from a stationary v= 1 excitation. The level
density in the resulting band of states is exactly the
same, in the limit of an infinitely large crystal, as that
in the pure J=2 band, the difference being that the
wave functions describe rotons undergoing scattering
rather than free rotons. The quadrupolar interaction
transforms the states in ORi,

~
1;; 2;m), into states in

which the J=2 excitation is imperfectly localized on
the stationary v=1 excitation. The resulting bound
states are depressed in energy by this spreading of the
J=2 wave function. A small splitting of the level also
appears because the depression in energy is not exactly
the same for the three sublevels m=0, ~1, ~2. How-
ever, the bound complexes do not move through the
lattice under the action of the quadrupolar interaction,
and the levels remain sharp. As the next perturbation,
one introduces the vibrational coupling, the crystalline-
held interaction, and the vibrational part of the quad-
rupolar interaction (to be defined in Sec. 7A below).
These interactions are all of the same order of magni-
tude in their effect on the bound complexes and are an
order of magnitude smaller than the quadrupolar inter-
action. They give rise to an additional splitting of the
bound state levels and to a broadening of these levels,
corresponding to the fact that the bound complexes
are no longer immobile in the presence of these smaller
perturbations.

The discussion of the sp1itting and broadening of
the rotation —vibration levels, following the second
method outlined above, is divided into four parts. In
Sec. 7A we discuss the quadrupolar interaction and we
extends the previously published calculations' by in-
cluding third-order effects. In Sec. 73, the vibrational
coupling, the crystalline-field interactions, and the ro-
tation —vibration coupling are discussed, and formulas
for the frequencies of the Si(0) infrared and Raman
lines are derived. In 7C, a sum rule for the double
transitions Qi(0)+So(0) is used to obtain a formula
for the mean frequency of this absorption band. Finally,
in Sec. 7D, the fine structure of the Si(0) infrared line
due to single orthohydrogen impurities is discussed.

A. Effect of the Quadrupole —Quadrupole Interaction
on the Rotation —Vibration Levels

The largest interaction within the manifold of states
BR is the quadrupolar interaction which, according to

Eqs. (26) and (54), is given by

A =4~ Z (Q Q~/5~") Z ~-.1'o-(~') I'o-*(~,), (73)

where Q;=Q(r;) is the instantaneous quadrupole rno-
ment of molecule i. The interaction (73) clearly con-
tributes not only to the term A in Eq. (22) but also
to the terms A~ and A2. We split the interaction A into
a large and a small part by considering the matrix
elements of A within the manifold 5K. The matrix
elements of A within BR& are given by

(1,; 2,m
~

A
~

1,; 2,e}=pop'(a/E;. ) A „(Q,"), (&&j)

(74)

(1;i 2,m [ A
) 1,; 2,e) =opi(o/E, ,) 'A „(Q,,),

where

(i&j)

(78)

EB= (00
I Q(r) I 0»(1o I Q (r) I

»)/Sir'. (79)

Finally, the matrix elements within 5K2 are of two
types, those diagonal in v,

(1,; 2&m
i

A i 1,; 2oro}=opp(a/Ap) A „(Q&p)

(vWj, oats, jWu), (80)

where cpp is given by Eq. (57), and those off-diagonal
in v,

(1;;2,m
~

A
~

1;; 2ie)=o„'(a/R, ;) A „(Qg),

where

, '= (10
~ Q(r)

~

02)'/Suo.

(v&j)

(80')

The ma, trix elements diagonal in v, Eqs. (78) and (80),
are large, and the ones oR'-diagonal in v, Eqs. (74)

where

A „(Q)= (280pr/9)'~'( —1)~C(224; m, —n) V4, (Q),

(75)

and 0;,= (8;,, P,,) denotes the orientation of the inter-
molecular axis R;; in a fixed frame with s axis along the
hexagonal axis, and

ooo'= (00 i Q(r) i
12)'/Suo. (76)

The matrix elements (vJ
~
Q(r)~ v'J'} have been dis-

cussed in connection with Eq. (57) . As for the notation
of the coupling constants, the subscripts appearing in
e,„,where

o„„,= (v0
~ Q(r) ~

v2) (v'0
[ Q(r) ~

v'2)/Sg, (77)

denote the initial values of v and the prime in Eq. (76)
indicates the appearance of the v=0—+v= 1 o8-diagonal
elements. All the matrix elements involved in the
coupling constants correspond to the J=~J= 2 tran-
sition and the value ofJ therefore need not be indicated.

The matrix elements of A between the manifolds 5K~

and 5R2 are given by
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has approximately the same value as 60O but the
matrix elements involved in e~~' have not been calcu-
lated.

The part of the interaction A, Eq. (73), defined by
the large matrix elements (78) and (80), is discussed
in this subsection and is called the quadrupolar inter-
action. We have included in the de6nition of the
quadrupolar interaction the diagonal effects of the vi-
brational perturbation contained in the instantaneous
interaction (73). These diagonal effects lead to the
difference between the coupling constants «o and @~

and make the quadrupolar interaction defined here
different from that defined in Sec. 5 for the pure
rotational states.

To calculate the eGect of the quadrupolar interaction
on the bound states in 5R&, one can either employ
perturbation theory or use the Green-function solution
of the bound-state problem. The latter method was
used previously' in combination with an expansion in
powers of the interaction. The two methods lead to the
same anal result and we shall use here the perturbation
method. First, we remark that the quadrupolar inter-
action, defined by Eqs. (78) and (80), leaves the @=1
excitations perfectly localized. Instead of the full set
of SS states in BR& we therefore need to consider only
the 5 states corresponding to the v=1 excitation being
on a particular molecule. Second, one can easily show
that because of the point symmetry of the hcp lattice,
the correct states correspond to the values m=0, ~1,
~2 of the hexagonal axis. In second order the shift in
the energy of the sublevel m is hence given by

hE & &= —Wi g g I(1;;2,on
I

A
I 1;; 2gn)I . (81)

The sum over j extends over all the neighbors of mole-
cule i, but we restrict this sum to the nearest neighbors
only. This introduces a negligible error. Using Eqs.
(78) and (75), expression (81) can be evaluated. in a
straightforward way, giving

A~-"& = —(a+ 2&-) («i'/Wi), (82)

where D=168 and the constants a are given by Eq.
(47) . The second-order energy perturbation (81) arises
from the hopping of the J=2 excitation from the
vibrating molecule to a neighboring molecule and back.

and (81), are small. As explained in connection
with Eq. (57), we assume that the matrix elements
(t&J

I Q(r) I
t&'J') for the molecules in the solid have the

same values as for the free molecules. Using the values
calculated by Karl and Poll,"and assuming a=3.75 A,
we get for the 1arge coupling constants the values

&00=0.580 cm '

«g= 0.641 cm—',

whereas the small coupling constant (76) is equal to

«,'=O.o&5 cm-&. XZ Z (1'~2on
I

A
I

1,; 2,n)(1;; 2;n
I

A
I 1;; 2;.n')

j,if m, n.nl

X (1,; 2; n'
I

A
I
1;; 2,on). (83)

The contribution of each triangle of molecules ~, j, j'
is independent of the orientation of the triangle, since
Eq. (83) involves a trace over all the projection
quantum numbers. We restrict the sum in Eq. (83)
to the 48 equilateral triangles with sides of length u.
To calculate the contribution of one triangle, we choose
the triangle to lie in the xs plane with R,; in the
s direction. Equation (83) then reduces to

hP' &=4 8(«' e/W') (56m)(70). '"W(4242 24)

)&g C(444; nt, —nt)I Y4 (Q)I', (84)

where W is a Racah coeflicient and Q = (60', 0) denotes
the orientation of R;;. The sum over rn in Eq. (84)
cannot be reduced further and must be calculated
numerically. The result is

AE"&= D'(«&P«p/WiP),

where D'=522. 2. The calculation of the third-order
contribution to the splitting is much more complicated,
but has been carried out completely numerically by
Volterra. 28 The result can be written in the form

hE te& —hE&'& =8.8a («&Pepp/W&P) . (86)

The over-all splitting (86) amounts to about 0.05 cm '

and is practically negligible for our purpose.

3. Vibration, Rotation-Vibrational, and Crystalline-
Field Interactions

The pure vibrational coupling Fp, Eq. (62), has no
matrix elements within the unperturbed manifold QRy.

This means that the completely localized Si(0) excita-
tions

I 1;; 2,on) are not affected by the vibrational
coupling. However, the imperfectly localized states re-
sulting from the quadrupolar interaction, which to first
order in («i/Wi) are given by

I 1;; 2,on)'=
I 1;; 2,on) —Wi ' g I 1;; 2;n)

X«i(u/E;;) 'A „(Q,&), (87)
~8V. Volterra (private communication). We are grateful to

Dr. Volterra for communicating the results of his numerical
calculations to us prior to publication.

The hopping occurs between a v= 1 and v= 0 molecule,
and the coupling constant appearing in Eq. (82) is
therefore «~.

In third order the energy correction of the bound
levels comes from a walk of three steps of the J=2
excitation beginning and ending on the vibrating mole-
cule. The shift in the average energy of the five levels
is given by

hE"&= -,' g hE I& = (1/5 W&P)
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E„+(0)= $1+a„opp,

Sl+= 1 17(0'/Wl) (001/000) +0 903 (000'/000),

$1 ——3.33 (0 /Wl) (001/000) +4.20 (000 /000) ~

(»)

(92)

The numerical factors in Eq. (92) are lattice sums of
the quadrupolar interaction, the sums in the terms
containing e' and &oo', respectively, corresponding to
nearest neighbors and all neighbors.

We must Anally add the splitting due to the crystal-
line field interaction V„given by Eq. (44). For the
k=0 levels, V, is diagonal in the band states, and the
energy corrections to the k=0 levels are simply given
by Eq. (45). Collecting all the results, Eqs. (37),
(45), (82), (85), (86), and (91), we obtain the follow-
ing expression for the frequencies of the components of
the $1(0) Raman line:

vRL$1(0) j =v, /$1(0) g
—317.5@1—174.8po

7Cmopg+ 01Gm04~ (D+ 08m) (001 '/Wl)

+ (D'+8.841m) (ool'/000/Wl')+ $1+4lmom 0,
' (93)— .

The Sl(0) infrared line corresponds to transitions to
the 014= &2 sublevel, and the frequency of the Sl(0)

are broadened by the vibrational coupling into a band
corresponding to travelling Sl(0) excitations. The ma-
trix elements of the vibrational coupling between the
states (87) corresponding to nearest-neighbor molecules
(R,;=a) are given by

'&1,; 2,m
~

Po
~

1;; 2,e)'= (0'/Wl) oolA „(&;;). (88)

A second contribution to the hopping elements

~
1;; 2,m &

—
&~ 1;; 2,41& comes from the vibrational part of

the quadrupolar interaction (73) and is given by Eq.
(74). The correction to the Sl(0) states represented
by the second term in Eq. (87) gives no contribution
to these matrix elements, as one can easily verify.
The total hopping element for the $1(0) excitations
can therefore be written in the form

'&1;; 2,m [ F0+A ) 1;; 2;lp)'= t (0'001/Wlooo)D '1+pop'/oopg

Xopp(a/E, ;)'A „(Q;;), (89)

where 6;;=1 if i and j are nearest neighbors, and
5;;=0 for all other pairs. The factor behind the 6rst
bracketed expression in Eq. (89) is identical with the
hopping element for the pure J'=2 band. The Sl(0)
level is therefore broadened into an Sl(0) exciton band
with an over-all width equal to a factor of order

(0~001/Wlooo)+000 /opp= (3.0+2.6) X10 0 (90)

times that of the pure J=2 band, giving a width of
about 1 cm '. Of interest are the energies of the Raman
and infrared active even and odd k=0 levels in the
Sl(0) band, which according to Eq. (89) and the
previous result for the 1=2 band' are given by

infrared line is therefore given by

vIRP$1(0) ]=vo/$1(0) $—317.5p,—174.8p,
—700.+—,', 04,—(D+-', ) (opl'/W, )+ (D'+8.8)

X (401 opp/Wp)+Sl opo 03' .(94)
In Eqs. (93) and (94), the quantity 0,

' is the self-
energy of the rotational motion of the molecules in the
$1(0) state arising from the coupling with the lattice
vibrations. This self-energy e, is not identical with the
corresponding quantity 0, of the So(0) level discussed
in Sec. 5 Lcf. Eq. (48)$. The Sl(0) level is sharp,
apart from the small broadening due to the hopping
elements (89), and in the expression for the self-energy
the energy in the intermediate states is therefore only
the phonon energy amounting on the average to about
—,Lr~ ——35 cm '. The factor ~ arises because in the sum
over all phonon modes the Rayleigh —Jeans factor k' is
cancelled by a factor fp

' Pcf. Eq. (84) in Ref. 9]
resulting in an approximately equal weight for all
modes. The $0(0) level, on the other hand, is spread
out into a band about 20 cm ' wide, and, in the ex-
pression for the self-energy, the energy denominator
therefore varies appreciably even if the spread in pho-
non energies is neglected. One can easily show that the
net result is an enhancement of the self-energy effect.
It is dificult to estimate the diGerence between e,
and e,', but an order of magnitude calculation indicates
that e, may be twice as large as e,'.

C. Mean Frequency of the Sl(0) and Ql(0)+$0(0)
Infrared Bands

Let us denote the states in the manifold 5K by
~
e)

and the ground state of the crystal by
~

0&. The total
integrated absorption coefficient of the $1(0) and
Ql(0)+$0(0) infrared bands (shown in Fig. 4) is then
given by

~= ~ Z I & I ~ I
0&I' (95)

n

where p is the component in the direction of polarization
of the sum of the dipole moments induced in all pairs
of molecules by the intermolecular forces. ' The inte-
grated absorption coeKcient n corresponds to the ab-
sorption coefficient A(v) per wavelength rather than
per unit path length and has the nature of a transition
probability. Because of spectroscopic stability, the
quantity u is independent of the vibrational and ani-
sotropic interactions since these interactions mix only
the states in BR and do not admix appreciable states
from other conigurations. We now show that the mean
frequency of absorption, or the 6rst moment of A(v),
is also invariant, at least to a very good approximation.
The mean frequency is given by

h~&v&=~ ' p (&.—&o)~&10IJ I0&I'

=~ ' Z C&0 I
~II

I
~&&~ I ~10&

—&0 I ~ I I& &~ I ~II I 0&3, (96)
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where B is the full Hamiltonian of the crystal and
e

~
n) =Z.

~
n).

The dipole moment p, is a function of the orientations
and internuclear separations of the molecules and con-
sists of a sum of terms, such as a term linear in the
coordinates r,—r„a term quadratic in r;—r„a term
depending on the orientations of single molecules, etc.
One can easily see that it is possible to choose from p,

those terms, adding to p, ', say, such that p,
' has matrix

elements only between the ground state and the states
in 5K and such that (0

~

ts'
~

rt) is very nearly equal to
(0 ( ts

~
st) for all

( e). Since the states
( rt) correspond

to the presence of one e= 1 and one J= 2 excitation,
p,

' should contain the terms in p linear in the coordinates
r,—r, and depending on the orientations of a single
molecule. These terms have no matrix elements to
other states than those in 5K. However, there are also
terms in p, such as the cubic terms in the coordinates,
which have matrix elements to states in 5R as well as
to other states, and the same is true of certain terms
containing higher-order spherical harmonics of the
orientations. However, all these terms give only very
small contributions to the matrix elements (0

~
tt

~
n)

and may be neglected. For practical purposes we may
therefore replace ts in Eq. (96) by p, '. We can then
perform the sum over e, giving

1'tc(v) =a-'(0
[ ts'fH, p, 'j ( 0). (97)

The important point is that p,
' is again simply a function

of the internuclear separations and orientations of the
molecules. This is also true of the vibrational and
anisotropic interaction terms contained in the Hamil-
tonian H, and this interaction, V, therefore commutes
with tt', so that we have PH, p, 'g =LHs, y, '1, where
H=Hs+V. From this it follows immediately that
(v)= (v)s, where (v)s is the mean frequency in the
absence of the perturbing interactions. It is, of course,
possible to perform the sum over rt in Eq. (96) in a
formal way by introducing the operator 2' which pro-
jects onto the manifold 5K. One then obtains the
expression

Itc(v)=u '(0
) tie, I'ttj [ 0). (98)

However, one must now show that I'IJ, commutes with
V, and this leads to the same considerations as given
above.

To use the sum rule (v) = (v)o, we must calculate the
mean unperturbed frequency (v)s for which we need
the unperturbed integrated absorption coefficients of
the Si(0) and Qi(0)+So(0) lines. These quantities
have been calculated previously, ' and in the present
notation the result is, assuming that the lines are due
to the quadrupolar induction effect only,

npPSi(0) g 5Si'(00
~ Q ~

12)'(00 ) a )
00)'

croLQi(0)+So(0) j 8Ss(00 i Q ) 02)s(00 [ n
]

10)s
. (99)

The lattice sums are equal to S&=0.701 and 52——12.80.

0.3-

O.I—

4484 4486 4488
FREQUENGV (~n ')

FIG. 6. The structure of the S&(0) infrared line at very low
orthohydrogen concentrations, observed by Gush (Refs. 2 and 7) .
The satellite lines are due to transitions in the parahydrogen
molecules on the nearest-neighbor sites of the orthohydrogen
impurities. The 15-fold degenerate upper state in these transitions
is split by the quadrupole —quadrupole interaction between the
molecules. The splitting is considerably reduced by the fact that
the J=2 excitation in the bound v=1, J=2 complex is imperfectly
localized on the o= 1 molecule (cf. Sec. 7D).

Using the values'4 (00
~ Q ~

12)=0.0784, (00
~ Q ~

02)=
0.4858, and (00 [ n

~
00)= 5.46 and (00

~

a
~

10)=0.65,
all in atomic units, we find that the ratio (99) is equal
to about 1/23. In the absence of the vibrational and
anisotropic intermolecular forces, the Si (0) and Qi (0)+
Ss(0) lines are sharp and their frequencies are given by

vol Si(0)$=vo[Si(0) j—317.5tti —174.8ts2 —e,',
"LQ (o)+So(o)3=,LQ (o))+,LS.(0) ~

—316 9tsi —172.1tts—e,. (100)

In writing these expressions we have assumed that the
frequency shifts e, and ~,

' due to the rotational self-
energy are fixed and independent of the rotational
coupling. This is clearly necessary, since the inclusion
of the interaction with the lattice vibrations would
spoil our sum rule. Using the result (v)= (v)e, and
assuming that the unperturbed intensity ratio (99) is
equal to 1/23, we obtain from Eq. (100) the following
result for the mean frequency for the Si (0) and Qi (0)+
So(0) infrared absorption lines:

(v) =Av. CSi(0) j+~s'voLQi(0)+ So(0)3
—316.9tsi —172.2tts ,' Ae, ,'~e, '. (1—01—)

There is an appreciable uncertainty involved in this
expression because of the approximations made in the
calculation of the ratio 1/23 of the unperturbed in-
tensities.

D. Fine Structure of the Si(0) Line Due to Ortho-
hydrogen Impurities

At low orthohydrogen concentrations the Si(0) infra-
red line shows a characteristic fine structure (cf. Fig. 6)
which has been observed by Gush' and which has been
interpreted' as due to the quadrupo1ar interaction be-
tween a para molecule in the ~= 1, J= 1 upper stat
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and a neighboring ortho molecule in the v=0, J=1
state. In Ref. 7, the v=1, J=2 state was assumed to
be completely localized. The coupling constant of the
quadrupolar interaction which splits the 25-fold de-
generate state of the pair of molecules in the v=1,
J= 2 and v= 0, J= 1 states is then given by

"„=(01
~ Q ~

01)(12
~ Q ~

12)/5 '. (102)

In Ref. 7 this constant was denoted by e and the small
dependence of the quadrupole matrix elements on J
was neglected. The best fit of the calculated to the
observed 6ne structure was obtained by taking &=0.52
cm '. In this paper we attempt to account for the
observed energy levels by assuming that the quadrupole
matrix elements have the same values as for the free
molecule. Using the theoretical values calculated by
K.arl and Poll, '4 we obtain for the coupling constant
(102) the value hopi=0. 643 cm '. When this value is
used in the formulas derived in Ref. 7, a splitting is
obtained which is much too large. The difficulty of
obtaining a consistent set of quadrupolar coupling con-
stants was noted in Ref. 7, and as a possible explanation
the additional splitting of the rotational levels arising
from the coupling to the lattice vibrations was sug-
gested. This splitting is now known~ to be too small to
play a significant role in the 6ne structure of the Si(0)
line. However, it is clear that the calculation in Ref. 7
is incomplete because the J= 2 excitation in the v= 1,
7= 2 bound state is assumed to be completely localized
on the v= 1 molecule, whereas it is actually spread out
over the neighboring molecules because of the inter-
action with the v=1, J'=2 energy band states. The
analytic calculation of the splitting of the 25-fold de-
generate level of the spread out v=1, J=2 state and
the v=0, J=1 state of the ortho molecule is very
involved, but a numerical calculation has been carried
out by Volterra. "Using for the coupling constant the
value g~~=0.643 cm ' and taking into account also the
crystalline Geld interaction, Eq. (44), Volterra obtained
a 6ne structure splitting which is in good agreement
with the observed one. The observed fine structure of
the Si(0) line can therefore be accounted for by using
the quadrupolar coupling constants characteristic of the
free molecules. It also follows that there is no clear cut
evidence that the quadrupole —hexadecapole interaction
gives an appreciable contribution to the splitting.

the v=2 state. We consider only the S'(0) infrared
line arising from transitions to the m= ~2 component
of the bound v= 2, J=. 2 complex. For the frequency of
this line we obtain the same formula as for the Si(0)
line, Eq. (94), except for the following changes. The
coefficients of p~ and p2 are diferent and can be obtained.
from Eq. (37). The quadrupolar constant appearing in
the matrix element corresponding to the hopping of
the J=2 excitation from the v=2 molecule to one of
the neighboring v=0 molecules is 60g in the notation of
Eq. (77), and the rotation —vibration interaction con-
stant, 5'2, has the value 8~=35.1 cm '. We neglect
the term 52 &~0 arising from the hopping of the v=2,
J= 2 complex as a whole, since this term is only about
half as great as for the Si(0) line. Collecting these
results, we obtain the following expression for the fre-
quency of the S'(0) infrared line:

via/Ss(0) f=v, [Ss(0)j—619.9pt —401.1ps

Vesg+'he4c (D+s) (ep2/Ws)

+(D j88)(epsepp/Ws') e&. (103)

The Ss(0) Raman line is very weak and has not been
observed.

B.The Si(0)+Si(0) Transition

We next consider the Si(0)+Si(0) double transition
in which in the upper state there are two v=1, J=2
complexes. In the infrared this transition gives rise to a
sharp doublet which has been observed by Hare, Gush,
and Welsh" and which is shown in Fig. 7. The main
peaks lie at the frequencies 8971.0 cm ' and 8973.1
cm ', so that the separation is 6"=2.1 cm '. It is
evident from the observed absorption profile that there
is some absorption in the region between the two main

8. OVERTONE AND DOUBLE VIBRATIONAL
TRANSITIONS

A. The Ss(0) Transition

8968 8972
FREQUENCY (cm )

8976

Fio. 7. The S'(0)+S'(0) double transition in the infrared
overtone spectrum of solid parahydrogen observed by Hare,
Gush, and Welsh (Ref. 7). The 25-fold degenerate upper level in
these transitions is split by the quadrupole —quadrupole inter-
action, but only two of the resulting levels are infrared active.

"H. P. Gush (private communication).

The manifold of states 5K' corresponding to the
presence of one v=2 and one J=2 excitation is entirely
analogous to the manifold 5K discussed in Sec. 7, the
only difference being that the v=1 state is replaced by
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peaks and in the outer wings. The doublet has been
interpreted' as arising from the splitting of the 25-foM
degenerate upper state by the quadrupolar interaction.
%e here refine this calculation by taking into account
the effect of the spreading of the ~=1, J=2 states
caused by the interaction with the m=1, J'=2 energy
band states. We assume that the hopping of the v=1,
J=2 complexes as a whole, which was discussed in
Sec. 78, may be neglected in this problem. Since the
infrared activity is due to the dipole moments induced
in pairs of molecules, which are appreciable only for
nearest neighboring molecules, we may assume that in
the upper state of the Sq(0)+S~(0) transition two
nearest-neighboring molecules are in the v=1, J=2
state. In the absence of the quadrupolar interaction
this level is 25-fold degenerate, and at an energy W&

above this level there is a 10(X—2)-fold degenerate
level corresponding to one of the two J= 2 e~citations
being on one of the E—2 molecules in the e= 0 state.
(At an energy 2W& there is another level but this level
may be ignored in the present context. ) In the presence
of the quadrupolar interaction the level at lV& broadens
into a band of the same width as the pure J=2 band.
The states in this band describe the scattering of a
J= 2 roton by the complex consisting of the two
neighboring molecules in the state p~ ——1, wo

——1, J~+
J2——2. This is an interesting scattering process involving
the possibility that the incoming J=2 excitation is
caught by the complex and the other J= 2 excitation
is emitted. However, we have not analyzed this process
since the corresponding absorption band has not been
observed.

To calculate the splitting of the bound v&
——1, J&——2,

v2
——1, J2——2 complex we first introduce the quadrupolar

interaction between the excited molecules 1 and 2,
assuming perfectly localized J= 2 excitations. The
quadrupolar interaction with the surrounding mole-
cules, which spreads out the J= 2 excitations, is intro-
duced afterwards. This procedure is correct if the rela-
tive energy separations of the levels are not changed
too much by the second interaction. This condition
appears to be satisfied, and we therefore expect that
our calculation will give a reliable estimate of the
effect of the spreading out of the J=2 excitations on
the splitting. However, a detailed numerical analysis,
including the effect of the crystalline field interaction,
would be required to check the results.

The splitting due to the quadrupolar interaction
between the molecules 1 and 2 was calculated in Ref. 7.
Only two of the resulting levels are infrared active and
the eigenstates and eigenvalues of these states are
given by

I +)=u~II 1, 0)—I 0, 1)+o'~(l 2 —1)—I

—1 2)) I

(104)

(105)

where n+ ——6'~'[7+ (55) '~'1 ', a~ is a normalization con-
stant, and n» is given by

. =(»Ial»)/5 ' (106)

and has the value gu=0. 714 cm '. In Eq. (104)
I
0, 1)

is the state in which a J=2, m=-0 excitation is on
molecule 1 and a J=2, m=1 excitation on molecule 2,
where m refers to the intermolecular axis pointing from
1 to 2. The two levels are each doubly degenerate and
the remaining two states can be obtained from Eq.
(104) by replacing all the quantum numbers m by —m.

We calculate the shift in the energy of the states
I +) due to the quadrupolar interaction with the sur-
rounding molecules in the same way as for a single
S&(0) state, by means of the second-order perturbation
formula

The sum extends over the 25)&2&11=550 intermediate
states in which one of the J= 2 excitations is on one of
the two v=1 molecules and the other J=2 excitation
is on one of the nearest-neighbor v=O molecules. Ex-
pression (107) has been calculated numerically and for
an aa pair (the two @=1 molecules in the same hex-
agonal plane) the result is

&&~= —286.0poP(Wx —1.71qg&) ',

&E = —314.4ppg'(Wy+1. 31nu) ' (108)

To see the physical significance of this result, we recall
that the average second-order shift of a single Sq(0)
excitation is given by Eq. (82):

hE&@=—168(ppP/Wg) . (109)

This energy shift is due to the occasional hopping of
the J=2 excitation from the v=1 molecule to one of
the twelve neighboring v=O, J=O molecules. If one
has two S~(0) excitations on neighboring molecules,
each of the J= 2 excitations can hop to one of the eleven
neighboring v=0, J=O molecules. One would therefore
expect an average decrease in the energy by an araount
given by Eq. (109) with the numerical constant 168=
12)&14 replaced by 2X11&(14=308.According to Eq.
(108) the average shift is given by 300(poP/Wx) in good
agreement with this estimate. For an nP pair, the
second-order corrections (107) are different, and the
resulting levels turn out to lie between those of an ea
pair. These levels give rise to satellite components of
the low frequency line of the S&(0)+S,(0) doublet.
When we identify the two main peaks as arising from
transitions in no. pairs, and when we neglect the effect
of the crystalline field interaction (44), we obtain the
following expressions for the frequencies of the S&(0)+
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S~(0) doublet:

»af Si(0)+S~(0) j+
=2 [ppLS, (0)j—317.5pg —174.8po —o.'}

+( / )L+( ) j u. oP( x
— Vn),

»aLS~(0)+ Si(0)3-
=2 I vpLsg (0)g —317.5pg —174.8po —o,'}

+ (10/49) Li —(55) '"ggn —314ppl'(8'i+ 1 31qn) .

(110)

For the splitting,

A"=»~[s (o) ys (o) j+—»~LS&(0)+ s (o)],
we obtain from Eq. (110) the value A"=2.0 cm ' in
good agreement with the observed value (2.1+0.1)
cm '.

C. Q~(0)+Q~(1) Transition

The Q, (0)+Q&(1) transition corresponding to a
simultaneous Av = i, 6J=0 transition in an ortho-
hydrogen molecule and a neighboring parahydrogen
molecule has been observed in dilute solutions of ortho-
hydrogen in parahydrogen. Apart from the fact that
the ortho molecule makes a m = 1 rather than a v =0
transition, the Q&(0)+Q, (1) line is entirely analogous
to the Q~(0) line discussed in Sec. 6. The shape of the
Q, (0)+Q,(1) line, which is due to the fact that the
v=1 excitation in the parahydrogen host crystal can
be created in any state k, is therefore exactly the same
as that of the Q&(0) line. The frequencies corresponding
to the peaks of the Q~(0) and Q, (0)+Qq(1) infrared
lines should therefore satisfy the relation

, LQ, (0)+Q, (1)j= LQ (0)Q+ LQ (1)g. (111)

The observed value of the left-hand side is" 8299.5 cm ',
and that of the right-hand side is equal to' 415.0+
4146.6=8299.6 cm '. Relation (111) is therefore very
well satis6ed.

9. FREQUENCY ANALYSIS OF THE ROTATION-
VIBRATION TRANSITIONS AND DETERMINA-
TION OF THE INTERMOLECULAR-COUPLING

CONSTANTS

From the observed frequencies of the zero-phonon
lines in the infrared and Raman spectra of solid para-
hydrogen information can be obtained about the mag-
nitude of the intermolecular coupling constants using
the formulas derived in the preceding sections. This is
discussed in the following subsections where we consider
in turn the pure rotational, the pure vibrational, the
rotation —vibrational, and the overtone transitions. We
also derive a number of predictions about certain fre-
quency shifts and splittings, and Anally we indicate

how the adequacy and consistency of the model under-
lying the calculations can be tested. In our model the
quadrupolar coupling constants are assumed to have
the theoretical values based on the quadrupole matrix
elements calculated for the free molecules. '4

A. Crystalline-Field Constant e2,

According to Eq. (59), the pure rotational Raman
line consists of three components corresponding, in
order of increasing frequency, to vs=~1, ~2, 0, and
the separations in the Raman triplet are therefore given
by

Ag= va[so(0) ]+,—vaLsp(0) j~,
= 5 (0.903opp+ —,

'
—,op, ) ——', po„

A2= &RLSO(0) jo &RLSO(0) j+2

= 5 (0.903pop+ o'—,p4, )+ 7po..

(112)

The difference between the two separations is given by

oo, ———(0.03&0.02) cm ' (114)

This result has been discussed previously' and the very
small value of e2, has been attributed to a cancellation
of the two contributions to e2, coming from the homo-
geneous deviation of the lattice from the hcp structure
and from the local distortion of the lattice resulting
from the coupling between the rotational motion of the
molecules and the lattice vibrations. There is inde-
pendent evidence' for the smallness of ~&, from the
temperature independence of the integrated intensity
of the infrared Qq(1) line at low ortho concentrations.
We therefore regard it as well established that e2, is
less than 0.1 cm ' and most likely of the order of
magnitude —10 ' cm '.

B. Crystalline-Field Constant e4, and the Frequency
of the So(0) Infrared Line

Prom the Eqs. (112) we obtain the following relation
between happ and e4, .

7+1+7+2= 5 (0.903&op+ o &&4.) ~ (115)

The experimental value of the left-hand side is'
(2.00&0.01) cm ', and we therefore get

0.903opp+ —o', o4.——(0.400&0.002) cm '. (116)

We can obtain a second relation between 6{)p and &4, by
considering the infrared Sp(0) line. When we define

(113)

The separations A~ and A~ have been measured' to an
accuracy of about 0.0j. cm '. The experimental value
of the left-hand side is 0.03 cm ', and therefore we get
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the average frequency of the Raman So(0) triplet as model. The relations of this type are called consistency
relations and they are numbered by Roman numerals.

va[So(0)]= o Q va[So(0)],
m=2

(117) D. Vibrational-Coupling Constant

we get from Eqs. (59) and (60)

vza[So(0) ] vR[So (0)]= 4.20ooo+ oro4g 7oog. (118)

The Raman frequencies are known very accurately'
and we get va[So(0)]= (353.44&0.01) cm '. The fre-
quency of the So(0) infrared line has been measured
by Kiss" and his result is vza[So(0)]= (355.6&0.3)
cm '. Using these values we obtain from Eqs. (116)
and (118) the empirical value ooo ——(0.55+0.10) cm ',
whereas the theoretical value [Eq. (57)] is given by
600=0.580 cm '. In our opinion the theoretical value is
more reliable and more accurate than the empirical
one derived here, and we adopt the theoretical value of
ooo. We can then obtain from Eq. (116), i.e., from the
Raman frequencies, a value of e4, .

o4,———(2.60&0.05) cm '. (119)

As expected from the fact that e4, does not vanish in a
perfect hcp lattice whereas e2, does, the constant e4, is
much larger than oo„and the value (119) does not
appear to be unreasonable. When we use the result
(119) in Eq. (118), we obtain the following predicted
value for the frequency of the So(0) infrared line:

vza[So(0)]= (355.76&0.01) cm ', (120)

which is consistent with the measured value (355.6+
0.3) cm '. It is hoped that this frequency will be
measured more accurately, so that a check on the
value of the coupling constants 6t)o and e4, can be ob-
tained.

C. First Consistency Relation

To exhaust the information contained in the measured
frequencies of the pure rotational lines, we consider the
absolute frequency of the rotational transition in the
solid. This can be done most conveniently by consider-
ing the mean Raman frequency defined by Eq. (117),
which is given by [Eq. (59)]

vR[So(0)]=vo[So(0)]—17.1pz —1.3@2 og, (121)

from which we obtain the relation

17.1pz+1.3po+o, = (1.0&0.1) cm '.

The values of the parameters p~, p2, and e, are not
known theoretically with sufhcient accuracy to be useful
in the present context, and our aim is therefore to
derive a number of relations between them which is
larger than the number of unknown parameters. This
enables us to test the adequacy and consistency of the

"Z. J. Kiss, Ph.D. thesis, University of Toronto, 1959 (un-
published) .

From Eqs. (67) and (68) we obtain the following
expression for the difference between the frequencies
of the infrared and Raman Qz(0) vibrational lines:

[Q,(0)]— [Q (0)]=6.6 '. (122)

E. Second and Third Consistency Relations

We can obtain a second relation between the unknown
parameters from the pure vibrational lines by elimi-
nating the constant o' from Eqs. (67) and (68), giving

Hvza[Qz(0) ]+I'rvR[Qz(0) ]
= vo[Qz(0) ]—299.8pz —170.8po. (124)

The left-hand side has the value 4152.7—4161.2=
—(8.3&0.2) cm ', and we get

299.8pz+170.8po ——(8.3&0.2) cm '.

A third relation can be obtained by considering the
Qz(1) infrared line at very low ortho concentrations.
The frequency of this line is given by Eq. (72). Using
the result (123) and the experimental value'
vza[Qz(1)]=4146.6 cm ' [this line is denoted by
Qz(0) —b, in Ref. 1, but it is shown in Ref. 8 that this
line must be identifzed with the Qz(1) line), we get

300pz+171.4po= (8.6&0.2) cm ',

which is consistent with relation (II). The relations
(II) and (III) cannot be used to derive values for

p, y and p2.

F. Prezluency of the Sz(0) Infrared and Raman
Transitions

The transitions to the bound v = 1,J= 2 complex give
rise to a Raman triplet and a single infrared line as in
the pure rotational spectrum, except that the triplet
is narrower and that the levels are inverted. From

The experimental value of the left-hand side is equal
to' 4153.0—4149.8=3.2 cm ', and we get

o'= (0.49&0.01) cm '. (123)

This value is in good agreement with the value obtained
from the concentration dependence of the Qz(0) and
Q, (1) Rarnan lines. 4 The value given by Eq. (123)
has been used by James and Van Kranendonk" to
calculate the anomalous intensity ratio of the vibra-
tional Raman lines in solid hydrogen. This ratio depends
sensitively on the value of e' and excellent agreement
with the experimental data was obtained. The value of
e' derived here can therefore be regarded as well es-
tablished.
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6'=0.62+0.17—0.03—0.17=0.59 cm '

hg' ——0.61 cm ',

62' ——0.58 cm '.
(12&)

The observed Sz(0) Raman line, ' shown in Fig. 5,
consists of a main maximum at a frequency of 4485.9
cm ' accompanied by a satellite on the low-frequency
side, separated from the main peak by ~0.6 cm—'.
As is shown at the end of this subsection, both theo-
retically and experimentally the Sz(0) infrared line
coincides in frequency with the m= &2 component of
the Raman triplet, within the accuracy of the measure-
ments. We must therefore identify the main maximum
with the m=&2 component and the satellite on the
low-frequency side with the m=0 component. The
calculated separation h~'=0. 61 cm ' is in excellent
agreement with the observed4 value z4' ——(0.6+0.2)
cm '. According to this interpretation the ms= ~1 com-
ponent should lie at the high-frequency side at a sepa-
ration 6&' ——0.58 cm ' from the main maximum, and it
would be interesting if this component could be resolved
experimentally.

The main contribution to the splitting 6» comes from
the crystalline-6eld term e4„viz. , 0.62 cm '. The agree-
ment between the calculated and observed value of
h~' therefore provides con6rmation of the value of g4,

[Eq. (119)j derived from the rotational spectrum.
The difference between the infrared line and the

m= &2 Raman component follows from Eqs. (93) and
(94) ~

1'zR[Sz(0)j—1 R[Sz(0)$~2 ——(Si —Si+) ppp. (128)

The right-hand side has the value (0.21—0.06) X
0.580=0.09 cm '. The experimental value of the left-
hand side is equal to (4486.0&0.1)—(4485.9&0.1) =
(0.1+0.2) cm ', in good agreement with the calculated
value. This agreement and the fact that the other
components are 0.6 cm ' away form the basis of the
interpretation of the Raman triplet given earlier.

Since we have exploited fully the differences between
the Si(0) infrared and Raman lines, we can obtain
only one additional relation from the observed absolute

Eq. (99) it follows that the Raman active levels in the
Si(0) band correspond in the order of increasing fre-
quency to 212=0, &2, &1.The separations in the Si(0)
Raman triplet are hence given by

~1 &R[S1(o)]+2—1'R[Sz(o) ]p= ~ —
722'&

z4 1 R[Sz (0) jul &R[S1(0)j+2 ~ + v&2cy ( 125)

where 6'= —', (3z4'+462') is given by

~5 &pl &pl &oo6'= ——22rp4, +—— —44 —5Sz+ppp. (126)
2 8'g TV)'

Si+ is defined by Eq. (92) and has the value 51+=0.059.
Using the result (119) and the known values of the
quadrupolar coupling constants, we obtain

frequencies of the Sz(0) transitions. It is most con-
venient to use for this purpose the Si(0) infrared line.
Using the values of the parameters determined in the
preceding sections, we obtain from Eq. (94) the relation

z zR[S1(0)j=1p[Sz(0) j—317.5pz —174.F2—p,
' —3.60.

(129)

The experimental value of the left-hand side is' 4486.0
cm ' and the frequency in the gas is 4497.8 cm ' (cf.
Table III), so that we get

317.Sizz+174.8zz2+2, '= (8.3+0.2) cm ', (IV)

and this is the fourth consistency relation.

G. Mean Frequency of the Rotation-Vibration Band

We can derive a further relation from the mean
frequency of the infrared absorption band corresponding
to the double transitions Qi(0)+S,(0). Equation (96)
gives a formula for the mean frequency of the combined.
Si(0) and Q, (0)+S,(0) bands, and an experimental
value of this mean frequency can be obtained from the
observed' absorption profile and the observed intensity
ratio of these bands. The frequency of the Si(0) line
is 4486.0 cm ', the mean frequency of the Qi(0)+S, (0)
band is 4507.3 cm ', and the intensity ratio of the two
is 1/15, and we therefore obtain

(1 )= I'p (4486.0+15&&4507.3) =4506.0 cm—'. (130)

Using this value for (v) in Eq. (101), we get the fifth
consistency relation

316.9pz+172.2@2+—2'42, +2'42.'= (8.9+0.2) cm '. (V)

The uncertainty in the right-hand side is dificult to
estimate but is at least as large as indicated. It arises
partly from the uncertainties in the observed frequencies
and partly from the errors in the calculated ratio of the
unperturbed intensities [Eq. (99)j and the observed
ratio of the actual intensities.

H. Overtone and Double-Vibrational Transitions

In Sec. 8 we have discussed a number of overtone
and double transitions. We first consider the S2(0)
infrared line which has been observed by Gush. " In
the forinula (103) for the frequency of this line, the
coupling constant ppp is given by Eq. (17) and has the
value 6pp=0. 701 cm ', giving

vza[S2(0) g=vp[S2(0) g
—619.9pz —401.1@2—p, —2.36.

The observed frequency in the solid is" (8387.4&0.2)
cm ' and that in the gas is (8406.4~0.2) cm ' (cf.
Table III) and we get from Eq. (131)

619.9@1+401.1p2+2, '= (16.6&0.4) cm ', (VI)

which is the sixth consistency relation.
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The other overtone and double vibrational transitions
discussed in Sec. 8, such as the Si(0)+Si(0) transition,
do not give rise to further independent relations. We
have already exploited the splittings in these lines,
and the mean frequencies are exactly twice the fre-
quencies of the component transitions. With the pres-
ently available experimental data the relation (VI) is
therefore the last relation we can derive.

10. SUMMARY AND CONCLUSIONS

The effects of the intermolecular interaction on the
rotational and vibrational levels in solid hydrogen have
been analyzed by constructing a dynamical model for
the H2 molecule and by characterizing the various
types of interaction operative in the solid by a number
of parameters some of which are calculated theoretically
and some are determined empirically. In this section we
review our method of analysis, summarize the results
obtained by combining our theoretical formulas with
the presently available experimental data, and discuss
to what extent the various theoretical predictions con-
cerning exciton interactions and lattice self-energy
effects are conGrmed by the experimental data.

The dynamical model used for the H2 molecule is the
Dunham model which is obtained by expanding the
intramolecular potential in powers of the vibrational
coordinate (cf. Sec. 2). The model is characterized by
the following six parameters: co„which determines the
harmonic part of the intramolecular potential; the four
anharmonicity constants a&, ~ ~ -, a4, and X, the pa-
rameter measuring the strength of the rotation —vibration
interaction. The values of these parameters are obtained
from the spectroscopic data on gaseous hydrogen, i.e.,
from data which are independent of the spectroscopic
data on the solid. The model for the intramolecular
dynamics therefore does not introduce any "adjustable
parameters" into our analysis, and the model can be
regarded as completely given.

The intermolecular interaction relevant to the present
analysis is characterized by the ten parameters p&, p2,

62 64 tp 62 64 6 and e,'. The isotropic interaction
acts only on the vibrational coordinates and is de-
termined by the two parameters p& and p2, deGned by
Eq. (27), and. by the vibrational coupling parameter e',
defined by Eq. (61) . The anisotropic interaction is di-
vided into two similar parts. The Grst part is equal to
a sum of terms each depending on the orientation of
only one molecule. This crystalline-Geld type of inter-
action is determined by the parameters e2, and e4„
defined by Eq. (44). Two parameters suffice because
we restrict ourselves to the rotational states J=O, 1, 2.
The second part of the anisotropic interaction is equal
to a sum over all pairs of molecules of terms whi. ch
depend on the orientations of two molecules. This
interaction is determined by the three parameters ep,

&„44, defined by Eq. (51) . Our basic assumption is that
this rotational —coupling interaction is given entirely by

the quadrupole —quadrupole interaction and that the
quadrupole moments are equal to those of the isolated
molecules. This means that we put the parameters ep

and e2 equal to zero and that we assume that e4 has the
value corresponding to the quadrupolar interaction,
which is given by Eq. (55). For the matrix elements
of the quadrupole moment between the various ro-
tation —vibration states of the molecules we take the
theoretical values calculated by Karl and Po11.~4 Finally,
the parameters e, and e.', defined by Eqs. (48) and
(94), respectively, determine the self-energy effects
in the So(0) and Si(0) states, respectively, arising from
the interaction between the rotational motion of the
molecules and the lattice vibrations. Theoretical esti-
mates' indicate that e, is of the order of magnitude of
1 cm ' and that e,' is about a factor ~ smaller. The
empirical value of e, turns out to be about 0.5 cm ',
whereas no reliable value of e,' can be obtained. Because
of its expected small value we therefore put e,' equal to
zero. We are then left with the six unknown parameters
pi. p2 E 62 64 and e„and we now summarize the
results obtained on the basis of the assumptions ex-
plained in this paragraph.

(1) The rotational' So(0) Raman triplet of pure
parahydrogen, reproduced in Fig. 1, shows two sepa-
rations, 5& and 62, which are not exactly equal. The
difference A~ —A~ depends only on the crystalline-field
parameter 4&., cf. Eqs. (112) and (113).From the ob-
served value of A~ —d2 we can therefore obtain an
unambiguous empirical value of this parameter: e~, ——

—(0.03%0.02) cm '. This result is discussed after
Eq. (114).

(2) The appropriately weighted average 6 of the
two separations 6& and 62 depends only on the quadru-
polar-coupling constant happ and on the crystalline-held
parameter e4, Lcf. Eq. (115)].When we assume that
Epp is equal to the theoretical value for the free molecules
coo=0.580 cm ', the observed value of 8 = (2.00+0.01)
cm ' leads to the empirical value e4,

———(2.60+0.05)
cm '. This result is discussed just before and after
Eq. (119).

(3) With the help of the values of the parameters
happ, 62, and e4, given above, we can calculate the differ-
ence between the frequency of the So(0) infrared line
and the mean frequency of the So(0) Raman triplet
$cf. Eq. (118)].Using the observed value of the mean
Raman frequency we obtain in this way the predicted
value (355.76&0.01) cm ' for the So(0) infrared fre-
quency, in good agreement with the observed value'
of (355.6&0.3) cm '. A more precise measurement of
this frequency would make possible the determination
of an empirical value of the quadrupolar constant happ,

and this would provide a check on our assumption
that happ is given by the theoretical value for free mole-
cule s.

(4) So far we have used only the differences in
frequency of the So(0) lines which are independent of
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the parameters 1ii, p2, and p, Lcf. Eq. (121)$. Using the
observed value of the mean Raman frequency we obtain
the first consistency relation, Eq. (I), between pi, pp,
and &,.

(5) We have now exhausted the information obtain-
able from the pure rotational spectra, and we turn to
the pure vibrational spectra. The difference between
the frequencies of the Qi(0) infrared and Raman lines
depends only on the vibrational coupling constant e'

$cf. Eq. (122)$ and from the observed frequencies we
obtain the empirical value p'= (0.49&0.01) cm '. This
result is discussed after Eq. (123).

(6) The appropriately weighted avera. ge of the ab-
solute frequencies of the infrared and Raman Q, (0)
lines depends only on yi and 1I& Lcf. Eq. (124)g and
from the measured frequencies of these lines we obtain
the second consistency relation (II). Similarly, from
the observed frequency of the Qi(1) infrared line at
very low orthohydrogen concentrations, we obtain an-
other relation between p, & and p2, the third consistency
relation (III). The effect of the interaction described
by pi and p2 on the Q, (0) and Q, (1) transitions is
practically the same Lcf. Eqs. (68) and (72)j. The
fact that the relations (II) and (III) are almost identi-
cal indicates that the measurements of the Qi(0) and

Qi(1) frequencies are consistent within the experimental
error and also confirms the identification of the Qi(1)
component of the Q branch. s

(7) We next turn to the Si(0) rotation-vibration
transitions. The Si(0) Raman line is predicted to be a
narrow triplet with separations that can be calculated
with the help of the results obtained so far Lcf. Eq.
(127)j. Good agreement with the experimental result,
shown in Fig. 5, is obtained, as discussed in more detail
in Sec. 9F.

(8) The Si(0) infrared. line is predicted practically to
coincide in frequency with the m=&2 component of
the Si(0) Raman frequency Lcf., Eq. (128)j and this
result is also in agreement with the experimental data.

(9) The absolute frequency of the Si(0) transition
gives a relation between pi, p, and c,' Lcf. Eq. (129))
which yields the fourth consistency relation (IV) . We
remark that the Si(0) infrared line, which is the sharp
line in Fig. 4, is shifted by an amount —3.45 cm '

due to the fact that the J=2 excitation in the upper
state is imperfectly localized on the v=1 molecule.
This shift is represented by the terms containing D
and D' in Eq. (94). If this shift were neglected, the
relation (IV) would be clearly incompatible with the
other consistency relations. We can therefore say that
this shif t in the energy of the bound v = 1,J= 2 complex
is confirmed by the experimental data. One can see this
more quantitatively by determining a set of values of
p& and p2 from the consistency relations other than
relation (IV) and using these values in the expression
(94) for the Si(0) frequency. If the terms D and D'
are neglected, a frequency is obtained which is clearly
in conflict with the data, whereas if these terms are in-

Sp(0):

Qi(0):

Q, (1):

Si(o):

17.1pi+1.3pp+s, = 1.0&0.1, (I)

300@i+171pp = 8.3&0.2, (II)
300@i+171pp ——8.6&0.2, (III)

318pi+1751ip = 8.3&0.2, (IV)

Qi (0)+Sp (0): 317@I+1721ip+ P. =8.9+0.2, (V)

SR(0): 310pi+ 201pp =8.3&0.2. (VI)

eluded, agreement within the experimental error is
obtained.

(10) The structure of the Qi(0)+Sp(0) infrared
band shown in Fig, 4 has not yet been analyzed, but we
have derived a sum rule, Eq. (101), for the mean fre-
quency of the combined Si(0) and Qi(0)+Sp(0) band.
This mean frequency depends only on p&, p2, e„and e,'

and using the experimental results we get the 6fth
consistency relation (V) .

(11) The fine structure of the Si(0) line appearing
in the presence of low orthohydrogen concentrations,
shown in Fig. 6, can be calculated using the known
quadrupolar and crystalline Geld constants and taking
into account the imperfect localization of the J=2
excitation. Good agreement with the observed Gne
structure is obtained. This result lends strong support
to our assumption concerning the quadrupolar coupling
constants, as discussed in Sec. 7D.

(12) We now turn to the overtone and double vi-
brational transitions. In the Eq. (103) for the frequency
of the S&(0) infrared line all quantities are known
except p&, p&, and c,', and from the measured frequency
of this line we obtain the relation (VI).

(13) The frequency of the Qi(0)+Qi(1) double tran-
sition at very low orthohydrogen concentrations should
be equal to the sum of the Qi(0) and Qi(1) frequencies
Lcf. Eq. (111)g and this prediction is also verified by
the experimental data.

(14) The splitting of the Si(0)+Si(0) infrared
doublet can be calculated using the quadrupolar cou-
pling constants and taking into account the imperfect
localization of the two J=2 excitations in the upper
state Lcf. Eq. (110)j. The calculated, separation, 2.0
cm ', is in good agreement with the observed value
(2.1&0.1) cm '. The displacement of the mean fre-
quency of the doublet due to the forces depending on

pi and y2 is exactly twice that of the Si(0) transition,
and no independent consistency relation can hence be
obtained from the absolute frequency of the double
transition.

(15) We must finally discuss the six consistency
relations (I)—(VI) between the remaining unknown
parameters p&, p&, e„and e,'. We have already remarked
that ~,

' is expected to be considerably smaller than e„
and since moreover the relations (I)—(VI) are rela-
tively insensitive to the value of e,', we may put e,'=0.
Using rounded-off values of the coefFicients of p& and p2,
we can write the consistency relations in the form
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