
REVIEWS OF MODERN PHYSICS VOLUME 40, NUMBER 2 AP RIL 1968

.. :vase anc. Ang. .e Varia &. .es in Quantum
IV. ;ec.zanies*
P. CARRUTHERS
Laboratory of Nuclear Studies and Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, Nese Fork
MICHAEL MARTIN NIETO
Institute for Theoretica/ Physics, State University of New Fork at Stony Brook, Stony Brook& New Fork

The quantum-mechanical description of phase and angle variables is reviewed, with emphasis on the proper mathe-
matical description of these coordinates. The relations among the operators and state vectors under consideration are
clariaed in the context of the Heisenberg uncertainty relations. The familiar case of the azimuthal angle variable p and its
"conjugate" angular momentum L, is discussed. Various pitfalls associated with the periodicity problem are avoided by
employing periodic variables (sin cp and cos e) to describe the phase variable. Well-defined uncertainty relations are de-
rived and discussed. A detailed analysis of the three-dimensional harmonic oscillator excited in coherent states is given.
A detailed analysis of the simple harmonic oscillator is given. The usual assumption that a (Hermitian) phase operator 4
(conjugate to the number operator N) exists is shown to be erroneous. However, cosine and sine operators C and S exist
and are the appropriate phase variables. A Poisson bracket argument using action-angle (rather I, cos P, sin p) variables
is used to deduce C and S. The spectra and eigenfunctions of these operators are investigated, along with the important
"phase-di6'erence" periodic variables. The properties of the oscillator variables in the various types of states are analyzed
with special attention to the uncertainty relations and the transition to the classical limit. The utility of coherent states
as a basis for the description of the evolution of the density matrix is emphasized. In this basis it is easy to identify the
classical Liouville equation in action-angle variables along with quantum-mechanical "corrections. " Mention is made of
possible physical applications to superQuid systems.
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l. INTRODUCTION

Despite 50 years of vigorous development, the
theory' ' of quantum mechanics continues to reward
its students with new insights. Within the past few
years the notion of phase variables in quantum systems
has been greatly clarihed. In this paper we review recent

*Supported in part by the U. S. Ofhce of Naval Research and
the U. S. Atomic Energy Commission.

' W. Heisenberg, Z. Physik 33, 879 (1925).
2 E. Schrodinger, Ann. Physik 79, 361, 489, 734 (1926).
I M. Jammer, Conceptlal Development of QNantlm Mechanics

(McGraw-Hill Book Co., New York, 1966).

work in this field. We are especially concerned with the
proper definition of phase variables and their conjugate
operators. It is of interest that this problem is best
viewed from the structure of the uncertainty relations,
discovered originally by Heisenberg. 4

We are not explicitly concerned with the continuing
debate on the proper interpretation of the formalism of
quantum mechanics. For all practical purposes we sub-
scribe to the orthodox~ "Copenhagen interpretation. "
We only note in passing that even from the early days of
quantum mechanics many distinguished physicists have
been unhappy with the probabilistic view of the universe
implied by the orthodox view. ' In particular, the
famous Bohr —Einstein debates' 5 6 led to a considerable
clarification of the issues at stake.

Challenges to the orthodox interpretation continue.
Although detailed mathematical investigations of the
quantum theory have been made with the intention of
invalidating the uncertainty principle, most of the
recent challenges have involved the "hidden variable"
concept. We give some pertinent references. ~"

' W. Heisenberg, Z. Physik 43, 172 (1927) .
N. Bohr, article in Albert Einstein: I'hilospher-Scientist,

P. A. Schilpp, Ed. (Library of Living Philosophers, Inc., Evanston,
Ill., 1949).' W. Heinsenberg, article in Niels Bohr and the Development of
I'hysics, W. Pauli, Ed. (Pergarmon Press, Ltd. , London, 1955).

r W. Heisenberg, Das Naturbild der IIeutigen Physik (Rowohlt,
Hamburg, 1958) .

A Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777
(1935).

J. Picht, Wiss. Z. Padagogischen Hochschule Potsdam. V, 1
(1962).

'e J. Picht, Acta Phys. Polon. 2'7, 25 (1965)."D. Bohm, Phys. Rev. 85, 166, 180 (1952).
's D. Bohm and J. Bub, Rev. Mod. Ph . 38, 453, 470 (1966).
'3,J. S. Bell, Rev. Mod. Phys. 38, 447 1966).
'4, J. von Neumann, 3IIathematische &Nndlagen der QNanten-

mechanik (Julius Springer-Verlag, Berlin, 1932) /English transl. :
Princeton University Press, Princeton, N.J. (1955)g, see p. 209,
and p. 305fF (English edition).

n J. Albertson, Am. J. Phys. 29, 478 (1961).This reference
contains an exposition of von Neumann's proof.

&fi
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In Sec. 2 we study the general question of uncertainty
relations using a new method developed by Jackiw. "
Equations are given to determine the wave functions
minimizing various uncertainty products. In Sec. 3
the "coherent states" of a harmonic oscillator are
derived as the minimum-uncertainty position-momen-
tum states. These states were discovered by Schrodinger
very early in the history of quantum mechanics. In
Sec. 4 we begin our study of angle variables by dis-
cussing the relation between orbital angular momentum
L, and azimuthal angle p. It is emphasized that much
confusion exists in the literature owing to the improper
treatment of periodicity. Well-defined uncertainty rela-
tions involving L, and the periodic variables sin @ and
cos P are given. It is then shown that these inequalities
are nearly satisfied as equalities for a three-dimensional
harmonic oscillator in a coherent state. Finally, exact
minimum-uncertainty states are given.

Section 5 discusses the extent to which number and
phase variables can be used to describe the quantum-
mechanical harmonic oscillator. In his original paper
dealing with the quantization of the electromagnetic
field, Dirac' assumed the existence of an Hermitian
phase operator qb conjugate to the number operator. As
shown in an important paper by Susskind and Glo-
gower, " this assumption leads to contradictions. How-
ever, one can describe the phase by means of two well-
defined Hermitian operators C and S, which correspond
to cos P and sing in the classical limit. It is stressed
that the absence of a proper phase operator results from
the boundedness of the eigenvalue spectrum of the
number operator. Uncertainty relations" connecting
the well-defined operators are derived and discussed.

Section 6 is concerned with the eigenvalue spectra
and eigenfunctions of the C and S operators. The
eigenvalue spectra of C and S are continuous and range
from —1 to +1.The eigenfunctions (phase states) are
distributions normalized to a delta function; they do
not remain eigenstates as time progresses. In Sec. 7

operators are constructed which correspond to the
phase difference of two independent oscillators. Here
we find the interesting result that the sine and cosine
operators representing the phase difference commute
with the tota1 number operator. These operators have a
point spectrum. We derive the eigenfunctions and the
eigenvalue spectrum.

In Sec. 8 the physical properties of the coherent
states, the phase states, the minimum-uncertainty
states, and the number states are analyzed with empha-
sis on the uncertainty relations. It is emphasized that
for coherent states the proper number-phase uncertainty
relations are nearly minimized when the mean oscillator
number is greater than unity. ' Finally the (normaliza-
ble) minimum-uncertainty states of Jackiwm are given
for the simple harmonic oscillator.
"R. Jackiw, J. Math. Phys. (to be published) .
'r P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 243 (1927).
» L. Susskind and J. Glogower, Physics 1, 49 (1964).
~ P. Carruthers and M. M. Nieto, Phys. Rev. Letters 14, 387

{1965).

In Sec. 9 the usefulness of the number-phase variables
for the theory of irreversibility in systems of oscillators
is discussed. "The equation of motion for the density
matrix is given in the coherent state basis; when the
transition to "action-angle" variables is given, one
obtains equations of the type developed by Brout and
Prigogine" "for classical systems, along with quantum-
mechanical corrections. We sketch the general deriva-
tion of the quantum-mechanical master equation for
the energy distribution of a system of coupled harmonic
oscillators. Uncertainty relations are given connecting
the unperturbed Liouville operator and its conjugate
phase angle. Finally, in Sec. 10, we point out some
interesting analogies between some of the state vectors
studied here and qualitative properties of wave func-
tions representing superQuid systems. "

Although we have not treated the problematic
energy-time uncertainty relation, 24 we think the present
analysis is pertinent to this question. In our opinion,
a definitive treatment of the energy —time uncertainty
relation remains to be given. In particular, all time
operators proposed up to now" "seem to be undefined
mathematically. We give a representative list of refer-
ences on this problem ~" "

2. UNCERTAINTY RELATIONS

A. Heisenberg's Method and the Direct Method

Variants of the standard Heisenberg derivation of
uncertainty relations are given in many text books on
quantum mechanics. ""

One starts by defining the rms Quctuation of the
Hermitian dynamical variable x by

Then

(i)x)'=(x') —(x)'; (A)—= (+
~

A
~

4'). (2.1)

(hx)'= (X'), (2.2)

n P. Carruthers and K. S. Dy, Phys. Rev. 14'7, 214 (1966).
~' R. Brout and I. Prigogine, Physica 22, 621 (1956).
s'I. Prigogine, citron Eqnibtbrin-rn Statistical Mechanics (Inter-

science Publishers, Inc. , ¹wYork, 1962)."P.W. Anderson, Rev. Mod. Phys. 38, 298 (1966), and refer-
ences therein.

'4 See, however, the remarks at the end of Sec. S.
s' W. Pauli, Ifandbnch der Physih (Springer-Verlag, Berlin,

1958), Vol. V/1, p. 59—64."F.T. Smith, Phys. Rev. 118, 349 (1960); see Eq. (49).
~~ Y. Aharanov and D. Bohm, Phys. Rev. 122, 1649 (1961).
'8 B.A. Lippmann, Phys. Rev. 151, 1023 (1966).
~' L. D. Landau and E. M. Lifshitz, Quantum Mechanic'cs

(Pergamon Press Ltd. , London, and Addison-Wesley Publishing
Co. , Inc. , Reading, Mass. , 1958), Sec. 44, p. 1508.

n V. A. Fock, Soviet Phys. —JETP 15,784 (1962)LZh. Eksperim.
i Teor. Fiz. 42, 1135 (1962)j.

3' Y. Aharanov and D. Bohm, 134, B1417 (1964) .
3'D. Bohm, Quantum Theory (Prentice —Hall, Inc., Englewood

Clips, N. J., 1951),p. 206.
~ L. D. Landau and E. M. Lifshitz, Quantum Mechanics

(Addison-Wesley Publishing Company, Inc., Reading, Mass. ,
1958), p. 45.

~ E. Merzbacher, Quantum Mechanics (John Wiley 8z Sons,
Inc. , New York, 1961),p, 156.

n K. Gottfried, Qnantuns Mechanics (W. A. Benjamin, Inc.,¹wYork, 1966), p. 215.
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where the deviation from the mean is

X=x—(x).

The Schwartz inequality then implies

(»)'(Ay)'= &X')(Y')&
I &XY) I'

(»)'(Ay)'=—
I (XY) I'+Z(@).

(2.3)

(2.4)

R is a remainder term that depends only on +, and is
positive semi-definite. One easily sees that the condition
for the vanishing of R is

or
X

I 4)+iyY I
4') =0 (y real)

(x+sn) I +)=&14),

(2.14)

minimum uncertainty product) if R and. Q vanish.
Jackiw"" showed that this condition gives an eigen-
value equation for the minimum uncertainty state. One
simply substitutes Eq. (2.5) (meaning R=O), in Eq.
(2.8), setting Eq. (2.8) equal to zero (meaning Q=O).
One then finds that c=iy, where y is real, and obtains
the eigenvalue equation for the minimum uncertainty
state:

R(+) =0~ x
I
+)=cY

I 4), (2 5) ~—= (x)+sVb) (2.15)

Px, yj=I X, Yg—=sA

Then the product XY may be written as

XY=-', IX, Y}+-,'iA.

The expectation value of the anticommutator,

(2 6)

l&I» Y})=-:(I y})—&*)&y) (2 8)

is the quantum-mechanical analog of the covariance of
two randomly distributed variables. "One can consider
the variables to be uncorrelated if both sides of Eq.
(2.8) are equal to zero.

Combining (2.5) —(2.7) gives us

U(+) =—(»)'(Ay)'= V'(+)+-:Q(+)+~(+), (2 9)

J'(+) =
I (I x, Yj) I'=

I (A) I', (2.10)

Q(~)= I&Ix, Y})I' (2.11)

In the Heisenberg method one considers A to be a
constant (c number). Then I' goes not depend on 4'
and is just A'. In this case,

U(%) = (»)'(Ay)'=-', A'+-', Q(+)+E(+), (2.12)

where c is a constant.
Now, let the commutator of X and F be given by iA:

Then, by using (2.6) and (2.13) with the equality
sign, we have

LX'+ps Ysa2y(») (Ay) j I 4)=0, (2.17)

where the sign is determined as A =&
I A

I
and

»=+I (»)sj'ls. Taking the expectation value of
(2.16) and using (2.2) gives

&=~L(»)'/(&~) 9"

so that
= &A)/2(b, y)'=A/2(hy)', (2.18)

II X'/(»)'3+L Y'/(Ay) sj—2} I +)=o (2»)
We then have an eigenvalue equation (2.15) for

obtaining the minimum uncertainty state
I 4). There

are three real parameters y, Re X, and Im X, and the
normalization condition &O'

I
4') =1.Following Jackiw, "

we call this the direct method, valid when A is a c
number. '9

p is easily determined. Multiplying (2.14) by (X iy—Y)
gives

(Xs+ysYs+iy(X, Y'j)
I @)=0. (2.16)

U(+) & —,'A'. (2.13)

Davidson pointed out" that the derivation of (2.13)
is not general because it breaks down when

I +) is an
eigenstate of x or y. In this case x is not Hermitian with
respect to y I

x') and y is not Hermitian with respect
to x

I y ). This is easily seen by contradiction, since, if

(x'
I xy I

x') =x'(x'
I y I

x'),

then A =0, contradicting (2.6).
Davidson realized that, at least for the position-

momentum case, the general proof is accomplished by
an Euler-Lagrange variational principle, and that this
leads one to the well-known Gaussian for the state that
minimizes (»)'(Ap) '. As we shall see in the next sub-
section, the variational principle allows one to construct
a proof for general operators x, y, and A.

Equation (2.13) reduces to an equality (i.e., the

36 E. Parzen, Modern Probability Theory and Its Applications
(John Wiley 8z Sons, Inc. , New York, 1960), p. 3616.

» E. R. Davidson, J. Chem. Phys. 42, 1491 (1965}.

3U/3&+
I
=m}e). (2.20)

ssjn this section we are using the notation of Gottfried (Ref.
33) and Jackiw (Ref. 16).The general exposition follows Jackiw.
His work is a thorough investigation of this aspect of the subject.

39This result does not overcome the objections of Davidson
(Ref. 21) for the case when

~ f) is an eigenstate of x or y. How-
ever, one can evaluate these cases explicity to see if they minimize
the uncertainty relation.

4e P. A. M. Dirac, Proc. Cambridge PhiL Soc. 23, 412 (1926).
4' P. A. M. Dirac, Proc. Roy. Soc. (London) 113, 621 (1927).
4'What follows is valid only if the matrix elements of x for

eigenstates of y diverge, and vice versa. Otherwise, they would
obviously yield zero uncertainty product.

B. Analytic Method

The direct method is not a general one for obtaining
the minimum uncertainty state when A is a q number
(operator). ~@ For this more general case, Jackiw
developed' an Euler-Lagrange (EL) formalism. ~

We start with the subsidary condition &+ I%')=1.
Considering the variation of &O' I to be independent of

I +), we obtain the condition for U(%') to be a minimum:
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Here m is a Lagrange multiplier. Now from (2.1) we
have

So, combining (2.9), (2.20), and equations like (2.21),
we And

[(ay) 'x'
~ e)+ (») I 1 ~

e)
= [(Ax) 2(y) + (Ay) '(x)'+m$

~
+). (2.22)

By taking the expectation value of (2.22), we obtain
the value of the numerical constant in the brackets on
the right-hand side, it being 2(hx) '(hy) ~. Putting this
back into (2.22) and rearranging, we obtain the Euler-
Lagrange equation for

~ N), for which U is a minimum: 4, (@)= U(+)/(A)', (2.28)

C. "Complicated" Uncertainty Relations and the
Direct Method

It is to be noted that, since the EL equation of the
analytic method is of higher order than the direct
method equation, the EL equation may have solutions
although the direct method does not yield a solution.
(This still leaves open the question whether or not the
solution is a minimum solution. ) However, the EL
equation is more complicated; and if it were possible
(for any given uncertainty relation) to use the direct
method, it would certainly be easier to resolve the
minimization question.

In fact, by using "complicated" uncertainty relations,
this is indeed possible. If we divide (2.9) by E(4), we
have

or

{[x'/(»)'1+[1"/(~y)'3—2} I +)=o (2 23) Ui(+) =[(»)'(~y)'/(A)'j
=-'+-'m(+)/~(+) j+[&(+)/&(+)j (2 29)

{[(x—n)/ah+[(y —P)/b2 —2} I e)=0. (2.24)
Ug(@) )-', . (2.30)

Equations (2.23) and (2.24) are eigenvalue equa-
tions for

~ N), with the four real parameters n, a, P, b,
which are determined self-consistently by having them
satisfy

n= (x),

a'= (hx)', (2.25)

We call the states which satisfy (2.24) critical states. "
They couM be maximum, minimum, or "points of inQec-
tion" of U. One can take a second variation of U to
check whether the state corresponds to a minimum of
U. By calculating (»)'(hy)'=a'b' for the various
critical states, one can see which of them yields the
smallest value.

This now gives us a generalization of the direct
method that is valid if [x, y] is a c number or a q
number. This procedure is called the aealytic method. '
«&. We 6nd the relationship between the direct method
and the analytic method by attempting to use the
direct method for the case where A is a q number. One
starts from (2.16), which is still valid, and proceeds as
before. This time one obtains

v= &A)/2(~y)'=~[(»)'/(~y)'j'" (2.26)

{[X2/(») 2j+[p'2/(Qy) mj —(2A/(A)) } ~
Q) =0.

(2.27)

Comparing (2.26) and (2.27) with the direct method
results in (2.18) and (2.19); we see that if A is a q
number, the direct method determines a critical state
~
N) if and only if

~
N) is an eigenstate of A. These states

are not in general all the possible critical states, and so
the dir'ect method is not a general method to determine
those states which minimize U(%) when A is a q
number.

3. POSITION-MOMENTUM VARIABLES )
COHERENT STATES

For the first application of the results of the last
section, we consider the familiar position-momentum
case. Starting from the commutator

[x, p)=i, p= i(d/dx)—, (3.1)

we use the direct method [Eqs. (2.15) and (2.18)j to
give

[xyv(d/dx) jy=~y, (3 2)

(3.3)

v=1/2(~p)'=2(»)'i (3 4)

where the last equality in (3.4) is true because, by
assumption, f is a minimum uncertainty state. The

By using the variational principle on (2.28), we obtain
the accessary condition that

{[X2/(») 2)/[I'2/(gy) q —(2A/(A)) } ~
@)=0.

Equation (2.31) is the same as (2.27). Thus, by con-
sidering the uncertainty relation U&(%') instead of
U(+), we are able to use the direct method to obtain
the minimum uncertainty state. [The case when

P(W) =(A)2=0 must be examined separately. ) This
will be extremely useful to us in the future.

We end this section with an observation. Because of
the normalization condition, the set of

~
@) is not

compact. Because of this the uncertainty product may
not attain a minimum or maximum, and we will have
no normalizable solutions that satisfy our EL equation.
Then we have no state that is "as classical as possible, "
since small uncertainty product states approach a
limiting minimum state that is outside our allowed set.
We find such cases later.
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solution to (3.2) is

p L() */V) —(*'/2V) 1. (3.5)

ctb=hxhy=rt+ 2,
-

we obtain normalized solutions of the form

(3.8)

P„(x)= exp (iPx) 24„(x—n)

= exp (2(p)x) N„(x—(x)), (3.9)

where the N„(x) are the ordinary normalized "number"
eigenfunctions with Inass (rn) of b'/2, force constant
(E) of 2/422, and energy 2. In the usual notation they
are

(x) L(s//srl/22nrt t) 1/2+ (I/x) exp ( 24/2x2)

Combining (3.2) and (3.5) and normalizing yields

IP(X) =(22r(AX) 2$ '/4

&& -p I-L(*-(*))/»*3'+'(p)*I (36)

We also could have used the variation'~ method or
the EL analytic method, ' obtaining the eigenvalue
equation

X n—' ( 2(—c)/c)X) —P&2
~

~ ~+I,

By comparing (3.7) to the Schrodinger equation for
the harmonic oscillator, we 6nd that when

—&ClaS87

class (3.14)

Equation (3.14) can be thought of as a Gaussian
wave packet, which at t=0 is centered at A cos p. As
time increases, the packet oscillates between (+A)
and (—A), with angular frequency ce, without spread-
ing. This picture has been demonstrated nicely by
Hen1.ey and Thirring. 44

The states that we have just described are called
"coherent states. " By looking at (3.6), we can see
immediately that these are just the states we have
been seeking. LMultiply (3.6) by exp (icet) and sub-
stitute in (3.14) to obtain the Heisenberg representa-
tion. ] It is easy to check explicitly that for these states
we do indeed have

This means that its Fourier transform (the wave func-
tion in momentum space) is also a Gaussian.

Now we have the key, for we know that if a Gaussian
is narrow or broad Lsmall or large (hx)sj, its Fourier
transform is broad or narrow )large or small (d,p)sj
and that (hx)2(hp)2 equals a constant (here 4). Also,
moving a Gaussian off center, (x)QO or (p)&0, does
not aBect the Gaussian transform properties. Thus we
can have any energy expectation value (H) that we
desire. This means that we have an uncountable num-
ber of states, each with values in the Heisenberg repre-
sentation like (3.1), i.e.,

(b/a) I/'~ =rNE = r/22ces, (3.10) (&x)2(hp)'=4 "coherent" states. (3.15)

where the H„are the Hermite polynomials, "and co is
the angular frequency corresponding to the classical
harmonic oscillator.

In usual discussions of the harmonic oscillator, the
number eigenfunctions of (3.10) are used. They have
energy values

E„=(I+-', )ce (3.11)

X,I,(t) =A COS (411 est), —

Peteee(t) =t/tOSA S111 ($ OS() . —(3.13)

The key to ending the harmonic oscillator states
which are "as classical as possible" is given by Eq.
(3.8). This shows the well-known result that in the
number representation the ground state is the "most
classical" of the number states, i.e., (t)x)2(hp)2=14.
The ground state is special because it is a Gaussian.

'~ P. M. Morse and H. Feshbach, 2lfethods of Theoretica/ Physics,
Part I (McGraw-Hill Book Co., New York, 1933),p. 786.

and are orthogonal. However, no matter how large the
quantum number n, we have

(n l
x

l e)=(el p ln)=0. (3.12)

Thus, in no way do they go over to the classical har-
monic oscillator, which has

he realized he could get the desired Gaussian form by
letting

m /$)n fy=cpl-l —", ,~ &2)
(3.1/)

where C is the normalization constant.
Physically the coherent states are very important,

Besides being the "natural" oscillator states, they are
also the states emitted by a classical current source,
and are of great usefulness in a quantum-mechanical
description of coherent light sources, as was emphasized

~ E. M. Henley and W. Thirring, E/mentary Quantum Field
Theory (Mcoraw-Hill Book Co., New York, 1962), Chap. 2.

n E. Schrodinger, Z. Physik 14, 664 (1926).~ D. Bohm (Ref. 32, Sec. 2, p. 306) goes through a derivation
similar to that of Schrodinger in Ref. 45.

The coherent states were first discovered in a very
clever manner by Schrodinger, "who was looking for
wave packets with just the oscillator and non-spreading
characteristics we have described. '-' By noting the form
of Hermite Polynomial generating function

co $e
Q —,exp (—',x') H„(x) = exp (—/+2)x —jsrx'),
'g~ SO

(3.16)
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by Glauber' "and by Sudarshan and Mehta. " ' They
have also been used in investigation of other ordered
phenomena, such as superconductivity and super-
Quidity 5 and phonons in crystals.

In a previous work" the authors have investigated in
great detail the relationship between the coherent
states and the harmonic oscillator. Also, questions such
as the probability distribution of an oscillator in the
coherent states, more general forced quantum oscillator,
and transition probabilities of a forced oscillator were
discussed. For a thorough description of the coherent
states in the Heisenberg representation, we refer the
reader to this paper and also to Ref. 49.

In place of position and momentum variables, it is
often convenient to use the creation and annihilation
operators c~ and a. These are related by

a = fi/(2nuo) 't') (p im—pox),

at =P i/(—2mto) 't' 1(p+imcox),

solving (3.18):
x=xp(a+at),

p = —zmcoxp (a—at),

xp ——(2m') —'t', (3.22)

I a) = exp (-~ I
a I') Z

la)=A(a) I0),

where xo is the zero-point rms fluctuation.
The coherent states can be defined as the eigenstates

of the annihilation operator, i.e.,

(3.23)

where a is any complex number. Expansion of I a) in

number states leads to an easily solved recursion relation
for the expansion coefficient:

La, a'(=1. (3.18) A (a) —= exp (aat —a*a), (3.24)

H = (ata+-', )co, (3.19)

The last equation of (3.18) is equivalent to (3.1).The
analysis of the eigenvalue spectrum of the oscillator
is most easily done with these complex normal coordi-
nates. The Hamiltonian is At(a) aA (a) =a+a,

At(a) atA (a) =at+a*

(3.25)

(3.26)

where A (a) is the unitary (AA t =A tA = 1) operator
that creates the coherent states. The operators a, u~,

and A have the properties

which has eigenvalues (3.11). ata is called the number
operator. From the commutators A(a) =At( —a). (3.27)

La, Hj=toa,

I
u', Pj= —(ua', (3.20)

we see that: (1) the Heisenberg operators a(t) and
at(t) are a exp ( itot) an—d at exp (icot), respectively;
(2) a (at) decreases (increases) the energy of a state
by energy co. For number states

I rt) we have

As we noted before, the coherent states are not
orthogonal. (They could not be, because the countable
number basis spans the space, whereas the coherent
states have an uncountable number of states, one for
every a on the complex plane. ) From (3.24) the inner
product is

(a It3& = exp (a'3 s I
a I' ——s It)I')

I N&=L(a') "/(n!)'"j
I o),

I &a I &) I'= exp ( —I
a ti I'), — (3.28)

a I
rt&=rt't'

I
I—1),

at
I rt) = (st+1) 't'

I sz+1).

The position and momentum operators are found by

and corresponds to the overlap integral of two Gaussians
in the Schrodinger wave picture. However, the coherent
states are complete, and have the completeness relation

"R.J. Glauber, Phys. Rev. Letters, 10, 84 (1963).
'e R. J. Glauber, Phys. Rev. 130, 2529 (1963}."R.J. Glauber, Phys. Rev. 131~ 2766 (1963).
u R. J. Glauber, in Quantum Etectronscs, Proceedhngs of the

Third Int. Congress, Paris, 1963, N. Bloembergen and P. Grivet,
Eds. (Columbia University Press, New York, 1964}& Vol. I,
p. 111.

' R. J. Glauber, in Quantum Optics and Electronics, Les Pouches
Summer School, 1964, C. DeWitt et al. , Eds. (Gordon and Breach
Science Publishers, Inc. , New York, 1965), p. 65.

ss E. C. G. Sudarshan, Phys. Rev. Letters 10, 227 (1963).
u E. C. G. Sudarshan, in Proceedhngs of the SymPosium on

Optical lasers, 1963 (Polytechnic Institute of Brooklyn,
Brooklyn, New York, 1963), p. 45.

~ C. L. Mehta and E. C. G. Sudarshan, Phys. Rev. 138, B274
(1965).

u F. W. Cummings and J. R. Johnston, Phys. Rev. 151, 105
(1966); Errata (to be published) .

se P. Carruthers and M. M. Nieto, Am. J. Phys. 33, 537 (1965) ~

i=m i de n o. (3.29)

(3.30)d'u=d Re O.d Im o..

=xp(a+a*)

=2xo Re a. (3.31)

We now can very easily calculate expectation values
with the coherent states. The expectation value of any
polynomial (ordered so that all creation operators
stand to the left of all annihilation operators) in a and
u~ is then obtained by the substitutions u—+a, u~—++*.
In particular,

&-I*I-)=*.(-l (+ ) I-&
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Similarly,

&cr I p I
a)=2nupzpImcr,

&-I~I-)=-&-I &
t+-.) I-&

GO CL

(3.32)

(3.33)

Equation (3.33) shows us that, as expected, we can
have any expectation value of the Hamiltonian.

Combining (2.1), (3.18), and (3.31), it is trivial to
see that

FIG. 1. The periodic phase variable C, which is discontinuous.

(Ag)'..h=xp' ——(2nuu) '.

In the same manner,

(Ap)'.,h= m'cpxsp'=-,'mu.

Therefore, for all coherent states we have 4L.AP& ', (wrong-) . (4 5)

since, in detail, the equality (4.4) involves the vanishing
of a "surface term. " But p itself is not periodic, as
defined above. Thus L, will not be Hermitian and one
cannot conclude that (4.3) implies the uncertainty

(3 35) relation

(»)'(AP)'. =-. (3.36)

and the coherent states are "as classical as possible"
in position-momentum space.

In closing this section we would like to emphasize
the importance of the coherent states. This is not only
due to their physical significance, but also to the great
simplification in calculating physical quantities that
often comes with their use. The fact that they are not
orthogonal is of small issue and is often completely
overweighed by these other considerations.

4. ANGULAR MOMENTUM-ANGLE VARIABLES

A. Uncertainty Relations

A proper description of angle or phase variables
requires that periodicity be taken into account. This is
especially important as a preliminary to the recognition
of a second crucial feature: the nature of the eigenvalue
spectrum of the operator that is conjugate to the angle
variable.

We begin our discussion by reconsidering the familiar
problem of angular momentum in three dimensions.
Let p be the azimuthal angle about the s axis; the
definition

@= tan-' (y/z) (4.1)

only defines p modulo 2sr. Defining p to be continuous,
ranging from —po to +oo, we can represent the s
component of orbital momentum as a differential
operator (ft =1):

Of course (4.5) has long been suspect'r since one knows
that Huctuations in P greater than 2sr have little physical
meaning. It is easy to choose wave functions for which
AL, & r4 so that -AP is greater than 2sr. We can even have
DL, =O by choosing eigenfunctions of L„ the spherical
harmonics I'i~(0, P), denoted by I lm). (However, one
should remember the remarks in Sec. 2 concerning un-
certainty relations in states which are eigenfunctions
of one of the operators. )

Another aspect of the difFiculty concerns a "paradox"
which arises from a naive trust in the Hermiticity of
L,.Taking the matrix element of (4.3), we find

&im'I [@,L,) I
lm)=i&lm'I lm),

(m —m') (lm'
I Q I lm) =i8 ~ (wrong) . (4.6)

This equation, if true, would predict that 0=1, for
m'=m. The mistake is in supposing that, in

&lm'I L,y I lm),

I., can "operate to the left, " as implied by Eq. (4.4).
The trouble arises from the non-periodicity of p I lm),
or alternately that @ is not Hermitian with respect to
I., I

im).
A possible solution is to introduce a periodic coor-

dinate C (p) (Fig. 1) . Then one can work with spherical
harmonics and the periodic variable C; L, is safely
Herrnitian. However, the commutation rule is no
longer given by Eq. (4.3), but rather by's's

L.=&Pp yP. = i(~(—~4)— (4.2) [@,L,j=i{1—2sr g 8[y—(2ss+1) jI. (4.2)

L, and P are commonly regarded as conjugate variables,
the relevant commutator being

[y, L,]=i. (4.3)

However, the use of this angle variable entails many
pitfalls for the unwary. In particular, L, given by (2.2)
is Hermitian only in If}s,the space of periodic functions
with period 2x. Only for this space can be have

&L.4i I A) = Qi I L.A), (44)

The discontinuity in 4 could be put elsewhere, but
always one of the delta functions in (4.2) would contrib-
ute in the physical interval of 2x. Therefore the "un-
certainty relation" (4.5) does not hold for C either.

Since no one doubts the qualitative content of (4.5),
it would be useful to formulate the problem in a mathe-
matically respectable way. One procedure for doing

's P. Jordan, Z. Physik 44, 1 (1927)."D.Judge and J. T. Lewis, Phys. Letters 5, 190 (1963).
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FIG. 2. A well-behaved probability
distribution P(p) with 6@small com-
pared to 2x leads to the "usual" un-
certainty relation of Eq. (4.5).

to second order in p —pe, we obtain

cos Q = cos go[1—ts (8$)sj—sin Qs8$,

sin P= sin ps[1 rs—(8$)'j+ cos Pe3$,

(4.12)

this has been proposed by Judge. "Judge and others'~"
studied the uncertainty relation obtained from (4.7)
and defined (hp)' to be

%e prefer a different method which seems simpler
and also reduces to (4.5) whenever the latter is appro-
priate, i.e., whenever Ag is rather less than 2s-. The idea
is simply to use coetiemous periodic variables to locate
the azimuthal position. As Louisell" 6rst pointed out,
the simplest idea is to give sin @ and cos p instead of p.
Any other physical (periodic) function can then be con-
structed using Fourier series.

From the commutation relations

[sin Q, L,j=s cos Q,

[cos Q, L,g= i sin—P,

we can deduce the uncertainty relations

(4.9)

or

(AL,)s(4 sin &f )s& sr (cos Q)',

(AL,)s(6 cos Q)')4r (sin Q)',

(AL, ) s(5 sing)'/(cos $)'&-', ,

(EL,)'(6 cos p)'/(sin p)')-'

(4.10a)

(4.10b)

(4.10c)

(4.10d)

since L, is now Hermitian. (We always assume the
periodicity of the wave function; no diQiculty occurs
for half-integral total angular momenturg since the
wave function occurs quadratically. )

If desired, the pair of relations (4.10) can be rewritten
to yield one relation symmetrical in sin p and cos p:

(hL, )s[(h cos P) '+ (d, sin @)s$

(sin Q)s+ (cos p)'

Any of the relations (4.10)—(4.11) reduce to (4.5)
whenever the distribution of P in the wave function is
sufBciently localized. It is easy to show this. One simply
constructs the probability distribution E(P) by inte-
grating out all variables except @. It is assumed that
P(@) is peaked at g& with an essentially symmetrical
distribution (Fig. 2) . By expanding cos g and sin g up

"D.Judge, Phys. Letters 5, 189 (1963).
D. Judge, Nuovo Cimento 31, 332 (1964}.

"M. Bouten, N. Maene, and P. Van Leuven, Nuovo Cimento
3j, 1119 (1965).

"A. A. Evett and A. H. Mahmuod, Nuovo Cimento 38, 295
(1965).

'8 K. Kraus, Z. Physik 188, 374 (1965);201, 134 (1967).
a' W. H. Louisell, Phys. Letters '7, 60 (1963).

[Note that, since P(p) is assumed to be localized
around Ps, 2s is greater than any significant 3&.j

Ke now Gnd that

(cos p) = cos go[1——',((bp)')j,

(sin P) = sin Ps[1—rs((8$) ')g,

(cos'4)= cos'4[1 —((~4)')3+ si 'A((~4)'),
(sin' Q) = sin' Q,[1—((8P)')]+ cos' Pe((3$)') (4 13)

Keeping terms up to second order, we have

(8 cos y)'—= (cos' y) —(cos y)'
= sin' ge((3P) '),

(6 sin p) '—= (sins p) —(sin @)s

= cos' gs((bg) ') (4.14)

Since cos'ge is (cos' P) to lowest order, (4.14) reduces
either of the relations (4.10) to (4.5) with the natural
identi6cation

(4.15)

To summarize, the use of an angle variable y to
locate a geometrical point in the xy plane leads to
problems with the Hermiticity of the generator of
rotations (L,) about the s axis, if the traditional com-
mutator (4.3) is to be maintained. It seems preferable
to use a pair of continuous periodic variables, the
simplest being cos g and sin @, and all possible products
of these quantities. Then I., is Herrnitian, and the pair
of uncertainty relations (4.10) gives a mathematically
and physically correct description of the situation.

The eigenvalue spectrum of I., is discrete and sym-
metrical, running from —/ to +/ in integral steps. This
is a consequence of the boundedness of J2. For a truly
two-dimensional problem (such as a bead on a circular
wire), the spectrum of L, is discrete but runs over the
integers from —ao to +~. (Here we assume the
absence of double valued representations. ) When we
consider the phase of a harmonic oscillator, the spectrum
of the "conjugate" variable (number) is considerably
different, although it too is discrete.

B. Three-Dimensional Oscillator in Coherent States

Since the coherent states are of such important
physical significance and are the minimum uncertainty
states for position-momentum, it is of obvious interest
to find out if they are small uncertainty states for
angular momentum angle. This point was previously
investigated by one of the authors. "

ss M. M. Nfeto, Phys. Rev. Letters 18. 182 (1967).
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First, let
~
n) and

~ P) be coherent states quantized
along the x and y axis, respectively. Consider the
anisotropic case

Using L, from (4.2), we obtain

(L.)=(,p I(*p.-yp*) I, p)
=4mxpyp[co„Re n Im P—cp, Re P Im nj, (4.19)

where (n, P
~

=
~ n, P)t. Also we have

(L,P) =nPxp'yp'{pp„'[4(Re n) +1j[4(Im P) P+1j
—pp,ar„[8 Ren Imn ReP ImP+2)

+ cp '[4(Im a) '/1][4(Re P) '+ 1j}, (4.20)

cp, = (t'e,/sos) "',
pp„= (b„/sos) '", (4.16)

where the k, are the force constants, the co; the angular
velocities, and m the mass. The root-mean-square
positions are now given by (we set fl =1 here)

xp ——(2ssscp, )
—'I',

yp ——(2' co„)
—'I'.

In the Heisenberg representation we now have

x(t) =xp(a(t)+at(t) ),

(4 17) so that

(gj )P ssspx 2y 2{~2[1+4(Re n)P+4(Im P)2j
—2',cop+co,'[1+4(Im a)'+4(Re P)'g}. (4.21)

p, = —imago, xp(a(t) —at(t) ),

y(t) =y.(b(t)+b'(t) ),
p„=—inure„yp (b (t) bt (t) ).— (4.18)

For the isotropic case, (4.21) reduces to

(~L,)P= {n['+)P] =X.yX, =X.
(sin p) is given by (y/(x'+y') '"), or

(4.22)

(sin @)= (n, P ~
yp(b+b') /[{xp(a+a") }'+{yp(b+b') }'J"

I
n, P) (4.23}

Equation (4.23) shows one of the appealing features of the sin g and cos P operators, that they have a meaning
in a second quantized formalism. By making use of the properties of the coherent states [cf. Eqs. (3.24)-(3.25)j

i
a)=A(n) { 0),

At(n)A(n) =1,

(4.23) becomes
La+a", ~(n)]- (n+n') ~(n) (4.24)

(sin y) = (0, 0
~
yp(b+bt+2 Re P)/[{xp(a+at+2(Re n) )}'+{yp(b+bt+2 Re P) }J '

~
0, 0), (4 25)

which is a ground-state expectation value.
If we now transform to the Schrodinger wave picture and use the oscillator ground-state wave functions, «we

Gnd the result

OO clo (y+S) W
(a, p~ sing

~
a, p)=n ' dxexp( —x') dyexp( —y')

[(x+6,)'+W'(y+S)'Jl' ' (4.26)

OO CO —(x-e)'- (y-S)'
dp exp y(xp+yp) —1jp

xS' lV' (4.27)

W =co,/ce„, e=2'~' Re n, S=2't' Re P. (4.28)

Equations (4.24)-(4.27) exhibit the property of the
operator A(n) of translating the position of a Gaussian
(see Sec. 2). sins Q, cos @, and cos'@ are of the same
form as (4.27), but with the sing operator in the
integrand [i.e., y/(x'+y')"'j replaced by the other
trigonometric operators.

The number W of (4.28) is a measure of the anisot-
ropy of the oscillator. The integrals of the type of
(4.27) are easier to do for the isotropic case (W=1)
and, for our purposes, no important new information is
lost by restricting ourselves to this case. I'or the re-
mainder of this section we will keep W=1. (The
interested reader is invited to evaluate the integrals
for the general case.)

The expressions of the type of (4.27) yield the useful
knowledge

(sin @(O', , S) )= (cos @(S, 8) ),
(sin' $ (O'„S) )= (cos' @(S, 8) ). (4.29)

This means that the uncertainty relations (4.10) are
the same with S~S, so only the first need be studied.

Since the trigonometric operators involve only the
real parts of n and P, Eqs. (4.10) and (4.22) tell us
that the lowest uncertainty product will occur for rea].
n and P. For real n and P, (L,)=0 and the "orbit". is

PP L. I. SchiB, Qmoetltsc Mechanics (McGraw-Hill Book Co.,
New Vora', 1955), Chap. IV.
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=0 FIG. 3. Four "classical orbits"
for /=A cos (dt's x=Ãe cos (catt $—) ~

with xo=yo and various values of
qb. General ellipses are involved
for ~&yo. &=0 is the case for n
and P real. We have included the
phase in x. No new orbits are
found by allowing P to be complex.

=eE+ (1 e) I(I—,

e =O."/(0',2+GP) (4.30)

point on. With u and p real we can defIne e (0(e&1)
such that

a straight line through the origin, but (61.,)'WO. If
imaginary parts appear in (r and P, (1.,)00 and the
orbits become various ellipses (see Fig. 3).

Since we are trying to construct the smallest uncer-
tainty products, we will keep n and P real from this

Using the variables IV and e, Eqs. (4.29) are now of the
form

(sin P(1V, e) )= (cos P(lV, 1—e) ). (4.31)

To evaluate (4.27) we change to polar coordinates to
obtain

g
—R2 co 2'

(sin P) = rdr d4 sin P exp P r'+2r—(8 cosP+S sin p) $
X 0 0

g-82 txI

f
2%'

rdr dp sin p exp P r'+2rR c—os (p —&) g,
0 0

R'= R'+6P,

cos 8=8/(8'+5P) ~

sing the trick of calculating a real and imaginary part gives

exp (i8) exp (—R')
(exp (iy) ) = rdr d8 cos 8 exp $ r'+2rR c—os 8j.

7r 0 0

The r integration can be done explicitly, "giving

2x

(exp (&4) )=kLexp (t8) exp ( —R') j ~8D+12~"'R cos «xp (R' cos'8)$$1+C(R cos8)],
0

(4.32)

(4.33)

(4.34)

c'(xI = er( (x) =2 '~'f exp ( t')dt—
0

(4.34)

The first term equals zero because cos 8 is odd with respect to the interval LO, 2e]. The error function term also
disappears because cos 8 is even while C (R cos 8) is odd. This leaves the middle term. After a little algebra and
noticing that the real and imaginary parts of the expectation value are from exp (ib), one fInaiiv obtains

sin P

cos Q

S
d8 cosr 8 exp (—R2 sinr 8)1I2

0',

For (sin' p) and (cos' Q), one starts from the expression like the second line of (4.32) . Integrating wIth respect
to r gives

SIII

cos' Q

exp ( —R2)
d8ttr2+ ,'Ir'I'R cos 8 exp (R-' cos' 8) 1L1+@(Rcos 8)jx' 0

R exp ( —R')=I exp (—R')+ d8 cos 8 exp (R' cos' 8) C (R cos 8)
27rl/2

Sin26 '

sin' (8+5)

cos' (8+8)
(4.36)

& sin'8(2 cos'8 —1) (437)

er ~.Grobner and N. Hofreiter, Irttegraltafel (Springer-Verlag, Vienna, 1961), line (314.5b) .

X
cos' 8

In (4.36) the cross terms drop out and we expand the (8+8) terms. The first integral in (4.37) is done by adding
both lines of (4.37) and realizing that the answer is identically equal to one. Combining and changing the form of
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the remaining integral gives

sin2 P

cos' Q

=-', exp (—R') +
sin2 8

cos' 8

2R
t 1—exp (—R')7& (2 cos'8 —1)

d8 cos 8 sin' 8 exp ( R' si—n' 8) C (R cos 8) . (4.38)

The last integral can be evaluated by observing that

m/2

I=R d8 cos 8 sin' 8 exp (—R' sins 8) C (R cos 8)

x/2 n/2

d8 cos 8 exp (—R' sin' 8) C (R cos 8) +s 'ie d8 cos' 8 exp ( —R')
2dR

The first integral on the right is the one we just calculated, and is s'"P1—exp (—R') 7/2R.
It then easily follows that

I=-'s'i'(t L1—exp (—R') 7/R'I —exp (—R') ).
We 6nally obtain

(4 39)

(4.40)

sin' P

cos' @

=2 exp ( —R')+
sin' 8

cos' 8
L1—exp ( —R')7

+. . . 1—exp ( —R')
+ -'(cos' b —sin' b)2 E.2

—exp ( R'). (—4.4-1)

Simple calculations now give the limits:

sin Q

cos g

sin'- P

cos' P

sin P

cos Q

sin' 8

cos 6

+ 1CP—S'
2 R4

S
&I2, , J ~ ~ a

8,

sin 8 (
, + ),4R'

E—+0,

sin' Q +
-', (eP —o,') +"~ .

cos' Q

E—+0. (4.42)

From (4.10) we de6ne the uncertainty product
S(X, e) for the coherent states by

this. $ In fact, it is given byes

U(E) =S(E, —',). (4.45)

lim S(E, e) =-,'.
Naca

(4.44)

The symmetric uncertainty relation U de6ned by
(4.11) is independent of e for the coherent states.
)An explicit use of (4.35) and (4.41) in (4.11) shows

S(E, e) =—(AL,)'(6 sin g)'/(cos P)'&-' (4 43)

S(E, e) was numerically calculated and is plotted in
Fig. 4 as a function of E for various values of e. The
results agree with the limits for large and small E,
which from (4.42) are

lim S(E, e) =Ln. (1—e)7
—'&n —'&-,'

N~O

This follows from sin'8(e=is) = cos' (e=—', ) =si.
Figure 4 shows that the coherent states do indeed

give a low uncertainty product for all E, which is, for
practical purposes, the minimum'. for large S. In a real
system we would expect values of e near —'„rather than
0 or 1, on physical and statistical grounds.

Note that the smallest uncertainty product is ob-
tained when e =0, i.e., when (sin g) =0.

It is possible to understand intuitively why the
uncertainty products get better as E—+~ . Ke know
from the last section that minimum uncertainty states

' We are indebted to %. Bardeen for aid in proving this at a
stage in the @rory vrhen the result was not so easy to see.
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0.9

0.8

0.7

S(N,~)

0.6

0.5

0,4

I/4
O. l I.O IO

N~
Fio. 4. The uncertainty product S(E,e) = (hL )'X

(n sin 4)'/ (cos g )' is shown as a function of E for various values
of the parameter e dered in Eq. (4.30). S(E, ~) is also the
uncertainty product U(E) dered in Eq. (4.43) . All expectation
values are for the two-dimensional coherent states discussed in
the text.

for variables whose spectra are the set of all real num-
bers behave like Gaussians, in both the variable and
conjugate momentum space. But here we have a re-
stricted domain. However, as (L,)~~, we can "ap-
proximate" L, by a Gaussian, with AL, (L,)"'. The
hg is a narrow Gaussian. As (L,)~0, we can no longer
"approximate" t),P by a Gaussian, for the tails would
be cut o8. Thus, on these intuitive grounds we expect
the uncertainty products to be better as E~ . It will

become clear in the next subsection why, for X 0,
the best uncertainty products are for ~ 0, i.e.,
(sin P) 0.

C. Minimum Uncertainty State

Because (4.10c) is the "complicated" type of uncer-
tainty relation discussed in Sec. 2.C, we can use the
direct method to find the minimum uncertainty state.
From (4.10c), (2.15), and (2.26) we have

(L,+iy sin P) P =)P,

I (~/~4) —V»n 43k=iV
7 = —(cos p)/2 (6 sin p) '. (4.46)

The solution for f iss'

(sin g);„=0,
(s'n' y)~;a = —(cos 4 )/2y = —Ii( —2y) /2yIp (—2y),

(cos"4)--=1.(—27) Pp( —2v), (4.50)

Trivially this implies the equality

L(hL, ) '(6 sin @)'/(cos g)sj ~~;„=~r. (4.52)

We finally note that, from (4.45) and our previous
discussion in this section, there is no state that allows
the symmetric uncertainty relation U in (4.11) to
reach its minimum value. This is because we would be
doing the same as minimizing U with states that have
(sin p) = (cos p) NO, which we found was impossible.
This is an example of the type of uncertainty relation
discussed at the end of Sec. 2 for which there is no
minimum state. We shall come across another example
later on.

Now (4.46) shows that

X = (L,)+iy(sin &p), (4.49)

where y is a real number. But we see in (4.47) that if
X is complex, f;„is not single valued, for it. will have
a factor of exp ( —p Irn), ). Therefore X must be real
and equal to (L,). Thus, we have the interesting result
that the minimum uncertainty state has (sin p) =0.

This illuminates the uncertainty properties of the
coherent states, for we recall that the best uncertainty
coherent states are for e=0, i.e., (sing)=0. Also for
e=1, i.e., (cosp)=0, the coherent state uncertainty
product goes to ~ as S—+0, although even these states
are a minimum for large E. This is the analogy of the
direct method being ambiguous if (Lx, y])=0. The
point to be made is that the coherent states, which are
the minimum uncertainty states for position moment-um,
behave very similarly to the critical states for angular
momentum angle, including when (sin p) =0, which
yields the minimum uecertaiety state. This certainly is
a remarkable property, which will also hold in the num-
ber-phase case discussed in the next section.

We conclude this section by giving the expectation
values for the operators we study. These are easily cal-
culated from the known properties of the modified
Bessel functions ~ '

P; =G exp (—7 cos /+ikey).

The normalization constant is given by

exp (—27 cos @)~
=2srIp( —2y),

where I„is the modified Bessel function.

(4.47)

(4.48)

S. NUMBER AND PHASE OPERATORS FOR THE
HARMONIC OSCILLATOR

The quantum-mechanical harmonic oscillator is
generally described in terms of the position-momentum
variables (x, p) or the creation —annihilation variables
(a, at). In terms of the latter the displacement operator
is (Heisenberg picture)

6' In keeping with the spirit of using sin and cos operators, one
can consider exp (9.4) to be (cos p+t sin 4)".

'p C. N. Watson, A Treatise ol the Theory of Bessel Functions
(Cambridge University Press, Cambridge, 1966), p. 79.

x(t) =xppa exp ( io)t)+at exp (icot) $. (5.1—)
s' Reference 67, hnes (337.9 a-b) .
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Here xs ——(1/2ntco) ts is the rms zero-point fluctuation,
a convenient unit with which to measure the displace-
ment.

In classical mechanics one often uses yet another
pair of variables, amplitude and phase:

In place of the quantization rule

eat —ate=1,
(5.8) leads to

exp (t'cb„)N N —exp (Q„)= exp (nt„). (5.10)

x(t) =2A cos (cb to—t) . (5 2) This equation is solved if N and P,o obey

The relation described below, of A and g to the classi-
cally conjugate action-angle variables, leads one to
search for quantum-mechanical operator analogs to
amplitude and phase variables.

One possible method of approach is suggested by
comparing (5.1) with (5.2), the latter written as

x(t) =ALexp (ip) exp (—icot) + exp ( ip—) exp (icot) g.

(5.3)

Thus, in the classical limit, the operator a is propor-
tional to A exp (ip). The appropriate replacement of
the destruction operator by a number is accomplished
by taking the expectation value of (5.1) in the coherent
state

~
cr), where the phase of cr is chosen to be @:

(n
~
x(t)

~
a) =2xa7tt' cos (tt —&ot), (5.4)

cr =J't' exp (ig), J=Ã. (5.5)

Thus it might be supposed that there is an operator
decomposition of the destruction operator c corre-
sponding to (5.5). Let us"suppose that we can factor a
into a product of a Hermitian function of the number
operator f(N) and a Unitary operator U. The latter
then defines (mod 2w) the Hermitian phase operator
@.o by U= exp (itt„):

a= exp (ip,o)f(N), Pt,o=P,o, ft=f (5.6).
The requirement a~c=E, along with the Hermiticity
assumptions, yields

N=ft exp ( iy.o) —exp (iy.o)f=f'. (5.7)

Choosing the positive root (g,o could absorb any minus
sign) gives

(5.8)a= exP (iP,o) Nrt' (wrong),

exactly as one might have guessed from Eq. (5.5).
LWe remark that the same result (5.8) follows if one
inverts the order of f and exp (+,o) in (5.6). In that
case, f = exp (Q)N exp ( ip), giv—ing

f= exp (iqb) (N)'ts exp ( iP), —
and a=f exp (iP) is as given in Eq. (5.8).j

The change of variables indicated in'(5. 8) was intro-
duced even in Dirac's original paper'~ on the quantiza-
tion of the electromagnetic 6eld. Unfortunately, the
result of this formal calculation is incorrect, as discussed
in detail below. However, let us momentarily assume
its truth in order to review the usual discussion~' of
the number-phase uncertainty relation.

's W. Heitler, Quantum Theory oj Radiation (Oxford University
Press, London, 1954), 3rd. ed. , p. 65.

since from the latter we 6nd by induction

LN, @.,"j=itnt. ,"-r.

(5.11)

(5.12)

Multiplication of (5.12) by i"/n! and summation from
0 to oo recovers Eq. (5.10).

The erroneous assumption that N and g,o are well-
de6ned Hermitian operators then gives what we call
the "traditional" number —phase uncertainty relation:

ANAP) rs(wrong) . (5.13)

However, one could discuss (5.13) in a semiclassical
spirit, as has been done by several authors. ~' ~5

Equation (5.13) is wrong for two reasons. First of
all, there is the periodicity problem already discussed
in Sec. 4. This could be repaired by using sine and
cosine operators, ""

cos4o 2Lexp (i4' o) + exp ( i4op) j
sing, o = siLexp ( —&,o) —exp (ip,o) $, (5.14)

except for the fact that such an operator structure leads
to contradictions. The real difhculty lies in the un-
warranted assumption of the existence of a unitary
operator U= exp (iQ,o).

Susskind and Glogower' 6rst exposed the contradic-
tions inherent in Dirac s assumption (5.8). Let us
rewrite (5.8) in the form

UtU= UUt=1, (5.15)

and test the unitarity assumptions. Since U is equiva-
lent to an infinite-dimensional matrix, we have to
check both unitarity statements in (5.1S). Applying
(5.15) to a number state ~n), we learn that U is a
lowering operator for n= I, 2, ~ - ~ ..

a
~
n) =UN't'

) n) =n't U
~
N)

=n't'
i

n —1), n=1, 2, ~ ~ ~ . (5.16)
Thus we Gnd

U
~
n) =

~
n-1) n=1 2 ~ ~ (5.17)

For n=0, we learn nothing from (5.16). From the
completeness of number states we have for the ground
state

U
~
0)=gd„) n). (5.18)

e R. Serber and C. H. Townes, Quantum Rtectronics (Columbia
University Press, New York, 1960), p. 249 fj.

~' H. Brunet, Phys. Letters 10, 172 (1964).
r' J. Harms and J. Loringny, Phys. Letters 10~ 173 (1964).
~' The use of cosine and sine operators was suggested on physical

grounds by %.Louisell, Ref. 64.
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To determine the efkct of U~ on the number basis we
assume completeness and use (5.1'7) and (5.18):

U'I )= 2 & I
U'

I ) I &

UIo)=o.
Therefore, in the ground state

(5.21)

(oI UtUI0)=o,

which contradicts the unitarityF Note that UU~ really
is the identity, since Ut

I
n)=

I ran+1& for all n, from

Eq. (5.19).Thus,

(nz I
UUt

I
n&=B (5.22)

Since U is not unitary, we cannot define a Hermitian
phase operator @,v by U= exp (ig,n). Thus, a proper
quantum description of the phase variable must be
sought elsewhere.

In order to discover the appropriate variables, we
consider the Poisson bracket formulation of the oscilla-
tor problem. This method of guessing the quantum-
mechanical commutators has been championed by
Dirac. Application to the present problem was suggested

by Lerner. "
The action (J) and angle (p) variables are introduced

by the transformation

=d„
I o)+ I

1+1). (s.19)

Now we see if U~U is equivalent to the identity opera-
tor. Applying Ut to (5.17) gives (for e) 1), on using
(5.19),

Ut U I
'~& =Ut

I I 1)
=de„,

I O&+ I I&. (S.2O)

Equation (5.20) shows that d„ i=o for m=1, 2, ~ ~ ~,

if UtU=1; i.e., d„=o for all N. Thus, from (5.18) we
learn that U annihilates the ground state:

Our experience with periodicity requirements leads us
to seek operator analogs of cos @(t) and sin @(t) rather
than p(t) itself. The classical results (5.25) will be
successfully reproduced if we can Gnd operators C and
S such that the commutator replacements of the
brackets in (5.25) have the same algebraic structure
as the latter. According to the general recipe,

IA, 8f~(1/iS)[A, Bj. (5.27)

[S, Nj= —ic. (5.29)

It will be observed that both C and S obey the normal
mode equations

C+(o'C=o

S+oi'S=0. (5.30)

In order to solve (5.29), we introduce "exponential"
operators E+ by

Ep=—C&iS. (5.31)

Since C and S are presumed to be Hermitian, we have

=(E ) (5.32)

In the classical limit E+ corresponds to exp (Hip)
where P is the classical phase angle. The subscripts on
E were chosen because, as we now show, the E+ are
normalized raising and lowering operators

Equations (5.29) and (5.31) imply that

We thus pose the problem of 6nding C and S such that

C= (1/if)) [C, Hj=oiS,

S= ( 1/N, ) [S, HJ= —oiC

hold as operator equations. 7' Writing the quantum-
mechanical Hamiltonian as B=Ego, we simplify
(5.28) to

[C, N]=iS,

P= (2nuoJ)'I' sin Q(1),

g= (2J/riroi)'I' cos P(t). (5.23)

The Hamiltonian is independent of P, since

[Ep, N j=+Ep.
From (5.33) we find

N(z, I ~)) =z, (N~1)
I n)

(5.33)

H = (ps/2m) +peur'x',

H =coJ.
=(.~1)(~. I )), (5.34)

(5 24)
except that

z
I
o)=o, (5.35)

Thus J is constant, whereas sing and cosP depend on
time: to avoid negative eigenvalues of E.Thus,

E+ I I)=
I
n+1& all rr,

~ I~)= IN —1)

(s.36)

"Note that, although Lsin p, cos gj vanishes, the commutator
LS, C) does not vanish, although it becomes negligible in the
classical limit Using Jacobi s identity, Eq. (5.29) can be used to
show that LS, Cg is diagonal in the number basis. See Eq. (5.42)
for the actual form of the commutator. Most of the following
is taken from Carruthers and Nieto, Ref. 19); the results are
implicitly or explicitly contained in the work of Susskind and
Glogower (Ref. 18).

d cos $(t)/di= Icos $(t), HI =&a sin @(t),

d sin g(t)/dt= Isin P(t), H} = —oi cos P(t). (5.25)

These equations indicate that the phase angle g(t) is

$(1) =P oit. —(5.M)

J is related to N in the classical limit by J=N/fi.
~ A simpler method of showing this is by combining (5.9) and

(5.15). This gives UNUt N+1, which violates unitarity. We
thank Professor W. Mcolinn for pointing this out.

"E.Lerner, University of South Carolina Report, 1966 (un-
published) .
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zlzc
=—cos 'C=-', zr —sin ' C

(—1)" (

( —1)" t'-l1
zlzs= s—in ' S=g I I

S'"+'
g~2k+1 (k)

a(a —1) (c—2) ~ (s—b+1)
(5.43)

&b)
1 2 ~

The expansions (5.43) are legitimate, since the opera-
tors C and S have bounded spectra (see the following
section) .

In terms of

zoic

and zls we can indeed define unitary
operators of the form

U=e/ '" (5.3'L)

is ambiguous, since the eigenvalue spectrum of N
includes the point zero. Instead we use the formally
equivalent~ but unambiguous forms

E =(N+1) "'a E+ at(N——+1) "' (538)

The operator (N+1) 'l' is well defined, and the require-
ments (5.36) are clearly met.

The E+ operators are not unitary but are "one-sided
unitary. " This follows on taking matrix elements of
E+E+ in the number basis:

(E E,) „—= (miE E, in)

=(m( (E,)tE, (n)
= (m+1

~
n+1) =8„„, all m, n, Uc= exp (izlzc) z

Us= exp (izlzsl,

UteUc = UcUtc= 1,

U'sUs=UsU's=1 (5 44)if either m, m=0(E+E ) „=0

The operator E is thus essentially the same as U define independent Hermitian operators ztzc and gs by
of Eq. (5.15). However, besides being wrong, that power seriess'.
definition

m, e&1. (5.39)
However, since zt c and @s do not commute, i.e.,

Introducing the projection operator (Po for the ground
state, we can summarize (5.39} in operator notation by Lzlc, zl sj&0, (5.45)

PC, Sg= (1/2i) (EM+ E+E ) =(Pp/2i, —
C'+S'= a (E-E++E+E-)=1—a(Pp (5.42)

The noncommutativity of C and S is intimately
connected with the nonunitarity of the operators C~iS.
This is true since, for each operator C and S, we can

~ For any "analytic function" of the number operator f(Lzf) we
have the operator equation af(Lzf) =f(N+1) zs.

Em, =a,

E,E =1—(P„(Pp=
~ O)(O ~. (5.4O)

From this calculation it is clear that the termination of
the eigenvalue sPectrum of N af zero is resPonsible for the

nonunitarity of E, and hence the nonexistence of a con

jugate Permiticn phase variabLe zlz,v = —i log E .
Although E+ are not unitary, the operators C and S

obtained by solving Eq. (5.31) are manifestly
Hermitian:

C= ', (E +E+) =C, -
S= (1/2i) (E E~) =St, (—5.41)

by virtue of Eq. (5.32).
We have now succeeded in explicitly constructing

Hermitian operators corresponding to the classical phase
variable. Before considering the eigenvalue spectrum
and eigenfunctions, we conclude with a few other
important results, and state legitimate number —phase
uncertainty relations.

From Eqs. (5.28) one learns that C and S are
essentially the time derivatives of each other. Thus it is
not surprising that C and S do not commute. Explicit
calculation from (5.41) shows that

this does not contradict our previous results. The
destruction operator, written in terms of zoic, ztzs, is

a= (N+1) 'I'I m~Eexp (izlzc) + exp (iztzs) j
+-'Lexp (—Qc) —exp (—its) 3I (5 46)

It is perhaps worth mentioning that if an Hermitian
phase operator zl,v had existed, then one could have
given a simple interpretation of the energy —time uncer-
tainty relation for the harmonic oscillator. We could
have defined time as the advance in phase of the oscil-
lator, with a time operator t,n=—zl,v/oz. Then ANhzb is
the same as L),EL).f/f't However, t.here are two operators
zfzc/oz and gs/pp, which precludes the above interpreta-
tion. Although a number of time operators have been
proposed, ""they all suer from difhculties of the sort
encountered in the attempt to delne a single phase
operator zt.v. In addition to the problem that time is a
parameter (rather than an operator) in standard non-
relativistic quantum theory, it will be noticed that the
supposedly conjugate variable (H) has a bounded
spectrum. In our opinion, the discussions thus far on
the energy —time uncertainty relation are not defini-
tive, "'~"and the proper interpretation of an energy-
time uncertainty relation remains to be given. '

We now give the uncertainty relations which follow
from the commutation rules (5.29) and (5.42) . Avoid-

8'The authors are indebted to Dr. K. Eilenberger for this
observation. We also note that on the other hand, R. D. Levine,
J. Chem. Phys. 44, 3592 (1966), Sec. IH, champions the view
that there is a unique unitary exp (Q) operator.

s' The above Refs. 25-31 will give the reader a background on
the common understanding of this problem up until the present.
ln addition, Refs. 27, 30, and 31 constitute a heated debate on
the nature of the energy-time uncertainty relation.
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ing eigenfunctions of the relevant operators, we obtain the recursion relation (6.4) is solved by

dÃhC& y (S), (5.47) C„=Ap"+Bp " (6.6)

BNAS& ', (C),—

ABC) —', ((Pp&.

(5.48)

(5.49)

for arbitrary A, B.Thus (6.4) takes the form

A (pm+pe 2)—+B(p—w+p —e-s) 2y(Apn+1+Bp —e—1)

c~x&=x)z). (6.1)

We expand
~

X) in the number states and take into
account the simple effect of C on the number state
Lcf. Eq. (5.41)]:

l»=ZC-I & (6.2)

The C„obey the recursion relations

We also can put (5.47) and (5.48) in the form

(~&)'(~C)'/(S)'&-' (5 5o)

(~W'(~S)'/(C&'&-' (551)

Whenever appropriate, (5.47) or (5.48) reduce to
(5.13), just as for the corresponding equations describ-
ing L, and p. Squaring and adding (5.47) and (5.48)
gives a relation synunetrical between S and C:

{(hE) sL(EC) s+(AS)'$I/((C)'+(S)') &—'. (5.52)

According to (5.49), S and C can be accurately
measured simultaneously only when the wave function
has negligible overlap with the ground state.

6. SPECTRA AND EIGENFUNCTIONS OF THE
SINE AND COSINE OPERATORS

To develop a proper interpretation of the Hermitian
operators C and S, it is essential that we investigate
the nature of the eigenvalue spectrum and the associated
eigenfunctions. The eigenvalues give possible results
of measurements of C and S, while the overlap of the
eigenfunctions with the state vector gives probabilities.
Since C and S do not commute, the eigenfunctions of C
will not be eigenfunctions of S, and vice versa.

The results are as follows: Both C and S have con-
tinuous eigenvalue spectra lying in the real interval
—1& cos 0&1 and —1& sin 0& 1. Here we introduce
the parameter 0 to label these eigenvalues in the usual
way. Since the spectrum is continuous, the eigenfunc-
tions cannot be normalized, although the inner products
are expressible as delta functions. The eigenfunctions of
S and C separately constitute complete sets.

Consider the eigenvalue equation

(6.7)

In order to prevent the C„ from becoming unbounded
as e goes to co, it is necessary that j p ~

be unity.
Writing p as exp (Q), we get

p= exp (i8), X= cos0. (6.8)

Any value of 0 gives a solution, but all independent
solutions are given by letting 0 range over a finite
domain. The convenient choices are discussed below.

To complete the solution, we have to 6nd A and 8
in (6.6). Cp can be chosen real, so that all C„are real.
For convenience choose Cp to be sin 0:

Cp ——sin 0,

C~=2 cos 0 sin 0= sin 20,

C2 ——2 cos 0C~ —Cp ——sin 30.

It is easy to see that the general solution is

C = sin (m+1)8.

(6.9)

(6.10)

From the reality of C„, we see that B=Ae in (6.6).
Writing A =

(
A

~
exp (iP) gives

C„=2
)

A
i

cos (n8+P) (6.11)

Comparing this with the explicit Cs shows that 2
~

A (
=

1, /=8 —s./2, yielding Eq. (6.10) for general C„. We
have found the eigenfunctions of C:

C i
cos8)= cos8 i cos8), (6.12)

~
cos8)=X+ sin (rs+1)8

~
I),

n=p
(6.13)

where E is a normalization constant to be chosen later.
From Eq. (6.13) one sees that all independent solu-

tions are contained in the interval 0(8(s. (region I
of Fig. 5) . If 8 is in region I, then the state

~

cos (—8) )
corresponding to angle —8 (in region II) is —

~
cos 8).

Of course,
~

cos (—8) ) has eigenvalue cos (—8) = cos 8.
Note that, as 0 runs through 2x, the state vectors run
over ~' cos 8) and —

~

cos 8). This double-valuedness is
reminiscent of the spinor representations of the rotation
group.

2P,Cp=Cg,

2XC„+t——C„+C„+s.

Relation (6.4) determines C; and all higher C„.
Provided that X and p are related by

2&=p+ 1/p,

(6.3)

(6 4)

(6.5)

FIG. 5. The independent
eigenfunctions

~
cos sl are

contained in the upper-half
8 plane, labeled I.The state
vector corresponding to —8
is simply —

) cos 8 l.
gg Many of the results of Secs. 6 and 7 are based on the results

of Sussirind and Glogower (Ref. 18).
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Next we investigate the orthogonality and complete- the following resolution of the identity:
ness of the states I cos 8). The inner product is

(cos8 I
cos8')

=
I
E I' g sin (n+1)8 sin (n+1)8'

n=O

d8 I cos 8)(cos 8
I

CO 7r

Z I ns)(n I
d8 sin (m+1}8sin (n+1}8

7r fn, nM

IXI' "g Leos (n+1) (8—8') —cos (n+1) (8+8') 7.
2

(6.14)

In order to deal with distributions of the type en-
countered here, we quote several useful formulas from
Gel'fand et alP:

= Q I nt)(n I 8„„
m nM

=j.. (6.20}

The construction of the eigenfunctions of S runs
along similar lines:

sl/)=t I/»

g COS nX = —2+sr gb (X—22m),
lt )= Q S„ I n). (6.21}

The recursion relations for the expansion coeScients are

g sinnx=-', cot-', x,
+=1

Q exp (inx) =2zrgh(x —22m}. (6.15)

Sg =2',Sp,

2',S„+g=S„+2—S„.
The second recursion relation is solved by

S =Dq"+Fq "

(6.22}

(6.23}

Hence the right-hand side of (6.14) becomes

p= sln8&Restricting 8 and 8' to the interval 0&8, 8'&x, the only
possible contributions to (6.16) come from so that the eigenvalue spectrum of S runs from -1

to +1.
To discover the expansion coeKcients, we con-

veniently choose Sp to be cos 8:
2~ I

& I'P(8 —8') —8(8+8') —8(8+8'—2~)] (6.17)

We can now show that the last two terms in (6.17)
in fact do not contribute. The second term could con-
tribute only for the possible "end-point singularity"
at 8=8'=0. To study this set 8=0 and consider 8' near
zero. Then the last delta function L8(8' —2zr) j vanishes
and the 6rst two terms cancel. Similarly, the third
term will contribute only for the possible "end-point
singularity" at 8=8'=x. If we set 8=m, 8' near x, the
middle term in (6.17) vanishes, leaving 8(zr —8')—
8(8'—zr) =0. Thus, upon choosing E= (2/zr) '/', we are
left with

Sp= cos 8)

5~=2i cos 8 sin 8 =i sin 28,

S2=Se+2i sin 8Sq ——cos 38,

S3=i sin 48.

The general term is

S„=cos (n+1)8 n=0, 2, 4, ~ ~ ~,

(6.26)

=i sin (n+1)8 n=1, 3, 5, ~ ~ ~,

S =-', Iexp Li(n+1)8]—exp I
—i(n+1) (8—zr) ]I.

(6.27)
(2) 1/2 co

I cos8)=
I

-
I +sin (n+1)8 I n), (6.18)

I~]
The result of our calculation is surrunarized by

S
I

sin8) =sin8
I sin8), (6.28)

(cos 8
I

cos 8') =8 (8—8'}. (6.19}

There is no singularity at 8=0 or zr, as there is no state
I

'
8) 1~/

associated with these points. I Note that all the expan-
sion coeKcients in (6.18} vanish if 8 is 0 or zr.g X g Ie» I-i(n+1)8~ e» I- i(n+1) (8

The completeness of the Icos 8) states is exhibited by

for arbitrary D and P, provided q and ts are related by

2itz =q
—(1/q}. (6.24)

00

2zr I
E I2+l 8(8—8'—22m) —8(8+8' —22m)]. (6.16) Again, the only way to keep S„bounded as n~zo is for

q to have unit magnitude,

q=e" (6.25)

8'l. M. Gel'Sand and G. E. Shilov, Generalized Functions
(Academic Press Inc., ¹wYork, 1964), Vol. 1, p. 331.

(6.29)

vrhere E' is chosen by normalization requirements.
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sentations for pc and &8

FIG. 6. The independent
eigenfunctions

~

sin 8) are
contained in the right-hand
0 plane, labeled III. The
states obtained by reAection
in the y axis are the same:
~

sin 8)=i sin{s.—8) ).

d8 ~ 0
I

cos 8) (cos 0 I,

x/2

d8 ~ 8
I

sin 8) (sin 0 I. (6.37)
—m'/2

In Sec. 7 we shall give a more complete discussion of
the physical properties of these states. Here we wish
to introduce the auxiliary states

I 0) defined byFrom (6.29) we see that

l0)= Z
(2ir) 'f'

sine)=
I

sin (~—0)), (6.30) (6.38)

so that half the tII plane suKces to give all the independ-
ent states. We choose —~/2&0&ir/2 (Fig. 6).

Using the identities (6.15) gives

On superhcial inspection it might have seemed that
the states

I 8) should be phase eigenstates. To explain
why this is wrong, we review the analogous construction
for position —momentum variables. The commutator(sin 0

I
sin0')=-',

I
IZ' I'

[» p]=i (6.39)X Q [cos (n+1) (0—0') —cos (n+1) (8+0'—ir) 7
n=O is satisfied by representing p as a differential operator:

p = i (d/dx) . — (6.40)

X P {0(8 0' 2—urn)——0[0+0'—(2n+1) ir] }.

„,exp ( sp*) I p),
dp

—', ir I
Z' I'[0(0—0') —8(0+0'—rr) —0(0+0'+vr) ]. (6.32)

(P I
P') =&(P—P') (6.41)

As before, setting 0=ir/2, then —ir/2, shows that no
contributions come from the special points 0=0'=
+7r/2. Choosing E'=(2/s-)'" gives results similar to
Eqs. (6.18)-(6.19):

One might attempt to proceed in a similar fashion by
attempting to represent the number operator by

%=i(d/dy),
in 0) = (2ir) "'

(wrong) . (6.42)

X Q {exp [i(n+1)0]—exp [—i(n+1) (0—ir)]} I n),
a=0

(6.33)

The eigenfunctions of S then have the form
e( —i~)/(2')'I', using periodicity. However, we ob-
tain the wrong spectrum —~ &n(+~, whereas we
know that the true spectrum runs from 0 to ~ and
that the eigenfunctions are not simple exponentials.

The states
I 8) are not orthogonal. Using Eqs. (6.15)

yields

(sin 8
I

sin 0') =0 (0 0') . — (6.34)

In analogy with (6.20) we find the completeness relation

OO

(6.35) (0 I
8') = —g exp [—in(0 —0')]

27

vr/2

d0
I

sin 0)(sin 0
I
=1.

—m/2

= (4ir)
—'+-', h (0—0') (i/47r) c—ot —', (0—0') .The vectors

I
cos 8) and

I
sin 0) are also, respectively,

eigenfunctions of the operators pc and &8 defined in

Eqs. (5.43):
(6.43)

However, we can resolve the identity with
I 0) states:

Po I
cos0) = cos ' C

I
cos8) =0

I
cos0),

&8 I
sin 0)= sin ' S

I
sin 0)=8

I
sin 8). (6.36)

de
exp [i0(n —m) ]-

27r
d0

I 0)(0 I= g I ns)(n
I

tn nM 0

=El )( I0-=1.This result is proved by using the power series develop-
ment of cos ' C and sin ' S contained in Eqs. (5.43).
Combining (6.36) with the resolutions of the identity
[Eqs. {6.20) and (6.35)] gives the following repre-

(6.44)

For two-dimensional angular momentum one can
represent L, in [P, L,]=i by id/dP Th—e eigen. func-

The momentum eigenfunctions are exp (iPx)/(2 )ir' i=s

(x I p). The position eigenfunction
I x) is expended in

(6.31) terms of the eigenfunctions
I p) of the conjugate variable

fi d h
.

l /2(0 0,( /2 p by means of the transformation function (p I
&):

the possible singularities come from
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tions exp (imp)/(2zr)'t2( —zc &222& ce) constitute a
complete set with integral m, and the phase eigenstate
ls

(6.45)

The wave function for phase eigenstate is

when p, p' are restricted to the interval between 0 and
2zr. For three-dimensional angular momentum, ~zzz

~

& l,
so that all values of l have to be admitted to construct
the delta function (6.46). This example shows clearly
that it is not the discreteness, but the one-sided nature
of the number spectrum which precludes a successful
analogy with the x—p problem.

The states
~ 8) are not necessarily useless however,

and under certain circumstances they may be used as a
substitute for the

~

cos 8) or
~

sin 8) states. In particular,
we can resolve operator products into matrix elements
between these states using (6.44):

do'
(0"

I
~ I0')(0'

I
&

I » —.(6.47)2x'

The
~

cos 8) and
~

sin 8) states are related to
~
8) by

[ cos0)= zr ex—p (i8) ) 8)—exp (—i8) [ ( —8))g,

f
sin 8)= exp (i8) [8)+ exp ( i8) )

—(zr —8) ).

From the basic commutation rules, one has

exp (iHt) ts exp ( —iHt) =a exp ( it—et),

E (t) = exp (zHt)E exp ( iH—t) =E exp ( ic—ct),

E+(t) =E+ exp (izet) .
Thus, C(t) is given by

(6.51)

C(t) =-'2LE exp ( itd—t) +E+ exp (zzct) j, (6.52)

whence
C(t) =C„z, $(t) =S„,. (6.53)

As a consequence of (6.52), if
~

cos 8) is an eigenfunc-
tion of C at t=0, it is not an eigenfunction of C(t) for
later times. Equivalently, in the Schrodinger picture,
~

cos 8(t) )= exp ( —zHt)
~

cos 0) does not remain an
eigenstate of C.

In ordinary language one says that the "wave packet
spreads. "Although

C
i

cos 8(t) )4 cos 8
i

cos (8(t) ), (6.54)

one might suppose that~the eigenvalue changes in a
simple way, e.g. , from cos 8 to cos (8 cot), as f—or the

~
8) states Lcf. Eq. (6.49)].
This is wrong, as follows from (6.49) and the resolu-

tion of
~

cos 8) into
~
+0) states, Eq. (6.48):

exp( iHt) )
cos—0)= —i/exp (i8)

~

8 tdt)—
—exp ( i0)

~

—8 tdt) —(6—.55).

(6 4p, ) Therefore, we also have

2'= exp ( 9.)E +Ez. exp (i—X),

2iSx= exp (—iX)E —E+exp (iX). (6.50)

For X=0, the operators Co and $0 coincide with C and
S. Moreover, the Heisenberg operators C(t), $(t) are
in fact of this form, with X=~t, as we will now show.
However, the construction is not appropriate to
describe the phase difference of two oscillators. (See the
next section for that development. )

The time development of the 0 states is very simple.
In fact, just as expected for a "true" phase variable,

~
0(t) )= exp (—iHt)

~
8)

exp (irt8)
exp (—im t)

~
22)

(2zr) '"
= 1(0—~t) ), (6.49)

where H=B—-',~ measures the energy relative to the
zero-point energy.

The time dependence of the C and S operators and
their eigenfunctions is of some interest. To introduce
this subject we construct an operator corresponding
to the classical quantity cos (g —X) .

Since p does not exist as an operator, we cannot use
an obvious definition. Let X be real, or, more generally,
any Hermitian operator. Berne Cz, Sz (Hermitian) by

C
i

cos 8(t) )W cos (8 azt) i
c—os (8(t) ). (6.56)

Similar remarks hold for the sine operator S.
The

~

cos 8) and
~

sin 8) states have properties similar
to the ordinary position eigenfunction 8(x—xe). If at
a given time a particle is in such a state, the momentum
uncertainty gives rise to spreading. The phase states
are distributions like 8(2:—xe). They provide"a useful
idealization in making precise the conceptual aspects
of phase, but for practical calculations are not as useful
as the normalizable number or coherent states.

'7. PHASE DIFFERENCE OPERATORS

Although the number and phase variables cannot be
simultaneously precise for a single oscillator, it is
possible to have a definite phase difference between
two independent oscillators for a fixed total number of
quanta in the two systems. Labeling the two oscillators
by subscripts 1 and 2, we have

H =Hs+H2,

N =Ns+N2,

Hs ——
tez (Nz+-2, ),

H2 az2(N2+ 2) z

Ns azaz, N2 asts2,—— ta;, tsz;]=8;;. (——7.1)

For visualization we may imagine space coordinates
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x; for the two oscillators. If we construct a product
coherent state

0!yp CX2 = 0!] CXO

(nl, n2 I 2&:,(f) I n„ns& =2m&&
I n; I

cos (y; o;—f),

the two oscillators:

C12+ (o&1 o&2) C12

S»+ (~1—~2) S»=0 (7.12)

n;= In; I
exp (iy;), (7.2)

Sg2=—Spy —S2Cg. (7.5)

For calculational purposes it is useful to express C~2

and S~~ in terms of the raising and lowering operators
E$+ 0

C12 —
2 ( I El I E2++El+E2—), (7.—6)

S„=(1/2i) (E, E2+—El+E2 ). (7.7)

the two motions have phase difference pl —g. From
previous experience we know the value of using
cos (pl —&2) instead to describe the phase difference.
The trigonometric identities

COS ($1 &&i2) COS Ql COS $2+ Sill $1 Sill &t&2

sin (4»—42) = sin &t, cos 42 —sin p2 cos $1 (7 8)

suggest the following definition of operators C12 and S12,
corresponding to the cosine and sine of the phase
diGerence:

C12=C&C2+ S1$2( (7.4)

As before, C~g and S~2 do not commute. However,
the commutator [C12, S12] is diagonal with respect to
the set of states of total number. This is proved by
means of the Jacobi identity

[[S12,C12], N]+[[C», Ã], S»]+[[X,S12], C&2]=0,

(7.13)

since, according to (7.8), the above reduces to"

[[S», C12], Ã] =0.
Thus, if we take states

I
E') and

I

E"
&, we find

(1v '
I [[s, , c„],Ã] I 2P)

= pr' w') y—"
I [s», c»] I w) =0. (7.15)

Thus, when N'&N", the matrix element

(i&r
I [s„,c„]I

x &

vanishes.
Next we study the eigenfunctions of C&& for various

product states having total excitation number N:

We next note the important result that C~2 and S~2

commute with the total number operator:
I) „)=gb„IN} I

iit —~). (7.16)

[C12 i( 1++2]

[$12, El+%2]=0.

In the product state in (7.16) the left-hand I 22) refers
to oscillator number one, the state I E—22) to oscillator

(7 8) number two. Often we use the shorter notation

This follows by cancellation once one uses the operator
identity

[AB, C]=A[B, C]+[A, C]B

and the commutation rules

[c;,x,]=i~„s;,

[S;,Es]= it'&,2cs—

As a consequence of (7.8) we can find eigenfunctions
of C~~ or S&2 having a fixed total X. Since the number of
such states is finite, the wave function is normalizable.
Therefore, the spectra of C~2 and $&~ are point spectra,
in contrast to the spectra of the constituent C and S
operators. In the limit of large N, the spectrum becomes
dense, as might be expected.

It is interesting to note th.at C~2 and S~2 do not
commute with the Hamiltonian unless co~ =A&2'.

c„I 0, 0)=0. (7.18)

For X=1, there are two possible states,
I 1, 0) and

I 0, 1).The eigenvalue equation

C»(f&o
I
o »+f&&

I 1, o)) =)&(f&&&
I o, 1)+f&1

I 1, »)
(7.19)

gives the constraints

by=2Xbp

(7.20)
bp

——2Ãbg

The two normalized eigenfunctions are

I
~l)=(1/2)"'(I 1, 0)~ I o, 1)) (7»)

my R 52 S o (7.17)

For X=O, the state
I 0, 0) is an eigenfunction of C12

wit)& zero eigenvalue:

Cls Z[H) C12] (o&l o&2) S12)

812=Z[H) S12]= —(o&l o&2) C12. (7.11)

We shall adhere to a phase convention in which the
coefficient of the component

I
2&2, 22& with the largest

value of m is real and positive. For N=2, there are

Thus Cgg and Sg2 are normal mode coordinates whose
frequency is the difference of the natural frequencies of

~ Note that in the classical limit E;~-+ exp (+p;), so that Eqs.
(7.6) and (7.7) have the expected form.

86 A simple calculation shows that

LS)2, C&2)= (&Po&'& 6'&&&2&)/22, —

vrhere (P0(7& is the projection operator for the ground state of
oscillator j.
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2 cos 8 sin (%+1)8= sin E8,b, =2Xb, =2Xb„

&o+bs=2Xbt.
or

(7.22) (7.28)sin (%+2)8=0.

three contributing states. The expansion coefBcients equation in (7.25) then requires the extra condition
obey

Therethere are three solutions. If X&0, then bo=b2
and X=~2 '~'; if X=O, bo= —b2 and bq=0. The eigen-
functions are

s (I 2) 0)&2"'
I 1, 1)+ I 0, 2)); X=+1/(2)"'

2 "'(I 2, 0)—I 0, 2)); X=0. (7.23)

8~„=rrr/(1V+2), s'=1, 2, ~ ~, 7+1. (7.24)

To prove this let us consider the recursion relations
satisfied by the expansion coefficients b„of Kq. (7.16):

2Xbo=bg,

»bN =be-r,

2Kb„=b„+i+b„ i, 1&e&N —1. (7.25)

All the eigenfunctions found so far can be represented
by an angle 8 in the interval 0&8&x, X= cos 8. For
&=0~ 8=sr/2i X=1~ 8=a./3~ 2sr/3i X=2~ 8=-'sr, ate,
Ass.. Fig. 7 shows the angles, represented by points on
the unit circle exp (i8).

The situation depicted in Fig. 7 suggests the correct
answer, namely, that the eigenvalues correspond to
discrete values of cos 8, with 8 having X+1values:

(cos 8III~
I

cos 8sr, ) =harb«. (7.30)

The possible values of 8&„are restricted by Eq. (7.24).
For explicitness one might prefer to label the eigen-
functions with the number as well:

I N, cos 8AI„). Eigen-
functions having distinct E are automatically orthog-
onal.

The solution to eigenvalue problem for S~~ is similar to
the preceding analysis.

We write
5'»Iu)=uI~),

I is) =QC„ I e) I
E—I). (7.31)

The latter equation is solved by Eq. (7.24). Changing
8 to —8 does not give extra solutions since the b„just
change sign. Also, the b„vanish identically for 8=0 or x.
The eigenvalue spectrum is shown in Fig. 7(d) for
X=10.For large X the spectrum becomes dense.

The normalized eigenfunctions are

( 2 )1/s
cos8~,)=

I & I Z»n (ss+1)8» I ss) I
&—I»+2

(7.29)

Srs
I 0, 0)=0. (7.32)

The recursion relations connecting the expansion coef-

(7 26) ficients are2~ =p+1/p.b =Ap"+Bp
2ipCp=C),

The argument leading to ) = cos 8 is diGerent in the
present case. Since X is real (eigenvalue of an Hermitian
operator), we have p '=pt. If we write p as A exp (i8),
we learn that A =&I. The minus sign can always be
absorbed into 8, so that the eigenvalues of C~~ are

2' CN = CN-1q

2zp, C~ =C~+g —C„ i. (7.33)

For completeness we give the solutions for X=1, 2, for
comparison with Eqs. (7.21)—(7.23):(7.27)XNq= cos 8~~.

We have already solved these equations for m=0, 1, 2. The ground state satis6es
For e&2 the last recursion relation is used to compute
all b„ lying between b& and b». This relation has
precisely the same form as in Kq. (6.4), so that

In the present problem the termination of the series
at b~ restricts 8&„ to certain values. As in the analysis
of the eigenfunctions of C, we set bo= sin8, bj.=
sin 28, ~ ~, etc., with b„= sin(@+1)8. The second

/=i
X=2;

p =Kg~ I
~-', )=2-if (I1, 0)~sI 0, 1),

~2—1/2

I
&2-'~') =gr(I 2, 0)&i2'~'

I 1 1)—I 0, 2)),

y, =0,
I
0)=2—'I'(I 2, 0)—I 0, 2)). (7.34)

(a)

It

/
I 1

(b) (c}

Fn. 7. The eigenvalues of the cosine phase difFerence operator
are represented on the unit circle. In Figs. (a, b, c,) the total
number is respectively 0, 1, and 2. As E becomes large, the
spectrum becomes dense. This is represented qualitatively in
(d). All independent states are obtained by restricting e to the
upper half-plane. 2&(sin)3)CsI= —CN i, (7.35)

Figure 8 shows the allowed values of dI= sin '
p, .

For the case of general E we can take over most of
the analysis of the sine operator (Sec. 6). Letting
Cs ——cosp, the general term is given by Eq. (6.27).
The second relation in (7.33) provides an extra condi-
tion which Gxes p:
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states are produced even when the mean number of
quanta is so small that the state could not be called
classical.

As proved in Sec. 3, the coherent states are minimum-
uncertainty wave packets in x-p coordinates. Although
they are not minimum-uncertainty states in number-
phase coordinates, they are remarkably good in this
regard, and for all practical purposes are minimum-
uncertainty states when%& 1.In Sec. 8D, we discuss the
true number —phase minimum-uncertainty states dis-

16

S operators on the coherent
We have the results

n

~g

(b) (c)

FIG. 8. The eigenvalues of the sine phase difference operator
are represented on the unit circle. In parts (a), (b), (c) the total
number is, respectively, 0, 1, and 2. As N becomes large, the
spectrum becomes dense. This is represented qualitatively in (d) .
All independent states are obtained by restricting 8 to the right
half plane.

covered by Jackiw.
which simplifies to The effect of the C and

exp [i(N+2) p]+ ( —1)/1+1 e» [ i(N+2) jy —0 states is not very simple.

(7 36) c
I a) =x2 exp ( —I

a I'/2)

or
sin (N+2)&=0,

cos (N+2)&=0,

4w. =[r /(N+2)3 —( l2),

iV=0, 2, 4

N=1, 3, 5, ~ ~ ~, (7.37)

r=1, 2, , N+1.

(7.38)

00 ~n+1 nn

[(I+1)!]'/2 (22!)'" I 1

S
I a) = (») '(«p ( —I

a I'/2)

(We could take +2r/2 instead of —2r/2. ) Note that~—g does not change C„, so that all independent
solutions are obtained by restricting p to the interval

We now put n in the form N'/'exp (iP) (where we
write (N) as N for notational simplicity) so that N is
related to 0. by

—~/2 &y &~/2. (7.39) N= InI'. (8.2)

In the @ plane the S12 eigenvalues are represented
(Fig. 8) by rotating Fig. 7 by 2r/2. The spectra of S12
and C1~ are identical. The normalized eigenfunctions are

S» I
sin y~, )= sin y/1/ I

sin y&»

) 1/2 N

I
sin year„) =

I Q —',{exP [i(22+1)yr/, )N+2/
—exp [—i(@//„—2r) (r/+1) $ I I I) I N I)—

&& sin (I+1)0//, I
22& I

N —22),

(sin P~„ I
sin P/1r, )=o/rsrb„, (7.40)

where $//„ is always given by (7.38) and 8~, by (7.24) .

8. PHYSICAL PROPERTIES OF THE COHERENT
STATES, THE PHASE STATES AND THE

MINIMUM UNCERTAINTY STATES

A. Coherent States; Uncertainty Relations for
Number and Phase

Among the many types of wave functions which
describe the classical limit of a system, the coherent
states have a special significance, for it is such states
which are produced when an oscillator is coupled
linearly to a prescribed classical force. ' Since this
model is the prototype for the radiation emitted by a
classical current source, there are many significant
applications. It should be emphasized that the coherent

CO gn
~~ ~t[(~+1)(~+2)j"' (8.4b)

For future use we calculate the asymptotic limits of

$1 and $2. For N«1, the answer is obtained by simply
taking the first few terms of (8.4):

X lP
$1(N) 1+—+, + ~,

1 N N'
21/2 {jl/2 4 (3)1/2

N~O. (8.5)

With this notation, we find

(n I
C

I n) =N'/'e ~$1 (N) c—os y,

(n I
s

I
n) =N'/'e ~1t/1(N) sin—y,

(n I

O'
I
n) =-', ', e ~+2Ne—~-11/2(N) cos2y,

(n I
S'

I
n)=-',—t~e ~—-'Ne ~$2(N) cos 2$,

(a I
C2+S

I n) =1—-', e-&

(n I
C' —S'

I a) =Ne ~i/2(N) cos 2g,

(n I
CS+SC

I n) =Ne ~$2(N) sin —
2p,

(a I
CS—SC

I n) =-,'ie ~, (8.3)

where the functions g(N) are defined by the power
series

~0 gn

„~r/![(22+1)j'" '
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For large N, pi is calculated by using the identitysr N»1, the expected classical behavior:

OO

t' exp L—(n+1) t]dt/I" (s+1), (8.6)

~1/2
0

dt t'I'e ' exp (Ne ')

1
ln/

/

e- dy, (8.7)

where we have used the transformation

where I' is the gamma function; in our problem s = —~~.

Then

S" 1
fi(N) = Q —, „, t'I'exp P—(n+1)t]dt

~=0 S 1 'r
p

(C) cos P, (S) sin p,

(C')~ cos'y (S') sin' P,

(C2+S2)~ 1 (C~—S') cos 2P,

(SC+CS) sin 2P, (CS—SC) 0. (8.17)

In working with operator trigonometry, it is clear that,
when N&)1, the expectation value (n

~
F(C, S)

~
n) of

any function F of C and S goes over into F(cos g, sin g) .
When N)&1, the ground state component of } a) is
negligible 6(e ~), so that C and S may be treated as
commutative variables.

In contrast to the classical limit (8.17) we have the
"quantum limit" E«1 for the coherent states:

(S)=1P"si np; (C) 1P"cos@,
e'=1—y. (S')--: «)-!. (8.18)

and defining

we have

eN

6( )

(8.10)

&X!2

x '~' — + ~ ~ e *dr. (8.11)
4E

Hy then using the expansion

{»L1/(1 —y) j}'=y'+icy'+'+" (8 9)

(These relations follow immediately from the fact that
~
u)—

~
0) in this limit. )

We are especially interested in testing the coherent
states in the uncertainty relations (5.47)—(5.52). If
the coherent states are "really" coherent, we„might
expect the equality to be approached. This is in fact
the case."

Recall that in the coherent states the number states
are Poisson-distributed":

In the limit as E—+~, the integrals become gamma
functions, and we obtain (») =(N')-(N)'=(N) (8.19)

g, (N) - (e"/N) { 1—(8N) -i+ " ] (8 12)

To find f~(N +~ ) we first—observe that if c))1,

{c'+c)"'=c+-',—(1/8c) + ~, (8.13)
so that

1 1 1 3 /1&

{c'+cji" c 2c 8 ' &c'1

1 (1'I+81-
I2(c+1) 8(c+1)(c+2) &c ]

(8.14)
But now realizing that

((n+1) (n+2) )= (n+1) '+ (n+1), (8.15)
we have

m gn
A(N) = Z

( +1),
&&{1—L2(n+2) ) '—L8(n+2) (n+3) )—'+ ~ ~

I

= (e~/1V) { 1—(21V) ' —(1/81V') + ~ .j. (8.16)

The leading terms in (5.12) and (5.16) could be
anticipated by requiring proper classical limits for the
expectation values of the operators. We have, for

~ The authors vrould like to thank Professor H. Widom for his
aid in finding this integral.

P(N, 4)-~ Q(N, 4)-4 ~

When N«1, we use Eq. (8.18) to find

(8.23)

P(N, g) 1/(4 sin'p)

Q(N, P) ~1/(4 cos' $) (N&&1) . (8.24)

For intermediate X one has to use numerical evalua-
tion of the functions fi(N) to obtain results. Results of
a computer calculation for Q, reported in Ref. 19, are
shown in Fig. 9. Notice that if the average excitation
number is substantially greater than 1, the coherent
states are electively minimum-uncertainty number-

We next want to evaluate the quantities

P(N* 4) = (»)'(~C)'/(S)' (8 2o)

Q(N, @)= (»)'(hS)'/(C)' (8.21)

for various g as a function of (N), and compare with
the minimum value 1/4. For large and small N we can
evaluate (8.20) and (8.21) by means of the asymptotic
formulas (8.5), (8.12), and (8.16).

Keeping terms up to order 1/N in the brackets in
(8.12) and (8.16) gives

(hC) ' sin' @/4N,

(hS) ' cos' g/4N (N»1) (8.22)

so that, when 1V»1, we obtain the minimum possible
values:
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where n(f) =rr exp ( i—u&t) =Ntls exp (+ ~t). Thus,
the previous results carry over with the change ~P—
cot. Equations (8.3) become

(rr I C(f) I
n&=N'I'e ~fr(N) cos (Q ref),—(8.32)

and so on.
It is worthwhile noting the similarity between these

numerical results and the numerical results for the
angular momentum-angle system in the coherent states
(compare Figs. 4 and 9). This gives further insight
into the role of the S and C operators.

B. Fluctuation of Phase in the Numbex States

In the number basis, AX=0 and the uncertainty
relations (5.47)-(5.52) reduce to the uninformative
statement 0&0. All odd powers of C or Shave vanishing
expectation value in the number states:

Pro. 9. The quantity Q($) =S(f)/(C)s (hence (=sin sp) is
shown as a function of (nN)'=E for various f, for the coherent
states Acco. rding to Eq. (5.51), Q(f) must be larger than —,'.

phase states. The result for P(N, p) follows by changing

Q to vr/2 —
Q in Fig. 9.

The symmetrical uncertainty product, Eq. (5.52),

U= I (~N)'L(~C)'+(~S)'jI/((S&'+(C)') (8 25)

(n I
C' +'

I n) = (n I

S' +'
I n) =0; all m, n,

(n
I

C'S~
I n) =0 1+m=odd, all n, (8.33)

since the number of annihilation operators has to match
the number of creation operators to give a nonzero
expectation value.

Let us consider the classical distribution P(@) =1/2m.
For such a distribution

is independent of the phase angle P. Explicitly, one has

U=$1 ', e —Ne '—P—r'(N)j/e '~f~'(N). (8.26)

By putting (8.3) and (8.19) into (8.20) and (8.21),
and then comparing with (8.25), we see that

cos~m cossna
2'

1 ~ 3 ~ ~ ~ (2m —1)
0

2 4 ~ .2m
(8.34)

P(N, w/4) =Q(N, w/4) =U. (8.27)

Thus, U is given by the $=—sins P=-', curve in Fig. 9.
The relation (8.27) is the same type of result we ob-
tained in Sec. 48 for the angular momentum-angle case.

From the asymptotic formulas we see that

U~1

U 4&

iV&&1,

E&&1. (8.28)

For no value of E is U greater than twice the minimum
value.

Finally we consider the uncertainty relation ASPIC of
Eq. (5.49) . In the coherent states this becomes

(n I
Cs-

I n) +=0, 1, 2, ~ ~ ~ (8.35)

to show that this is not true.
From the equations

C
I n) =1/2(l ny1&+

I
n —1)),

C'
I n) =1/4(l n —»+2 I n&+ I n+»)

C'
I n) =1/8(l n 3)+3 I

n —1)—+3 I n+1)+ I n+3)),
n) 3, (8.36)

(sin s™p)is the same as (8.34) . Since one is accustomed
to saying that, when E is known, the phase is "com-
pletely undertermined, "we now calculate

(ZS) (SC))-'e-&. (8 29) we find

From (8.18) for N«1, the left-hand side is 1/4 and the
equality is satisaed. For E»1, the left-hand side de-
creases as 1/Ns:

(hS) (hC) ~(sin icos p/16N )+6(1/N ) (830)

Lcf. Eq. (8.12), which is not as small as the right-hand
side of (8.29) j.

Finally we consider the time dependence of the
Heisenberg operators in the coherent states. %e have

&rr
I C(f) I u) = (rr I exp (iaaf) C exp (—iaaf)

I rr&

=&~(f) lcl~(f)&, (8.31)

&n I
Cs

I
n&=1/2

= 1/4,

(nl O'I n)=3/8,

=5/16,
= 1/8,

(nl Csin)=20/64,

=13/64,

=14/64,

=5/64,

e&1,

m=0,

e& 2)

S

m=0,

e&3,

2 7

f5=1

n=0. (8.37)
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Comparison of the classical and quantum results is
made in Table I. If the number state

I n) is not so
small that application of C annihilates some of the
resultant states, then (C'~) agrees with the classical
result to (C'), at which point deviations occur. Thus,
the first five moments of C are the same for number
states and the uniform classical phase distribution, if
I&2 in the number states

I ss).

C. Phase States

The eigenfunctions of C (or S) have vanishing hC
(or AS). The number fluctuation of the C (or S) eigen-
states is undefined (iniinite). Qualitatively, one has
the usual result that a completely defined phase leads
to a completely undefined number.

We mention also that Jackiw" has shown by his
analytic method discussed in Sec. 2 that there exist no
normalizable states that minimize the C and S un-
certainty relation (5.49). One could, however, use
unnormalized states such as the

I (l), I
cos ()), or

I
sin 8)

states.

(C )sIsssisal (n~ C-~n)

1/2
3/8

15/64

1
1/2 (n&1)
3/8 (n&2)

20/64 (n&3)

This is a complicated state, but is the minimum-uncer-
tainty state. Table II compares the principal qualitative
features of the various state vectors.

In a similar manner, one can calculate the minimum-
uncertainty state for (5.51).The answer is

I)~, v) = ZI-- h) In),
nM

) =(x),
& =L(SZ)s/(as) q»s,

TARLE I. Classical and quantum (number state) expectation
values of powers of the cosine variables are compared. All odd
powers vanish in either theory.

(S)—=0. (8.45)D. Minimum-Uncertainty States

From the discussion in Sec. 2C, we see that, for the
complicated uncertainty relations (5.50) and (5.51),
we can use the direct method. Jackiw's did this and
obtained the minimum uncertainty states for (5.50) .

If

The solution (8.45) a,gain makes a comparison to the
angular momentum-angle case applicable. All the
comments made in Sec. 4 about the closeness of the
coherent states to the minimum-uncertainty state
again are true.

The coherent states eGectively have minimum un-
certainty for large X. The coherent state with (S)=0
was the closest to minimum uncertainty, and such a
solution (8.45) gives exactly minimum uncertainty.
For (C)=0, the uncertainty product (8.44) might
blow up (as it did for E-+0 in the coherent state case),
and here that would mean our direct method is ambigu-
ous.

So once again, we observe that the coherent states
are a very coherent set of states for a new pair of
variables; here, number and phase. Combined with
their physical signi6cance and their coherence properties
in position-momentum and angular momentum-angle,
this makes them most remarkable states.

Since we would not expect to have both (C)=0= (S),
we wouM not think that we could obtain a minimum-
uncertainty state for the symmetric uncertainty rela-
tion (5.52) . This is the case, as was shown explicitly by
Jackiw" (recall the similar result for angular momen-
tum angle) . As we already mentioned, Jackiw also has
shown that the uncertainty relation (5.49), between
S and C, has no normalizable minimum-uncertainty
state.

If)=Za- IN), (8.38)

then we have
P'+ivCl I4)=) I 4) (839)

Taking expectation values gives us the recursion relation

()~—ss) a = (iv/2) (a +i+a -i)
(8.40)a i=0,

where, for self-consistency, we will have

) = p)+i~(c),
7=L(»)'/(~C)'3"'. (8.41)

Now, if we define a„=(—i) "b„, we have

(2/y) (ss —X) b„= (b„ i—b„+i),

(8.42)5 i=0.
If ) is real, i.e., (C) =0, the solution is "

b„=PI ),(y). (8.43)

where i is the normalization constant and I„(y) is a
modified Bessel function of the first kind of order p.
We need I i x(y) =0, so that )I, satisfies 2is+1&X& 2h,
k=0, 1 ~ .. Qur state is thus

9. STATISTICAL MECHANICS AND IRREVERSI-
BILITY IN THE COHERENT STATE BASIS

A. General Considerations
I )„y)U——vQ( —i)"I„g(y)

I ss)

(), ~ I x, ~)&=1.
"G.N. Watson, (Ref. 70), Sec. 4, pp. 77, 294.

The energy distribution in systems of bosons is
(844) related to the number operators Es describing the

various degrees of freedom labeled by the variable k.
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TABLE II. Important qualitative properties of some interesting state vectors associated with the harmonic oscillator are compared.

Type of state Number character Phase character
State vector
normalized

1. Number
~ n)

2. Phase
t cosa)

3. Coherent
~
n)

4. Minimum —Unc.
~

X, y)o
3. Phase diBerence

~
cos eu)

(AN)'=0
(nN)'= ~

complicatedb(».e) =o

(hC}'= -'~

(~c)&=o

complicatedb
complicatedb
(ac»)~=o

Yes
No
Yes
Yes
Yes

~ Except for the ground state; in which case (AC) ~ =$. See discussion in text.

On the other hand, the time evolution of such systems,
in particular, the approach to equilibrium, involves the
phase variables in an intrinsic way. In previous sections
we have considered idealized "pure" isolated quantum-
mechanical systems. In the present section we draw
attention to the great utility of the coherent state basis
for the description of the time evolution of the density
matrix. ""Here we confine our attention to the simple
harmonic oscillator; the reader is referred to Refs. 20
and 89 for discussion of a realistic problem involving
anharmonically coupled oscillators (phonons in a
crystal) .

In the coherent state basis the equation of Inotion for
the density matrix, although fully quantum-mechanical,
has an obvious correspondence with the classical
Liouville equation, as formulated in the action-angle
basis by Brout and Prigogine. "".The classical limit
is explicitly present, along with terms which can be
regarded as "quantum-mechanical corrections. "

The equation of motion for the density matrix is"

Eq. (9.1) can be written in the form

s&n I ap/at I n)

=~-' d'PI (~ I
II I P) &P I t I ~)—&~ I t I P) &P I

&
I ~)3

d2 n* "n p n (9.5)

where m and I are integers. Using the formula

7r ' d' exp — ' * ~=8)~ 1.'m.' ' 9.6

(9.4)

Equation (9.4) seems to indicate that knowledge of off-
diagonal elements (P I p I n) is required to compute
&a

I p I
n). However, this is not the case, as is explained

below.
Assuming H to have the structure of Eq. (9.2),

we encounter integrals with the structure

i (a/at) p=pp, p). (9.1) we find that any function which can be expanded in a
Taylor series satisfies the identities

In the following we suppose that all operators can be
represented by a convergent ordered series in a and at:

A =QA „(at)"a"=—A (at, a) . (9.2)

Tak.ing matrix elements between coherent states, we
find

(- I A(", a) I P)/(- I P) =RA-(~*)-P.

~ ' d'P exp (~*P IP I')f(P'-) =f(~'),

7t. d exp n — " = 88n " n

~ ' d'P exp (~'P- IP I')f(&) =f(~)

=A(n*, P). (9.3)

8~ K. S. Dy, Ph.D. thesis, Cornell University, June, 1967
(unpublished) .

~ A brief summary of the density matrix formalism is given in
C. Kittel, Elementary Statistical Physics (John Wiley Bz Sons,
Inc. , New York, 1961),p. 107."S. Bochner and W. T. Martin, Several Complex Variables
(Princeton University Press, Princeton, N, J., 1948).

We call the quantity A (rr*, P) the reduced matnx element
of the operator A. Given suKciently mell-behaved
expansion coeiTicients, A (rr*, P) is an analytic function
of two complex variables. "Therefore, it is sufhcient to
calculate A(n*, a), which is a boundary value of
A(n*, P). Analytic continuation is used to find the
general A (n*, P).

Using the completeness relation Lcf. Eq. (3.29) I,

' d'Pe p ( P*- IPI')(P*)"f(P) =(ala )"f( )

~-' d'PP(~ IP)&Plt l~) (9.8)

From Eq. (9.3), we learn that (P I p I n) is the prod-

(9.7)

The structure of the exponentials in Eqs. (9.7) is
dictated by the form of (rr I P) given in Eq. (3.28), as
indicated in Eq. (9.5).

A trivial example series to illustrate the application
of Eqs. (9.7). Suppose H contains the destruction
operator a. Then the first term of (9.4) gives rise to a
term with m=0, n=1, in (9.5):
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uct of (p I n) and an analytic function of p* and n:

(P I P I
u)= (—p I a)p(P*, u) (

Note the result

p(a*, u) = (a I p I a). (9.10)

Combining Eqs. (9.8), (9.9) with (3.28) results in

0! P

function of the product a*o,. Suppose the operator
B(at, a) also depends on ata alone:

8= Qb„(a'a) ". (9.15}

Since 8 is diagonal in the number basis, we may use
Eq. (3.24) to obtain

Pn

( I
~

I p) =Zb-2 —,( *P)"xp [—l I

g~ kI

-=~ (-*p) (- I p),

= exp (—I
a I') sr ' d'P exp (n*P—

I P I') &~(z) = Zb-F-(z) '
k"s~

F„(z)=e *Q

XP[exp (P*a)p(P*, a) ]
= exp (—I

n IP)(B/Bn*)[exp (n*n)p(n*, n)]
= (n+B/Bn') p(n', n). (9.11)

[Equation (9.7b) has been used to go from the second
to the third line of (9.11).] In calculations of this
nature it is essential that n* be considered independent
of n. (Off-diagonal elements (p I p I n) are brought into
the dynamics in this manner. )

It is not difBcult to generalize the preceding calcula-
tion to the general matrix element

(~I% I~)= 'fs's
I ( Is) I'&( ", s)n(s", )

= exp( —
I
n I')QA„„(u*)"

d2

exp (u*P
I P I')P"[—pex(P*u) p(P*, u) ]

B. Transition to Action-Angle Variables

In analogy to Sec. 5, an action J is dehned to be the
mean excitation number of the state

I n) and (t the
corresponding phase

J=n*n, g= (1/2i) ln (a/n*).

Noting that a* is independent of o, , we find

(9.17)

B/Bn- JM'e 'e[(B/BJ-) —(i/2J} (B/B4}],

B/Ba*=J'"e'e[(B/BJ) + (i/2J) (B/B(t)}]. (9.18)

In terms of the action-angle variables, integration
over the 0, plane becomes

(9.16)

Thus, if an operator 8 is a function of a~a, its reduced
matrix element (a I

8
I p)/(n I p) is a function of the

product n*p.

( B '1a= «p ( —I
u I') ZA-(n*)"

I,

X[exp (n*n)p(n , a)]. (9.12)

Thus, we 6nd the simple result

(al Apl a)
= exp (—I

n I') A (n*, B/Bn*) [exp (n*n) p(n*, a) ].
(9.13)

From this result we can obtain a useful expression
for the ensemble average of the operator A:

(A)= Tr pA=m. ' d'u exp ( —I
n I')A(n*, B/Bn*)

XLexp (u u) p(a a)] (9 14)

The method of integration outlined above can be
used to convert all relevant physical quantities to
operations on diagonal matrix elements. This is an
attractive feature of the coherent state representation,
which has not seemed simple or obvious in some previ-
ous treatments.

Further simplihcations occur when p is a function of
the number operator ata. In this case p(a*, n) is a

(9.19)

The most important (and simple) case is that of the
free harmonic oscillator:

i (Bp/Bt) = [Hp, p]= Lpp. —(9.20)

&(B/Bt) P(P ) =Lo(P )P(P ) (9 21)

where Lp(P*, a) is the differential operator

Lp(P*, u) =p)[P*(B/BP*) n(B/Bn—)] (9.22).

Note that if, at t=0, p(p*, n) is a function of p*n,
then p is independent of time. This corresponds to the
trivial remark that [p(1V), 1))r] vanishes.

Since we only need to compute p(n*, n), Eqs. (9.21)-
(9.22} greatly simplify to

Lp ——i(p(B/B(t ) . (9.23)i[BP(J, 4)/Bt]=Lpp(J 0)

Rewriting Eq. (9.23) in the form

L(B/Bt) (B/B4)]p(J pb—) =o (9.24)

one sees that any function of the form p(J, p —p)t)

Lp is the Liouville operator, defined. by (9.20) . Hp is, of
course, pp(ata+xa). A short calculation shows that
p(p*, n) evolves as
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solves (9.24) exactly as in the case of the classical
oscillator.

It is extremely interesting that the Liouville operator
Lp in (9.23) has a form similar to that naively con-
jectured for H on the basis of X and p being conjugate
variables

I see the discussion following Eqs. (6.42) j.The
implications of this result are discussed further in
Sec. 90.

Generalizing to an arbitrary number of independent
oscillators of frequency or&, we have

Lp= Qndp(8/Byp) (9.25)

The eigenfunctions of 1.0 play an important role in the
perturbation expansion of the density matrix, when
interaction terms are added to JIO. These eigenfunctions
are the same as in the classical analysis:

f{v}= (2m) ~" exp ( igvI, dtpp),
—

A generalization may be proved:

P(p') p ") "(=&—) f"d& d (&.) Pd)
0

=—(—1)"((L-(J))). (9.32)

Here L„(J) is the Laguerre polynomial. P'

For a harmonic oscillator in thermal equilibrium, the
density matrix is

p= exp ( Ppp—ata)/Tr exp ( Ppd—ata), (9.33)

where P= 1/kT. Thus, using Eqs. (9.15)—(9.16),

p(J) = exp {—JL1—exp (—Pp&) g}/I 1—exp (—Pcs) j '.

(9.34)

From this expression we obtain the expected results

&(J))= dJ Jp(J) =L1--p(-~-) j-',
Lpf{~}= (Z~~~)f{~} (9.26)

P')=&(J))—1=L p(P ) —13 ' (935)
Here the vy vary over all the positive and negative
integers; the sum over k covers all X normal modes.
The set {v} should never be mistaken for the occupa-
tion numbers Xq, rather, the set {v } specifies the phase
of the oscillators.

The normalization in (9.26) has been chosen accord-
ing to the inner product

(dId) fd'ld t&fdlI=I dp (9.27)

&E)=m ' d'n n*(n+8/Bn*) p(n*, n)

so that the eigenfunctions f{v } are normalized as follows:

(f{~}If{~'})=~( )~"~ (928)

The Kronecker delta in (9.28) means that vi=vp' for
all k. We have used mund brackets to denote inner
products in the space of the eigenfunctions to avoid
confusion with the usual quantum-mechanical inner
products (written with sharp brackets).

Finally, we give some results for important functions
of the number operator, when p= p(ata). Then p(a*, n)
depends on J alone, so that

H=Hp+H~ t, , Hp Qpd p(aqua——d, +-', ) . (9.36)

When H;„~ has a structure such that it causes scattering
of excitations among various modes in a continuous
spectrum labeled by k in (9.36), irreversibility is gen-
erally the result. From the structure of the integration
formulas (9.7), we see that (9.4) reduces to the follow-
ing partial differential equation involving the action-
angle variables Jd, ptpI, .

(i~ /~ )tt( {J~ 4~}, t) =(Lp+Lr)t ({Ji,A}, t) (9.37)

Lp is given by Eq. (9.23), while

L =L ({J }, {8/BJ };{y }, {8/Bdtp }) (9.38)

depends on the specific problem at hand. (See Refs. 20
and 89 for detailed examples. )

Here we only indicate the formal perturbation solu-
tion of (9.37). First define the "interaction-picture"
density matrix

pr({J&, pd}, t) = exp (—iLpt) p({J&, ptp&}, t). (9.39)

C. Coupled Oscillators; Irreversibility

Suppose a system of oscillators is described by the
Hamiltonian

~( )+ " ' ( / )~( )' ( ' ) satisfies the e uation

Integrating by parts on the second term, and applying
the normalization condition gives

i(Bpr/W) =Lr(t) pr,

Lr(t) = exp ( iLpt) Lr exp (iLpt). —(9.40)

(pp) fdd'dp (dj —l.= (9 30) The formal solution of (9.40) is

Therefore, the statistical average of the action variable
ls

«J))= dJ.Jp(J) = (&)+1 (9 31)

t

pr(P) =?' e p (
—d dp(l')dt )pr(l ), (td.dl)'

where T is the usual time-ordering operator.
92 Higher Trunscentental Functions, A. Erdelyi, Kd. (McGraw-

Hill Book Co., Neer York, 1953), vol. 1, p. 188.
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pI(t) =+PI({J2,vl}, t)f{v}.

The expansion coe%cients
PI({A, v2}, t) = (f{v}I PI({J2,y2}, t) ) - (it)"

ln (exp (ixt) )=Q, M„,
~=] Ql

(9.49)
*~ pz Jk, ~, t ~ 9.43

where the first few semi-invariants are

pI(t) may be expanded in terms of the eigenfunctions for exhibiting this exponentiation. For clarity we state
of I.p.. a few relations. Consider the moment generating func-

(9.42) tion (exp (ixt) ), where the average is taken over some
probability distribution P(x). The logarithm of this
quantity expands as

resolve the density matrix into the phase functions f{v }.
Inserting (9.39) into (9.43) yields
PI({A, vej, t)

=Xr I f{v} I
2 exp —i LI(t')dt'

I
f{v'}

{vv) to j
X(f{v'}

I PI({A, A}, 0)). (9.44)

This relation still contains derivative terms of the type
{8/8J2j.

Rather than investigate all possible initial conditions,
we content ourselves with the usual ieitiaL random
phase assumpti ore Thus we find

0

(9.51)

M2 ——(x')—(x)',

M, = (x )—3(x)2(x)+2(x)2,

M = (x')—4(x')(x) —3(x2)2+12(x2)(x)2—6(x)4. (9.50)

The case of a time-ordered exponential of an operator
is not much more complicated ps In place of (x") we
have

PI({J2, it(.},0) =0, {v}A{0}, (9.45)

which follows if p( {J2stse }t) is independent of it 2 at t= 0.
It is rensarkabLe that, giver this owe condition, the mlmber
distribution retains this properly for at/ time As expla. ined
before, the independence of p from the phase angles
{it)} only occurs if p is a function of the number opera-
tors {IVY}.This being true, the coefficient

t

T exp
~

—i sv(i') si')

(LI(t') )Ct',

(9.52)

p ({J =0} t)=p ({J} t)

describes the energy distribution among the various
normal modes.

Thus at time t, p~ is given by

(9.53)
From (9.47) and (9.52) we have

p({J}t)

t t

( ' 6) M2= dtl dt2$(TLI(tl)LI(t2) ) (LI(tl) )(LI(t2) )j.
D 0

t

T exp —i I.I t' dt'
p

(9.48)

often arise in statistical and quantum mechanics. A
systematic technique may be used for the evaluation
of such quantities. "In Eq. (9.47) we have to calculate
the average of an "exponential" over the phase angles.
As is well known, such an average can be expressed as
the exponential of a modihed series.

The method of semi-invariants (or cumulants), ex-
plained in Ref. 93, oGers a rapid and powerful method

93 R. Brout and P. Carruthers, Lectures on the Many-Electron
Problems (Interscience Pubi. Co., Inc., New York, 1962), Chap. 1.

f{0}I
2'exp —i LI(t')dt' If{0} I p&({J2} 0)

)
(9.4'7)

where we have set tp ——0 for notational convenience.
Quantities of the type

BPR({J2}, t)/Bt= eppg({Je},t), (9.55)

@p= —Z( f{o}I LI If{v})b+(Zvt») (f{vj I LI If{0}),

sr'+(X) =sr' (X)+i (P/X)—. (9.56)

Here P/x is the principal value.
The density matrix equation (9.55) can be used to

derive master equations for the occupation numbers
(Xe). When spatial inhomogeneities are involved, more
complicated components of the density matrix must be
used 21222289

(9.54)

We now observe that, for long times, the 3f„become
proportional to t. Also, the term M1 is often zero, or if
it is not, it can be eliminated by an energy renormaliza-
tion of the ~I,. Thus, the second-order term often
dominates (as when the perturbation is weak) and we
obtain the Brout —Prigogine equation
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The equation of motion for the density matrix

i(Bp/Bt) =Lp=LH, p$

is formally the same as the Schrodinger equation

(9.57)

D. Uncertainty Relation between Angle and Liouville
Oyerator

P(x, t) =gag(t) exp (zk x). (10.1)

The aq obey the usual commutation rules and the P(x)
satisfy

Consider a Bose system described by the non-
relativistic field operator

i (B+/Bt) =H@. (9.85) Q (x, t), Pt(x', t] =B(x—x') (10.2)

However, the Liouville operator L, is not necessarily
bounded on one side, so that the possibility of "phase
operators" arises.

Ke reconsider the simple harmonic oscillator. In the
coherent state basis the Liouville operator acting on
p(n~, n) =p(J, p) has the form (9.23). Ls is Hermitian
in the space of periodic functions. Moreover, we have
the commutator

for equal times. For any elmber state the expectation
value of (10.1) vanishes. However, as discussed by
Anderson, " the observed behavior indicates that the
true state has expectation value

Q(x, t))=f(x, t) exp Lg(x, t)$. (10.3)

$f(x, t) j is the particle density p(x, t). Thus, writing

D f(4) j=z(Bf/B4), t= Lo/~, — (9 59) (P(x, t) )=p'" exp (iy) (10.4)

where f is any differentiable function of P. As a special
is reminiscent of the coherent state of an oscillator

(9.60) (n
~

a
~
n) =N" exp (iy) . (10.5)

There is no trouble with the existence of p since the
spectrum of Ls runs from —oo to +~:

Lof(v) =v~f(v), f(v) =(2zr) ''exp ( ivy), —

P —0 +1 +2 ~ ~ '

Repeating the analysis of Sec. 4 we 6nd uncertainty
relations connecting 10 and trigonemetric functions of
phase:

(4Lo)'(6 sin g)'& (1/4) '(cos P)',

In fact, we can obtain a completely arbitrary expecta-
tion value of P(x) using the product coherent state

(10.6)

Thus, the ns are the Fourier coefficients of Q). How-
ever, the preceding is completely devoid of dynamical
content.

We consider the equation of motion for a destruction
operator of a single mode:

(ALs) '(6 cos P) '& (1/4) t0'(sin g)'. (9.62)
i (da/dt) =$a, H j. (10.7)

These expectation values pertain to the space spanned
by the eigenfunctions f(v) of Eq. (9.61), expect for
the special qualifications needed when the quantities
in (9.62) are computed with one of the eigenfunctions
themselves.

CO. ANALOGIES TO SUPERFIELD SYSTEMS

The qualitative description of the physical behavior
of various superQuids depends to a large extent on a
proper understanding of phase variables. " We have
seen that the traditional approach, which regards
number and phase as conjugate variables, lacks precise
meaning for small quantum numbers. In this section
we wish to d.raw attention to similarities between
approximate relations used by Anderson" to elucidate
superQuid behavior and rigorous relations which hold
for Bose operators in coherent states. We do not wish
to imply that the wave functions for superQuids are
coherent states of the type written down, although this
possibility has been discussed. "However, the analogies
are so striking that the true wave functions probably
have a similar structure.

Here H is an arbitrary Hamiltonian. Taking the expec-
tation value of (10,7) in the coherent state u and using
the integration formulas of Sec. 9A gives

i (doz/dt) =BH(oz*, a)/Bn*. (10.8)

dJ/dt=BH(J, y)/By, J=(N),

dg/dt = BH(J, P)/BJ— (10.9)

These equations play an important role in Anderson's
treatment of superQuids.

Although the preceding equations are not literally
applicable to real superQuids, we believe such coherent
systems will eventually provide the most interesting
application of the ideas expressed in this paper. Indeed,
using the phase difference operators of Sec. 7, one of the
authors has recently proposed a quantitized phase eRect
for dc Josephson tunneling. '4

"M. M. Nieto, Phys. Rev. 16V, 416 (1968).

Using Eqs. (9.17)-(9.18) to convert to action-angle
variables we And


