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This paper supplements the preceding paper by Maradudin and Vosko on the same subject. Extensions and additions
include discussions of (1) the group of the bond, (2) tabulations of the time-reversal invariance criterion, (3) the labeling
of experimental dispersion curves, (4) compatibility_relations, (5) accidental degeneracies, (6) the use of computers
for extracting symmetry information, and (7) application to magnetic normal modes. The chief results of the preceding
paper are summarized. Group theory is used to predict the connectivity of the phonon dispersion relations in CsCl and
Mg. A collection of corrections to primary references useful in this field is included.

1. INTRODUCTION

This paper supplements the previous article [hence-
forth called (I)] and is the residue of an intended
review article covering the same subject. I appreciated
the opportunity to read (I) in its preprint form. It
will probably be a classic in the field for its mathemati-
cal lucidity and the freshness of its viewpoint. In what
follows I would like to extend some of the ideas dis-
cussed in (I) and add some new material. The exten-
sions include an elaboration on what might be called
the group of the bond, a few comments to be added
to the very complete discussion of  time-reversal in-
variance, and a discussion of how group theory is being
used to label experimental and calculated phonon dis-
persion relations. The new material includes compati-
bility relations, rules for the crossing of dispersion
curves, the use of computers along with group theory
to extract symmetry information, and the eventual
extension of the theory given in (I) to magnetic modes
in solids. As further examples, we present the group
theory for CsCl and Mg, and reference applications
to other substances. It occurred to the author that it
would be useful to workers in the field to have a sum-
mary of the main results of (I) without proofs or
mathematical digressions. This is presented just before
the examples. The article concludes with a tabulation
of misprints and errors encountered by the author
during his reading. Most of these are easily detected
by the expert, but might be time-consuming for others.

2. NOTATION

Before taking up the main topics of this supplement,
I would like to discuss the problem of notation. The
rational content of mathematical theorems and physi-
cal laws is obviously independent of the symbols used
in their statement. On the other hand, efficient com-
munication among workers in the same field demands a
standard notation for frequently used quantities. In
some ‘cases there is a rational basis for choosing a nota-
tion. In most cases there is not, and the notation de-

* Work supported by the U.S. Atomic Energy Commission.
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vised by the person with a dominant intellect or per-
sonality usually prevails until a more dominant person
appears. Where strong conflicts occur between schools
of thought, committees are sometimes set up.

Perhaps the most outstanding example of such a
cooperative effort is the International Tables for X-Ray
Crystallography.! Although the major task of those three
volumes is to summarize data and methods useful to
crystallographers, it has also served to establish a
universal notation for the point and space groups and to
record various coordinate conventions adopted by the
International Union of Crystallography. Another ex-
ample of the usefulness of committee action is the
paper “Standards on Piezoelectric Crystals, 1949,”
which was the work of the Standards Committee and
the Piezoelectric Crystals Committee of the Institute
of Radio Engineers.? This paper recommends standard
Cartesian coordinate systems for all Bravais lattices,
specifies standard plate orientation nomenclature, and
recommends symbols and units for physical quantities.
The use of such standards by all solid-state physicists
seems highly desirable.

It appears to the author that the group theory of
crystal lattices needs some standardization of notation.
There is not even a universally accepted notation for
the point group operations. Tables III, IV, and XIV,
given later in this paper, illustrate some of the notations
in current use. Three basic systems of notation emerge.

One system is based on a more or less arbitrary num-
bering of the operations, as is illustrated by Kovalev’s®
and Slater’s? notation for the cubic groups. This is very
useful for making concise multiplication tables. It is
less useful in representation tables because it requires
the reader either to memorize or constantly look up
the geometric meaning of these symbols.

1 K. Lonsdale, International Tables for X-Ray Crystallography
(The Kynoch Press, Birmingham, England, 1952), 3 Vols.

2 Standards 1949, Proc. Inst. Radio Engrs. 37, 1378 (1949).

30. V. Kovalev, Irreducible Represeniations of the Space Groups
(Gordon and Breach Science Publishers, New York, 1965).
[Translation by A. M. Gross. Originally published by Academy
of Sciences USSR Press, Kiev, 1961) 1.

4J. C. Slater, Quantum Theory of Molecules and Solids (Mc-
Graw-Hill Book Co., Inc., New York, 1965), Vol. 2.



The second system is based on special symbols
such as C for rotation, S for rotoreflections, and ¢ for
reflections. Subscripts and superscripts are added to
these symbols to indicate the order of the axis, i.e.,
twofold, threefold, etc., and to indicate the direction
of rotation or reflection. There are two variants here.
The notation for the axes of rotation are either tied to
a provided diagram (as in Altmann and Cracknelld)
or to a special coordinate system (as in McWeeny?®).
The use of a special diagram insures self-consistency
and independence from future conventions. It has the
disadvantage that one must continually refer to the
author’s diagram or memorize his system. The use of
a special coordinate system appeals to the author since
it involves less memory work. The choice of coordinate
systems is essentially unique because of the two stand-
ards mentioned above.!:?

The third system of notation is exemplified by
Slater’s symbols for the operations of the hexagonal
point group 6/mmm (in Table XIV, given later in this
paper). Multiplication of operations is accomplished
by adding subscripts and following simple rules for
determining the rest of the symbol for the product
operation. This obviates multiplication tables and is
easily understood. If a similar system could be devised
for the operations of the cube, this might have uni-
versal appeal.

The existence of so many notations frustrates easy
comparison of tables, tends to divide people into differ-
ent schools, and bespeaks the need for a standard
reference.

The notational problem is also evident in the repre-
sentations for the point groups and the space groups.
Here there are two major competing notational systems.
One is the outgrowth of atomic and molecular sym-
metry considerations in which the point groups are
dominant. The other comes from band theory where the
concept of the Brillouin zone (BZ) is central.

The first system, which appears to be due to
Mulliken,” is characterized by symbols 4, B for one-
dimensional representations, E for two-dimensional
representations, I' for three-dimensional representa-
tions, etc. To these symbols are attached primes and
subscripts whose meaning is given by a set of rules.
(See, for example, Altmann® or McWeeny.?) The rules
allow the reader to gain a great deal of information
about the representation by merely examining the
symbol. Although this system was devised expressly
for point groups, it has application to space groups.
In solid-state physics one is seldom interested in space
groups per se, but more often in the factor group of
the space groups which are isomorphic to the point

( & S.)L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
1965).
6R. McWeeny, Symmelry (The Macmillan Company, New
York, 1963).
7R. S. Mulliken, Phys. Rev. 43, 279 (1933).
8S. L. Altmann, “Group Theory” in Quantum Theory, D. R.
Bates, Ed. (Academic Press Inc., New York, 1962), Vol. II, p. 163.
¥ Reference 6, p. 95.
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groups. Also, as we have seen in (I), one can use multi-
plier representations of the point groups (rather than
than full representations of the space groups) for many
applications. For these reasons this notation makes a
great deal of sense. It has been adopted by Altmann
and his coworkers.5+10

The second notation for the irreducible representa-
tions has coalesced about the work of Bouckaert,
Smoluchowski, and Wigner* (BSW). In their work,
symmetry lines and points in the (BZ) are labeled with
arbitrary letters, most of which are Greek. Points on
the x axis in reciprocal space, for instance, are labeled
A. For each wave vector in and on the (BZ) there are
one or more irreducible representations of the space
group. The representations of most interest are those
associated with wave vectors on symmetry lines and
at symmetry points. The irreducible representations
along these lines or at these points are specified by
adding arbitrary numerical subscripts and (sometimes)
primes to the letter for the symmetry element. For
example, Ay, Ay, Ag, Ay, and Aj are the representations
of the group of the wave vector which lies along the
# axis in the (BZ). Unfortunately, there is not just one
such system of labels. Different authors have chosen
different letters and different subscripts for the same
representation.’? Koster'® recorded a consistent set of
letters for the symmetry elements in all Bravais lattices,
but for various reasons it has not met with universal ac-
ceptance.” The situation may be further aggravated
in the future by the appearance of books such as
Kovalev’s which use a wholly new arbitrary listing of
wave vectors and representations.

The choice of notation here is a difficult problem.
The band theorists have lived with it for over thirty
years. The lattice dynamicists have remained relatively
aloof until recent years. It is, however, now becoming
common to find branches of phonon dispersion rela-
tions labeled with the (BSW) names of the irreducible
representations.’™ For better or worse, Pandora’s
box has been opened. Wherever possible in this paper,
current notations will be compared. It seems best at

(1190685') L. Altmann and C. J. Bradley, Rev. Mod. Phys. 37, 33

L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 (1936).

12H. Jones, Theory of Brillouin Zones and Electronic States in
Crygglss S(North-Holland Publishing Co., Amsterdam, 1960),
pp. 8/-33.

18 G, F. Koster, “Space Groups and their Representations” in
Solid State Physics, F. Seitz and D. Turnbull, Eds. (Academic
Press Inc., New York, 1957), Vol. 5, p. 173.

14 The bismuth-type crystals are a good example. Slater (see
Ref. 4) and M. H. Cohen [Phys. Rev. 121, 387 (1961) ] have each
chosen a labeling of ;the symmetry points different than Koster’s.

%5 A.D. B. Woods, Symposium on Inelastic Scattering of Neutrons
by Condensed Systems (Brookhaven National Laboratory, Upton,
N. Y., 1967), BNL-940.

16 G. Dolling and R. A. Cowley, Proc. Phys. Soc. (London) 88,
463 (1966).

7 W. Cochran, R. A. Cowley, G. Dolling, and M. M. Elcombe,
Proc. Roy. Soc. (London) A293,F433 (1966).

8 J. L. Warren, J. L&Yarmell, G. Dolling, and R. A. Cowley,
Phys. Rev. 158, 805 (1967). }
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the present time not to suggest a new notation for the
representations or to. express any strong prejudice for
a particular choice.

3. EXTENSIONS

The group of the bond is defined as the set of all
operations which leave the force constant matrix
®(lk; I'k’) invariant. As mentioned in (I) under Eq.
(2.10), the transformation properties of ®(lx; I'x’)
under elements in the group of the bond may be used
to determine the number of independent force con-
stants. Let

$n={S | v(8)+x(m)}. (3.1)

Then the transformation properties of ®(lx; /'«’) are
given by the equation

&, (LK; L'K') = 3 SuaSus®as(l; k), (3.2)
af
where
x(LK) =8,x(Ix). (3.3)

There are two additional relations which are used
b_elow:

&, (I; V") =,,(I'K’; Ix), (3.4)
@, (I V') =By, (1—1Uk; OK'),
=&,,(0x; I'—I"). (3.5)

In (I) the last four equations are labeled (2.10b),
(2.4), (2:3), and (2.11b), respectively. The force con-
stant matrix ®(Jk; I'«’) describes the bonding between
the atom at x(/«x) and the atom at x(I'«’).

The group of the bond contains not only the space
group operations ®,,= {R | v(R)+x(m) }, such that

RmX(Ik) =x(I+mx) (3.6a)
and
Rux(U'k") =x(I'4+mx’), (3.6b)

but also operations which are analogous to the anti-
unitary operations discussed in connection with the
dynamical matrix. If the space group contains an opera-
tion 8, such that

Su-x(lk) =x(—1+mx’) (3.7
and similarly for x(/'x’), then Eq. (3.2) becomes
B (V—1K'; 0k) = 2, S_aS_s®as(I—1U'x; Ox’),  (3.8a)
. %
or, in vector notation,
®(V'—Ik'; 0k) =S_®(I—1V'k; 0') S (3.8b)
or
DUk k) =S_®(lk; I'k’) S (3.8¢)

Let 3 be a transposition operator

I3 =T, (3.9)
When this operator is applied to Eq. (3.8¢c) and use is
made of Eq. (3.4), we get

®(Ik; U'k") =3S_®(Ik; I'k’) S_13. (3.10)

The operator 3 plays a role similar to K in the anti-
unitary operators of (I). The combined operator 38,
leaves the bond indices 44(Ix; I’«’) invariant and hence
is in the group of the bond.

A classic example of the use of this operation came
in the discussion of the interaction of an atom with
its second neighbors for germanium by Herman.
The lattice of germanium is two interpenetrating fcc
lattices. The second neighbors of an atom at the corner
of the cube are located on face centers. It turns out
that the group of the bond contains space group opera-
tions of the form {E|x(m)} and {¢™|x(m)}. E is
the identity operation and ¢ is a reflection plane whose
normal is in the direction [110]. The atom at the corner
of the cube has indices (/) =(0001), and the second
neighbor that we are using in this example has indices
(/’«)=(0011).2° In Herman’s notation, these opera-
tions simplify @(0001; 0011) to

n v 8
®(0001; 001)=—| » u & (3.11)
Y v A

Application of the operator 3{C;% | x(m)} shows that
y=—4é. C%" is a twofold rotation about the z axis and
changes (0011) to (00I1). (Further examples of this
kind are found in Sec. 6.)

The discussion of time reversal in (I) is very good.
The comments that I wish to add are related to the
criteria for extra degeneracies, Eq. (5.61) in (I):

> ¢(k; A, A)x© (k; A?) =, (3.122)
A

=-—h’

first type,

second type, .

(3.12b)
third type,
(3.12¢)

=0,

where
o(k; A, A)=exp [i(k+A"k)-v(A)] (3.13)

by Eq. (3.47) in (I). The A’s are operations in Gy(k, —k)
which are not in Go(k). In the practical application of
this criteria it has been pointed out that ¢(k; A; A) =1
if the space group of the crystal is symmorphic or if
k is in the interior of the (BZ) for crystals with non-
symmorphic space groups. In these two cases the ir-
reducible multiplier representations are just the ordi-
nary irreducible representations of the point group
Go(k). Koster, Dimmock, Wheeler, and Satz? list the
behavior of these representations under time reversal.
In their tables of irreducible representations they in-
clude the letter a, b, or ¢, corresponding to the three

13 F. Herman, Phys. Chem. Solids 8, 405 (1959).

2]'=(001) gives the position vector x(') = (a/2, a/2, 0) in
Cartesian coordinates; ¢ is the cubic lattice constant.

2 G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz,
Properties of the Thirty-Two Point Groups (The M.LT. Press,
Cambridge, Mass., 1963).



cases above for each representation. They do not ex-
plain how this letter was arrived at, but Dimmock and
Wheeler?? derived a criteria for magnetic groups. The
ordering of cases agrees with Wigner’s 1932 choice,?
which is consistent with Herring’s criteria.?® The
authors of (I) have used Wigner’s new terminology.?
This means that b in Koster et al. is the third type
and c is the second type. Koster ef al. say that Case ¢
does not occur for point groups without spin.?® Upon
looking through the tables, one finds that only for point
groups 4, 4, 4/m, 3, 3, 6, 6, 6/m, 23, and m3 do some
of the ordinary (no spin) representations correspond
to Case b. Thus, for 22 of the 32 point groups we need
not worry at all about time reversal. Of the point
groups listed above, roughly half of their representa-
tions belong to Case b. Of course for k vectors on the
surface of the (BZ) of nonsymmorphic crystals one
must go back to the general criteria.

It was shown in (I) that each branch of the phonon
dispersion relation belongs to a definite irreducible
representation of the group of the wave vector. It is
intuitively obvious that names of the irreducible repre-
sentations would make good labels for experimental
dispersion curves. When people began measuring
phonon relations by means of neutron inelastic scatter-
ing some ten years ago, there was no need to use group
theory to label the curves obtained. Measurements were
made in elemental cubic substances along directions
of very high symmetry so that the modes could be
classified as pure transverse-acoustic (TA), longitu-
dinal-acoustic (LA), transverse-optic (TO), or longi-
tudinal-optic (LO).# This labeling scheme began to
break down when measurements were made along di-
rections of lower symmetry.?® By the time measure-
ments had been made on more complicated substances
such as UO,, Mg, and white tin, the use of group theory
labels was fully established.®-%2 The names of the
representations came from band theory and are almost
exclusively taken from (BSW)! or Koster.®® Perhaps

22 7, O. Dimmock and R. G. Wheeler, J. Phys. Chem. Solids 23,
729 (1962).

2 E. Wigner, Nachr. Akad. Wiss. Goettingen, Math.—KIl.
Physik, p. 546 (1932). [Translated in Group Theory and Solid
State Physics: I, P. H. Meijer, Ed. (Gordon and Breach Science
Publishers, New York, 1964) ].

24 C. Herring, Phys. Rev. 52, 361 (1937); [See alternatively,
Knox and Gold, Symmetry in the Solid State (W. A. Benjamin,
Inc., New York, 1964), p. 235].

% E. P. Wigner, Group Theory (Academic Press Inc., New York,
1959), p. 343.

26 Reference 21, p. 12.

( 27B). N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747
1958).

28 G. Dolling, Inelastic Scattering of Neutrons (International
Atomic Energy Agency, Vienna, 1963), Vol. 2, p. 37.

29 D. Long-Price, Inelasiic Scattering of Neutrons (International
Atomic Energy Agency, Vienna, 1965), Vol. 1, p. 109.

% P, K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan, and
A. P. Roy, ¢bid. p. 153.

3 A. D. B. Woods, G. Dolling, and R. A. Cowley, sbid., p. 373.

32 W. Cochran, R. A. Cowley, G. Dolling, and M. M. Elcombe,
Proc. Roy. Soc. (London) A293, 433 (1966). G. Dolling kindly
pointed out to me that the labeling at L and M (or X) in Fig. 1
is in error. From top to bottom the labels should read L,, Ly, L,
L’a, and Xq’, Xs’, X4I, Xs’.
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one of the first papers to use this labeling was a theo-
retical paper by Johnson and Loudon,® which analyzed
the critical points of the phonon spectra of diamond,
Si, and Ge. No explanation of the notation was given
in that paper.

Thus, while the authors of (I) base their labeling
and calculation on the relatively recent tables of
Kovalev, most of the experimental literature during
the past four years is based on other sources. One reason
for this could be that Kovalev’s tables are the best
complete set. It is also important that Kovalev bases
his work on multiplier representations. Until very
recently, most of the band theory calculations have been
based on the representations of the factor group of the
wave vector.”® Another complete set of representations
based on multiplier representations of the point groups
has recently been published by Hurley.* It relies
heavily on point group representations tabulated by
McWeeny.® Because of its extreme compaction, it is
not as convenient to use as Kovalev’s work. Excellent
though incomplete tables can be found in Slater.®
Twenty of the most common lattice structures are
treated fully. One must take care, however, to note
Slater’s unorthodox conventions.?¢ These have been dis-
cussed by Altmann and Bradley” and by Hurley.®
Hurley has pointed out that Slater’s treatment of the
cubic groups is not consistent with his treatment of
the noncubic groups. The articles by Altmann and
Cracknell® and by Altmann and Bradley™ also contain
extensive tables of irreducible representations.

Even without the use of irreducible representations
and projection operators to find eigenvectors, a great
deal of information useful for labeling curves can be
obtained from compatibility relations, rules for cross-
ing, and computer calculations. These are discussed
in the next section.

4. ADDITIONS

Compatibility conditions are useful in establishing
the connectivity of branches of the dispersion relation.
The problem of connectivity arises when two sym-
metry lines in K space meet at a symmetry point.®
An example of this can be seen in Fig. 1 for the diamond
lattice. Starting at I, one can reach X by going along
the line A or by going along the line £ to K, which is
identical with the point U, and then on along S.® One

¥ F. A. Johnson and R. Loudon, Proc. Roy. Soc. (London)
A281, 274 (1964).

(13946%5 C. Hurley, Phil. Trans. Roy. Soc. London, Ser. A. A260, 1

% See Ref. 4, Appendix 3. )

3 J. C. Slater, Rev. Mod. Phys. 37, 68 (1965).

3 Reference 10; see note added in proof, p. 45.

3 Reference 34, p. 26.

% The question of connectivity also arises when two symmetry
planes intersect in a symmetry line. This case is of less interest
however.

4 The dispersion relation in the = direction is actually periodic
in an interval twice the length of the interval from I'—K, U—X.
This can be seen by using an extended zone scheme in k space in
which each reciprocal lattice point is enclosed in a Brillouin zone
of the type shown in Fig. 1.
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Fic. 1. Brillouin zone for face-centered cubic lattice. C, O, and B
are symmetry planes.

of the better definitions of_compatibility relations, their
construction, and their use is to_be found in Tinkham’s
discussion of band theory.* The basic idea is as follows.
g« The point group of the wave vector along symmetry
lines, like A and Z, are subgroups of the point group
of the wave vector at terminal symmetry points, like
T and X. An irreducible representation of the point
group of the wave vector at a terminal symmetry point
must, perforce, provide a representation of its sub-
groups. In order to make a precise definition of com-
patibility, it is best to define our terms in advance.

Let 7®={z®(R), REG} be an irreducible repre-
sentation of the group G, e.g., the point group of the
wave vector at a terminal symmetry point. Let 7/® =
{z®(R), REG'} be the representation provided by
7 for the subgroup G/, e.g., the point group of the
wave vector along a symmetry line. Let 0@ = {¢®(R),
REG'}, s=1, 2, -+, n be the irreducible representa-
tions of G'. The representation 7/ can be decomposed
into the direct sum

n

FO=3 6, ()o®,

=1

(4.1)

where ¢,(2) is the number of times the irreducible repre-
sentation ¢ occurs in 7/®, The irreducible representa-
tion ¢® is said to be compatible with the representa-
tion 7 if ¢® is in the decomposition of 7/¢9, i.e., if
¢,(2) 0. We say that a given branch of the dispersion
relation along a symmetry line is compatible with a
value of the dispersion relation at a symmetry point
provided that the corresponding irreducible repre-
sentations to which they belong are compatible. One
can easily establish these compatibility relations by
using the known irreducible multiplier representations
and the decomposition formula for ¢, [Eq. (4.36)
from (I)]. For many of the common crystal structures
these are listed in Appendix 3 of Slater.* It naturally

#“4 M. Tinkham, Group Theory and Quantum . Mechanics
(McGraw-Hill Book Co., Inc., New York, 1964), p. 286.

follows that if branches measured or calculated along
different symmetry lines are going to connect at a
common symmetry point, they must be compatible
with this symmetry point.

As an example of how these relations are used, let
us establish the general shape and connectivity of the
dispersion relations along the = direction in diamond
assuming that the dispersion relations along A have
been measured. In particular, let us assume that the
solid curves and their labels in Fig. 2 are known. By
constructing the multiplier representation {T (ks; R)}
for k along = [see Egs. (6.7) in (I)] and using the
decomposition formula for ¢, the number of times
the irreducible representation s is in T(ky; R), we find
that

{T(ks; R)} =270 (k;; R) &7 (ky; R)

&7® (ky; R) D279 (ky; R) - (4.2a).
in Kovalev’s notation or
{T(Z; R)}=221(R)OZ:(R)®Z4(R)D2Z3(R)  (4.2b)

in the notation of (BSW). The compatibility relations
for points T and X are in Tables I and II. The fact
that 2, starts from T'y5, which is the origin of the acoustic
modes, and ends on Xj tells us that the lower Az branch
ends in Xs. Table II tells us that X, is the endpoint
of the longitudinal branches A; and Ay’. Thus, the
labeling at X or kyo is unique. The dashed curves on
Fig. 2 are drawn in by compatibility and by assuming
that the crossing of branches belonging to the same
representation is unlikely. The ordering of the branches
coming out of symmetry points is not unique. This
can be seen by comparing the experimental curves for
diamond®® in Fig. 3 with those for silicon® in Fig. 4.
The order of the representations X; and X, are different

F,

25

w in arbitrary units

A
A,

K ke=E(£,0,00 Ko k=Z(L,L0) Ky

F16. 2. Predicted connectivity of dispersion curves in the =
direction of diamond assuming that the curves are known at I’ and
along A. The figure is illustrative and not drawn to scale.



TaBLE I. Compatibility relations for diamond at T' or ky.»

T Ty’
AIGBAE A2’®A5
Z:DZsDZy 212D

& Taken from Ref, 4, Table A3-31, p. 383,

in the two substances because of dynamical effects
which cannot be predicted from group theory. This
example shows us the power and limitations of com-
patibility relations. Under favorable circumstances
labels can be assigned without calculating eigenvectors.
These relations always serve as a useful crosscheck.

The second use of group theory mentioned at the
beginning of this paper concerned the crossing of
branches. The use here is combined with topological
arguments and hence is less direct. Any crossing or
contact of branches not predicted by group theory
considerations is called an accidental degeneracy. Ac-
cidental degeneracies may be further subdivided into
three types: (1) possible, (2) unlikely, and (3) vanish-
ingly improbable.®? The first type of degeneracy occurs
between branches belonging to different representa-
tions. There is no known prohibition against their
crossing. The other two types occur for branches be-
longing to the same representation. It should be re-
called that for a general point in the Brillouin zone the
group of the wave vector has only one irreducible repre-
sentation. Therefore all branches of the dispersion rela-
tion in off-symmetry directions belong to the same
representation.

von Neumann and Wigner® have shown that with
three or more variable parameters in the system it is
not impossible for two eigenvalues of a Hermitian
matrix to become degenerate for some value of the
parameters. The three components of the wave vector

T T l, T TT T T ] I
Lyo I 3o T
= . X Te © o
g A0 ' ! 240
20 X4 . 23(0) 7]
go RNSAT
o AN (A
S B Xy 1 2 A \ \ 1
> .
4 I
g ot 1 b NS .
g A5(A) !
b ]
0.5 4 F | ~
1
1 1 } 1 1 1
1 1 L
% 2 4 6 6 L0L0O 6K 6 4 2 or"s
[ool] [L Lol

F16. 3. Measured and calculated dispersion curves for diamond in
two directions of high symmetry.

4 J. Callaway, Energy Band Theory (Academic Press Inc., New
York, 1964), pp. 36, 37. . .

4 J, von Neumann and E. Wigner, Physik. Z. 30, 467 (1929)
[Translated in R. S. Knox and A&Gold, Symmetry in the Solid
State (W. A. Benjamin, Inc., New York, 1964), p. 167].
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F1c. 4. Measured and calculated dispersion curves for silicon.
Dotted branches have not been reported in the literature, but
must have this connectivity by compatibility.

k in the dynamical matrix D(k) serve as variable pa-
rameters for our system. Herring# has examined the
problem of accidental degeneracy for band theory. It
is almost intuitively obvious that the arguments he
made for the solutions of the Schrodinger equation
can be carried over to the equations of motion in lattice
dynamics. Herring defined an accidental degeneracy
to be vanishingly improbable if it ceases to exist after
some infinitesimal change is_made in the form of the
interaction which does not alter the symmetry of the
interaction. In band theory the interaction is the
self-consistent potential for the one electron problem.
In lattice dynamics the interaction might be considered
to be the set of Born-von Karman force constants.

Most of the contacts or crossings of branches be-
longing to the same representation are of the vanish-
ingly improbable type. Herring lists a set of what might
be called unlikely accidental degeneracies. This list
is summarized below.

For crystals with no center of inversion, contacts be-
tween branches belonging to the same representation
may occur at isolated points which may lie in sym-
metry planes or in planes perpendicular to twofold
axes, provided that time reversal does not cause these
branches to have additional degeneracies. Points of
contact must occur in multiples of four in the Brillouin
zone.

For crystals with an inversion center, contacts be-
tween branches belonging to the same representation
may occur at all points k of an endless curve, or a
number of such curves in k space. It is vanishingly

TasrLE II. Compatibility relations for diamond at X or kje.2
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& Taken from Ref. 4, Table A3-31, p. 383.

44 C. Herring, Phys. Rev. 52, 365 (1937). [See also Knox and
Gold, Ref. 43, p. 240.]
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improbable for such curves to lie in planes of symmetry
in the Brillouin zone; however, a contact curve may
pass through a symmetry axis at a point where neces-
sary degeneracy or contact of inequivalent branches
occurs. Herring also gives a discussion of the type of
endless contact curves which can exist and a limited
amount of information on the number of times a certain
type may occur.

Because the situation is not clear-cut, one cannot
categorically say that branches belonging to the same
representation cannot cross. Each suspected case of
crossing for equivalent branches must be investigated
to see if it falls into the vanishingly improbable type
or the unlikely type.

From the above discussion one can see that there are
limitations on the usefulness of compatibility relations
and crossing rules. Ultimately the assignment of
branches to irreducible representations depends on the
transformation properties of the eigenvectors. Projec-
tion operators are often inadequate to give eigen-
vectors. When a given representation occurs more than
once in the multiplier representation {T(k; R)}, then
the projection operator method only gives a linear com-
bination of eigenvectors.

One practical way of associating eigenvectors with
eigenvalues is to do a computer calculation for the
lattice dynamics of the crystal under investigation. This
gives numerical values for eigenvalues and eigenvectors.
The transformation properties of these eigenvectors
can be checked by application of the matrices T (k; R).
Even very crude models will work because the real
symmetry-dependent properties are model-independent.
One does have to be careful about possible accidental
degeneracies introduced by a model. This method of
assigning labels can be the by-product of doing a least-
squares fit of a theoretical model to experimental data
and therefore is very convenient for the experimenter.

Recently A. W. Luehrmann reported on a computer
code that produces a complete set of irreducible repre-
sentations for any point group. This suggests that it
will soon be possible to do group theory analyses on a
computer for complicated symmorphic crystals contai.n-
ing many atoms per unit cell. Programs for the ir-
reducible representations of nonsymmorphic space
groups are reportedly in progress.®

When a crystal has a magnetically ordered phase,
there are magnetic normal modes. These are called
spin waves or magnons. The symmetry group for the
crystal is then one of the magnetic space groups. Ap-
plication of group theory to magnetic modes has al-
ready been made by Brinkman.*® The analysis is less
fruitful because there are fewer symmetry operations
in the magnetic groups. There are also complications
arising in many cases from a lack of knowledge of tl_le
underlying spin arrangement, i.e., an uncertainty in
the magnetic space group.

In some cases where the magnetic group is known

% A, W. Luehrmann, Bull. Am. Phys. Soc." 12, 341 (1967).
4% W. Brinkman, J. Appl. Phys. 38, 939 (1967).

there are other puzzlements. The experimental spin-
wave dispersion curves show a symmetry higher
than that of the magnetic space group according to
Brinkman. He has used this knowledge as a basis for
introducing what he calls spin-space type groups.
These groups reflect the symmetry of the dominant
interactions (Heisenberg exchange, crystal field con-
tributions, etc.). By working out the symmetry of
these interactions and comparing them with the ob-
served symmetry of spin wave dispersion relation, some-
thing can be learned about the strength of less sym-
metric interactions. This, in turn, could be useful in
determining the magnetic space group itself if it were
unknown. Some magnetic modes are optically active.
Group theory will again be useful in establishing selec-
tion rules. Excellent magnon dispersion relations are
beginning to be reported.® As the substances reported
become more complicated, group theory labels will
undoubtedly appear. In UOQ; the vibrational and mag-
netic modes interact strongly.® A proper treatment
of substances like this will have to come from a unified
approach in which the magnetic space_group is the
proper group for both the phonons and magnons.

5. PROCEDURE

This section outlines the procedure used in working
out and presenting the group theoretical results given
in the next section. The notation with minor_ excep-
tions is that used in (I). Formula numbers followed by
asterisks refer to (I). This is done in order to make it
easy to refer to the original discussion.

Each example in the next section begins with a dis-
cussion of the Cartesian coordinate system used to_de-
scribe the direct and reciprocal lattice. This system
conforms with the recommendation of the Piezoelectric
Standards, 1949.2 There are several properties of the
dynamical matrix D(k) which are independent of
the particular choice of k. Some of these are listed below.

A. D(k) is Hermitian,

Dgo(x'x | K) =Dog(x’ | k) *, (2.22)*
B. D(k) is periodic in the reciprocal lattice,
Dos(xx’ | k+K (1) )=Dog(xx’ | k),  (2.19)*
where
3
K(%) =.Z1 hjb;, (5.1)
=
a;-bj=21r6;,, (52)
and
3
x() =2 lLa,. (5.3)
7=l

( ;7 A). J. Sievers, III and M. Tinkham, Phys. Rev. 129, 1566
1963).

8 H. B. Moller and J. C. Gylden Houmann, Phys. Rev. Letters
16, 737 (1966).
(14996(6}). Dolling and R. A. Cowley, Phys. Rev. Letters 16, 683



This definition of the reciprocal lattice differs in a minor
way from that given in Eq. (2.18) in (I).

C. If the point group of the space group contains the
inversion operation, there are the following simplifica-
tions that can be made under special circumstances.

(1) If every atom is at an inversion center, D(k)
can be converted into a real symmetric matrix C(k)
which has the same eigenvalues as D (k) and real eigen-
vectors w(kj). The transformation is

Cap(kk’ | k) =exp {—ik-[x(x) —x (k) ]} Dap(xx’ | k),
(3.27)
we(k | Kj) =exp [—ik-x(x) Ju,(x | kj). (3.29)*

Note that j stands for the triplet of quantities sah.
The number s is a label for the representation according
to which w(kj) transforms. The quantity ¢ runs from
1 to ¢, where ¢, is the number of times that the irre-
ducible representation {+#®(k; R} occurs in the repre-
sentation {T(k, R)}. \ runs from 1 to f, where f, is the
dimension of the irreducible representation {=® (k; R)}.
The real form C(k) is very convenient for use on a
computer. If, on the other hand, one wishes to keep
the Hermitian form D(k), there are still the simplifi-
cations

Dog(kk | &)*=

Diug(kx | ) (5.4)

and
Dio('x | k) =exp {2ik+[x(x) —x(«') ]} Dap(xx’ | k).
(5.5)
(2) When only some of the atoms are located at
centers of inversion, then Egs. (5.4) and (5.5) apply
to the corresponding values of x and «'.
(3) If two atoms of the same species occur in the

lattice and are interchanged by the inversion opera-
tion, then

Des(9n[x], 9m[k] | K) = Dga(xx | K),
In=1i| V(i) +x(m)}

and 9,,[ «] is defined in such a way that the operation
9, interchanges sublattice « with sublattice 9,[«].

(3.30)*
where

(5.6)

Thus
Im[In[ K ]]=x. (5.7
We also have
Deg(9m[ ¢ ] | k) = Dog(x9n[x] | K)*, (3.312)*
=Dgo(9n[x]x | k). (3.31b)*

(4) If none of the above three conditions hold, there
is still the general relation

Dag(9nLx19m[x'] | k)

=exp [T (kx’ | K; 9m) JDap(xc’ | K)*,  (3.26)*
where
T(kx’ | &; 9) = —k-[x(9[k]) +%(k)
—X(9u[x'])—x(x)]. (5.8)
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Returning now to the general properties of D(k)
which hold for all k we have the following.

D. Even for general k not all the matrix elements
are unrelated to one another in functional form. As
an example,

D21(KK/ l kl, kz, ks) =D12(KK’ , kz, kl, /33)

in cubic lattices. &1, ks, and k3 are the Cartesian com-
ponents of k. The relation between the functional
forms of the matrix elements is found by applying the
formula

Deg(8nu[ x18n[ "] | Sk)
=exp [ (k' | K; 8$u) ] D SawSasDus (k! | K),

(3.4)*
where

T(kk' | K; 8u) =Sk-[x(8,[«]) —Sx(x)
— X8 +Sx(«)]. (5.9)

The definition of 8,[«x] is an obvious generalization
of 9,[ k] given above. 8,[«] is the same as F,(x; S),
Eq. (2.35b) of (I).

E. The form of the force constant matrices ®(Ix; I'«’)
which enters into the definition of D(k) can be de-
termined by using the group of the bond discussed in
the previous section. Most current models of lattice dy-
namics treat interactions of nearest and next nearest
neighbors using Born-von Karman force constants
®.s(lk; I'k’) as adjustable parameters. When longer
range forces are necessary, these are treated in another
fashion. As an aid in constructing models of this sort,
in the next section we record the form of the force
constant matrices for firstfand second neighbors. The
general relations used to obtain the simplified forms
of the force constant matrices are

Pop (Sullk]; Sl VK’ ]) =2, SauSp®ur(Ix; U’)  (2.10b)*
By
and
Bpa (V5 k) =B (Ui; Ui’). (2.3)*

The discussion of general properties of D(k) is fol-
lowed by a table listing the essential properties of
typical symmetry planes, lines, and points in the
Brillouin zone. For each of the symmetry points and
lines in the table, starting with the most symmetrlc
we give the representation {T(k; R)}:

Top(xx’ | &; R) =3(k, Ru[x']) exp [i8(x’ | K; Gim) IRag,

(3.17b) *
where

0(«" | k; ®p) =k [X(Ru[«']) —Rx(x")].  (5.10)

This representation has two significant uses. The first
is based on the fact that all matrices in the representa-
tion commute with D(k). This gives an invariance
condition

D(k) =T(k; R)~'D(k)T(k; R), (3.23)*
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which simplifies to
Do (R[] | k)
=exp [i0(kx’ | &; ®n)] D RuwRe,Dp(x’ | k), (5.11)
Ky

where
T(ke' | K; R) =0(x | K; R) —0(k’ | K5 Ri).  (5.12)

Asin (I), R € Gy(k) and ®,, € Gx. The invariance
condition is used to simplify the form of D(k). The
second use of {T(k; R)} is in the construction of sym-
metry-adapted eigenvectors E(k; s\). These are then
used as trial solutions in the eigenvalue equation. In the
process of obtaining E(k; s\), one can get much useful
intermediate information.

In the next section, before giving the simplified form
of D(k), we use the decomposition formula

o=l TxGRXOU R (436)*
R

to find how many times the irreducible multiplier repre-

sentation {#® (k; R)} is contained in {T(k; R)}. The

order of the point group of the wave vector is 4. x (k; R)

and x@(k; R) are the characters of the matrices

T(k; R) and =@ (k; R), respectively.

At this point one is in a position to test for additional
degeneracies due to time reversal. The test criteria can
be written down for three special cases: (1) k in the
Brillouin zone; (2) k=3K(%); and (3) k on the surface
of the Brillouin zone, but not equal to 3K(%).% For
points inside the Brillouin zone

d,(k) =k ; x®(k; A?) = 1, first type,
(5.13a)
=—1, second type,
(5.13b)
= 0, third type.
(5.13¢c)

d,(k) =1 means that there is no additional degeneracy.
When d,(k) =—1, there is an additional degeneracy
wsa(K) =wse (K) for some a’. This is an indirect proof
that the representation s must occur an even number
of times in {T(k; R)} if d,(k)=—1. Finally, for
d.(k) =0, then ws,(K)=wy. (k) for some s's£s and
some a’. This implies that there are an even number of
representations of dimension f, contained in {T(k; R)}.
According to Koster ef al.,28 the second type does not
occur within the Brillouin zone. The summation is over
all elements A such that Ak=—Kk. [If no such elements
Gn={A|v(4)+x(m)} exist in the space group, then
time reversal can produce no degeneracies.] The above
criteria for points within the zone has been checked

% One should not confuse %4 in K (%), which stands for a triplet

of integers, with z which means the order of the point group of the
wave vector.

by Koster ef al. and may be looked up rather than
worked out.

When k=3K (%),
&.GK(h))=1 3
R

X exp {—i3[K(h)+R7K(%) ]-v(R) }x® (3K; R?),
(5.63)*

where the sum is over R€ Gy(k), the point group of the
wave vector. For symmorphic groups, v(R) =0, and
the exponential is one.

For a general point on the surface of the zone,

dy(k) =i g. exp {—i[k+A"Kk]-v(4) }x® (k; A?).
(5.61)* and (3.47)*

Only under special conditions does the above test
tell us a’ when d,(k) =—1 or s’a’ when d,(k) =0. This
information is still implicit in D(k) and may be ob-
tained in the process of finding eigenvectors and
eigenvalues.

After obtaining the above information about the
representation {T(k; R)} from character tables, one
can proceed to construct the symmetry-adapted eigen-
vectors E(k; s\) whose transformation properties are
defined by the equation

T(k; R)E(k; s\) =§_/‘, @ (k; R)E(k; s\).  (4.44)*

E(k; s\) is obtained by use of projection operators
P @ (k):
E(k, s») =P @ (k)y, (4.38)*

where ¢ is an arbitrary 3r-dimensional column matrix
and

Poc@ )= (fi/h) 2 moe® (& R)*TUG R) . (437)%

A good treatment of projection operators may be
found in McWeeny."! In the next section, the E(k; s\)’s
are indicated for each k treated. When ¢,< 2, these
vectors will be substituted into the eigenvalue equation

D(k)E(k; s\) =w,2(k)E(k; s\), (5.14)

and the eigenvectors e(k sa)\) will be written out ex-
plicitly. For ¢,>2, only the determinant condition for
branches belonging to s are recorded.

6. EXAMPLES

Using the procedure outlined in Sec. 5, we treat the
lattices exemplified by CsCl and Mg. Not all the de-
tails are given here. Sec. 6 of (I) illustrated the essential
intermediate steps. Further details on these and other
materials such as Al, NaCl, diamond, Na, GaAs, white
tin, and As are given in a forthcoming report.’> The

8 See Ref. 6, Sections 5.7 and 5.8, pp. 126-33.

5 J. L. Warren, Los Alamos Scientific Laboratory Report (in
preparation).



application of group theory to the lattice dynamics of
more complicated substances (such as LaCl® and
wurtzite’) appears in the literature.

CsCl Structure

The space group of CsCl is Pm3m.5 The lattice is
simple cubic with two atoms per unit cell. There exists
no element which solidifies in a simple cubic lattice,
and therefore CsCl is the simplest crystal lattice with
this space group. This space group is symmorphic,
which means that v(S)=0 for all §,. The edges of
the unit cell provide axes for a natural Cartesian co-
ordinate system. Let 1;, 15, and 13 be unit vectors di-
rected parallel to the cube edges. The position vector for
atoms in the lattice is

X(1) =0 3 [hF (e—1) L,

7=1

k=1,2 (6.1)
where @ is the lattice constant and the /s are integers.
The point group of the space group is m3m which con-
tains 48 operations. These operations can be divided
into ten classes in the group-theoretic sense. The first
class contains only the identity operation 1. The second
class contains three twofold rotations. Axes of rotation
shall be considered to have direction. The direction
of an axis is defined as being from a point called the
origin to another point on the axis. The right-hand rule
is used to define the positive sense of rotation (see
Fig. 5). The twofold axes in the second class are parallel
to the unit vectors 1;. They are denoted by 2[100],
2[010], and 2[001]5¢ The third class contains eight
threefold axes. The axes of rotation are directed along
the body diagonals of the unit cell and are denoted
3[111], 3[111], 3[111], 3[111], 3[111], 3[111],
3[111], and 3[111]. The above 12 elements constitute
the tetrahedral group 23. The fourth and fifth classes
of m3m are obtained from 23 by multiplication of each
element in 23 by 4[100]. Multiplication here means
the operation “followed by.” Thus, 3[111] “followed
by” 4[100] is equivalent to 2[1017]:

4[100]3[111]=2[101]. (6.2)

The fourth class consists of six fourfold rotations:
4[1007, 4[0107, 4[0017, 4[T007, 4[0107, and 4[001].
The six elements in the fifth class are twofold rotations
about the face diagonals of the unit cell: 2[0117, 2[101],
2[ 1107, 2[0117, 2[101], and 2[170].

The collection of all elements in the first five classes
is the octahedral point group 432. In set theoretical

8 H. H. Caspers, J. Murphy, and R. A. Buchanan, Lattice
Dynamics, R. F. Wallis, Ed. (Pergamon Press, Inc., London,
1965), p. 109.

% M. A. Nusimovici and J. L. Birman, Phys. Rev. 156, 925
(1967). See references in this article for previous work on wurtzite.

% This is also called 0;. See Ref. 1, Vol. I, p. 330.

% This is an adaptation of notation in Vol. 1, p. 23 of Ref. 1.
The general symbol is #[abc]. The integer # stands for a rotation
of 2w/7; n is a rotoinversion, i.e., a rotation of 2x/x followed by an
inversion through the origin. The symbol [abc] specifies the
direction of the rotation or rotoinversion axis. See Fig. 5.
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Fic. 5. Direction of rotation axis. Right-hand rule specifies the
the sense of a positive rotation.

notation
432=23U4[100]23. (6.3)

The next five classes of m3m can be obtained from the
first five by multiplying each element in 432 by the
inversion operation 1. Class six consists of just the
inversion operation. Class seven contains three re-
flection planes. Geometrically it is easily seen that a
twofold rotation 2[100] followed by an inversion is
equivalent to a reflection through a mirror plane whose
normal is in the [100] direction. The elements of the
seventh class are 2[100], 2[010], and 2[001]. Class
eight is 1 times class 3. For example,

13[111]=3[111]. (6.4)

Threefold rotations followed by inversions are equiv-
alent to sixfold rotations in the opposite sense followed
by a reflection through a plane perpendicular to the
rotation axis. (The symbol for a rotoreflection S, has
more or less been dropped by crystallographers.) The
remaining two classes are obvious. Tables IIT and IV
contain a comparison of this notation with that found
in tables of irreducible representations. Tables IIT
and IV also contain a symbol from the International
Tables which shows the effect of the operations n[ abc ]
or n[ abc] on a general point in the crystal. For example,

3[111xyz = yzx. (6.5a)

A three-dimensional matrix which does the same thing
is given below:

010 x Y
001 y |=| = (6.5b)
1 00 3 x

This matrix can be used to represent 3[111]. The set
of such matrices, one for each operation in m3m, forms
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TaBLE IV. Comparison of common notations for point group operations for the coset 1 432;

J. L. WaARReN Normal Vibrations of a Crystal 49

irreducible representation T4, and its character are included.

We McWP A&Ce HITd Se Ki Inte (Tlu) 1% (Tlu)g.' (Tlu) 30 X(T1u)
1 1 1 a Ry hos Tyz 100 010 001 -3
2[100] o* Tz a)’ Ry hog ZTyz 100 010 001 1
2[010] a¥ ay as’ Ry har xyz 100 010 001 1
2[001] a? o: ay R{ g xYZ 100 010 001 1
3[111] Seeve Ser™ a’ Ry has 3] 001 100 010 0
3[111] Sgv? Ses™ ag R hiss 2x)] 001 100 010 0
3[1'11] Sei”; Se[' 0/7, R']/ h34 Exy OOT 100 010 0
EEII 1] Nk Sea™ ag’ Ry hss 3Ty 001 100 010 0
3[111] Segve Sert ay RY hag JET 010 001 100 0
3 [:I 1 1 ] S stﬁé S(53+. ayo R]o’ hal yéx 0 10 OOI 100 0
3[111] Nl Seat an' Rul hizo 47 010 001 100 0
3 [1 IIJ Se#vz Sest ar’ Ry /2% Jzx 010 001 100 0
;[100] S’.;’ Sz a1 Ry ha3 4] 100 001 010 -1
‘—1[0 10] S Sy~ a6 Ry s Zyx 001 010 100 -1
4[001] Se S a’ Ry - yiEz 010 100 001 -1
;[IOO] S& Sit a3’ Ri3 M TZy 100 001 010 -1
‘i[OIO] Sy Sat a Ris Dag YT 001 010 100 -1
4[001] Sy Syt ar’ Ry bz Jaz 010 100 001 -1
2 [01 1:] a¥? T4d (lzo, Rzo h42 xég] 100 OOT OIO 1
2 [101] o Cdc ag’ Ro hay ZyT 001 010 100 1
2 [1 10] [acd Oda @od’ Roy hao YTz 010 100 001 1
2[01—1-] o¥® aaf a9 Ry hy xzy 100 001 010 1
2[101] % Gae ' Ry has 2y% 001 010 100 1
2[110] o oa az’ Ry I3 24 010 100 001 1
8-£ See corresponding footnotes for Table III.

a representation of the group. It so happends that this all §,. With S=3[111] and

representation is irreducible and is known as Ty, or

as I in the notation of (BSW). (Strictly speaking, ky ks

T';s is the name of a particular representation of a space

group whose point group is m3m.) Since T4, is used ex- LYl & |={ A ), (6.7)

tensively in constructing the representation {T(k; R)} ks b

for all wave vectors k and all crystal structures whose
point group is a subgroup of m3m, it is written out by
rows. The character of the representation is also given.

Properties Independent of k

Each atom is at a center of inversion and hence
D(k) can be made real. Although the real matrix
C(k) is no longer periodic in reciprocal space, w?(k)
still has this property. When converted to real form,
Eq. (3.23)* becomes

2 SauSssCr(k | K) =Cas(8u[k]8s[x'] | SK).  (6.6)
by

Since the two atoms in the unit cell are different, they
cannot be transformed into one another by any opera-
tion of the space group. This means that §,[«]=« for

Eq. (6.6) gives the following relations:
Cor(k’ | R, ko, ks) =Cag(kk’ | ks, ba, k2) ;
Cas(k’ | k, ko, ks) =Cu(ki’ | ks, by, k2) ;
Cos(ki’ | by, ko, k) =Car (k' | ks, by, k) ;
Ca(x’ | kay ko, k) =Cura(ki’ | ks, ku, k) ;
Cus (k& | by, ko, ks) =Car (ki | ks, kb, k) ;
Cao(k’ | by, ko, k) =Crs(k’ | ks, by, k2).

By using Eq. (6.6) with S=2[110], one additional
independent relation can be found:

Cz],(KK’ l kl, kz, kg) =C12(KKI I kz, kl, ks) .
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TaBLE V. Force constant matrices for the eight nearest neighbors to (Ix) =(0001) in CsCl lattice;
®(n) =S, ®(1)S,™, n=1,2, -+, 8.

n o L' 174 4 Sn —&, — &y, —®;,
1 0 0 0 2 1 aBp Bap BB
2 1 0 0 2 4[001] oBB BaB BB
3 1 1 0 2 2[001] aBB Baf BB
4 0 1 0 2 4[001] ofB BoB BB
5 1 1 1 2 i aBB BaB BBex
6 0 I 1 2 4[001] BB BoB BBa
7 0 0 1 2 2[001] ] BB BBa
8 1 0 I 2 4[0017] BB BB BBa

The other operations give no new information. The
above relations are sufficient to show that there are
only two independent functional forms. These can be
taken to be Cu(x«’|k) and Ci(x«’'|k). For given
values of « and «’ the other seven components can be
obtained from Cu(k«’|k) and Cu(x«’ |k) by cyclic
permutations and interchanges of the Cartesian com-
ponents of k. These relations are summarized below.

Cos(xk’ | K) =Cu(kc’ | ko, ks, k1) ; (6.82)
Ca(kx’ | K) =Cu(kx’ | ks, by, k2) ; (6.8b)
Cris(kx’ | k) =Cra(kk’ | ku, ks, k2) 5 (6.8¢)
Caa(kk’ | &) =Cua(x’ | bsy By, Be);  (6.84)
Cos(kk’ | k) =Cura(kk’ | ko, ks, k1) ; (6.8¢)
Ca(xe’ | &) =Cua(ki | s, by, ke);  (6.80)
Caa (K’ | K) =Cra(r’ | ks, ko, k1) (6.8g)

Since C(k) is symmetric, we have the additional re-
lations

Cu(21 | k) =Cu(12 | k),
Cra(21 | k) =Cia(12 | ).

(6.9a)
(6.9b)

It therefore follows that there are only six independent
functional forms in C(k).

As a further aid to construction of a model, the first
and second neighbor force-constant matrices will be
derived. The atom (k) =(0001) has eight nearest
neighbors. It is assumed that the force-constant matrix
for the interaction of this atom with the atom (/') =
(0002) is of the form®

a B v
®(0001;0002)=—] ¢ e & (6.10)
n 6

5 The minus sign is introduced here because ¢ (Jx; I'«’) - u('«’)
is minus the force on the atom (Jx) due to the displacement u(¥’'«’).

The group of the bond for this interaction is one of the
symmorphic space groups whose point group is 3m.
Because the transformation properties of ®(lk; k')
are independent of the translational part of the opera-
tions in the space group, we need consider only the
operations of the point group 3 in order to determine
the symmetry of ®(l«; I'«’). For this bond

3m={1, 3[111], 3[111], 2[011], 2[T01], 2[1107}.
(6.11)

Equation (2.10b)* and the representation T4, from
Tables III and IV impose the following conditions on
the matrix elements. With S=3[1117],

n=86=F, O=f=v. (6.12a)

Letting S=2[110] in (2.10b)* gives the additional
relations

e=1=q,

e=a, =B, n=0. (6.12b)
No further information is obtained by applying the
other operations of the point group. When these results

are put together, the matrix becomes

a B B
B a B
B B a

The seven other force-constant matrices associated
with the other nearest neighbors are obtained by ap-
plying rotations to the matrix in Eq. (6.13). All of this
information is summarized in Table V. The force con-
stant matrices ®(0002; /'1) are obtained by the re-
lation

0=7,

@(0001; 0002) = — (6.13)

B,5(0002; I'1) =B5,(0001; —I'2),  (6.14)

which follows from Eq. (2.3)* and the fact that
®(lk; I'k’) depends only on the difference between
land V.



There are six second neighbors. Take the prototype
bond matrix to be

Aoy
®(0001; 1001)=— ¢ p ¢ (6.15)
T U @

The point group of the bond contains 4mm plus the
coset of reversal operators 31 4mm. It will be recalled
that the operator 3 transposes the matrix @ (lk; I'x’).
In this case the operator S=4[100] tells us that

M=y=a=7=£=v=0’ @o=p.

All of the other operations add nothing to our knowl-
edge. Therefore
N0 O
@©(0001; 1001) =—

0 p 0 (6.16)

0 0 »

The information on the other five neighbors is con-
tained in Table VI. This completes the discussion of
those properties of D(k) which are independent of k.

Symmetry of Brillouin Zone
The reciprocal lattice for this crystal lattice is also
simple cubic:

K(k) =(;2:0—r) ; hils. (6.17)

The Brillouin zone is shown in Fig. 6.8 Typical planes,
lines, and points of symmetry are shown. Most figures
of this sort do not show planes of symmetry since band
structure calculations are not usually carried out over
whole planes. One should note, however, that any line
in a symmetry plane has the symmetry of the plane.
Table VII lists the symmetry elements in the nomen-
clature of (BSW) and Kovalev for the typical ele-
ments shown in Fig. 6. Other information given in the
table is the point group Gy(k), the principal axis of the

TaBLE VI. Force constant matrices for the six second-nearest
neighbors to (k) = (0001) in CsCl lattice: ® () =S,®(9)S,™,
7=9,10, «++, 14,

n lll

Iy Iy’ K Sa —&, —®y —Py

9 1 0 0 1 1 A0 000 00p
10 0 1 0 1 4{001] p00 (OXY] 00p
11 0 0 1 1 4[010] p00 000 (LON
12 I 0 0 1 200007 A00 000  00p
13 0 1 0 1 4[00I] 000 -0N0 00p
14 -0 0 1 1 4[010] 000 0p0 00X

8 This figure appears in many places. Seldom are two such
figures exactly the same. The fact that (BSW) in 1936 used a left-
handed system in their figyre has probably helped to produce
variations.
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Fi1G. 6. Brillouin zone for simple cubic lattice. Symmetry planes
are labeled C, O, and B.

point group, the order of the group %, the wave vectors
related to k by a reciprocal lattice vector, the wave vec-
tors in the star of k, i.e., those obtained from k by ap-
plying operation in Go(k), and the number of wave
vectors related to k at which the phonon energy is the
same by symmetry. A quick examination of the Gy(k)’s
in this table reveals that time inversion caused no
additional degeneracies. [See the discussion under
Eq. (3.13).]

Symmetry at T, k;2= (0, 0, 0)

Consider the form of the multiplier representation
{T(k; R)}. Since ®,[«']=«" and kio=0, Eq. (3.17b)*
reduces to

Top(k’ | Kyo; R) =8(x, ') Reg. (6.18)
The matrix elements R,s are given in Tables III and
IV under the heading (7'y,,)«s. The character of T(kiz; R)
is just twice the character x™ given in the last column
of these tables.

The real symmetric matrix C(k) has the following
transformation properties [as can be verified by making
the transformation Eq. (3.27)* on Eq. (5.11)]:

Cas(x, k" | k&) =exp {i[k—Rk]-[x(x) —x(«') ]}
X 2 RuwRs,Coy(xx’ | k). (6.19)

The exponential is nonzero only for x#«’ and k’s on
the surface of the (BZ). This relation holds for all k
in the Brillouin Zone. Application of Eq. (6.19) shows
that there are only three independent nonzero matrix
elements:

A=Cn(11 | ky),

B=C11(22 | ku), (620&)

C=Cn(12 | k). (6.20b)



TasLe VII. Symmetries for the Brillouin zone of a simple cubic attice.

BSW
name#
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Nb

mb

Starof k

Equivalent
points

Principal
Go(k) axis

Kovalev
number

ical
ook
(0, §1, ¢2)

T;

24

24

(0, &t1, ta), (8, 0, £82), (b1, &£, 0)

1

2 (0, 3'1, {2)

[100]
[oo01]

(113

(:tg‘?) Oy :!:g‘l)! (ig-% irly 0)

’

8, £61)
(£, £, 1), (60, 1, 5, (1, £&y, 2)

(ibi ih, 1)7 (d:ﬁ; 1; ig‘l)y (ly iﬁ: :':{1)

(&, £6, £86), (Eh, £, £6)

(:I:g-z’ :tg‘h :b{l) )

b

(o,

24

2

(&1, £, 1)

2

Bs

(g'l) K‘Z) 1)

24

24

(=&, &, &2) 1
(g" g" 0)

2

[110]

Ca

(=&, 80, 8)

(8, ££,0), (850, £8), (0, ¢, =£§)

12
24
24

12
12
12

y 8, 8, (5, 1, £0), (5, £8, 1)
»0, £8), (0, 1, £5)

(1, %£, 0), (¢, 1,0, (££,0,1)
(0, £

(1

(1,80
(1,50

4
4
4

[110]
[011]
[010]

mm2
mm2
mm2

NN

(£,%,0)
(1,%,¢)
1,5,0

nnnnnnn

v e N H o0

»»»»»»»

6
8
8
6
16
48
48

]

[100]
[100
[o01
[111]
[ooo]

111
Foor]

4mm
4/mmm
4 /mmm
m3m
m3m

3m
dmm

9
7
8
10
11
13
12

<N AN

aaaaaaa

7 is the number of equivalent points, m is the number of points in the star, and N is the number

of places in the zone which have the same ener

48 and

gy by symmetry alone. One should have hm

b
=N.

nm

ry planes are not due to BSW, but appear in Altmann and Cracknell,

8 The names of the symmet

See Ref. 5, p. 20, Fig. 1.

The final form of C(kyp) is
(4 c

C(ky) = (6.21)

L c B)

The irreducible representations may be found in
Slater* (Table A3-20, p. 375), or in Altmann and
Cracknell5 (Tables IT and III), or in Kovalev® [T203,
p- 92 (see Table XXVI, given later in this paper, for
correction to T205)], or McWeeny® (Table 4.22, p. 105).
None of these tables are perfectly convenient to use.
All of them give only a portion of the representations
and require the reader to complete the table by some
given rule. A comparison of the names of the ten ir-
reducible representation is given in Table VIII. The
correspondences were made by matching characters. It
is sometimes difficult to compare representations di-
rectly because they may differ by a unitary transfor-
mation. ' : '

Either by inspection or by using Eq. (4.36)* for c.,
one finds that {T(kye; R)} may be reduced to the
direct sum of two identical three-dimensional repre-
sentations: :

{T(klz, R) } =2F15‘= 2T1u=21'<10). (6.22)

This suggests that there are three degenerate acoustic
modes and three degenerate optic modes. The fre-
quency of the optical mode in ionic solids very close
to k=0 can be measured by optical absorption and
Raman scattering. These measurements show a large
splitting between the longitudinal and transverse
modes. At first sight this appears to be in contradiction
to the degeneracy required by group theory at k=0.
There are three good recent discussions of this problem
in the literature.®® All parties agree that there must
be a degeneracy at k=0 for the optical modes. They
are not in total agreement on the source of the apparent
difficulty. Rosenstock has questioned the validity of
using cyclic boundary conditions for calculations in-
volving long-range Coulomb forces. Barron advances
arguments showing that cyclic boundary conditions
are not essential. He feels that Coulomb retardation
effects alone are adequate to understand the apparent
discontinuity. Maradudin and Weiss, on the other hand,
have demonstrated that the conditionally convergent
Coulomb summations depend on how one takes the limit

% H. B. Rosenstock, Phys. Rev. 121, 416 (1961).
( 0 A, A. Maradudin and G. H. Weiss, Phys. Rev. 123, 196
1961). . ‘ o
6 T, H. K. Barron, Phys. Rev. 123, 1995 (1961).
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TasLe VIII. Comparison of names for the irreducible representation of m3m at T'.

A and C, McWs Ay Ay K
BSWb n T, Ty
Ke 71 73 7* 78

Ty, Ty

y: | 1u A 2u Eu Tlu T; 2u

Ty’ Ty’ r’ vy Ty T T2

74 78 77 78 710 7

8 Altmann and Cracknell (see Ref, 5) and McWeeny (see Ref. 6, p.
105) use the same notation,

as k approaches zero. For a finite size crystal one ob-
tains the degeneracy; for crystals which become in-
finite before k goes to zero, there are two distinct op-
tical frequencies. They suggest that it might be pos-
sible to see the longitudinal and transverse branches
become degenerate by making measurements on very
small crystals or powders. No experimental informa-
tion exists on this point. It is fairly easy to understand
why there is a difference in energy between the longi-
tudinal and transverse modes for k not equal to zero.
Consider the equation

v-E(x) =—p(x) (6.232)

for the electric field. p(x) is the macroscopic charge
density. It is zero in the interior of the solid when no
disturbance is present. Let us Fourier-transform this
equation:

k-E(k) =—p(k). (6.23b)

For definiteness, let the solid be finite in size and let

p(k) =2i [ o) exp(—ik-x) dx, (620
™
where the integral goes over all space. p(k) =0 for the
static solid. A transverse mode does not change the
charge density within the bulk of the solid. There may
be charge induced at the surface, but the electric field
contributed by this will depend on the size and shape
of the crystal. What field there is will be nearly per-
pendicular to k, which is consistent with p(k) in Eq.
(6.23b) being small. This macroscopic field will con-
tribute in a negligible fashion to the restoring forces
in the solid. For the longitudinal modes, however, p(x)
is not zero throughout the bulk of the solid, and hence
p(k) is larger. This will give a larger restoring field
from Eq. (6.23b). The energy of the longitudinal mode
will therefore be higher. For k=0, however, there is
a discontinuity. Equation (6.24) must give zero if there
is charge neutrality, and Eq. (6.23b) places no restric-
tion on E(K). The field that does exist is due to surface
charge density and is the same for longitudinal and
transverse modes, since there is-no physical way of
telling them apart for k=0. The energy of the displace-
ment is degenerate for isotropic solids. The above
argument is qualitative and should not be taken too
seriously. This discussion also has to be modified in
the case of anistropic solids. As an example of what can
occur, the reader is referred to an article by Nusimovici
and Birman® which predicted the ‘displacement of

This association with BSW is given in Altmann and Cracknell.
¢ Kovalev (see Ref. 3, T205, p. 92).

both the I'y and I's modes when observed for k|| x
compared to %||2” in the wurtzite structure. T} is
transverse-optic and T’ is longitudinal-optic.

Let us return now to the problem of finding the eigen-
values and eigenvectors for C(ky). At first sight the
construction of a symmetry-adapted eigenvector by the
projection-operator method might seem a little onerous
since it involves the addition of 48 six-by-six matrices.
A close examination of the irreducible representation
shows that many of the matrix elements (7% (K13, R)
entering into the projection operator are zero. Only 16
matrices have to be added. Furthermore, T (ki;; R)
has two equal three-by-three nonzero blocks, and hence
it is only necessary to do the addition for one block to
infer the form of the whole six-by-six matrix. The
projection operator for A=\"=1 is

1 W

Py (ky,) = (6.25)

| 0
The symmetry-adapted eigenvector is

( W)
0

0
E(kyp; 101) = (6.26)

12
0

\0)
When this is substituted into the eigenvalue equation,
one obtains a set of two -simultaneous homogeneous
linear equations:

(A=)t Ce=0;
G+ (B—a?)§r=0.

(6.27a)
(6.27b)
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TaBLE IX. Decomposition of the representation {T (k; R)} for all symmetry elements in the Brillouin zone of CsCl lattice.

By examining the limit as k approaches zero in C(k),
one can show that C?=A4 B. This is done in Appendix A.
This means that wi®(K) =0. Now that one knows
the general form of the symmetry-adapted trial eigen-
vector for A=1, it is not too hard to guess E(ky; 102)

(—C/N(1) 0 0
0 —C/N(1) 0
0 0 —C/N(1)
U= RS
A/N(1) 0 0
0 4/N(1) 0
[ o 0 A/N(1)

k (BSW) McWeeny Kovalev
0, ky 40,20, 44'@24" 4rOPH2r®
B,k 3B,P3B, 3A4'p34"” 3rOP3r®
C, ks 4CiP2C; 4A4'@24" 4r0P2r®
2, ks 2(2:D2:D=y) 2(A1DB:DB:) 2(rOPrO P @)
S, ks 2516D.5:D2.5:D 54 24P AD2B,PB. 2rOBHrOP2rOPr®
Z, ke 2Z2\PZ.D2ZPZ,s 24, AD2B,DB; 2rOPrAOP2rOPr
A, ky 2A0:D24A, 24:P2E 2rOP2,®
T, b TP T/D2Ts ADBD2E TODHrOP2r®
A, ks 20,245 24,:2E 2rOPH2r®
X, ko X DX:DX/ DX A DE,DADE, TODrOPOP-0
M, ku M/ OM/D2My' B1.DA2(D2E, TODH P20
R, ki TPz’ T1.D T2 TI0P O
T, ke 2T'y5 2T, 2,10)
This set is supplemented by a normalization condition: and E(ky; 103): (0 W
Viy=1. (6.28)
1)
Y1 and ¢, are real quantities. The eigenvalues are
0
w1012(k12) =%EA+B]— {%[A+B]2—AB+C2}UZ, E(km, 102) = (631)
0
(6.29a)
i (i) =3[A+BIH+ {34+ BP— AB+C, v
(6.29b) 0
. . and
The eigenvectors corresponding to these are 0
—C/N(z
( /N (7) ) o
0
¥s
_ 0 E(ky; 103) = (6.32)
e(ky 10i1) = , (6.30a) 0
(4 —wiwi (k) )/N (4) 0
0
Vs
L 0 J It is easily seen that
where 2=1, 2 and Yo=y3=—C/N(i), (6.33)
N(i) = (C (A—wui(lsn) F¥J7. (6.300) vi=vo=(d—und(ln) NG (634)

In Appendix A it is also shown that the solution i=1
has the atoms moving in phase. The above results may
be summarized by giving the unitary transformation
matrix which will diagonalize C(ky):

UCU=Q, (6.35)
—C/N(2) 0 VI
0 —C/N(2) 0
0 0 —C/N(2)
(6.36)
—B/N(2) 0 0
0 —B/N(2) 0
0 0 —B/N(2))



The columns of this matrix are the eigenvectors, i.e.,
U= (e(ky1011), e(k21012), e (k121013), e(k1021),

Xe(k1022), e(k1023)). (6.37)
The diagonal matrix Q is
(0 3
0
0
Q= (6.38)
A+B
A+B
\ A+B)

Symmetry at R, kis= (v/a0)(1, 1, 1)
Let us begin with the construction of {T (ki; R)}.

Tap(k’ | Kuz; R) =8(k, &) exp [40(k | Kus; Rum) JRus,
(6.39a)
where
0(k | kis; Rm) =Ksze[x(x) —Rx(x)].  (6.39b)
Since x(1) =0, it follows that 6(1 | k; ®,)=0 for all

k and ®n. It turns out that §=exp [0(2 | k; R,,) ]is 1
for all k that we shall consider below. Thus

R 0
T(k;R)=< ) >
0 R

Whether § is one or minus one depends on the par-
ticular k and on the element R. For instance, when
k=k13, then

(6.40)

Rcd3m
RET 43m.

I=+1,

=—1, (6.41)
43m is a subgroup of m3m; 1 43m is the set of elements
obtained by multiplying each element in 43m by the
inversion 1. The character can likewise be expressed
in terms of 4:

x(k; R) = (1+9)x"® (R).

In order to save space, only § will be given for the other
symmetry points, lines, and planes. Equations (6.40)
and (6.42) shall be understood. For convenience of
reference the decomposition of {T(k; R)} into its ir-
reducible parts for all symmetry points, lines, and
planes is given in Table IX.

There remains the problem of listing the eigenvectors
and eigenvalues in terms of the matrix elements of
C(k). This can be done most efficiently by giving the
form of C(k) after the invariance relations (6.19)
have been applied for all operations in the group of the
wave vector. This will serve to identify the nonzero

(6.42)
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elements of C(k). Thus, for k=Kky;,

(4 )
A
A .
C(ky) = (6.43)
B
B

l B}
It is obvious that

A =C11(11 l kls) (644&)
and

B=Cyu(22 | k). (6.44b)

Next we give the matrix U~ whose columns are the
eigenvectors. For kys this is just the six by six unit
matrix because C(kj;) is already diagonal. Finally, the
eigenvalues are given:

wi?(Kis) =4; (6.45a)
qu (kla) -_—B. (6.451’))

The labels on the eigenvalues are those due to Kovalev.
One can easily convert to (BSW) labels by using the
correspondences in Table IX.

Symmetry at M, ki;= (x/ag)(1, 1, 0)
G=+1,

=——1’

REmmm

R€4[1007] mmm.
mmm= {1, 2[001], 2[110], 2[1107, 1, 2[001],
X2[110], 2[110]}. (6.47)

(6.46)

(A c
A C
D
C(ky) = (6.48)
C B
C B
E)
[0 00 um 0 u
0 0 Uy 0 U 0
010 0 0 O
U1l= (6.49)

00‘1)1 0 Vo 0
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Let an=4, ap=B, and a12=C, then
Ui= —‘am/ N iy
;= [on—wwd(ku) J/N;,
Ni= {ap*+[oan—wi(kn) P},
w0 (Bu) =3[en+an]

(6.50a)
(6.50b)
(6.50c)

+(2i—3) {i[an+tamn P—anantan?} 2

(6.50d)

C(ks) =

This form of solution occurs so often in what follows
that we refer to this set of equations and give the par-
ticular form of ay, age, and oy for each case. The other
eigenvalues are

wsz(ku) =E, (651)

w2 (ky) =D. (6.52)

In these modes one of the sublattices is standing still.
- Symmetry at X, ki=(w/a0)(1, 0, 0)

o §=+1, '~ REdmm

=—1, RE14mm,

dmm= {1, 2[1007], 41007, 41007, 2[010],

X2[001], 2[011], 2[011]}. (6.54)

(4

(6.53)

B

C(ky) = (6.55)

(=T )

Let

51

U=

au=A,

c ]
D F
D F
(6.62)
B
F E
F E]
w 0 0 0 O
0 w 0 uw' 0
0 0 u 0 u
(6.63)
%z 0 0 0 O
0 ‘1)1' 0 Vo 0
0 0 %% 0 ==
ap=B, and ap=C (6.64)

to get the solutions for u;, v;, and wi2(ks) from (6.50).
Symmetry on T, kr= (x/a0)(1, 1, {)

U=
1

0

o .

0

0

0

(6.56)

010000

b o1 000

The eigenvectors are listed in the same order as the
representations in Table IX:

w? (ky) =C; (6.57)
we? (K1) =D; (6.58)
w2(ky) =4; (6.59)
wi?(Kyp) =B. (6.60)

Symmetry on A, ks= (7/ao)({, 0, 0)

=1, R€4mm. (6.61)

f=+1, REmm2
=—1, RE4[001] mm2 (6.66)
mm2={1,2[001], 2[0117, 2[011]}.  (6.67)
(4 C
A c
D
C(ky) = : (6.68)
c B
C B
| E
(000 wm 0
00 ug O u O
100 0 0 O
U-1= (6.69)
0 0 N 0 V2 0
000 v 0
0100 0 0 :
wi2(l7) =D; (6.70)
w(k;) =E. (6.71)



Let

a11=A, Otn"—"B, and Ot12=C (6.72)

to get the solutions for u;, v;, and ws2(ky) from (6.50).

Symmetry on A, ko= (1/a0)(¢, {, ¢)
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=1, R€E3m, (6.73)
3m={1, 3[111], 3[111], 2[011], 2[101], 2[110]}.
(6.74)
wm/V3 u/VN3  2u/(6)12
m/V3 u/VN3  —uy/(6)12
w/V3 w/N3  —u/(6)12
U1=
v/V3 w/N3  2v//(6)12
'1)1/\/3 ‘112/\/3 —'1)1’/ (6) 12
w/N3 /N3 —u'/(6)1
Let
a11=A+2C, a22=B+2D, a.nd a12=E+2F

(6.77)

to get the solutions for u;, v;, and wy?(ky) from 6.50.
Let

a11=A—C, Ot22=B—D, and ap=E—F (6.78)

to get the solutions for #;, v/, and wz2(ky) from (6.50).

Symmetry on Z, ks= (r/a0)(1, {, 0)

=41, Re€{1, 2[001]},
=—1, R€{2[100],2[010]}, (6.79)
4 H )
B G
C
C(ks) = (6.80)
G D
H E
L F]

TasirE X. Compatibility relations at I" for
representations of CsCl.

A A z

T A1DAs AMDAs 21D2sD=Zy

(A C C E F F)
C A CF E F
C C A F F E
C(ky) = . (6.75)
E F F B D D
F EF D B D
F F E D D B
0 2us'/ (6)112 0 )
w'/NZ —uw!/(6)12  w' /N2
/N2 —u'/(6)'* —u'/V2
. . (6.76)
0 2vy' /(6)1/2 0 - :
w/NZ —w/(6)" W /NZ]
—o/ NI —w/ () —u/ /N2
wm uw 0 0 0 O
0 0 0 = u' O
0 0 0 0 0 1
U= (6.81)
0 0 0 o 9 0
UG U 0 0 0 0
0 01 0 0 O
Let
Otn=A, Ot22=E, and ap=H (6.82)
to get the solutions for u;, v;, and w;?(ks) from (6.50).
w?(kg) =F. (6.83)
Let
a11=B, 0!22=D, and ap=G (6.84)
to get the solutions for #’, v/, and ws?(ks) from (6.50).
wg?(ks) =C. (6.85)
Symmetry on S, ks= (x/a0)(1, ¢, )
f=+1, Re{1,2[011]} |
=-—1, Re{2[011], 2[100]}. (6.86)
A H' H)
B C G
: C B G v
Cks) = (6.87)
' G G D o
H E F
\H F EJ
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[0 0 0 w w 0 )
w/NZ w/NZ 0 0 0 12
w/VZ  uy/V2 0 0 0 —1/V2
U-i= . (6.88)
L1 ) 0 0 0 0

0 0 INZ wANZ wWANZ 0

Ll o 0 —1IN2 wNZ wWNZ 0 )

Let
a11=B+C, L‘t22=D, and am=\/§G (6.89)
to get the solutions for #;, v;, and wi2(ks) from (6.50).
Let w?(ks) =E—F. (6.90)
€
an=A, 0(22=E+F, and am=v2H (691)
to get the solutions for #//, v/, and ws?(ks) from (6.50).
w42(k5) =B—C. (692)
Symmetry on Y, k¢=(r/a0)(¢, §, 0) -
6=1, REmm2. (6.93)
mm2=1{1,2[110], 2[001], 2[110]}. (6.94)
(4 C G I )
C 4 I G
B H
C(ky) = . (6.95)
G I D F
I G F D
[ 24 E|

(/N2 wNE 0 0 wNZ  w/N2)
wNZ wNZ 0 0 —uw"NT —u' T
0 0 w'  w' 0 0
U-1= . (6.96)
aNZ wANZ 0 0 w'ANI w'A2

1)1/\[?: '1)2/\/2 0 0 —vl”/\@ —'112"/\/2—

0 0 '01, 1}2' O

~

0 )

Let A C D I

an=A+C, on=D+F, and ap=G+I (6.97) c A —b K

to get the solutions u;, v, and w?(ks) from (6.50).

Let D -D B L —L J
an=~, an=E, and ap=H (6.98) C(ks) =

to get the solutions %, v/, and w3:?(ky) from (6.50). Let I E

a11=A—C, a22=D-—F, and oz12=G—I (699) K G

to get the solutions #;”, v;”’, and ws2(k,) from (6.50).

(6.101)
K L

I —-L

Symmetry on Plane C, ky=n(—{1, {1, $2)/a0 L -L J H —H F

=1, Re {1, 2[110]}. (6.100) The decomposition of {T(k; R)} in Table IX shows



that it is not practical to write the eigenvectors in
terms of the matrix elements of C (k). 7® occurs four
times, and hence the components of the eigenvectors
transforming as 7@ are solutions of a quartic equa-
tion. We give the symmetrized trial solutions which
decompose the equations of motion into two inde-
pendent sets of different symmetry:

( ¥1/V2)
—/V2
¥s
E(ks;; 11) = ,
¥a/V2
—¥s/V2

L ¥ )

(9d' V2

(6.102a)

W
0
wWnz|
W2

L o)

This latter vector would lead to a solution which could
be written out as above. The modes are perpendicular
to the plane C and correspond to a TA and TO.

E(ks; 21) = (6.102b)

Symmetry on Plane B, ko=7({1, {2 1)/a0

=41, R=1,
=—1, R=2[001]. (6.103)
(4 D L)
D B M
C I K
Ck,) = (6.104)
I E H
K H F
L M G

TasLe XI. Compatibility relations at R for
representations of CsCl.

A S T
Rys MDA S$1D S:D Ss TP Ts
Ry’ MDA S1D S0 S T/'®Ts
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The symmetrized trial solutions are
()
12
0

E(ky; 11) = )
0

(6.105a)

0

ve

E(k; 21) = (6.105b)

This gives two sets: of three simultaneous linear equa-
tions.

Symmetry on Plane O, k;= (0, {1, {2)

§=1, Re€{1,2[100]}. (6.106)
(4 1)
D J L
D M K
Ck,) = (6.107)
I E
J M F H
| L k& H G
The symmetrized trial solutions are
0
12
Y3
E(k; 11) = , (6.108a)
|2
¥s
o)
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A
! z Z A s 1T
r X] 7 / 24 I 'st' ! X'R&; 5 L\
5 Z M z 2 |3 M
X 43 Z b 3 33 ’ T 2
4, : 4 M; z, A, Ris] S S ‘:Rls —M:
xs‘z M/ /z 4 x5 M/
. ] 5 3 -r‘r, 5
A A
b
‘4
Is Ls
r A X z M b A R S X R T M

Fic. 7. Possible arrangement of dispersion curves for CsCl obtained by group theory. No physical data have been used.

12}

0
E(k;21) =] |. (6.108b)

0

ve

Predictions

No experimental dispersion relations for CsCl-type
substances have been reported in the literature. It is
not possible to predict dispersion relations uniquely
from the above information. Nevertheless, it is an
interesting exercise to use the group-theoretical results
above, Tables X, XTI, XTI, and XIII listing the com-
patibility, and a little intuition to sketch the expected
connectivity. This has been done in Fig. 7. In ordering
the branches at symmetry points it was assumed that
Cag(11 | k) <Cap(22 | k). This corresponds to placing
thé Cs atom at the origin. A knowledge of the eigen-
vectors was used in choosing the ordering.

Mg Structure

A fairly good group-theoretical analysis of the
lattice dynamics of magnesium already is in the liter-
ature.?® The methods used differ slightly from those ex-
pounded in (I). The results of the two analyses differ
occasionally.

The space group of Mg is Dt or P6;/mmc.®? The
lattice is hexagonal close-packed. There are two atoms

TasrE XII. Compatibility relations at M for
representations of CsCl.

= Z T
M 2’ 23 Zz TQI
My Z3 . Zy T

62 Some of the properties of this group are found in Ref. 1, p. 304.

in a unit cell. Just as in the case of simple cubic, there
are no elements forming a hexagonal lattice with only
one atom per unit cell. The hcp lattice is nonsym-
morphic.

The origin of the coordinate system preferred by the
International Tables differs from the one most com-
monly used by physicists. The origin is placed at a
point with symmetry (3m1), i.e., at an inversion center
on a threefold axis which lies in a mirror plane. The
sites occupied by Mg atoms do not have this sym-
metry. It is usual to take the origin at an atomic site.
Slater, however, has chosen a coordinate system whose
origin is consistent with the International Tables. The
atomic basis is located within the unit cell. We follow
Slater. The position vector is

x (k) =[h+3cJai+[h+3(3—«) Jas+ (I+1(2¢—1) Jas.
(6.109)

The primitive translation vectors a; are the usual ones.
as is along the sixfold or so-called ¢ axis. a; and a, are
perpendicular to a; and are 120° apart. Each axis is
perpendicular to a mirror plane in the hcp lattice.
According to (6.109), the two atoms in the atomic
basis are located at (%, §, H)u and (%, %, 2)u in this
system.® Figure 8 illustrates the arrangement of atoms.
The origin of coordinates is located in a plane 1 | a3 |
down from the plane of solid dots. The open circles are
on a plane % | a3 | up from the plane of solid dots.

In addition to this hexagonal coordinate system, it
is useful to have a Cartesian coordinate system because

TasrLe XIII. Compatibility relations at X for
representations of CsCl.

A VA S
X 1 Ay Zl Sl
X5 Ag ZZ$Z3 SZ@ 33
.04 Ay Z3 Sa
Xs' Aﬁ Zx@Z; SIGSI

8 A subscript H on the brackets indicates that the hexagonal
basis was used.
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Fi1c. 8. Direct lattice for hexagonal close-packed crystal. Two
layers perpendicular to the sixfold axis as are shown. The origin of
coordinates is on a plane % | a; | below the plane of the solid dots.5

the dynamical matrix is implicitly assumed to be ex-
pressed in Cartesian coordinates. Our choice is

11’—-‘31/(11{, (6.1108.)
1s=as/cn, (6.110b)
12=[a1-|—2a2]/ (\/3 dﬂ) N (6.1100)

where en=| a;| and cau=| a3 |. This Cartesian system
conforms with the Standards, 1949. (Slater chooses a
system in which the 1, axis coincides in direction with
a,.) The position vector in this Cartesian system is

X(llt) =%GH[2l1-lz+ (K— 1) ]lr‘l-%\/g dH[lg']Ll —%K) 12
+ealls+3(k—3) J1s. (6.111)

The point group operations are divided into twelve
classes. These classes are indicated in Table XIV by
slight separations. The direction part of the opera-
tion symbol #n[ abc] is expressed in the hexagonal system
since this gives integer components. Thus

2[1007]—180° rotation about the a; axis;
2[210]—180° rotation about line 30° from a, axis;
2[[110]—180° rotation about line 60° from a; axis;
2[1207]—180° rotation about line 90° from a, axis;
2[0107]—180° rotation about the a, axis;
2[[1207—180° rotation about line 150° from a; axis.

This notation is perhaps geometrically less transparent
than desirable, but at least it is consistent with the idea
behind the notation for the cubic system.

Properties Independent of k

Inversion is an element of the group and it inter-
changes sublattices. By (3.32) in (I),

D(11|k) D(12|k)
D)= , (6.112)
D(12|k)* D(11|k)*
where D(11 | k) is Hermitian and D(12 [ k) is sym-

metric. The functional relationships between matrix
elements are not so useful for hexagonal crystals. The
operations lead to linear combinations. For example, if
we let S=6[001]in (3.4)*, then

Du(11 | 3(ks—V3 ks), (V3 kyt-ks), ks) =3[ Du(11 | k)
—V3 Du(11 | k) —V3 Dp(11 | k) +3Dn(11 | k) ].

This and other relations like it may be useful under
special circumstances, but do not allow one to save
time in setting up the dynamical matrix.

The force constant matrices have been written out
in full for first through fourth neighbors by Iyengar
et al.t

Symmetry of Brillouin Zone
The reciprocal lattice is also hexagonal:
K (%) = (2n/0x) ili+ (27 /V3 ax) (Ia+2h) 1,
+ (27 /ca) hsls.  (6.113)

Typical symmetry planes, lines, and points in the
(BZ) are shown in Fig. 9. The notation for lines and
points is due to Herring.®® That for planes has been
introduced for completeness. Table XV contains a list
of these symmetry elements. This is the analog of
Table VII. The meaning of the column headings was
explained there. The coordinates of the equivalent
points are in a reciprocal hexagonal coordinate system.
The basis vectors for this system b; are defined by the
relation

(6.114)

The vector b, makes a 60° angle with b,. The expression
for the wave vector is

3
k=% 5b;
=

This choice was made so that ;=1 is true at certain

a;°b;=2r ;.

(6.115)

F16. 9. Brillouin zone for hexagonal lattice. Symmetry planes are
labeled 3, &, o, p, and 7.

6 P, K. Iyengar, G. Venkataraman, P. R. Vijayaraghavan, and
A. P. Roy. Lattice Dynamics, R. F. Wallis, Ed. (Pergamon Press,
Ltd., London, 1965) p. 223.

% C. Herring, J. Franklin Inst. 233, 525 (1942). [Alternatively,
see Knox and Gold, p. 257 cited in Ref. 43].
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TaBLE XV. Planes, lines, and points of symmetry in the Brillouin zone of a hexagonal close-packed lattice.

V3agk/m® Hb K #e Go(k) Axisd he Equivalent pointsf (2k) ne  me Ne
(81, £, 0) T 1 m [001] 2 (m, m2, O)rE 1 12 12
(1, &2, 8) p 2 m [001] 2 (m1y 12, =1)rE 2 12 24
(0, 294, £n2) o 3 m [1007] 2 (0, 1, n2)rE 1 12 12
(2V3n4, 0, £12) 8 4 m [120] 2 (2m, —m, 72)rE 1 12 12
(81,2, £2) Y m [120] 2 (2m—2,2—n, 72)rE, 2 12 24

(2m—2, ~mn1, n2)rm
(0, 24, 0) z 5 mm2 [120] 4 (0, 7, 0)rE 1 6 4
(2¥39, 0, 0) T 6 mm?2 [100] 4 (29, —n, O)ru 1 6 6
(V3(29—2),2,0) T mm?2 [100] 4 (29—2, 2—x, O)gra, 2 6 12
(29—2, —n, O)rm
0,29, %) R 7 mm2 [120] 4 (0,9, £1)ru 2 6 12
(2v39, 0, £) S 8 mm2 [100] 4 (29, —n, £1)rr 2 6 12
(V3(27—2),2,%) S’ mm2 [100] 4 (29—2, 2—9, £1)gH, 4 6 24
(29—2, —n, £1)rm
(0, 2, &) U 9 mm?2 [oo1] 4 (0, %x1,7ru 2 6 12
(4/73, 0, &) P 10 3m [o01] 6 (% —% mrm, (—% % 2)rs, 3 4 12
(—%1 _%y W)RH
0, 2,0) M 12 mmm [120] 8 (0, 1, O)rm 2 3 6
0,2,%) L 14 mmm [120] 8 (0, =1, £1)grm 4 3 12
(0,0, £1) A 11 6mm [001] 12 (0,0,7)rm 1 2 2
(43, 0, 0) K 13 6m2 [o01] 12 (%, —% O)rm, (3, %, O)ry, 3 2 6
) (—3%, —1, O)rm
(4/¥3, 0, £) H 15 6m2 [oo01] 12 (%, —% =Drm, (=%, %, =g, 6 2 12
(=% —3, £Dru
(0,0, %) A 17 6/mmm [o01] 24 (0,0, £1)gu 2 1 2
(0,0, 0) T 16 6/mmm foo1] 24 (0, 0, O)ru 1 1 1

& Cartesian components of k are used here, £ =V3 ag/cg.{1and {2 can be
found by using Eq. (6.116).

b H stands for Herring. The labels for the planes are new.

¢ K % means Kovalev number.

zone boundary points. The Cartesian coordinates of
k found in column one of Table XV are related to the
n;’s by the matrix equation

kl \/3 00 m
™
ke |= 1 2 6.116
2 \/3 ax 0 2 ’ ( )
ks 0 0 f n3

where £=V3 au/cu. The reciprocal hexagonal coordi-
nates are useful in forming scaler products with posi-
tion vectors expressed as in (6.109). The star of k was
omitted from the table to save space.

The tables of Koster ef al.?* show that there are no
additional degeneracies due to time reversal in the in-
terior of the zone. By applying (5.61) it is found that
there are additional degeneracies at general points
on the upper surface of the (BZ) p and along the line
R lying in this surface.’

Symmetry at T, ki

As in the previous example we begin by constructing
the representation {T(k; R)}. The formula is

Top(x’ | &; R) =8(k, Rul«"]) exp [#(«' | K; Rm) JRap,
(6.117a)
% A. A. Maradudin has pointed out to me that Sullivan has also

found time-reversal degeneracies in wurtzite. See Ref. 54 for further
information on this.

dADirection of the principal axes of the point group Go(k) in the hexagona,
asis.
© The quantities %, #, m, and N have the same meaning as in Table VIIl
except that am =24,
The equivalent points are given in a reciprocal hexagonal basis (RH).

where
0(k' | k; Rp) =k [x(®R[«']) —Rx(«')].  (6.117b)

Since k=0, the exponential factor is unity here. Never-
theless, it is useful to discuss the factor [x(®.[«']) —
Rx(«’)] now because it is needed at all of the other
symmetry points. The point group is 6/mmm. It con-
tains 24 elements. The space group is nonsymmorphic
and therefore some of the elements have nonprimitive
translations which must be used when finding the
®Rum[k']’s. A study of the space group operations shows
that half of the operations interchange sublattices.
These are marked in Table XIV with an asterisk in
the last column. Furthermore, it is found by working
with (6.117b) that for ®, which do not interchange
sublattices

/R 0

T(k;R)= ,
0 &R

T(k; R) for operations which do interchange sub-
lattices have the form

(6.118a)

0 &R
T(k;R) = ;
R 0

(6.118b)

where

f=exp [i0(1 | k; Rn)] (6.118c¢)
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TaABLE XVI. The factor § used in the calculation of {T(k; R)}; column headings are
Herring’s labels for the symmetry elements in the (BZ).

R0 (L)m® 4 He K Ad L M P
{1]0} 000 1 1 1 1 11
{2[001]| v} * 113 i d —i -1
{3[0017} 0} 110 o W 1 ?
{3[0017| 0} 010 W W™ 1 w™?
{60017 | v} * 103 i d
{6[001] | v} * 003 i d
{2[100] | 0} * 111 —1 ™ w? 1 —1
{2[110]] 0} * 001 —1 —1 1
{2[0107 | 0} * 101 -1 ® W™
{2[210] | v} 013 i
{2[120] | v} 003 i i 1
{2[120] | v} 113 i
{1]0} * 11 —1 1 -1
{2[001] | v} 003 i 1 i 1
{3[0017] 0} 001 —1
{3[0017]| 0} * 101 -1
{6[0017 | v} 013 i w2 w™?

{6[001] ] v} 113 i ie? o

{2[1007 | 0} 000 1 1 1 1

{2[1107] 0} 110 1 1

{2[010] | 0} 010 1 1

{2[210] | v} 103 i w2 w™? d wd
{2[120] ] v} * 113 i ie? o? d ~i -1 w4
{2[120] ] v} 00% i 1 d d

f‘ Space-group operators Rm for m=0, v =%aa. The asterisk indicates that
this operation interchanges sublattices.
b ' The symbol (L)g means [x®o[1]—Rx(1)] expressed in the hexagonal
asis.

and the R’s are the three by three matrices in Table
XIV. Thus, once § is known, it is easy to write out
{T(k, R)}. In Table XVI, XVII, and XVIII 9 is eval-
uated for the operations Ry, i.e., »=0, and the sym-
metry elements in the (BZ). I' is omitted because
obviously §=1 for all ®y’s.

The character of this representation is given by the
relation

¢w=exp [[21r i/6].
d =exp [r n 7/2], where 7 is the appropriate coordinate of k in the
reciprocal hexagonal basis.

then one can obtain the decomposition on the lines
joining these points by examining the compatibility.
(See Tables XIX-XXIII.)The results are in Table
XX1V. Since compatibility conditions have not been
written down between lines and planes, ¢, has been
worked out for these cases. ‘

The quantity 8 is also needed to calculate the trans-
formation properties of D (k). Thus

xT(R) =0, for R with * Deag(Rn[ K ]Rn[«'] | K) =T D RauRs, D,y (x| k),

=(0+8*)x(R), for R without *.  (6.119) o (6.1208)
.120a
x(R) is found in Table XIV. where
With the above information we are in a position to T=1 p—

decompose {T(k; R)} into its irreducible parts. One _ ,

could proceed as above to apply the formula for ¢, at =0 k=1, k'=2

each point of symmetry. There is, however, a short = (5%)2 =2 =1 (6.120b)

cut which makes use of the compatibility relations.
If one calculates ¢, at points I'; 4, H, L, M, and K,

This follows from Egs. (5.11) and (5.12) by using the
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of the column headings and other symbols.)

®Ro U S’ S R T T >
1a 0} 1 1 1 1 1 1 1
200017 | v} * —d
2[100](0 * —d? —a? az a:
2E010] 0 *
2[120] v} i 1
370017 | v i i i 1 1 1
2r1007 ! 0} 1 1 1
2[210] l v *
2[120] | v * —d —a? —d? a2 a2
2[120] | v *
fact that (2 | k* ®m) =0(1 | k; ®n)* for this example. ~Therefore
At T, T=1 for all k, ¥’ and R,,. 4 3
With this information one can find the independent
matrix elements in D(k). Consider first operations 4 C
which do not interchange sublattice. For example, let
®o={3[001]|0}. The application of (6.120) gives B D
a set of linear equations which ultimately tells us that D (ky) = (6.121¢)
D (k' | Kis) = Du (k' | Kse) (6.121a) C
Dy (kk' | ki) = Do (k" | Kig), (6.121b) C 4
D13=D23=D31=D32=0. (6121C) B
D
Setting ®o={2[[120] | v} results in
D (ki | Tesg) =O0. (6.121d) The eigenvectors are found by using projection opera-

tors. The matrix U~! whose columns are the eigen-

The other operations introduce no other relations. vectors is
0 0 0 IV2Z 0 IN2
0 0 1/v2 0 1M o0
1V2 1/V2 0 0 0 0
1= (6.122)

0 0 0 —-1/V2 0 1/V2
0 0 —1V2 0 1V2 0

—1N2 INV2 0 0 0 0

The order of the vectors is the same as the representa-
tions in Table XXTV. The eigenvalues are®

w3+2 (km) =B'—D, (61233.)

ws2(ks) =B+ D. (6.123b)

These are longitudinal-optic and -acoustic modes,
TaBLe XVIII. The factor § used in the calculation of

{T(k; R)}. (This is a continuation of Tables XVI and XVII.)
di= exp [mnit/2].

respectively. At kys, D=—B. This follows from Ap-
pendix A, Eq. (A.9). The transverse modes are given by

ws2(Kis) =A—C, (6.123c)
ws_2<k1s) =A.+C (6.123(1)

Once again C=—A4 and ws,; is the optic mode. This is
in disagreement with the assignment made by Iyengar
et al.® in their Fig. 5. The reduced matrices in their
Table III agree with our Eqgs. (6.123). It is helpful to
note that at T', acoustic modes are odd under inversion,

Ro g ) o 0 r 4 )
1|0 1 1 N 1 while optic modes are even.
2—2-[00}1] | v} -1 1 In succeeding subsections we list the final form of
(21007 0} 1 D(k), the eigenvector matrix U, and the eigenvalues.
(2012011 v} *odkd:  dldy This is done until one representation appears more

. % The sTon w,q (k) is Herring’s label. These labels were used here
in place of Kovalev’s just to be democratic.

than twice in {T(k; R)}. When this occurs then the
symmetrized trial eigenvector E(k; s\) is indicated in
place of U1
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Symmetry at A4, kg7

wlz(ku) =B,
wgz(kn) =A.

(6.126a)

(6.126b)

If one uses Slater’s matrix element Table A3-10 to
decompose {T(k, R)}, the numbers in this table must
be multiplied by exp [—ik+v(R)] to get the multiplier
representations of Kovalev. Kovalev may be used

B D
D* 4

iD* C

—iD

C
4

D\

—iD

D*=exp (27t/6) D=wD.

0 )

0

o
A
ius*/V2

0

A
A Symmetry at H, ki
B
D(k) = (6.124)
A
4 directly.
4 C
| B
(0 0 3 3 3 1 ~C 4
0o 0 L -4 N -k
2 2 2 2 D(kl{,)=
LAY/ VA7 0 0 0
U-1=
0 0 37 —31 —%"L %l
o 0. -} -} 3 3 b
N2 —i/NZ 0 0 0 0 where
(6.125)
[ 3 3 w/V2 0 w/V2
1 L —iwNZ 0 —im/N2
0 0 0 ¥ 0
U-1=
1wl —wl 0 w*/V2 0
—lo Yel 0 iw*AZ 0
L 0 0 7 0 Uy
where au=A—iC, an=B, and ap=\ZD,
wi=—an/N;,

v;=[an—ws?(kis) /N,

Ni={| ap [24+[on—ws?(ks) 312,

w3i2(k15) =%[an+a22:|+(2i—3) {i[:an%-azz:]?—anam-l- | 012 ]2}1/2.

The s=1 mode is given by

Symmetry at K, k3

D (ky) =

wi? (k) =
A C
-C A
D* —iD*
—iD* —D*

=A+iC.
D iD
iD —D
4 —=C
C 4
B

(6.127a)

(6.127b)

(6.1282)

(6.128b)
(6.128¢)
(6.128d)
(6.128¢)
(6.128f)

(6.129)

(6.130a)
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TasLE XXI. Compatibility relations at H and L for hcep lattice.

v r3+ I‘5+ Te
Ay Aq As A

23 23 21@24 2 @Ed
T3 T2 T1 @ Tq Tl @ T4

where
D*=exp (—2ri/3) D=w2D.  (6.130b)
(3 1 0 1INV2 0 0 )
1 Y 0 —iNZ 0 0
0 0 0 0 10
U-1=
12 —3? 1IN2 0 00
—liw?  Liw® /N2 0 00
L 0 0 0 0 01
(6.131)
wi?(Ky3) = A+iC+2w2D, (6.132a)
ws?(Ky3) = A+iC—2w?D, (6.132b)
w52(k13) =4 '—"tC, (6132(:)
waz(km) =B. (6132(1)

There may be a nontrivial difference between these
results and those appearing in Table III of Iyengar.®
Note that they have the representation K» in place of
our K.

Symmetry at A, ky;
(4 C ]

D(kn) = 5 (6133&)

C* 4

c* A4

D* B)

TaBrLe XX. Compatibility relations at 4 for hep lattice.

H, H; L, L,
S S S
PiDP; Py U,pU, UsDU,
Ri®R; R:DRy

where
C*=exp (im) C=dC, (6.133b)
D*=exp (imn) D=d*D. (6.133c)
(0 0 0 1INVZ INZ 0
0 0 V20 0 12
A/ V2V 2 0 0 0
U=
0 0 0 —aN2 a2 0
0 0 —dN2 0 0 N2
dNVZ —dNZ 0 0 0 0
(6.134)
w?(ky) = B+dD, (6.135a)
w? (k) = B—dD, (6.135b)
ws?(ky) =A—dC, (6.135¢)
we? (k) = A+dC. (6.135d)
Symmetry at L, k;s
(4
B D
c D
D (ky) = (6.136)
A
D B
D c

TasrLe XXII. Compatibility relations at M for hcp lattice.

A As

A DA, AsDAs

Ri®DR; RiDRDR:DRs
S S

M1+ My M3+ Ms" M4+ M
T T4 T, Ty Ty Ts
El 21 23 24 24 23
Ul U2 Uz Us U4 Ul
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[0 0 0 0 1INZ 12
w/N2  wm*/NZ  w/NZ w*/N2 0 0
n/V3 n/V2 w/V2 w/V2 0 0
U-1= , (6.137a)
0 0 0 0 —iN2Z N2
—w/VN2 —u*/NZ —w/NZ —u*/V2 0 0
| /N2 —i N2 N2 —iwm/NZ 0 0 )
where u;, v;, and w;?(ky) are found by setting
oan=2~., ap=C, and oap=tD (6.137b)
in Egs. (6.128). It is easily seen that These results are not in agreement with Iy§ngar
) =4. (6:139)  Change phes for-mims in (6.141)] or a difelty i

Symmetry at M, k;»

U=

(4 D )
B E
c F
D 4
E B
[ F C)
0 0 0 1NV2Z INZ 0 )
IVZ INZ 0 0 0 0
0 0 1N 0 0 12
0 0 0 —1ANZ INZ 0
INVZ —1NZ 0 0 0 0
0 0 1NZ 0 0 —1/2]
(6.140)
wiy?(ky) =B+E (LA), (6.141a)
w2(ky) =B—E (LO), (6.141b)
wsy2(ky) =C+F (TO L), (6.141c)
ws2(ky) =A—D (TO||), (6.141d)
wy2(ky) =A+D (TA|]), (6.141e)
w*(ky) =C—F (TA 1). (6.141f)

assigning labels to solutions. The descriptive labels
given in (6.141) are those given by Iyengar et al. They
must be based on experiment or a model calculation.
Without this knowledge one would normally expect
wy to be acoustic and ws to be optic because the
k=1, ¥'=2 elements of D(k) are negative for positive
force constants. There is no rule, however, that this
must always be true.

Symmetry along P, ki

(4 C D iD E)
—C '} 1D —D —iE
B E —iE
D (km) = ’
D* —iD* E* A —-C
—-D* —-D* {E* C 4
| E E* B)
(6.142a)
where
D*=w2d2D, and E*=w?d2E. (6.142b)

TasreE XXIII. Compatibility relations at K for hep lattice.

Ky K K5 Ksg
Ty Ty ThvPTs T DTs
Pl Pz P3 Pa
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TABLE XXIV. Decomposition of {T (k;R)} for all symmetry elements in the (BZ) of a hexagonal close-packed lattice.
Herring Altmann and Bradley® Kovalev
T 41D2r 4rOD2 D
I 301D 3p2 3IrOP3®
4 461D 20, 4rOD2O
8 35:D38: 3rOP3®
8 38,/ D3s. 3rOP3r?
z 2(Z:DZ:PZy) 2(c'O&R"P®") 20D OPr®)
T, T 2D T-PDTsD2T, 26'Pa" PR P2®’ 27O DrODrOD2r®
R 2R\DRP2R:D R, 260'PR" PR PR’ 2rOPrOP2rODr®
S, S’ 35 3g(1) 3+
U 2U,:@2U.DU:DU, 26, D2Cn DB DB, 2rOD2ODrOPD®
P PiDP:P2Ps A,DAD2E OB OP2®
M M OM;OMF DM DM+ a/'Pe DG, D&R-'BB,’ O ODrODOPrOP@
L 2L1®L2 281@82 R ZT(l)eaT(z)
A ADALDADAg A1, DA 1D E,DEnm OQrODrOPr®
K Kl@Ka@Ks@Ks A{@Az’@E’@E” 7(1)691(3)@7'(5)@7(6)
q H\®2H, ADD2E* O ®
A RYR AOPDE® O
r Ty @It @rstPre™ A2 "® A" OE/DE.! TG ODrIPra0
2 See Ref. 10, p. 38, for an explanation of the symbols used in this column.
(1 1 owN 0 w0 )
L YW —wm/ANZ 0 —ipNZ 0
0 0 0 N 0 V2
U1l= s (6.143a)
$de? —do? 0 w*/V2 0 u*/V2
—Lide®  idw? 0 T */V2 0 tug*/V2
L o 0 n 0 A 0 )
where
w?= exp(2mi/3), d= exp(imn/2) (6.143b)
and the solutions #;, v;, and ws;(ki) are found from (6.128) by setting
0[11=A. —1C, 0[22=B, and a1z =\/2E, (6.143C)
w2(ky) =A4+iC+2w? dD. (6.144)
Symmetry along U, ko
(4 E )
B D F H
-D C H G
D (ko) = s (6.145a)
E* A
F* O* B —-D

H* G* D C)
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WAVE VECTOR k

8 T T
+, | T + 1
3 :—I‘\\:K //r’ .‘F?S b .. E S/ E
—~ 6p *\T\K;I\i/’ L Az ] R|+R3 P LI b—\“q}ji s
a To o ~KE A _-7 | <2
NN - -
< U NN [ A A i A
= FO KA N S~ s ] s
g B N reRe AL ES I
& s T \>)\\T' ) Agt-====TIL [ TS TS5 ==
3 3
8 LN \\-\l: A, #R, : ! S
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3 ! IANN ]
w ! ] 4 QQ\ i As |
1 AN o 1
I'r ] 2 W, . ]
276 T K T 1-; A A R L SH S A

F16, 10. Possible arrangement of dispersion curves for Mg obtained by group theory and the data of Iyengar et a3 for the Aand 2
directions. Dashed curves are predictions.

where

U=

The #., and v/, and w»2(ke) are determined by setting

For the pure modes we find

Symmetry along S, S, kg

E*=d’F, F*=dF,
G*=dG, and H*=—gaH. (6.145b)
0 0 0 0 VAV VA
u1/V2 a2/ V2 w' /N2 o' /V2 0 0
1)1/\/7 7)2/\/2— 7)1,/\/2 ‘Uzl/\/’z‘ 0 0
, (6.146a)
0 0 0 0 —da/N2  d/N2
dw/N2  dup/N2  —du/ /N2 —du' V2 0 0
—dv /N2 —dw/N2  dv/ /N2 dvy’ V2 0 0
where d is exp[win/2] as before and u;, v;, w12(Ky) are determined from (6.128) by setting
an=B+dF, an=C—d7'G* and ap=D—dH. (6.146b)
0[11=B—dF, a22=C-}—dG, and 0(12=.D+dH. (61460)
Since there is only one irreducible representation along
S which is two dimensional and occurs three times,
wi(ky) =4 —dE, (6.147a)  the eigenvectors will not be written down. The form
_ of D(ks) suggests a trial solution which is simpler than
wf (k) = A+dE. (6.147b) that obtained by projection operators.
The line S’ is essentially continuous with S as seen
in an extended zone scheme. Instead of letting 4 go
(A4 D E from O to £, we can let it go from O to 1.
D B P Symmetry along R, k;
A
C E F
D (ks) = , (6.148a) B
E* A —D
C
F* D B D(k;) = (6.149)
A
B P ¢
B
where
E*=—@E, and F*=—dF. (6.148b) L C)
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(00 1 0 0 0 Symmetry along T, 17, kq
000100 (4 D E H ]
100000 —-Db B 2 F
Ul= . (6.150)
C G
0 0 0 0O0 1
Dlw)=| , (6.152a)
010000 £ H —D
000010 m* F b B
wr?(Kr) =C=0wy? (), (6.151a) | G* C)
where
wu(k']) =B=w312(k7) ) (6151]:)) E*=d4E, F*=d4F’
wr(ky) =4 =wy(ky). (6.151c)
. ] . G*=d'G, and H*=—g'F. (6.152b)
The degeneracy seen here is predicted by time-reversal
invariance. The eigenvector matrix is
( 141/\/2 ’uz/\/f 0 0 ul’/\/j 1.{2’/\/7 }
1)1/\/—2— 1)2/\[2— 0 0 1)1’/\/2— 7)2’/\/7
0 0 1V2 1MV2 0 0
U= , (6.153a)
Pm/NZ  Pus/V2 0 0 —&u'/N2 —du!/N2
—dn /N2 —d%/V2 0 0 a2 /N2 d2v' N2
L o 0 —&N2 B2 0 0o )
where d= exp[imn/2] and the solutions #;, v;, and wy,?(ks) are found by substituting
an=A+dE, oap=B—d’F, and ap=D—d?H (6.153b)
into (6.128). The solutions for %, v/, and ws?(ks) are found by substituting
an=A—dE, oap=B+dF, and ap=D+dH (6.153c)
into (6.128). The other two eigenvalues are 0 0 0 0 wu w
wgz(kﬁ) =C—'d2G,
m u 0 0
wit(ks) =C+d°G. (6.154) v 0 0
The above results do not appear to be in agreement 0 0 ww w 0 0
with those of Iyengar et al. The factor ¢* is missing Ul= ,  (6.156a)
from w.?(ks) and ws?(ks). There are also terms missing 0 0 0 0 =" o
from the s=1 and 4 solutions also.
T’ is a continuation of T in the sense that S’ is a 7w % 0 0 0 0
continuation of S.
’ 7
Symmetry along =, ks 0 0 o % 0 o]
( A D W where
an=op=B, and ap=E (6.156b)
B E
for u;, v;, and wi2(ks). If we set
C F
D(k;) = . (6.155) en=an=C, and ap=F,  (6.156c)
* A
D then we get u;/, v/, and ws?(k;). With the relations
E* B = o —
an=oap=4, and ap=D, (6.156d)
L F* CJ one finds %"/, v/, and w2(k;).
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Fi1G. 11. Continuation of Fig. 10 for the symmetry directions
P and U.

Symmetry on 8, &', kq

The plane § contains the lines T and S. The plane
¢’ is an extension of & in the same sense that T’ and S’
are extensions of T and S. The two irreducible repre-
sentation in the plane are each contained three times
in {T(ks,, R)} and hence the eigenvectors will not be
given.

(4 D E G J K

-D B F J H L

E* —F C K L 1
D(k4)= ]
dedG —ddyJ dedK A —D  E*

—ddyJ  dedH dfdL D B —F

dtdK —d?dhL dfdI E F  C)
(6.157)

where

di =€xp [7ri’r),-/2:l.

This can be broken into two three-by-three matrices
by symmetry.

Symmetry on o, k3
This is the plane containing 2 and R.

B D F H
D* C H G
D (ks) = . (6.158)
E* 4
F* H* B D*
| m* ¢ D C|

The form of D(k;) shows that vibrations with polari-
zation perpendicular to the plane are pure. Their fre-
quencies are

w?(ks) =A+(2i-3) | E|. (6.159)

The frequencies belonging to s=1 are found from a
quartic equation. The trial solutions are obvious.

Symmetry on p, k,

Time reversal predicts a degeneracy between the
two representations. Each is one-dimensional and
occurs three times. We find that

(4 D E)
D* B
C EF
D (k) = (6.160)
E* A D*
F* D B
E* F* C)

Once again, the trial solutions are obvious from the
block structure of D (k).

TaBLe XXV. Corrections to R. McWeeny, Symmetry (The
Macmillan Co., New York, 1963).

Location Correction

p. 61 last line (Sa5iC,. There is no simple rule.)®

p. 62 Fig. 3.5 “Axis for C*D [also defines plane for

a-(Hl)]” b

p. 74 Table 3.12 “T| E| CFCaCy | Cvaer.?

p. 99 Table 4.12 “iCo=185S50%5: "

p. 99 Table 4.13 “iDe=18SeonS.S3+ + +”

p. 102 Table 4.18 This table is wrong. There are 4 classes
and only 3 representations listed. See
Slater, Ref. 4, Table A3-35, p. 392 for

a correct table.

p. 104 Table 4.21 Because the table for T is wrong, one

%mnot use it to generate the table for
he

® M. J. Buerger, Elementary Crystallography (John Wiley & Sons, Inc.,
New York, 1956), p. 30.

b The plane a* is not defined by the direction of its normal, This is not
an error, but a case where one convention is used for operations in the cubic
ﬁows and another convention for other point groups, It is not unique to

cWeeny.
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TaABLE XXVI. Corrections to O. V. Kovalev, Irred

Breach Science Publishers, New York, 1965).

‘hlp Redr

s of the Space Groups (Gordon and

Location

Correction

p- 6 line beginning /3=
p. 7 line beginning kyr=
p- 8 line beginning %;=
p. 8 line beginning /3=
8 line beginning A=
. 8 line beginning k=
. 8 line beginning /5=

p
P
P
p- 8 line beginning A=
p.9 line beginning T'*=
p

. 23 sixth line

p. 24 14th line

“Is=(§,%,2) "

“ha=(2,§,%) "

= (y—, &, 3) oo +”

“s++ —rotation about (110).”
“Ma=(y—%,9,2) "
a=(y—%,%,2)+++"

“Is= (g, 2—y,2)+++"

“«++ —reflection in the plane (110).”
T *—base-centered: «+”

This formula does not appear to be right. Could it be

‘/‘ku (g_‘f) =Tu's (g) ‘pku’ (l') ?

T(g) is really not defined by the formula below except by

implication that it is the coefficient of Y.’ (r).

p. 30 3rd line
p. 92 5th line under 7205

‘s « «have unequal”

“erator r(4) corresponds to the element 7 and the operator

—7(hiy24) corresponds to the element /42,” This may be
a translation difficulty. The sentence is so garbled that
this may not be the correct interpretation.

p. 111 Table T70

The matrix under elements kg, k2, k24 should be

6 =)

Symmetry on 7, ky

(4 D E H )
D* B H F
c G
D(k,) = (6.161)
E* H* 4 D
H* F* D* B
| G* C

Modes with polarization perpendicular to the plane are
pure:

Xo2(ky) =C+(2i—3) | G |. (6.162)
The four frequencies x1:*(k;) are found from a quartic.

Predictions

Phonon dispersion curves have been measured in
Mg along A and Z.% It is again of interest to use the
above group theory along with the data to predict the

connectivity of the dispersion relation in other sym-
metry directions. The predictions are shown in Fig. 10
and 11. These predictions cannot be very unique for
S, U, and P. The most interesting results are along T.
These are predicated on the experimental assignments
at M.

Dispersion curves have been measured for Be®® and
Zn.® The above theory can be taken over for these
substances. It has often been said and should be em-
phasized again that group theory is useful in separating
symmetry from dynamics. It is not a substitute for
detailed calculations.

7. CORRECTIONS

It is next to impossible to make a book or journal
article without some misprints and trivial errors. The
errata section of journals serves as a vehicle for making
corrections to these references. It is more difficult to

% R. E. Schmunk, R. M. Brugger, P. D. Randolph, and K. A.
Strong, Phys. Rev. 128, 562 (1962).

® G. Borgonovi, G. Caglioti, and J. J. Antal, Phys. Rev. 132,
683 (1963).
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TaBLE XXVII. Corrections to G. F. Koster, “Space Groups and their Representations” in Solid State Physics, F. Seitz and D. Turnbull,
Eds. (Academic Press Inc., New York, 1957), Vol. 5, p. 173.2

Location

Correction

p. 179 4th line below Eq. (2-3)
p. 179 6th line below Eq. (2-3)
p- 181 8th line

p.

. 184 Table IX

. 185 Table XIII
. 186 Table XIV
. 188 Table XIX

. 197 8th line

. 197 last line

. 214 Eq. (2-7), lower line

. 216 2nd line

. 218 2nd line after Eq. (2-23)
. 222 3rd line

. 224 2nd line above Eq. (3-4)

. 224 5th line below Eq. (3-4)

. 227 bottom of page

. 230 2nd line of reference 23
. 233 Table XXXIII

. 233 6th line of Table XXXIV

234 2nd line

“spond in turn to screw axes and glide planes- - -”
‘... Moreover the translational part.-."

“We now list the 32 point groups and the character tables of
their irreducible representations.”

The order of the labels in column one should be Wi, Wy,
W3, Wa.

The order of the labels in column two should be Wi, Wy,
Wi, W', W

The order of the labels in column one should be M1, My,
M3z, Mo, M5, My, My, Ms', My', M.

The order of the labels in column one should be L;, L,
Ls, Ly, Ly, L.

“...subgroup Cys-+"

‘“‘equal angles of 60° with one another---”

“Rpea1kj=27X (integer)”’

“...appear as often as exp (¢k1°Ry)<++”

“group of ks, =++”’

“tions form @ basis for an irreducible representation.«-”

“tion (3-2) remains unchanged---” Eq. (2-29) is
nonexistent. (3-2) seems to me to be what is meant.

“«..by use of (3-1).” Again (2-38) is nonexistent and
(3-1) seems appropriate.

A description of the symmetry point NV seems to be missing.
It is the center of the rhombic face and has symmetry
Dyy. The principal twofold axis is on the line £, =%, and

“...R. J. Elliot, Phys. Rev. 96, 280 (1954).”

Koster does not seem to agree with Elliot, whom he quotes
as reference, Slater (Ref. 4 in the present paper) Table
A3-28 agrees with neither Koster nor Elliot.

The two operations {Cy’ | 7} are lumped together as if they
had the same character. They correspond to the operations
Rio’ and Ry’ in Slater Table A3-25. There they are given
different characters. They are also given different
characters in Doring and Zehler.» These operations are
also confused in Herring.¢

“.eevectors fy=s7, «++”’ [Cf. p. 210, Eq. (4-13).]

3 See also Ref. 21, p. 1 for some further errors.

b W, Doring and V. Zehler, Ann. Physik 13, 214 (1953), Table 7.

¢ See Ref, 65, Table X.

TasLe XXVIIL Corrections to J. C. Slater, Quantum Theory of make corrections to books before a new printing or

Molecules and Solids (McGraw-Hill Book Co., Inc., New York,

1965), Vol. IL.

edition.

A review article is an appropriate place to make

Location

Correction

corrections to books and articles used as references to

p- 350, 16th line from

bottom

p. 360, Table A3-9

p- 367, 2nd line from “Ly L L LY

bottom

p. 380, Table A3-26

Eq. (A3-2) seems inappropriate; I
couldn’t find suitable replacement.

This table does not agree with
Kovalev’s Table T41 on p. 104. It
was not possible to get a correct
projection operator using this table.

Change (Ls):; to (Ls')s; in column one

the subject. It is hoped that the authors mentioned
in this section will not take offense. These minor cor-
rections are intended to make life easier for the beginner
and should not detract from the stature of the pub-
lished work.

Tables XXV to XXVIII contain a list of corrections
to errors found by the author during his reading and
use of tables. No claim can be made for completeness.

Notes added in proof. The phonon dispersion curves

for TIBr, which has the CsCl structure, have recently




appeared in print. [See E. R. Cowley and A. Okazaki,
Proc. Roy. Soc. (London) A300, 45 (1967) ]. Measure-
ments were made along the symmetry lines A, S, =, T,
and A. The connectivity is the same as the predictions
illustrated on Fig. 7. The ordering at the symmetry
point M is different. The lower My’ and M, points are
interchanged. Similarly, there is an interchange at
X of the X; and X, points. In comparing the pre-
dictions with the data one must note further that
Cowley and Okazaki’s representation labels S; and
S, are what we have called Sy and S;, respectively.

A private communication with G. Venkataraman has
disclosed that the labeling given above for Mg at T
and K is correct. We have not been able to resolve our
differences at M and T or for eigenfrequencies at K.
Any resolution of this problem will be published in
Ref. 52.
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APPENDIX A

This appendix demonstrates the explicit form of w?
and the eigenvectors at T', kj=0 for CsCl lattice. The
equations of motion are

Mia(lk) =— D ®ap(li; V' us(V’). (A1)

k'8
This is Eq. (2.12) in (I). In order to put this into-a
form more closely related to Hooke’s law we will define
Kog(li; Uk') = —Ppp(lc; U'e'). (A2)

Furthermore,

Kog(lx; ) =— Q) Kug(lk; U'’),

k!

(A3)

where the prime on the summation means that the term
(U«’) = (k) is omitted. Equation (A1) becomes

Mo (1) = — D Kog(lc; V') Lug(ix) —ug(Px’) ). (A4)

120y

In this form it is readily seen that if the atom (Ik) is
displaced while all others are held fixed, then there
will be a restoring force provided that the tensor force
constants K(lk; I'k’) are positive. Actually, in this
case it is only required that

ST K (I Uk') >0.

Ukt

(AS)

J. L. WARREN Normal Vibrations of a Crystal 75

When one carries out the usual analysis to arrive at
the dynamical matrix, the result is

Deg(k | K) = — (M Mo)=2 3 Kag(Ix; V')
I

X exp {ik-[x(?)—x()]}. (A6)

This must be written out for two cases: (1) k=«’;
and (2) k=«

Dag(kr | R) =M1 Y Kag(li; ')
I

!

+ 37 Keolli 1) L1 —exp {ik-x() ~x() T} ).
(a7)

The prime on the first sum means «’'s4«; the double
prime on the second summations means 7/>4]. When
k#«’ the formula is the same as Eq. (A6). The equa-
tions for C(k) obtained from the above by using
Eq. (3.27)* are

Cap(rex | k) =exp {ik-[x(x') —x(k) ]} Dap(xx | k),

(A8a)
Cop(k’ | K) = — (M M) 3" Kog(lc; ')
"
X exp {ik-[x(I'k') —x(lk)]}. (AS8b)
At T these expressions reduce to
Cop(k | K1) =M1 D D7 Kaglli; '), (A9a)
«! "

Cap(kk' | Rip) = — (M Mo)™12 3" Kog(le; U’).  (A9b)
i

It will be recalled that

A=Cu(11 | kp)=M1 > Kn(l1;1'2), (A10a)
I

B=Cu(22 | kp)=My" 3 Ku(2; I'1), (A10b)
I

C=Cu(12 | kp)=—(MM)"2 Y Ku(i1;72). (A10c)
I

Since

Ku(i2; 1) =Kyu(I'1- 12)
=Ku(01;1—12) (A11)

and since the summation over ! is independent of I
and is symmetric in //, A, B, and C may be expressed
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in terms of the one sum

Ko= ; Ku(1-12). (A12)
Thus
A=Ko/My, (A13a)
B=Ko/Mo,, (A 3b)
C=—Ko/ (MiM)"2, (A13c)
From this is easily seen that
—AB+-C2=0. (A14)
The eigenvectors e (ki 10i1) are
Ko(My)'2/[ | Ko | (M1+M:)"2]
0
0
e(ky 1011) =
Ko(M2)Y2/[ | Ko | (M1+M2)'7]
0
L 0
(A15a)

and
Ko(M2)Y2/[ | Ko | (M1+M5)"%]
0
0
e(km 1021) = .
—Ko(M)"2/[ | Ko | (M1+Mo)""]

0

0
(A15Db)

Clearly the first mode is acoustic and the second is
optic. At first sight it might appear strange that the
acoustic mode does not have equal amplitudes for the
two atoms in the unit cell. It must be remembered that
the true amplitude is

o (Ik | Ksal) = (M) 2u(k) e, (x | ksa))
X exp {ik-x(lk) —wu(K){}, (A16)
where #(k) is an arbitrary amplitude factor. The

factor (M,)™2 cancels out the corresponding factor
in Eq. (A15a).



