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1. INTRODUCTION

The absorption coefficient of electromagnetic radia-
tion in the continuous spectrum of atoms (and mole-
cules) characterizes the radiation penetration and its
action upon matter. For sufficiently low radiation fre-
quencies, this coefficient is proportional to the spectral
density of oscillator strength for the relevant atom at
the relevant frequency; the oscillator strength is a
dynamical parameter which bears on numerous phe-
nomena as outlined in Sec. 2. The restriction to “low”
radiation frequencies, assumed throughout this article,
implies that the wavelength is much larger than the
atomic structure responsible for the absorption, and that
accordingly the photon momentum and the attendant
Compton scattering are negligible. These conditions
obtain for photon energies below a few keV in the
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lightest elements and below 50 keV in most atoms.
They also ensure that relativity effects are unimportant.

In the x-ray range of the spectrum, say, above 1-
to 10-keV photon energy or below 1- to 10-A wave-
length, basic studies of the absorption coefficient have
been carried out in the early days of atomic physics
and are being refined steadily (see, e.g., WGS7, McGS9,
HBG66, SP67). These studies show that x-ray absorption
proceeds, in the main, in accordance with a hydrogen-
like model because it stems from inner shell electrons.
Each of these electrons is influenced primarily by the
Coulomb field of the nucleus; furthermore, its repulsion
by the other electrons can be represented fairly ade-
quately by “inner” and ‘“outer” screening corrections
to the nuclear field which do not change its Coulomb
character. The contribution of inner electrons to photo-
ionization is also more easily measured than that of
outer electrons; being affected weakly by the state of
aggregation of matter, it need not be observed in the
state of atomic vapor.

The electrons of each shell (or, rather, subshell) of an
atom contribute directly to its photoionization only
when the photon energy exceeds the threshold for
ionization of that subshell. According to the hydrogen-
like approximation, this contribution decreases mono-
tonically from the threshold up, as the photon energy
increases. Thereby the plots of absorption coefficient
versus photon energy acquire a familiar saw-tooth
shape, each “tooth” representing the contribution of
the electrons from one inner subshell. (The steep edge
of a tooth corresponds to the absorption threshold,
the gentler slope to the monotonic decrease toward
higher photon energies.) Each absorption edge is
complicated by a fine structure due to indirect photo-
ionization, that is, to excitation of an inner electron to a
discrete outer level, followed by Auger effect. However,
this structure can readily be accounted for (see, e.g.,
Ba59a, Wa65) as long as the hydrogen-like approxima-
tion is applicable.

At lower photon energies, the hydrogen-like model of
photoionization breaks down progressively (except for
the H atom itself, of course) for the following reasons.
First, the net average field due to nuclear and elec-
tronic charges departs sharply from the Coulomb law
in the outer portion of atoms which is the primary
seat for the absorption of lower-energy photons.
Second, departures from the independent electron
approximation, such as exchange effects and two-elec-
tron jumps, are no longer negligible in the outer regions
as compared to the effects of a central potential. These
various departures have in fact proved responsible for
conspicuous phenomena.

As late as 1960, evidence on photoionization in the
energy range from 1000 eV to the proximity of the
lowest threshold was quite fragmentary and provided
no picture of the relevant physical circumstances.
Tentative tabulations of absorption coefficients were
based on extrapolation of the hydrogen-like approxima-

tion (Vi48, Le53a) which turned out to be inadequate.
Sources of radiation and other techniques adequate for
systematic experimental studies in this range had not
been developed.

Rapid progress has now been achieved, as atomic
physics started again pushing in new directions, partly
in response to needs of space and plasma physics.
Even though the results of this work are in many
respects preliminary or incomplete, they provide an
initial description and interpretation of atomic prop-
erties in the energy range from the lowest ionization
threshold to the point where the hydrogen-like approxi-
mation becomes a dependable guide.

A survey of this recent work has been undertaken to
present available information from a single point of
view. In the course of this survey opportunities arose
to extend the theoretical analysis and interpretation of
data and to develop formalisms that connect different
theoretical approaches. This effort also pointed up un-
solved questions that seem suitable for investigation
in the next several years. The material thus accumulated
constitutes the present report.

Some remarks may be made at the outset on the
context of our subject. Whereas the measurement of
photoabsorption coefficients constitutes a direct meas-
urement of oscillator strengths, important evidence on
these strengths is also provided by other studies; the
combined evidence will be considered here. Much
of the experimentation on photoabsorption has aimed
at observing features characteristic of solid-state struc-
ture or properties of atmospheric gases, rather than at
studying single atoms per se. Our emphasis will be on
single neutral atoms. Therefore, data obtained on solids
and on molecular gases will have to be examined for
relevance to their constituent atoms; conversely, im-
proved knowledge of the behavior of isolated atoms
should provide a firmer basis for identifying the
influence of the state of aggregation on the observable
properties of matter.

This article has the primary purpose of describing
the gross features of the oscillator strength spectrum
for atoms throughout the periodic system, the extent
and the sources of our data on this subject, and their
interpretation in terms of atomic mechanics. Emphasis
will be placed on the newly explored range of the spec-
trum. Since the continuous spectrum includes the bulk
of the oscillator strength, except for H, the discrete
spectrum will usually be regarded as an appendage
of the continuum regardless of its practical importance.

As a subsidiary task the article indicates connections
between the oscillator strengths and other atomic
properties. Some of these properties are of interest to
other fields of physics and some pertain to the internal
dynamics of atoms. The latter subject has been ad-
vancing rapidly just because the absorption of photons
with energy above ~20 eV and similar energy transfers
in particle collisions have permitted the study of two-
electron transitions and of other electron-interaction
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processes which unfreeze an increased number of intra-
atomic degrees of freedom. The set of properties to be
considered is in fact so broad that this article touches
to some extent a substantial portion of atomic dynamics.

Section 2 reviews the connections of the oscillator
strengths of atoms with electric, magnetic, and other
properties of low-density monoatomic gases and with
dynamical properties of each atom such as the time-
dependent autocorrelation between electron positions
and the mean kinetic energy of electrons. (The more
complex relationships with properties of condensed
matter are not considered.) Section 3 outlines the main
experimental developments that have permitted ex-
tensive measurements of photoabsorption in new spec-
tral ranges and indicates collateral experiments which
bear on the mechanism of photoabsorption.

Section 4 describes and analyzes much of the experi-
mental evidence in the context of an independent-
electron model, in which the electrons of each shell are
governed by a central but non-Coulomb force. The
characteristics of this force, and especially its interplay
with the centrifugal force, give rise to notable depar-
tures from hydrogen-like behavior. One of these is the
occurrence of quasiresonances, which cause precipitous
drops of absorption coefficients with increasing photon
energy, followed by subsidiary low maxima. Another
is a depression of absorption near the threshold for each
subshell, an effect which increases with the orbital
angular momentum.

Section 5 formulates the complete many-body calcu-
lation of oscillator strengths in a manner that incor-
porates an independent-electron calculation as an initial
step and permits one to assess and take into account
various possible improvements in succession. Each
successive step would involve in effect the diagonaliza-
tion of a submatrix of the infinite-dimensional energy
matrix. However, this approach remains largely un-
developed. It may be contrasted with the straightfor-
ward method of obtaining for eack photon energy a pair
of “best” approximate wave functions for the initial
and final state of the atom, usually by separate Hartree—
Fock calculations; the straightforward method leads
more rapidly at a fair approximation to any desired
value of the oscillator strength but it does not keep in
sight the consistency requirements over the whole
spectrum or the influence of various physical mecha-
nisms.

Section 6 deals with an effect of electron exchange
forces which influences the spectrum considerably and
has been evaluated primarily for Ar in the 15-35-eV
range; it also describes plasma-type approaches to this
effect. Section 7 deals with a side effect of photoabsorp-
tion by an electron, namely, with the readjustment of
the other electrons in the atom including the possible
excitation or ionization of a second electron.

Finally, Sec. 8 describes effects of channel interaction
such as the line profiles attendant to autoionization
and the spectral repulsion between channels with
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different thresholds, which depresses absorption edges
further and occasionally even inverts them. These
effects generally have a minor influence on the gross
distribution of oscillator strengths, but exceptions
might occur. Data obtained from the observation of one
interaction effect have a bearing on another one; e.g.,
the profile of an autoionization line provides an index
of the spectral repulsion between channels. Our knowl-
edge of this field is mostly quite tentative and spotty,
yet its study appears very promising.

Two major works have appeared recently whose
content has much in common with the present article
but whose intent is largely complementary to ours. G. V.
Marr’s “Photoionization Processes in Gases” (Ma67b)
is a textbook which describes theoretical and experi-
mental information on the yield of these processes,
primarily for lower photon energies. Biberman and
Norman’s review of “Continuous Spectra of Atomic
Gases and Plasmas” (BN67) is concerned primarily
with providing data relevant to plasma workers but
contains also a thorough analysis of current theoretical
methods of calculation. Previous surveys are referred
to in these two works and will be mentioned in this
article only where they are immediately relevant (see
also Mu67).

Some remarks may be added on the connection of our
subject with collision theory. If one regards the action
of radiation as a photon-atom collision process, the
whole treatment of radiation absorption and scattering
reduces to an application of the general theory of scat-
tering. The general formalism of scattering theory in-
volves certain complexities because of the coupling of
alternative final states, degenerate and near-degenerate
in energy. In the case of radiation processes these com-
plexities can be bypassed insofar as the photon-atom
interaction is weak and therefore amenable to a more
familiar perturbation treatment. However, the com-
plexities arise anyhow in the treatment of the atom
itself when it absorbs sufficient energy to open up
alternative channels of photoionization or when its
many-body properties become important. A formulation
of radiation absorption and refractivity from the point
of view of scattering theory has been presented recently
by Shore (Sh67). Here we shall follow the ordinary
theory of atomic spectra more closely and utilize
collision theory only where necessary.

2. PROPERTIES OF THE OSCILLATOR
STRENGTH!

The concept of oscillator strength stems from the
late 19th century model of the electrical and optical
behavior of matter. Electrons were supposed to lie at
equilibrium positions within atoms and to react elas-
tically to weak disturbances. Thus they would perform
forced oscillations when exposed to electromagnetic
radiation. The amplitude and phase of these oscillations

1 This section may be complemented by Chap. 1 of (Le60).
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would depend on the characteristic (angular) frequency
of free oscillation of each electron w;, on its (weak)
damping constant v,, and on the radiation frequency w
according to a simple law of mechanics.

Actually, electrons do not have fixed equilibrium
positions within atoms but, rather, a statistical distribu-
tion of positions, indicated by | ¢ |2, which is fixed under
equilibrium conditions but is distorted quasi-elastically
by weak disturbances. This distribution can perform
free oscillations with a spectrum of frequencies far more
numerous than the number of electrons in an atom.
Therefore to each spectral frequency w; corresponds a
portion of the integrated |y |2, which is generally
represented by an irrational number rather than by an
integer and which is called the oscillator strength f;
of the atom at that frequency. To frequencies w; of
the continuous spectrum corresponds, more appro-
priately, a spectral density of oscillator strength, df/dws.

The classical model was not developed sufficiently to
determine the spectral frequencies w, and the corre-
sponding numbers of electrons f,. However, quantum
mechanics defines the w, and f, in terms of the eigen-
values and eigenfunctions of the Schrodinger equation.
Thus their calculation constitutes a well-defined mathe-
matical task, but one that can only be accomplished
approximately for many-electron atoms. The develop-
ment of suitable approximations depends in practice
on hints drawn from experimental evidence.

2.1, Polarizability of Atoms

In the classical model one may consider an electron
that experiences a displacement z from its equilibrium
position under the influence of an electric field
Ey exp (—1iwt) directed along z. If the electron is also
subject to an elastic force —mw;% and to a frictional
force —mry.dz/dt, its displacement is

2= (e/m) [ Eo/ (0 —w?—1iy,w) Jexp (—iwt).

The polarizability of this electron, i.e., its dipole
moment ez per unit field strength is

(2.1)

a(w) =ez/ Ey exp (—iwt) = (6¥/m) (wd—w?—iyw) L
(2.1a)

The concept of a complex field Ey exp (—iw?) is, of
course, a mathematical artifice; one is actually in-
terested in its real part Eo cos wf and in the displacement
induced by it, which is the mean of (2.1) and of its
complex conjugate. The complex character of a(w)
serves to represent by a single number the phase lag and
the magnitude of the displacement z with respect to the
field oscillation. One can then write

ez=3%[a(w) E, exp (—iwt) +a*(w) Eo exp (twt) ],
(2.1b)

with « given by (2.1a) and «* its complex conjugate.
This formula is better suited to quantum-mechanical
interpretation.

A dilute gas, containing 9 atoms per unit volume
and f, oscillators of frequency w, per atom, has the
susceptibility

Xe(®) =ar(w) =T(e%/m) [ fof (05— w2 —iysw) ).
(2.2)

Since we are interested in the properties of isolated
atoms, all formulas will be derived to lowest order in 9.

To obtain the corresponding result by a quantum
treatment of atoms one may assume that a macroscopic
oscillating field Ej cos wt is applied to each atomic elec-
tron of a dilute gas. If z; indicates the 2 component of
the position of the jth electron of an atom with respect
to its nucleus, the assumption amounts to adding a term
—e 2, Ey cos wt to the Hamiltonian of each atom. This
addition causes the unperturbed ground-state wave
function ¥, to be replaced by a superposition of all the
unperturbed wave functions yo, ¥1, ***, ¥+ with
coefficients calculated to lowest order in Ep by first-
order perturbation theory. In the calculation it is
expedient to add to each unperturbed energy eigenvalue
an imaginary part which represents the decay of any
atomic excitation due to collisions or to radiation emis-
sion; e.g., if the energy level of the sth eigenstate lies
at E,=fiw; above that of the ground state, the corre-
sponding eigenvalue is indicated by E,—ifiy,/2. Details
of the calculation are described in textbooks, see, for
example, pp. 390-391 of (S151).2

Having calculated the perturbed ground-state wave
function, one finds that the mean dipole moment of a
unit volume of gas does not vanish but is represented by

9o (3 2;) =3 xe () Eo exp (—is)
+x.*(w) Ep exp (iwf) ].  (2.2a)

Here x. is the same as (2.2) provided one defines

fo (2meos/hi) 1(2)812: (2mE,/#?) ](Z)sl2;

where

(2.3)

(2)o= f ¥e* 2 sihodr (2.4)

and dr is the volume element of all electron coordinates.

2 Representing the perturbed wave function by Zsas(£)ys, one
calculates the coefficients a,(f) by integrating a first-order
differential equation in da, (¢) /d! with the initial condition @,(0) =0
for s#0. Terms with a factor exp(—~st/2) are disregarded for
sufficiently large values of ¢£. The treatment of (SI51) does not
introduce the v, for simplicity but then meets some difficulty in
justifying the correct final results on the basis of the correct
initial conditions.



U. Fano anp J. W. CoorER Spectral Distribution of Atomic Oscillator

One of the two factors (z)s in (2.3) originates from a
matrix element of the perturbed Hamiltonian and the
other from the calculation of the mean dipole.

Modern techniques such as that of Feynman quoted
in Sec. 2.3 make it unnecessary to treat the external
field classically and to represent the decay of atomic
excitation by adding an imaginary part to the energy
eigenvalues. They enable one to treat by a single
Hamiltonian a complete quantum system, which con-
sists of the incident field, of the atom, and of additional
field and matter variables that provide an “excitation
sink,” with appropriate interactions. The imaginary
element in (2.2) is then seen to originate from boundary
conditions of the ‘“outgoing wave” type which are
appropriately imposed on the state of the excitation sink
(see, e.g., Fab4).

The classical and quantum definitions of f, given
above appear to depend on the mutual orientation of the
z axis and of the atom, specifically of its states yo and
¥s. In fact, the D, in (2.2) includes all states of equal
energy E,=%w, and different orientation. Moreover,
the ground state ¥, may be isotropic, in which case the
polarizability is actually orientation-independent, or
one may deal with atoms of random orientation, in
which case averaging of f; over all states ¥, of different
orientation is implied. In this article we shall assume
throughout that averaging over the orientations of
and ¥, has in fact been performed. [The process of
averaging and its influence on the properties of oscillator
strengths are discussed in Secs. 59-60 of BS57, where
the averaged strengths are indicated by 7.]

We are interested here primarily in ionization proc-
esses, that is, in states ¢, of the continuous spectrum.
In this event, the function ¥, is understood to be
normalized “per unit energy range” and the quantity
(2.3) is properly indicated by df/dE,;=#"'df/dws. The
summation symbol Y, in (2.2) is understood to include
an integration over the continuous spectrum and is
more properly represented by

dise.

(2.5)

where I is the lowest ionization threshold. [The con-
tribution of autoionizing discrete levels, which lie above
I, may be regarded as part of the continuous spectrum
(see Sec. 8.1) and thus included in the second term
of (2.5).]

Alternative expressions of the oscillator strength f,
exist, in terms of matrix elements of the electron
velocity or momentum, acceleration, etc. These expres-
sions are derived from (2.3) and (2.4) by means of
operator transformations, based on the fact that E,
is the difference of the energy eigenvalues of the
Schrodinger equation with Hamiltonian operator H
corresponding to the wavefunctions s and ¥,. Thus we
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have

Ey(3)o= [0 T S abo—y.* o ipelir
= f o TH D 5~ Dl Jodr

— =it [ S oiabodr
-

= —@/m) [ 43 090/ dr
= —i(h/m) (p.)s,

where we have utilized the operator equation that
defines the velocity v, —ifiv=Hr—rH, or, alternatively,
the differential expression H= — (7i2/2m) D_;0%/dx7+
«++. Substitution of (2.6) in (2.3) yields

fs=—(2i/R) (2)s*(p2)s
= (i/B)[(p2)+*(2)s— (2)s*(p2)].
Utilizing the squared modulus of (2.6), one finds instead
fi=4|(p2)s |*/2mE.. (2.8)

A further transformation analogous to (2.6) is

(2.6)

(2.7)

E; (Pz) s f‘ps*[HZPiz - Z_szH]¢odT

= —iﬁm/lﬁs*zajztﬁodT
= —ihim(a,)s
=i [9* 50V /05 puts

=ik (dV/d2)s (2.9)

where a; is the acceleration of the jth electron and
—9V /3z; the z component of the force applied to it by
the nucleus and the other electrons. Substitution in
(2.8) yields finally

fo= (Zih/m-Ef) (PZ)«?*(aV/az)s
= (ih/mE2)[(p2)s*(9V/32)s— (8V /2) * (p2)s]
=472 [ (0V/92) |2/2mEs3. (2.10)

2.2. Dielectric and Optical Constants:
absorption Cross Section

Photo-

For a nonmagnetic material of low density 97, the
dielectric constant equals the square of the complex
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refractive index and is related to the susceptibility
(2.2) by
e= (n+ik)?=14+4mry.(w).

The absorption coefficient of electromagnetic radiation
is then

(2.11)

p=2(w/c)k=2(w/c) Im (e)!2
=4r(w/c) Im [x.(w)], (2.12)

where the last equality holds again to lowest order in 9t.

One sees from (2.2) that Im [x.(w)] is appreciable
only within spectral intervals of order v, about each
discrete frequency ws, as well as throughout the con-
tinuous spectrum of w,. In the continuum one can
generally assume that the spectral density df/dw, is
practically constant over intervals ~, so that it can be
replaced by df/dw in the calculation of Im x, from (2.2);
the sum (actually, integral) over w, reduces then to an
arctangent and yields

p(w) = (27%2/mc) Ndf/ dw
= (we*h/mc)Ndf/dE

=1.098)X 10~ cm? eV Ndf/dE.  (2.13)

Therefore, the photoionization cross section is
o (w) =p(w) /N
= (me*h/mc) (df/AE)
=1.098X 10" cm? eV (df/dE), (2.14)

a relation that enables us to treat the photoabsorption
cross section and the spectral density of oscillator
strength as synonymous. The quantum theory of the
interaction of radiation with an atom yields (2.14)
directly, with the definition (2.8), through the calcula-
tion of the probability of transition of the atom to a
continuum state, without any reference to macroscopic
properties or to the mean dipole moment induced by a
macroscopic oscillating field (see, e.g., BS57, p. 303,
Be64, Chap. 12).

Other optical constants, derived from the polariza-
bility or refractive index, can of course be expressed in
terms of oscillator strengths as detailed in Sec. 2.5.

2.3. Time Correlations

We have stated that the oscillator strengths represent
the aptitude of atomic electrons to perform oscillations
of different frequencies. In this context one may also
consider how the mean electric dipole moment of an
atom varies in time following an initial disturbance.
(This moment vanishes for any atom in its unperturbed
ground state because of symmetry under reflection at
the nucleus.) For example, one may think of having ap-
plied an impulsive displacement to all atomic electrons
at an initial time =0 and calculate the expected mean
dipole moment at later times ¢. The frequency spectrum

(Fourier transform) of these dipole variations is, in
essence, the spectrum of the oscillator strength.

Without resorting to a new calculation one can
transform analytically the quantum-mechanical defini-
tion of oscillator strength (2.3) into the Fourier
transform of a correlation® between electron positions,
or velocities, at different times, utilizing a general
procedure of quantum mechanics (AP48; see e.g.,
Ki63, S163). One finds

i  2mo

= 7«/:, dt exp (—fmt)zk@izk(t) »

- I_: ,/_Z dt exp (—iwt) ?; (ra(— D) 25—2iP1s(2) o,

(2.15)
where
(3(1) Yo= f Voz; exp (iHY/B)z, exp (—iHi/R)yodr,
(2.16)

H is the full Hamiltonian of the atom and 2(f) and
pr=(t) are operators in the Heisenberg representation
as seen explicitly in (2.16).

Notice that these formulas do not involve excited or
ionized states explicitly but take into account the
complexity of atomic dynamics implicitly through the
structure of 2,(¢) or pi.(#). The correlation formulas
may be of help in interpreting the properties of the
oscillator strength distribution in terms of dynamic
pictures.

Alternatively, one can obtain the expression of x,
in terms of the Fourier integral (2.15) directly by cal-
culating (2.2a) through the perturbation approach
of Feynman (Fe51) instead of those of Rayleigh—
Schrodinger or Dirac. To this end one represents the
coordinate 2; as the Heisenberg operator

exp [i(H—eEY )t ls; exp [ —i(H—eEY %) (], (2.17)
k k

where H is the free-atom Hamiltonian and E the elec-
tric field operator, and expands it into powers of E to
first order. Upon substitution into the left side of
(2.22), this quantity depends on atomic variables
through the correlation (2.16) and on the field through
the mean value (E) which is E, cos wt according to the
formulation of our problem. The expression of x, in
terms of (2.15) follows.

2.4. Spectral Distribution and Its Moments

The plot of the spectral density of oscillator strength,
df/dE, against the photon energy E represents the
absorption spectrum or the spectrum of the photo-

3 One calls correlation the mean value of a product of two, or
more, variables. The mean value is taken here over the ground
state yo. One of the two variables may be regarded as a perturba-
tion, the other as the monitor of the resulting disturbance.
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Fic. 1. Oscillator strength distribution in the discrete and part of the continuous spectra of: (a) H (theory) (b) Li (experiments,
Fi31, HC67). The plot of E, vs s in the lower part of the figure relates to the construction of the histogram. See Sec. 4.5 for interpreta-

tion of Li spectrum. (Courtesy A.R.P. Rau.)

ionization cross section, to within a proportionality
constant, owing to (2.13) and (2.14). The strengths f,
of discrete transitions can be included in this plot in
the form of a histogram, i.e., of a set of rectangular
blocks whose respective areas are equal to the f, and
whose bases are laid about the corresponding energies
E, (Fig. 1).

That the discrete absorption spectrum of an atom
may be regarded as an appendage of the continuum
was indicated in Sec. 1 on the grounds that the discrete
spectrum contains a minor fraction of the total oscillator
strength. More intrinsically, however, the discrete
spectrum itself consists normally of one or a few Ryd-
berg series of lines whose frequencies and oscillator
strengths are distributed regularly and relate closely to
corresponding properties of the continuum. These
features of the discrete spectrum derive from the
circumstances affecting any electron that has received
from photoabsorption sufficient energy to move out-
wards from the rest of the atom. The electron is held
back primarily by Coulomb attraction as though it
belonged to a hydrogen atom; whether it will remain
bound in a Rydberg level or escape in a continuum
state depends on the comparison of its total and poten-
tial energies far outside the rest of the atom, a compari-
son incidental to the initial process of photoabsorption.

Figure 1(a) displays the position and oscillator
strengths of the discrete spectrum of H together with

the adjoining continuum, in a manner applicable to the
Rydberg series of other atoms except for fine structure
details and for localized irregularities to be mentioned
in Sec. 8. The quantum defect method (Se58, Se66, see
also Sec. 4.3), which provides a detailed formulation of
the qualitative arguments indicated above, suggests
the following procedure for constructing the histogram
so as to point up the relevant regularities. Plot each ob-
served transition energy E, against the number s of the
corresponding line in its Rydberg series and draw a
smooth line through these points. [ This curve should fit
approximately the equation E,=I—Iu/(s—o)?, where
I is the relevant ionization threshold and ¢ a constant
quantum defect; for atomic hydrogen I= Iy and ¢=0.]
The base of the histogram block that represents the
oscillator strength f; should equal the slope of the curve,
dE,/ds, at s.* The tops of the blocks in the histogram,
whose heights equal f,ds/dE, should then form a stair-
case which constitutes an extrapolation of the contin-
uous spectrum below the ionization threshold.

The discrete absorption spectra of alkaline atoms con-
sist, in the main, of a single Rydberg series and can be
represented in the manner of Fig. 1. Figure 1(b) shows

4 An alternative suggestion presented in Sec. 4 of FCG65 is faulty
in defining the mean density of oscillator strength in a discrete
spectrum as the ratio of the strength of each line to the mean of
its distances from the adjacent lines. This mean distance should
be replaced by the derivative dE,/ds.
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the spectrum of Li as an example; the occurrence of a
minimum in the histogram of the discrete spectrum is
discussed in Sec. 4.5. For other atoms one finds normally
two or more Rydberg series converging to the threshold,
or thresholds, of adjoining continua. [ Different thresh-
olds of continuous spectra correspond to photoabsorp-
tion processes that leave the residual ion in different
energy levels.] Separate histograms similar to those in
Fig. 1 may be constructed for different Rydberg series.
The staircase formed by each histogram extrapolates
beyond the series limit into the contribution of the cor-
responding continuum to the total distribution of oscil-
lator strength. In principle, the whole continuous spec-
trum could be resolved into the contributions of
different processes that correspond to different alloca-
tions of energy and angular momentum between the
residual ion and the escaping electron. In practice this
analysis would require, from the experimental point of
view, procedures more refined than those for measuring
only the absorption of light (see Sec. 3.5). At this time,
the extrapolation of discrete series can provide some
relevant information.

For purposes of qualitative analysis, one occasionally
constructs graphs of the integral spectrum of oscillator
strengths in which each abscissa represents a photon
energy E and the corresponding ordinate the sum of all
oscillator strengths corresponding to energies smaller
than E (see, e.g., Fig. 13). The curve in such a graph in-
creases monotonically with a finite nonzero slope in the
continuous spectrum and with a vertical step in cor-
respondence to each line of the discrete spectrum, these
steps being separated by flat segments. (The consider-
ations required for choosing the width of histogram
blocks in the discrete spectrum of Fig. 1 are unneces-
sary here.) The final ordinate reached by the integral
plot at E= o0 is fixed by the sum rule (2.23), so that
the plot shows at a glance what fraction of the oscillator
strength lies below each energy E. On the other hand,
any uncertainty or error in the lower energy portions
of the spectrum affects the entire integral curve at
higher energies.

Proceeding now to some general descriptive consid-
erations concerning the spectral distribution of oscillator
strengths, one may recall that distribution functions
are often characterized conveniently by their moments.

We indicate the moments of the strength distribution
df/dE by

dise

Si= S E/fo= 3 Eft / " Er(df/dB)dE, (2.18)

where the symbol D, is understood in the sense of
(2.2) and (2.5). The zeroth moment Sy represents the
area under the plot of Fig. 1. It equals the number N
of electrons in the atom, owing to the familiar Thomas—
Reiche-Kuhn sum rule which underpins the validity
of the classical model of electron oscillations. Many of
the moments S, as well as related averages over the

distribution, can be expressed in terms of theoretical or
experimental properties of the atom in its ground state,
as will be detailed in Sec. 2.5.

Here we recall that moments of any distribution that
extends to infinity may be infinite unless the distribu-
tion tail converges to zero sufficiently fast. According
to nonrelativistic mechanics of the atom—whose va-
lidity is assumed throughout this article®—the spectral
density of oscillator strength decreases for large E; as

df/dE~E-"2 (2.19)

(KS57, RF67), so that S, becomes infinite for 7 integer
and >2.

Knowledge of a finite set of moments .S, does not
suffice to reconstruct the entire distribution of oscillator
strength® but provides nevertheless information of
interest. Consider, in particular the ratios

Sri/ Se= D E(Esf) /D2 (Ef), (2.20)

which may be regarded as mean values of E; averaged
over distributions that are increasingly weighted
toward high values of E; as r increases. Since the f;
and E, are nonnegative, the ratios (2.20) should be
increasing—or, at least, nondecreasing—functions of 7.
That is, one must have

Sr+1 Sr - Sr+ISr—1 >1
Sr Sr—l Sr2 -

(2.21)

This “ratio of ratios” can equal unity only for a dis-
tribution concentrated entirely at a single energy E,
that is, for a harmonic oscillator. [In this event all
ratios (2.20) are equal to E,]. Therefore the excess of
(2.21) over unity indicates how broad is the distribu-
tion.

For purposes of orientation we give in Table I some
values of S, and of the ratios (2.20) and (2.21) for
atomic H, obtained from the formulas of Sec. 2.5.
Note that the H electron is subjected to a Coulomb
force which decreases with increasing distance from the

TaBrE I. Moments and moment ratios for the H atom

(Ig=13.6 eV).
r —2a -1 0 1 2
S: (9/8)[]5['2 Ig 1 %IH (16/3) Ig®
Sr+1/Sr (8/9) IH IH IH 4IH ©

4
3
Sr+1 Sr—l/Sr2 (9/8> % 3 s

a The S_2 value can be calculated analytically for H only, see MS48.

5In fact, atomic electrons acquire speeds comparable to ¢
within a small volume around the nucleus. Absorption of radiation
within this volume—which occurs only for high photon energies—
is boosted by various relativistic effects, including pair production.
As a result, even Sy becomes infinite.

6 The distribution could be reconstructed from its Laplace
transform ¢ (p) ==, exp (— p Es) fs. The moments S; are coefficients
of the Taylor expansion of ¢(p) into powers of p.
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nucleus, whereas the force on a harmonic oscillator in-
creases with increasing distance.

Values of the S, and of their ratios, obtained from
the direct measurement of oscillator strengths and
from the other theoretical and experimental approaches
described in Sec. 2.5, are increasingly used to test the
internal consistency of different sources of information
and to interpolate among their results (DL57, PL64,
ML65). Data on this subject are shown in Table II.
We shall make extensive use of arguments concerning
the moments .S;.

2.5. Sum Rules: Optical and Related Constants

As mentioned above, numerous moments and other
properties of the oscillator strength spectrum of an
atom can be related to theoretical or experimental
properties of the atom in its ground state. These
relationships are known under the general name of
“sum rules.”

Four of these sum rules, including that of Thomas—
Reiche-Kuhn which sets So=N, are derived as general
theorems of quantum mechanics in standard references
(see, e.g., BS57, Secs. 62 and 61a). They are:

Soa= (2m/1) 3
— /) ()

—CmI (| Xl (2.22)

SO=N7 (2.23)

N
S1= ZMZ ('sz'Dkz )o
ik

—4((p)/2me

= (4/3) (| 2p; [*/2m ), (2.24)

So= (72/m) 2V /32 o

— 4/ Z(Hm) () e (2.25)

Here, notations are the same as in Sec. 2.3, including
those for ground-state averages; further,

N
2.5(17)
7
is a sum of Dirac § functions whose mean value is the

electron density at the nucleus. Average orientation of
the atom is assumed in the formulas.
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These sum rules follow, respectively, from the several
expressions of f, in Sec. 2.1. Specifically one chooses that
expression which will not include E, explicitly after
multiplication by E,". Thus we utilize (2.3) to calculate

Soa= 2 E = 2m/B) > | (3), . (2.22')

Recalling the definition (2.4) of (2),, we see that the
sum over all the excited states s reduces to a matrix
multiplication,

2 @)= Z / %*Z_Z/%d‘r’ / !l/s*zzﬁﬁodr

:/¢0*(sz)2¢od‘l'= <(sz)?>0- (2.22'

The values of .S, S1, and S; are obtained in analo-
gous manner. In calculating the last expression of
(2.25) one should notice that the electron—electron
potential D _:sje?/| r;—r; | yields no net contribution to
(3°/6%V /332, as shown by Vinti (Vi32). For further
details see (BSS57, Sec. 62). Alternatively one could
utilize the correlation formulas of Sec. 2.3, considering
that summation over the states s is equivalent to
integration over w in (2.15) and that [dw exp (—iwt) =
276 (1).

Notice that S_; and S; (but not S, and .Sy) depend
on the mean products of variables of different electrons,
namely, on the two-electron correlations (z;z,) and
(Pizprs)o With j5%k. An explicit connection is thereby
established between the spectrum of oscillator strength
and electron—electron correlations in the ground state.
If these correlations were negligible, S_; and .S; would
be proportional, respectively, to other well-known
properties of the atom, namely, its diamagnetic sus-
ceptibility

a Z (ri2 >07

Xm= — 6ma? - (226)
and the mean kinetic energy of its electrons
N
(K Jo=2_(p#/2m . (2.27)
7

(Owing to the virial theorem, (K), equals the total
binding energy of the atom.)

Knowledge of the ground-state wave functions of an
atom, much easier to achieve than for the excited states,
permits one to evaluate the moments S_;, .Sy, and S,.
However this information has limited relevance, for
atoms other than H and He, until one can estimate
the separate contributions of different atomic shells.
Accordingly, any discussion of data on these moments
is deferred until Chap. 4.

The negative even moments S_s, are related to the
light scattering and refracting properties of the atom.
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TasLE II. Moments and moment ratios for the rare gases estimated fron}l )various experimental data and calculations drawn from the
literature (In 67).

r -2
Sy/Ia" He (Theory) 0.3460
He (exp) 0.349
Ne 0.667
Ar 2.77
Kr 4.18
Xe 6.82
Sr11/S-In He (Theory) 2.17
Ne 2.94
Ar 1.91
Kr 1.79
Xe 1.51
Sr1Sr1/ S He (Theory)
Ne
Ar
Kr
Xe

-1 0 1 2
0.752b 2 8.17v 121
0.754 1.99 8.36 127
1.95 10 320 1.10X105
5.3 18 1.15X108  1.16X108
7.5 36 5.3X108 1.9 X107
10.3 54 1.3X10¢ 1.0 X108
2.66 4.09 14.8 ©
5.13 32 344 ®
3.40 64 1.0X108 ©
4.80 147 3.6X108 @
5.24 240 7.7X103 ©
1.23 1.54 3.62
1.75 6.2 11
1.78 19 16
2.68 30.6 24.7
3.47 46 32

 Value from (Sc61). b Values from (Pe59).

Setting w=10 in (2.2) yields the static polarizability
a(0) =9U(2/m) X wie=(e¥/m)H2S_s. (2.28)

Thus S_» can be determined by polarizability experi-
ments, which we consider here, as before, in the low
density limit, i.e., to lowest order in 9. More generally,
the moments S_p appear as coefficients of the low-
frequency power expansion of the refractive index #%(w),

13 (w) = 14 (4a9e*h?/m) i S_or (Fiw) 2D

r=1

— 1 (4n R m) S S_an(he/N) 2D, (2.29)

r=1

Fitting this expansion to experimental data on #? pro-
vides values of the S_; which may help one in con-
structing the distribution of f;. Moreover, the derivative
of n?(w) with respect to w determines the optical
rotatory power induced by a magnetic field (Faraday
effect). For spherically symmetric (S state) atoms the
rate of rotation is

do/dz=VH= (4n9eh2/2m2c2) H Y, (r— 1) S_op(Fic) 2D,

r=2

(2.30)

where V is the Verdet constant and H the magnetic
field strength in the direction of light propagation.
Measurement of the Verdet constant often affords a
more accurate determination of S_s S_s, etc., than
measurements of the refractive index.

Besides the moments .S,, four differently weighted
averages of In E; over the oscillator strength distribu-

tion are relevant to specific physical phenomena,
namely,

InI,=2 E; (In E)f,/ S, (2.31)
InI= Z (In E,)f./N, (2.32)
In I;= ZE (In E,)f/ S, (2.33)
In I,= ZE2 (In E,)f./ Ss. (2.34)

The first three of these concern, respectively, the cross
section for grazing collisions of fast charged particles
with atoms (IKP67), the mean energy transfer in
these collisions, and its mean fluctuation (Fa63, pp.
14 and 42); the oscillator strength is involved here
because the passage of a fast charge with low momentum
transfer has essentially the same effect as electromag-
netic radiation, as discussed in the next section. The
fourth one, I also called K, concerns the Lamb shift of
atomic energy levels, that is, a correction due the virtual
process of emission and reabsorption of electromagnetic
radiation by atomic electrons (BS57). Notice that if
one defines a smooth function S(x), such that it equals
one of the S, whenever x equals the integer 7, he can
regard the expressions (2.31) to (2.34) as special
cases of

In I,=[dln S(x)/dx ], (2.35)

This formula can be useful for purposes of numerical
evaluation (Pe59, Da60, DS60, BD65).

Notice also that the sum rules considered in this
section provide no information about whether and how
the total oscillator strength of an atom can be traced
back to separate contributions from the electrons in the



U. Fano anp J. W. CoorEr Spectral Distribution of Atomic Oscillator

various shells or subshells. The very concept of atomic
shells stems from approximate models of atomic
mechanics. Additional and more informative sum rules
can be formulated within the framework of such ap-
proximations. Such rules will be discussed in the several
relevant sections of this article, but they do not con-
stitute at this time a clearly coherent system.

2.6. Role of Polarizability in the Collisions of Fast
Charged Particles

When a fast charged particle passes in the proximity
of an atom, but at some distance from it, the atom ex-
periences an electric field which is rather uniform in
space and sharply pulsed in time. The response of the
atom to this disturbance depends on its time-dependent
polarizability or on the Fourier transform thereof,
a(w), as discussed in Secs. 2.1 and 2.3. Insofar as the
field pulse can be regarded as infinitely sharp in time,
its Fourier components of all frequencies have equal
intensity. Under this condition, the probability of

ELECTRON INCIDENT ENERGY (MeV)
1o ! 10 20 30 40
T I I [

(a)

0 L . L s s L L

0.1 02 05 | 2 5 10 20
Egp in kev

F1c. 2. Plots of the He ionization cross sections by particle
collisions in the relativistic and nonrelativistic energy regions.
(a) Z.B%/4mae® (Eq. 2.39) for slightly impure He ionized by
electron (I%I McC53, @ RP68) and positron (O RP68) impact.
The theoretical curve corresponds to S_1=0.752 Ig™* (IKP67).
(b) Total ionization by electron impact in the nonrelativistic

energy range (Sc65). Curve corresponds to Eq. (2.38) and its
slope to Eq. (2.40).
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absorption of an energy #iw by an atom is simply pro-
portional to the Fourier component of the induced
dipole moment which is 90° out of phase with the
disturbance, i.e., to the imaginary part of its polariza-
bility Im a(w).

These considerations suffice to surmise that the obset-
vation of the spectrum of energy transfers in collisions
may serve to measure Im a(w) and thereby the spec-
trum of oscillator strength in accordance with (2.2).
However, it takes a rather detailed analysis of the
quantum theory of inelastic collisions to derive the
quantitative relationships which make this measure-
ment not only possible but convenient. In a classical
analysis one classifies the inelastic collisions of a
particle with an atom according to the “impact parame-
ter” which, when large, is essentially the distance of
closest approach. A quantum analysis replaces this
parameter, which is in fact unobservable, by the mo-
mentum q transferred in the collision, which is a func-
tion of the energy loss and deflection of the incident
particle, or by Q=¢?/2m where m is the mass of an
atomic electron. Small values of q or Q correspond to
the large values of the impact parameter, that is to the
kind of collision in which the atomic response is char-
acterized by its polarizability.

The cross section for inelastic collisions of fast
charged particles can be calculated adequately to lowest
order in the particle-atom interaction. As described in
another review article (Fa63), the cross section for
excitation of an atom to its sth state, differential in the
parameter Q, is represented by

dos _ 21rz2e“{ | Fo(q) |2
Q@ mr |Q(1+0/2me)?
[ 8:-Gs(q) 2 0
+ [O(1+Q/2mc?) —E32/2m¢;2]2} {1+ ’m—cz} (2.36)

- 2wt fy { 1
mv? E; |Q(14-Q/2mc?)?

t2E32/2mc2 __Q__
[Q(I‘I‘Q/ch?) — Ea2/2mc2]2} {1“" mcz}. (237)

Equation (2.36) corresponds to (16) of (Fa63),
whereas (2.37) is derived from it by utilizing the
low-Q approximation forms of F, and G, from (22)
and (23) of (Fa63). The charge and velocity of the
incident particle are represented by ze and v, whereas
8. represents the component of the velocity vector
B8=v/c on the plane perpendicular to q.” Equation
(2.36) simplifies considerably in the nonrelativistic

+

7A factor Z has been deleted in the transfer from (Fa63)
because of a different normalization of the oscillator strengths
[see note 9 of (Fa63)]. Exchange effects, which occur in electron
collisions with atoms, were not relevant to (Fa63) and are dis-
regarded here because they are negligible in the low-Q approxima-
tion.
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limit, but we cannot afford this simplification because
high values of v are relevant to our application.

Equation (2.37) permits a direct determination of f;
because do;/dQ can be measured by collecting only
particles scattered within a differential solid angle.
Measurements are usually made for zero-angle scat-
tering which corresponds to the minimum value of Q,
QOmin- The measured cross section per unit solid angle is
easily converted to do/dQ; often the relativistic terms
in (2.37) are negligible. On the other hand, measure-
ments have often been carried out at moderately low
incident energies (<1000 eV) for which the low-Q
approximation formula8 | F, |>~Qf,/E; does not quite
hold, even at Q= Qmin= E/2m2% In this event | F;(g) |?
is determined using (2.36) for a few values of Q and then
fs/E, is obtained by extrapolation of | F,(q) |2/Q to
Q=0; this approach has been applied extensively by
Lassettre and co-workers (LKS64, LBSK64, SL64,
SL64a).

An alternative procedure enables one to obtain f;
from simpler and more accurate measurements of the
variation of the fofal cross section o, as a function of the
impact velocity v=_8c¢, except for relativistic values of
E,. Notice that, in the integration over Q of the “exact”
formula (2.36), the impact velocity appears only
through multiplicative factors, except for its influence
upon the range of integration. The integration near the
upper limit Qmax yields no appreciable contribution,
unless E is very large, because the integrand converges
to zero rapidly. The integration near the lower limit
Onmin=E*/2mv*® yields an increasing contribution as »
increases, but this contribution can be calculated
analytically, since the simpler approximate form (2.37)
is applicable here. The calculation, outlined by Egs.
24, 25, and 32 of (Fa63), yields

_ 2mget { f_s [ln 32

7= mv? | E, 1—p2

where C, is independent of 8 and irrelevant for our
purposes. ]
According to this formula, a plot of the ratio

os/[273%e*/ Tamv* )= BP0, /4mra’a? (2.39)

(where a=5.29X 108 cm, a=1/137, and Iz=13.6 eV)
against In [8%/(1—p?%) ]—p? should yield a straight line
whose slope gives the value of f,/(Es/Iu) =] (2), [/a%
This procedure has been applied successfully to the
sum of o, over all states that lead to ionization, for
various substances, especially by Platzman and co-
workers (MP57, IKP67) and in (Sc65). Results for He
are shown in Fig. 2. The plots approach a straight line,
as expected, for increasing values of the velocity of an
incident electron, thus demonstrating the range of con-
ditions under which the assumptions underlying the
derivation of (2.38) are adequately fulfilled.

—32] —I—Cs} , (2.38)

8 See Eq. 18 of (Fa63); the relativistic terms mentioned in this
reference are negligible for our application.

Notice, however, that electron collision experiments
of this type—i.e., without analysis of the electrons after
collision—actually seldom determine the probability
of transition to a definite excited state s and thereby
the corresponding ratio f,/E,. (At best this happens
when one measures the fluorescence from excited atoms,
but even here photoemission cascades complicate the
interpretation.) Usually one observes some end effect o,
e.g., ionization or even the fluorescence from a residual
ion, which may follow excitation to different states s
with different probabilities 7,,. The experiment then
measures the quantity

22 (fo/ B (2.40)
s

rather than a specific f,/ E,. This circumstance compli-
cates the interpretation of experiments, but electron
collision experiments retain notable advantages of
simplicity and accuracy. Notice also that in special
cases 7, may have a simple dependence on s, in which
case the measurement of (2.40) acquires particular
interest; specifically, Platzman has pointed out that
7se= 1 for the production of ionization in slightly impure
helium, whether s belongs to the discrete or to the con-
tinuous spectrum, so that (2.40) coincides with the
momentum S_; defined in Sec. 2.4.

3. EXPERIMENTAL ASPECTS

This section consists of brief notes and data concern-
ing the technical developments and the technical
limitations which have conditioned recent measure-
ments of oscillator strength distributions and which
seem relevant to foreseeable further progress. With
regard to the direct measurement of absorption co-
efficients we consider separately the characteristics of
radiation sources and detectors and the procedures of
spectral analysis and absorption. A final section deals
with subsidiary experiments that provide more detailed
information on absorption processes. Other methods of
measurement will be discussed only incidentally.
Reference to more detailed descriptions of experimental
methods will be relied upon insofar as possible.

Progress in the measurement of absorption coefficients
between 10 and 1000 eV has been limited primarily by
the total effort required to overcome a number of
difficulties, rather than by any single major obstacle.
Each of the techniques utilized in recent years existed
in some form in the 1930’s, except for synchrotron light
sources. However, the practical utilization of various
techniques and the possibility of combining them
effectively have been enhanced greatly by progress on
counting devices and on their associated electronics,
by the availability of powerful pumps and by greater
familiarity with vacuum techniques.

Synchrotron light, whose continuous spectrum ex-
tends far into the vacuum ultraviolet, was first observed
in the 1940’s. Its application to absorption spectroscopy
had a brief trial in the 1950’s, and has been carried out
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rather extensively since 1963. This development has
played an important role but has not actually provided
most of the data reviewed in the present article.

A review of the history and methods of far ultraviolet
spectroscopy was published by Tousey in 1962 (T062).
For the approach from soft x-ray spectroscopy, see
(Sa57, To57, LRS60, Lu61l). For the measurement of
oscillator strength distributions by inelastic electron
scattering see (Ku68).

3.1. Spectral Line Sources

The traditional radiation sources of absorption
spectroscopy have spectra with numerous strong lines.
Optical-type sources utilize gas discharges in which
atoms are separated from any chemical combination,
and are excited and ionized, often multiply ionized.
Their external excited electrons emit line spectra when
dropping to lower levels. The emission from multiply
ionized atoms extends throughout our spectral range of
interest. X-ray sources with line spectra rely on the
ejection of inner atomic electrons by electron bombard-
ment, generally of a solid target, followed by emission
of x rays of characteristic well-known wavelengths
when the inner shell vacancies are filled by outer elec-
trons in a radiative process.

The spectra of gas discharges generally consist of
very large numbers of lines, often a fraction of an
angstrom apart. X-ray spectra consist of fewer lines.
In either case, a spectral distribution of intensity shows
the lines superposed on a continuum, and part of the
continuum may consist of stray radiation. Absorption
measurements are made for discrete wavelengths in the
middle of individual lines. Therefore these measure-
ments cannot cover the whole spectrum continuously
and do not yield an adequate analysis of fine structures
in the absorption spectra. A typical source intensity is
10° photons/spark A in the center of a line at ~200 &
emerging from a 1)<0.0025-cm slit.

The gas discharges of interest to us operate in succes-
sive pulses. Reproducibility, at least of the average
intensity and spectral distribution, over successive
sets of pulses no longer appears to cause concern, to an
accuracy of a few percent.

3.2. Sources with Continuous Spectrum

Discharges in the noble gases produce continua of
usable intensity in the region of the lowest ionization
thresholds, above 600 A in wavelength (<20 eV).
The intensities have been increased by high performance
differential pumping at the slit through which the light
emerges from the source (TJL58, NHHG62). Other dis-
charges have also been improved to yield usable con-
tinua in approximately the same range (Ga66). The
light originates not only from gas or vapor atoms but
also from material removed from container walls.
Discharges yielding continua that extend to much
higher photon energies have been reported (BRV61)
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but not yet utilized extensively. [Note added in proof:
Professor W. R. S. Garton kindly informs us that such
discharges have now been utilized up to 100 eV photon
energy. |

The “synchrotron light” from high-energy electron
accelerators provides a continuum of smooth, rather
uniform spectral density up to a limit whose photon
energy increases with the cube of the electron energy.
The light beam is naturally well collimated. It must be
piped out from a high vacuum through a slit and effec-
tive differential pumping must be maintained through-
out, with care to prevent contamination of the accelera-
tor by noxious substances. The light beam intensity
from an accelerator of moderately high energy (~180
MeV) amounts to ~5X 108 photons/sec A for 40-eV
photons emerging through a 1X0.1-cm slit. Some ex-
ploratory work on absorption spectroscopy was done
at Cornell with a 300-MeV synchrotron (THS6),
but extensive applications began only in 1963 with a
180-MeV accelerator at the U.S. National Bureau of
Standards. For technical details on this source, see
(CM65, MEC67). Other accelerators have been utilized
since 1965, particularly at Frascati (JM66), Tokyo
(Sa66a) and Hamburg (HK67).

The bremsstrahlung spectra produced by electron
bombardment of solid targets, long familiar in x-ray
physics, are convenient for absorption spectroscopy
but have a low yield of radiation below 1000 eV.
However, Lukirskii and collaborators have recently
succeeded in utilizing this type of source down to
~60 eV (LZ63, LZB64) by exploiting improved tech-
niques, sacrificing resolving power and counting over
extended periods. In the region of 50 A (argon L edge)
a counting rate of ~60 sec™* was obtained over a spec-
tral band of 0.094 A. The source absorbed 0.6 kW; ap-
plication of substantially higher power is conceivable.

3.3. Absorption Spectroscopy

The spectroscopic portion of an absorption experi-
ment in the 20-500-eV range necessarily presents non-
trivial problems owing to the combination of optical
and vacuum requirements. Commercial instruments are
becoming available at this time for the major portion
of the range, where one uses gratings ruled especially
for grazing incidence. Crystal diffraction using stearate
or other large-cell materials has not yet achieved high
resolution for lack of sufficiently perfect crystals. A
resolving power of approximately 1 part in 2000 has
been achieved in the synchrotron light spectrograph
(MC65). Additional mechanical problems arise when
one attaches a spectrograph to an accelerator that
dissipates a large amount of ac power.

The vacuum requirement may be of the order of 10—¢
mm Hg, to accommodate windowless photomultipliers
and to minimize absorption by contaminant substances.
In a spectrometer with a ruled grating, approximately
109 of the incident photons at 200 A are diffracted into
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the first-order spectrum. Crystal spectrometers have
a lower efficiency.

The absorbing sample is necessarily in gas or vapor
form for the study of absorption by single atoms.
Cross sections from ~0.1 to ~100 Mb (10~ to 1016
cm?) are considered here, so that the sample may
range from 10~8 to 10~ moles/cm?. The sample may
be placed between source and grating, between grating
and detector, or it may fill the grating chamber itself
as in (MC65). This last arrangement is simplest but it
allows the gas to penetrate everywhere, except for
differential pumping at the entrance and exit slit, and
it requires the sample to be at a very low pressure which
is more difficult to measure accurately. Arrangements
with contained samples require the use of exceedingly
thin windows (LZ63, ET64) or of slits with a high-
pressure gradient to be maintained by differential
pumping. Samson (Sa64) inserted the sample between
two ionization chambers that served as monitor and
detector, respectively. This last arrangement has in-
creased the measurement accuracy and permitted the
use of a thicker sample but it requires a higher radiation
intensity.

Since most elements are metallic, samples of their
vapors to serve as absorbers can exist only at high
temperatures or in the form of atomic beams. Vapor
samples often contain a fraction in molecular form,
which complicates the analysis of data (HC65). These
circumstances, combined with the other necessary
characteristics of absorbing samples, has thus far
severely restricted the range of elements accessible to
investigation in vapor form. Progress has been made
recently in this direction by utilizing a shock wave to
vaporize a solid deposit on a thin window and simul-
taneously triggering a light source (see particularly
Ga66, p. 121). A number of absorption spectra have
been obtained for elements in the form of metallic
films. The gross features thus observed in the spectral
range above ~100 eV are probably characteristic of the
individual atoms rather than of their state of aggrega-
tion.

Analogous remarks may be made concerning the
elements that occur in the form of molecular gases,
notably H,, Np, and Q.. Data on these elements are
often presented in a form that attributes half of the
molecular absorption to each atom. This procedure in-
volves inaccuracies that are poorly known but may
be serious; for a preliminary discussion of this subject
see (CF60).

3.4. Detectors

Photographic detection is simple and can proceed
at low intensities with long exposure times. It permits
an easy inspection of absorption spectra. On the other
hand, it does not lend itself well to extensive quantita-
tive measurement of absorption coefficients, because the
calibration of plate densities is laborious and inaccurate.
Accuracies of about 10%, in the absorption coefficient

have been achieved but are difficult to exceed. Faster
photographic plates suitable for our spectral range have
been developed recently, as discussed in (MEC67).

Electric detection and measurement of radiation is
inherently flexible and accurate and can be very sensi-
tive, but it requires an additional effort on subsidiary
apparatus. Photon absorption in solid cathodes or in
gas molecules can serve as a counter trigger. Initial
amplification can be provided by a standard electron
multiplier arrangement or by a gas discharge as in
Geiger counters. Measurements can proceed by photon
counting or by current integration.

Most of the electric detectors must operate either at
high vacuum or, on the contrary, at pressures higher
than the rest of the system. Maintaining the necessary
pressure differential by a window presents a problem
with radiations that are very strongly absorbed. The
availability of powerful pumps makes it easier to
maintain large pressure differentials through entrance
slits or pinholes.

For a review of electric detectors see (T062).

3.5. Subsidiary Experiments

Experiments observing the products of photoioniza-
tion can determine the magnitude and relative phase
of probability amplitudes for atomic transitions from
the ground state to different ionized states. Such ex-
periments may involve the photoelectron, the residual
ion or possibly both of them in coincidence, although
coincidence experiments have not yet been performed.

Measurements of the spectra of photoelectrons deter-
mine the relative probability that the residual ion has
been left in any level of its discrete or continuous
spectrum. Some experiments of this type have been
performed recently using electric (FMcDV67, BET67,
Sa67) or magnetic (TM66, Ca67) spectrometers. To
determine the relative transition probability and phase
of different degenerate channels, one requires the
angular distribution of photoelectrons (CZ67, Li67);
progress is also being made on this type of observation
(BET67). All these experiments have to overcome the
difficulties attendant to the limited intensity of sources
and to any measurements on low energy electrons.

Experiments on the residual ion may determine its
charge—i.e., the probability of double or multiple
photoionization—or its state of excitation by measuring
the spectrum and intensity of subsequent emission of
radiation. Charge measurements have been performed
by means of a mass spectrometer (CK65, Ca67).
Measurements of fluorescence by the ion have been
performed thus far only following ionization by electron
bombardment (StJL64, HW63, HK66, MdH67) and
can be interpreted in terms of photoionization as in-
dicated in Sec. 2.6. Quantitative measurements of
fluorescent radiation, especially in the vacuum ultra-
violet, hinge on an adequate analysis of detection
efficiency involving effective solid angles and anisotropy
of emission.
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4. EXPERIMENTAL DATA AND INDEPENDENT-
ELECTRON CALCULATIONS

Section 4 presents the main evidence on the distribu-
tion of oscillator strengths. The available experimental
data are displayed graphically together with the results
of comparatively simple calculations which provide
a semiquantitative interpretation of their gross fea-
tures. Since these calculations can now be extended to
all elements and to their entire spectra, theoretical
results will also be presented which have not yet been
subjected to direct experimental test. Certain sys-
tematic discrepancies between theoretical and experi-
mental data emerge in this chapter and the finer features
of the experimental data are not dwelt upon. The prog-
ress achieved thus far toward resolving these dis-
crepancies and toward providing a fuller and more
dependable treatment of the distribution of oscillator
strengths forms the subject of later chapters.

4.1, Survey of Experimental Evidence

In the intermediate range of energies, which is the
primary subject of this paper, only the five noble gases
He, Ne, Ar, Kr, and Xe have been studied systemati-
cally. Their absorption spectra, which have been
treated in considerable detail in another recent review
(Sa66), are shown in Figs. 3-7. These data provide
the main basis for theoretical analysis and generaliza-
tion to other elements. Thus Figs. 4-7 have been plotted
on a double logarithmic scale to emphasize the over-all
spectral dependence and show the agreement with or
departure from various theoretical models.

Below 100 eV the absorption spectrum has been
studied in detail for each gas at closely spaced intervals
in E by various investigators (see Sa66). We show in the
figures only a representative sampling of the available
data in this spectral range. Departures from the hydro-
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genic approximation shown in Figs. 4-7 constitute one
of the prominent features of these spectra (see Intro-
duction). The single-electron model using realistic
central potentials provides a reasonable first-order
estimate of df/dE as will be more fully discussed in this
section and the next. Data based on this approximation
are shown for Ar, Kr, and Xe. Rather extensive calcula-
tions have recently been performed for Ne (HL67)
(see Sec. 5.5) and He (BMcV65, BK67) and results
based on this work are shown in Figs. 3 and 4. Data on
CH, are also shown in Fig. 4(a) for comparison with Ne
(see Sec. 4.6). Discrete lines due to excitation of auto-
ionizing states have been observed in all of the rare
gases in the spectral ranges indicated in each figure;
they will be discussed in Sec. 8.1. Finally, absorption
has been studied in detail near the higher thresholds in
Ar, Kr, and Xe. Profiles of the behavior near thresholds
are shown in the insets of Figs. 5 and 7(a), and
6(b) and 7(c). The detailed structure near the first
ionization threshold for these gases has been treated in
detail elsewhere (Sa66) and is not indicated in these
figures.

The absorption spectra of the alkalies, which are
easily vaporized, have been observed since the twenties
(FMC26) in the quartz ultraviolet range. Recent
work (HC65, HC67) has extended earlier measurements
on Li, Na, and K to photon energies of ~21 eV and has
increased the accuracy of measured cross sections to
~10%. Absorption spectra for the alkalies in this range
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@ Sa66, OLBZ64. — — Hydrogenic approximation, —— one-
electron model (MC68). (b) Details near the Myy,y threshold
(LBZ64).
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are shown in Figs. 8-11. Theoretical estimates for Li
and Na are also shown in Figs. 8 and 9 and are discussed
in Sec. 4.5. These curves are plotted on a linear energy
scale beginning at the ionization threshold and, in con-
trast to the plots for the rare gases, represent an ex-
tremely small fraction of the total oscillator strength.
While extensive work has been done in the ultraviolet
range for a number of other metals which can be
vaporized (Ga66), interest has focused on the discrete
structure of their spectra. Consequently, absorption
cross sections have been measured for only a few
elements of this type; i.e., Mg, Ca, Sr, Ba, Tl, and Cd.
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Absorption spectra for Ca and Tl (on a wavelength
scale) are shown in Fig. 12 and for Ba in Fig. 28.
These plots are included to show the presence of large
absorption peaks due to autoionizing states lying above
the ionization threshold. Note that discrete structures
are quite apparent in particular ranges of the continuous
spectra of most elements, e.g., the ranges indicated in
Figs. 4-7 for the rare gases and the region above 13 eV
in the K spectrum shown in Fig. 10. Normally, discrete
structures do not contribute a major share of the ab-
sorption averaged over 5-10 eV; the near ultraviolet
spectra of certain metals appear exceptional in this
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respect, for reasons discussed in Sec. 7.2. For a discus-
sion of the profiles of discrete structures in the con-
tinuum, see Sec. 8.1.

Data have been obtained on the absorption cross
sections for a number of materials in the form of thin
metal films (WGSS5, JM66, JMD67, ToS7, Sab66a,
ZFGZh67, HKSS68). While the emphasis in this
research has been on solid-state properties of the metals,
the cross sections at high energies represent to a large
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F16. 12. (a) Absorption spectrumof Ca (DHG60). (b) Absorption
spectrum of T1 (Ma54).
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extent the absorption by free atoms. Figure 13 shows a
portion of the oscillator strength spectrum of metallic
Cu obtained with a synchrotron light source (HKSS68).
It also shows the corresponding integral spectrum (see
Sec. 2.4) together with a theoretical estimate of this
spectrumobtained by asingle-electron-model calculation
for the free Cu atom (MC68). Figure 14 shows a com-
parison of the absorption cross section for Au films in
the 100-400-eV range with the analogous one-electron
model calculation (MC68) for free atoms. Similar cal-
culations (CFH67) for both Au and Bi indicate that
solid-state effects have little influence on the spectral
behavior of the cross sections for these elements in this
spectral range.

The spectral behavior of absorption for a number of
elements with atomic numbers between 50 and 71 has
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Fic. 13. Differential and integral spectra of oscillator strength
for Cu. —— Experimental (HKSS68) (The integral curve
includes information on low energy data from other sources.)
—— = Calculation by single-electron model (MC68) (The contribu-
tion of the 4s and 3s electrons is not included.)

been measured in the 50-500 eV-range (ZFGZh67)
and is shown for Z= 150, 57, 60, 62, 67, and 71 in Fig. 15.
While these data consist of unnormalized cross sections,
they represent a first attempt at studying the spectral
behavior of absorption as a function of Z.

The transmission and reflection of light by thin
metallic films has been studied extensively for certain
materials (CHH64, HJH67, CMHAG6) chiefly because
of the practical importance of the optical properties of
such films (HAT65). Data of this type can be reduced
to absorption cross sections; however, little work has
been done toward this end.

The absorption spectrum of silicon has been measured
near the ionization limit (Ri67) by dissociating SiHCls
in a shock tube. Data on the absorption of the atmos-
pheric gases (N and O) in their atomic states also has
recently been obtained (SC65, CE67, CHLTG66) by
dissociating these gases by successive discharges. While
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these techniques provide useful data, the results ob-
tained so far will not be considered here since they pro-
vide little information on the spectral shape of absorp-
tion cross sections. The relevance of the absorption
spectra of molecular gases (e.g., N, Og) for atomic
properties has not been established (CF66).
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the 50-500-eV region. Ordinates represent ux (i.e., products of
absorption coefficient and film thickness) but x has not been
measured (ZFGZh67). Note added in proof: Absolute values of u
have now been obtained by the same authors.
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As noted in the introduction, the evidence on absorp-
tion coefficients in the x-ray range, above 10 keV, has
been treated in detail in WGS7. This treatment has
been improved and extended partially toward lower
energies in later works (McG59, HB66, SP67). Evi-
dence on discrete absorption spectra of the light ele-
ments has been compiled by WSG66.

4.2. Single-Electron Model

In this section we assume that the spectrum of oscil-
lator strength of each atom results from the sum of
contributions due to alternative independent transi-
tions of any of its electrons from one stationary state to
another one. Each of these one-electron states will be
characterized by the usual set of quantum numbers
nims, applicable to particles moving in a central field
without any appreciable spin—orbit coupling, that is,
by a wave function

'l/nlms: Uni (7') Ylm (?) Xs-

Here x; is a spin orientation symbol (s==13), Vi, is a
spherical harmonic, and

Un1(7) = Pui(7) /7

is a radial wave function. The index # takes all integral
discrete values larger than I/ as well as values corre-
sponding to the continuous spectrum, more properly
designated by the residual kinetic energy e with which
the electron leaves the atom. The wave function Pn;
obeys a radial equation

AP/ dr*+ 2m/72) [ En—V (r) =1+ 1) 72/ 2mr?]
X P,,z(?’) = 0,

(4.1)

(4.2)

(4.3)

where V(r) represents a potential chosen so as to
achieve a desirable approximation, as discussed in the
following sections.

In our model, all states with equal # and ! are
degenerate in energy and differ only in orientation. In
accordance with Sec. 2.1 we consider only oscillator
strengths for transitions nl—n'l’, averaged over orienta-
tion. A standard calculation (BS57) reduces the expres-
sion (2.3) to

2m( Eprvr— Ent) 14141
372 2(041)

fnl—n'l') = [R(nl, n'l') P,

(4.4)

where E,; and E,p are eigenvalues of (4.3) and

R(ud, V) = f %y Pu(r) Par(Ndr.  (4.5)
0
The factor % in (4.4), being the average of (3/7)2 over

the directions of 7, compensates for the replacement of z
in (2.4) by 7 in (4.5). The factor (I+V'+1)/2(2i+1)

arises from the averaging over m and m’. Selection rules
restrict ' to the values /==1.

The theoretical problem considered in this section
consists of: (a) calculating P,;, P, and the radial
integral (4.5), (b) assessing the influence of various
physical circumstances upon the values of this integral,
(c) comparing the results with the experimental evi-
dence. Equation (4.4) provides theoretical information
on the spectral distribution of the oscillator strength
which pertains to the electrons of each subshell (#l).
The quantity to be compared with the absorption
spectrum of an atom is, instead, the sum of the contribu-
tions of the electrons of all subshells. For an atom whose
ground state has Z,; electrons in its (/) subshell, we
represent the total spectral distribution of oscillator
strength by

wdf/do=Y, D Znful—n'l')§( Epy— Enu—hw),
aln! V=141
(4.6)
where f(nl—n'l') is given by (4.4).

Notice that, even though the independent electron
model considered in this section represents an approxi-
mation to be discussed further in Sec. 5, the analysis
of the total spectrum into contributions from the
different subshells is physically well defined. Subsidiary
experiments that measure the energy of photoelectrons
can determine the probability of photoabsorption by
electrons of different subshells (or, more accurately, of
absorption processes that leave a vacancy in different
subshells). However, the contributions of different sub-
shells cannot be clearly separated in the absence of ex-
tensive experimentation of this kind, so that theoretical
data are at this time more detailed than their experi-
mental counterparts (see Fig. 7). An experimental and
theoretical study of the contribution of different M
subshells of Kr to its photoabsorption between 300 and
1500 eV has been conducted quite recently (Kr68,
CM68).

A few preliminary remarks can be made on the factors
that influence the dependence of f(nl—#'l’) upon #’.
The factor E,p - E, is positive for photoabsorption
processes and varies smoothly with #’. The profile of
the spectral distribution of f(#l—#'l’) hinges then on
the dependence of [R(#l, »'l') J* on #'. Since the inte-
grand of R includes the product of oscillating wave
functions, R might conceivably be of either sign and its
sign might change repeatedly as »’ varies. Any point of
zero of R is a zero of [ R?, which is otherwise positive.
It will be seen that in fact [ R]? appears to vanish only
once or not at all, as a function of #’. It will be con-
venient, for the purposes of our study, to standardize
the sign of R(#nl, #’l') by requiring all radial wave func-
tions P(r) to be positive for #~0. This understanding
attributes a definite sign to R and enables us to regard
P, and R as continuous functions of #’ and to con-
clude that whenever R turns out to have opposite
signs in two separate ranges of #', at constant #, I,
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and 7/, one zero (or, rather, an odd number of zeros)
of R occurs between these ranges.

Mechanistically, one may think of resolving the
process of photoabsorption into two stages, namely,
the photoabsorption “proper” which takes place in the
region of space occupied by the initial orbital (#l)
and the “subsequent escape’” of the excited electron
from this region. This escape through the outer layers
of the atom may be regarded as a process of electron
optics involving possible reflection of the electron or
even its penetration of a potential barrier; accordingly
the escape portion of the process can modify the
probability of photoabsorption and the spectrum of
f(nl—n'l"). This mechanistic analysis corresponds, at
least approximately, to a mathematical procedure which
is carried out as a matter of routine convenience in cal-
culations of (4.4). In the numerical solution of (4.3)
to obtain the final state wave functions P, () one
can, and often does, calculate initially a wave function
P, with arbitrary normalization, specifically by
choosing its series expansion 7+ to begin with a
coefficient independent of #'. A (positive) normalization
factor N, is evaluated in a second step. Thus one can
set B

Pn'l’(r) =Nn’l'Pn'l'(r)7

R(nl, w'l")=NpuR(nl, n'l'),

Fnl—nw'l") = N2 f(nl—n'l'). 4.7

The factor P, (7) is still dependent on #’ but it cannot
vary much, in the region where it overlaps Pni(7),
unless the energy E,.; varies by amounts comparable
to the potential energy V(r) in this region, i.e., com-
parable to E,;. Therefore f(ni—n'l’) can depend on
E,1» only on a “coarse’ scale determined by the binding
of the electron in its initial state (nl).

On the other hand, N, depends on the values of
E,—V(r) in the outer portions of the atom where
V(r) is small. If E,.;. is itself small, N,.; can vary
sensitively as a function of the ‘“‘escape energy” E,.u
on a “fine” scale comparable to the binding energy of the
outer shell electrons. Therefore the factor N,;? of
f(nl—n'l") incorporates characteristics of the final state
(#'T") that may shape the absorption spectrum near the
threshold for photoabsorption where E,.; is small.
For negative E,., i.e., below each threshold, one
gathers from the quantum defect theory (Se58, Se66)
that the factor N, determines the discrete structure
of the spectrum as anticipated in the prescription for
constructing the histogram in Fig. 1, while f(ni—n'l’)
can be regarded as a continuous function of E,..
For small positive values of E,.; one finds characteristic
variations of N,.;» to be discussed in the following sec-
tions.

A further distinction can be made between properties
of N, that depend on the escaping electron’s motion
before it has reached beyond all other electrons and
properties that depend on the motion still farther out,
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where the field obeys the Coulomb law. The former have
been studied only recently (Secs. 4.7 and 4.8), the latter
include the energies and relative intensities of discrete
lines and are treated accurately by the quantum defect
procedures (see Sec. 4.3, Se58, BS60).

Notice that, since the spectra f(nl—#'l’) with the
same (#'l') and different (#/) contain the same factor
N2, this factor will affect equally the spectra near the
absorption edges corresponding to different subshells
(nl). In fact, the usefulness of the factorization (4.7)
depends on its ability to suggest and interpret such
similarities (see Sec. 4.7).

Notice finally that the normalization factor N,.?
is related to the phase shift 8, of continuum wave
functions P,.;.(7) in such a way that a maximum of
N, as a function of E,. coincides at least approxi-
mately with a maximum of dd,1:/dE,.». This connec-
tion, whose formulation is called a dispersion relation
(see, e.g.,, GW64, p. 281) and is complicated by the
occurrence of the long-range Coulomb field, establishes
a relation between the photoabsorption spectrum of a
neutral atom and the scattering of free electrons by the
corresponding positive ion. The coefficient N,.;* has
been called the “enhancement factor” because of its
role in collision theory (GW64, p. 274). The approxi-
mate calculation of phase shifts and normalization
constants in a Coulomb field is treated in (SP62).

4.3. Hydrogenic Calculations

The wave functions P and the integrals R have
analytic expressions when the potential V' (7) of (4.2.3)
obeys the Coulomb law (G029, Su29). These expres-
sions lend themselves readily to extensive tabulation or
graphical representation. Therefore, they have been
widely relied upon in the past. However, the hydrogenic
approximation fails to account for conspicuous charac-
teristics of the absorption spectra as indicated in the
introduction and demonstrated by comparison with
experimental data throughout this section. Nowadays,
computer application yields numerical values of the
P and R readily, extensively, and at reasonable cost
for potentials V(r) much more realistic than the
Coulomb one. The results obtained in this manner are
treated in the following sections.

At this time the hydrogenic approximation, with a
suitable complement of semi-empirical adjustments,
appears useful for the following purposes. (a) To pro-
vide an initial frame of reference in which experimental
data may be fitted, as illustrated by dotted lines in the
figures of this section. (b) To provide reasonably ac-
curate data in the x-ray range, above approximately
10 keV, as developed in (WG57, McG59, HB66). (c)
To provide extensive and reasonably accurate data for
the discrete and for the near-threshold portion of
continua, for atoms with one or very few valence
electrons, which absorb under near-hydrogenic condi-
tions utilizing a limited amount of experimental input
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data. The procedures for purpose (c) have been de-
veloped by Bates and Damgaard (BS49) and extended
by Seaton and Burgess (Se58, BS60) under the name of
“quantum defect method”.® Their applications have
been summarized in Sec. 3.7 of (Gr64) and discussed
in (BN67). We shall deal with the hydrogenic calcula-
tions only briefly because each of these applications is
peripheral to our main subject.

Consider a photoabsorption process that takes place
within a certain range of distances 7 from the nucleus,
70<r<r;. Within this range one approximates the po-
tential energy of an electron by the Coulomb-type law

V(r)=—(Z—s)et/r+V,, (4.8)

where (Z -s)e represents an effective value of the
nuclear charge in the range of interest and V, a constant
discussed below. The solutions of the radial equation
(4.3) with this potential, in the range 7 <7<, can be
represented as superpositions of two independent wave
functions F and G for a hydrogenic ion of atomic
number Z—s; we assume F to be regular and G irregular
at r=0 and that they oscillate with 90° phase difference
in the range of interest and we set

P.i(r)= cos ar F(r)+ sin om G(r). (4.9)

The parameter o, called “quantum defect,” depends on
the unspecified potential in the inner range r<r. If
Py, pertains to a bound state which is effectively con-
fined within » <7, the corresponding energy eigenvalue is

E,.l= —(Z—S)z,[}[/(n—— a') 2+Vo. (410)

In practice this hydrogenic approximation has been
applied either to inner electrons, with 7=0 and ¢=0,
or to outer shell electrons for which 7= » and V,=0.
The significance of the parameters s, Vy and ¢ is indi-
cated in the following paragraphs.

(a) Inmer screening effect. The attraction exerted by
the nucleus on an electron is partially compensated by
the repulsion exerted by the other electrons. Assuming
these electrons to be distributed with spherical sym-
metry about the nucleus, the electric field generated by
them at a point P is the same as though all electrons
lying closer to the nucleus than P were actually located
at the nucleus; electrons farther out than P yield no
net field at P. Under this assumption, the net attractive
field at a distance 7 is (Z—s) €%/7%, where s is the average
number of electrons that lie closer to the nucleus than »
and thus contribute to screen off the nuclear charge.
The hydrogenic approximation (4.8) assumes a fixed
value of the “inner screening constant” s for each shell
(or subshell), thus disregarding the fact that the
screening charge actually varies while an electron of that
shell moves radially. Semi-empirical estimates of s are
usually taken from an early work of Slater (S130).

9 A more recent extension of this method (Se66), which takes
channel interaction into account, will be discussed in Sec. 8.3.

(b) Outer screeming effect. Electrons farther away
from the nucleus than the electron under consideration
exert no net repulsion upon it, as discussed under (a),
and do not affect its ability to absorb radiation. To
this extent, the contribution of an inner electron to the
oscillator strength of an atom at a given frequency is
approximately independent of the presence of outer elec-
trons.

However, this presence makes itself felt after an
absorption process. As an electron, having gained
energy from radiation, moves outward through the
region occupied by outer electrons, these electrons
start exerting a net repulsion upon it and thus con-
tribute to its final kinetic energy. This excess energy is
indicated by Vo in (4.8), where ¥V, represents the
potential energy possessed by the electron at its initial
position owing to the presence of the surrounding
layers of outer electrons. The “outer screening poten-
tial” ¥y depends on the number and radial distribution
of outer electrons and ranges up to ~20 keV near the
nucleus of heavy atoms. The assignment of a constant
Vo to an electron constitutes, of course, an oversimpli-
fication. For data on Vj see (Le53a) and Fig. 20.

The definition of the outer screening potential implies
that the threshold for photoionization of electrons of a
given shell is Jowered by the corresponding value of
V. Similarly the excitation energy E, .y — E; for transi-
tions to discrete levels is lowered by the difference of
the values of ¥, for the initial and final states. Thereby
outer screening influences the spectrum of oscillator
strengths, but only to the extent that it allows con-
tributions to occur in spectral ranges where they would
otherwise be suppressed.

(¢) Quantum defect. The representation of the effect
of inner screening by the parameter s influences the
energy eigenvalue E,; and the wavelength of the wave
function P,; (or Pyr) in the range of 7 that contributes
primarily to the radial integral R. However, it affords
no control over the position of the nodes and maxima
of P,; and P, in this range, a factor that has great
influence on the value of R as we shall see. The quantum
defect parameter o serves to make a wave function more
realistic by adjusting its phase of oscillation in the range
r0<r<r, more specifically, by fixing the value of its
logarithmic derivative at the inner boundary, 7y, of
this range. For electrons in the valence shell and in
excited states, for which the outer screening V, vanishes
and the inner screening constant s equals Z—1, adjust-
ment of o serves also to yield realistic energy eigen-
values. In fact, ¢ is normally obtained for these elec-
trons by requiring the eigenvalue E, (or E,r) to
agree with the corresponding experimental value.

An attempt has been made (McG67) to extend the
application of the quantum defect method, including
also inner electrons, by adopting different Coulomb
potentials in the inner and outer regions of an atom.
Only the inner screening was considered in the outer
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region with s=Z—1, both inner and outer screening in
the inner region. The joining radius and the outer
screening were adjusted to yield a continuous potential
and to fit one relevant experimental quantum defect.
The results are on the whole surprisingly good; in
particular the absorption of 4d electrons in Xe agree
with experiment far better than those obtained from an
apparently much more realistic potential.

For further details on the calculation of oscillator
strengths utilizing the quantum defect adjustment,
the reader is referred to the original papers (BD49,
BS60) and to a recent review (BN67). The results of
calculations without this adjustment are given by
general formulas and graphs in (Le53a). Here we shall
only indicate some qualitative features of the results
which are presented in (Le53a) and, to a partial extent,
in standard references such as (BS57).

In the first place the oscillator strength of excitations
nl—n'l' is nearly 10 times larger for =141 than for
I'=1—1 at equal #’. This result is understandable on
the basis of a classical model, since a particle in a
circular orbit necessarily increases its angular momen-
tum when it absorbs energy; the same remains partially
true for elliptical orbits. The quantum calculation deals
with angular and radial coordinates separately and
proves less transparent.

Secondly the spectral density df(nl—€'l)/de’ de-
creases smoothly as ¢ increases from the threshold, so
that its log-log plot shows little curvature for all values
of nl and ', provided the same value of the quantum
defect holds for the initial and final states, #/ and 7'.
The strengths of discrete transitions #l—#'l’ yield a low
frequency extrapolation of the same plot when dis-
played in accordance with Sec. 2.4. The asymptotic
trend for high energy is

df (nl—€'l') /de’ o 71712, (4.11)

The smoothness of this spectrum finds again an easy
plausible interpretation in terms of classical orbits,
in that the velocity variations along Kepler orbits are
smooth and hence their Fourier analysis should also
yield a smooth spectrum. However, a search for a
corresponding interpretation of the quantum expres-
sion proved fruitless.??

Each radial integral R(#nl, €'l’) is a smooth, positive,
monotonically decreasing function of ¢, again with the
proviso that a single value of ¢ is used. Positive also
are the R(nl, #»'I') which contribute to the discrete
spectrum of oscillator strength. However, for the
transitions between degenerate states (#'=m), which
have zero frequency and zero oscillator strengths,
R(nl, nl') is negative. This fact is apparent from the
plot of wave functions in Fig. 16, which shows Py

10 The quantum-mechanical expression includes as a factor a
polynomial 2Z,a,(¢'— En)™™; each coefficient @, is the sum of
terms of alternating sign, with no clue to indicate why all @, should
in fact be positive.
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F1c. 16. Hydrogenic radial wave function P, for =2 and 3.

and P,,+1 to have opposite sign in the range of » where
both of them are large; it has a key role in the interpre-
tation of spectra in the nonhydrogenic approximation.
On the other hand, applications with different quantum
defects, ¢ and ¢/, for the initial and final states lead to a
different behavior of R and of df/de’. In particular,
R(ul, #'l') becomes negative also for #'s£n when
o'—~0.5 (modulo 1). Seaton has interpreted the
observed behavior of photoabsorption by alkaline
atoms in the visible and near ultraviolet (Figs. 8-11)
on the basis of the appropriateness of such values for
o' —o (Se51, BS60).

4.4. Average Electric Field and Centrifugal Repulsion

Realistic data on the average electrostatic potential
energy V(r) of an electron in an atomic field, to be
entered in (4.3), are now available from extensive self-
consistent-field calculations of the electron distribution
within each atom of the periodic system. A convenient
complete tabulation has been provided by Herman and
Skillman (HS63) using the Hartree-Fock-Slater ap-
proximation. Many other tabulations exist, which are
less complete though often based on a higher approxi-
mation; earlier catalogs of them were provided by
Hartree (Ha57, App. I) and Knox (Kn37).

Whereas self-consistent potentials have to be deter-
mined by separate calculations for each kind of atom, a
less accurate representation applicable to all atoms is
provided by the Thomas-Fermi formula V(r)=
—Zep(r/u)/r. Here Z is the atomic number, ¢(x)
a universal tabulated function (Fe28), and u(=0.47Z-1/3
&) is a suitable unit for radial distances. This formula
does not reflect the shell structure of the atom but is
reasonable for values of 7/u of the order of unity.
Systematic errors arise from the fact that it yields an
excess density of electrons near the nucleus and again
in the outermost layers of an atom.

The attractive electric force, dV/dr, amounts to
approximately Ze?/7? for small » and to €?/7* for large
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Fic. 17. Sum of electrostatic and centrifugal potentials for
electrons with /=2, 3 (RF68).

71t For intermediate 7 it hardly follows the Coulomb
law assumed by the hydrogenic approximation but
varies more steeply. It follows more nearly an 2 law,
in the range u<r<4u; more specifically, it approximates
0.9Ze%u/r%, as implied by the fact that the Thomas-
Fermi function xp(x) has a flat maximum with peak
value 0.48. For still larger values of  the attraction de-
creases even more rapidly than 2 before attaining its
limiting form €?/72

These properties of the attractive force law prove
very important when considered together with the re-
pulsive centrifugal force which—for a fixed angular mo-
mentum—also follows a =2 law, namely, I(I41)72/mr.
The total force will then be attractive or repulsive in
the broad range u<r<4u depending on the sign of
0.9Z¢%u—1(1+1)%%/m, that is, of 0.8223—[(I4+1). For
each value of /it changes rapidly from strongly repulsive
to strongly attractive as Z increases along the
periodic system and overtakes the critical value
[Z(2+41) /0.8 P2, This critical balance between attrac-
tive and repulsive forces has long been known to under-
lie the chemical and spectroscopic properties of the
transition and rare-earth elements (Fe28).

Even when this balance is favorable to attraction for
r<4y, it may still shift in favor of centrifugal repulsion
for larger  near the edge of the atom where the attrac-
tion drops faster than 3. Indeed, as emphasized by
Goeppert-Mayer (GM41), the combination of electric
attraction and centrifugal repulsion may give rise to a
two-valley profile for the combined potential of (4.3),

V (#) +1(I+1) 72/ 2ma. (4.12)

Figure 17 illustrates this fact,* which also influences the
spectrum of oscillator strengths.

1 The Thomas—Fermi formula must be modified (Fe31) to
ensure this behavior for large 7.

12 The data in the figure disagree with the statement of (GM41)
that two separate valleys occur for />2 but not for /=2. The
discrepancy stems from inaccuracy “of the Thomas—Fermi method
as applied in (GM41), see footnote 11.

It was pointed out in Sec. 4.3 that outer screening
has no effect on the spectrum of oscillator strengths,
within the hydrogenic approximation. Accordingly
df/dw would depend on the photon energy 7iw and on
the forces in the portion of the atom where radiation
absorption occurs, that is, in the range of r where
P,i(r) #0. Except for the occurrence of the absorption
edge, df(nl—¢€'l') /dw would not be expected to vary
much within any energy range A(fiw)<KE.. This
assumption implies that the traversal of outer shells
by an excited electron does not influence the probability
of its excitation. Its validity hinges, in turn, on the
applicability of the semi-classical WKB approximation
to the wave function P,.;» where it no longer overlaps
P,;(Ro36). Now, this application is indeed warranted
under near-hydrogenic conditions but it is frustrated by
the occurrence of the potential ridge in Fig. 17, for
electrons escaping with />2 and with a residual kinetic
energy of the order of 10 or even 50 eV. The conse-
quences of this breakdown are discussed in Sec. 4.7.

Whereas the Thomas—Fermi potential varies smoothly
as a function of the atomic number Z, a more realistic
potential V() does not vary umformly, especially at
radial distances of the order of 0.5-1 A. At constant 7
and increasing Z, V(r) experiences oscillations that
follow the successive filling of valence subshells, i.e.,
the periodicity of chemical elements. It also experiences
irregular variations associated with irregularities in
the orderly filling of subshells. All these variations are
affected by the chemical state of each atom, but we
consider here isolated neutral atoms only. These varia-
tions of ¥V (r) extend over a range of the order of 309,
as shown in Fig. 18, that is, they are by no means small.
Complete data on V(r), calculated in the Hartree-
Fock-Slater approximation, are contained in (HS63)
and, at least implicitly, in other tabulations of Hartree—
Fock data. However the oscillations of V' (r) have been
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emphasized (RF68) only after their influence on absorp-
tion was brought out by calculations (MC68) to be
discussed in Sec. 4.8.

We have discussed the potential V(#) thus far as
though it were well defined within the frame of the
single-electron model and of self-consistent-field theory,
but actually it is not. Firstly exchange effects are not
represented correctly by any “local” potential. Secondly
exchange effects differ for the initial and final states
P,; and P, as they depend on the symmetry of the
whole many-electron state and on the angular mo-
mentum of each electron. Finally, the change of state
of the electron under consideration changes the average
field affecting the other electrons and thereby disturbs
the self-consistency of the whole system. These cir-
cumstances introduce considerable arbitrariness in the
determination of the potential V(7) to be utilized in
the radial equation (4.3).

The Hartree-Fock-Slater method utilized by (HS63)
represents exchange effects by adding to the potential a
term proportional to the 3 power of the electron density.
The calculations of oscillator strengths by Cooper
(Co62) utilized a potential ¥ such that (4.3) would be
obeyed by the same eigenfunction P,;(7) of the elec-
tron under consideration and eigenvalue E,; as are
obtained by an accurate Hartree-Fock calculation.
Thereby V (r) allows correctly for the effect of exchange
on P, but the use of the same V(7) for the calculation
of P, leads to substantial error as discussed in 4.5
and in Sec. 6. The readjustment of other electrons
following the transition nl—n'l’ was disregarded in
these calculations, on the premise that its influence
may be allowed for separately (see Sec. 7).

The use of different potentials ¥V (r) for the calcula-
tion of P,; and P, may well yield more realistic
wave functions but it disturbs the calculation of the
oscillator strength and indeed its very definition. Wave
functions ¥uims and Yu.pmess, obtained from different
potentials, are no longer solutions of the same Schro-
dinger equation. Therefore, the formulas of Sec. 2.1 no
longer rest on a consistent, albeit approximate, theo-
retical construct. In particular the alternative expres-
sions of f; (2.3), (2.8), and (2.10) are no longer con-
sistent. Actually, the degree of approximation achieved
in the calculation of f; has often been tested by compar-
ing the values obtained from the alternative formulas.
Discrepancies of 10-50%, are not uncommonly found in
such tests (see Sec. 5.5).

4.5. Resonance near Threshold

The oscillator strength of the valence electron of the
alkali atoms Na, K, Rb, and Cs has long been known
to be strongly concentrated in the lowest line, ns—np.
The intensity of successive lines ns—#n'p decreases
rapidly with increasing #’; photoabsorption in the
ultraviolet a little beyond the ionization threshold is
very low (DJMS3) (Figs. 9-11). Calculations with
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P,y and P, obtained by the Hartree-Fock method
(Se51) and by the hydrogenic approximation with
different quantum defect parameters ¢(I=0) and
o’ (I'=1) (BS60) reproduce this trend. They also show
that photoabsorption actually goes through a near-zero
minimum in the ultraviolet, owing to a sign reversal
of the radial integral R(n0, €'1) as ¢ increases [That
the minimum does not quite reach zero stems from the
existence of slightly different fine structure wave
functions P 32 and Py for which the R integrals
vanish at slightly different energies.] The accuracy of
this prediction (Se51) has been verified only recently
(HC65).

Systematic calculations have shown this behavior of
alkali spectra to be only one example of a general
feature of absorption spectra due to the nonhydrogenic
character of realistic potentials V(r) (Co61, Co062,
Fa61). As noted in Sec. 4.3, hydrogenic matrix elements
R(nl, 'l') are normally positive, but they are negative
for the degenerate case #'=# which corresponds to
zero-frequency transitions. In nonhydrogenic atoms
one finds consistently that R(#nl, #'l') is also negative
for a range of values of n'>n, when states with n'=n
exist and are not ocoupied in the ground state of the atom.
Negative but small values of R may also persist in a
few atoms following the complete occupation of the
ground state subshell #/’. The immediate cause of this
behavior emerges from an examination of the wave
functions in the integrand of R.

Consider the pair of wave functions Ps; and P., of
Ar, for e=0, in comparison with Ps;, Ps, and Py of H
(see Figs. 19 and 16). The product PP, for Ar
resembles the product Py Ps of H much more than it
resembles Pj Py, despite the fact that e=0 in Ar cor-
responds to a higher degree of excitation than n=4
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in H. The integral R(31, €2) for Ar at e=0 is easily
seen to be negative from the figure. On the other hand
Fig. 19 also shows that R(21, ¢2) for Ne is positive
at e=0.

The condition indicated above for the occurrence of
R<0 implies more detailed guide rules restricting this
occurrence. (Recall that we deal here only with transi-
tions out of the ground state of the atom.) These rules
are:

(1) R<O for /=141 only, since (#'=n, I'=[—1) is
always occupied when (#l) is; this rule excludes
only a minor fraction of the total oscillator strength
as noted in 4.3.

(2) R<Oforn>I+1only,since (#'=n=I14+1,I'=1+1)
does not exist; this rule excludes He and Ne for
which #=1-+1 altogether as well as the 1s, 2p, 3d,
and 4f subshells of all atoms.

The range of #n’ over which R is negative varies
greatly, depending on the degree of departure from
hydrogenic conditions and on the binding energy of the
nl electrons. For example, in the Li atom which re-
sembles H most closely, R is found to be negative for
n'=n=2 only, but already positive for #»’=3. Thus the
point of zero appears to occur in Li between #’=2 and
#'=3 as it does in H, whereas it occurs beyond the
ionization threshold in the other alkalis. The plot of
df/dw, extended to include the discrete spectrum as
indicated in Sec. 2.4, rises in Li from #'=3 to a second
maximum a little beyond the ionization threshold
[Figs. 2(b), 8]. The same maximum has been detected
for Na and K only recently in the far ultraviolet
(HC67). In the absorption spectra of Ar, Kr, and Xe
the minima corresponding to zeros of the R integrals
occur well beyond the ionization thresholds at fiw>
2| E,i|. In Agt the zero is estimated to occur at
fiw~6 | Es | (C062).

In general, the oscillator strength spectrum of an
atom shows a point of minimum wherever a sign re-
versal occurs in the R integral that contributes most of
the strength in the relevant spectral range. These
points are marked by arrows in the figures representing
the spectra (with indication of the quantum numbers
n, I, and I’ of the relevant transition). The oscillator
strength drops extremely rapidly toward the minimum
from the low energy side, but on the high-energy side
the rise is usually slow and the following second maxi-
mum of R2(#l, €l') is rather low. This rise and second
maximum are often obscured in the complete spectrum
of oscillator strength by the rapidly rising contribu-
tion of another transition; even the minimum of
df(51—€2) /dE is obscured for Xe.

The characteristics of the spectral maxima associated
with negative values of R stem in part from each of
the factors that are separated in (4.7). The resonance
character, inherent in the concentration of oscillator

strength within a limited spectral range, relates to the
occurrence of a strong maximum of the enhancement
factor N,% The steep drop of f(nl—#'l') beyond the
maximum to a point of zero stems from the factor f
and more specifically from the sign reversal of R.

The resonance character and the peaking of N,.?2
should relate to the variations of the phase shift 8,
of the wave function P, as the excitation energy
increases. (The relevance of phase-shift variations was
noted at the end of Sec. 4.2.) Actually the overlap of
ground-state and excited-state wave functions, which
we discussed above, depends on the trend of P,
not for »— but near the edge of the atom, more
specifically on the logarithmic derivative d log P,.,./dr
at some suitable radius #=p. This derivative is indeed
related to 6, and to the corresponding quantum
defect on.- for discrete levels but in a manner that
depends on 7' through properties of Coulomb field
wave functions. [ The quantum defect o, is equivalent
to a phase shift in accordance with the formula 8, =
g (see, e.g., Se38); we refer to 6 or ¢ indifferently.
The quantum defect is normally practically constant
over the restricted energy interval, ~2 eV, occupied
by most of a Rydberg series but variations of é over a
range of 5-10 eV are often substantial. ]

The analytical relationship between &, and
(dlog Ppy/dr) ,, described, e.g., in (Ga63), has not been
evaluated or discussed. However, an extensive set of
calculations of R(#l, #'l') with hydrogenic wave func-
tions has been carried out and studied in detail (BS60).
This reference presents the results by means of a
formula that brings out an oscillatory dependence of R
on oy,

R(nl, w'l') < cos wloni—onv—x(nl, w'l')]. (4.13)
The empirical parameter x compensates implicitly for
the fact that (d log P,./dr), actually matters rather
than o, itself. The change of sign of R for the atoms of
alkalis and alkaline earths near the ionization threshold
is traced in (BS60) to variations of ono— 01— X across
a half-integer value. The cosine itself in (4.13) remains
small in absolute value near the ionization threshold
for these atoms.

The guide rule for the occurrence of negative R, that
the state (#l’) be not occupied while (#/) is, implies that
oar<oni. A lag of g,,141 with respect to g, arises
because the centrifugal repulsion hinders the penetra-
tion of electrons with I’=1[41 into the inner region of
strong attraction to a greater extent than it does for
the (#nl) electrons. An increase of #’ through the discrete
spectrum and into the continuum implies an increase
of the electron’s energy which will enable it to penetrate
deeply into the atom so that ¢,.;-=4x approaches on.
If this increase of a,.;-+x is rapid, amounting to a sub-
stantial fraction of unity over a limited energy range, it
constitutes the earmark of a resonance. It implies then
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the existence of a semi-stationary discrete state of the
electron with a half-life inversely proportional to the
maximum slope of the plot of o.+4x versus E,.u
and with a large value of P,/ in the region where it
overlaps P,; (Wi55, Sm60, GW64).

The wave-function plots in Fig. 19 show that at
resonance Pp.y=N,.1.P, has a high amplitude anti-
node region which overlaps the corresponding region
of the bound state wave function P,; extensively. In
this sense P, represents a virtual eigenstate of the
nonhydrogenic potential which binds the (#!) electrons
within the confines of the ground-state radius. This
eigenstate is virtual in that its higher energy permits
the electron to escape into the outer region where the
field is hydrogenic or even beyond it, away to infinite
distance. The formation of a series of discrete bound
states in the outer (hydrogenic) region is incidental
to the nature of the virtual state. That is, the virtual
state is unrelated to the oscillator strength of individual
discrete transitions but it determines the envelope of the
histogram that represents the whole series.® A similar
situation occurs in the spectrum of the “giant reso-
nance” of nuclear photoabsorption.

In the example of absorption by the valence electrons
of alkaline or alkaline earth atoms, the o, of excited p
states lags by no more than ~0.5 with respect to ono.
Hence the resonance may be said to lie near, or even
below, the lowest line of the absorption spectrum,
particularly so for Li. For these atoms o...—+x varies
near the ionization threshold by 0.1-0.2 over a few eV.
For the noble gases Ar, Kr, and Xe the calculations
have not been carried out by the method of (BS60)
or fitted into its pattern. The resonance appears to be
near its peak at their ionization thresholds and to ex-
tend well into the continuum. Since /=I4+1=2 for
these atoms, the value of (d log P../dr), and their
dependence on #’ are influenced greatly by the “two-
valley” character of the combined potential (4.12) and
depend critically on it (see Fig. 17). Inadequacies of
the model potential ¥ (r)—even though minor—have a
large influence on (4.12) and are presumably responsible
for the large departures of calculated spectra shown in
Figs. 5, 6, and 7 from the experimental results. (Recall
the inherent limitations of any model potential indi-
cated in Sec. 4.4.) The two-valley character of the
potential is even more developed for /'=3. Here the
resonance lies altogether at higher energy than the
absorption threshold, as will be discussed in Sec. 4.7.
Here again the quantitative disagreement between cal-
culation for the 4d electrons of Xe (MC68) and the
experimental data (Fig. 7) stems presumably from
inadequacy of V(7). This matter is developed in Sec. 6.

To illustrate further the resonance near threshold one
may consider the oscillations of charge density as-

13 An example of such histogram envelopes—due to a different
mechanism—is shown in Fig. 28.
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sociated with photoabsorption in the relevant band of
the spectrum. As noted in Sec. 2.1, the action of an
oscillating electric field changes the ground state wave
function ¥4 of an atom into an oscillatory superposition
of Yo and of various excited state wave functions
¥,. The absorption of photons of energy fiw= E, may be
interpreted as resulting from work exerted by the field
upon the oscillating charge density

| Yo+ exp (—iEqt/h)

Here we consider the charge-density oscillations
l 1l/nlm_l_zl,‘l/n’H‘lm CXP E_i(En’l—H_ Enl) t/h] l21 (4' 14)

2‘

where (nlm) and (#'l4+1 m) are quantum numbers of
the ground-state and excited-state wave functions, and
where the ),/ extends over the states with excitation
energies ranging up to the point of zero absorption. As a
first step of analysis, let us set {=0 in (4.14) and com-
pare the result with the corresponding expression for
the H atom, which is

l Kbﬂlm"“/’n Him lz- (4 15)

(Recall that the position of radial nodes in the non-
hydrogenic wave functions ¥,.111m throughout the reso-
nance range of the spectrum corresponds to that of
the hydrogenic ¥ 111m.) Now, the superposition of wave
functions in (4.15) represents a ‘“hybrid orbital,” of
the type which is involved in chemical bond formation;
its charge density stretches in the negative z direction.!
This orbital represents a stationary state of the H atom
for which E, ;3= E,;. In nonhydrogenic atoms, where
hybrid orbitals are actually relevant to bond formation,
an orbital that forms a bond in the —sz direction is
appropriately represented by the wave function in
(4.14) with ¢=0. The state represented by this orbital
for an isolated nonhydrogenic atom is not stationary
because E,p1— En#0 (though it can become sta-
tionary in a molecule owing to the stabilizing action of
bond formation). In order to follow the evolution of the
nonstationary charge distribution (4.14) we can rewrite
it in terms of a mean excitation energy (E,.1) as
follows

l 'Pnlm—l_exp I:_'i( <En’l+1 >'_' Enl) t/hjzl:"‘//n’l-i-l m

Xexp [—i(Enipi— (Enia ) /A1 2. (4.16)

Insofar as the resonance band is comparatively narrow
we can assume

| Enitpr— (Bnip1) | K{EBnriy1)— Ens (4.17)
and thus regard the ),/ in (4.16) as comparatively

constant for a sufficiently short interval of time during

14 This direction results from assuming a sign normalization
such that ¥10(0) = ¥1410(0) ; the normalization ¥3(0) = — ¥Y1410(0)
would yield an orbital stretching toward positive 2.
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which the exponential factor in front of it oscillates.
These oscillations cause the sign of the interference of
Yo and D,/ to reverse alternately. Accordingly the
charge density represented by (4.17) pertains at {=0
to a hybrid orbital in the negative z direction but at
later times alternately to orbitals in opposite direc-
tions.!* This oscillation is then damped, usually rather
rapidly, to the extent that (4.17) represents only a
crude approximation and the various terms of the >,/
soon get out of phase with one another. Nevertheless
we conclude from this qualitative analysis: (a) The
occurrence of the absorption peak near threshold for
photoionization of y,; states is associated with the
ability of the atom under consideration to form orbitals
by hybridization of ¥,; and ¥,43. [The rules (1) and
(2) above agree with this interpretation.]| (b) The
absorption process is associated with oscillations of a
charge distribution that coincides alternately with that
of hybrid orbitals in opposite directions.

One further aspect of the resonances near threshold
deserves attention because it appears foreign to the
familiar similarity between the spectra of successive
elements in a column of the periodic system. The
resonance appears only in the absorption of electrons
with #>741, according to rule (2), but not for n=17+41
even though atoms with electrons (#n=I+1, I) and
(n>141, 1) belong to the same column. Thus absorp-
tion by the (2p)¢ electrons of Ne exhibits no resonance,
but absorption by the (3p)¢ of Ar does; similarly no
resonance occurs for the (3d)' of Kr but there is one
for the (4d)° of Xe. In fact, other physicochemical
differences have been known in the past to set the first
element of each column apart from all the successive
ones. The similarity of the first element to the successive
ones appears confined to the systematics of their
energy levels. Indeed, one can relate the differences in
absorption spectra discussed here to differences in the
ground-state characteristics by means of sum rules, as
will be shown in Sec. 4.9.

4.6. Nonresonant Absorption

The absorption spectra of /=41 transitions depart
substantially from the hydrogenic profile even outside
the spectral range and the circumstances where one
observes the resonance near the threshold. A hydrogenic
profile is observed rather soon after threshold only for
absorption by sufficiently deep inner shells, such as the
Liy1,111 of Ar near 250 eV (Fig. 5). However, the spectra
of the /—I -1 components of absorption appear to ap-
proach the hydrogenic profile rapidly above their
thresholds, at least as a rule.

Consider first the transitions (#l)—I+1 with =141,
which contribute the main absorption by 2p, 3d, and
4f electrons and for which no resonance occurs near
threshold. Here the absorption is depressed near
threshold by centrifugal effects discussed in Sec. 4.7,
which are increasingly important with increasing /.

After the photoelectron escape energy e has increased
sufficiently to overcome centrifugal effects a maximum
of photoabsorption is reached. However the spectrum
still remains rather flat beyond this maximum over a
range of a few times the threshold energy, as demon-
strated by the 2p—d transitions in Ne (Fig. 4) and
3d—f in Kr (Fig. 6).

This flatness, followed eventually by the onset of a
rapid hydrogen-like decrease, may be interpreted as an
effect of screening gradient. As noted in Sec. 4.3, the
representation of the effect of inner screening by a
parameter s with a fixed value for each subshell con-
stitutes a drastic schematization. In a very rough
sense one might regard each subshell as an onionlike
construct of layers with different screening constants.
Its absorption spectrum would then be regarded as
the sum of hydrogenic spectra contributed by the
various layers with correspondingly different thresholds.

This interpretation seems reasonably adequate for
the 2p electrons of Ne, for which the appropriate values
of Z—s range from 1 to 8 (note that the 2p and 2s
subshells interpenetrate considerably). The dependence
of the absorption spectrum on the range of appropriate
(Z—s) values is demonstrated by the comparison in
Fig. 4 of the spectra of the Ne atom and of the CH,
molecule, which have the same number of valence
electrons. The effective (Z—s) values for the CHy
valence electrons do not exceed 4 and the corresponding
absorption spectrum is very nearly hydrogenic. Centrif-
ugal effects near threshold are also weaker for CH,
than for Ne owing to the larger radius of the CH,
molecule. For inner 3d and 4f subshells, the range of
relevant effective s values throughout the periodic
table is also substantial, namely, ~10 to 27 for the 3d
and ~28 to 60 for the 4f subshells; this range might
account for the profiles of the corresponding absorption
spectra, even though it is not as large as for the 2p
subshell.

The variations of effective screening across the thick-
ness of a subshell become progressively less important
as the atomic number increases, since the relative
variation of Z—s matters rather than that of s. Indeed
the wave functions P,; and Pe,;;; become approximately
hydrogenic, and so does the absorption spectrum of the
(nl) subshell, as the increasing nuclear charge draws
the subshell into an inner region where the nuclear
charge predominates and the net field becomes approxi-
mately Coulombic.

Let us consider now the absorption spectra of
(nl)—l+1 transitions with #>]+1. The circumstances
that produce the resonance near threshold influence
these spectra even beyond the spectral range where the
resonance occurs and even in spectra where the reso-
nance does not occur at all. As described in Sec. 4.5,
the resonance effect stems from the occurrence of large
negative values of the radial integral (4.5), namely,
R(nl; €, 1-+41). The resonance terminates at the value of
e for which R vanishes. Above this energy R becomes
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positive and passes through a ‘“second maximum”
before decreasing again with a trend that eventually
becomes hydrogenic. Therefore the hydrogenic trend
does not set in until € has attained values considerably
in excess of that for which R vanishes. Evidence of
the comparative flatness and of the spectral width of
this nonhydrogenic second maximum can be observed,
e.g., in Figs. 5 and 7, and particularly in the more ex-
tensive calculated data of (CF67) and (MC68).

The occurrence and character of this second maxi-
mum appears thus straightforward in the spectra of
transitions (7l)—I+41 that actually exhibit the reso-
nance near threshold. Consider now how the spectrum
of such a transition varies as one compares atoms with
increasing Z. As the subshell of bound states (%, /41)
becomes progressively filled up in the ground state of
this sequence of atoms, the threshold for (#l)—Il41
transitions moves up in the spectrum and through the
resonance. The threshold appears to reach the point of
zero of R(ul, el41) at approximately the Z value at
which the (%, I+1) subshell is just completed; a calcu-
lation shows R(31, €2) to vanish just above threshold
for Cu, the first element with a full 3d subshell (MC68,
see also Sec. 4.8).

For atoms with still higher Z values, the resonance
near threshold does not occur at all but the “second”
maximum remains as the main nonhydrogenic charac-
teristic of the (ml)—l4-1 spectrum above threshold.
Thus we interpret the existence of a low flat maximum
in the relevant spectra in the context of the interpreta-
tion of the resonance near threshold and of the variation
of spectra along the periodic system. In the language
of Eq. (4.13) one may say that the values of a,1+x
near and above threshold are still smaller than o,;
though not sufficiently smaller to make R(#nl; ¢, I4+1)
negative.

As the atomic number increases further, well beyond
the point where (%, [41) is filled in the ground state,
the threshold for (#l)—I-+1 transitions moves further
up in the spectrum and overtakes the second maximum
as well. Thereafter the values of o,.;++x approach g,
and the spectrum of these transitions eventually ap-
proaches the hydrogenic profile.

The asymptotic behavior of the oscillator strengths
for large photon energies is given by

df (nl—€l’) /de= const e -7/2 (4.18)
under nonrelativistic conditions but irrespective of the
hydrogenic approximation (RF67). The constant in
this equation should be somewhat larger than pre-
dicted by the hydrogenic approximation by a factor
~(14-5s/Z) as pointed out by Bethe (see WGS7,
note 7) owing to the actual lack of inner screening in
the region nearest the nucleus which contributes most
of the photoabsorption in the high energy limit. Recent
calculations, with model potentials that do not utilize
the schematized screening of Sec. 4.3, yield improved
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agreement with experimental data in the 10-20-keV
region (Ro65, MC68).

4.7. Depression and Apparent Shift of Absorption
Edges

According to the hydrogenic approximation, absorp-
tion spectra in the vicinity of thresholds should have the
aspect illustrated in Fig. 5 for the K edge of Ar. They
should exhibit a few absorption lines of a Rydberg
series converging to the threshold, which are broadened
by Auger-effect decay of the corresponding discrete
levels'®; this broadening causes most lines of the series
to merge smoothly into one another and into the ad-
joining continuum. The actual threshold position is,
therefore, not detectable. Nevertheless the absorption
coefficient rises very substantially from the low to the
high-energy side of the discrete lines. It is this net rise
of absorption, confined within a spectral range of 3-5
eV, which one calls an “absorption edge’’; its magnitude
is called “jump ratio.” Absorption edges below about
1 keV depart substantially from the pattern described
above for various reasons and in various manners.

One such departure consists of the absence of any
detectable jump ratio at the threshold for ionization of
the outermost s electrons of the noble gases Ne, Ar,
etc., which lie generally just below the valence subshell
p. A 2-39, rise in absorption would be detectable.
Actually autoionizing lines of Rydberg series converging
to the relevant threshold have been observed. The
analysis of their profiles, discussed in Sec. 8.1, shows
that the net rise would only be approximately 19,
in Ne and that it would indeed be megative by an
amount of the same order in Ar, Kr, and Xe. A very
small decrease of absorption can in fact be accounted for
by configuration interaction (see Sec. 8) provided
direct photoabsorption by the s subshell amounts to no
more than ~19%, of the valence shell absorption at the
relevant energy. The smallness of this ratio is now
understood (MC68) in terms of proximity to the point
of zero of the integral R(#0, e1) as discussed in Sec. 4.6.
The somewhat larger s absorption in Ne may be related
to its point of zero occurring at lower energy for
Ne (n=2) than for Ar, Kr, and Xe, much as it occurs at
lower energy for Li than for Na, etc. (see Sec. 4.5).

Available information does not suffice to judge to
what extent the jump ratios of other subshells or atoms
are similarly suppressed. The 3d (Mrv,v) threshold
appears wholly suppressed in Lu near 190 eV, following
the complete filling of the 4f subshell (ZFGZh67, Fig.
15). The inner shell 2s (L;) threshold in Ar has a jump
ratio of ~1.05 (Fig. 5). The 3s (M;) threshold in Cu
fails to appear in Fig. 13.

For transitions to final states with />2 the jump
ratios are depressed at the edge by the centrifugal
potential acting on the electron after the absorption
process. Insofar as the net potential (4.12)—which

15 The line broadening and profiles are treated in Sec. 8.
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represents the combined contributions of electric
attraction and centrifugal repulsion upon the escaping
electron—is positive and varies smoothly as a function
of 7, the radial integral R(#l, ') will be depressed at
e~0 and will rise smoothly with increasing e. This
behavior appears to occur in the absorption by the 2p
valence electrons of Ne, as we have seen in Sec. 4.6
(Fig. 4). However, we have also seen in Sec. 4.4 that
the balance between the attractive and centrifugal
forces is rather critical and tends to shift in favor of
attraction as one proceeds toward lower » values across
the valence shell of the atom. As shown in Fig. 17 this
shift occurs at the peak of a potential ridge whose
height is low and often negative for /=2 but often rises
to the order of 10 eV for //=3. Owing to this circum-
stance, rapid rises of absorption are observed in the
spectra when e increases to a critical value ¢, that per-
mits the escaping electron to pass over the potential
ridge, if any. This rise at e~e, might be called a “de-
layed edge”. Figure 6(b) shows a clear example of
spectral distortion by centrifugal forces near the
threshold for absorption by the 3d (Miv,y) electrons
of Kr. One notices between 90 and 95 eV a threshold
behavior of rather hydrogenic appearance with a modest
jump ratio ~1.6; this threshold is followed by a second,
smoother but much larger rise that sets in above 100 eV.
The hydrogenic edge was identified by its discoverers
(CM64, LZB64) as representing only the contribution
of 3d—p transitions, owing to the absence of any
detectable 3d—nf lines in the discrete. The delayed edge
above 100 eV represents the onset of 3d—¢f transitions
whose intensity becomes appreciable only for e>
e~10 eV. A corresponding behavior is observed near
the 4d (N1v,v) edge of Xe (Fig. 7); here the onset of
4d—ef transitions yields a far sharper rise than in Kr,
because it is boosted by the occurrence of a “resonance
near threshold” (Sec. 4.5). Notably, model calculations
(Co64, MC68) predict this rise to be even sharper
than it is, a discrepancy that will be discussed in Sec. 6.
Proceeding now to different values of /, the absorption
by 4f electrons in 4f—eg transitions in Au and Bi
has been observed (JM66, JMDG67) and calculated
(CFH67, MC68) to rise rapidly far above threshold
(e.~50 eV), which is not surprising since /=4 in this
case (Fig. 14). At threshold even the 4f—d transitions
should be depressed by a centrifugal barrier; the
threshold itself has not yet been observed. With regard
to the absorption spectra due to p—d transitions by
valence electrons, we have seen that Ne shows a depres-
sion near the edge but no sharp rise at higher energy
that would constitute a delayed edge. For Ar, Kr, and
Xe the influence of the centrifugal barrier is not readily
disentangled from that of the resonance near threshold.
Actually the influence of the centrifugal barrier
stands out, isolated from other factors, in the profiles of
absorption edges in the 200-1000-eV range correspond-
ing to subshells well below the surface of an atom.

Under these circumstances the factor f(ni; #'l') of the
oscillator strength expression (4.7) may be regarded as
practically independent of #’ over a substantial range
of energies near the threshold and the centrifugal effect
bears entirely on the normalization factor N,.;.2. The
examples of the 2p (Lyr ) edge in Ar and 3d (M1v,v)
in Xe are shown in Figs. 5 and 7(c), respectively. The
2p—d transitions in Ar appear to depart from the
familiar hydrogenic profile of K edges (see, e.g., the
Ar K edge in Fig. 5), in that the peaks of discrete lines
lie well below the absorption-coefficient values observed
beyond the edge. We interpret the rise in absorption
over a ~5-eV range, from the peak (or average) of the
resolved lines to its maximum beyond the edge as a
change of the coefficient N,... Data with improved
resolution seem necessary to determine how much of
this change stems from hydrogenic and how much from
nonhydrogenic effects.® The 3d—ef transitions in Xe
yield a sharp rise in absorption at ~10 eV above
each of the well separated thresholds Myy and My.
Each rise reaches a maximum followed by a fairly
rapid decrease, leveling off at about one half the pre-
ceding rise; this profile could be described as the
effect of a virtual resonance in the ¢f states. The 3d—p
transitions should produce an edge with small jump
ratio at the actual threshold; this edge is barely visible
in Fig. 7(c) (De68a).

The experimental and theoretical evidence on these
centrifugal effects is thus far rather fragmentary.
Attempts to establish their systematic trend over the
periodic system are presented in the next section.
Effects depending on N,.? should persist in edges
above 1 keV for heavy atoms. As noted in Sec. 4.2 the
effects arising from the escape of photoelectrons over
the centrifugal barrier should be closely associated with
phenomena in electron—ion scattering at energies ~e,
which have not yet been investigated.

4.8. Variation of Spectra Along the Periodic System

According to the hydrogenic approximation, the
absorption spectrum of each subshell varies smoothly
as a function of the atomic number Z. Its profile would

16 Earlier attempts at interpreting the structure of this edge
(LZ63) bave been hindered by lack of data on the Lyz, 11y splitting,
whose value (~2.2 e¢V) has only recently been determined (De68).
An interpretation of the low intensity of discrete lines has been
given by Baringkii (Ba59) on the basis of a hydrogenic formula.
The coefficient NV,;2 calculated in the hydrogenic approximation
includes a factor I p.o(1—p%/%'?), which is called 4 (»’, ') by
Seaton (Se66). This factor does not depart very much from unity
for the states with /=1 excited near a K edge. Barinskii empha-
sizes that for I’=2 (L edge) and #'~2.85 (3d level of Ar) this
coefficient is sufficiently lower than 1 to account approximately
for the profile reported originally by (LZ63). The nonhydrogenic
portion of the combined potential (4.12) pertaining to the #'d
functions of Ar may in fact be confined to sufficiently low values
of 7 for the hydrogenic coefficient A4 (»’, I) to have a controlling
influence on N,.r. We thank Dr. Barinskii for calling these
matters to our attention. A higher resolution spectrum of the
Lyr,irr edge of Ar has been obtained recently with the Tokyo
synchrotron light [Sagawa ef al. (to be published)].
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not change much on a log-log plot; the spectrum would
shift progressively toward higher frequencies and its
peak intensity would decrease progressively.

The main nonhydrogenic features of the spectra
could be obtained by model calculations with the
Thomas-Fermi potential (Sec. 4.4) which still varies
smoothly with increasing Z. The spectra thus obtained
should also vary smoothly with Z but many of their
qualitative characteristics would evolve and disappear
as each subshell is drawn into the inner region where
hydrogenic conditions prevail. Specifically each reso-
nance near threshold would progressively be overtaken
by the threshold, as this threshold moves toward high
frequencies with increasing Z, and the resonance would
eventually disappear. So would the “second maximum”
be overtaken and disappear as anticipated in Sec. 4.6.
Similarly, the threshold features described in Sec. 4.7
would vary smoothly with increasing Z.

Nonmonotonic variations of the spectra with in-
creasing Z, due to the nonmonotonic variations of more
realistic potentials described in Sec. 4.4, have emerged
from systematic calculations (CF67, MC68), even
though these calculations pertain only to a limited set of
elements rather widely spaced along the periodic
system. These variations of spectra are confined pri-
marily to an energy range of the order of 10-50 eV from
each threshold, since they originate from variations of
V (r) near the edge of atoms. The major nonmonotonic
variations apparently occur in the centrifugal effects
described in Sec. 4.7; they derive from large variations
of the height of the ridge in the effective potential
(4.12).

Notice in this connection that the nonmonotonic
variations of V(r) relate to variations of the electron
density distribution in outer shells and therefore also to
variations of the outer screening potential ¥, discussed
in Sec. 4.3. Empirical values of V, can be obtained from
(4.10) by entering experimental thresholds E,; on its
left-hand side and on its right-hand side standard values
of s (S130) and ¢=0. The values of ¥, thus obtained
(Fig. 20, see also Le53a) show periodic oscillations re-
lated to those of V(r) and to the structure of the
periodic table. These oscillations may be related to
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F16. 21. Calculated cross sections for elements between Z=236
and 100 (MC68). (a) 3p—d transitions. (b) 3p—-es transitions.

those of the critical values e, of the electron escape
energy at which a radial integral R(#l, €l) rises sharply
because e overtakes the ridge in the effective potential
(Sec. 4.7). The variation of V(r) causes V, and e
to vary in opposite directions so that the critical
photon energy hv.=e.— E,;, at which a major rise of
absorption appears in the spectrum, should vary more
smoothly with increasing Z than the actual threshold
energy.

The calculations of (MC68) also indicate the occur-
rence of minor maxima in the absorption spectra in the
proximity of a threshold, which have not been discussed
in preceding sections, but are indicated in Fig. 21.
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Each of these nonresonant maxima in the spectrum of
(nl—e€l’) transitions appears to be overtaken by the
threshold, as Z increases, approximately at the value of
Z at which the filling of an (#'l’) subshell is completed
in the ground state. These maxima behave in this
respect like the resonances near threshold. They might
arise from systematic variations of the factors N2 in
(4.7) but this point remains to be investigated. The
disappearance of each maximum upon completion of the
(#'l') in the ground state is associated with a substantial
reduction in the total oscillator strength of (nl—el)
transitions. This reduction may be attributed to the
“transfer” of oscillator strength from the (#l) to the
(n'l') subshell, a subject to be discussed in Sec. 5.2.

A single experimental study appears to have been
carried out to demonstrate the systematic variation of a
major nonhydrogenic feature of the absorption spectrum
(ZFGZh67, FZGZh67). This study concerns the height,
width, and distance from the threshold of the resonance
near the 4d (Myv,v) threshold throughout the rare-
earth group. The threshold position is not well defined,
the more so as the experiment utilized absorbers in
metallic state and as the standard data on threshold
energies (BB67) are undependable in this spectral
range. Discrete lines observed near the threshold are
presumably characteristic of the metallic state. A
sample of the results is shown in Fig. 15.

Any detailed study of the variations of absorption
spectra of neutral atoms along the periodic system
would be naturally complemented by a study of the
variations along isoelectronic sequences of neutral
atoms and ions. However, samples of ions adequate for
absorption studies are not readily available.

4.9. Sum rules for the Single-Electron Model

The sum rules discussed in Sec. 2.5 apply also to
single-electron processes of the type considered in this
section; they can even be extended to provide more
detailed information. However, their interpretation is
complicated here by the circumstance that the complete
set of transitions out of a state (#l) includes transitions
to lower energy states (#'l') with #'<#n and/or I'<I.
These transitions would correspond to radiation emis-
sion rather than absorption and have negative values of
the oscillator strength (4.4). They do not actually
occur in practice owing to the exclusion principle, as
the lower states (#'l’) are occupied in the ground state
of an atom, but they have to be included in the compu-
tation of sum rules. Sec. 5.2 will show how to deal with
negative-f transitions in the frame of a many-electron
model. Here we regard them as real.

Within this extended frame one may also consider the
relationship between the oscillator strengths of recipro-
cal transitions (nl—#n'l') and (#'l'->nl). They have
opposite sign but have not the same magnitude owing to
averagings over orientation; as seen from (4.4) they

are related by
Q4D f(d—n'V)=— 22U+ 1) f(0'V—nl). (4.19)

The sum rules [ (2.22), (2.23), and (2.24) J—relating
to the moments S_;, Sy, and S;—apply to single-elec-
tron oscillator strengths provided that:

(a) the set of eigenfunctions Py, for all #’ including
the continuum, forms a complete set of solutions of the
radial equation (4.3) with I=10';

(b) the same potential V' (7) applies in the equations
that determine P,.;r and P,;. However, the calculation
of S_; does not depend on proviso (b). The application
of the sum rule (2.25) for S, will be discussed separately.

Separate sum rules can be formulated for transitions
tol/'=Il4+1andV'=1—-1 (BS57, Sec. 61 and 62). Defining

S, (nl—1') = D (Eprir— Ent)"f(nl—n'l), (4.20)

one finds
I+U+1 2
S_a(ni—l) = 20240 ﬁT( 2 )t
_ U+ 2m
6(zl-|_1) B ), (4.21)
V=D (147 41) (2041
So(nl—l') = ( )(:gzlj‘_l;( + )’ (4.22)
) D) 97
SN = "1 o/
_ 204041 >
T 3(2F1) IS

The value of S_; follows directly from (4.4), that of S;
almost immediately, but the calculation of So(nl—l’)
requires some manipulation.

Notice that So(nl—I—1) is negative, owing to the
prevalence of transitions with negative f. For r=1 and
—1, all contributions to S, are positive, even for nega-
tive f. The excess of Syi1(nl—l+1) over Sy (nl—I—1)
indicates the prevalence of transitions /—/+1 pre-
viously mentioned in Sec. 4.3, the more so because
Si1(nl—1—1) includes a larger contribution from tran-
sitions that are actually forbidden by the exclusion
principle. Notice, finally, that in the single-electron
model S_; and S; relate exactly to the properties x.
and (K ), in accordance with (2.26) and (2.27).

The evaluation of S, for the single-electron model
differs from that for a whole atom. Since the non-
Coulomb potential V(r) of (4.3) does not obey the
equation AV=0 outside the nucleus, its derivatives
in the expression of S. cannot be expressed in terms of
the electron density at the nucleus. Defining a “screened
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charge” Z(r), such that V(r)=—Z(r)e?/r, one finds

n 62ﬁ2
S=0) = o Dm
X { (40 +1) <47rza(r)—r1d2—z
ar’ nl
4l =D I(1+1) Z(:) __12g§ } (4.24)
7 2dr [ a1

The term with §(r), akin to that in (2.25), contributes
only for /=0, since otherwise the electron density at the
nucleus vanishes owing to the centrifugal force. The
next term is negative. The following group of terms
vanishes for /=0; it is positive or negative for I'=1+1,
as is So(nl—1"). This group of terms gives no net con-
tribution to

So(nl) =D Sa(nl—1')
14

= (eH2/3m) (4nZ5(x) —rBZ/dr s (4.25)

The special role of electrons with /=0 for S, relates to
the asymptotic law df(ul) /dE~E-"*! for large E
(RF67). In general Say; is large and finite, S3y; is
infinite.

As an application of sum rules, let us compare the
values of S_;, S, and S; for the valence electrons!?
of Ne and Ar which belong to the same chemical group
but have quite different absorption spectra, as noted at
the end of Sec. 4.5. More specifically, since the reso-
nance in Ar belongs to the [—I+1 (i.e., 1—2) transition,
we consider the S,(nl—2) for the two atoms. Evalua-
tion of (4.21), (4.22), and (4.23) with the Hartree-
Fock wave functions of Ne (#=2) and Ar (#=3)
yields (Co062) the ratios

So/ S S1/So S15_1/S¢?
eV eV
Ne 56 91 1.6
Ar 20 61 3.0.

The last column represents one of the shape parameters
defined by (2.21), whose excess over unity indicates
how much the spectrum departs from a single sharp
peak. The large excess of 3.0 for Ar over the Ne value,
1.6, reflects the bi-modal versus unimodal character of
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the two spectra. The large difference of the So/S_;
ratios for Ne (56 eV) and for Ar (20 eV) relates to the
large difference between the linear dimensions of the
two atoms, for which (2),; equals 1.2 and 3.4 atomic
units respectively. This difference sets Ne apart from
all the heavier noble gases whose mean square radii do
not differ much and whose absorption spectra exhibit
the resonance near threshold.

5. MANY-BODY FORMULATION

The results of calculations by the method of Sec. 4.2
are exact, within the limits of numerical accuracy, if
interpreted on the basis of the single-electron model
from which they are derived. They are, of course, in-
tended as approximate representations of the actual
properties of many-electron atoms. In this chapter we
go over to a many-electron point of view in two steps.
Firstly we consider a separable many-electron model
which is a trivial extension of that of Sec. 4 and possesses
essentially the same distribution of oscillator strength.
However this model treats the exclusion principle
explicitly as well as the influence of the resulting cor-
relations upon the spectral moments S,. Then we shall
consider the wave functions of the many-electron model
as initial approximations to the actual energy eigen-
functions of an atom. A procedure for the systematic
improvement of these wave functions can be outlined
(Sec. 5.3) but the corresponding consistent calculation
of improved oscillator strengths meets an unresolved
difficulty (Sec. 5.4). Independently of any such attempt
to develop procedures for the treatment of the whole
spectrum, numerous calculations have been carried out
with many-electron wave functions for more limited
purposes and with limited success. These calculations
are reviewed in Sec. 5.5.

5.1. Slater-Determinant Wave Functions

Consider the N-electron separable model Hamiltonian

N
Huoa= 2 [0/ 2m+V (1) ], (5.1)
=

with a suitable potential function V(7). Its eigenfunc-
tions can be constructed from products of eigenfunctions
(4.1), Ynims, of the wave equation (4.3). An initial set
of eigenfunctions of (5.1) which is complete, orthogonal
and antisymmetric, consists of Slater determinants of
order N

\[’nllﬂnln(l) ‘!’mllmlsl(z) llb’ﬂlllslml(N)
¥,= (N-/)_lﬂ ‘Pml'mzsz(l) Kbnzlzmzsz(z) ‘xbnllmwl(N) (5-2)
‘valmnzvsy(l) ‘panNmNsN(z) ‘panNmNSN(N)

17 This application of sum rules, to valence electrons only, differs from the applications to whole atoms in Table IT and to intershell

correlations in Table III.
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Here the variables (1, 2---N) of the ¢ indicate,
respectively, the sets of position and spin coordinates of
the NV electrons and the subscript » of ¥ stands for a
specific set of 4N quantum numbers (#ds1° * *mysy) .
The eigenvalue of (5.1) corresponding to the eigenfunc-
tion ¥, is, of course, determined by the eigenvalues of
(4.3) and by the set of quantum numbers represented
by »,

N
Ey= Eny;

J=1

(5.3)

The ground state of our model atom is represented
approximately by the ¥, with lowest value of the n;
if the number of electrons just suffices to occupy the
outermost subshell completely. If the outermost shell
contains a single electron or a single vacancy, the
representation by a single » is still adequate. Otherwise
there is further degeneracy corresponding to alternative
mutual orientations of the electron orbits; construction
of a linear combination of ¥,, by well known methods, is
then required even to single out a ground-state wave
function of specified net orbital angular momentum.
An excited state is represented by a single ¥, only if it
involves a core of electrons that occupy certain sub-
shells completely plus a single excited electron, as in
the case of alkaline atoms. We leave aside for the
moment the matter of combining ¥, into eigenstates of
angular momentum.

Once a set of radial functions #,;= P,i/r has been
adopted and the corresponding set of determinants ¥,
constructed, dipole matrix elements between pairs of

states
(T | 222 | 0,) (5.4)

can be calculated. Because each term of the operator
> ;2; depends on the coordinates of a single electron,
its contribution to (5.4) vanishes unless ¥, and ¥,
differ only by the replacement of one single-electron
wave function, say of Ynms by a different Yy iimssr. In
this event, the whole matrix element (5.4) reduces to
the contribution of the relevant single-electron transi-

tion,
(‘I/"' l sz l \I,l‘) = (‘l’n’l'm’s’ [ 2 [ ¢nlms) . (55)

The selection rules of the single-electron model further
restrict nonzero values of this matrix element to
V=11, m'=m, s'=s.

We can now calculate the oscillator strength of the
transition »—»’ of the many-electron model atom. The
energy difference E,»—E, coincides with E,.;— E,,
owing to (5.3). The averaging over orientations pro-
ceeds as in the single-electron model and equalizes the
strength of transitions from any degenerate » to any
degenerate »'. The averaged f(»—»’) coincides with
f(nl—n'l') as given by (4.4). The spectrum of the com-
bined oscillator strength of all possible transitions from
the N-electron ground state also coincides with (4.6).

[In fact, the considerations of this section were implied,
when we adopted (4.6) in the last section. ]

The initial set of energy eigenfunctions ¥, can be
replaced by a set of eigenfunctions of the energy and of
the squared angular momentum | J |2 by constructing
linear combinations of ¥, with equal energy eigenvalues.
The coefficients of the combinations are products of
angular momentum coupling coefficients, called Wigner
or Clebsch-Gordan coefficients (CS35). Unless other-
wise stated, we shall imply that this operation has been
performed according to the rules of LS (Russell
Saunders) coupling. This operation has no effect on
the energy eigenvalues as long as we deal with the
model Hamiltonian (5.1). However it replaces the
identical average oscillator strengths f(v—»') of transi-
tions between degenerate levels by an ‘“array” of oscil-
lator strengths of transitions between different eigen-
states of | J |2, which generally differ from one another
by a numerical coefficient. (For example the strength
of transitions with | J—J’|>1 vanishes.) Details of
the array structure and data on the relevant coefficients
are given in spectroscopy texts such as (CS35).

Notice, finally, that no essential complication would
have been introduced by adding a spin-orbit interaction
term to each term of the model Hamiltonian (5.1).
The quantum numbers 7 and s of ¥,1,s would have been
replaced by different indices j and 7 and the energy
levels E,; would depend on j. The LS coupling men-
tioned above would be replaced by jj coupling. We
shall disregard spin—orbit interactions for simplicity
in the following, unless otherwise noted, with the under-
standing that it is often essential to consider it for
specific applications. Further comments on this matter
are found in Sec. 5.3.

5.2. Sum Rules in the Many-Body Formulation

Even though the many-electron dipole transition
matrix elements (5.4) reduce to the one-electron matrix
elements (5.5) in our formulation, characteristic differ-
ences occur in the structure of the sum rule expressions
for the single-electron and many-electron problems.
Consider, for example, the oscillator strengths of transi-
tions from the ground state of the Kr atom, specifically
the transitions involving one of its outer-shell (4p)
electrons. In the single-electron model this set of transi-
tions would include those from 4p to states of lower
energy such as 3d or 2s. These transitions do not occur
in the many-electron formulation because the states 3d
and 2s are already occupied, that is, they are included
in the determinant wave function ¥, of the initial
ground state. The single-electron model also regards
these transitions as unrealistic but has nevertheless to
include them in the formulation of sum rules in Sec.
4.9. We shall consider here how the structure of sum
rules for a whole atom is affected by the discounting
of unrealistic single-electron transitions.

To this end, let us specify more closely the structure
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of the moments S,= Y ,E/f, in accordance with the
many-electron model of Sec. 5.1. Each excitation s of an
atom in its ground state corresponds to the transition of
an electron from an occupied subshell #! to an unoc-
cupied subshell #'l’. (We assume here for simplicity
that the ground state consists only of fully occupied
subshells.) The corresponding excitation energy E,
equals E,— E,;. Therefore we have
(oce) (free)

Sp=222(241) 3 (Ewv—En)f(nl—n't). (5.6)
nl n/i

The single-electron sum rules of Sec. 4.9 are not im-

mediately relevant here because the sum over #»’ and

U’ is restricted to “free” states. However, this restriction

has no net effect on Sy (and on all S, with 7 even) be-

cause it excludes in fact only pairs of terms

Q2D f(nl—n"t") + (2" +1) f(n'V—nd)

(nl and #'l’ occ.)

(5.7

whose sum vanishes according to (4.19). We can thus
remove this restriction, for =0, in which case the
> e yields 1, owing to (4.22) and the D@ yields

So=N (5.8)

in agreement with the general rule (2.23).

Any electron of the atom seems to contribute equally
to So according to this calculation, irrespective of the
shell %l to which it belonged initially. Actually the addi-
tion of each vanishing contribution (5.7) has spuriously
reduced down to unity the contributions of the electrons
with E.;> E,y, for which the term (20+1)f(nl—n'l')
is negative, and increased to unity that of the electrons
with lower energy E,.p. Considering that (5.6), which
excludes these terms, consists only of positive contribu-
tions we conclude that in the absence of spurious con-
tributions each outer electron—with higher E,;—con-
tributes to .So more than an inner, lower energy electron.
Thus the replacement of the one-electron model by a
many-electron treatment with determinant wave func-
tions may be said to effect a transfer of oscillator
strength from inner to outer electrons. That this transfer
attains large proportions is shown, for example, by
the value of So(#l—i+41) which is 12/7 for I=3, ac-
cording to (4.22); that is, the 4f subshell of a tungsten
atom contributes an oscillator strength of 24 to transi-
tions 4f/—g, even though it contains only 14 electrons.

With regard to S_; and S the limitation of Y, in
(5.6) to

(free)

i’
has more than formal significance, because the excluded
contributions

(oce)

2

n/l/

are all positive, even when E,.;— E,; is negative. Thus
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TasLe III. Contributions of free and occupied orbitals to the
moments Sy (Be63).

S—IIH SI/IH
(free) (occ) (free) (occ)
Ne 2.02 1.1 303 39
Ar 5.50 3.2 1.15X10? 0.3X108
Kr 7.86 5.3 5.34%103 2.0X103

we have

(oce)

S1< 2.2(241) 3 (Ewy— En) ¥f (nl—n'l')
nl

n'i

(oce)

= > 20204 1) [ S (W—141) + Sy (ni—V—1)]. (5.9)
nl

The right-hand side of (5.9) can be regarded as an
estimate of S,; based on the use of unsymmetrized
product wave functions, which disregard the exclusion
principle. Consideration of the exclusion principle, by
discounting the forbidden transitions

(oce)

>

nll!

is now seen to reduce systematically both S_; and S;.

The origin of this reduction emerges from an analysis
of the calculation of Sy; on the basis of (2.22) or
(2.24) and of determinant wave functions (5.2).
Determinant functions consist of sums of products of
single-electron ¥,ms rather than of simple products
thereof. Accordingly they include correlations between
the positions of different electrons, which are called
“exchange correlations” because the various products of
Ynims differ by the interchange of electron coordinates.
Calculation in accordance with the exclusion principle
reduces Sy through the introduction of negative ex-
change correlation terms in (2.22) and (2.24). These
terms account for most of the discrepancy between
values of Sy calculated with unsymmetrized product
wave functions and the “true” values estimated from
the best experimental or theoretical evidence such as
were shown in Table II. Table III shows examples of
the corrections introduced by exchange correlations.

The reduction of both S_; and .S;, while Sy remains
unchanged, implies that exchange correlations increase
the ratio So/S-1 and decrease .S1/.Ss, thereby narrowing
the gap

S1/ So— So/ S_1. (5.10)

According to Sec. 2.4, this narrowing indicates a reduc-
tion in the spread of oscillator strength distributions; it
reflects the suppression by the Pauli principle of high
frequency upward and downward transitions between
occupied orbitals ¥ ms.
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Summarizing, we have seen that oscillator strengths
calculated for a whole atom from a set of Slater deter-
minant wave functions fulfill the Thomas—Reiche-Kuhn
sum rule automatically. In this formulation the excita-
tion of each shell does not contribute to the total
strength in proportion to the number of its electrons;
the contribution per electron is larger for outer than for
inner shells. The electron—electron correlations implicit
in the structure of determinant wave functions have a
characteristic and very substantial influence on the
parameters Sy and S_;. They should modify similarly
all S, with odd 7, but do not influence the even-r
moments at all, just as they do not influence Sp.

5.3. Successive Approximation Procedure

For an actual atom with atomic number Z and with NV
electrons the kinetic energy and electrostatic potential
of the electrons are represented correctly by the
Hamiltonian

N

H=2_{p?/2m—Z¢/ri+ 3 ¢/ | r—1; |} (5.11)

j =j+1
The spin interaction terms, omitted from this equation
for simplicity, do not modify the substance of what
follows.

Starting from the eigenfunctions ¥, of the model
Hamiltonian (5.1) as initial approximations to the
actual eigenfunctions of the atom we face the following
situation. Consider the matrix of H which we indicate
bys

(| H|»). (5.12)

The diagonal elements (v|H |») are approximate
eigenvalues corresponding to the approximate ¥,. The
magnitude of the off-diagonal elements, which would
vanish if the ¥, were exact wave functions, indicates the
degree of approximation reached at this point. More
specifically the relevant approximation indices are the
familiar ratios

O TH ) /LOH )07 [H]Y)]  (5.13)
for states »’ and »”/ of discrete spectra. For states »’ and
'’ of the continuum normalized per unit energy range,
each matrix element (v’ | H | »'") has the dimensions of
a number and its value, compared to unity, serves
directly as an approximation index.

Among the wave functions with the structure (5.2),
the best approximation to an energy eigenstate is con-
structed with radial wave functions P,;(r) that obey
the Hartree-Fock system of equations instead of the
model equation (4.3). We do not follow the Hartree-
Fock approach here because it is not designed to provide
a complete orthogonal set of ¥,. Thereby we sacrifice
accuracy at the outset for the sake of maintaining mani-
fest consistency over the entire spectrum. This require-

18 We are replacing, here and in the following, the wave function
symbol ¥, by its index ».

ment will prove important in the next section where we
consider the calculation of improved oscillator strengths.
Here we consider the preliminary steps involved in the
calculation of improved wave functions. We are in-
terested in optimizing the wave functions of the ground
state and of the states reached from it by optical transi-
tions of appreciable intensity. That is, we are interested
in minimizing only certain submatrices of (+' | H | »).

Improved wave functions ¥, can be constructed by
linear combinations of the ¥,,

V,=> ¥,U,,. (5.14)
In order that the ¥, be orthogonal, the matrix of
coefficients U,, has to be unitary. Improved dipole
matrix elements are then also obtained as linear combi-
nations of the initial ones,

W | 223 | w) = };‘(U—l),,,,,(y' | 222 [ 9 U (5.15)

7 vy J

The improvement is indicated by the reduction achieved
in the magnitude of off-diagonal elements of the
Hamiltonian, (u’ | H | u), which are given by a formula
analogous to (5.15). The coefficients U,, that would
make (u' | H|p) exactly diagonal obey the infinite
system of equations

Z](V l H l VI) Uv’n= Uqu,u- (5 16)
In practice one deals with approximations to this
system.

Note that the matrices U and U~ consist of separate
block submatrices, corresponding to different values of
constants of the motion: parity, the total angular mo-
mentum quantum number J, and the corresponding
M=) m; In fact, the matrix elements (U~),,s and
U,. in (5.15) belong to different independent blocks
since the matrix elements (»' | X2 |») vanish unless
' and » have opposite parity. This independence might
be emphasized, if desired, by utilizing for (U™) ., a
symbol V,,» unrelated to U,,.

To provide a framework for the remainder of this
article, we consider a program of progressive improve-
ment of the wave functions of an atom and diagonaliza-
tion of its Hamiltonian by successive approximations.
The separation of the Hamiltonian matrix into blocks
corresponding to different values of the “good” quan-
tum numbers (parity, J, and M) is assumed to have
been accomplished in advance, as it presents no diffi-
culty.® The desired progressive improvement of the
wave functions will be sought by identifying the
separate submatrices or terms of the Hamiltonian which
correspond to various physical factors and diagonalizing
them in succession. The successive steps of this process
are achieved by a succession of diagonalizing matrices
UW, U®, ... and the exact matrix U to be entered in

19 This operation removes some of the degeneracy of diagonal

elements of the actual Hamiltonian, whereas it does not for the
model Hamiltonian (5.1).
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(5.14) and (5.15) is then understood to be the product
U=U00ayu®..., (5.17)

The choice of the succession of steps to be followed
should depend in any specific case on an assessment of
the comparative magnitude of different matrix elements
(v| H|v'), which can be determined by exploratory
numerical calculations. More generally this choice
may be guided by qualitative considerations of the kind
presented in the following paragraphs.

For purposes of orientation and comparison we begin
by reviewing the approach followed by the theory of
discrete spectra (CS35, Ra55, S160) even though some
departure from it will appear necessary at the outset.
This theory takes up initially the diagonalization of
submatrices of H pertaining to states » and »" of the
same configuration, i.e., having identical sets of quan-
tum numbers (nl;).>° This diagonalization introduces
correlations between the directions 7; of different elec-
trons and between their spin orientations, in addition
to those introduced by the preliminary construction of
eigenstates of J. As is well known, the submatrix
diagonalization for a single configuration yields eigen-
vectors characterized by quantum numbers L and S
when the effect of the electrostatic potentials in (5.11)
predominates. However, the spin—orbit interactions, not
shown in (5.11), are frequently of sufficient strength to
complicate the diagonalization and the characterization
of the resulting eigenvectors.

Initial diagonalization of the submatrix of each
configuration is desirable insofar as the off-diagonal
elements of such submatrices are more important than
those that connect states of different configurations.
This circumstance obtains in practice only in some
simple cases, particularly for the lowest configurations
which are better separated from one another energeti-
cally. However, the actual applications of the theory of
discrete spectra are often successful even when this
condition fails because they do implicitly part of what
one has to do explicitly for continuous spectra, through
the following device. Since diagonalization of sub-
matrices calculated from the radial functions P,.; of
(4.3) yields generally poor agreement with experimental
energy levels, theory does not actually calculate the
radial integrals included in each matrix element
(v| H|v"); instead it determines their values empiri-
cally, so as to achieve best fit to experimental levels.
The empirical values include by implication a portion
of the effect of configuration interaction, as noted below.

Treating each configuration separately from those
with an electron excited to different levels of the same
Rydberg series becomes increasingly unrealistic as the
excitation level increases because levels of different
configurations occur in the same spectral range and also
because of complications of angular momentum cou-

20 Under special circumstances the theory deals simultaneously
with small sets of configurations, such as s%d%, sd7™! and do*2,
whose energies lie close to one another.
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pling. As the excitation energy increases, the orbit-
orbit interaction between an excited electron and the
rest of the atom decreases rapidly; soon it matters less
than the spin orbit interactions within the atomic
residue. Therefore intermediate coupling or even ex-
treme jj coupling actually prevail under most circum-
stances of interest to us in discrete spectra. The in-
fluence of the type of coupling upon the distribution of
oscillator strength among the various levels of a con-
figuration was noticed in early studies of line spectra
and has been discussed occasionally in great detail
(CS35). Efforts to account for such arrays of oscillator
strengths by the theory of discrete spectra have in-
creased recently (Me66, GVBG65, Ga66a).

As one proceeds from the discrete into the continuous
spectrum, it is no longer plausible at all to distinguish
configurations with one electron at infinitesimally
different energy levels. It becomes necessary to consider
from the outset matrix elements (»' | H |») with »
and » corresponding to different excitation energies
and thereby to depart from the sequence of approxima-
tion steps of the theory of discrete spectra. To this end
we begin by replacing the concept of electron configura-
tion with another one that is suited to continuous
spectra and includes different levels of excitation.

Configurations whose sets of quantum numbers
(nid;) and (/1) differ only by the value of a single
principal number #;—that is, such that /’=1; for all 1,
n=mn; for i, but n;7n/—are said to constitute a
series when n; and #;’ belong to the discrete spectrum.
When #; and #; belong to the continuum they may be
said to belong to the same “channel,” in accordance to
the nomenclature of nuclear physics. Here we shall
use the word “channel” to include series, because we
are primarily interested in continuous spectra, and con-
sider the diagonalization of Hamiltonian submatrices
between all states of the same channel rather than only
between states of the same configuration. Elements of
these submatrices will be said to represent “intra-
channel interactions”, while the name ‘“interchannel
interactions” will apply to Hamiltonian elements be-
tween states of different channels. From this point of
view, the empirical fitting of the values of radial
integrals practiced in the theory of discrete spectra can
be looked upon as a substitute for a calculation that
diagonalizes the interactions between all states of a
channel rather than those of a single configuration.

Just as a configuration includes a set of states with
alternative mutual orientations of individual electron
orbits and spins, so does a channel—an aggregate of
configurations with different # values—include a set of
subchannels with alternative orbit and spin orientations.
The possibility of diagonalizing the interactions between
subchannels in an approximation step separate from the
diagonalization within subchannels has not been ex-
amined. This question will be evaded within the limited
range of examples considered in this article and in view
of the present preliminary state of the problem. Only
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the intrachannel interaction within one subchannel
identified by LS coupling will be discussed in Sec. 6.
With regard to the comparative importance of intra-
and interchannel interactions, the former ones appear
to deserve first consideration if one starts from the zero-
order approximation of Sec. 5.1. Indeed intrachannel
interactions will be shown to have a moderately large
influence on the gross spectral distribution of oscillator
strengths, being responsible for the major discrepancies
between theory and experiment displayed in the illustra-
tions of Sec. 4. These effects of intrachannel interaction
are the subject of Sec. 6. For purposes of introductory
clarification, we note here that the magnitude of intra-
channel interactions depends on the choice of the initial
model potential V() in (5.1) and on the resulting
set of radial functions P,;; it can be minimized or even
brought to zero for any single subchannel by utilizing
P,; that are solutions of a Hartree-Fock equation.
Interchannel interactions appear to have a lesser
influence than intrachannel interactions upon the gross
spectral distribution of oscillator strengths. They are
nevertheless responsible for conspicuous features of
photoabsorption, such as the occurrence of two-electron
transitions and of broad lines in the continuum. A
particular class of interactions can also be usefully
singled out, which depends on the screening effect
(Sec. 4.3) of one electron upon another and involves no
exchange of angular momentum between these elec-
trons. Effects of this class of interactions will be dis-
cussed in Sec. 7, other interchannel effects in Sec. 8.
In summary and loosely speaking, Secs. 6, 7, and 8
will deal, respectively, with the construction of three
successive factors, U®, U®, and U® of (5.17). How-
ever the applications of theory are not so advanced
that one actually performs this complete construction
for any single atom.

5.4. Consistency of Approximate Oscillator Strengths

Whereas procedures of successive approximation to
the calculation of energy eigenfunctions and eigenvalues
are straightforward in principle, as outlined above, the
same does not hold for oscillator strengths. The for-
mulas themselves, which provide the usual definition of
oscillator strength in Sec. 2.1, are derived by methods
that imply a knowledge of the exact eigenfunctions and
eigenvalues. This is why the alternative formulas (2.3),
(2.8), and (2.10) do not yield the same value of f;
when evaluated with approximate eigenfunctions and
eigenvalues of the actual Hamiltonian (5.11). [This
difficulty does not arise with regard to the model
Hamiltonians (5.1) or (4.3) whose eigenfunctions and
eigenvalues can be obtained in practice to any desired
accuracy. | Therefore estimation of the accuracy of a
calculation of f; depends on knowledge not only of the
errors in the eigenfunctions and eigenvalues that have
been utilized but also of those in the formula one has
applied. No established theory of the latter errors
exists.

The expression (2.15) of the oscillator strengths in
terms of a correlation function appears free from in-
herent error, because it can be derived from basic
theory without reference to the eigenvalues and eigen-
functions of excited states. This expression does depend
on the ground-state eigenfunction, but this eigenfunc-
tion is usually accessible to accurate determination
and furthermore its errors can be estimated. Numerical
evaluation of (2.15) requires in practice the use of a
set of wave functions to provide a matrix representation
of the operators, but the only essential requirement on
this set is its completeness. (This is one reason for our
emphasis on the use of complete sets.) Approximation
of this set to the actual eigenfunctions of the Hamil-
tonian simplifies the numerical calculation greatly, but
the formula takes into account the dependence of
df/dw on the nonzero off-diagonal matrix elements of the
Hamiltonian. Thereby it permits, in principle, an esti-
mation of errors involved in performing any specific
calculation. However, the approach suggested here has
not been explored.

In the process of evaluating oscillator strengths by
successive approximations, the successive variations of
the moments S, are of interest. We have seen in Sec.
5.2 how the progression from a single-electron model to
a many-electron model which obeys the exclusion
principle: (a) conserves the value of So, (b) transfers
contributions to Sp from inner to outer shells, (c) in-
troduces correlations among electrons which reduce
the values of S; and S_;. Ideally, one may wish to
display the influence of each step of approximation in a
similar manner. Conservation of S constitutes an
earmark of consistency of the approximation. This
conservation imposes a restriction on the diagonalizing
matrix U and on each of its factors in (5.17). It implies
that in each successive step one obtains the exact eigen-
functions and eigenvalues of a new model Hamiltonian.

The concept of transfer of oscillator strength from
inner to outer shells (Sec. 5.2) can be made more precise
and general by considering the classification of excited
and ionized states into ‘“‘channels” on the basis of the
intrinsic quantum numbers (angular momentum, etc.)
of the residual core. Insofar as this classification is
possible and Sp is conserved, the total oscillator
strength can be allocated to different channels and one
may consider its redistribution among channels as an
indication of the physical effect of each step of approxi-
mation.

On the subject of the consistency of approximate
formulas, one should recall that an atom interacts with
radiation through its electron current, represented by
the operator ev=[Hr—rH ]i/h. The velocity operator
reduces to its familiar representation (%/im)grad
provided H includes only local potentials. Therefore the
familiar gradient operator representation cannot be
applied consistently together with wave functions that
obey Hartree-Fock equations with nonlocal potentials.

The considerations presented in this section have the
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intent of qualifying the significance of current methods
of calculation and of indicating possible directions of
further research. In practice, as described in the next
section, approximate calculations have been carried
out utilizing eigenfunctions and eigenvalues obtained by
various approximation methods and one or another of
the defining equations for f; chosen on grounds of
plausibility. One plausibility argument favors the use
of the “velocity” formula (2.8) because it depends
mostly on the values of wave functions at moderate
values of the radial variable 7, where large errors of
the wave functions are less likely (Ch45). The following
sections deal with approximate procedures designed to
take into account the influence of various physical
factors upon the oscillator strengths. Unless otherwise
stated the definition (2.3) of the f, will be implied with-
out further consideration of consistency. This definition
is also implied in each set of theoretical data presented
in the figures except as indicated in the relevant caption.

5.5. Survey of Existing Calculations

Before proceeding with the program of the following
sections, we interrupt our treatment and devote the
concluding part of this section to a review of the results
obtained by calculations with many-electron wave func-
tions. Most of this work has differed in emphasis from
the approach of the present article. Whereas we have
been dealing with the distribution of oscillator strength
over the whole spectrum, interest has centered in the
past on the oscillator strength of specific transitions in
the discrete spectrum or in the continuum near the
photoionization threshold.

For the purpose of studying specific transitions, the
straightforward approach consists of calculating wave
functions for the ground and excited state, ¥y and ¥,,
as accurately as possible directly from the Schrodinger
equation. Therefrom the oscillator strength is obtained
alternatively through (2.3), (2.8), or (2.10). These
equations are called, respectively, the ‘length”,
“velocity,” and “acceleration” formulas. The alterna-
tive formulas need not give the same result, as noted
before, because the approximate wave functions ¥,
and ¥, are not generally eigenfunctions of the same
approximate Hamiltonian. The consistency of the
results obtained from the alternative formulas serves as
an index of their accuracy. We call this direct method
of calculation the ‘“best wave function” approach.
Details on this subject are given by (Ba46, NS62,
HL67, and BNG67).

Naturally a wave function that is “improved” ac-
cording to one test may actually have become “worse”
according to another criterion. An example has occurred
(We67) where an improvement in the approximation of
energy eigenvalues was accompanied by worsening
disagreement between the length and velocity of oscil-
lator strength.
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a. Discrete Transitions

For atomic states of all but the lighest atoms, best
wave function calculations proceed usually by the
Hartree-Fock method. The wave function ¥, or ¥,
is expressed as a Slater determinant of the form (5.2)%
and the single-electron radial functions P,;(7) contained
in the Yuums are defined by seeking a minimum of

E,= (\I,v l H I\Ijv)/(‘l’r l‘I’v)y (5 18)

where H is the Hamiltonian (5.11). This definition
leads to an equation for the P,;(r) which differs from
(4.3), namely,

APt/ dr+ 2m/12) [ Eni— Vi (r) —1(14+-1) %2/ 2ms™]
X Pu(r) =an(7'y Puu(r))+ Z)‘nn'Pn’l(7) . (5.19)

n'<n

Three differences occur between (5.19) and (4.3).
Firstly, the effective potential V,;(r) differs for
different subshells; therefore orthogonality of single-
electron wave functions has to be ensured by the last
term of (5.19) with the Lagrange multipliers Anur.
[The potential V,; depends on the wave functions
Pou(r) of other electrons.] Secondly, the term
X (7, Pni), which is absent in (4.3) and arises from the
antisymmetry of ¥,, is added here to represent the effect
of electron exchange on the radial function P,;. This
term has the form of a linear integral operator on Pn;
and thus has the character of a nonlocal potential.
Finally (5.19) represents a system of equations in the
P,.(r), one for each occupied subshell (#/), which have
to be solved simultaneously instead of remaining inde-
pendent as in (4.3).

The Hartree-Fock method has been applied mostly
to the calculation of ground-state wave functions but is
also applicable to excited states. Most of the existing
excited state calculations pertain to atoms with Z<10
(We63, Ke64, TSD]J57). These references represent
only a sample of the extensive work done on the calcu-
lation of oscillator strengths of spectral lines. We are
also restricting ourselves in this article to transitions
from or to the ground state. The results of this work
indicate that for a large class of discrete transitions the
Hartree-Fock method provides an accuracy no better
than approximately 25-509%,. Moreover, the classes of
transitions for which the Hartree-Fock method provides
better accuracy are the very same to which the semi-
empirical quantum defect method (BD49) applies and
yields comparable accuracy.

Recently the Hartree-Fock method has been ex-
tended (We67, Za67) to the calculation of ground- and
excited-state wave functions that are superpositions of
several determinants, i.e., of the type (5.14) with the

2t We disregard here for the sake of simplicity the desirability
of starting with a linear combination of Slater determinants
wherever any subshell is partially occupied, with more than a
single electron or a single vacancy, or more than one subshell is
partially occupied.
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sum over v extended over a limited number of states.
(The variational Hartree-Fock procedure also provides
the values of the coefficients U,,.) These calculations
have yielded substantially more accurate values of the
oscillator strengths. For example, accuracies of the
order of 109, have been obtained for discrete transitions
from the ground state of C (We67).

From the standpoint of Sec. 5.3, the basic Hartree-
Fock procedure can be described as the inclusion of
intrachannel interactions in the initial approximation.
The superposition of determinants pertaining to differ-
ent configurations corresponds to including also a cer-
tain amount of interchannel interaction. These improve-
ments of the wave functions are, of course, applied
separately to the ground state and to the excited states,
as indicated in Sec. 5.3, and also independently for
different excited states. The limitation of photoab-
sorbing transitions to single electron jumps, emphasized
in Sec. 4.2, does not obtain in the Hartree-Fock method,
owing to the independent determination of wave func-
tions P,; for the ground and the excited state. Thus the
effects of core relaxation, treated in Sec. 7, are included
in the Hartree-Fock method from the beginning,
though effectively within the limitations of the ‘“‘sud-
den” approximation (see Sec. 7.1).

b. Photoionization

The wave function P,:(r) of an excited electron
becomes increasingly small—as #’ increases—in the
range of » where it overlaps the wave functions of other
electrons. Therefore the role of this wave function in the
process of self-consistent determination of all other
P,; becomes vanishingly small as #’ increases and it
vanishes altogether in the photoionization limit when 7’
belongs to the continuum. Accordingly, the calculation
of Hartree-Fock continuum wave functions proceeds by
two steps. One calculates first the wave functions of the
bound electrons disregarding the continuum electron,
i.e., as though the bound electrons belonged to a positive
ion; then one solves (5.19) for the continuum electron
utilizing the previously calculated wave functions of the
other electrons for the determination of V,; and X,,;.22

Calculations of photoionization employing this ap-
proach have been made for Li (St54), O (DHS64),
N (He66), Ne (Se65, HL67), Si, and Ar (CLS67).
(More refined calculations for He and Li are discussed
separately below.) For O, Ne, Si, and Ar and with
application of the length formula (2.3), the results of
these calculations are in substantial (5-109%,) agree-
ment with experiment over a 10-25-eV range above
threshold. However, application of the velocity formula

22 Interchannel interaction often couples states with the con-
tinuum electron quantum numbers 2’=/-+1 and /=/—1. To take
this interaction into account one starts with a sum of determinant
wave functions and obtains coupled equations for the two Pp
funi:ions (see, e.g., HL 67). This interaction effect is, usually,
weak.

(2.8) yields results generally parallel to but lower than
experiment by 10-309% for N, O, and Ne and by about
50% for Si and Ar. No tests with the acceleration for-
mula (2.10) have been made for these atoms.

It has been argued (Ch45) that photoionization near
threshold takes place near the outer edge of the atom so
that the length formula, which gives greater weight to
this region, should also be most dependable in this
energy range. This argument would make the agreement
of the length formula results with experiment appear
more than coincidental and would discount the signifi-
cance of disagreement with the velocity formula. Yet
it seems doubtful, on the basis of the existing results,
that the Hartree-Fock method can dependably ap-
proach 109, accuracy even in the region near threshold.
In particular no calculation has yet reproduced the
“knee” in the absorption spectrum of Ar near 30-eV
photon energy.

Calculations of photoionization by the Hartree-Fock
method have not been extended over a sufficient range
of photon energies to permit tests of sum rules. However
it follows from Sec. 5.4 that consistency should not
even be expected for the Thomas-Reiche-Kuhn rule
(2.23). More specifically, it has long been known
(Fo34) that explicit inclusion of exchange forces pro-
duces a net increase of the total strength calculated by
the length formula. A test of this effect has been
made by deriving single-electron sum rule expressions
corresponding to (4.21)—(4.23) from the Hartree-Fock
equation (5.19) for the excited electron rather than
from (4.3); a 109, increase of Sy was found for Ne.

The Hartree-Fock continuum wave functions con-
sidered above may be regarded as the first terms of an
expansion of the exact wave functions into antisym-
metrized products of ionic core and of free electron wave
functions (Se53). Different terms of the expansion are
coupled by interchannel interaction. A sample calcula-
tion along this approach has been made for Ar (LC67),
which included the continuum channel (3s3p%'p)
besides (3s23p%x's) and (3s23p%%'d). This extension
yielded no substantial improvement in the agreement
with experiments.

¢. Improved Calculations for He and Li

Methods more powerful than that of Hartree-Fock
or its simple extensions have been tested on the 2- and
3-electron atoms where their application is not exces-
sively laborious. Wave functions have been calculated
which include explicit electron correlations, many-
channel interactions or distortion of the ionic core by
the continuum electron (“polarized orbital method”).

High accuracy Pekeris-type wave functions have been
obtained and applied to the calculation of oscillator
strengths for excitation from the He ground state to
1s2p and 1s3p (SP64). Here the length, velocity, and
acceleration formulas yielded agreement within 29, the
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largest deviation occurring for the acceleration formula
which depends critically on wave function accuracy
near the nucleus. Comparable accuracy has been ob-
tained by other authors (We67a, GJK66) for these and
other He transitions. For the 2s—2p transition in Li
the results of the length and velocity formulas have also
been brought to 29, agreement by a calculation with
rather extensive configuration interaction (We63).

The photoionization of He and Li has been calculated
extensively using ground-state wave functions with
explicit electron correlations and various types of
continuum wave functions (Hu48, SZ62, SW63,
BMcV65, BK67). Among these calculations, that of
Burke and McVicar seems best for He below the
threshold of formation of Het (z=2) at 65.4 eV. This
calculation utilizes an expansion of the He continuum
wave functions into exact He* eigenfunctions truncated
at n=2. Its results agree with experiment (Sa64) within
the experimental error and show a minimal deviation of
~19, between length and velocity formulas. At higher
energies the Bell-Kingston calculation, with continuum
polarized-orbital (TL61) wave functions, appears best
according to the same criteria; paradoxically its results
are less accurate at lower energies. Hartree-Fock cal-
culations for Li (St54, Se67) give results consistent with
recent experiments (HC67). An interesting occurrence
emerged from Tait’s investigation (Ta64) of the in-
fluence of ground state correlations upon the oscillator
strengths: the difference between the results of length
and velocity formulas which was modest (~10%)
with an uncorrelated wave function rose to ~80%, upon
introduction of a supposedly better ground-state wave
function.

6. EFFECT OF INTRACHANNEL INTERACTION
UPON THE RESONANCE NEAR THRESHOLD

The single-electron calculations reported in Sec. 4.5
yield resonance maxima that are generally sharper and
occur at lower energy than observed experimentally.
This discrepancy is particularly large for the absorption
by the 3p electrons of Ar and by the 44 of Xe (Figs. 5
and 7), less so for the 4p of Kr and 5p of Xe. It is also
noticeable for the nonresonant, flatter absorption spec-
trum of the 2 electrons of Ne.

Large discrepancies of this type clearly concern the
dominant transitions [—/+1. They are not attributed
to interaction with other channels in the same spectral
range because experimental and computational evidence
shows these interactions to be weak. Accordingly
attempts have been made with some success to account
for such discrepancies on the basis of intrachannel inter-
action.

These attempts, concerning particularly the photo-
ionization of 3p in Ar and 4d in Xe, will be described in
the present chapter. In one form or another, the intra-
channel interaction takes into account correlations
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among the electrons of the absorbing subshell, which
are due to their Coulomb repulsion and tend to stiffen
the atomic structure, i.e., to increase the frequencies of
the absorption spectrum. It proves possible to present
in a unified manner approaches that originate from
quite different points of view, namely the approach of
Sec. 5.3, a Hartree-Fock procedure and the theory of
plasma-like collective excitations (BEL67, ACS67).
The latter theory and a related RPA theory (AG64)
also take into account interchannel interactions; the
interchannel aspects will be described in Sec. 8.5.

As we shall see in Sec. 6.1, the intrachannel inter-
action calculated with the wave functions of Sec. 4.2 is
sufficiently strong to modify substantially the theo-
retical results of Sec. 4 toward agreement with experi-
mental absorption spectra. However, reasonably good
agreement of theory with the observed spectrum has
not been demonstrated for Ar, and for Xe only by a
somewhat arbitrary choice of parameters.

6.1. The Influence of Excitation Transfer

The calculations whose improvement is being sought
pertain to optical transitions of the spectroscopic
types 3p° 1L.S—3p°nd 1 P? and 44" 1.S—4d:f 1 PO, Actually
we are concerned mostly with continuum states for
which » should be properly replaced by an energy
variable e. We consider the effects of the intrachannel
interaction which causes the wave function of each
excited (or ionized) state reached by these transitions
to be replaced by a superposition of wave functions of
the same channel with different first approximation
energies.

Accordingly, we examine the structure and magnitude
of the following types of off-diagonal matrix elements
(5.12) of the Hamiltonian (5.11).

(3p%ed 1PV | H | 3p5¢/'d 1PY),
(4d%f 1P° | H | 4d%'f 1PY), (6.1)

where indication of complete shells has been omitted.
The calculation of these matrix elements involves
standard integrations over angular variables and then
Slater integrals over products of radial wave functions
P,i(r) obtained by solving (4.3). The results of
angular integrations are, of course, the same for the
off-diagonal matrix elements (6.1) as for the diagonal
elements with ¢’=e. Therefore, we begin by writing here
expressions for the non-trivial portions of the diagonal
elements (6.1) obtained from p. 299 of (CS35) and
Chap. 6 of (Ha57); they are, respectively,

— PP+ HG—HG,
— P —F P B LG — 4G — 55 G5,  (6.2)
where F* and G* indicate Slater integrals.?® To obtain

23 The tables in (CS35) are expressed in terms of renormalized
integrals Fy and Gy, rather than of F* and G*.
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TasLE IV. Sample values of G!(31, €2; €2, 31) for Ar.a

¢/l —0.135 —0.075 0 0.5 1.0 1.5 2.0
e/Iu
—0.135 0.719 0.745 0.735 0.518 0.322 0.209 0.143
—0.075 0.778 0.769 0.542 0.344  0.215 0.156
0 0.759= 0.550 0.349 0.231 0.162
0.5 0.435 0.208  0.211 0.160
1.0 0.217 0.164  0.131
1.5 0.130  0.110
2.0 0.097

& An alternative calculation with wave functions derived from the more plausible potential of (HS63) yields 0.198 and 0.500 instead of 0.759 and

0.435 for the (0, 0) and (0.5, 0.5) elements.

the corresponding expressions for off-diagonal elements
one simply replaces the diagonal Slater integrals F*
and G* by the appropriate off-diagonal integrals which
we shall indicate by script letters. [Matrix elements
akin to (6.1) but pertaining to the other terms of the
same configuration with equal j (3P; and 3D;) differ
from (6.2) by the magnitude and sign of the numerical
coefficients. These terms are relevant, owing to in-
accuracy of the LS coupling, even though direct optical
transitions to them are forbidden. We assume here that
the breakdown of LS coupling only redistributes the
oscillator strengths on a fine scale comparable to the
energy of spin—orbit coupling; we disregard this redis-
tribution in the present section. ]

Among the terms of (6.2) those containing the ex-
change integral G* loom most important because of the
larger values of their coefficients. These terms represent
the exchange interaction between the excited electron
and all the electrons that remain in the ground-state
shell 35 or 4d°; their coefficients reflect the large number
of electrons remaining in these almost complete shells.
For the off-diagonal elements G! is replaced by

gi— f " Po(r) Paw (1) f drsPo (1) Par(rs) @1 /72,
0 0
(6.3)

where 7 and - indicate respectively the smaller and the
larger one among 7; and 7, and where (n=3,1=1,1'=2)
or (n=4, I=2, I'=3) for the two matrix elements
(6.1). Strictly speaking, G' does not represent an ex-
change energy (a name that pertains to the energy of a
single configuration) but the contribution to electron
correlation energy arising from the double transition
process:

electron 1 e'—nl,

electron 2 nl—€'l’, (6.4)
in which excitation is swapped between two electrons

with transfer of one unit of angular momentum and

without energy conservation. Energy is conserved only
for the diagonal element, ¢ =¢, in which case G! reduces
to the usual G.

Evaluation of G! with the wave functions utilized in
(Co62) yields remarkably large results. Specifically,
values corresponding to continuum states e and ¢
close to the ionization threshold approach unity, as
shown in Table IV. The interaction corresponding to
the interchanges (6.4) thus appears to have a large
influence on excited states to which intense optical
transitions occur. As we shall see in the next section,
this interaction can be built into an initial approxima-
tion, if one replaces the equation (4.3) for excited
electron wave functions P by an equation that takes
proper account of the exchange force between excited
and ground-state electrons. This force is repulsive
for electrons excited out of a complete subshell into a
singlet state whereas it is attractive for electrons held in
the ground state. Thus the alternative arises whether
to start calculations with a universal potential as in
(4.3), thus incurring a sizeable initial error to be
corrected later, or to utilize from the beginning an im-
proved equation for the specific radial wave functions
Pep.

In either event, theoretical methods suited to the
handling of weak perturbations do not suffice to calcu-
late the influence of the off-diagonal elements (6.1)
or even of their main G' components alone. Qualita-
tively, however, one may argue from perturbation
theory that, since the diagonal elements (¢'=¢) of
the dominant interaction §® are positive, the excited
levels reached from the ground state by photoabsorption
should be shifted toward higher energies. Moreover, as
demonstrated by the second-order perturbation for-
mula, any interaction causes energy levels to “repel
each other”; accordingly the relevant excited levels
should spread out in the spectrum. Notice that the
position of individual levels actually has no meaning
in the continuum but the distribution of transition
probabilities over the energy spectrum is, of course,
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well defined. In fact, the calculations in the following
sections bear out the predictions from perturbation
theory, in the sense that the interaction (6.1) flattens
the absorption peaks predicted in Chap. 4 and shifts
them toward higher energy. (Curiously, the position of
levels of the discrete spectrum of Ar is not shifted
appreciably, because it is controlled by spin—orbit
coupling rather than by the LS coupling; this aspect
will be discussed elsewhere.)

Let us consider now these modifications of calculated
absorption spectra of atoms in the context of the spec-
tral features of solids, plasmas, and nuclei that are called
“plasma” or “collective” effects. A typical plasma effect
consists of the occurrence of a strong absorption in an
energy range where none was predicted by an inde-
pendent particle model. All phenomena of this class
are manifestations of particle correlations traceable to
excitation transfers analogous to (6.4). Each of the
terms ‘“‘single-particle model,” “plasma effect,” “collec-
tive model” has not been used with a unique meaning
and may have a different implication for different
readers. In accordance with a recent trend, the following
discussion attributes to each term implications that
make different models most rather than least compati-
ble.

Theoretical treatments of plasma excitations typi-
cally utilize collective coordinates which seem foreign to
existing atomic theory. Therefore speculations arose
concerning the possible occurrence in atomic spectra
of plasma-type features which had remained unsus-
pected owing to weaknesses of ordinary theory and
limited range of experimentation (LS53, Li54, Br58,
BL63, Am65). However, it has become increasingly
clear that theoretical spectroscopy and quantum
mechanical many-body theories are in fact remarkably
analogous. Differences in language and emphasis occur
primarily between spectroscopy and semi-macroscopic
plasma theories and even these tend to disappear in
recent work (BL65, BELG67, ACS67, and Sec. 6.3
below). The extensive recent experimentation indicates
that the major plasma-type effects actually occurring
in atomic spectra are just those discussed in this
chapter. They are not as striking as the occurrence of
plasma excitations in metals. Yet the intrachannel
interaction matrix elements (6.1) are larger than one
might have expected from earlier experiences in spec-
troscopy.

These remarks may be illustrated by pointing out the
correspondence between excited-state wave functions
of atoms and of solids. Antisymmetrization of wave
functions in accordance with Sec. 5.1 assigns an excita-
tion to any one among the electrons of an atom or of a
metal, rather than to a specific electron; similarly for a
molecular crystal the degenerate excitations of its
various cells are equivalent and have to be treated
symmetrically. Symmetry considerations suggest that
the excitations of physical interest are characterized by

“good” quantum numbers, namely, the orbital quantum
number L for atoms and a wave vector K for a metal or
molecular crystal, and by the spin quantum number .S
in all cases; the corresponding states are superpositions
of independent-particle excited states with non-invar-
iant quantum numbers, namely, 7 and s for an atom,
cell number for a molecular crystal and one-electron
wave vector k for a metal. In the language of excitation
operators, the operator of collective excitation for a
molecular crystal is a linear combination of operators,
each representing excitation of a single cell; its atomic
analog is, e.g., a 'P° excitation operator which is a
superposition of operators for excitations of individual
(m, s) states. Finally, to obtain the spectrum of
stationary states excited by photon absorption or by
particle collisions in each of these systems, one must
take into account off-diagonal elements of the energy
matrix between eigenstates of L or K with different
first approximation energies, such as (6.1). Thereby the
excitation spectrum is modified, most drastically for
metal excitation by the passage of charged particles,
less so in the other examples.

These similarities between the representation of
excitations in different systems have been somewhat
obscured because plasma-type treatments of atoms have
normally utilized a semimacroscopic statistical model.
The model starts from an initial equilibrium distribu-
tion of electron density, and considers local elastic
oscillations of the density and particularly the influence
of electric forces between such inhomogeneities of
density at different points. It is this influence which
may alter the frequency spectrum of density oscillations
drastically, to the point of introducing a characteristic
frequency of the whole system in a spectral range differ-
ent from that of independent local oscillations. This
approach applies to atoms with difficulty as it ignores
the dominant influence of shell structure. It also
attributes a zero-approximation absorption spectrum
to each volume element of an atom, whereas in the
single-electron treatment of Sec. 4 each excited state is
distributed over a whole atom. Yet early estimates of
the influence of electron correlations upon the spectrum
of local oscillations (LS53) appear comparable to those
pertaining to the interaction matrix elements (6.1).

6.2. Direct Calculations

The diagonalization of an interaction matrix by
solving Eq. (5.16) is complicated for continuous spectra
by the occurrence of nearly degenerate states, i.e., of
states with infinitesimally different energies. We out-
line here the nature of the difficulty and one procedure
for overcoming it.

Let us rewrite the “improved” wave function formula
(5.14) and the system of equations (5.16) obeyed by
the diagonalizing transformation in a form appropriate
to a continuous spectrum with intrachannel interaction
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only. This form is*

\IfE=/de¢e(e| Ul B, (6.5)

/de’(e]Hle’)(e’[UlE)—(e[UlE)E=0, (6.5

where the integrals are understood to include a sum
over an index 7 of the discrete spectrum. The general
Hamiltonian matrix element (e|H |€') includes a
diagonal part ed(e—e’), such that the coefficient of
(¢] U] E) in (6.5") vanishes at ¢ =e= E. This circum-
stance implies that the diagonalizing matrix (e | U | E)
is singular at e= E and that some appropriate analytical
procedure must be utilized to solve (6.5’) in a limited
range of variables € ~e~E, prior to numerical solution
in the residual range. Alternative equivalent procedures
are available for this purpose.?” In particular, one can

2 As noted above, this section deals only with the calculation of
one of the factors U® of U; the index 7 is dropped in (6.5) for
simplicity.

26 We indicate here the connections between our approach to
the problem of constructing wave functions of the continuum
states of an atom and the corresponding approach of collision
theory. As noted at the end of Sec. 1, the interaction between
photon and atom can be treated as a small perturbation but the
interaction among different continuum states of an atom cannot
be regarded as weak, at least in general.

Collision theory deals ordinarily with continuum states of a
neutral atom by considering an electron incident on a positive
ion and reemerging in various directions and in alternative
channels. The wave functions of these states are complex because
they represent a flow of electrons in specified directions. In this
article, extending spectroscopy theory into the continuum, we
regard the neutral atom (ion--electron) as a single system. We
deal with angular momentum eigenstates of the whole system,
rather than with specified directions of incidence and emergence
of an electron. We also deal with standing rather than progressive
waves, i.e.,, we construct real wave functions which represent
incident and escaping electrons symmetrically. Real wave
functions are adequate as long as we do not inquire about the
relative probability of alternative directions or channels of escape
of a photoelectron.

The most familiar form of collision theory, as it originates from
Lippman and Schwinger (see, e.g., GW64 or Sh67), replaces in
effect (6.6) by an analogous expression with a small imaginary
term added to the denominator E—e and with a non-Hermitian
matrix instead of (-| K| E). An alternative to this familiar
procedure, also mentioned in standard treatises, consists of
calculating first the real hermitian reaction matrix X by solving
(6.7) or its multichannel generalization and then constructing
from the K matrix any desired set of real or complex wave func-
tions relevant to a specific problem. We emphasize the latter
alternative because it separates clearly the basic problem of cal-
culating K and one complete set of wave functions by means of
(6.7) and (6.6) from the subsidiary problem of fitting specific
conditions. Also, the exclusion of imaginary elements from the
basic problem is convenient for numerical applications.

Extension of the treatment given in the text to include multi-
channel interactions is formally straightforward. Each row or
column of the matrices H, K, and U is now labelled by a channel
index e, B ++- in addition to an energy value E, ¢, or ¢. The
actual solution of the generalized Eq. (6.7)

(e | K | BE) = (cce] VlﬁE)-l—? e’ (ae | V | ve')
X[®/(E—€)1(r¢' | K| BE),

is complicated only by the multiplicity of channels. This multi-
plicity is infinite in principle, and must be dealt with by successive
approximations as suggested in Sec. 5.3, an approach that remains
largely undeveloped. The generalization of (6.5") yields now a

replace the singular dependent variable (¢ | U | E) by a
nonsingular variable (¢| K | E) through the substitu-
tion (Fa6la, FP64)

(e|U| E)={8(E—e¢)+[0/(E—€) (| K| E)}
X[+=*(E| K| E)*T. (6.6)

which makes the singularity of U explicit and defines
it in a manner appropriate to our problem. The symbol
@ in (6.6) means that the principal part is to be taken
in any integration over the singularity; thereby the
integral (6.5) is no longer singular. The last factor of
(6.6) is a normalization constant. Notice that, apart
from this normalization factor, (6.6) and the resulting
form of (6.5) have the structure of a first-order per-
turbation formula, with the still unknown matrix K in
place of the perturbation matrix.

The nonsingular matrix (e | K | E) is well known in
collision theory? where it is called “reaction matrix.”
It is determined by numerical solution of the non-
singular equation which one obtains by substituting
(6.6) into the equation (6.5") for U, namely,

(elK[E)=(e|V]E)-I—/de’(e]V[e’)

X[®/(E—€)](€ | K| E). (6.7)

Here, (¢| V| ¢') indicates in our problem an element
of the matrix (6.1) shorn of its zero-order diagonal
part, i.e.,

(el VI)=(e|H|)—eb(e=€),  (6.7)
and the integration is intended to take the principal
part over the singularity and to include a sum over the
discrete spectrum. An approximate representation of
the integral in (6.7) by a finite sum over terms corre-
sponding to adjacent intervals of ¢ can be obtained with
any desired accuracy. Thereby (6.7) reduces to a
finite system of linear inhomogeneous equations, which
can be solved numerically to yield (e | K | E) and hence
(e|U| E). Some numerical calculations by this
method, extended to include the effect of intrachannel
interactions, have been carried out for atomic problems
(AM66, Al68) as well as for nuclear problems.

We indicate now the alternative procedure of diag-
onalization by solving an integrodifferential equation.
Instead of calculating the matrix (e| U | E) of (6.6)

set of degenerate wave functions
‘I/w=253 deYpe (B | U | «E)

labeled by channel indices. The total photoabsorption yield of
states of energy E is proportional to the sum of partial oscillator
strengths Z,f(0—aE). One may also consider a particular state

2Z[f (0> E) W p/[ Zf (0—aE) J2
to which all photoabsorption of the relevant energy is directed;

states of the same energy orthogonal to this one are not produced
by photoabsorption.



one calculates a new improved radial wave function
Prp®(r) for the excited electron represented as a
superposition of initial wave functions P.;,

Pgr®(7) =/dePez'(1’) (e|U| E).

Since the matrix element (6.1) is constructed with
determinant wave functions that contain the radial
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completeness relation?
[aePat) Paty=s0—r)  (6.11)
(6.8)  reduces (6.10) to
Ha(r) Pav® (r) + [ “dnsHLa(r, 1) Pau® ()
0 =Pr®P(r)E. (6.12)

wave function P, and with others that contain
Py, it can be represented by integrals over these
functions of the form

(nl ! LPO | H | a1 1Y)
- / dr. Py (r1) Ha(r1) Po (r1) + / dnf Py (ry)
0 0 0

XH;(?’I, 72)P¢rzl(7’2). (69)

The two terms on the right of this equation originate,
respectively, from terms in the expansion of determinant
products in which P¢y and Py depend on the same
and on different variables. This specification implies
that Hq(r1) and H,(r, r2) represent respectively direct
and exchange parts of a Hamiltonian operator and that
they include integrations over all electron variables
that are not indicated explicitly in (6.9).

After these preliminaries we return to the equation
(6.5") which determines the transformation U, in the
form appropriate to the continuum, multiply it by
P (r) and integrate it over ¢, to yield

/dePd:(r)/de’(nl‘“'Hel' | H I nl4l+le'l') (e/ I U] E)

=fdePez'(1') (¢|U|E)E. (6.10)

Substitution of (6.9) and (6.8) and consideration of the

~—Co 62

60

lMI THRESHOL D

«—LGC 68,LENGTH

[¢] 1.0 2.0 3.0
ENERGY ABOVE THRESHOLD (E/Iy)

F1c. 22. Alternative calculations of Ar photoionization spectra.
Co062: Model calculation of absorption by 3¢ electrons, see Sec.
4.5. HS: Same, using Herman-Skillman potential (HS63).
LC68: Wave function calculation by Eq. (6.13) augmented by
weak interactions between 3 channels (3s23p%d, 3s23p%s and
3s3pbep). Calculations via “length” (2.3) and “velocity” (2.8)
formulas. Exp: Experimental data from Fig. 5.

Equation (6.12) is just the Hartree-Fock equation
that one obtains by constructing a P combination of
determinant wave functions ¥, for the excited state
n¥HEl’ in which only the excited electron function,
Pgp® is to be determined by a variational procedure.
A more explicit and standard form of (6.12) is

{@/dr+2Z/r— (2/7) D2 Aa Vi (Pi, Pi)—V (I+1) /7
ik
-I—E} PEl/(l) (1’) = (2/1’) z'k:Bik Yk(i) (Pi, PEl'(l)) P,‘(?’)
+2NPi(r), (6.13)

where atomic units and Hartree notations (Chap. 6 of
Ha57) have been used. The symbol P; and the Y
refer to all single-electron wave functions common to
the ground state and to the excited state and the primed
sum p_; is limited to states with the orbital quantum
number /'; the role of the multipliers A; is explained
in footnote 26. Equation (6.13) is formally the same as
(5.19) ; however, the wave functions P; are obtained
here by a separate calculation pertaining to an atom in
the ground state.

Notice how the single-particle wave equation (6.13)
actually takes into account the electron correlation
effects discussed in Sec. 6.1 through the numerical
coefficients A and By and through the functional
V9. This generalized Hartree-Fock equation can be

26 Stated more accurately, the P.;(r) constitute a complete
system of functions in the positive range of 7 that vanish at r=0
as /%1, Circumstances, not included in this example, may arise
in which some discrete values of e correspond to single-electron
states that are occupied in the many-electron ground state. These
values are then excluded from the sums in (6.8 )and (6.9) so
that (6.11) is replaced by

free oce
f dePar\r) Par () =8(r—n) — 2 Purr (7) Pur: (1)

Consequently additional terms of the form

oco

Eannl’ (7)

appear in (6.12), where the A» depend on PWg,;; however, the
M. may be treated as Lagrange multipliers, to be fixed by re-
quiring P®Wg; to be orthogonal to the Py for occupied 7.

27 For the treatment of interchannel interactions the generaliza-
tion of (6.7) can be replaced by a system of integrodifferential
equations akin to (6.12), in which Hy and H, are matrices,
(a| Hq| B) and (ar | H, | Br2),, and PWg— PW, gy, These systems
can be derived directly from the Schroedinger equation in its
differential form and are called “close-coupling equations.” Con-
siderable effort has been directed to their approximate numerical
solution [see, e.g., (Bu65) and Sec. 8.3.].
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derived from the variation of a P superposition of
determinant wave functions rather than of a single
determinant.

The equation (6.13) has been solved numerically for
Ar as a part of a more extensive set of calculations, see,
e.g., (CLS67), which also consider effects of core relaxa-
tion (Sec. 7) and interchannel interactions. The solution
of (6.13) yields greatly improved agreement with
experiment when it is utilized, instead of the initial
Py, in the calculation of the oscillator strength distri-
bution by means of (6.8) and (4.5). As seen in Fig. 22,
this agreement is as good as can be expected at this time
from the threshold to the proximity of the M edge.
Beyond this range, the procedure of this section appears
to overcorrect the theoretical results shown in Fig. 5.
Core relaxation (Sec. 7) and interaction with the
channel of 3s electron excitation do not appear to affect
the residual disagreement appreciably.

The significance of these results is downgraded by the
large discrepancy in Fig. 22 between the parallel results
obtained utilizing the “length” and ‘“‘velocity” formulas
(2.3) and (2.8) for the oscillator strength. A dis-
crepancy is not unexpected here according to Sec. 5.4
but its magnitude in this application is remarkable as
was noted in Sec. 5.5.

6.3. Plasma-Type Treatment

This section treats an approximate form of the
intrachannel matrix (6.1) for which the diagonalization
problem of Sec. 6.2 is solved analytically. The approxi-
mation is suggested by the semimacroscopic models of
plasma theories so that the resulting equation to be
solved becomes equivalent in most respects to the
main equation of plasma models. The analytical solu-
tion affords a basis for qualitative discussion of effects
of intrachannel interaction.

In simple models of plasma-type theories one con-
siders the electrostatic interaction between the oscilla-
tions of two particles, or groups of particles, clearly
separated in space. For example, the interaction of
oscillations confined within different unit cells of a
crystal has been studied (Fa60). Under such conditions,
the interaction energy is proportional to each of the
dipole moments of two localized oscillations and to their
mean reciprocal cube distance (V= y1-us/n5®). Insofar
as this mean distance is constant, i.e., independent of
the oscillations, the interaction depends only on prod-
ucts of pairs of separate oscillation variables. Coupled
motions of this class are solvable by a well known pro-
cedure.

In the coupling of particle motions within one atom,
or nucleus, these motions cannot be regarded as
localized in separate regions of space. However one can
introduce an approximate form of the G! integral in
(6.3) which has the same properties as the interaction
of two separate dipoles. The interaction energy in

(6.3) has the form e’r</r>? which is equal to

Erers/r53= (ery) (ery) /153, (6.14)

Therefore, we can write

G'=[e mdﬁPnl(”l) Py (r)r]
0

X[e mdsze'z' (r2) Pra(re) 7] (r>2%)
0

=R (nl, ') R(EV, ni) {rs—*), (6.15)

where (r~7?%) is defined implicitly as a suitable average
value and the R matrix elements are the same as in
(4.5). To proceed as in the simple plasma, theories one
must assume that (%) is a constant, independent
of e and ¢, (ACS67) or at least that it is the product
of two factors, one depending on e and one on ¢. No
general argument supporting the validity of this as-
sumption seems to have been advanced. However a
moderately good fit of the data of Table IV may be
obtained by representing (e | H | ¢) as k(e)k(¢’). There-
fore, we accept this assumption for purposes of orienta-
tion and set

k#Gl (e, €) =g(e) g(¢), (6.16)

where « is the coefficient of G! in (6.2). We also dis-
regard the other terms of (6.2). Having thus assumed
that the off-diagonal part of (6.1) is factorable, its
diagonalization proceeds readily utilizing the formulas
of Sec. 6.2 which are appropriate to continuous spectra.

Setting the interaction matrix (e¢| V |€) of (6.7)
equal to (6.16) yields

(e K | E)=g(9 {g(B)+ [ deg(e)

X[e/(E=&)](¢ | K| E)}. (6.17)

Notice that the expression in {+--} depends on E but
not on e. Therefore (e | K | E) itself can be factored in
the form g(e)k(E), where k(E) is still unknown.
Substitution of this expression into (6.17) leads to the
solution

) (e| K| E)=g(e)g(E)/[1~F(E)] (6.18)
with

F(E)= f d0/(E-)T(e).  (6.18)

The transformation matrix (6.6) becomes then

(e|U| E)

_ (E—¢[1—F(E)]+g(e)[®/(E—e) Jg(E)
{[1—F(E) P+=*g*(E) 2

This result enables us to construct the “improved”
wave function (6.5) and thereby to transform the
radial dipole integral R(#l, €l’) of Sec. 4.2 into its im-

. (6.19)
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proved version ‘
RO (ul, BY) = / deR(nl, ) (| U | E). (6.20)

At this point one can utilize the proportionality of R
and g implied by (6.15) and (6.16), namely,

R(nl, el') =[e? (r>=3) 1 ¢ (e), (6.21)
which yields the remarkable simplification of (6.20)
R(nl, EI")
{[1—F(E) P+=%(E) 12

Notice that the improved dipole integral R®W is
proportional to its initial approximation value at the
same energy E. Moreover the proportionality factor
depends on g?(E)=«G'(E), a diagonal element of the
interaction matrix, and on F(E), its Hilbert transform.
A corollary of this proportionality is that the transfor-
mation (6.22) does not shift the points of zero in the
spectra of oscillator strength which were discussed in
Sec. 4.5. This result is not inconsistent with the com-
parison of experimental data and first approximation
calculations in Figs. 5, 7(a), and 22. It hinges on the
assumption, implicit in (6.16), that the first approxi-
mation state ygo for which R(#l, Eyl) =0 remains unper-
turbed by the interaction matrix (6.1).

Examination of the transformation (6.22) points up
the following typical possible situations: (a) As ex-
pected, R® remains close to R if the interaction
7g?( E) =w«G" and, consequently, its transform | F(E) |
remain much smaller than unity throughout the spec-
trum. (b) If 7g2(E) is moderately smaller than or of
the order of unity, R® is reduced or boosted appreciably
depending on the sign of F(E). In particular, if R? and
(therefore) g? have their large values concentrated in a
single maximum, F(E) is negative on the low-energy
side and positive on the high-energy side of this maxi-
mum. As illustrated in Fig. 23, R®? has then a maxi-
mum flatter than that of R? and shifted toward higher
energy, as required to bring the initial theoretical
results into better agreement with experimental evi-
dence. (c) The characteristic phenomenon of plasma-
type excitation occurs when g2(E) is substantially
larger than unity in a limited band of the spectrum
and small, but nonzero, above this band. Then F(E) is
large and positive in the region immediately above this
band and decreases toward higher energy; where
F(E)=1, R®? experiences a sharp maximum (“plasma
resonance”). Figures illustrating typical relationships
between R? and R®? are also found in (BL65, BEL67,
ACS67).

Further illustration of the effects of intrachannel
interaction is provided by its influence on the phase
shift of the wave function of the escaping photoelectron.
As noted at the end of Sec. 4.2, photoabsorption is
enhanced in a spectral range where the phase shift

RO (ul, EV) = (6.22)

T T T T T T T T T

|
|
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|
|
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Fi1c. 23. Model calculations illustrating: (a) Eqs. (6.22) and
(b) (6.23), with A=«e?(ry3), R(c) =1/e for ¢e>1, R(e) =0 for
0<e<1. (Courtesy D. P. Chock and A.R.P. Rau.)

rises rapidly with increasing energy. From the asymp-
totic behavior of the “improved” wave functions
(6.5), with the definition (6.6) of U, their phase
shift can be shown to be

gV =dg—arctanw(E| K | E), (6.23)

where 8z is the initial approximation phase shift and the
next term represents the effect of intrachannel inter-
action. As seen in the examples of Fig. 23, this effect
depresses the phase shift by an amount that depends on
the magnitude of g(E) but does not exceed 7; in the
situation (c) described above the negative contribution
returns to zero rapidly—i.e., with a steep slope—at the
point of resonance.

As noted at the end of Sec. 6.1, the macroscopic
plasma-type theory of atomic oscillator strengths
started from the consideration of charge oscillations
localized in different portions of an atom and empha-
sized the importance of interaction between oscillations
at different points (LS53, Br58). More recent versions
of this theory have taken as their point of departure
the oscillations associated with single-particle excita-
tions calculated in accordance with Sec. 4 and have
emphasized and calculated the classical dipole-dipole
interactions of alternative excitations of this type (e.g.,
BL65, BEL67, ACS67). These semi-macroscopic cal-
culations differ from the derivation of (6.22) in the
following minor aspect. The interaction of classical
oscillators includes automatically the influence of
virtual excitations of the ground state which are re-
garded in our treatment as effects of interchannel
interaction. This influence brings about the replacement
of E—eby E?—¢* in (6.18") and corresponding adjust-
ments in the definition of g(e¢) and F(E) for reasons
discussed in Sec. 8.5 in connection with the random
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phase approximation. That discussion will show why
these_ virtual excitations have generally minor im-
portance in atomic applications, in contrast to the more
typical applications of plasma theory to solid and
gaseous conductors. The plasma-type results are also
more general than (6.22) in that they apply to inter-
channel as well as to intrachannel interactions and even
to intershell interactions.

The macroscopic plasma-type theory has been applied
to intrachannel effects only for the photoabsorption
by the 44" subshell of Xe (BEL67, ACS67) as shown
in Fig. 24. In this application the spectral dependence
of the function g(e) was obtained from the evaluation of
R(nl, e’) in accordance with Sec. 4, but its absolute
scale requires an estimate of the factor (»>=*)in (6.15).
Dimensionally this factor is of the order of the reciprocal
cube radius of the 4d shell. This was the basis of the
value chosen in (BEL67), even though the weighting
factors multiplying ».—% in the integrals of G' weigh
in favor of large values of 7. and thereby depress the
average (r>7%); this reference also utilized a linear
expansion of 1— F(E) near its zero value. In (ACS67),
on the other hand, (=) was treated as an adjustable
parameter. The results of Fig. 24 show that intrachannel
interaction accounts at least qualitatively for the dis-
crepancy between the results of Sec. 4 and the experi-
ments.

7. CORE RELAXATION AND DOUBLE
EXCITATIONS

An electron that has been ionized (or even only
highly excited) by photoabsorption scarcely inter-
mingles any longer with other electrons of the same
atom. Therefore it no longer contributes to the screening
of the nuclear attraction experienced by these “core”
electrons. This change of screening, previously noted in
Sec. 4.4, normally causes the core electrons to draw a
little closer to the nucleus. Thereby it exerts a modest
over-all influence on the oscillator strength distribution
of atoms. However, it occasionally also induces one
(or more) other electrons to become excited or ionized

as a by-product of the photoabsorption process. This
phenomenon, called “electron shake off,” is foreign to
the single-electron model of Sec. 4 and to its many-elec-
tron version described in Sec. 5.1. However it is allowed
for automatically by the “best wave function” approach
of Sec. 5.5 and has also a place in the general procedure
of Sec. 5.3.

We shall discuss the core relaxation initially through
the “sudden” approximation which is rather familiar
(Sc49) and of rather straightforward application. Then
it will be shown how to derive the same results by a
restricted treatment of interchannel interaction within
the framework of Sec. 5.3. This point of view also
indicates how one can evaluate the accuracy of the
sudden approximation in particular examples and im-
prove upon it, if and as required. Section 7.2 will then
summarize existing information on double transitions.
The summary will embrace all double transitions even
though the core relaxation mechanism accounts only
for a part of them, the rest arising presumably from
more complex interactions with exchanges of angular
momentum or from interaction effects upon the ground
state.

In spite of our qualitative understanding of various
mechanisms that contribute to double excitation,
quantitative estimates of the probability of this process
are most uncertain except in a few simple examples.
Calculations appear to depend sensitively on details of
the wave function; see in particular the successful but
inadequately understood calculation of double ioniza-
tion in He (BJ67) and the discussion in Sec. 8.4.

7.1. The “Sudden” Approximation

This approximation has been introduced in connec-
tion with radioactive processes which change the nuclear
charge and hence the attraction experienced by atomic
electrons within a time shorter than the electron orbital
periods [see, e.g., Mi4l, Wi52, Le53]. It is clearly
relevant to the influence of photoionization of an inner
shell electron upon the state of outer shell electrons,
less clearly relevant when one deals with electrons of
the same shell. It implies that the process of photo-
absorption can be resolved into two successive stages.
The first stage, namely, photoabsorption proper, pro-
ceeds in accordance with the models of Sec. 4 or Sec. 5.1.
In the second stage one takes into account that the
initial model potential V(r) is no longer appropriate
for the calculation of the states of the previously undis-
turbed “core” electrons.

To this end one adopts a new model potential V (r)
which reflects a reduction of screening, one calculates a
new complete set of radial wave functions P,;() for the
core electrons and constructs with them a new set of
determinant many particle wave functions ¥,. which
afford an improved representation of the alternative
final states of the atom.

Calculation of the dipole matrix elements (5.4),
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utilizing a wave function ¥, instead of the original
¥,/, can now no longer rely on the orthonormality of
single-electron wave functions for reducing (5.4) to its
single-electron form (5.5). The overlap integrals
(7il| nl) no longer equal 8z, Nevertheless the off-
diagonal overlap integrals, with 7%, are generally
small. Formulas will be written here only to lowes?
non-vanishing order in these small integrals.

Accordingly, ¥, wave functions will yield nonzero
matrix elements (5.4) if constructed by choosing IV sets
of single-electron quantum numbers (7i:;7.:3;) as fol-
lows. One set (7I'm’s’), pertaining to the electron that
absorbs the radiation, can be chosen as in (5.5). Each
of the other sets must have [;, 7, and §;, respectively,
equal to /;, m;, and s; in a corresponding set of ¥,,
otherwise the matrix element vanishes by orthogonality,
but its 7; need not be equal to #;. To lowest nonvanish-
ing order only 0, 1, 2.+ - of the 7; can differ from #; for
single, double, triple -+ transitions. In this approxi-
mation one finds

core

e | T %)= % [ 11 fo P, () oty (7) dr]

2

X Wirvmsr | 2| onms),  (7.1)
where the

core
2

extends over the N—1 sets (7idmis;) other than
('Um's’), i.e., over electrons that do not participate in
the photoabsorption directly and where the ), extends
over possible alternative permutations among the 7’
and 71; with /;=1'. Equation (7.1) clearly would reduce
to (5.5) if the wave function sets P,; and P,; were
identical so that the overlap integrals (7l | nl) would
equal &z,.

Any difference between a value of 7; and that of »;
implies that one of the core electrons performs a
transition as a result of the change of potential from
V() to V(7), i.e., as a by-product of photoabsorption.
According to (7.1) the total probability of double or
multiple processes is

core

po-1=J1[ [Pasr B[, (7.2
K 0

namely, the complement of the probability that each
core electron simply “relax” from its old wave function
P,,;, into the new one P,,; with the same quantum
numbers. When all 7;=#;, the matrix element (7.1)
is of zeroth order; first-order corrective terms to this
expression have been described by (Ba64) and (HL67).

We have introduced here the “sudden” approxima-
tion on the usual phenomenological basis, which relies
on estimates of the time required by the absorbing
electron to escape from the core. To derive it within the
general formulation of Sec. 5.3, we should now identify
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a property of the energy matrix ("' | H | »") which ob-
tains under the same circumstances as the “sudden”
approximation and which allows a simplified approxi-
mate solution of the system of equations (5.16).

To this end we shall take into account only Hamil-
tonian matrix elements that represent a screening
interaction between an escaping electron and one which
can be ‘“shaken off” into an excited state by core
relaxation. The states of the escaping electron will be
labeled ¢ and those of the electron to be shaken off
will be labeled ¢. Since nonzero matrix elements
(' | H|v") occur only for pairs of states »’ and »
that differ by no more than two sets of single-electron
quantum numbers, the quantum number sets implied
by »"’ and »' shall be restricted by (m'/l/'m;'"sy’) =
(m'b'mi’s’) for all k other than e and ¢. Moreover,
since screening interactions involve no transfer of angu-
lar momentum, we shall also have (&/'m"sy’") =
(I/my/sy’) for k=e and k=c¢. The set of numbers
(nl/m.s’) is to be identified, in alternative calcula-
tions, with each of the sets occupied in the ground state
except that vacated by the escaping electron.

For the purpose of relating the actual screening inter-
action to that assumed in the model Hamiltonian
(5.1), we represent the kinetic energy term of (5.11) as

Db/ 2m=Hpoa— >3V (r;), so that
H=Hupoa+2_{—Z¢/ri+ ge“’/m— Vir)}. (7.3)
J >7

Since »" and »"/ are eigenstates of the term Hpoq of
(7.3), this term does not contribute to off-diagonal
matrix elements (v'5%»’') which are relevant to us. For
these elements we have then

W | H V)= | T2y,
+Xe/rm V() |, (1.4)

where only the quantum numbers that differ in »” and
»'" have been indicated and where the quantum numbers
1, of the escaping electron have been indicated by the
continuum variables e for proper emphasis.

Let us now take into account that the model potential
V (7;) is designed so as to minimize the mean value of
>l 1} for the ground state. To begin with V(r;) is
understood to include a nuclear field contribution which
cancels — Ze?/r;. We shall also assume that the contribu-
tion of V(7;) to (7.4) cancels the contribution of all
terms of D isje®/ri; that correspond to interactions:
(a) between all core electrons that occupy the same
statein»’ and »'’ and (b) between any of these electrons
and either of the two electrons that perform transitions.
Owing to the symmetry among all electrons, we may
call these two electrons 1 and 2. Thereby (7.4) reduces
to the form

(ncuee” I 62/712_ Vs(”l) - Vc(r2) I ”clee,) ) (7 5)
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where V, indicates the portion of the model potential
V (r1) attributable to the repulsion of electron 1 by the
escaping electron, and V., indicates a corresponding
potential for electron 2. More specifically, V,(r1) is
defined implicitly by (7.5) as —Ze*/ri4 (O ise6?/7i1 )—
V (r1), where the average is taken over the position of
all electrons other than 1 and 2 in their ground state
orbitals. This average can be calculated in any specific
example. However, for our purposes an approximate but
qualitatively meaningful estimate of ¥V, and V, will be
utilized below.

The matrix element of €?/71; consists, like (6.2), of a
sum of terms corresponding to alternative transfers of
angular momentum. Of these, we retain only the term
for zero transfer because it represents the screening
interaction. (In the special case of /,/=1,’, another term
corresponding to interchange of #,”” and &’/ would also
occur.) The screening term is, with the notation of
(6.3),

'O
(n'el" | €/r1s | nc,ec,)m):/ Ar1Pr,r11,1(11) Pryrtr (11)
0

X/ dszth‘l(Tg) Pealzsr(fz)62/7’>. (76)
0

We introduce now a notation suited to represent
screening effects, namely,

g(n''n', 7) =/ Y’ Py (¢') Py (7). (7.7)
0

Thereby (7.6) takes the form of separate screening
effects of each electron upon the other,

(nclleell l 62/7'12 I ncleel) (V]

=/ ArPoy o0, (7) Pyt (r) q(e'e, 7) €2/
0

+/mdrP¢c”l-’(7) P (r)g(n'nd,r)e/r. (7.8)
0

This notation enables us to formulate an estimate of
the effect of mutual screening of electrons 1 and 2
which is implicitly included in the model potential
V(r)+V (r2) and is represented in (7.5) by V.(n)+
V(7). Insofar as V (r) was chosen so as to be reason-
ably self-consistent for the atom in its ground stale,
Ve(n) represents the screening action of the escaping
electron as though it were still in a bound ground state
orbital #,, that is,

Ve(r1) ~erq(nene, 1) /11 (7.9)
For V,(r2) we make a corresponding estimate. Consider
also that all matrix elements of V are diagonal in all
quantum numbers except the # of a single electron. In
conclusion we obtain for the screening contribution to

our matrix element the estimated value

(" H | V)—> e | @/ra—Ve(r)—V(r) | n'e)®

= [[arPas (1) Prne ()T )
]

—q(nene, r)8(e" — ') Je*/r+ / “drPeyin, (r) Pegr,s(r)
0

X[g(n''nd,r)—q(n'n, r) Onyrinar ¥/ 1.

The goal of this evaluation of matrix elements for the
screening interaction is to compare them with the
assumption made in the “sudden” approximation ap-
proach, namely that the escaping electron does not
contribute any screening effect to the core electrons.
This assumption amounts to setting

(7.10)

gle’e/, r)~0 (7.11)

in (7.10). The sudden approximation also disregards by
implication any effect of a core transition on the
escaping electron, i.e., it disregards the second term on
the right-hand side of (7.10) altogether.

An assessment of the validity of the “sudden” ap-
proximation can, therefore, be obtained by evaluating
the left-hand side of (7.11) utilizing its definition (7.7)
and the radial wave functions obtained by the model
potential, in accordance with our general approach. The
WKB approximation provides an initial estimate of this
parameter which displays the relevant dimensional
elements of the problem, namely,

a(eedy 1)~ () 0’ v?:) - ’—;ZQ for e"mse/mve.
(7.12)

Here
2(r) = {2Le—V (1) — BT +1) /2P m) 2 (7.13)

is the classical velocity of the escaping electron at » and
7(7) is the classical time of escape up to 7. This estimate
of ¢ is nearly independent of the difference ¢/'—¢/
over a band width | ¢/'—¢;/ | Sg'and decreases outside
this band. Upon substitution into (7.10) this estimate
provides a contribution of the order of the ratio of the
time of escape to the orbital period of the ith state,
which is just the expansion parameter of the “sudden”
approximation.

Accordingly, one might calculate the effect of core
relaxation within the frame of Sec. 5.3 as follows.
Evaluate ¢(e'’e/, 7) and its contribution to (7.10)
numerically. To the extent that the contribution is
much smaller than unity—and therefore can be dis-
regarded at the present level of approximation—one
concludes that the “sudden’” approximation is justified
in the sense that the general method of Sec. 5.3 reduces
to it. In this event one may apply to the wave functions
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¥, the transformation implied by the “sudden” approxi-
mation with

V() =V (r) —q(nene, r)é/r, (7.14)

namely,

core

(OB ww=11 [ Pao() Pasno(n)dr, (7.15)

L ]

whose introduction in (5.15) yields just (7.1). This
transformation diagonalizes the portion of a Hamil-
tonian submatrix (7.10) contributed by the term with
the factor — q(#ee, 7) 6(e’’'—¢’) . However, if the other
terms of (7.10) yield a nonnegligible contribution,
the sudden approximation proves inadequate and a
more elaborate procedure that diagonalizes the complete
submatrix (7.10) is required.

7.2. Summary of Experimental Evidence on Double
Transitions

Double transitions have been observed primarily
in the photoabsorption spectra of noble gases and of the
divalent and trivalent metals. Most of the observations
concern excitation of two valence electrons, but some of
them also involve inner electrons. In some instances
double transitions clearly result from interactions with
exchange of angular momentum. In a few cases core
relaxation appears to be the main factor involved; in
others the role of simple core relaxation cannot be
disentangled from that of more complex interactions
until the integrals (7.7) or equivalent parameters will
have been evaluated. Some of the more detailed evi-
dence emerges from experiments on particle collisions
rather than on photoabsorption.

Absorption lines due to double transition processes
have been known for a long time in the ultraviolet
spectra of alkaline earth atoms, because some of them
occur at comparatively low photon energies (~5-8 eV)
and with rather striking intensity [see Fig. 12(a)].
Several circumstances contribute to this property of
alkaline earths. Firstly, single transitions of valence
electrons to highly excited discrete states or to the
adjoining continuum have low intensity in the alkaline
earths much as in the alkalis (Sec. 4.1 and 4.5), so
that absorption by two-electron transitions stands out
by contrast. Secondly the outer shell of group-II atoms
contains only two electrons, with configuration ns?
and with rather low binding energy. This configuration
mixes strongly with the configuration #p?, because
ns to np excitations (within the same shell) require a
low energy; therefore, a transition from the ground
state to a state npms or npmd may be regarded as a
single-electron transition out of the #p? component of
the ground state. Mixing with (#—1)d? may also be
important. This description attributes double transi-
tions in the alkaline earths to a ground-state interaction
with exchange of angular momentum between electrons,
rather than to core relaxation. These considerations
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TasLE V. Oscillator strengths of double excitation states in the
rare gases, Ca and Sr.®

Wavelength

Atom State (R) 104 Ref.
He 2s2p 1LPO 206.2 52 MC65
Ne 2p43s3p LP° 275.6 8 CMEG67
Ar 2p'3d4p 1P0 401.9 13 CMEG68
Ar 2p'4s4p LPY 424.2 0.3 CMEG8
Kr Not identified 501.2 0.04 Ed67
Kr Not identified 492.3 0.2 Edo67
Kr Not identified 461.8 0.3 Ed67
Xe Not identified 560.0 0.01 Ea67
Xe Not identified 595.9 0.11 Ed67
Xe Not identified 579.2 0.086 Ed67
Xe Not identified 570.8 0.12 Ed67
Ca 3d5p LPo 1887. 240. DH60
Ca 3d6p LPO 1765. 40. DH60
Ca 3d7p1Po 1687. 20. DHG60
Ca 3d5p 3P0 1915. 2. DHG60
Ca 3d6p 3P0 1769. 1. DH60
Ca 3d7p3po 1694. 1. DHG60
Sr 4d6p 3D° 2024. 0.8 HY63
Sr 4d6p 1Po 1970. 88. HY63
Sr 4d7p 1Po 1811. 10. HY63
Sr 4d8p 1PO 1756. 6. HY63
Sr 4d6p 3P0 2018. 2. HY63

8 For the rare gases f was calculated via Eq. (8.6) from measured values
of the profile parameters and thus is proportional to ¢2. The values for Ca
and Sr were obtained by integration over the line profiles and are thus
proportional to ¢2—1 (see Sec. 8.1).

apply also to the Zn, Cd, Hg group and, to some
extent, to metals of higher valence. Some data on the
oscillator strength of double transitions in these ele-
ments are shown in Table V.

Transitions involving two valence electrons of atoms
of other chemical groups occur in the far ultraviolet.
Therefore their extensive observation dates only from
the recent technical developments described in Sec. 3,
particularly from the application of synchrotron light.
Actually these observations are still confined mostly
to the noble gas atoms. Four Rydberg series of absorp-
tion lines due to two-electron transitions have been ob-
served and classified in helium between 60 and 75 eV
(MC65) and a larger number in neon (CME67). Still
higher numbers of lines have been detected in the spec-
tra of Ar, Kr, and Xe (MC63, MC64) but their
classification has only started. Indeed the line density in
certain portions of the Ar, Kr, and Xe double excitation
spectra is so high as to make analysis and detailed
measurements very difficult.

Simple estimates by the “sudden” approximation
indicate that core relaxation does not suffice to account
for the observed intensity of He double excitations.
Other evidence (Sec. 8.3) also indicates that a more
complex interchannel interaction has a dominant in-
fluence on the doubly excited states of He. On the other
hand, a calculation that treats the final state by the
“sudden” approximation but whose ground state in-
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volves extensive configuration mixing has accounted
very well for the observed double photoionization of He
between 100 and 500 eV (BJ67). The comparative
simplicity of He may permit a thorough analysis of the
role of different mechanisms in its double excitation.

Absorption spectra of the noble gases in the soft x-ray
range have also given evidence of double transitions
involving one electron from an inner shell and one from
the valence shell. The energy required for this process
may be of the order of 100 eV if the inner shell involved
in it lies next below the outer one; in this energy range
Codling and Madden (CM65a) have observed 7 such
transitions in Kr and 21 in Xe, without fully classifying
and interpreting them or estimating their oscillator
strengths. In the x-ray energy range, the K absorption
edge of Ar has been observed to be followed in energy
by a small hump in the spectrum which presumably
corresponds to double transitions, from the K shell and
from the outermost (M) shell (Sc63, BW63).

As shown in Table V the oscillator strengths of ab-
sorption lines due to double transitions in the rare gases
are quite small, typically of the order of 10~2 for the
most intense of these lines. The lines stand out sharply
because they are superposed on a continuum whose os-
cillator strength spreads over a wide spectral region and
also because of their profile characteristics discussed
below. To estimate the total oscillator strength of
double transitions, one might take the measured value
of the first line of each intense series, when available,
and estimate by extrapolation the contributions of the
subsequent lines and of the adjoining continuum.
(This continuum is due to photoionization of one elec-
tron ‘and simultaneous excitation of another one.)
A basis for such an extrapolation has been outlined in
(FC65)® but it has hardly been applied yet (CF67a).
To these contributions there must be added that of
double photoionizations, which cannot be singled out
directly from the measurement of radiation absorption
but can be obtained by the separate experiments out-
lined in Sec. 3.5. Gathering all evidence, from photo-
absorption and from other processes, double transitions
appear to contribute a few percent of the total oscillator
strength of helium and a somewhat larger fraction of
the strength attributable to the outer shell electrons
of the other noble gases.

It may be noted, although of little relevance to oscil-
lator strengths, that discrete energy levels with two
excited electrons normally lie in the energy range of
the continuous single ionization spectrum. Therefore
doubly excited states are unstable and decay by auto-
ionization into ionized states. This decay is rather
rapid and hence broadens double excitation lines in the
absorption spectra very appreciably; nevertheless suc-
cessive lines of each series of double excitation often
remain well separated, their widths amounting to only
1/10 or even 1/100 of their separations unless at least

2 The procedure of (FC65) is faulty as detailed in footnote 3.

one of the excited electrons has been lifted out of an
inner shell. Moreover, interference between direct
photoabsorption to ionized states and indirect ionization
via double excitation causes a characteristic asymmetry
in most profiles of double excitation lines (see Fig.
27); this asymmetry provides important information
on configuration interaction, to be discussed in Sec. 8.1.

Finally it should be stressed that detailed experi-
mental information on double transitions requires the
observation of secondary processes, i.e., a determination
of the final state of the atomic system, in addition to
the study of photoabsorption spectra. Such evidence
has been obtained by studying the charge distribution
of ions following photoabsorption (CHK66) and ioniza-
tion by electron impact® (Sc65), by observing fluores-
cence of ions which remain excited following electron
impact ionization (StJL64, HW63, LL65, MdH67) and
by observing the spectrum of photoelectrons following
photoionization (CK65, Ca67). An analysis of double
processes in He via the methods outlined in Sec. 2.6
indicates that the observed double ionization and ion
fluorescence do not stem primarily from the effects
represented by (2.38) but either from higher order or
from nondipole interactions between the incident
particle and the atomic electrons (WHWG67).

Evidence on the charge distribution of ions following
photoionization or electron impact is further com-
plicated for heavier atoms by rearrangement processes
(Auger effect and rearrangement with the emission of
radiation) which occur following removal of an inner
subshell electron. Detailed analysis of these processes
(CHKG66, KC67) indicate that the “sudden” approxi-
mation predicts the correct order of magnitude of
double transitions when inner shell electrons are
ionized but underestimates it for outer shell electrons
(see Table VI). Direct evidence of multiple ionization
from electron spectrometry (Fig. 25) is consistent with
this finding.

On the whole, double transitions contribute only a
minor fraction of atomic oscillator strengths, as we have

TasLe VI. Ratio of double to single ionization obtained from
charge distribution data for average excitation energies large
compared to the threshold value; sudden approximation values
for electron shakeoff computed via Eq. (7.2) using Hartree-Fock
wave functions (NTC66).

Element, Sudden
shell Exp approximation
He 0.036 0.01
Ne, K 0.20 0.18
Ne, L 0.14 0.04
Ar, M 0.17 0.04

2 Collision by sufficiently fast electrons or protons is certainly
relevant to photoabsorption (see Sec. 2.6). However, the intense
fluorescence of residual ions produced by low energy He™ bom-
bardment of atoms (LNT65, DNST67) is not relevant to double
photoprocesses, because the He'* carries an electron and acts
primarily through the formation of a new molecular complex.



seen. The interest of the rapidly accumulating evidence
on the qualitative and quantitative properties of
double transitions relates rather to the insight they
provide into aspects of atomic mechanics that escape
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detection as long as only one electron is pried loose
from the ground state. This subject lies beyond the
scope of the present article, but will emerge again in
the following chapter on interchannel interactions.

8. EFFECTS OF INTERCHANNEL INTERACTIONS

This chapter surveys effects of electron—electron
interaction upon absorption spectra that have been
identified up to this time and do not belong to the classes
discussed previously. These effects are often very con-
spicuous when the spectra are examined with fair or
better resolution. If, however, one considers the spectra
on a coarse energy scale, i.e., only the absorption aver-
aged over several eV, the influence of interchannel inter-
actions has not been shown to amount to more than 5-
109%. Most effects of interchannel interactions have not
been analyzed thus far in detail, theoretically or experi-
mentally. Hence our treatment will confine itself to
preliminary outlines.

Yet these effects may well provide new substantial
information on atomic dynamics, especially when com-
plemented by observation and analysis of the by-
products of photoabsorption, e.g., by measurements
of the energy spectra of photoelectrons. In the language
of Sec. 2.3 one may say that photoabsorption measure-
ments yield the spectrum of the two-variable correla-
tion function (2% (#) ) but that more detailed observa-
tions will provide data on dynamical properties repre-
sented by multi-variable correlation functions.

8.1. Profile of Lines Broadened by Autoionization

The absorption spectrum of a neutral atom contains
numerous Rydberg series of lines whose convergence
limits correspond to the various excited states of the
residual positive ion.3® Nearly all the lines of these
series lie above the lowest ionization limit. Therefore
they correspond to transitions of the atom from its
ground state to discrete excited states which are
stationary only in an independent-electron approxima-
tion. Corrections to this approximation, which have
been classed in Sec. 5.3 as effects of “interchannel
interaction,” cause these discrete states to autoionize,
that is, to decay into ionized (continuum) states of
equal total energy. Autoionization is appropriately
considered in the context of various transitions due to

3 Some of these excited states differ from the ground state of
the ion by having a vacancy in an inner shell or subshell rather
than in the outermost subshell; they represent the thresholds
for photoionization of an inner electron. Others belong to excited
terms of the ground-state configuration. The remaining series
limits correspond to processes in which a change of the ion’s
configuration occurs in addition to photoionization; these are
double transition processes of the kind discussed in Sec. 7.2.

Fic. 25. Experimental spectra of .
photoelectrons extracted by 276- 1o
eV photons (Ca67). Solid curves

represent electrons due to single 1031 Isep _|
transitions. Lower energy electrons He
are direct evidence of double tran-
sitions. 103 & -
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interchannel interactions as illustrated in Fig. 26. The
limited lifetime of autoionizing states causes the cor-
responding absorption lines to be broadened, in accord-
ance with the uncertainty principle. The extent of the
broadening and other characteristics of the profile of
these lines provide information on interchannel inter-
actions, as detailed below.?

The formula which represents these line profiles,
(8.5), was derived in (Fa6la, FC65) by solving a
many channel generalization of (6.7). One considers
for this purpose, besides the continuum states of one or
more channels, one or more discrete states of other
channels whose ionization thresholds lie above the
energy E under consideration; these “closed” channels
have only discrete zero-approximation energy levels e,
in the proximity of E. When a single ¢, lies close to E,
the important part of the generalized (6.7) can be
solved analytically. An equivalent result is obtained
(Sh67) by application of the general collision theory in
which photoabsorption is regarded as a photon-atom
collision process (see end of Sec. 1). From this point of
view the absorption lines due to autoionizing states ap-
pear as resonances in the collision cross section, anal-
ogous to those observed, e.g., for collisions of slow neu-
trons with nuclei.®? Here we aim only at describing the
line profiles and interpreting them qualitatively.

The continuum states reached by decay of an auto-

31 Discrete states are also known whose autoionization is
energetically possible but is slowed down by many orders of
magnitude owing to the conservation of spin multiplicity or to
other selection rules (FN67). Excitation of these states by photo-
absorption from the ground state is made altogether negligible
by the very same selection rules.

32 This analogy is also pertinent if one applies collision theory
to the atomic states only, excluding the photon as in footnote 25,
ie., if one considers first an electron incident on a positive ion.
When the total energy in the incident channel nearly equals that
of a closed-channel discrete state, the channel interaction may
cause the incident electron to be captured in this state. This
process is indicated by the wavy downward arrows in Fig. 26.
The discrete state of the neutral atom thus formed, which quickly
autoionizes, is regarded from the point of view of collision theory
as an unstable compound state resulting from the temporary
association of an electron and a positive ion.
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ionizing state can also be reached from the ground state
by direct photoabsorption, at least in principle. In this
event no observable distinction exists between the
direct transition and the indirect transition through
absorption into a discrete state followed by autoioniza-
tion. The distinction serves nevertheless as a tool of
analysis for the purpose of describing the observed
absorption spectra in terms of a small number of
parameters and of interpreting the physical significance
of these parameters. Under the circumstances, theory
calculates separate probability amplitudes for the two
transition processes and determines the absorption
probability for each photon energy as the square of
the sum of separate amplitudes rather than as the
sum of separate probabilities. The departure of the
square of the sum of amplitudes from the sum of their
squares is an effect of interference between the direct
and indirect transitions. In the absence of interference
the contribution of a discrete state to the absorption
spectrum would consist of a symmetric absorption line
superposed on a smooth continuum. Interference de-
stroys the simple separation of contributions and indeed
causes striking asymmetries in most autoionization
lines.

The origin of this asymmetry can be visualized as
follows. The excitation of a discrete autoionizing state
constitutes a ‘“virtual” energy non-conserving process
except for exact resonance, i.e., unless the energy of the
absorbed photon coincides with the energy of the
discrete state exactly. Therefore the sign of the proba-
bility amplitude of the discrete excitation depends on
the sign of the difference between these two energies
and has opposite values for photon energies above and
below the resonance. The interference between the
direct and indirect photoionizations becomes then con-
structive on one side of the line center (resonance
point) and destructive on the other.

In each wing of a line the contribution of the inter-
ference term to the total absorption exceeds in magni-

INELASTIC COLLISION
IONIZATION OF Het

tude that of the term representing the intrinsic absorp-
tion to the discrete level; in the wing where interference
is destructive the total absorption will then fall below
the level of the surrounding continuum. Thereby reduced
absorption is observed in at least a portion of the line
profile, even though one might naively expect the
occurrence of a discrete level to yield only an increase
of absorption.

This effect of reduced absorption is further magnified
greatly by another effect of channel interaction, namely
spectral repulsion. Repulsion is familiar in discrete
spectra, when a level of one configuration happens to
lie in the midst of a series of levels of other configura-
tions; configuration interaction causes the levels of the
second series to be shifted away from the perturbing
level. [A second-order perturbation formula (La30)
displays this effect clearly.] In our situation, where a
discrete level of one series lies in the continuum of
another channel, the levels of this continuum are also
repelled, but in the sense that their oscillator strength is
thinned out in the proximity of the perturbing level.
This reduction of absorption is particularly conspicuous
when it is not compensated adequately by the intrinsic
absorption of the discrete perturbing level.

The following quantitative parameters determine the
profile of lines broadened by autoionization and can,
conversely, be evaluated by the observation of line
profiles: (1) The spectral width I' of a line depends on
the interaction matrix element between the discrete
autoionizing state ¥, and the continuum state ¥, that
results from it by autoionization; it is reciprocal to the
mean life of ¥,

I'=2r(¥, | H | ¥,)2=7/r. (8.1)

[The omission of the “absolute value” sign in (8.1)
rests on a convention according to which ¥,, and ¥, are
real. | (2) The maximum fractional depth of the depres-
sion of the continuous absorption spectrum produced by
spectral repulsion and interference is indicated by a
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parameter p®. This depth depends on the overlap integral
p=(Ya| VW), (8.2)

(also taken as real) of two continuum states, namely, ¥,
which is generated by autoionization, and ¥4 which is
generated by direct absorption from the ground state
¥, (FC65). (In general, several alternative continuum
channels can be reached by each of these processes.
Details of the interaction determine which superposition
of channels results from either of them. Clearly the
spectrum of direct photoabsorption remains unaffected
by interference if the two superpositions are orthogonal,
i.e.,if p=0.) (3) The maximum fractional rise of absorp-
tion within the line profile, above the absorption that
would be observed in absence of the line, is indicated by
p°¢% The “profile index’’%

g=(Ta | 25 | Wo) /[ (W | H | Wa) (Wa | 207 | W0) ]
(8.3)

has a squared magnitude proportional to the relative
oscillator strength of the autoionizing state compared
to that of a suitable band of continuum states. Its sign
depends on the relative signs of the matrix elements in
(8.3) and determines whether the maximum or mini-
mum absorption occurs on the low-energy side of the
line.

The line profile extends over a range of the continuous
spectrum proportional to the line width I" and centered
on a theoretically defined resonance energy E,. Ac-
cordingly the profile is conveniently represented by a
formula that gives the cross section for absorption of
photons of energy E as a function of the reduced energy
variable

e=(E— E,)/3T. (8.4)
The formula is (Fa6la, FC65)
o(E)=0.(E) {’[(g+e)?*/ (1+¢) ]+1—p?}
=0o(B)[1+e4(g?— 1429/ (14 ],  (8.5)

where o.(E) is the cross section that would be observed
in the absence of the autoionizing state.

Figure 27 represents typical line profiles which have
been observed and which differ very much from one
another even though represented by the same formula.
Since I' is embodied in the energy scale, the profiles
depend only on g and p. The factors that determine the
dipole matrix elements in the expression of ¢ have
been discussed in preceding chapters, except for the
effect mentioned in footnote 33 which has not been
studied. The other factors affecting g also have hardly
been studied (FC65). With regard to the overlap
parameter p, Fig. 27 displays quite different examples:
(a) The autoionization of the 2s2p !P° level of He at

% The symbol ¥, indicates here a modification of the discrete
wave function ¥,, which includes an appropriate admixture of
continuum wave functions, as defined by Eq. (17) of (Fa6la).
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Fic. 27. Profiles of autoionization lines in the rare gases obtained from experimental data (MC65, CME67, CMEG68, Ed67). (a) 2s2p 1P9 in He (¢g=—2.8, p*=1); (b) Inner sub-

shell excitation in Ar, 3s3p%4p 1P (g=—0.22, p*=0.86) ; (c) Two-electron excitation in Ne, 2p*(3P)3s3p 1P (¢=—2.0, p*

(g~200, p*~0.0003).
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60.1 eV and the direct absorption lead into a single
continuum channel, so that a complete overlap (p=1)
and a zero value of minimum absorption result (CM65).
(b) The autoionization of 252p°3p'P® in Ne and
3s3p%p 1P in Ar and the corresponding direct absorp-
tion can lead into five alternative channels; nevertheless
their final states overlap by 83% and 93%, respectively.
(c) Double excitation leads to only ~409, overlap in
the 2p*3s3p 1P° line of Ne. This is typical of other
double excitations which have been studied to date.
(d) At higher photon energies autoionization normally
yields doubly excited ions and direct absorption singly
excited ones. Hence the overlap is quite small (and ¢
is quite large) and no minimum of absorption has been
detected in line profiles. Indeed, the profile of the
4435525 p%p 1P0 resonance in Xe is Lorentzian within
the experimental uncertainty.

In the second form of (8.5) the term proportional to
¢* represents the intrinsic, Lorentz shaped, profile of
an autoionization line, unaffected by interference.
The next term, with coefficient —1, represents the
effect of spectral repulsion and the last term the effect
of interference. The interference term decays in the
line wings in proportion to 1/e only; therefore its effect
is appreciable over a surprisingly broad spectral range.
The contribution of the interference term averages out
upon integration over energy across the line whereas
the two preceding terms yield, respectively,

0p2?5Tr=1.098 X 10%f, cm? eV, (8.6)

0cp*3Tr=1.098 X 10%27p’T (df /dE) g—g, cm?® eV, (8.7)
where f, is the discrete oscillator strength corresponding
to the discrete wave function 0,3

Equation (8.5), with constant values of T, ¢, and p, is
approximate only in the sense that it applies to the
limit of a narrow isolated line, i.e., for I' much smaller
than the distance of another line or than the spectral
range over which the continuum characteristics vary
appreciably. Its derivation in (Fa6la) focussed on the
influence of interchannel interaction between a discrete
level and a continuum; accordingly it regarded all other
steps of the wave function improvement program of
Sec. 5.3 as having been completed previously. However,
the same result can be obtained by representing suitably
the formal solution of the Eq. (5.16) for the trans-
formation matrix U (see also Sh67).

The treatment of the effect of spectral repulsion in
(8.5) is incomplete, in that the continuum oscillator
strength strength (df./dE)g,3wp’l' pushed away from
the proximity of the autoionizing state should reappear
elsewhere in the spectrum, owing to the sum rules.
Presumably this corrective effect occurs outside the
range of applicability of (8.5) with fixed parameters.
An alternative approach has been developed (CS66)
which is internally more consistent at the price of

disregarding the energy matrix elements between the
autoionizing state and continuum states removed from
it by more than a limited energy amount.

The profiles of successive lines of a Rydberg series
are similar provided the series is sufficiently regular
(FC65). The criterion of regularity is that the distance
of each resonance from the series limit fits the formula
Ejin— E,=1Iy/(s—0)?, where Ig=13.6 eV, s equals
successive integers and o is a constant quantum defect.
Within this approximation the profile index ¢ should
be fixed for the whole series and the product p°I' should
be proportional to the width of successive blocks in the
histogram of Fig. 1, i.e., to dE;/ds=2Iy/(s—a)’~AE,
where AE indicates the interval between successive
lines. Moreover p? should also have the same value for
a whole series when the excited electron participates
in the autoionization, which occurs normally for series
in the lower part of the spectrum below ~50 eV.
Available evidence agrees with these rules (CMG6S,
CMEG67).

The patterns of intensity distribution in the spectra,
discussed above in connection with autoionization,
occur also below the first ionization threshold in the
absence of autoionization or indeed across the threshold
(Fig. 28). This observation need not cause surprise
because the intensity distribution results from channel
interaction, rather than from autoionization per se, and
remains unchanged on a sufficiently coarse scale of
photon energies upon replacement of the continuous
spectrum by a dense series of discrete lines. In this
example the 6snp series becomes strongly perturbed
by interaction with each state of the other channel
(5dnp, also Sdnf) throughout the energy interval T’
that would apply if the series were a continuum. Each
of the perturbed discrete states is shifted in energy
and is replaced by a superposition of discrete states of
its own channel and of the single relevant discrete state
of the other channel. The latter state is similarly
perturbed and its energy level is sandwiched-in between
those of the series. The resulting intensity distribution
in the spectrum averaged over line intervals is the same
as one would observe for an autoionization line, as
noted above (see, e.g., Fa6la).

8.2. Gross Effects of Spectral Repulsion

The depression of continuum absorption caused by
the presence of a discrete autoionizing state, which was
discussed in Sec. 8.1, is but an obvious example of a
widespread phenomenon to which little attention has
been directed and whose import remains to be investi-
gated.

Consider any pair of channels whose states can be
reached by photoabsorption and whose ionization
thresholds lie at different energies in the spectrum. (The
lowest level of the discrete spectrum of any channel
should actually be considered as the onset of absorp-
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F1c. 28. Oscillator strengths of Ba in the discrete and continuum near threshold. Histogram for the discrete spectrum constructed
in accordance with quantum defect theory (see Fig. 1). Numbered discrete lines are 6s#p!P. Lines labeled #it:8 L correspond to Sdnit3 L°.
Note shape similarity of histogram distorted by 5dzp lines and of continuum distorted by autoionization lines of same series. The histo-
gram, based on a preliminary analysis of partial data, does not display all the desirable internal consistency. (Courtesy K. T. Lu; data

from PS62, HC67a, GC60, To67.)

tion, instead of its ionization threshold.) Insofar as
spectral repulsion is a general phenomenon, channel
interaction tends to push the spectra of the two channels
apart. More specifically, it should tend to increase the
absorption pertaining to the channel with lower
threshold in the spectral range below the onset of the
other channel; it should tend to depress the absorption
of both channels near the onset of the higher threshold
channel; finally it should enhance the absorption of the
higher threshold channel at high energies where the
lower threshold channel presumably absorbs less than
the upper channel. In other words, the channel inter-
action should tend to compensate the absorption
jump which marks the onset of the upper channel.

In addition to spectral repulsion, channel interaction
also produces transfers of oscillator strength among
channels and prominent interference effects on line
profiles and possibly on continuum distributions. There-
fore the effects of spectral repulsion are not easily dis-
entangled from the others without a detailed analysis.
In the spectra below ~100 eV reviewed in Sec. 4, suc-
cessive absorption edges quite generally fail to stand out
or at least stand out less than one might expect.
Factors contributing to this phenomenon have been
discussed in Sec. 4.7 and effects of interchannel inter-
action presumably also contribute to it. Yet the depres-

sion of edges, particularly as observed at the thresholds
of the outer s subshells of Ar, Kr, and Xe, appears to
constitute distinctive evidence of interchannel repulsion.

Here we shall only outline what can be learned about
the depression of absorption edges by the analysis of
line profiles. In any spectral range where discrete lines
occur, the density of oscillator strength averaged over
the line intervals extrapolates smoothly into the
continuum beyond the convergence limit of Rydberg
series. This result, which is a main feature of the
quantum defect theory (Se58) has been proven with
great generality by various authors (BaS9, FNJ59,
Ga63). It enables one to determine the net change of
absorption across the edge (“jump ratio”) and the con-
tribution of each new channel thereto from the analysis of
line profiles which are more easily accessible to observa-
tion.

Specifically the depression of the jump ratio due to
spectral repulsion is obtained by averaging over a line
interval AE the integrated effect of spectral repulsion
upon one line, (8.7), in analogy to the construction of
the histogram in Fig. 1. The resulting quantity, namely
o2mp?T'/AE, is uniform over a series insofar as p*I'/AE
is a constant. Accordingly it extrapolates beyond the
series limit and may be regarded as the depression of the
absorption jump. This depression is to be compared to
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the positive contribution of the oscillator strength of the
new channel, which is o7 (p’T/AE)¢® according to
(8.6). Thereby the jump ratio is represented (FC65) by

1+37(p’T/AE) (¢°—1), (8.7)

in which the —1 term corresponds to spectral repulsion.
This term looms important for moderate or small values
of g2, especially of course for ¢?<1, in which case the
jump ratio becomes smaller than unity, that is, one ob-
tained a downward jump.

As anticipated in Sec. 4.7 downward jumps actually
occur in the spectra of the noble gases Ar, Kr, and Xe
at the threshold for ejection of the s electrons just inside
of the valence subshell. The existence of these down-
ward jumps follows from the “window” appearance of
the lines converging to the thresholds. For Ne the cor-
responding value of the jump ratio is 1.008, since
¢*=2.6 and 37 (p’T'/AE) =0.005 (CME67).

8.3. Strong Coupling

Degeneracies between the spectra of different chan-
nels may boost the effects of interchannel interaction.
A conspicuous example of this boosting occurs in the
doubly excited states of He, in which different channels
have identical ionization thresholds; specifically, the
thresholds corresponding to the 2s and 2p levels of He*
coincide since He' is hydrogenic, and the same occurs
for 3s, 3p, 3d, etc. This phenomenon came to attention
when a single series of lines converging to the 2s or 2p
limit of Het was observed (MC63) instead of the three
series corresponding to states 2sup 1P° 2pns!P% and
2pnd ' P° which would have been predicted by ordinary
considerations of spectroscopy. Since the number of
series converging to each limit is not changed by inter-
channel interactions, the initial observation of a single
series meant that one series is much more intense than
the other two. On the other hand, simple calculations
show that transitions from the ground state to 2snp
and 2pns should yield quite comparable absorption.
Therefore, in view also of the fact that levels 2snp and
2pns should be almost degenerate, it was concluded that
interchannel interaction changes the character of the
channels completely (CFP63). A second but much
weaker and narrower series converging to the same
limit was observed subsequently (CMG65).

The problem raised by strong interaction among a few
channels can be handled theoretically by extension of
the procedures which were described in Sec. 6.2 for the
treatment of intrachannel interactions. The procedure
of direct diagonalization of a Hamiltonian submatrix,
by solution of (6.7), involves in this case a larger sub-
matrix (ae | V| &'¢), where @ and o’ are discrete indices
corresponding to the alternative channels.? The pro-
cedure by solution of an equivalent integrodifferential
equation (6.13) involves instead the solution of a
system of coupled equations, one for each value of o7

Both procedures have been utilized rather extensively
in numerical calculations pertaining to the doubly
excited states of He, either for these states alone or
including also the continuum states which amounts to
taking autoionization into account from the start; see,
e.g., (LR66, AM65, OMG65, BTP67) and (BMcV65,
Bu65, AM66) for the two procedures, respectively.
These calculations have yielded a satisfactory agree-
ment with experimental data as well as with one
another. They have also revealed that analogous situa-
tions occur in many series of doubly excited states
which cannot be reached by photoabsorption (see
particularly Bu65). In particular the calculated inten-
sity indices (I'/AE)g* of the three !P° (p=1) series
converging to the Het(2s, 2p) limit bear the ratios
700:6:0.2 to one another,* which explains the failure to
observe the weakest of them. Yet only a partial under-
standing of the characterization of these series has been
obtained thus far despite persistent efforts (CFP63,
Bu65, Ma66, Ma67), because the calculations provide
no clear clue to the physical interpretation of their
results. Two-electron excited states appear to have a
collective character which expresses itself most ob-
viously through differences in lifetime, but more in-
trinsically in the magnitude of the wave functions for
small values of the radial coordinates of otk electrons.

An indication also exists of this collective character of
double excitations in atoms other than He which do not
possess the same full degeneracy of ionization thresh-
olds. The lowest state of doubly excited Ne has the spec-
tral character 2p*(3P)3s3p'P° and is common to
the two series: (a) 2p*(3P)3s(2P)np'P® and (b)
2p(3P)3p(2P) ns LP® whose limits are separated by
nearly 4 e€V. According to data of (CMEG7) the in-
tensities and profiles of series (b) relate well to that of
the lowest line whereas the #=4 line of (a) is missing
altogether and lines with #>4 have a different profile
and are probably observable only because of another
interaction discussed below. Thus it appears that here
as in He the oscillator strength of a series is suppressed
by some selection rule of unknown origin. However, no
similar suppression has been detected in other double
excitation series of Ne. The appearance of lines of series
(a) with #>4 is attributed (CMEG67) to interchannel
interaction with the single state 2p*(1D)3s3p 1P°. This
interaction shifts the position of series (a) lines away
from the energy of this state and transfers to them a
portion of its oscillator strength, a phenomenon that is
well known in ordinary spectra of single excitation.

In the examples just considered, the degeneracy or
quasidegeneracy of series limits concerns states of the
ion with one electron excited to an outer shell. Similar
quasidegeneracies are quite common for lower states
of the ion, when its ground state configuration has

3 Actually, these ratios depend primarily on T'/AE since the
values of g2 are comparable for the three series.
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different terms (e.g., Ot has 459 2D° and 2P°) or when
there are nearly degenerate configurations (e.g., 6s and
S5d in Bat or 4s and 4p in Cat). Low-lying double
excitations, surveyed in Sec. 7.2, occur in these circum-
stances and the alternative channels of single and
double excitation may, but need not, interact strongly.
In fact not many of the known double excitations in
Table V exhibit evidence of strong interaction. A some-
what different effect of strong coupling occurs in the
near ultraviolet spectra of trivalent atoms, whose ionic
ground states #s? interact strongly with zp? as the
ground states of neutral alkaline earth atoms do (see
Sec. 7.2). Owing to this interaction the main channels
of excited states ns*md2D and #ns?ms?S reached by
photoabsorption from the ground state ns?mp are
coupled strongly to the excited states nsnp? 2D and 25
(see Ma67b, p. 152ff, also KS67).

Calculations of strong interactions can be carried
out in these situations by the same methods as for
doubly excited Het and have been in fact performed in a
few instances. The inaccuracy of the underlying approxi-
mations increases, of course, with the structural com-
plexity of the outer electron shell. The following
calculations of photoabsorption in limited spectral
ranges by strong coupling methods exist besides those
for doubly excited He: H- (Ma67a), Be (Al68), Ne
and Ar (LC67), Mg (We67b, Za67), Al (We68). The
H- and Be results exhibit unusual features that have
not yet been detected experimentally. Related calcula-
tions of channel interaction in Be (Mo067) and in C-,
N-, and O~ (SHB67) aimed at the cross sections for
electron—ion or electron-atom collisions and did not
yield photoabsorption data.

The analysis and calculation of strong interchannel
coupling is helped by application of Seaton’s multiple-
channel quantum defect method (Se66). It was noted
at the end of Sec. 4.2, with regard to single-electron
calculations, that a normalization factor N, can be
usefully factored out of wave functions, radial integrals
or oscillator strengths, the residual factor being a
smooth continuous function of the excitation energy
even in the discrete spectrum. A subfactor of N,
depends only on the Coulomb field which prevails in
the outermost portions of an atom and can be calcu-
lated analytically. In the framework of this article,
Seaton’s method may be described roughly as a factori-
zation of the energy diagonalizing matrix U,, of (5.16),

U,i—N,U,uN,. (8.8)
The coefficients IV, and IV, are provided by hydrogenic
theory and the matrix U,, has in effect only one element
per pair of channels, rather than per pair of states, and
varies smoothly and continuously with energy in the
discrete as well as in the continuum. [Actually one
factors the reaction matrix K introduced in (6.6)
rather than U itself.]
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This factorization can be utilized in several ways
(Be66, M066, Mo67, Lu68) . Starting from experimental
data on discrete level positions and on oscillator
strength spectra, the method yields a compact represen-
tation in terms of a smaller number of matrix elements.
From a purely theoretical point of view the method
reduces the magnitude of calculations of interchannel
interactions. Combined utilization of theoretical and
experimental data is also possible. The treatment in
Sec. 8.1 of lines broadened by autoionization, especially
with regard to Rydberg series of lines, may be regarded
as an application of multichannel quantum defect
theory.

8.4. Radial Correlations in the Ground State

The preceding sections have dealt mainly with the
influence of channel interactions on the final states of
photoabsorbing transitions and with relevant improve-
ments of their wave functions. Improved wave functions
for the ground state have been utilized in numerous
calculations. The improvement was achieved either by
calculating strong configuration interactions or by
utilizing altogether different types of wave functions,
e.g., Hylleraas functions for He. The results of such
calculations have been reviewed, in the main, in Sec. 5.5.
The inclusion of strong interaction effects in the
ground state was also essential in the photoionization
calculations for Be (Al68) and for Ca (Mo66) and in
the calculation of double photoionization in He (BJ67).
However, hardly any systematic information on the
qualitative and quantitative influence of ground state
improvements upon photoabsorption has emerged be-
yond the realization of the importance of admixing
np? or (n—1)d? configurations into the ns? ground states
of divalent metals or of the ions of trivalent atoms.

Here we present a few considerations on the radial
correlations among outer shell electrons in the ground
state, which influence particularly the probability of
double excitations.

Since the electron interaction is repulsive, it should
cause correlations such that when one electron lies
unusually far from the nucleus the others lie unusually
close to it, and vice versa. We also know from Sec. 4
that outlying portions of an electron’s radial distribu-
tion contribute more to the absorption of lower energy
photons and vice versa. Therefore, radial correlations
tend to associate the absorption of a lower energy
photon by one electron with a more condensed distribu-
tion of the other electrons; in the language of Sec. 7,
they tend to leave the core in a more relaxed state least
likely to result in a second excitation by the shake-off
mechanism. Conversely, absorption of a higher energy
photon tends to leave the other electrons further away
from the nucleus, in an unrelaxed state more prone to a
second excitation.

Double transitions cannot result from absorption of
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low energy photons because their energy threshold is
rather high. Above this threshold the scarce evidence
available at this time shows a little increase of the rela-
tive probability of double ionization with increasing
photon energy but this probability appears to level off
rapidly (Ca67, BJ67). It cannot be really judged
whether the influence of correlations suggested by the
arguments above is in agreement with fact.
Toillustrate the analytical treatment of radial correla-
tions without attempting any assessment of the various
factors in the calculation of (BJ67), we consider here
the correlated wave function of the He ground state

Wo(r1, 72) = Nofexp (—ari—fBr;) +exp (—Bri—ar)}
(8.9)

No=2[(a+B) /2 P{3[14 (a+B)*/ (4)*]}~12  (8.10)
The parameters o and B can be chosen in various
alternative ways. The choice
a=2/a, Pp=1.34/a, (8.11)

(with a=Bohr radius) does not yield minimum energy
but provides a correct asymptotic behavior for r>>7,
and 72>>7, since (1.34)? is the binding energy of He in
units of 13.6 eV; for ri~r. this choice approximates
well the usual product of two exponentials with a=g=
27/16. This wave function represents the He atom as
consisting of an Het core with an electron attached onto
it with binding energy #%3%/2m.

For the final state of a photoabsorption process with
single excitation one may adopt a wave function
analogous to (8.9), namely,

W, (1, 72) = Ny{exp (—ari)us(rs) cos Py

+exp (—ary) us(r1) cos ) /4w, (8.12)
The dipole matrix element of the transition has then
the form

(s | m1+2 | W)

=$N;N, {(204)‘3 /wuf(r) exp (—Br)rdr
0

+(a+B)2 /muf(r) exp (—-ar)r:"dr} . (8.13)

0

The two integrals in this formula correspond to excita-
tions out of the two unequal 1s orbitals exp (—pr) and
exp (—ar); the first of them will predominate for a
lower energy transition and the second for a high-energy
one.

An important property of the correlated wave func-

tion (8.9) is that it permits direct transitions to doubly
excited states. If the ground state wave function of the
Het ion, exp (—ar), is replaced in (8.12) by an excited
state wave function, exp (—ar/n) L,(2ar/n), the first
term of (8.13) vanishes owing to orthogonality of this
function and exp (—ar), but the second one does not.

From the point of view of core relaxation and double
excitation one may describe the correlated wave func-
tion (8.9) as follows. Let us utilize from the start a
set of one-electron wave functions Yums (5.1) appropri-
ate to the positive ion core of the atom, rather than to
its neutral ground state, namely, in our case the set of
hydrogenic wave functions of He*. The initial ground-
state wave function is then described inadequately by a
single determinant ¥, constructed with this set. How-
ever, it might be fairly represented by a superposition
of ¥, which have a single outer shell electron excited
to any orbital with a higher discrete (or continuum)
quantum number #. This representation is obtained by
expanding the factors exp (—pBr) of (8.9) into a series of
He* radial wave functions exp (—ar/xn)L,(2ar/n).
From this point of view, the problem of core relaxation
no longer arises, because our base wave functions are
already suited to describe the final state. On the other
hand, double excitation can result from photoabsorp-
tion as a matter of course, since the initial ground state
is represented as already containing a certain amount of
virtual excitation.

The probability of double excitation of He estimated
by this method appears to be much higher than the
unrealistically low value of 0.02 obtained from the un-
correlated ground state function with a=8=27/16a
and application of the sudden approximation formula
(7.3).

The point of view outlined above can be applied, of
course, to the treatment of photoabsorption by any
atom. However its internal consistency and its quantita-
tive implications require further analysis.

8.5. The Random Phase Approximation (RPA)35

As mentioned before, particularly in Sec. 6.1, con-
siderable discussion has taken place concerning the
applicability to atomic oscillator strengths of methods
developed for the study of electron excitations in
plasmas and solids. Apart from the semimacroscopic
studies mentioned in Sec. 6.3, Altick and Glassgold
(AG64) have made a detailed calculation of atomic
oscillator strengths making use of approximations sug-
gested by the theory developed for extended systems.

From the point of view of Sec. 5.3, the approximation
implies a particular selection of a submatrix of the
Hamiltonian to be diagonalized which includes the
intrachannel interaction considered in Sec. 6 together
with additional portions of the matrix. The selection

3 Dr. P. L. Altick’s help in clarifying the subject of this section
is gratefully acknowledged.



U. Faxo anp J. W. CoorER Speciral Distribution of Atomic Oscillator 501

originally designed for large systems does not appear
realistic for application to atoms but the (AG64)
procedure was improved in this respect. Here it seems
desirable to formulate first the basic “RPA” approach
in the context of this article because its main lines do
not emerge readily from (AG64) and because its
initial steps may be of interest irrespective of further
approximations.

A feature of this approach is that one does not at-
tempt to calculate the ground state wave function
(5.14), ¥,=> W,U,,, and the ¥, for the excited
state in full detail but calculates only the differences
between them that are relevant to the oscillator strength
f(u—u"). For example, since the exact ¥, contains
first approximation ¥, with pairs of excited electrons
and the same virtual excitations may also be present in
the exact excited ¥,., one wants to exploit any approxi-
mate independence of the oscillator strength on the
occurrence of such virtual excitations. In general, the
approach may permit the use of approximations that
are unsuited for the separate calculations of ¥, and ¥,
but quite appropriate for the calculation of f(u—wu’).

Notice that a program of simultaneous improvement
of the ground state and excited state wave functions is
probably essential to solve the problem of inconsist-
encies in the calculation of oscillator strength, which
was stressed in Sec. 5.4. It is conceivable, though not
clear at this time, that the RPA equation (8.23) de-
rived below will serve this purpose.

We start from the expression of the dipole matrix
element

W' | 20 1) = (U 0| 22 | ) Ui (5.15)

which is exact to the extent that the still unknown
matrix U is exact. The dipole element (»| > z;|+')
on the right of (5.15) reduces to a single-particle ele-
ment according to (5.5) and further to the radial
integral (4.5), R(nl, #'l'), multiplied by a factor ¢
(essentially a Clebsch-Gordan coefficient) that de-
pends on orientation quantum numbers and is not
relevant here. Being a function of a single particle
transition, the same R(#nl, #'l’) may appear in numerous
terms (v, ") of the sum in (5.15).

Accordingly, we introduce a notation that enables
us to separate R from the rest of the calculation. Call ¢
the transition from the set of quantum numbers (nlms)
to (#'I'm's’) and introduce a new matrix element
defined by the following properties. When » contains
the single electron orbital (#nlms) and »' contains
(#w'I'm’s") but v and »' coincide in all other respects,
(' | aq| ») equals the factor £(¢) = (+' | 22 | »)/R(q);
otherwise (' | @, |») vanishes. For future convenience
we restrict the symbol ¢ to transitions with zero ap-
proximation energies E, ;> E,; and call the inverse
transitions —g¢. Thus we also introduce (v |a_,|»)
which equals #(¢) when »" and » include respectively

(nlms) and (#'l'm's’) and vanishes otherwise. With
these definitions we write

O | 22| 9) =2R(Q) (' | agta_g|v)  (8.14)
since R(—¢)=R(q). Thereby (5.15) takes the form
(| Zzi | )= ZR<Q) Z](U_l) wo (V' | agtag|v)Us

(8.15)

which can also be written, using operator notation, as

(W' | 22| w)=22R(9) (W | agta_y| ). (8.16)

Since the radial integrals R(q) are regarded as known
by the method of Sec. 4, the problem consists of
determining the matrix elements of @, and a_, corre-
sponding to the (unknown) states ¥, and ¥, without
necessarily calculating the complete matrices U and
U

The Schrédinger equation for the eigenstates u and
¢’ can be applied to the matrix elements of ¢, and a_,
to yield

(Ew—E,) (W | ag| )= | Heg—a H | u)
(Ep—E,) (W' | 0—g|p)= (' | Ha_y—a_H | p). (8.17)

Without loss of generality we separate H into two terms
Hyq, given by (5.1), and Hy=H—H,,.q so that
owing to (5.3)

Hy0a0q— 0 moa= (Enrv— En)ag= E,a,
Hinoa0—q—0_gHnoa= (Epi— Epy) a_q=— Eq@_,.

(8.18)
Substituting in (8.17) yields

(Ew—E,—E,) (W ' Gq ] w) =y I Hya,—a,H, [ )
(Ew—Eut+Eq) (W' | ag| p) =W | Ha_g—a_.Hi | p).
(8.19)

All portions of the matrix (»' | H|») that involve no
transitions in or out of (nlms) or (#w'l'm’s’) commute
with @, and @_, and hence do not contribute to (8.19);
this simplification—which results from the notation
utilized here rather than from any physical considera-
tion—was anticipated at the outset of this section.
Equation (8.19) is still general and exact and is to be
regarded as a convenient point of departure for approxi-
mation treatments.
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The objective of the approximations considered here
is to expand the right-hand side of (8.19) into a linear
combination of matrix elements (u’|a,|p), whereby
(8.19) becomes a linear algebraic system amenable to
numerical solution, perhaps with the help of some
truncation. In the (¥, ») representation this would
amount to representing the matrix

(' | [Hy, a1 %) (8.20)

as a superposition of (+' | @, |»). In view of the defini-
tion of @, this representation would imply that non-
vanishing elements (8.20) exist only for pairs (+/, v)
that differ by a single set of quantum numbers (nlms).
Now, the operator H; replaces in general fwo of these
sets with #wo others and @, one with another. Non-
vanishing of the commutator [ H;, ¢, ] requires only that
two of these six sets coincide. Therefore [ Hi, a4 | can be
represented in general as a superposition of bilinear
terms a,a, in addition to linear ones. The RPA-type
treatments disregard the bilinear terms.

Basically, the linearization of (8.20) in extended
systems—as distinguished from atoms, which are
small—corresponds to the assumption that the system
as a whole is modified weakly by virtual excitations
even though many excitations are present on the
average in the whole system. Formally, however, the
argument generally advanced is substantially the
following (BS67). A matrix element of a product,
such as

(' | aghh | V)=Z;(V’ lag| V") (" | Hi ),

results from the sum over »” of a large number of

terms which tend to cancel out (hence the name of
RPA) so as to yield a negligible contribution. A
significant contribution stems, however, from those
terms of H; which cause a transition —g, exactly
reciprocal to g.

This contribution is then evaluated—for extended
systems—utilizing two further elements of the RPA
which are also quite plausible for these systems, namely:
(a) the relevant transitions ¢ occur between an orbital
(nlms) which is normally occupied in the atomic
ground state and one (n'/'m's’) which is normally un-
occupied; (b) the transition operators a, and their
reciprocals a@_, can be treated as boson creation and
annihilation operators, respectively, (to within the
normalization constant {(¢) introduced in our notation).
Since the portions of H; which contribute to the two
equations (8.19) are proportional to a_, and a,,
respectively, according to the RPA, the commutators
[Hy, a,] and [Hy, a_,] can now be represented by a
superposition of a,, as desired. The coefficients of a,
and ¢_, in this superposition are identical, as noted

below. Thereby (8.19) becomes

(Eu"—En_‘ Eq) (' l q ! p)=-— thr(ﬂ' l atar l “)
(Ew—EA+E) (W | ag| )= thr(#l | arta_r|u).

(8.21)

The coefficients %, are suitably normalized matrix
elements of H;. Because the transitions ¢ involve a
change of parity and of one unit of angular momentum,
while H; is invariant as a whole, the transitions » must
also involve a compensating change of parity and
angular momentum. Therefore (8.21) constitutes a
system of equations among matrix elements of a single
class of transition operators. It also follows that the
matrix elements %, coincide with the G; of (6.3) to
within a proportionality factor. [More specifically,
however, %, may be properly labeled as a G; when it
multiplies @,¢_, or a_,a, in the expansion of Hy, that is,
when H; replaces one excitation with another one, but
no such label seems appropriate when it multiplies
@0y OF G_,0_, in the creation or annihilation of a pair
of excitations. ]

The remaining problem of solving (8.21) would
reduce exactly to the intrachannel problem of Sec. 6.2
if one were to disregard the matrix elements of a_,
and a_, and to restrict the ¢ and 7 to a single channel.
The contribution of the matrix element of ¢_, to the
“exact” dipole matrix element (8.16) stems from im-
provements of the ground state wave function repre-
sented by virtual excitations which were ignored in
Sec. 6. An indication of the relative magnitude of the
matrix elements of ¢_, and @, is obtained by taking
the ratio of the two equations (8.21), which gives

(' I a—q [ ) — E,—E,—E,
(W'|aeglw)  Evo—E+E,

(8.22)

The denominator on the right is the sum of two non-
negative terms, E,—E, and E,, and therefore non-
negative whereas the numerator can be of either sign
and is small whenever E, lies close to E,.— E,. There-
fore the ratio (8.22) has a small absolute value unless £,
is either much smaller or much larger than E, — E,.
The largest among the (u’ | a_, | ) will be much smaller
than the largest (u' | a4 | 1) unless the large (u’ | ag | 1)
occur for values of E,/(E,— E,) much different from
unity. This situation, which implies a very large effect
of interactions, does occur for plasmas; it is uncertain
whether it is ever significantly met for atoms.

Here we do not disregard a_, but combine the two
equations (8.22) into a single one for the variable
(W' | @gta—q| 1) to be entered in (8.16). Straight-
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forward algebra yields
[(Ew—E,)*—EZ](W | agta—q|p)
= Zquhqr(P«, | artar|p), (8.23)

which has the familiar form of the equation for the
normal modes of classical coupled oscillators and for
the corresponding frequencies, (Ey,—E,) in our case.
Notice that it is no more difficult or laborious to solve
(8.23) than the equations of the intrachannel problem
of Sec. 6.2; therefore one might wish to solve it merely
for heuristic purposes.

The differences between atoms and extended systems
make a direct application of the RPA to atoms un-
realistic. Therefore (AG64) started from a general
formula equivalent to (8.19), introduced in its a com-
plete expansion of H; in terms of transition operators
and proceeded to simplify the equations utilizing a
sequence of assumptions appropriate to atoms. A main,
realistic assumption was that virtual excitations in the
exact ground state have a small probability amplitude
whose square can be disregarded. The (AG64) treat-
ment applies from the outset only to atoms with a
complete outer subshell; its final step of simplification
is further restricted to outer subshells with /=0, that
is, to atoms of the alkaline earths. The role of this
further restriction has not been clarified. Eventually
the system (8.19) is reduced to a form that differs
from (8.21) only by the substitution of a modified
value E,’ in place of E,. An equation analogous to
(8.23) is then also obtained.

The quantitative applications carried out in (AG64)
yielded results analogous to those obtained in Sec. 6.2
‘concerning the effect of intrachannel interaction on the
Ar spectrum. The spectra of oscillator strength calcu-
lated by (AG64) are less sharply peaked at the first
discrete excitation (“resonance line’’) than is predicted
by the single-electron model of Sec. 4, and decay more
gradually toward the deep minimum discussed in Sec.
4.5, which lies a little above the ionization threshold.
However, even a comparatively minor shift of the
gross spectral distribution near this minimum changes
the strength of individual lines by large factors. Good
agreement with experimental data was not obtained
or expected, in view of various limitations of the treat-
ment. It might be interesting to compare these results
with those of an analogous calculation that takes into
account the intrachannel interaction in the manner of
Sec. 6.2 but disregards any improvement of the ground-
state wave function.

In conclusion, calculations of oscillator strengths
utilizing RPA-type formulations may well be of poten-
tial interest. The work done thus far has produced
reasonable results, though not obviously superior to
those obtained by the more straightforward approach of
Sec. 6.2 or 8.3. Additional efforts will be required to

evaluate the relevant differences of the various ap-
proaches and to extend the applicability of (AG64),
before the RPA can be established as a general method
of atomic calculations.

9. UNSOLVED PROBLEMS

This concluding section has two related goals. It
draws attention to some major outstanding problems
and it attempts a summary assessment of the informa-
tion surveyed in the whole article.

(a) The survey of the spectral distribution of oscil-
lator strengths for neutral atoms, presented briefly
in Sec. 4, is likely to prove a useful but hardly depend-
able guide for the semiquantitative prediction of absorp-
tion coefficients that have not yet been measured. No
extensive attempt has been made to interpolate and
extrapolate available data to other elements or other
frequency ranges. A systematic attempt in this direc-
tion, coupled with experimental spotchecks, might pro-
vide a realistic assessment of present capabilities. The
description and theoretical interpretation of major
features of the spectra in Sec. 4 might prove to be
reasonably complete and accurate, but additional un-
expected features might also emerge from further
experimental exploration. Notice that hardly any data
exist for elements of groups IV-VII of the periodic
system and very few for groups I-III except near
threshold. Also the theoretical model of Sec. 4 is
particularly inaccurate for predicting photoabsorption
near the thresholds of successive shells and subshells.

(b) The survey performed in this article for neutral
atoms might well be extended to ions, particularly by
comparing the photoabsorption by neutral atoms and
ions along each isoelectronic sequence. A substantial
amount of data exists for discrete spectra but in the
continuum only for H-. The spectra should become
progressively more hydrogenic with increasing degree of
positive ionization. Preliminary steps have been taken
recently in this direction (HR67, Wi68).

(c) A major shortcoming of theory is the lack of a
consistent formula for the calculation of oscillator
strengths by successive approximations, as discussed
particularly in Sec. 5.4.

(d) As a corollary, no consistent method exists for
determining theoretically the contribution of each sub-
shell to the total integrated oscillator strength of each
atom. Experimental determination of such contribu-
tions seems feasible (Sec. 3.5) but the necessary tech-
niques are still in early development.

(e) The methods of theoretical analysis and im-
proved calculation of oscillator strengths outlined in
Secs. 6.2, 7.1, and 8 seem open to extensive application.
However, present experience with these methods is
quite limited and might prove misleading. Furthermore,
this experience has been confined to situations with no
more than two or three electrons (or vacancies) outside
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closed shells. More complex situations would certainly
require initial exploration.

(f) In particular, only a few steps have been taken
in the experimental and theoretical studies of multiple
excitations (Secs. 7.2 and 8.4), of the effects of spectral
repulsion (Sec. 8.2) and of strong interchannel coupling
(Sec. 8.3). The assessment of these effects in the present
article is extremely tentative.

This list has excluded problems, such as the angular
distribution of photoelectrons, which have been touched
upon in Sec. 3.5 and occasionally in Secs. 7 and 8 and
which are of importance to atomic mechanics but lie
somewhat outside the main scope of the present article.
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