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In this paper, the second-quantized theory of free particles and antiparticles, with any spin and with internal SU(2)
or SU(3) symmetry, is developed. All spins and both statistics are treated in a uniform way in terms of well-defined
complete sets of functions that are orthonormal with respect to a Lorentz-invariant positive-definite inner product.
Explicit formulas for field operators of energy, momentum, etc., are given, including three-vector, four-vector, and tensor
operators for polarization. It is shown that causal space densities of physical quantities exist when the correct spin-
statistics connection is used. The field operators for systems self-conjugate under C, G, and GP are treated and self-

conjugate multiplets of SU(3) are set up.

I. INTRODUCTION

Recently Joos,! Weinberg,? and Weaver ef al® gave

a description of the free massive particle with any

allowed spin s=0, 3, 1, -+, in which there is a close
parallel with Dirac’s treatment for spin 3. Further
developments in the description were made by Mathews?
and by Williams et al.5

The Joos-Weinberg formulation uses a 2(2s41)-
component wave function that must satisfy two mani-
festly covariant wave equations, one of which is the
Klein—Gordon equation. The Weaver-Hammer—-Good
formulation uses a 2(2s+1)-component wave function
that has a well-defined covariant, but not manifestly
covariant, Hamiltonian. The allowed states form a
complete set and a positive-definite invariant integral
exists.

Each description can be quantized in the usual way,
introducing creation—destruction operators for each of
the allowed states. Weinberg showed that the usual
spin-statistics connection holds for his quantized wave
function. Weaver® and Mathews and Ramakrishnan’?
studied the quantized Weaver-Hammer-Good wave
function and Mathews, especially, emphasized that it
is not causal for integer spin.

The purpose of the present paper is to carry the
theory of the quantization process on further and
especially cover these questions:

(1) What is the connection between the two quanti-
zation techniques? The answer is that they are equiva-
lent. The Weaver-Hammer—Good field operator is the
sum of independent-particle creation and destruction
operators times a complete set of functions for the
particle and antiparticle. The Weinberg field operator

* Work was performed in the Ames Laboratory of the U.S.
Atomic Energy Commission. Contribution No. 2207.

1H. Joos, Fortschr. Physik 10, 65 (1962).

2 S, Weinberg, Phys. Rev. 133, B1318 (1964).

3D. L. Weaver, C. L. Hammer, and R. H. Good, Jr., Phys. Rev.
135, B241 (1964).

4 P. M. Mathews, Phys. Rev. 143, 978 (1966).

5S. A. Williams, J. P. Draayer, and T. A. Weber, Phys. Rev.
152, 1207 (1966).

6 D. L. Weaver, Nuovo Cimento (to be published).

7 P. M. Mathews,!Phys. Rev. 155, 1415 (1967).

8 P. M. Mathews and S. Ramakrishnan, Nuovo Cimento 50,
A339 (1967).

coincides with it for half-integer spin and is related to
it by an operator that has an inverse for integer spin.

(2) What are the field operators for energy, mo-
mentum, polarization, etc.? Formulas are given that
apply uniformly for all spins and both statistics. It is
shown that causal space-densities of physical quantities
exist when Fermi statistics are used with half-integral
spin and Bose statistics with integral spin.

(3) How is the quantization process extended to
apply to particles with internal SU(2) or SU(3) sym-
metry?

(4) What are the field operators for self-conjugate
multiplets? States that are self-conjugate under C, and
multiplets that are self-conjugate under G and GP are
treated. Self-conjugate multiplets of SU(3) are also
set up.

(5) What are the quantum numbers of the single-
particle states of existence? As well as the momentum,
baryon number, and parity, the polarization quantum
numbers and the quantum numbers that are introduced
in the self-conjugation processes are shown.

Explicit formulas for all the fields considered are
given in terms of a well-defined complete set of functions
that are orthonormal in the sense of a positive-definite
Lorentz-invariant integral. The field operators are ap-
propriate to be substituted directly into an effective
Hamiltonian for a reaction. From the point of view
developed here, there is hardly any difference con-
ceptually in working with spin s than with spin 3.

Only particles with finite mass are considered; the
case of zero mass, any spin, was treated to some extent
by Hammer and Good? and by Weinberg.?

II. NOTATION FOR LORENTZ-GROUP
DISCUSSION

The homogeneous Lorentz group is defined by the
transformation properties of the coordinates of an event,

%)= Gty
where
QuyA\= Ay = Br)\
9 C. L. Hammer and R. H. Good, Jr., Phys. Rev. 111, 342

(1958).
1 S, Weinberg,f Phys. Rev. 134, B882 (1964).
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and x4y is 1t. _For a pure Lorentz transformation with They satisfy the commutation rules
relative veloc1tya\;:= b i oa - [ o Bi]= (?’ | (11a)
Lis did=1ein jr, (11b)
Gu= —au=dyn; (1b) [ki, kil=iciiks, (11c)
au=", (1c)

where v is (1—1%)~'2, For an angular displacement 0,

aij=cos 08.;;+ (1—cos 8)0.9,/6%+sin Oe;x0:/0, (2a)
A= Qg;= O, (2b)
au=1. (ZC)

Alternatively these two types can be written in expo-
nential form as

a=exp [i(tanh™ v)v-t/v], (3)
a=exp [10-s], 4)

where s and t are four-by-four matrices with com-
ponents

() 1= —1tei, (5a)
(s:) 4= (8:) 5= (s:) u=0, (5b)
(£:) o= (1) u=0, (5¢)
(t:) ja=— (1) 45=3;. (5d)

The general transformation, continuous with the iden-
tity, can be considered to be built from these two
types and may be written as

¥’ =exp [1(0-s+w-t) Jx,

where 0 and o are the six real parameters.
The matrices s are Hermitian and t are anti-
Hermitian. The commutation rules are

(6)

Lsi, sil=1tesnse, (7a)
Csiy ti]=teijut, (7b)
[t;, t]= —deinsy, (7¢)

and these define the Lie algebra of the group. The
algebra can be given in a more concise form by defining

$:= €ijuSk, (8a)
Siy= "iti, (Sb)
Spy= " Sy, (SC)

in which case the commutation rules can be written as

9

The finite-dimensional representations of the group
are found immediately by considering the Hermitian
matrices

[swr spv:] =1 (8upSret 000Sup— BuaSup— 8vpSua) +

Ji=5(sit+1ts),

k¢= %(Sz'— ’ili) .

(10a)
(10b)

so the finite-dimensional representations are simply
those of SU(2)XSU(2). Let j, k denote also the
irreducible angular-momentum matrices for angular
momenta j, k. Thus j is (2j+1)-square and has eigen-
values —j to -7, where 7=0, %, 1, «+-. Also let x;,’
denote a column matrix with rows labeled by js=—j
to 7. Then x;,7xk,* form a basis for Lorentz group
representations and the transformation rule for these
objects is

(xx*)" = exp [0 (j+k) +o- (j—k) T'x*
=exp [(#0+) - jIx’ exp [(#0—0) K]x*. (12)
The representations ( 7, 0) and (0, &) have the rules
x'=exp [(i0+0)-jlx, (13)
x'=exp [ (10— o) -k]x. (14)

They correspond to completely symmetric spinors with
27 upper undotted indices and 2k lower dotted indices
in the usual notation.

If such a representation ( 7, k) exists at every event
in space-time, the system is described by functions
¥i,ks*(x) which have the transformation rule.

ik (x') =exp [10°(j+k) + - (j—k) Wi (x). (15)

These are referred to as the spinor components of the
field although some types are just tensors.

Operators s,, are still well defined by Egs. (10) in
terms of the angular momentum matrices j and k,
considered to act in different spaces, and they satisfy
the same commutation rules as the four-by-four s,.
These rules are also fulfilled by

b= —1(%,0/02,— x,0/dx,) (16)
and by
Jur=liF Sus- 1n
In terms of J and K defined by
Ji= e it (18a)

the primed spinor functions are found from the un-
primed this way:

Wik (x) =exp i(0-J+ oK)yt ().

For a displacement of the origin

(19)

!’ —
%) =x—
the spinor components are chosen to satisfy

‘I’J’a-kz,j'k(x’) =Yk 3j'k(x) .
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This means that

¥ (x) =exp (i dupu)¥ (),

pu=—10/0x,

is the displacement operator. The inhomogeneous
Lorentz group, consisting of the homogeneous trans-
formations plus displacements, has the Lie algebra

[ wvs Jos 1= (8upT v t-830T uo— 8o vp—8vpus), (21)
I:Pm ]v)\:l = i(aukpv_awp)\) , (22)
Cw p»1=0. (23)

From all the functions y/7*(x) that can be produced

with the allowed values of 0, ®, and d,, one can choose

a complete set. Then they form a basis for an infinite-

dimensional representation of the inhomogeneous group.
To include space reflection

(20)
where

xi’= — X3, tl= t,

one introduces the matrix P, with components

Pij=—0b, Piy=Py;=0, Py=1, (24)
so that

x'= Px. (25)

In terms of the four-by-four matrices one finds that
PspPl=s, (26a)
PtP1=—t, (26b)
PjpP=k, (26¢)
PkP1=j. ~(26d)

In order to give P meaning where j and k are identified
with angular-momentum matrices, one considers func-
tions of the type ( /&) @ (¥’j') and defines P by

i Q'3

QK i ek
(Questions of phase factors are taken up later.) The
matrices j and k are now

() =)
j= , k= . @
0K 0 i

so that, for example,

lekl K QF'5 lek/
Pj = =kP . (29)
QF'it jlxj/kl QK
Thus, representations of the Lorentz group including
space reflection are provided by base functions of the
type (jk) ® (k7).

The most economical way to treat a particle of spin s
is to use (0, s) ® (s, 0). Then the matrices are 2(2s41)-

(27)

square and are given by

0 0 s 0 01
() () () e
E 0 s 0 ‘0 10

The Lorentz group operators are p,= —1 d/9x, and the
Juw of Eq. (17), with s,, given by

st 0 i 0
§ij= €ijk B Su= .
0 s 0 —s

III. THE SINGLE-PARTICLE THEORY

In this section, some of the previous results are
summarized in the form needed to make the field
quantization.

' The matrices used are 2(2s+1)-square and are de-

fined as follows:
. (s O 01 s 0
o=s5"1 ’ B= ’ s= !
0 —s 10 0 s

-1 0 0 G
75=< ) C=< ) (31)
01 =Cs 0

Here C, is a unitary matrix such that
Cs=—s*C,. (32)

For spin 0, C; is defined to be equal to one. Unless
otherwise specified, the standard representation for the
angular-momentum matrices s, with s; diagonal and
elements of s; real and positive, is used. In that case
Cs, is exp (imss) ; evidently it is.real and C2 is (—1)%.
The matrices satisfy the equations

CaCl= o¥, CBC1=—g%,
CsC 1= —S*, C'Y5C_-I= -"’)/5*. (33)

Following Ref. 3, one starts from the allowed states
of the particle and antiparticle in the rest frame. The
Hamiltonian is assigned to be m8 and the polarization
operator to be Bs in that frame. Eigenfunctions g,
exist such that
(34a)

(34b)

where € is 21 for the particle/antiparticle, e is a unit
vector in an arbitrary quantization direction, and %
ranges from —s to +s. The functions may be chosen
normalized such that

BURek= €VRek,

ABS *€URek= kvReky

VRek VRerks = Becr Ok (35)

The relative phases may be adjusted so that
(Cog,en)¥=€V g ek, - (36)
Bsyvr.eo=[s(s+1) —k(kxe) R e kae.  (37)

Here sy is s-ftis-g, e; f, and g forming an orthogonal
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right-hand set of unit vectors. One can see that this
is a permissible choice of phases because the equations
for e=+1 serve to define all the vz from any of them.
The equations for e= — 1 can then be derived from those
for e=+1. For a given spin, this determines the func-
tions vz« except for a factor of the form e, § real and
independent of e and %. This choice of phases is different
from that used originally in Ref. 3; it was suggested
by Mullin et al.* to simplify charge conjugation dis-
cussions. There is another consideration which suggests
a useful choice of this number §. Sinceys anticommutes
with 8 and 8s, vsur,e,x must be proportional to v, .
In order to be consistent Wlth Egs. (36) and (37), the
relation must be

VslR,e o= € (—1)*tkop 4.
Let the arbitrary number § be chosen so this relation is
Vstr e p=— (— 1)+ 0p,_ 1. (38)

The functions vgs: are then completely determined
except for a single over-all plus or minus sign.
The wave function in the rest frame is

VRt = Vrer €Xp (—temir)

and the equation of motion is

MBYrer=1 Wrer/dlr. (39
The wave function is chosen to be (0,s)® (s, 0).
Then the function in the laboratory frame is found by
Lorentz transforming from the rest frame. Let q and E
be the physical momentum and energy of the particle
or antiparticle so that £ is positive and q/E is the
velocity. Equations (13) and (14) apply with 8 zero
and o having the value (—q/q) arctanh (¢/E), as seen
from Egs. (1) and (3). The transformation is

Yr=exp [s e (q/q) arctanh (¢/E) ] ¢z,
and wave functions for a particle or antiparticle of
definite momentum q and polarization % are
Yr=exp [s a-(q/q) arctanh (¢/E) Jorer exp (eqaa),
(40)
where ¢, is (g, 2E). The symbol p will be used for the
operator —iV and its eigenvalue, here eq. With normali-

zation appropriate for the invariant integral discussed
below, the plane-wave eigenstates are

Ypee= (2m) **m*E12 exp [se a- (p/p) arctanh (p/E)]
X e exp [4(p-x—eEt)]. (41)

The general laboratory-system function is found by
summing over all the quantum numbers with arbitrary
coefficients, say E~Y?4..(p)dp,

¥(x, 0=y [ dp B4 E Au(p)

Xexp [se e (p/p) arctanh (p/E) Jopa
Xexp [i(p-x—eEt)]. (42)

11 C. J. Mullin, C, L. Hammer, and R. H. Good, Jr. (private
communication).

Foldy’s wave function? is defined by

6%, )= 2m)y5 [ dp B T A (p)ona
ek

Xexp [1(p-x—eEi)]. (43)
It satisfies the equation of motion
Efp=10¢/dt, (44)

where E is the operator (p*4m?)12, the positive root
to be taken. The relation between the two functions is

written as
Y(x, ) =mE712S ¢(X, t). - (45)

An algorithm for calculating S was given in Ref. 3
and results quoted for s<%. Williams ef al.5 developed
general polynomial formulas for S and S Here their
infinite series forms,

S=cosh (ws-p/p) —vsf sinh (ws-p/p), (46)
S-1=sech (2w s-p/p) ST, 47)

where o is arctanh (p/E), will be used. These are
easily derived from the series for the exponential in

Eq. (42).
The Hamiltonian for ¢, such that
Hy=1idy/ot, (48)
is seen from Eqs. (44) and (45) to be v
H=SEBS. (49)

Detailed results for s<$ are given in Ref. 3 and general
polynomial formulas in Refs. 4 and 5. In terms of the
hyperbolic series the Hamiltonian is

H=EB sech (2w s*p/p) — Evs tanh (2ws-p/p). (50)

H is evidently a Hermitian matrix. Also H?=E? so
each of these Hamiltonians gives a square root of
(—=V+m?).
The positive-definite Lorentz-invariant integral be-
tween two functions ¢ and ¢y ™ may be defined by
(¥, 90 = [ dx g1, (1)

Alternate forms are

(YO, Yy™) =py2e f dx yOIE(S-) 1Sy
=m? / dxyWTE sech (20 s+p/p)y™

= [ dxy oA, 81y

= —Lims f dx (61} ‘/,(n) ‘;a)

12L. L. Foldy, Phys. Rev. 102, 568 (1956).

20, =
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where ¢ is ¢'8. The eigenstates of Eq. (41) can be
written as

Y= (2m) "32m*E~2Svg, exp [1(p-x —eEt)], (53)
and thus they are normalized in the sense that
(1l/pek, ¢p'e'k’) = aee’ekk’a (p—P’) . (54)

From Egs. (49) and (53) it is seen that the functions
Yper are eigenfunctions of H with eigenvalue eE. It is
clear that they make a complete set for expanding a
2(2s+1)-component wave function at any given time,
since H is Hermitian. Also they are eigenfunctions of
O-e with eigenvalue %, where the polarization operator
O is defined by

O=3BsS".

With respect to Lorentz transformations, continuous
with the identity, Eqs. (13) and (14) give the wave-
function transformation rule

exp (10— o) s 0
¥ (a)= )tl/(x)~ (55)
0 exp (104 o) s

In Ref. 3, the covariance of the system was demon-
strated by showing that Egs. (42) and (55) combine to
make

V&)= ay e [y B S AL )

Xexp [se e (p'/p’) arctanh (p'/E’) Joger
Xexp [2 (p'+x’ —eE't)],

where the transformation rule for the expansion coeffi-
cients is

Ad ()= ; [vrea’ exp (2 %+s) vra]da(p) (56)

and where
Pu, = Q.

For an angular displacement of the space axes, Eq. (2),
wis zero and & is 0. For a pure Lorentz transformation,
Eq. (1), 0 is zero and

@= (tanh™ v) v/,
pxv |pxv]

Tpxv] N I (1= ] (Etm) —epv
57)

A=2¢

For the space reflection
x=—ux =1,

Eq. (30) shows that the matrix P is 8, so the suggested
wave-function transformation rule is

V(&) =npBi (x). (58)

The equation of motion, Eq. (48), is covariant by this
transformation if 9p is a constant or & times a constant
where ¢ is the operator E7'¢ 9/91.

For the time reflection

x =x;, V=—t,

¥’ («) =nr[CrsB (x) I* (59)

will be used. Equation (48) is also covariant by this
transformation.
Two types of charge conjugation may be considered:

the rule

Yo (@) =nc,[CY(x) T, (60)
¥O2(x) =nc[C(H/E)Y(x) J*. (61)
One finds that
(¥e1) 1= (—1)**, (62)
(¥02) %= (— 1)y, (63)

so that the first type has period two for half-integer
spins, the second for integer spins. The equation of
motion Hy=1dy/dt is invariant to both these charge
conjugations.

In addition to the functions ¢¥(x, f) and ¢(X, #), it is
essential to consider the function

¥(x, )=[3(1—v)+3(1+v)eW(x,1). (64)
For functions with the Klein-Gordon dispersion, & is
unity and the operator on the right in Eq. (64) has an
inverse, itself. Consequently, for physical wave func-
tions, ¥(x, t) contains as much information as y¥/(x, )
and serves as an equivalent description of a system
with spin s. It can be seen that § transforms the same
way as ¢ with respect to the continuous Lorentz group.
If ¢’ and ¢ are related by Eq. (55) so that 4’ and 4
are related by Eq. (56), then ed’ and ed also fulfill
Eq. (56) and therefore &y’ and & satisfy Eq. (55).
It follows that { transforms according to Eq. (55) the
same as ¢ and also corresponds to the (0s)@® (s0)
representation.

For spin 0, the components of { are equal and are the
ordinary Klein—Gordon function. For spin 3}, ¢ is the
usual Dirac wave function. For spin 1, the components
of ¥ are closely related to the Proca field components.!3
For spin %, certain derivatives of the components of ¥
are the Rarita-Schwinger components. The wave
function used by Joos and Weinberg is of the type ¢
for half-integer spin and is of the type § for integer spin.

IV. QUANTIZATION OF THE FIELD

In the usual way, one replaces the expansion coeffi-
cients E124:(p) and E724_y;(p) by destruction and
creation operators an(p) and a_u*(p), the asterisk
denoting Hermitian conjugation in the Fock space.
The field operator is then

4,0 = [ dp = aw@Woutan @donl (65)

13 A, Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento
36, 1313 (1965).

14 D. Shay, H. S. Song, and R. H. Good, Jr., Suppl. Nuovo
Cimento 3, 455 (1965).
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The operators a.(p) are postulated to satisfy the rules
[aa(p1), @s:(p2) ]+ =0, (66)
[ae(p1), @sr* (P2) ] = Ekidesd (P1—D2), (67)

for fermions/bosons. Also it is postulated that any
operator a.(p) applied to the vacuum | 0) gives zero
and that all physical states are produced by applying
the operators a«*(p) in any number to the vacuum.
According to Eq. (56) the Lorentz transformation rule
for the operators is

E"a (p') =2 (ven' exp (i X+8)vrn) E'2aa(p), (68)
k

where Eq. (36) was used to express both cases e==+1
in terms of the vgw. One sees here that the transfor-
mation of the a.(p) depends only on the physical
momentum ¢ and is otherwise the same for particle
and antiparticle. The (vz1;" exp (¢ X+8)2rn) are simply
rotation matrices. The covariance of the commutation
rules, Egs. (66) and (67), follows from Eq. (68) and
the fact that

E/s(p/—p) =Ed(p1—D2).

The commutation rules for the field operators are
found by a straightforward calculation, with the func-
tions Yper given by Egs. (53) and (46). The results are

[(Ya(21), ¥5(22) =0, (69)
[Wa(x1), ¥5* (22) Jo=1m>{&}r
X[cosh (2w; s+p1/p1) +Ba—7s
Xsinh (2w; $*p1/p1) & s A(x1—x2), (70)
where
A(x) - __i_ dp ez p* x(e-—zEl_etEt)
(2m)3

and &, wi, 1 act on the x; dependence. The notation
{&}r indicates that the factor & is to be included for
Fermi statistics but not for Bose. The equal-time
commutation rules can be found from these by using
the special values

A(x, 0) =0, eEA(x,0)=—14(x).

One can see very easily here which operators commute
or anticommute for spacelike separations. The functions
A(x) and &EA(x) are zero when x is spacelike, the
functions éA and EA are not. For integer spin the
operators cosh (2ws-p/p) and E~' sinh (2ws-p/p) are
polynomials in s-p and p?; for half-integer spin the
operators E~! cosh (2w s-p/p) and sinh (2w s-p/p) are
such polynomials. [ These results follow from Weinberg’s?
Egs. (A27-8) and (A31-2) or, in terms of spin-matrix
polynomials, from Weber and Williams® Eqgs. (27-8)
and (32-3).] The gradients of functions that are zero
at spacelike points are again zero at spacelike points.

T, A. Weber and S. A. Williams, J. Math. Phys. 6, 1980
(1965).
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It is seen that, for Fermi statistics and half-integer
spin, the anticommutator in Eq. (70) is causal in the
sense that it is zero for spacelike (x;—x,), but in no
other case is a commutator or anticommutator causal.
Mathews” considers this to be a criticism of the formu-
lation for integer spins. We take the point of view that
the theory is all right and that the above result only
shows that ¢ is not the appropriate field operator to
use in an interaction Hamiltonian. The field operator ¢
is well defined by Eq. (64) and, according to Eq. (65),
can be written as

P(x, )= / dp in Law(P) Yo —a—u* (P) vs ¥p1)-
(71)

The commutation rules for { are found to be
[Pal21), ¥(2) ]2 =0,
[Fa(@1), ¥5* (02) Jp=1m*{&}r [cosh (2w 5:p1/p1) +8
—vs sinh (2w; S°P1/p1) & Jap A(1—22).  (72)

These rules are causal for integer-spin bosons. The con-
clusion is that interactions for half- integer-spln fermions
can be constructed usmg ¥ and for integer-spin bosons
using ¢¥. The symbol ¥ is used below to denote ¥ for
half-integral-spin fermions and ¢ for integer-spin
bosons; it coincides with Joos™ and Weinberg’s? wave
function. The commutation and anticommutation rules
for ¥ are causal. By combining the results above, one
obtains

(¥ (), ¥(x2) ]+ =0, (73)
[ (21), ¥*(22) Jo=1m>[ {&}r cosh (2w s:p1/ 1)
+B—{&}pys sinh (201 8:p1/p1) J A(x1—22).  (74)

Here the spinor indices have been suppressed. Equation
(74) for example means that [W,(x1), ¥g*(2,) .. is the
a8 component of the matrix on the right. Weinberg?
gives Eq. (74) in terms of the covariantly defined
matrices.

V. LORENTZ GROUP GENERATORS

The generators and the operator for the excess of
particle over antiparticle are defined by

6) =—§'Lm‘23/dx ( Pu‘I, \I’g—ipl‘-\]?):’ (75)
¥ =
Iu =—71m*2"/dx ( J ,‘I/—‘I’%Juv‘l’>3r (76)
i\ - OV
—_ 1/, —2s |l—¥—v —:
yA Fim fdx.(at ¥—v at)" (7

where _
V=v1g,

Here the dots indicate the normal product of the



514 ReviEw oF MopErRN Prysics « Jury 1968

operators: every term involving a«*(p;) and a5 (pe) is
organized so that the a* occurs on the left of the g,
anticommutators for fermions and commutators for

bosons being neglected in the process. As will be shown,

all the necessary properties do follow from these defi-

nitions.

Since ¥ and ¥ satisfy the Klein—Gordon equation
and ¥V is ascalar, all these operators ate time-inde-
pendent and are Lorentz tensors on the indicated
indices. Then Z, for example, is —7 times the integral
of the fourth component of the current

Gu(X, ) = i3m0 [ (0T /9%, ) ¥ —T (8% /dx,) ]:.

This current is a four-vector with zero divergence so
the integral of its fourth component is a time-inde-
pendent scalar.

Expanded out in terms of the operators au(p), @,
and Z become

[ a Sepiat®) o), (19)
ou=i [ dp S Eet@) e, (19
Z= [ dp Zk; ¢ a*(p) aux(p). (80)

These results follow directly from the expressions for ¥,
Egs. (65) and (71), the orthonormality of the Yy,
Eq. (54), and from the fact that

_ O 0
/ dx (l//r)’s (;i o ’76¢2) / dx Y, "[Bys, H]2=0

(81)

for any two functions ¥, » that satisfy the Hamiltonian
equation (48). Since ep is the physical momentum of a
state, Eq. (78) shows that ®@; is the operator for the
physical momentum in the field. Also ®, is ¢ times the
operator for the physical positive-definite energy and
Z is the operator for the charge or excess of particles
over antiparticles. Furthermore, since the integrands
in Egs. (75) and (77) depend only on ¥ and its de-
rivatives, they can be interpreted as the space densities
of the momentum, energy, and charge. The point is
that these densities, at points that are spacelike relative
to each other, commute, since the rules for ¥ are
causal. This shows another aspect of the connection
between spin and statistics. For any spin and statistics
the total energy, momentum, and charge can be defined
by Egs. (78)-(80) and then they can be converted
into integrals over space. Only for the correct spin and
statistics relations does this process lead to causal space
densities. The integrands in Egs. (75) and (76) do
not give Hermitian operato rs for the space densities as
they stand. However, Hermitian operators would result

from more symmetrical definitions, such as

0% o¥ 0¥ o¥
— g / [ ] (82a)
ot aoc1 é)x, at
i oF oV ¥ 0w
P L / x| = (82
¢ 2m ‘ x [at 3t+6x16x,+ ] (82b)

These formulas are found from Eq. (75) by making
partial integrations and using the fact that ¥ satisfies
the Klein—Gordon equation. Equations (78)-(80) agree
with Weaver’s assignments.® Similar arguments can be
made about J,, and angular momentum. The forms of
the integrals with Hermitian space densities are

Ji=Beindsn

' 9V v 9V oV
=—~m‘2s/dx {e”kxj[ —f— ]

0t dx),  duxy At
o¥ ov
—l—z[ s —Vs; at]}., (82¢)

Ki=1Ju

ol o 9% 9w
= 128 dX —_—
b / { [ o ot Taman " ]

[6\11 v v 6\1’
-+
ot dx; c'*):)cZ at

o NG
—[~ so ¥ — Vs ]} (82d)
at ot

The definitions of the generators and charge corre-
spond to the last expression for the invariant integral
in Eq. (52). However, the other expressions for the
invariant integral cannot be applied since ¥ does not
satisfy the Hamiltonian equation (48). However, the
operators can be expressed in terms of ¢ and the
invariant integral by using the result

—amf”de(at er— zt )=( ’G{%}BJ).

(83)

Here G is any of the operators 1, p,, Ju, and the H/E
factor is to be used for bosons but not fermions. Equa-
tion (83) can be proven easily by using Eqs. (65) and
(71) to express both sides in terms of the functions ¥pe.
All the cross terms involving ¥p.u14" and Y1, are
zero: if they include a 5, Eq. (81) applies, since G¥per
is a solution of Hy=1idy/at¢; if they do not include a vs,
there is an orthogonality, since G, also has quantum
number e.

In addition to ®,, J.,, and Z, other operators with
Lorentz-invariant meanings can be defined by in-
cluding another factor of H/E. For example, the number



of particles is
=

10 {%}Fw) ~ [ @ 0t ®) aale). (88

However, it does not have a causal space-density.
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Quantized operators may be defined by

0i=:(¢, O:{H/E}r¥):, (91a)

Ru=: (‘l/’ RM{H/E}B‘I’) 5 (glb)

(R;w= . (¢) va{H/E}F‘!/) .. (91C)

The above operators are generators in the sense that

¥ (x) ) (PM]= P (%), (85)
W), Gul=Tu¥ (%) ) (86)
[¥(x), Z]=¢ (). (87)

The same equations apply for ¥. These are easily
derived from expressions like Egs. (78) to (80). The
operators ®;, Js, Z are Hermitian and ®s, g are
anti-Hermitian, so

Wi («), ®l=F[p¥ ()T,
W' (@), gul=F[Jut ()],
(), Z]=—¢'(2),

where the minus signs apply for ®;, g;; and the plus for
®s, Ju- The operators pi;, —ips, Jj, and —iJu were
shown to be Hermitian with respect to the invariant
integral of Egs. (51) and (52) in Ref. 3, Sec. VI.
Also all the operators G commute with H/E when
acting on a solution of Hy=1 dy/dt. Consequently one
finds that

L: (¥, Gi{H/E}s¥) 2, : (¥, Go{H/E}gy) 1 ]
=:(Y, [Gy, G ]{H/E}s¥):. (88)

Therefore the algebra of the operators @, and J,, is the
same as the algebra of the operators p, and J,,, Egs.
(21) and (22). The charge commutes with both @,
and g,,.

The c¢-number three-vector, four-vector, and four-
tensor polarization operators are defined by

0=5Bs5", (89a)
R,= —%’im_le,,,,p.,s »oles (89b)
Ryy=1m"€ups(H/E) P, R, (89c)

where P, is (p, 1H). Here R, is the Bargmann-Wigner'-
type four-vector and R,, was introduced in Ref. 13.
The connection between the three-vector and four-
vector polarization operators is

R=0+[m(E+m)]'0-pp,
Ry=1im'(H/E)O-p.
Consequently the Pauli-Lubanski invariant is
R,R,=3R,Ryv

=0-0
=s (s—I- 1).

16V, Bargmann and E. P. ngner, Proc. Natl Acad. Sci. (NY)
34, 211 (1948).

(90a)
(90b)

Evidently H commutes with O and therefore with R,
and R,,. It follows that these operators are all time-
independent. Equation (83) again applies so that the
four-vector and four-tensor operators may also be

written in the forms
-0
= ——m‘“"’ / ax €uvpoe I: Svppu' —W 5; Svppa\lf:l: )
(92a)

7
Ruy= —Z m2 f X €49 p0€o i\

[o¥ -9
X . 5 PPSTKP)\‘II_\I, 52 Pps-nrp)\\I’ . (92b)

Their space densities are therefore causal. From the
same reasoning as for the other operators one can

write
(%), Rul= —30m 6wy oSy, 00 (%), (93a)
[lp (x) ) (RI»W:l = %m—zeﬂvpafa 1x)\PpS TKP)JP (x) . (93b)

Since O is the operator that corresponds to the quantum
number %,

(OF eYpa= k‘pmk: (94)
it is found that
o= [ dp T ko ® aap). (%)
ke

As a consequence of the normal ordering, any of these
operators ®u, Guv, Z, N, O; R, Ry, applied to the
vacuum | 0) gives zero. This is consistent with the
vacuum being invariant to space-time displacements
and Lorentz transformations. For a displacement
through d,, for example, exp (¢ d,®,) | 0) =] 0).

It follows that states of one particle or antiparticle

of the type
| pek) =aa*(p)| 0)

are eigenstates of some of the operators:

®: | pek) =epi | pek), (96a)
@4 | pek) =i | pek), (96b)
Z | pek) =¢ | pek), (96c)
Oie: | pek) =k | pek), (96d)
9 | pek) =| pek). (96¢)

These results are found by applying the commutation
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rules
[®s, aa*(p) J=epi aa*(p), (97a)
[®4, au*(p) ]J=1E aa™*(p), (97b)
[Z, aa*(p) J=€ aa*(p), (97¢)
L0:e;, aa*(p) ]=k aa™(p), (97d)
(9%, aa*(p) J= aa*(p) (97¢)

to the vacuum. In consequence of the operator defi-
nitions, a many-particle state is, as required, an eigen-
state of the same operators with the eigenvalues adding.
For example,

®; Geyer™ (P1) Gears™(P2) | 0)
=[®i, acw,*(P1) @esr,*(p2)]]0)
= {[®s, acu,*(P1) Jacsn,* (p2)
F e (P1) [®iy Gege* (p2) 1} | 0)
= (epritexpas) Qe ™ (P1) Gear,*(p2) | 0).

The single-particle states are also eigenstates of the
Casimir operators ®,®,, R,Ry, RuRus:

®u®u | pek) = —m? | pek),
Ru®y | pek) =s(s+1)| pek),
RuRyuy | pek) =s(s+1)| pek).

To see this second result for e= —1, for example, one
verifies that

[®Ry, [Ru, a—u*(p) J]=[®Ry, [Ruy (Y1, ¥) ]
= (‘pp—-lk: RﬂRu‘l/)
=s(s+1)a_1:*(p)

and applies the equation to the vacuum.
VI. REFLECTIONS AND CHARGE CONJUGATION

The subject was studied already by Weinberg.? It is
carried on further here to show the parity and charge-
conjugation quantum numbers of actual states and to
show the relations between parity, time-reversal, charge-
conjugation, and the other operators defined above.
The definitions below agree with Weinberg’s, but special
choices of the phase factors he left arbitrary have been
made.

For a particle-antiparticle system in which the par-
ticle has intrinsic parity », =1, the parity operator is
defined to be unitary and such that

C¥ (x, 1) 1=9BY¥ (—x, 1), (98)
®|0)=]0). (99)

For a spin-zero system, for example, the two com-
ponents of ¥ are both, redundantly, the Klein—Gordon
function and 5 is —1 for pions or kaons. For fermions,

interactions determine the parity of one particle relative
to another. Equation (98) is consistent with the idea
of choosing the parity of some particular fermion to be
+1. In principle the parities of the others could be
found by analyzing interactions and only the values
=+1 would occur.

Equations (98) and (99) do define an invariance of
the system. To see this, one translates Eq. (98) into
terms of ¢« (p) and ¢, obtaining

Caq(p) ' =n{e}raa(—p),
(P‘/’(xy t)@_-":’l{é}l?ﬁ‘l/(—xy t)'

(100)
(101)
These results follow straightforwardly from the property

B‘ppek( —X, t) = e\b—pek (X, t) ( 102)

of the plane-wave functions. Equation (100) is con-
sistent with the commutation rules, Egs. (66), (67),
and Eq. (101) corresponds to the space-reflection co-
variance of the Hamiltonian equation (58). Conse-
quently, the @ transform of the system satisfies all the
same differential equations and commutation rules as
the original system.

To see in detail what the intrinsic parities are, one
considers the states of a single particle or antiparticle
at rest, | Ock). Equations (99) and (100) imply that

@ | Ock) =n{e}r | Ock). (103)

Thus the particle states, with e=+1, have parity 7.
Also this equation shows the known fact that, for
bosons, particle and antiparticle have the same intrinsic
parity, whereas, for fermions, they have the opposite.
With the above definition, the parity quantum number
is, as required, multiplicative. For example,

(Paelkl*(o) aezkz*(o) |O>
= {EI}F{fz}F aflkl*(0> ‘1'62’62*(0) ‘ 0)

It is necessary that the operation be defined as in
Eq. (98), and not with an additional factor of ¢ on
the right, if it is to be identified with the usual space-
inversion operation. For example, the energy density,
according to Eq. (75), is
=1,,—2 - ?Elgl_ J 92;11)
3x ) =im '(at a Y ae)

and Eq. (98) yields
®3e(x, )¢ '=3c(~x, 1),

(104)

in agreement with the space-inversion interpretation.

The algebraic properties of this operator are: ® com-
mutes with ®s, Jij, Z, N, Rs, Ry5, and O;; @ anticom-
mutes with ®;, Ji, R, and Ru. Equation (98) implies
that the ® transform has period two:

ON (x, )@ 2=V(x, ).
Equations (98) and (99) together imply that @2=1,
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since @ applied to any state vector produced by apply-
ing creation operators a«*(p) to the vacuum is the
same state vector. The operators ®, J,,, Z have the
same algebraic properties as the four-by-four matrices
P, 5., 1. A consequence of the rules between ®, ®;,
Z, 0; is: if a state has quantum numbers p, ¢, %, then
the parity-inverted state ® | pek) has quantum numbers
—P, ¢ k. In fact, Eq. (100) gives

® | pek) =n{e}r | —pek).

The time-reversal operation 3 is considered to give
a one-to-one correspondence between the state vectors
| £), produced by the operators a.*(p) acting on the
vacuum | 0), and a conjugate set of state vectors | 3£),

slp=l3), [&=57"[38). (105)

The sets of states | £) and | 3) are supposed to remain
distinct; the inner product between them is not defined.
It is postulated that matrix elements between conjugate
states are given by

(3% | 38) = (& ]| &%

It follows that the operator is antilinear and anti-
unitary,

S| &)+B8 | &) I=a"3 | £)+6"3 | &),
(88 | 38) = (& | 377 [ 3E2)™.
The operator is defined by
U (X, )31 =9CysB¥ (x, —1), (106)

where the parity signature # is included here so that
later it cancels out of the ®CJ product. For the operator
¢ this means

3\(’ (Xy t)sﬂl=nc756‘l’(x, —t) . (107)

By comparison with Eq. (59) one sees that the operator
3y (x, £)371, say yr, satisfies the equation

H*yp=—1 dYr/ot.

To find the effect of time-reversal on the au(p),
Eqgs. (36), (38), (46), and (53) are used to show that

CyesBpen(x, =) = (— 1) Hpp . *(x, 1), (108)
and then Eq. (106) gives
3. (p)37'=n(—1)**a.1(—p). (109)

The vacuum is considered to be nondegenerate, de-
scribed by | 0) in the original space and by 3 | 0) in the
conjugate space. Since

Saex*(p)| 0) =n(—1)**a.*(—p)3 | 0),

the operator a.x*(p) is identified as creating a particle
in a state with quantum numbers ¢, &, p in the conjugate
space as well as in the original space. Then the time-
reversal of a state with quantum numbers ¢, %, p,

described in the original space, is a state with quantum
numbers ¢, —k, —p, described in the conjugate space.

The densities have the expected transformation prop-
erties. For the energy density, for example,

330 (x, £)571=5¢(x, —1).

The algebraic properties of the time-reversal operator
are: 3 commutes with Z and 97, and "anticommutes
with ®y, Jusy, Ry, s, and R,,. The period of the J trans-
form is found from

P (x, 1)32=(—1)2V(x, ).
The 3 and ® transforms commute:
PIVI @1 =30V P 3.

The charge conjugation operator © is postulated to
be unitary and have the properties

CU(x, ) 1=[C{ys)s¥ (x, 1) T*,

e|0)=]0). (110)
In terms of a4 (p) and ¢, this reads
Caa(p)C'=a_a(—D), (111)
ey (x, e =[C{H/E}sb(x, 1) J* (112)
These are found directly from the property
[paT* =y (113)

of the plane-wave solutions. Equation (111) is con-
sistent with the commutation rules; Egs. (66) and (67),
and Eq. (112) agrees with the ¢-number charge conju-
gation, Egs. (60) and (61). Therefore, the CG-trans-
formed fields satisfy the same commutation rules and
differential equations as the original fields, and the
charge conjugation is an invariance of the system.
From Eq. (111) it is seen that

e | pek) =| —p—ek). (114)

Since ep is the physical momentum, the effect of @ is
only to change particle into antiparticle, leaving other
physical properties of the state unchanged.

The algebraic properties of the charge conjugation
operator are: C*=1; @G commutes with ®,, g, 9N, O
®,»; and € anticommutes with Z, ®,. Also € commutes
with the space densities of ®, and g,,, and anticommutes
with the space density of Z. The @ transform has
period twoj; it commutes with the 3 transform and with
the @ transform for bose statistics; it anticommutes
with the @ transform for Fermi statistics.

The definitions combine to make

CCIV (x, )30 = {v5}r¥ (—Xx, —1) ]*.
This transform has period two.

To reorganize the system into terms of self-charge-
conjugate states, one writes

V=¥un+¥c,
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where

Uiy =3(TLETCM). (115)

This means that
V= £C¥ (11yC7'= %[ C{vs} s¥ any *.
These two parts can be written as
V=272 f dp 2 [b.1(p) Yo
%
+by0*(P) {— 5} B ¥—p, 1], (116)

where the b,.*(p) are operators for creating self-
conjugate particles,

biwe(p) =27"[au(p) £eu(—p)]  (117)

They have the commutation rules
[8,(p1), bor(p2) 1e=0, (118a)
(80 (P1) s bet™(P2) J =018 o0 (P1—p2).  (118D)

Since a;:(p) and a_1.(—p) apply for states with polari-
zation %2 and physical momentum p, the operator
ban*(p) creates a particle with €==1, polarization %,
and physical momentum p. The fields ¥¢1) and ¥y
anticommute/commute with each other, and it follows
from Egs. (73), (110), and (115) that

[ (1), Uin*(22) Jo=3[T (w1), ¥*(x2) Ju, (119)

where the function on the right is given in Eq. (74).
Thus the anticommutator/commutator of ¥, (%) with
Wy*(a5) is causal. Since € commutes with ®,, gu», N,
0i, ®Ruv, Egs. (75), (76), (84), and (92) can be re-
arranged to give separate contributions from the €=+-1
and @=—1 types of states. For example,

. ' v
Cu= 2 (—Y)im / dx:[ ©
> ot
0:=2.: (Yo, O H/EY ) 2,
']
where ¥, is 2 (¥+pCye™). This type of rearrangement
cannot be made for Z or ®,. Let terms in this type of

p sum be written as ®q), O¢y: In terms of the b,:(p)
they are

- 0
¥ =Y Py Pﬂ‘I'(p)]: )

Cpi= / dp D ps b (D) ba(p),  (120a)

% o

Oori=i [ dp 3 Ebu*(B) bule),  (1205)

Ny = / dp 2 b*(D) ba(p), (120c)
k

Opyiti= / dp 2}; k bo*(p) b, (P)- g (120d)

For bosons, the states a.1,*(0) | 0) have the same parity
7, so the self-conjugate particles satisfy

®b41:*(0) | 0) =nbyn*(0) | 0)

and have the same intrinsic parity as the particle and
antiparticle. For fermions, the states a.,4:*(0) | 0) have
opposite parity and the self-conjugate particles do not
have definite parities relative to the particle or anti-
particle.

The relations between € and the Lorentz operators
are: € commutes with @, and g,,; the @ and J transforms
commute; the € and ® transforms commute for bosons.
Consequently, it is a covariant notion to consider either
of the fields W), ¥y all alone, provided a special
space reflection for fermions is set up. In agreement
with Weinberg,? one defines the operator ¢ to be
unitary and such that

P (x, £) @'L=+if¥ (—x, ). (121)

Then, for fermions, the ® and @ transforms commute
and one can take

O () (x, 1)@ 1=iB¥, (—x, £)

as the space-reflection operation for the self-conjugate
fermion fields. The operators ®guy, Jwus Ny i,
®Ryuv apply for the field ¥(,). From Eq. (119) it is
seen that the space densities of ® ¢y, Jeyur, and Ry
are causal. Since € anticommutes with Z, the expression
oW () =

a‘I’(m)
Wy — :
ot (] O] ot

Loy = — L / dXI(
is identically zero. The same remark applies for ®,.

VII. ISOTOPIC SPIN

For a particle-antiparticle system with isotopic spin ¢
there are wave-function operators y,(x, ¢), where p is
the isospin component label, ranging from —¢ to 4:.
In terms of the complete set of functions Y« (x, £) the
operators are

%= [ dp SLoa(®) Yt [ —1611 015 ®) ¥y

(122)

and the commutation rules are taken to be
Laau(p1), @515 (p2) Ju=0, (123a)
Laau(p1), asi*(pe) 1 =811088,,0 (D1 —p2). (123b)

The different components ¥, anticommute/commute
with each other and the commutation rules of a com-
ponent with itself are as given in Eqgs. (73) and (74).
The discussions in the previous sections apply to each
component separately and the equations can be taken
over by adding the appropriate subscripts: ¥ is replaced
by \I/,‘, ayr by Qlopy and a_1x by 35—y
The isospin operators are defined by

3= —%im‘e’ j dx
v,

- 0 i
XZ:[_GT (Ti)w'\I'#' -‘I’M'é'; (Ti)mt"I’n’]:- (124)
pp!



Here 7, are the angular-momentum matrices, the
standard representation. Again the space density is
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The G-parity transform of these operators is
gbpku (p) 9_1 = Pbpkn (P) . ( 134)

causal. Alternative expressions are

5i=z;: (‘l’u; (Ti)mt'{H/E}BKbn’):; (125)
5i=ZI(Ti)Mu’ f dp ;{allm*(p) avw (D)
— 1" (p) a—u—u(pP)}. (126)
These are the generators of isospace rotations:
[u(x, 1), 3:]= Z,(Ti) w¥w (%, 85 (127)

this follows directly from Eq. (126). Equation (88)
again applies so that

[, 351 =te:3s. (128)

The 3; commute with all the operators previously de-
fined but 3 and ©; 3 commutes with 3; and J;, anti-
commutes with J,; @ commutes with J;, anticommutes
with 3; and Js.

Since the G parity commutes with J;, it gives the
decomposition of the particle-antiparticle system of
fields into two self-conjugate systems that separately
form isospin ¢ representations. As usual, the operator
is defined by

G=C exp (irds)
so that here
G¥.(x, )G = (—1) [ C{vs} s¥-u(x, 1) ]*.

Since

(129)

92‘1’18_2 = ( -1) 2,

only integer isospin is considered. Then the fields

\I’(:l:l)ﬂl = % (‘I’u:i: 8‘1’;8_1) ( 130)
have the property
SYG = (_1) t—pl:c{')’b}B‘I’(p)——u]*:P\I’(p)n (131)

and still satisfy commutation rules like Eq. (127) with
3;. This is in agreement with Carruthers’ remark that
only for integer isospin can there be a self-conjugate
system of bosons.” 2 In terms of the complete set of
functions ¥, the fields are found to be

W (= 2712 f dp ;[bﬂm(p) 818

+P( - 1) u bpk—#* (p) { —YS}B‘I’—D—lka (132)

where

beru(P) =27Lanu(p) +p(—1) * a_uu(—D) J.

17 P, Carruthers, Phys. Rev. Letters 18, 353 (1967).

18Y. S. Jin, Phys. Letters 24B, 411 (1967).
( 19 (7}) N. Fleming and E. Kazes, Phys. Rev. Letters 18, 764
1967).

20 H. Lee, Phys. Rev. Letters 18, 1098 (1967).

2 P, B. Kantor, Phys. Rev. Letters 19, 394 (1967).

(133)

It is seen that &,,*(p) is the operator for creating a
particle with G parity p, polarization component £,
isospin component g, and physical momentum p. The
commutation rules for these operators are

[bpku (pl) ) balt'(pZ) ]:!: =0,

[bpku (pl) ) bvlv* (P2) ]:l: = 5n03k16uv5 (pl ""pZ) .
The field commutators

LW ou (1) , Ty (42) T

are 35,,0,, times the function on the right in Eq. (74).
The @ transform of the b,,,(p) operators is

Chpi (P) o =P( - 1) L - (p) . ( 136)

This specializes to the known result that the central
state of a multiplet b,4*(p) | 0) is an eigenstate of @
with eigenvalue p(—1)t.

An analogous decomposition can be made using the
total parity G@,

GO, (x, 2) (§0) 7 =n8(—1) [ Clvs} sV (—x, ) T*.
(137)

(135a)
(135b)

Evidently it commutes with J;. Since
(§0) 2, (GP) 2= (—1) =42ty

only the case of (s+4f) integer is considered. Then the
fields
V=3 (P, £GOV,.0G™)

have the property
GO¥ (%, 1) (G@) 1 =n8(—1) "*[C{vs} ¥ (—u(—%, ) T*
=P‘I’(p)u(x: t)

and also satisfy commutation rules like Eq. (127) with
3;. In terms of the complete set of functions ¥, these
fields are found to be

W (= 2712 f dp Ek:[bpku(P) Ypix

+1p(—1) by * (D) { —vs} B¥p-1r],
where

boru(P) =27[a11u(p) +n p(—1) “* a_yuu(p) 1.

These also satisfy Egs. (135) and so are independent
particle destruction operators. Since

G®b,i(P) (G®) ™ =pb,i (D),

the p is the G® quantum number of the states
b.r*(p)| 0). However the states involved here are of
an unusual type since they are superpositions of states
with opposite physical momenta. If, in addition to #+s,
¢ is an integer, then

Cdiu (P) Cl=y P( - 1) e bpk—n( _p) .
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This means that
ebpko*(o)l 0) =7 P("l) t bpko*(o)l 0))

so in the rest frame the central member of a self g@
multiplet has eigenvalue np(—1)* of @. Again the field
commutators

¥ ou (1), ¥y * (22) ]

are 30,,9,, times the function on the right in Eq. (74).
These field operators ¥(,, do not transform as spinors
under the Lorentz group, since ® does not commute
with ®@; or Ju. However ® does commute with g;;, and
W, transforms the same as ¥, with respect to space
rotations.

VIII. SU(3) SYMMETRY

An analogous development can be given when the
internal symmetry group is SU(3). Let the Lie algebra
be specified by the model representation of eight 3X3
Hermitian traceless matrices as given by Pursey?:

01 0 01

1
Ti=;{ 10 00 0]

0

o/
0 —i 0 00 —i
iOO,N’=<OOO,
0 0 0 i 0 0

2
(138)

1 0 0 000
T3=;<0 -1 0 001}

0 0 0 010

10 0 00 0
U=;<01 0o |, =l oo —i

00 —2 0 i 0

The T'; are the generators of isotopic spin and U is the
generator for hypercharge. The electric charge of a
particle is given by e(T3+3U). The four remaining
generators connect the multiplets with definite isospin
and hypercharge, thereby enlarging the group from
SU(2)XU(1) to SU(3). The extra generators can be
organized conveniently into ladder operators:

X, =N+iN’, o= —M+iM,
X_=M+iM', Y_=N—iN, (139)

22 D. L. Pursey, Proc. Roy. Soc. (London) 225A, 284 (1963).

and they have commutation rules:
[T Xol=beX,, [T, Ys]=b.47,
[T, X]=3eX,, [Ts, Ve ]=13¢V,
[U,x]=X,, [U,Y]=-Y,
[X,, X,]=0, [Y, Ys]=0,
[Xe, Vo= —4edTet40,—4(Ts+3eU),

where ¢ and ¢ can be % independently and T is
Ty4Ts.

Nelson®?* has shown that the two labels needed to
specify an irreducible representation can be expressed
as 7 and a where

j=%,1,%,"', |a[§]—-—(1/2).

For fixed 7, o ranges over the specified limits by steps
of unity. The labels within a representation are the
isotopic spin ¢, its third component u, and the hyper-
charge #. For the purpose of discovering the isotopic
spin-hypercharge content of an irreducible represen-
tation, it is convenient to introduce the two linear
combinations

m=(1/2)u+(1/3)a+1+(1/2),
n=(1/2)u+(1/3)a—t—(1/2).  (141)

In an irreducible representation specified by j and a,
m and n independently assume all values by steps of
unity within the limits

at-(1/2)Sm<j,  —j<n<a—(1/2).

Pictorially speaking, j defines a ladder with rungs
labeled —j, —j4+1, , T7; a lies midway between
two of the rungs; the labels m and # range over the
rungs above and below «, respectively. The isotopic
spin-hypercharge content of a representation can be
deduced by making a graph with » on one axis and
n on the other and writing (2¢+1, #), as found from
Eqs. (141), at the coordinates allowed by j and a.
Figure 1 shows the example =% and a=0, the octet
representation. Since 2i+1=m—n and u=m+n—
(2/3)a, the point of lowest isospin on this graph is
at m=a+(1/2) and n=a—(1/2), where 2t4+1=1 and
u=(4/3)a; the point of highest isospin is at m=j
and n=—j, where 2{4+1=25 and u=—(2/3)a. The

(140)

L 3
n 2 2 m
1
-3T (1,0) (2,n
31 (-
-3 (2,1 (3,00

Frc. 1. Isospin mult1phc1ty and hyperchange (2¢+1, #) for the
Jj=1%, a=0 representation of SU(3).

T, J. Nelson, J. Math. Phys. 8, 857 (1967).
% T. J. Nelson, Nuovo Cimento 524, 985 (1967).



T. J. NELsoN AND R. H. Goop Second-Quantization Process for Particles 521

rest of the graph may be filled in rapidly. Of course,
for fixed ¢, u ranges by integer steps from —¢ up to +¢,
and is independent of the hypercharge «.

The matrix elements of X4 and ¥, have been derived
in general by Pursey.?? The nonzero ones, in the present
notation, are

<.7.a; m+1; 7, ﬂﬂ:% I X:l: |.7a) mnﬂ>=fmm,:l:#ja)

(jos my n+1, ped | X | jos mnp) =Ffoma™, (142)
(joy m, n—1, p£} | Vo | jos mnp) = —fn —m 177",
(o m—1, m, py | Vg | fous mnu) =Ff o n ¥,
where

S ™
_[Z(m—n-l—l:I:Z#) (m—a+3) (j—m) (J'+m-l-1)]”2
B (m—n) (m—n+1) ‘
The nonzero matrix elements of T and U are

(Go;m, n, ux1]| Ty | jo; mnp)
=[1(m—n)*—f—p(px1) ]
(jo; mnp | Ts | jou; mnp)=p,
(jo; mnp | U | jou; mmp) =m~+n—3a.

A multiplet of particles carrying the representation
specified by 7 and « has the field operators

‘I’mnuja= / dp ;{alk;mnuju(p) '/’plk
+{ —vs} BO-1;—n—m— (p) ¥p—u}, (143)

where the @a;mn,"*(p) satisfy the same type of commu-
tation rules as before, Eqs. (123), except with two
more 8§ symbols for the m and # indices. The commu-
tation rules for ¥,/ are the same as before but with
8 symbols for the m, n, u indices.

The quantized generators of SU(3) transformations
are

G=—tim [ax %

wom/nlu!

(jo; mnp | Gy | joo; m'n'u’)

) L

OV ™ - )
: mrnt w3 =W : 144
><( o - e ) (144)

where p=1 to 8 and G, are the abstract generators of
the group. Alternate expressions are

Go= Z

mnp,m/'n/ p!

(Jor; mnu | G, | jou; m'n'u’)
X: (‘l’mmnja: {H/E}B‘pm'n’#’ja) 5 (145)

(jou; mnp | Gy | jou; m'n'u’)

Ge= E

mnu,m/n!p!
X/ P Z[alk;m"l‘ja*(p) @iesmnw ()
k

— Getti—nt -t P (D) Othsn,—m,—" (D) ] (146)

These are the group generators, since
(o™ (X, 1), Go
= 2 {jasmnu| G, | jo; m'n'y’) Wpm?*(x, ). (147)

minlu!

The commutation rules among the G, are the same as
among the matrices of Eq. (138).

The discussions of reflections in Sec. VI apply to
each SU(3) component of the wave-function operator
separately. The equations can be taken over by re-
placing ¥ by ¥, au by Gumn®, and a_y by
@—1k;—n,—m,—s’ "% This means that

Caek;mns®®(P) ® 1 =n{€} rAek;mns™(—D),
3@ ee;mn®(P) 3 =n(—1)**ac,_t;mn,™*(—p), (148)
Clet;mny™(P) C71= e b, —m,—u” % -p). (149)

By combining Eqs. (146) and (148) one finds that 3
commutes with G, when the matrix elements (| G, |)
are real, anticommutes when they are pure imaginary.
The reality properties are found from Eq. (142). The
result is that § anticommutes with J,, 9T, and 9%/, and
commutes with the others. On combining Eqs. (149)
and (146) one finds that € commutes with G, where
the (| G,|) are pure imaginary, anticommutes when
they are real. Consequently @ commutes with J,, 9/,
and 9’ and anticommutes with the others.

Fields that are in a sense self-conjugate can be con-
structed for the representations with a=0. To see this,
one first verifies that the fields

annia = ( — 1) aRmin—e—pEy_, '__/m__“i.—ae—l

are the components of a j, o basis. This can be done
by taking Eq. (147) as given and calculating the
commutators of X and G, the matrix elements of G
being known from Eqs. (142). Thus, the transform
K0 KL= (— 1) WDOr—p@Y_, . 39€1  (150)
produces another set of operators that can be added to
Ymau® without disturbing the representation. The
transform has period two, so the operators
‘I'(ﬂ)mmtjo = %E\I’mmﬂjo +P( - 1) R min =@y _, \—m ._“j[)e—l] )
(151)

where p is #=1, have the property

Xy (,,)m,,‘."o(Kf" 1=P\I/(p)mma5°- (152)
In terms of the complete set of functions ¥, these
field operators are

\I’(p)mnnjo =272 / dp ;[bpk:mmnjo (p) ‘!’plk

+P( - 1) ar) (mﬁ)—“bﬂk;—n,_m ._,“jo* (p) { —‘Ys} B‘l/—p—lk])
(153)
where
botin na® (D) =272 @14 ;mn™ (D)

+o(—1) W= g_ymn®(—p) ] (154)
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These are independent-particle operators satisfying
[bpk;mnujo(pl) ) bvl;uvvjo (Pz) :li: = 0:
[bpk;mnnjo (P1) s bot;uos™* (P2) ll: = 800 10mudno00 (P1—D2) .

It follows that the fields with different p numbers
anticommute/commute with each other and that the
field commutators

[\I,(P)mmljo(xl) ) \I’(n)uvvjo* (xZ) j:t

are (1/2)08,60mudns0,» times the function on the right in
Eq. (74). The &K transform of the operators 4% is,
from Eq. (152),

:K:bpk ;mmtjo (p) Ki= Pbpk;mmt]o (P) .

Therefore br;mn™®*(p)| 0) are eigenstates of & with
eigenvalue p. From Eq. (151) it is found that

G mmtjog_l = ( - 1) =k C¥ (p)mn—u]06_1
— (_ 1) t—u P( —_ 1) (1/2) (mAn)+p \II(P)—-ﬂ,—m,+njO-

If, in addition to a=0, one considers # =0, then m= —n,
¢ is an integer, and

g‘l’(p)mnujog_l = ( - 1) bW (p)mnujo-

Therefore the G parity of the states dpumn®*(p)|0)
with zero hypercharge is (—1)%. As a well-known
example, since the #’s have {=1 and negative G parity,
the pseudoscalar octet has K parity +1, the n must
have G parity of 41 and C number +1. The vector
nonet has K parity —1 and the tensor nonet has K
parity 1.
IX. DISCUSSION

This theory shows the difference between the quanti-
zation processes for integer-spin and half-integer-spin
particles. In both cases there is a complete set of wave
functions and a wave-function operator defined by
summing the functions multiplied by independent par-
ticle operators. This operator is causal for half-integer
spin, but an extra factor of v; has to be put into the

negative-frequency terms to get a causal operator for
integer spin.

The fact that a uniform treatment of the integrals of
motion can be made for all spins, Sec. V, perhaps corre-
sponds to the fact that all the fields have the Klein—
Gordon dispersion. The formulas look unfamiliar in
the spin-3 case, but they simplify when 7 9/d¢is replaced
by «+p+@m. For example, Z becomes just [¢Tydx.

In the definitions of the vector and tensor polarization
operators, Egs. (91b) and (91c), the factors of (H/E)
were chosen in such a way that the space densities of
®, and ®R,,, shown in Egs. (92), would be causal.
A consequence is that ®,, commutes with € but ®,
does not. This means that ®,, is appropriate for dis-
cussing polarization of self-charge-conjugate particles
but ®, is not. However, if the requirement of having a
causal space-density were relaxed, an extra factor of
H/E could be inserted in the definition of ®,; ®,
would then commute with € and could be used for
self-charge-conjugate particles.

Carruthers’ point, that self-conjugate isospin multi-
plets can exist only if # is integral, is seen to be related
to the fact that the G-parity operator has period two
only for integer isospin. His remark is applied to opera-
tors that are Lorentz spinors so the self G® operators set
up in Sec. VII for integer (s+£) are not in contradiction
with it. For self-conjugate SU(3) multiplets it is clear
right away that o must be zero, since otherwise the
conjugate representation is a different representation.
The construction made in Sec. VIII shows that the
causal self-conjugate multiplets do exist for all 7, a=0
representations.
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