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In this paper, the second-quantized theory of free particles and antiparticles, with any spin and with internal SU(2)
or SU(3) symmetry, is developed. All spins and both statistics are treated in a uniform way in terms of well-de6ned
complete sets of functions that are orthonormal with respect to a Lorentz-invariant positive-definite inner product.
Explicit formulas for field operators of energy, momentum, etc., are given, including three-vector, four-vector, and tensor
operators for polarization. It is shown that causal space densities of physical quantities exist when the correct spin-
statistics connection is used. The Geld operators for systems self-conjugate under C, G, and GI' are treated and self-

conjugate multiplets of SU(3) are set up.

I. INTRODUCTION

Recently Joos, ' Weinbergs and Weaver et al.' gave
a description of the free massive particle with any
allowed spin s=0, —'„1,~ ~ ~ in which there is a close
parallel with Dirac's treatment for spin —,'. Further
developments in the description were made by Mathews4
and by Williams et al.'

The Joos—Weinberg formulation uses a 2(2s+1)-
component wave function that must satisfy two mani-
festly covariant wave equations, one of which is the
Klein —Gordon equation. The Weaver —Hammer —Good
formulation uses a 2(2s+1) -component wave function
that has a well-defined covariant, but not manifestly
covariant, Hamiltonian. The allowed states form a
complete set and a positive-definite invariant integral
exists.

Each description can be quantized in the usual way,
introducing creation —destruction operators for each of
the allowed states. Weinberg showed that the usual
spin-statistics connection holds for his quantized wave
function. Weaver' and Mathews and Ramakrishnan~'
studied the quantized Weaver —Hammer —Good wave
function and Mathews, especially, emphasized that it
is not causal for integer spin.

The purpose of the present paper is to carry the
theory of the quantization process on further and
especially cover these questions:

(1) What is the connection between the two quanti-
zation techniques) The answer is that they are equiva-
lent. The Weaver —Hammer —Good field operator is the
sum of independent-particle creation and destruction
operators times a complete set of functions for the
particle and antiparticle. The Weinberg field operator

*Work was performed in the Ames Laboratory of the U.S.
Atomic Energy Commission. Contribution No. 2207.
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coincides with it for half-integer spin and is related to
it by an operator that has an inverse for integer spin.

(2) What are the field operators for energy, mo-
mentum, polarization, etc.P Formulas are given that
apply uniformly for all spins and both statistics. It is
shown that causal space-densities of physical quantities
exist when Fermi statistics are used with half-integral
spin and Bose statistics with integral spin.

(3) How is the quantization process extended to
apply to particles with internal SU(2) or SU(3) sym-
metry?

(4) What are the field operators for self-conjugate
multipletsP States that are self-conjugate under C, and
multiplets that are self-conjugate under G and GI' are
treated. Self-conjugate multiplets of SU(3) are also
set up.

(5) What are the quantum numbers of the single-

particle states of existence? As well as the momentum,
baryon number, and parity, the polarization quantum
numbers and the quantum numbers that are introduced
in the self-conjugation processes are shown.

Explicit formulas for all the fields considered are
given in terms of a well-defined complete set of functions
that are orthonormal in the sense of a positive-definite
Lorentz-invariant integral. The field operators are ap-
propriate to be substituted directly into an effective
Hamiltonian for a reaction. From the point of view
developed here, there is hardly any difference con-

ceptually in working with spin s than with spin ~.
Only particles with finite mass are considered; the

case of zero mass, any spin, was treated to some extent

by Hammer and Good' and by steinberg. '

II. NOTATION FOR LORENTZ-GROUP
DISCUSSION

The homogeneous Lorentz group is defined by the
transformation properties of the coordinates of an event,

+P ~jN V+V7

~I VPX= ~Vga= ~V)

' C. L. Hammer and R, H. Good, Jr., Phys. Rev. 111, 342
(1958).

~e S. Weinberg, rphys. Rev. 134, 3882 (1964).
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ag ——8,;+ (y —1)v;v;/v',

C;4= —u4, = ZyV, )

(la)

(lb)

and x4 is A. For a pure Lorentz transformation with
relative velocity v:

They satisfy the commutation rules

[j,, k,]=0,
L j' jt)=ie'to je

[k;, k;]=ie;si,kA,

(1la)

(lib)

(llc)
844 (lc)

a=exp [i(tanh —' v)v t/v),

a=exp [i8 ~ s],

(3)

(4)

where s and t are four-by-four matrices with com-
ponents

(s') tA = —ie'sv, (Sa)

(s') 4= (s')4t= (s')«=o,

(t,);,=(t,) =0,

(t') .4= —(t') 4s
=8'..

(Sb)

(Sc)

(Sd.)

The general transformation, continuous with the iden-

tity, can be considered to be built from these two
types and may be written as

x'= exp [i(8 s+ta t))x, (6)

where 6 and ~ are the six real parameters.
The matrices 8 are Hermitian and t are anti-

Hermitian. The commutation rules are

Si) Sj =Z6sjkSk)

[s,, t,]=ie;;gtA,

[t,, tt]= ie,,AsA)—

(7a)

(7b)

(7c)

where y is (1—v') 't'. For an angular displacement 8,

tt;;= cos M,;+(1—cos 8)8,8;/8'+ sin 8e,;A8A/8, (2a)

C~= C4s= 0)

844 —1e

Alternatively these two types can be written in expo-
nential form as

so the finite-dimensional representations are simply
those of SU(2) XSU(2). I.et j, k denote also the
irreducible angular-momentum matrices for angular
momenta j, k. Thus j is (2j+1)-square and has eigen-

values —j to +j, where j=0, 2, 1, ~ ~ ~ . Also let x;,'
denote a column matrix with rows labeled by js= —j
to j. Then pj,jpk, k form a basis for Lorentz group
representations and the transformation rule for these
objects is

(xtx')'=exp [i8 (j+k)+~.(j—k)])~tx"

=exp [(i8+ta) j]xt exp [(i8 )ta—.k])t". (12)

The representations ( j, 0) and (0, k) have the rules

X'=exp [(i8+ta) 'j)x (13)

x'= exp [(i8—ta) k]x. (14)

They correspond to completely symmetric spinors with

2j upper undotted indices and 2k lower dotted indices
in the usual notation.

If such a representation ( j, k) exists at every event
in space-time, the system is described by functions

p;, ,L,
' "(x) which have the transformation rule.

"(x') =exp ['i8 ~ (j+k)+to (j—k)]P'"(x). (15)

These are referred to as the spinor components of the
field although some types are just tensors.

Operators s„„arestill well defined by Eqs. (10) in

terms of the angular momentum matrices j and k,
considered to act in different spaces, and they satisfy
the same commutation rules as the four-by-four s„,.
These rules are also fulfilled by

l„„=i (sc„8/B—x„x„8/Bx„—)

and these define the Lie algebra of the group. The
algebra can be given in a more concise form by defining

and by J„„=t„„+s„,. (17)

Sij= &ijkSk)

S;4———Zt;, (8b)

In terms of J and K defined by
1J;= ~~,jkJ,k,

K,=iJ;4,

(18a)

(18b)
trIt) (8c)

in which case the commutation rules can be written as

[s„„,sr )= i (8»s„,+b„,s» h„,s„, b„,s„,)—. —

The finite-dimensional representations of the group
are found immediately by considering the Hermitian
matrices

the primed spinor functions are found from the un-

primed this way:

P" "(x)= exp i (8 J+ ta K)P' "(oc) .

For a displacement of the origin

' gttt Sp dp)

j,= i2(s,+it,), -

k,= —,
' (s,—it;) .

(10a)

(10b)

the spinor components are chosen to satisfy
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This means that square and are given by

where
P'(x) = exp (i d„p„)tP(x),

Pll = 'i 8/BSP

(20) (o 0) (s 0)

(0 s) (o o)

(o i)
(30)

E1 O)

is the displacement operator. The inhomogeneous
Lorentz group, consisting of the homogeneous trans-
formations plus displacements, has the Lie algebra

LJ„„,J„j=i(8„+„+B„J„b~—„8,lJ—„,), '

(21)

LPl J &3=i(&l&P 4 P&) (22)

Lp. p 3=0 (23)

From all the functions iP" k(x) that can be produced
with the allowed values of 6, ca, and d„,one can choose
a complete set. Then they form a basis for an in6nite-
dimensional representation of the inhomogeneous group.

To include space reQection

The Lorentz group operators are P,= i—8/Bx„and the
J'„„ofEq. (17), with s„„givenby

(sk 0) (s, 0 )
'Ssj = &ij& ~

S~=
(0 sk) (0 —s~)

III. THE SINGLE-PARTICLE THEORY

In this section, some of the previous results are
summarized in the form needed to make the 6eld
quantization.

The matrices used are 2(2s+1)-square and are de-
fined as follows:

so that

E';4——P4;= 0,

x'= I'x.

844—I
p

x = —x'I
'b7

one introduces the matrix I', with components

(s 0)
a=s-'

I

(0 -s)
0)

Vk=l
&01)

(o

)
( o c)

C=I
(-c. o)

(s 0)

E,o s)

(31)

In terms of the four-by-four matrices one Ands that

PsI '=s,
I'tI '= —t,

PjP-'=k,
I'kI '= j.

(268)

(26b)

(26c)

(26d)

In order to give I' meaning where j and k are identified
with angular-momentum matrices, one considers func-
tions of the type ( j'k') Q+ (k'j') and defines P by

Here C, is a unitary matrix such that

C,s= —s*C,. (32)

CeC '= 0.*,

CsC—'= —s*,

CpC '= —p*,

C C (33)

For spin 0, C, is defined to be equal to one. Unless
otherwise speciied, the standard representation for the
angular-momentum matrices s, with s3 diagonal and
elements of s~ real and positive, is used. In- that case
C, is exp (ivs&); evidently it is real and C,2 is (—1)".
The matrices satisfy the equations

(27)
kfl" ') Ex'"') Following Ref. 3, one starts from the allowed states

of the particle and antiparticle in the rest frame. The

(Questions of phase factors are taken up later ) The Hamiltonian is assigned to be mP and the Polarization
operator to be Ps in that frame. Eigenfunctions vR, , k

exist such that

Eo 1')'
(v' 0)

(0 )')
(28)

PVRlk EVRekl

ps 'evRlk = ~VR,k,

(34a)

(34b)

so that, for example,

(~jlk/) (glflkl jl) (~jlkl)

(flklP) (jl j lkl) (gklrl)

Thus, representations of the Lorentz group including
space reRection are provided by base functions of the
type (jk)O+(kj).

The most economical way to treat a particle of spin s
is to use (0, s) Q+ (s, 0) . Then the matrices are 2(2s+1)—

where k is &1 for the particle/antiparticle, e is a unit
vector in an arbitrary quantization direction, and k
ranges froni —s to +s. The functions may be chosen
normalized such that

&Rek &Re'k' ~me'~kk' (35)

The relative-phases may be adjusted so that

(CVR, e,k) & VR,—l,kl (36)

Ps~vR„,k=fs(s+1) —k(kate) J12VR„,k~, . (37)

Here s+ is s.f+i s g, e, f, and g forming a,n orthogonal
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right-hand set of unit vectors. One can see that this
is a permissible choice of phases because the equations
for e=+1 serve to define all the viz, & from any of them.
The equations for e= —1 can then be derived from those
for e=+1. For a given spin, this determines the func-
tions eg,~ except for a factor of the form e", 8 real and
independent of e and k. This choice of phases. is different
from that used originally in Ref. 3; it was suggested
by Mullin et al." to simplify charge, conjugation dis-
cussions. There is another consideration which suggests
a useful choice of this number b. Since j5 anticommutes
with )(l and Ps, yzvtz. ..z must be proportional to viz. .. z.
In order to be consistent with Eqs. (36) and (37), the
relation must be

vzvtz, ~,z=e" (—1)' '
viz, —~,—z.

Let the arbitrary number 8 be chosen so this relation is

vzvtz, , z= —(—1)'+"viz . z (3g)
The functions v&,& are then completely determined
except for a single over-all plus or minus sign.

The wave function in the rest frame is

fit,@=vtt, z exp ( 1emtst)—
and the equation of motion is

mP&tt. z= z &fr.z/(tttt (39)
The wave function is chosen to be (0, s) 0+(s, 0).

Then the function in the laboratory frame is found by
I,orentz transforming from the rest frame. Let g and E
be the physical momentum and energy of the particle
or antiparticle so that E is positive and q/E is the
velocity. Equations (13) and (14) apply with 8 zero
and (a having the value (—q/q) arctanh (q/E), as seen
from Eqs. (1) and (3). The transformation is

)pr. = exp [s (r (q/q) arctanh (q/E) ])pit,

and wave functions for a particle or antiparticle of
definite momentum q and polarization k are

)pr, = exp [s n (q/q) arctanh (q/E) ]vtt, z exp (iraq x ),
(4o)

where q is (q, iE) . The symbol p will be used for the
operator —i V and its eigenvalue, here eq. With normali-
zation appropriate for the invariant integral discussed
below, the plane-wave eigenstates are

(p„z= (2sr) zt'm'E 'tz exp [sc n. (y/p) arctanh (p/E) ]
Xvtr, z exp [i(p x—eEt) ]. (41)

The general laboratory-system function is found by
summing over all the quantum numbers with arbitrary
coeKcients, say E "zA,&(p)dp,

r(*.0=(& ) "~ fszz 'Z~. (r)'
)&exp [se n (p/p) arctanh (p/E)]vst, z

)(exp [s(y x—eEt) ]. (42)
» G. J. Mullin, G. L. Hammer, and R. H. Good, Jr. (private

communication) .

Foldy's wave function'2 is defined by

e(x, t) = (2 ) "'f sp e'+ -g Aa (p) e~,
dc

&&exp [i(p x—eEt) ]. (43)

It satisfies the equation of motion

EP(ti= i 8$/Bt, (44)

where E is the operator (p'+m')'t', the positive root
to be taken. The relation between the two functions is
written as

((t (x, t) =m'E't'S y-(x, t). (45)

An algorithm for calculating 5 was given in Ref. 3
and results quoted for s& —',. Williams et al.' developed
general polynomial formulas for S and S '. Here their
in6nite series forms,

S=cosh (ce s.p/p) —7zp sinh ((e s p/p), (46)

S '=sech (2o) s p/p) St, (47)

where (e is arctanh (p/E), will be used. These are
easily derived from the series for the exponential in
Eq. (42).

The Hamiltonian for )P, such that

H)fr =s 8$/Bt,

is seen from Eqs. (44) and (45) to be

H=SEPS '.

(48)

()p(t) )p(n)) = dX (t)(t) &(t)(~) (51)

Alternate forms are

(r(l) e( I) —gg- f sx $0&'te(s-I) 'ts-y( 1

dx (»~Zsech 2 s-I

m—2s dx (0)1 ~ (vl)

dg(t) cl(P(n) )= —-',im-" dx y "' g' ~, (52)—
Bt )'

» L. L. Foldy, Phys. Rev. 102, 568 (1956).

Detailed results for s&-,' are given in Ref. 3 and general
polynomial formulas in Refs. 4 and 5. In terms of the
hyperbolic series the Hamiltonian is

H=Ep sech (2o) s p/p) Eye tanh (2o) s p—/p). (50)

H is evidently a Hermitian matrix. Also H'=8' so
each of these Hamiltonians gives a square root of
(—Vs+ms) .

The positive-de6nite Lorentz-invariant integral be-
tween two functions (P(t) and )P(") may be defined by
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where P is )PtP T.he eigenstates of Eq. (41) can be
written as

For the time refiection

xg xg)

)Idv, ),= (2v.) 81'm'E I12Svz, ), exp Li(p x —SEE) j, (53) the rule

and. thus they are normalized in the sense that y (*)=&,Lc&,Py(*)3 (59)

)('exp (i6 o)) .—s 0
lit(*) (55)

exp (ie+to) s)
In Ref. 3, the covariance of the system was demon-
strated by showing that Eqs. (42) and (55) combine to
make

)P'(x') = (2v.) @'m* ()tp' E' ' P A e'(p')

&(exp Lse n (p'/p') arctanh (p'/E') Jvz, i,.

&(exp [i (p' x' eEttt) j, —

where the transformation rule for the expansion coef6-
cients is

A, I'(P') = Q Lvz, it exP (i 2 s) vz, e]A,), (P) (56)

and where
I

pt =ot ~pv.

For an angular displacement of the space axes, Eq. (2),
ca is zero and is 8. For a pure I.orentz transformation,
Eq. (1), 6 is zero and

eI=(tanh 'v) v/v,

p xv
I p xv

I2= 26 arctan
1 p xv

1 L1+(1—v')'"j(E+m) —ep. v

(57)
For the space reflection

Eq. (30) shows that the matrix I' is P, so the suggested
wave-function transformation rule is

4''(~') =n~w (*). (58)

The equation of motion, Eq. (48), is covariant by this
transformation if g~ is a constant or e times a constant
where e is the operator E 'i B/Bt.

(it".~ 4' "~ ) =~- f'» 5(p—p') (54)

From Eqs. (49) and (53) it is seen that the functions
)Pv, t, are eigenfunctions of H with eigenvalue eE. It is
clear that they make a complete set for expanding a
2(2s+1)-component wave function at any given time,
since H is Hermitian. Also they are eigenfunctions of
O.e with eigenvalue k, where the polarization operator
0 is defined by

O=SPsS '

%ith respect to I.orentz transformations, continuous
with the identity, Eqs. (13) and (14) give the wave-
function transformation rule

will be used. Equation (48) is also covariant by this
transformation.

Two types of charge conjugation may be considered:

P (*)= „LCit(*)~*,
0' '(*)= Lc(&/E)(p( )3'.

One finds that
(yC() CI ( 1)2d+IP

(0")"=(—1)"it

(60)

(61)

(62)

(63)

"A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cirnento
36, 1313 (1965).

'4D. Shay, H. S. Song, and R. H. Good, Jr., Suppl. Nuovo
Cimento 5, 455 (1965).

so that the first type has period two for half-integer
spins, the second for integer spins. The equation of
motion Hip=i B)p/Bt is invariant to both these charge

conj ugations.
In addition to the functions )p(x, t) and p(x, t), it is

essential to consider the function

ip(, 1) = L-'(1—v )+-'(1+v ) 6P( ~) (64)

For functions with the Klein —Gordon dispersion, 8' is
unity and the operator on the right in Eq. (64) has an
inverse, itself. Consequently, for physical wave func-
tions, )p(x, 1) contains as much information as )p(x, 1)
and serves as an equivalent description of a system
with spin s. It can be seen that )Id transforms the same
way as )pwith respect to the continuous Lorentz group.
If )P' and )P are related by Eq. (55) so that A' and A

are related by Eq. (56), then eA' and eA also fulfill

Eq. (56) and therefore e'(P' and e)P satisfy Eq. (55).
It follows that )p transforms according to Eq. (55) the
same as )P and also corresponds to the (Os) O+(s0)
representation.

For spin 0, the components of )P are equal and are the
ordinary Klein —Gordon function. For spin s, )P is the
usual Dirac wave function. For spin 1, the components
of (P are closely related to the Proca field components. "
For spin 2, certain derivatives of the components of )p

are the Rarita —Schwinger components. '4 The wave
function used by Joos and Weinberg is of the type )P

for half-integer spin and is of the type (p for integer spin.

IV. QUANTIZATION OF THE FIELD

In the usual way, one replaces the expansion coeffi-
cients E I~'A»(p) and E 'I'A»(p) by destruction and
creation operators (I»(p) and (I »*(p), the asterisk
denoting Hermitian conjugation in the Pock space.
The field operator is then

d'(x, t) =f ddt Q [s (p)d „+s,"(p)d, 1 (65)
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where Kq. (36) was used to express both cases 5= &1
in terms of the ~g~k. One sees here that the transfor-
mation of the a,5(y) depends only on the physical
momentum q and is otherwise the same for particle
and antiparticle. The (vait exp (i 2 s) vEi5) are simply
rotation matrices. The covariance of the commutation
rules, Eqs. (66) and (67), follows from Eq. (68) and
the fact that

Ei'&(yi' —y5') =Ei~(yi —ye).

The commutation rules for the field operators are
found by a straightforward calculation, with the func-
tions fp, & given by Eqs. (53) and (46) . The results are

[4-(»), A(»)3~=0,
8' (») A'(»)3+=im'*fei}r

(69)

where

X[cosh (2a» s.yi/p&) +Pe,—y5

Xsinh (2&os s.yi/Pi) eig t) tIi(xi —x2), (70)

—z dp
A(x) = ei p x(e isst eiEt)—

(2n.)' 2E

and C~, co~, y~ act on the x~ dependence. The notation
f ei}s indicates that the factor ei is to be included for
Fermi statistics but not for Bose. The equal-time
commutation rules can be found from these by using
the special values

6(x, 0) =0, eE tI((x, 0) = i 8 (x) .—
One can see very easily here which operators commute

or anticommute for spacelike separations. The functions
h(x) and CEA(x) are zero when x is spacelike, the
functions Ch and EA are not. For integer spin the
operators cosh (2cos.y/p) and E ' sinh (2(os p/P) are
polynomials in s.y and p'; for half-integer spin the
operators E ' cosh (2co s y/p) and sinh (2(o s y/p) are
such polynomials. [These results follow from Weinberg's'
Eqs. (A27—8) and (A31—2) or, in terms of spin-matrix
polynomials, from Weber and Williams" Eqs. (27—8)
and (32-3).] The gradients of functions that are zero
at spacelike points are again zero at spacelike points.

'IT. A. Weber and S. A. Williams, J. Math. Phys. 0, 1980
(1965).

The operators a,5(p) are postulated to satisfy the rules

I a.5(pi) asi(y2) j+=o
[a.5(pi), ast*(ps) )g= 4th. s~(pi —p2), (67)

for fermions/bosons. Also it is postulated that any
operator a,5(y) applied to the vacuum I 0) gives zero
and that all physical states are produced by applying
the operators a,5*(y) in any number to the vacuum.
According to Kq. (56) the Lorentz transformation rule
for the operators is

E"t'a, t'(y') = Q (vgitt exp (i 2 s) vni5) E' 't,a(5y), (68)

It is seen that, for Fermi statistics and half-integer
spin, the anticommutator in Eq. (70) is causal in the
sense that it is zero for spacelike (xi—x2), but in no
other case is a commutator or anticommutator causal.
Mathews7 considers this to be a criticism of the formu-
lation for integer spins. We take the point of view that
the theory is all right and that the above result only
shows that P is not the appropriate field operator to
use in an interaction Hamiltonian. The field operator P
is well defined by Eq. (64) and, according to Eq. (65),
can be written as

[4 (xi), @(x,) )~=0, (73)

[0 (xi), %*(xs)j+=im"[f e&}5 cosh (2(oi s yi/pi)

+P {8\}iry5 sin, h (2(o& s pi/0&) 3 6 (xi—xm) . (74)

Here the spinor indices have been suppressed. Equation
(74) for example means that [4' (xi), 4'e*(xe) j~ is the
ap component of the matrix on the right. Weinberg'
gives Eq. (74) in terms of the covariantly defined
matrices.

V. LORENTZ GROUP GENERATORS

The generators and the operator for the excess of
particIe over antiparticle are defined by

t'84 c)(p„=——,'im-" dx:
I

—p„e—e —p„eI:, (75)&ctt" ctt "j'
/848'g„„=—25m 5' dx:

I

—J„„'0O' —J„„NI. , —
&at

""
w

"" &' (76)

QN 84Z= --,'im-" dx:
I

—4 —+—:,
&at at ' (77)

where
4 =4'p.

Here the dots indicate the normal product of the

S(*.t) fss=Z(." (s) i...—~=" (s) v. s. »].

(71)
The commutation rules for ))1 are found to be

g.(xi), ye*(x2) j+=im" fbi}~ [cosh (2~i s p,/p, ) yP
—y5 sinh (2coi s.pi/pi) ei] t) h(x, -x,). (72)

These rules are causal for integer-spin bosons. The con-
clusion is that interactions for half-integer-spin fermions
can be constructed using f and for integer-spin bosons
using P. The symbol 4 is used below to denote P for
half-integral-spin fermions and ))t for integer-spin
bosons; it coincides with Joos' and Weinberg's' wave
function. The commutation and anticommutation rules
for 0 are causal. By combining the results above, one
obtains
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of particles is

( IX&=:IA —~: f=4:ZVv'(V) V~(V) -&84)

IIowever, it does not have a causal space-density.
The above operators are generators in the sense that

[4 (*) +"I=p.4(~) (85)

[4 (~), 8..]=~.A (*) (86)

[4 (~) ~3=4 (*) (87)

The same equations apply for 4 . These are easily
derived from expressions like Eqs. (78) to (80). The
operators P;, g;;, X are Hermitian and. 6'4, g,4 are
anti-Hermitian, so

Therefore the algebra of the operators (P„and g„„is the
same as the algebra of the operators p„and J'„„,Eqs.
(21) and (22). The charge commutes with both (P„
and g„„

The c-number three-vector, four-vector, and four-
tensor polarization operators are de6ned by

0=SPsS ',

~~„=—~Zm Cpv po ~v pea'p
n

R„„=im'e„„v,(H/E) pvR, ,

(89b)

(89c)

where p„is (p, iH). Here R„is the Bargmann —Wigner"-
type four-vector and E„„wasintroduced in Ref. 13.
The connection between the three-vector and four-
vector polarization operators is

y (*),g.,g=~[~.,~(*)]',
g'(*), ~]=—0"(&),

where the minus signs apply for 5';, g;; and the plus for
(P4, g;4. The operators p;, —ip4, J;;, and iJ,4

—were
shown to be Hermitian with respect to the invariant
integral of Eqs. (51) and (52) in Ref. 3, Sec. VI.
Also all the operators G commute with H/E when
acting on a solution of Hf=i 8$/N. Consequently one
finds that

L: (0 GiIH/EIA):: (0, G2(HIEI~4): j

8X: —p,s,„pi+-+—p,s,„p~0:. (92b)
Bt

Their space densities are therefore causal. From the
same reasoning as for the other operators one can
write

[p(x), (R„f=——',im 'e„„v.s„vp,p(x), (93a)

g (x), (R„,$= 2m 'e„-.v.e.,„)Pvs,„Pgf(x) (93.b)

Since 0 is the operator that corresponds to the quantum
number k,

it is found that
0 eg„y=kf,@, (94)

6e;= dp kaA:* p ag p .
k, e

(95)

As a consequence of the normal ordering, any of these
operators 6'„,g„„,Z, K, 6;, (R„,(R„„aplpied to the
vacuum I0) gives zero. This is consistent with the
vacuum being invariant to space —time displacements
and Lorentz transformations. For a displacement
through d„,for example, exp (i d„(P„)I 0) =

I
0).

It follows that states of one particle or antiparticle
of the type

I yek) =o."*(y)I o)

Quantized operators may be defined by

8,=:(P, O, IH/EI pf):, (91a)

@"=:(0'i R"IHIEIA'): (91b)

&"=:(0 Ru IHIEI'4): (91c)

Evidently H commutes with 0 and therefore with E,
and E„„.It follows that these operators are all time-
independent. Equation (83) again applies so that the
four-vector and four-tensor operators may also be
written in the forms

84 8S=—-'m —"—' dxe .' —s p4 —+ —s p+:p 4 gkvpt7i
~

vp 0'

Bt

(92a)
z

+pv ~ +X ~@V~O'Tkkglv

R=O+[m(E+m) P'0 p p,

R4——im '(H/E)0 y.

Consequently the Pauli —Lubanski invariant is

RyRP:2' vs v

=0 0
=s(s+1).

are eigenstates of some of the operators:
90a

(90b) (P;
I yek) = ep; I yek),

&4
I pek) =iE

I pek),

~
I yek) = e

I yek)

8;e; I pek) = k
I pek),

&
I yek) =

I yek).

(96a)

(96b)

(96c)

(96d)

(96e)
'~ V. Bargmann and E.P. Wigner, Proc. NatL Acad. Sci. (N.Y.}

34, 2I& (1948}. ':,: These results are found by applying the commutation
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rules

I 6", a.k*(p) j=kp'a'*(p), (97a)

L2', a"*(P)3= «.k*(y) (97c)

Le,e,, a„*(p))=u a.k*(p) (97d)

L&, a.k*(p) j=a.k*(p) (97e)

The single-particle states are also eigenstates of the
Casimir operators (P„d'„,S„g„,g.„„R„„:

(P„6'„I yak) = —m'
I pkk),

(R„(R„I yak) =s(s+1) I pkk),

Bt„„e.„.I p.k) =s(s+1) I ykt ).
To see this second result for e= —1, for example, one
verifies that

=s(s+1)a-,k*(p)

and applies the equation to the vacuum.

VI. REFLECTIONS AND CHARGE CONJUGATION

The subject was studied already by Weinberg. ' It is
carried on further here to show the parity and charge-
conjugation quantum numbers of actual states and to
show the relations between parity, time-reversal, charge-
conjugation, and the other operators defined above.
The definitions below agree with Weinberg's, but special
choices of the phase factors he left arbitrary have been
made.

For a particle —antiparticle system in which the par-
ticle has intrinsic parity p, ~1, the parity operator is
defined to be unitary and such that

ee(x, t)o I=qpe( x t)—(98)

o
I o) =

I
o). (99)

For a spin-zero system, for example, the two com-
ponents of + are both, redundantly, the Klein —Gordon
function and g is —1 for pions or kaons. For fermions,

to the vacuum. In consequence of the operator defi-
nitions, a many-particle state is, as required, an eigen-
state of the same operators with the eigenvalues adding.
For example,

(Pi aeykg (pl) ae2k2 (p2) I 0)

=LB';, a„k,*(pi) a.,k '(p2)3 I 0)

=
I t O';, a„k,*(yi)ja„k,*(P2)

+a,k,*(pl) I &,, a„„*(p2)3} I O)

= (&Ip14+&2p2i)a6lkl (pl)aE2k2 (y2) I o) ~

interactions determine the parity of one particle relative
to another. Equation (98) is consistent with the idea
of choosing the parity of some particular fermion to be
+1. In principle the parities of the others could be
found by analyzing interactions and only the values
+1 would occur.

Equations (98) and (99) do define an invariance of
the system. To see this, one translates Eq. (98) into
terms of a,k(p) and p, obta, ining

W M 8'0)
Be (x, t) = —,'m —'*

Bt Bt Bt2 j
and Eq. (98) yields

tPBe(x, t)6 '=X(—x, t),

(104)

in agreement with the space-inversion interpretation.
The algebraic properties of this operator are: (P com-

mutes with (P4, g;, , Z, X, Gt;, 64;, and 8;; (P anticom-
mutes with (P,, $,4, (R4, and R,4. Equation (98) implies
that the 6' transform has period two:

6"+(x, t)n 2=+(x, t).
Equations (98) and (99) together imply that tP2=1,

tPa.k(y) 6 '=V f~}~a.k( y),— (1OO)

tPQ(x, t)o I=&I;},P0( x, t)—. (101)

These results follow straightforwardly from the property

pp„(—x, t) =kg „„(x,t) (102)

of the plane-wave functions. Equation (100) is con-
sistent with the commutation rules, Eqs. (66), (67),
and Eq. (101) corresponds to the space-reRection co-
variance of the Hamiltonian equation (58). Conse-
quently, the (P transform of the system satisfies all the
same differential equations and commutation rules as
the original system.

To see in detail what the intrinsic parities are, one
considers the states of a single particle or antiparticle
s,t rest,

I
okk). Equations (99) and (100) imply that

6
I
o.e) =gI.}~ I

o.u). (103)

Thus the particle states, with 4=+1, have parity &.
Also this equation shows the known fact that, for
bosons, particle and antiparticle have the same intrinsic
parity, whereas, for fermions, they have the opposite.
With the above definition, the parity quantum number
is, as required, multiplicative. For example,

6'a„k,*(0) a„k,*(0)
I
0) „.,*(o) „„'(o)lo).

It is necessary that the operation be defined as in
Eq. (98), and not with an additional factor of t on
the right, if it is to be identified with the usual space-
inversion operation. For example, the energy density,
according to Eq. (75), is
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since (P' applied to any state vector produced by apply-
ing creation operators a,z*(p) to the vacuum is the
same state vector. The operators P, c{„„,Z have the
same algebraic properties as the four-by-four matrices
I', s„„,1. A consequence of the rules between 6', 6';,
X, 6; is: if a state has quantum numbers p, e, k, then
the parity-inverted state 6'

~
pek) has quantum numbers

—p, e, k. In fact, Eq. (100) gives

6
~
p.u) =g{.},~

—pet).

The time-reversal operation 3 is considered to give
a one-to-one correspondence between the state vectors

~ $), produced by the operators a,z*(p) acting on the
vacuum

~
0), and a conjugate set of state vectors

~
3$),

~l&)=l~&), l&)=~-'1~8. (1o5)

The sets of states
~ f) and

~
3$) are supposed to remain

distinct; the inner product between them is not defined.
It is postulated that matrix elements between conjugate
states are given by

It follows that the operator is antilinear and anti-
unitary,

&L~
I &i)+e I

S)]=~*&
I

&i)+t3*&
I gz),

(~4 } ~&z) = (&i I
J '

I ~b) *

The operator is defined by

M (x, t) 3—'= rlCystn (x, t), (106—)

where the parity signature z is included here so that
later it cancels out of the (P|'3 product. For the operator
f this means

3p(x, t)3 '=sleep/(x, t) —(10.7)

By comparison with Eq. (59) one sees that the operator
3$(x, t)3 ', say if', satisfies the equation

H*gr = i cigar/Bt. —

To find the effect of time-reversal on the a,z(p),
Eqs. (36), (38), (46), and (53) are used to show that

and then Eq. (106) gives

Ga, ,z(P)3 '=rl( —1)'+za, , z( —P). (109)

The vacuum is considered to be nondegenerate, de-
scribed by

~
0) in the original space and by J

~
0) in the

conjugate space. Since

Sa„,*(p)10)=&(—1) +"a„.*(—p)a I 0),

the operator , , a(pz) is identified as creating a particle
in a state with quantum numbers e, k, p in the conjugate
space as well as in the original space. Then the time-
reversal of a state with quantum numbers e, k, p,

3z+(», t) J—'= (—1)'+(x t).
The 3 and 6' transforms commute:

6oeo-iS ~=S~O 'O-~.

The charge conjugation operator 8 is postulated to
be unitary and have the properties

8e(x, t)8 '=PC{ps}ne(x, t)]*,
8

i 0) =
J 0) .

In terms of a,z(p) and P, this reads

8a.z(p) 8 '= ~-.z( —p),

8$(x, t) 8—'= LC{H/E}np(x, t) ]*.
These are found directly from the property

(110)

(111)

(112)

(113)

of the plane-wave solutions. Equation (111) is con-
sistent with the commutation rules, Eqs. (66) and (67),
and Eq. (112) agrees with the c-number charge conju-
gation, Eqs. (60) and (61). Therefore, the 8-trans-
formed fields satisfy the same commutation rules and
differential equations as the original fields, and the
charge conjugation is an invariance of the system. -

From Eq. (111) it is seen that

8
I pe&) =I —p —&). , (114)

Since ep is the physical momentum, the effect of 8 is
only to change particle into antiparticle, leaving other
physical properties of the state unchanged.

The algebraic properties of the charge conjugation
operator are: 8'=1; 8 commutes with (P„,g„„,K,
(R„„;and 6 anticommutes with X, (R„.Also 6 commutes
with the space densities of (p, and cI„„,and anticommutes
with the space density of X. The 6 transform has
period two; it commutes with the J transform and with
the (P transform for bose statistics; it anticommutes
with the (P transform for Fermi statistics.

The definitions combine to make

~pm+(x t)S-'8-'O '={{~},e(—x —t)]*
This transform has period two.

To reorganize the system into terms of self-charge-
conjugate states, one writes

+=+(+i)++(-u~

described in the original space, is a state with quantum
numbers e, —k, —p, described in the conjugate space.

The densities have the expected transformation prop-
erties. For the energy density, for example,

DK(x, t)G
—'=K(x, —t).

The algebraic properties of the time-reversal operator
are: 3 commutes with X and X, and anticornmutes
with (p„,c{„„,(R„,8;, and (R„,. The period of the 3 trans-
form is found from
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where

This means that

% (~I)
———',(0+M 6-'). (115)

+(61) ~6+(+I)6 +Lc{7&j&P(+I)]*
These two parts can be written as

4'(pi) ——2 '(' dp Z L4»(p) NI»

+(p);= dp s bpA:* p bpI p ) (120a)

(P(,)4=i dp g & &,k*(P) &pk(P) (12ob)

&(,) = dP Z 4k*(P) &pk(P) (120c)

a&+»*(P) ( —ykIR p, , i,k J, (116)

where the b,k*(p) are operators for creating self-

conjugate particles,

b~»(P) =2 't'La»(p) +(I »( —p) j. (117)

They have the commutation rules

Lb"(PI) &.I(P1)3+=0 (118a)

I b,k(PI), b.)*(P,) j~= Skimp, t)(PI P2). —(118b)

Since a»(p) and a ik( —p) apply for states with polari-
zation k and physical momentum p, the operator
b~»*(p) creates a particle with 6=&1, polarization k,
and physical momentum p. The fields +(+» and +(»
anticommute/commute with each other, and it follows
from Eqs. (73), (110), and (115) that

L+(»(*I)I +(1) (+~) jk 2L+(zi)f + (+&)j+P (119)
where the function on the right is given in Eq. (74).
Thus the anticommutator/commutator of 4(» (xi) with
O(»*(~) is causal. Since 6 commutes with (P„,g„„,%,
0;, (R„„,Eqs. (75), (76), (84), and (92) can be re-
arranged to give separate contributions from the 6=+1
and 6= —1 types of states. For example,

8 k(p)
(p =Z( s) 1111 " (fx: Pk+(I) P(p) Ps'P(1): ~at at

8;=Q: (P(», O, I H/EI I P(,)):,
P

where P(» is 2 (P+p6$6 ') . This type of rearrangement
cannot be made for Z or (R„.Let terms in this type of
t) sum be written as (P(»„,6(»;. In terms of the b,k(P)
they are

and have the same intrinsic parity as the particle and
antiparticle. For fermions, the states (I+»*(0)

I 0) have
opposite parity and the self-conjugate particles do not
have definite parities relative to the particle or anti-
particle.

The relations between 6 and the Lorentz operators
are: 6 commutes with (P„andg„„;the 6 and 3 transforms
commute; the 6 and 6' transforms commute for bosons.
Consequently, it is a covariant notion to consider either
of the fields C(+j), 0'( ~) all alone, provided a special
space reQection for fermions is set up. In agreement
with Weinberg, ' one defines the operator (P' to be
unitary and such that

(P'%(x, t)(P'-)=Nip% (—x, t). (121)

Then, for fermions, the (P' and 6 transforms commute
and one can take

is identically zero. The same remark applies for „.
VII. ISOTOPIC SPIN

For a particle —antiparticle system with isotopic spin t
there are wave-function operators f„(x,t), where tk is
the isospin component label, ranging from t to +t-
In terms of the complete set of functions f~,k(x, t) the
operators are

dP ZI P»N(P) 4.nik+I Y&j& (I—1k—y (P) ))t'y —1kj

and the commutation rules a,re taken to be

L~.k.(PI), ~kI (P1)j+=o, '

(122)

(123a)

I ~.k, (Pi), ~t(,*(P1)jy=&k(4&,A(PI —Ps). (123b)

The different components V„anticommute/commute
with each other and the commutation rules of a com-
ponent with itself are as given in Eqs. (73) and (74) .
The discussions in the previous sections apply to each
component separately and the equations can be taken
over by adding the appropriate subscripts: 4 is replaced
by 0'» ajar, by aql,„,and a qq by a g „.

The isospin operators are defined by

(P'0'(»(x, t)(P' '=&itn(»( —x, t)

as the space-reQection operation for the self-conjugate
ferrnion fields. The operators (P(,», g(»„„,X(», 8(,);,
(R(,)„„applyfor the f(eld 4'(». From Eq. (119) it is
seen that the space densities of (P(,)„,g(»„„,and (R(»„„
are causal. Since 6 anticommutes with X, the expression

. ~+(p) - ~+(p)&.

(120d)
3 = —-'im " dz$2

8%'~
&&Z: (I')w''P»' 'P1 (&') I,~ +;—: —(124)

JM p& Bt (jlt

@(,),s;= &p Z & &"*(p) &"(p) .

For bosons, the states (I+»*(0) I 0) have the same parity

g, so the self-conjugate particles satisfy

(Pb„,*(0) I o) =&f„,*(o)
I o)
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—a-~t-'*(p) a-»-. (p) } (126)

These are the generators of isospace rotations:

L0.(, t), &~]=Z(&')-4' (, t); (127)

this follows directly from Eq. (126). Equation (88)
again applies so that

Here T; are the angular-momentum matrices, the
standard representation. Again the space density is
causal. Alternative expressions are

&'= Z: (4', (~')..{&IE}BA;):, (125)

The 6-parity transform of these operators is

8b:.(p) 8-'=.b:.(p) - (»&)
It is seen that b, ),„(p)is the operator for creating a
particle with G parity p, polarization' component k,
isospin component p, and physical momentum y. The
commutation rules for these operators are

Lb.~.(pr) b.t (ps) 1+=0 (135a)

{ b."(pr), b.t.*(ps) j+=&"&At~.~(pt —ps) (135b)

The field commutators

5'(r)o(») ~ p(.) *r(&)3+

are -',b~b„„times the function on the right in Eq. (74) .
The (' transform of the bet,„(p)operators is

Pt) Gi] —zetj7g3$ ~ (128) ('-b.~.(p)('- '=t (—1)' "be~. (p) (136)

The 3; commute with all the operators previously de-
fined but 3 and 6; 3 commutes with 3~ and 33, anti-
commutes with 32, 6 commutes with 32, anticommutes
with 3g and 33.

Since the 6 parity commutes with 3;, it gives the
decomposition of the particle —antiparticle system of
fields into two self-conjugate systems that separately
form isospin t representations. As usual, the operator
is defined by

8=(:exp (ives)

This specializes to the known result that the central
state of a multiplet b, ),o*(p) [0) is an eigenstate of 8
with eigenvalue p( —1) '.

An analogous decomposition can be made using the
total parity 8(P,

8~„(x,«) (8(P)-'=~p( —1) t-
} c{~,}B+„(—x, t) j*.

(137)
Evidently it commutes with 3;. Since

(8(P)'+.(8(p) '= (—1)"+"+.,
so that here

'P(+»o 2('Po—+8™o'8 )
Since

only the case of (s+t) integer is considered. Then the

8%o(x, t) 8-'= (—1) '—oLC{ps}Be o(x, t) $*. (129)

8s+ 8
—2 —( 1)st+

only integer isospin is considered. Then the 6elds

'P(+»o —a (+o+O'Po8 ) (130)

have the property

8~( ) (x t) (8(P) s)P( 1) LC{Ys}Bp(,) „(—x, t) $

=t)'p() (» t)

have the property

&(.).8 '= ( 1) ' "r~{»—}B+(.) o3'=«+(r). -(131)

and also satisfy commutation rules like Eq. (127) with
3;. In terms of the complete set of functions )lr„»these
fields are found to be

and still satisfy commutation rules like Eq. (127) with
3;. This is in agreement with Carr'uthers' remark that
only for integer isospin can there be a self-conjugate
system of bosons. '~ " In terms of the complete set of n t (—1)""b.~-.*(p) {—Ve}BA-»3,

functions p„Athe fields are found to be where

bo~o(p) =2 "'La».(p)+n t (—1) ' "a-». (p) j
p(r)o 2 dp ZLbr&o(p) '4»

+t (—1) ' "b.~-:(p) {—Vs}B4-.-»l, (132)
where

bok, (p) =2 "'La»o(p)+t (—1) ' "a-»o( —p) j (133)

's P. Carruthers, Phys. Rev. Letters 18, 353 (1967) .
's V. S. Jiu, Phys. Letters 24B, 411 (1967).
'9 G. ¹ Fleming and E. Kazes, Phys. Rev. Letters 18, 764

(1967).
~0 H. Lee, Phys. Rev. Letters 18, 1098 (1967)."P.B.Kautor, Phys. Rev. Letters 19, 394 (196/).

These also satisfy Eqs. (135) and so are independent
particle destruction operators. Since

8(Pb...(p) (8(P) ' ~b:-.=(p),

the p is the 8(P quantum number of the states
b,),„*(p){ 0). However the states involved here are of
an unusual type since they are superpositions of states
with opposite physical momenta. If, in addition to t+s,
t is an integer, then
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This means that and they have commutation rules .'

to&, o*(o)
I o) = rt P ( 1) ' &. o*(o) I o)

so in the rest frame the central member of a self b(P
multiplet has eigenvalue olp( —1) ' of ta. Again the Geld
corn mu t at ors

[+(.).(»), +(.).*(»)3~

[T„xej=g, ,~x„
[T„x,j=-,'.x„
[U, X,7=X„
[X„x,j=0,

[T„Iree =~, ,m I'„
[Ts, V,j= IseI"„

[U, F,j=—I'„
[F„Ygj=0,

(o r o)
'

(o o o)

(. . il

jl 0 0)

(o
T2=- z

—' o)
0 0

)
(o

S'= 0

o

0 0

(138)

(&
TB=— 0

0 0 0 0 0

—1 0, M= 0 0 f

0 0 - 0 1 0

(t o

U=- 0

0 0 0 0

0, M'= 0 0 —i

-) &. )
The 114, are the generators of isotopic spin and U is the
generator for hypercharge. The electric charge of a
particle is given by e(Ts+-,'U). The four remaining
generators connect the multiplets with definite isospin
and hypercharge, thereby enlarging the group from
SU(2) &&U(1) to SU(3). The extra generators can be
organized conveniently into ladder operators:

are rsb,g„„times the function on the right in Eq. (74).
These field operators +(p)y do not transform as spinors
under the I orentz group, since 6' does not commute
with (P; or g;4. However (P does commute with ri;;, and

transforms the same as 0'„with respect to space
rotations.

VIII. SU(3) SYMMETRY

An analogous development can be given when the
internal symmetry group is SU(3) . Let the Lie algebra
be specified by the model representation of eight 3&(3
Hermitian traceless matrices as given by Pursey":

I

n)l 2

O, O)
2 (2,i)

[X„Fp]= 4eo,gT—,+48, ,~(Ts+seU),
where e and @ can be + independently and T+ is
~1~z~2.

Nelson" '4 has shown that the two labels needed to
specify an irreducible representation can be expressed
as j and n where

j=s, » s "
I

n l&j—(1/2).
For fixed j, n ranges over the specified. limits by steps
of unity. The labels within a representation are the
isotopic spin 3, its third component p, and the hyper-
charge zs. For the purpose of discovering the isotopic
spin-hypercharge content of an irreducible represen-
tation, it is convenient to introduce the two linear
combin ations

m = (1/2) u+ ( 1/3) n+ t+ (1/2),
e= (1/2)u+ (1/3)n —t—(1/2). (141)

In an irreducible representation specified by j and n,
m and e independently assume all values by steps of
unity within the limits

n+ (1/2) &et &j, —j&e& n —(1/2) .

Pictorially speaking, j defines a ladder with rungs
labeled —j, —j+1, ~ ~ ~, +j; n lies midway between
two of the rungs; the labels m and e range over the
rungs above and below n, respectively. The isotopic
spin-hypercharge content of a representation can be
deduced by making a graph with m on one axis and
e on the other and writing (2t+1, u), as found from
Eqs. (141), at the coordinates allowed by j and n.
Figure 1 shows the exaxople j= -,' and a =0, the octet
representation. Since 2t+1=te —e and u=te+e—
(2/3)n, the point of lowest isospin on this graph is
at et=n+(1/2) and e=n —(1/2), where 2t+1=1 and
u=(4/3)n; the point of highest isospin is at et=j
and e= —j, where 2t+1=2j and u= —(2/3)n. The

X+=E+iA",

X =M+iM',

P'+ = M+iM', —

=S—iS', (139)

2
- (2 -l) ('5 0)

FIG 1. Isospin m.ultiplicity and hyperchange (2t+1, 44) for thej=—,', n=O representation of SV(3).

"D. L. Pursey, Proc. Roy. Soc. (London) 225A, 2g4 (1963),
2~ T. J. ¹Ison, J. Math. Phys. 8, 857 (1967).
s4 X J. Nelson, Nuovo Cimento 52A, 9g5 (1967).
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rest of the graph may be filled in rapidly. Of course,
for fixed t, tt ranges by integer steps from t—up to +t,
and is independent of the hypercharge N.

The matrix elements of X~ and F~ have been derived
in general by Pursey. "The nonzero ones, in the present
notation, are

(jn;m+1, st, /a~-.'
~
&+ lan;mrt/s)=f, .+o",

(jn; m, I+1, tsa-'
~
&~ ljn; mrtp)=af„,„,~', (142)

(jn; m, n —1, t a-',
~

I"~
~ gn; mn/ )= f—

„

(jn; m —1, N, tt&-', ~
I'+

~
jn;mm/s)=Tf~, n,~'

where

)n

skies

2(m re+—1+2/s) (m —n+1) (j m) (—j+m+1) '/'

(m —n) (m —st+1)
The nonzero matrix elements of T and U are

(jn; m, rt, ts&1
~

T~
~ jn,' mrtts)

=B(m—n)' —e —
/ (t +1)3'".

(jn;mrt/
~

Ts~gn;mrtp)=p,

(jn; mrtts
t

U
~ jn; mn/s) =m+rt ',n—-

A multiplet of particles carrying the representation
specified by j and at has the field operators

phoo dp g f {1»;mao (p) fp»

These are the group generators, since

8-,'.(, t), s,3
(jn; mrt/s

~
G, ~jn; m'rt'/s') 4 '„.„.s (x, t). (147)

m~n~p~

The commutation rules among the {1,are the same as
among the matrices of Eq. (138).

The discussions of reQections in Sec. VI apply to
each SU(3) coinponent of the wave-function operator
separately. The equations can be taken over by re-
placing 0' by 4 ~ Slit; by cly. „J and 8 U; by
a l~,. „,, „& . This means that

{P~.~;-."(p){P '=~I el~~.~;-."(—p),
~a"-' (p)& '=~( —1) '~. -~-' (—p) (148)

«";-./ (p) ('- '=~-.,',=.—.—.' (—p) (149)

By combining Kqs. (146) and (148) one finds that 3
commutes with 8, when the matrix elements (~ G, ~)
are real, anticornmutes when they are pure imaginary.
The reality properties are found from Eq. (142). The
result is that 3 anticommutes with 3~, K', and 5K', and
commutes with the others. On combining Kqs. (149)
and (146) one finds that ('. commutes with g, where
the (~ G, ~) are pure imaginary, anticommutes when
they are real. Consequently 8 commutes with 32, X',
and 5K' and anticommutes with the others.

Fields that are in a sense self-conjugate can be con-
structed for the representations with n=0. To see this,
one first verifies that the fields

+I —vsfn{t »; . „'*(p) P, »I, (143)

where the {t,A, „'(p) satisfy the same type of commu-
tation rules as before, Eqs. (123), except with two
more 8 symbols for the m and e indices. The commu.
tation rules for 0' „„~are the same as before but with
5 symbols for the m, n, p, indices.

The quantized generators of SU(3) transformations
are

8,= --,tm-0 dx Q (jn; mrtts
~

Go
~ jn; 'm'/I)1

mn p, ,m~n~ Jt.~

X:I """ + ."—+-.':(144)
c&t

" "
{/t

where p=1 to 8 and 6, are the abstract generators of
the group. Alternate expressions are

8,= Q (jn;mmts ) G, /jn; m'n'ts')
mn p, m~n~ Ijt~

/ —( 1){1/0&(m+o&—a-O(o@ S,—a(a—1

are the components of a j, 0. basis. This can be done
by taking Eq. (14'7) as given and calculating the
commutators of X and {1, the matrix elements of G
being known from Eqs. (142) . Thus, the transform

"X '=(—1)('/'&(~+"&-o(:@ s'(: ' (150)
produces another set of operators that can be added to
)/t„,„,„t' without disturbing the representation. The
transform has period two, so the operators

/0 1t + /0+p( 1) (I/2)(to+o)-o(0@ sil(o-1j

(151)
where p is &1, have the property

X+(p)mn~ X P+(p) mnjt, (152)
In terms of the complete set of functions &/to, A these
field operators are

8,= Q (jn;mn/ IG. ljn;m'I't')
mn p, ,m~n~IJt ~

(145) +(P)mnP, 2 dP ~PTc;mnf/t P Pl%

+p( 1) (1/S){m+o)—Of) iea(p) I ~ I y j
(153)

X dP ~lk;mny P ~1&'m'n'p' P

—~ ». . . '- *(p) ~-»;—..—.—.'- (p) j (146)

where

't/pA', n no' (P) =2 P{t»;nano' (P)

+p( 1) (1/0)(oi+o)—o (1 . /0( p) g (154)



522 REYIEw oz MODERN PHYslcs ~ JULY 1968

These are independent-particle operators satisfying

[b, „„,„'(I)), b, &.,„„„"(p) i+——0,

pp)v;mn» (pl) y ba(; nav (p2) j+ bpabklt)m Anvil»vb(pl p2) ~

It follows that the fields with different p numbers
anticommute/commute with each other and that the
field commutators

E+(p)mn» (&I) v +(a)nvv (2'2) j+
are (1/2) 5„8„5„„8»„times the function on the right in
Eq. (74). The X transform of the operators b&' is,
from Eq. (152),

Xbp', -»"(p) X '=nb»2;-»" (p)

Therefore bpl.,„„»"*(p)~0) are eigenstates of X with
eigenvalue p. From Eq. (151) it is found that

8+(p)»' 8 = ( 1) " ('+(p) -»' ('

—( 1) & »p( 1)—0/2)(m+n)+»ly

If, in addition to 0.=0, one considers N=O, then m= —e,
f is an integer, and

N'( )p»"8 '= (—1) ) +(p)

Therefore the G parity of the states bp2., „"*(p)
~
0)

with zero hypercharge is ( —1)'p. As a well-known

example, since the m's have 1=1 and negative G parity,
the pseudoscalar octet has E parity +1, the 2) must
have G parity of +1 and C number +1. The vector
nonet has E parity —1 and the tensor nonet has E
parity +1.

IX. DISCUSSION

This theory shows the difference between the quanti-
zation processes for integer-spin and half-integer-spin
particles. In both cases there is a complete set of wave
functions and a wave-function operator defined by
summing the functions multiplied by independent par-
ticle operators. This operator is causal for half-integer
spin, but, an extra factor of y5 has to be put into the

negative-frequency terms to get a causal operator for
integer spin.

The fact that a uniform treatment of the integrals of
motion can be made for all spins, Sec. V, perhaps corre-
sponds to the fact that all the fields have the Klein-
Gordon dispersion. The formulas look unfamiliar in
the spin--, case, but they simplify when i 8/Bt is replaced
by n p+ppN. For example, 2; becomes just gtpdx.

In the definitions of the vector and tensor polarization
operators, Eqs. (91b) and (91c), the factors of (H/E)
were chosen in such a way that the space densities of
(R„and (R»„, shown in Eqs. (92), would be causal.
A consequence is that N.„„commutes with 6 but N,

„

does not. This means that N,
„„

is appropriate for dis-
cussing polarization of self-charge-conjugate particles
but (R„is not. However, if the requirement of having a
causal space-density were relaxed, an extra factor of
EI/E could be inserted in the definition of (R„;(R„
would then commute with 6 and could be used for
self-charge-conjugate particles.

Carruthers point, that self-conjugate isospin multi-
plets can exist only if t is integral, is seen to be related
to the fact that the G-parity operator has period two
only for integer isospin. His remark is applied to opera-
tors that are I.orentz spinors so the self (d(P operators set
up in Sec. VII for integer (s+ t) are not in contradiction
with it. For self-conjugate SU(3) multiplets it is clear
right away that 0. must be zero, since otherwise the
conjugate representation is a diferent representation.
The construction made in Sec. VIII shows that the
causal self-conjugate multiplets do exist for all j, u=O
representations.
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