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The quantum-mechanical study of the motion of a charged spin--, particle in a uniform magnetic 6eld has a number
of features which are of interest to theorists. Not only can the Dirac equations be solved completely and analytical solu-
tions be obtained, but unlike the Coulomb problem, the expressions for absorption and emission of radiation can be
evaluated exactly with these exact Dirac wave functions without resorting to a multipole expansion of the usual sort
that is made in the theory of the hydrogen atom. In the ultrarelativistic limit, reasonably simple, closed expressions can
be obtained for synchrotron radiation, or photoproduction of electron —positron pairs in a magnetic field. The latter
expression allows one to associate an absorption coefficient with the magnetic field in vacN0, and through the use of dis-
persion theory, to obtain the real (dispersive) part of the index of refraction. The use of exact wave functions, rather
than plane waves, to describe the electron may simplify the anomalous-moment calculations and shed some light on the
computation of the complete power series in n.

I. INTRODUCTIOÃ

This paper is divided into two parts: The 6rst part
deals with the theory of emission of a single photon
by an electron in a uniform B 6eld. This leads to a
quantum-mechanical expression for "synchrotron radi-
ation" in the extreme relativistic (ER) limit, which
can be compared with the well-known classical formulas.
The second part deals with e+—e pair production in a
magnetic 6eld by a single photon of wave number ~.

The calculation is patterned after the earlier work
of Klepikov, ' but differs from it in that we will assume
that the particles undergo circular or helical motion
in the magnetic field rather than the linear simple
harmonic motion assumed by Klepikov. To this end,
we have departed from the gauge choice made by
Klepikov and introduced a cylindrical gauge in a
cylindrical coordinate system, since this seems to be the
natural choice for describing circular or helical motion.

It is shown elsewhere' that the energy levels of a
charged particle in a magnetic field are hyperdegenerate,
i.e., to each eigenvalue of energy, denoted here by I;
there is a denumerably infinite number of eigenstates
of angular momentum nz, where m refers to m= l down
to m= —~. The classical circular motion of a positive
charge in a sense opposite to 8, corresponds to setting
m=/. This hyperdegeneracy of the energy levels plays
a crucial role in bringing the quantum-mechanical cal-
culation of synchrotron radiation into agreement with
the classical result.

A controversy about the validity of the quantum-
mechanical calculation arose in the earIy 1950's, when
Parzen' produced a formula for synchrotron radiation
which differed from the earlier classical results of
Schwinger' and others (including the original work of
Schott published in 1907) . Parzen restricted his compu-

s H. P. Klepi)rov, Zh. Eksp. Teor. Fii. 20, 19 (1954).
2 J. J. Klein, paper read at AAPT meeting, Chicago, Ill. , 30

January 1968.' G. Parzen, Phys. Rev. 84, 235 (1951).
J. Schwinger, Phys. Rev. 75, 1912 (1949) .

tation to transitions between circular orbitals and ob-
tained a formula which differed from the classical
formula only by a factor of exP L

—rs(cos/cs) (Pic/eB)],
where co/c is the wave number of the emitted photon
and 8 is the magnetic-6eld strength. This seems to be a
plausible restriction, since in classical physics a charged
particle can undergo only circular motion in a uniform
magnetic field (neglecting radiation) .

After Parzen's work was published in The Physical
Bedim, a number of people sent letters to the Editor"
in which it was pointed out that by allowing noncircular
orbitals and considering transitions from a given initial
state to an infinite number of final states differing in
angular momentum, but with the same energy, the
total transition probability comes into exact agreement
with classical theory. Because the exponential factor
exp L(—co'/2c') (Sc/eB)$ would greatly suppress syn-
chrotron radiation at high frequencies, it was of con-
siderable practical interest to verify by experiment
which theory was correct. The early results on the
visible radiation spectrum obtained with the 12-in.
Schenectady synchrotron' were not decisive (the expo-
nential factor being nearly unity) and even showed a
slight ultraviolet drop-off, which tended to favor Par-
zen's hypothesis. In early 1952 Corson and Hartman
performed experiments with the high-energy machine
at Cornell which provided a crucial test. ' In fact, one
must allow an infinite number of orbitals in the calcu-
lation, the effect of which is a cancellation of the expo-
nential factor in the 6nal result.

It can further be argued on additional theoretical
grounds, that the exponential factor must be spurious.
By calculating the rate of photoproduction of e+, e

pairs by a beam of photons traversing a strong magnetic

' D. Judd, J. Lepore, M. Ruderman, and P. WolG, Phys. Rev.
867 123 (1952).

H. Olsen and H. Wergeland, Phys. Rev. 86, 123 (1952.).
~ F. Elder, R. Langmuir, and H. Pollack, Phys. Rev. 74, 52

(1948).
s D. R. Corson, Phys. Rev. 90, /48 (1953); P. L. Hartman

and D. H. Tomboulian, Phys. Rev. A877 233 (1952).
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field and using the dispersion relations of light to
compute the real part of the index of refraction from
the absorptive part, Toll' and Erber" obtain the low-

frequency limit of e((p) which agrees with the well-

known nonlinear optical behavior of the vacuum. "An
extraneous factor of exp L(—(p'/2(,') (Sc/eB) j in the
absorption coeScient of the vacuum would spoil the
agreement eGected by dispersion theory. The mathe-
matical argument which removes this factor is identical
with that used in synchrotron-radiation theory.

II. EMISSION OR ABSORPTION OF RADIATION

We use the following wave functions for a charged
Dirac particle in a uniform magnetic field B in the
s direction. They are derived by writing the Dirac
equation in cylindrical coordinates, and assuming that
the vector potential has only the cylindrical (/) com-
ponent

Ap ———2pB.

In Dirac theory, a natural unit of field strength

Bp ——mpc'/eS

occurs, so we express magnetic fields in this unit, just
as the energy is expressed in units of mc'. Omitting the
time dependence, we have

i+F1 (p) exp (—imp)

with

and

o.= L(E+1)/2Ej')', P= L(E—1)/2E]'(', (4)

where p is the cylindrical-coordinate radial vector in
the xy plane (in units of /i/mc), E is the total energy (in
units of mc') = (1+2/8)'" l=1, 2, 3 ~ ~ and m=l,
l—1 ~ ~ ~ I, 0, —1 ~ ~ —ao, and B is the magnetic field
strength (in units of m'c'/efi).

These wave functions do not allow for motion of the
circulating particle along the s axis; hence in our dis-
cussion of emission we assume the photon is emitted
at an angle 8=R-/2. One can allow s motion by suitably
modifying the wave functions (see, for example, Sec.
III), but since we intend to discuss "synchrotron"
radiation, the restriction to emission at right angles to
the field is not serious, most of the radiation being
emitted in the equatorial plane anyway.

According to quantum electrodynamics, the prob-
ability of emission of a single photon, polarized in the
x or s direction, involves the evaluation of the matrix
elements of 0., or u„ taken between two states, desig-
nated by m, l and m', l' (where /'(/), with the photon's
vector potential exp (iH r) sandwiched between them.
(In dipole approximation, this factor is set equal to
one. )

We obtain the following expressions for a, and o,
in =o.'PI(/', m'; l—1, m —1)

+GI„(p) exp t —i(m —1)(/))

0

i(FGI (p) exp L
—i(m —1)(/)]

PFI„(p) exp ( im(t))—

for spin-up
states,

for spin-down
states, (2)

+P'nI(/' 1, m' —1; l,—m), (Sa)

this corresponds to the absence of spin Rip and repre-
sents electric-dipole radiation;

io(,=a'PI(/', m'; l, m) P'o(I(/' 1, m' ——1; / 1,—m —1)—
(5b)

this corresponds to spin Rip and hence to magnetic-
dipole radiation.

2' CO

I(l', m'; l, m) = (2s.) ' (/y dte 't"'+""
0 0

where

F1~(p) =e 'I't )'L1 ~ (t)p(/ —m)!I//21r/!'$1' (3a)

G,„(p)= e-' 't —' 'L1 ™—1(t)f( —m)!8/2'(/ —1)!')I"

(3b)

J.S.Toll, Ph.D. dissertation, Princeton University, Princeton,
N.J. (1952).' T. Erber, "The Index of Refraction of a Magnetic Field, " in
Proceedings of the International Conference on IIigh Magnetic
Iijelds, Cambridge, Muss. , 1061 (M.I.T. Press, Cambridge, Mass. ,
1961).

~ M. Euler and W. Heisenberg, Z. Physik 9S, 714 (1936); R.
Karplus and M. Neuman, Phys. Rev. 80, 380 (1950);A. Minguzzi,
Nuovo Cimento 6, 501 (1957);J.J.Klein and B.P. Nigam, Phys.
Rev. 135, B1279 (1964). (The refractive indices derived in the
last paper are incorrect. )

Xexp $i~p cos &+i(m' m) PjLI~ '—(t) Lt (t)

X f L(/' —m')!//'!'lL(/ —m)!//!'3I'", (6)

where ~ is the photon propagation vector, y is the
direction of emission of the photon, and a, or n, is the
polarization of the photon.

It can be shown that this can be reduced to the
simpler form:

(/ —m)!»p
I(/', m; l, m) =, (—q) (" """(—q)(l' —m')!

xQ, ( ).1(p; p, (7)
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with the abbreviation I(l'; l) for the expression

I(l'; l)=, F (—l', l-l'+1; q) q(' ")/'e 'r(l+1)
I'(l—l'+1)

Xexp I i(l l—')-'2zrj (l'!l!) '" (8)
where q= K2/28.

The following simplification is now possible. We write

(l—2N)!2,= (—q)
"- ' "(—q) (l' —ztz')!

FIG. i. Contour used in synchrotron radiation theory.

/-m ( q)
r P 2/2&

X Q [a'PI(l'; l 1)+—P'nI(l' —1; l)]
rI l—m —r

and a similar expression for O,„except that the last
factor in brackets is

//n'PI(l'; l) —P'nI(l' —1; l—1)).
In order to determine the transition probability for

the process l—+l', we square the expression for n and
O.„then sum over all anal states m', and then average
over all initial states m. The terms in brackets are inde-
pendent of m' and m, and so are irrelevant to the
summation on m', or the averaging process. The sum-
mation on m' runs from m'= l', l' —1 ~ ~ down to —~.

The result is remarkably simple:

(l—222)!
q(/I —m~)

q
—(t—m)

mi=p (l' —2/2')!

X P = e'. (10)
(—q)" l' —ztz'

r~ l—m —r

One can then write

Q ~
n, ~2= e'$n'PI(l'; l—1)+P'nI(l' 1; l) )2 —(11a)

ml

Q ~
n, P= e //n'PI(l'; l) P'nI(l' 1; l —1))2. (—11—b)

tnl

For mathematical convenience, it is desirable to
rede6ne the expression for I so that the above factor
of e~ is absorbed in it. This means that one replaces
the factor e 2 in the original definition of I, Eq. (8),
by e «'.

Since l' and l are integers, the hypergeometric func-
tion above is actually a Laguerre polynomial in q.
We now seek an asymptotic formula for I(l', l) valid
for l', l&)1. To this end, we introduce the following
integral representation of the confluent hypergeometric
function:

1 I'(1—a) I'(c)
F(a, c;s)= e~'(1 t)~ o 'to 'd—t

22ri r (C—a)

the familiar derivative expression for the Laguerre
polynomials after application of Cauchy's theorem to
the pole at t=s, assuming a to be a negative integer,
and c to be a positive integer. )

After setting a= —l', c=l—l'+1, s=q:

I(i'~ l) =exp L
—2q+2(z~) (l—l')3 q" "'" (l'!/l')'"

The contour C runs around the multiple pole at t=0
(Fig. 1). In the problem of synchrotron radiation, it
will be shown that most of the contribution to the
integral comes from the vicinity of the point to on the
negative real axis, with the contour chosen to lie along
the vertical line t= te+ir in the vicinity of that point.
to can be shown to lie halfway between two nearby
saddle points which lie on the negative real axis, and
can be regarded as a point of coalescence of these saddle
points in the extreme relativistic limit.

To obtain an asymptotic formula for I(l', l), it is
convenient to change variables by writing

q=l(1 —cos n)' sech P
and

l'= l cos' n,

following Klepikov's notation. $1n general, there are
two independent parameters allowed in this problem,
namely, l' and q, which may be related to the energy
and direction of the emitted photon. Since we are
restricting ourselves to the direction H=zr/2, there is
only one free parameter l', the conservation-of-energy
condition giving

K = (1+2Ui) '/' —( 1.+2/Ii) ' /'

which determines q.] I(l', l) now involves the integral

(22ri) ' exp lLt(1 —cos n)' sech P

dt
+ln (1—t) —cos' n ln t5 , (14)—

(12) where l—+ co. Note that in the ER limit,

(After making the substitution t=1 t/s, this yields— K~(2Il)1/2L(i)]/2 (P)1/2g
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so that q= «2/28 is approximately /(1 —cos n)'. Thus,
in this limit sech P is nearly unity. The following asymp-
totic analysis is applied to the integral in question.
Let

t'(t) = t(1—cos n) ' sech P+in (1—t) —ln t cos' n. (15)

The first three derivatives are readily obtained. In-
stead of setting f'(t) =0 as in the usual saddle-point
method, we instead set f"(t) =0, obtaining

t=tp ———cos n/(1 —cos n),

which lies on the negative real axis.
We have then the asymptotic expression:

I(/', /) = exp [
——;q+-',(i2r) (/ —/') j q['—")/2 (/'!//!) "'
Xexp (qtp) (1—tp) 't() "+'

the above integral -becomes

(1/2rv3) (u///) I"EI2L
—'/(ap/b) '"j. (21)

If one substitutes the expressions for u and b, and
restores the original variables l' and l in place of n
and p, one obtains the following asymptotic expression
for

[
I(/'; /) [ given by Klepikov:

I(P /) [

—
f

D1/2 (/ ) 1/2j2 qI
1/2

XL/'" —(/') '"j 'KI/2/r—[&3. (22)

The argument of the Sessel function is the rather
cumbersome expression

I

2 (P/) 1/4f DI/2 (P) 1/2j2
q }2/2L/I/2 (P) I/2j —2 (23)

It can be shown that

I ~I/I/q [=(//)' fD"' (/) '3'

X (22r) ' exp i/L f'(tp) r—pf"'(tp) rp] ~ dr, (16)

where we have set t=tp+ir in the contour integral.
The prefactor of the contour integral can be simplified
considerably through use of Stirling's formula

/~)( 22r)/I 2/, I/, —e 1 valrd for /))1

The result is

exp t'2 2'Ir(/+l') g (1—cos n)/(cos n) I/2.

Turning now to the integral, we find

f'(t!2) = —(1—COS n)'(1 —SeCh P) = (I, (17a)

f"'(tp) = 2 (1—cos n) 4/cos n = 2b. (17b)

Thus the integral has the form

(22r) ' exp P i/(ar+ sbrp) j —dr. -

The reason for running the contour through io, parallel
to the imaginary t axis is now evident. The function
rI)(r) =ar+ —prbrs has the form shown in Fig. 2. The
slope u, near r=0 is very small, since in the ER limit,
as noted above, (1—sech P)p0. The integral is there-
fore a highly oscillatory function having a stationary
phase at $0, provided the contour runs in the direction
chosen above. Since / is very large, most of the contri-
bution comes near r=0. Thus

(2 ) 'f exp [—il( b+ b') e. Id'-

with the same argument for E2~/p as in Eq. '(22).
One may now employ certain identities deriv'ed by

Klepikov Lthese are Eqs. (1.26)—(1.31) of his paper),
which can be derived from the properties of the con-
Quent hypergeometric functions. We quote three of
them here' to' show that all of the integrals involved in
n, a,nd' n, are expressable in terms of I(P, /) alone:

(//') '/'I (/' —1, / 1)—
=—(/+/' —

q) I(/', /) qfBI (P, /) /I/q—j, (25a,)

i(/q) '"I(/', / —1)
= 2(q+/ —P)I(/', /)+qt'BI(/', /)/Bqj, (25b)

i (/'q) '"I(/' —1, /)

=-,'(q+/' —/)I(/', /)+qLc/I(/', /)/Bqj. (25c)

In this manner, all of the integrals needed can be
expressed in terms of I(/', /) or its derivative with
respect to q.

The remainder of the calculation is straightforward.
We discuss only the extreme relativistic case, whereby
the normalizing constants n, p are equal to 1/v2, and
hence

[ n. ['= —,'[ I(/', / —1)+I(/' —1, /) y, (26)

[ n. ['= —4'[ I(/', /) I(/' 1, / 1)$2—. —(2—7)

In the corresponding classical calculations, the. radi-
ation at tt=pr/2 is completely linearly polarized in the

cos /(or+ 21 brp) ~ dr. (1-9)

Using the well-known formula

cos (tx+x'/3) dh=-s, (t)'"E 2(-2t'") (20)
FIO. 2. Behavior of the function p)b (r) vs r



J. J. KLKIN Charged Particle irs a Uniform Magrtetic Field 527

pr
——[V/(27r) 'j («'dQ „/Sc) . (34)

Therefore

dw= [4 'j(2 )') (e'«dQ„///t) ~ -', (ce.'+n.'). (35)

The intensity of the emitted radiation is dI= dm Pic~:

dI= (e'c 2/) sr~ ~~ (cx,s+cs ') ~ «'2sr sin gdg. (36)

The factor of ~ arises from averaging over polarization
directions:

(dI/dft)e /s e'c (eB/fi, c) ~ (——Pic/eB)K ' (cs +ce )

(37)

The conservation-of-energy restriction implies that

2'K'(Ac/eB) ~[P" (l')'"y—
in the ER limit.

After inserting the previously derived expressions for

plane of circulation of the charge, since the electron
in the usual classical treatments is regarded as having
no magnetic dipole. Here, however, we see that a
contribution

I cs, I' arises from the magnetic moment
of the Dirac electron.

H the identities (25b) and (25c) are used and the
extreme relativistic limit obtained, Eq. (26) reduces to

I
ce I'= s t (l l ) /(»') '"[BI(l

~ l) /c//I] I' (2g)
Thus

(i) 1/2+. (p) 1/2 s

A Es/s . 29
2B(»') '

A similar calculation for 0.,' yields

(l) //s (P) //2 2

I *I'=43 2B(») /

The electric-type radiation intensity polarized in the
x direction greatly exceeds the magnetic-type (due to
spin fhp) polarized in the s direction, in conformity
with observation. Summing over polarizations, we ob-
tain

1 1 (l+l')
2 3sr' 4B'[(»') '/sg'

the argument of the Bessel function being

-'[l"'—(P) "'/(«') '"j[1/(2B)'"3
In deriving the radiation law, one starts with the

formula (Fermi's golden rule)

dw= (2sr///i) I
ff I'pf (32)

where w is the probability/time for emission or ab-
sorption of a photon

U= (e/V'") (2srIrtc/K)'/'( n e), (33)

with e, x as photon polarization and propagation
vectors. As usual, pf. is the density of 6nal states and
may be written as

We obtain
st=co/o/Q —[P/' —(P)'/sj 2P/'

dI& eB 1 n Bp
e2C ~ ~ ~ E]'

dndo Pic 3x' 214t2B'

(40)

(41)

but 2/B/Be~(1 —P') '.
e8 1

~
28

e2. . .1rt2, (1 P2)3
dnd~ ~ 3x'2 Bo

2 P/s (P)'" 1—
X&

3 (»') '/s (2B)s/'

(42)

The argument of the Bessel function can be rewritten
as

s&(1—&')'" (43)

It can be shown that the following identity -follows

from a famous formula due to Watson. "
As n~~,

&s/s[sst(1 —P')'"j-[srv3//3(1 —/3') V '(rsvp) (44)

Using this and writing Be as stt'c /et', one obtains

dI~/drtd8= (e'B'rt'/est'c') (1 P') Jo"(r—tP) (45).
(note the cancellation of fi and sr&3). This agrees with
the mell-known classically derived result. "

III. PHOTOPRODUCTION OF ELECTROH-
POSITROH PMRS IH A MAGNETIC FIELD

Pair production can be thought of as absorption of a
photon of energy A,c~, thereby raising a negative-ener'gy

'2 G. N. Watson, A Treatise ON Besse/ Iienchom (Cambridge
University Press, London, 1944)', 2nd ed. , pp. 248-252.

"L. Landau and E. Lifshitz, The Classical Theory of Fields
(Addison-Wesley Publ. Co., Inc., Reading, Mass. , 1952), p. 216.

I
n, I' and

I
ce, I', one obtains

dI eB, (Bo/2B) 2

= esc —[p/s —(p) '/q'
ES g=~/2 Ac 3x'

l+P
E2 32

[(»')'"3' ""
where the argument of the E2~3 function is, in the KR
limit,

R[il/2 (P) 1/2/(»~) 1/21[1/(2B) 3/sg (3g)
To compare this result with the classical formula for

synchrotron radiation, we define the order n of the
harmonic by means of the relations

&o~2B[ii" (l') '"j—and &oe~(2B) '"/2P". (39)
coo is obtained by setting I = 1—1. It is identical with the
frequency of revolution of the charge, or precession of
the particle's magnetic dipole axis, in the magnetic
6eld. ~ is the radiation frequency, which, in the ER
limit, is predominately a very high-order harmonic of
G)o .'
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After squaring the matrix element of 0 and summing
over the initial and final spins s, s'= ~1, one obtains

E'E—&'t—k,'k, t't
PI(l', l 1)—'+I(l' —1, l)'j

t /B(t't) 'I'+, 2I(l', / 1)I(l—'—1, l). (50)

FIo. 3. Pair creation by a photon traversing a magnetic field.

Similarly

P(t' l)~+I(t' —1, l—1)2)
E'E /'t+k—,'k, l /

t /B /'l 'I'
2I(/', l) I(l'—1, l 1). (—51)

electron across the 2mc'-gap into a positive-energy
state. We assume the incident photon travels perpen-
dicular to the magnetic field, for example, along the

y direction. The positive-energy electron, and the va-
cancy in the negative-energy "sea" (or positron)
acquire momenta of equal magnitude during the photo-
effect, travelling in opposite directions along helices
whose sense is opposed to that of the Geld direction B.
The photon may be polarized either in the x or s di-
rection (Fig. 3).

However, the motion along the s direction forces us
to use Dirac wave functions of a more complicated
structure than those used in Part II. The final result is

inAF'„(p) exp (—i~)

Considerable simplification results in the ultrarela-
tivistic regime, that is, where e —e+ pairs have energies
greatly exceeding mc'. One again introduces new vari-
ables cx and p via the relations:

q= /(1 —cos n) ' cosh P,

& =E cos2 0.

In contrast to the calculation in Part II, we now have
two independent variables l and l' (or n and p) to
deal with.

Before proceeding to the ultrarelativistic limit, let us
take a look at the contour-integral representation for
I(l', l).

iPAF' (p) exp (—i~)st

+BG(„(p) exp f i(m —1)@)/—

( k ) nBG'„(p) exp f—i(m —1)y]s

I,]/2
(46)

I(l' l) =e "e -pxLi-'~(t —t')] g" "»'(/!/t!)'"

y (27pj) ~g«—(1—$) ~t
—«'+»dt. (52)

t=/p ——cos a/(1+cos n),

The point where the integrand has a stationary phase

and (3b).
of the sort discussed earlier, i.e., where f"(t) =0, is now

The normalization constants 3, 8 are

n =P(E+t) /2E)"

A = L(k+skg)/2k J", B=L(k—ska)/2k)'12 (48)

p= $(E—t)/2E]'l2, (47) which lies on the real, positive t axis between 0 and —,

(Fig. 4).
After some lengthy algebra, one obtains the asymp-

(This B should not be confused with B standing for
magnetic Geld strength. ) /= ~1 depending on whether
the state in question is assumed to be of positive or
negative energy. s= ~1 depending on the electron-spin
orientation relative to the Geld direction. E'=1+
2/8+kg (in natura1 units), and k'= E' 1=kg'+2/B. —

As in Klepikov's work, the resulting expressions
which we obtain for a, and n, are now rather compli-
cated, e.g.,

iu, =n'A 'PB/I(t, / 1)+n'B's'PAs/I(/' 1, /)— —

+P'A's't'nBsI(t', l—1)+P'B't'nA (/' —1, /). (49) FIG. 4, Contour used in pair-creation theory.



thus
ll= (1+218+k 3)'/3+ (1+2p8+k 3)»3 (55a)

k33= —,'/l' —(l+l') 8—1+[(l—l') 383//l'j (55b)

which is necessarily &0.
The domain over which the integral on l, l' must be

carried out is rather complicated. Klepikov carries out
a further change of variable

totic formula:

(1+cos n)I(l', l) ~exp [i-'33r(l—l') j.
(cos 43) '/3

(ttsw»3 g8) 3/3

X I

—
l

&»3 3l —
I

(53)
3rvS &b) b)

with
a= (1+cos a) 3 (cosh P—1),

b = (1+cos n) 4/cos n.

Having obtained an asymptotic formula for I(l', l),
one can then express the squared and spin-summed
matrix elements of 43, or n, in terms of (l', l) by use of
Klepikov's identities, integrate over all values l, l' of the
positron and electron, hence obtain the absorption prob-
abilities for radiation polarized in the x or z direction.
However, l and l' are subject to an important re-
striction. We note that the incident photon energy
must equal the sum of the energies of the electron
and positron. That is,
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lowest order in 1//43, the results

lr' 4 8.ls=
~

—cosh' ss 2+—sich' ss cosh' ss cosh' o)
e,eI K

X l
I(l', l) l'+4 cosh' w. 2 sinh' w, (59)

aI(l', 1) '
Bg

s,eI

(4 8 .=
l

—- 2 cosh' w cosh' u+ —sinh' w cosh' w cosh' u
l)K

Xl I(l', l) l3+3 16 cosh4w ' . (60)
ciI(l', l)

Bg

Use has been made of the fact that we need only the
lowest-order terms in 1//43, higher terms being neglected
in. the ER limit. To a good approximation, the cross
terms involving products of I(l', l) times its derivative
cancel out.

We quote here the anal results for the spin-summed,
squared matrix elements, after expressing I(l', l) and
its derivative in terms of Ej/3 and E2/3.

g l
43, l'= (32/33r334) [(sinh' w cosh' u+ 1) cosh4 w

Xcosh uZ»3 +Smh W'Cosh W Cosh uE3/3 ]s (61)

g l 43, l
= (32/33r'a ) [(sinh' w cosh' u+ cosh' u)

e,eI

cos n=e ',
cosh p= 1+(4//4') cosh' w cosh' u.

(56a)

(56b)
Xcosh w cosh uE»3 +cosh w'cosh 'w cosh uE3/3 ).

(62)
The domain of integration on dmdg after the trans-

formation:

dldl'h J'dadP —h Jdwdu

is then simply the first quadrant of the m—u plane
(J is the Jacobian).

The expression for I(l', l) is now

l
I(l', l) l

= 2 cosh w (cosh u/3rv3n)

XIh3/3[(4/3/48) cosh' w cosh' u). (57)

Likewise, one obtains

BI(l', l)

Bq

cosh I=2 cosh w.
ll 3K

XE2/3 cosh' m cosh' I . 58
3KB

Furthermore, the expressions for

El~*I' and El~*I'
e,eI s,s~

which were derived earlier, can be expressed in terms
of the new variables m and I also. One obtains, to

Furthermore a summation over l, l' and k3, k3' must be
performed. We write

L &l3

kg kg~ 23r)

I /2

—L/2

sin (ke' —k3) —',L
exp ( ik3's) exp—(ikes) ds=

k3' —k3 PL

(64)

The most convenient way of describing photopro-
duction of e+e pairs in a magnetic fIeld is to treat the
6eld as an absorptive medium. The attenuation coe%-
cient is evidently

43(lo) =w (V/c) E,
where w is the usual transition probability/time given

by Fermi's golden rule, c/V is the flux of photons,
and E is the number of negative-energy electrons/
volume. Therefore

2x' e 2&Ac 1 V eB
Ce(CO) =—~ —~ (43 e)'8(E+E'—S),~ —~

V mc2 c 2xkcL
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Thus the dka' integral is

2 sin2 g 2xdn=—I g' I.'

with the condition k3 = 43 arising in the limit L—+ ~.
The attenuation coefficient is

e' 6nc'& 8 mc
o. (pi) =—

I ~

—— dkp Q (e e)'5(E+E' —~).
fic & E. j Bp 5 ~,, p

(The quantities to the right of the integral sign are
expressed in the customary dimensionless form. )

Using the well-known rule 8[f(x)]=[1/~ f'(xp) ~]X
b(x—xp), where f(xp) =0, we write

fi(E+E' ~) = (E—E'/akp)

)&5Ikp&[»i~' —(t+1')8 1+ (1——1')8'/~']"'I (65)

The summation on /, I' becomes an integration:

l'(l
K cosh I sinh I

Q—+ dtd1'= dudw, , (66)
l, l~ l«l cosh' m

/

Finally, the attenuation coeKcients for photons
polarized in the x and s directions (that is, in the
directions perpendicular and parallel to 8, respectively)
are:

3

mcus

4
p~p d3)BN

Bp 3KB 0 0

&( [(sinh' w cosh' u+ 1) cosh' uEIip'

+sinh' w cosh' uEp~~pP], (67)

3 mcB 4)
nii (pp) =—,~ cx ——

i
dwdu

fi Bp 3~8&

)&[(sinh' w cosh' u+ cosh' u) cosh' uEI~pP

+cosh w cosll u'Epip ], (68)

where the argument of the K functions is

(4/3»8) cosh' w cosh' u,

or in ordinary units,

-s(mc'/E) (Bp/8) cosh' w cosh' u. (69)

(An additional factor of 2)&2=4 has been inserted in

the above formulas because k3 may be positive or

(1) Magnetic fields of the requisite strength for pair
production are found in nature in the vicinity of the
elementary particles. A neutron, for example, has a
magnetic-dipole Q.eld which could allow pair creation by
a photon passing nearby. Within a radius of 6 fermi
from the neutron core, there are magnetic fields which

equal or exceed the critical field 80 of 4.4X10" 6,
required for a reasonable chance of pair production.
The incident photon must have energy in excess of
2mc' in the first-order theory given. above. The photo-
production process would be analogous to pair creation
by a photon in a Coulomb field.

(2) The radius of curvature of the circular (or
helical) trajectory in a uniform field can easily be seen
to be:

R= (6/mc) (Bp/8) (P»/mc),

where the momentum at right angles to the field is
quantized according to

Hence
(f /mc)'=2~(8/Bp)

R= (5/mc) (2tBp/8) Ii'.

From a quantum-mechanical point of view the radius
would be determined by the maximum in the charge
density:

F(p)'-(pBp') ' exp (—pBp').

The maximum in E(p)' occurs at p'=21/8, or in the
usual units p'= (fi/mc)' ~ (Bp/8) ~ 2/, in agreement with
the classical result.

negative, and the electron's angular rnornentum /' may
be )l, as well as (l.)

Although the electron and positron have equal mo-
menta in the s direction, their transverse momenta
may diGer. If the transverse momenta are equal, then
the pair are formed at 180' with respect to each other,
and transverse helices of equal pitch. If the transverse
rnornenta are unequal, the helices described by the
particles have unequal pitch, and the initial angle be-
tween members of the pair deviates from 180' by the
amount

arctan [kp/(2/'8) ' ']—arctan [kp/(2/8) 'I']. (70)

IV. COMMENTS


