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'V. ;agnetic Groups anc. '..'. meir Corej~resentations
C. J. BRADLEY, B. L. DAVIES
DePartrrtertt of Metalllrgy, Urtiversity of Oxford, Oxford, ENgtartd

A review is given of the theory of magnetic groups and of their unitary corepresentations. Particular application is
made to magnetic space groups, this part of the work being set in the framework of little-group theory. The symmetry
problems in physics which lead to magnetic groups are analyzed and various applications of the theory to such problems
are pointed out. Finally a method is given for obtaining the Kronecker products of corepresentations of magnetic groups,
and an example is presented in which the unitary subgroup of the magnetic group is the point group C2,.

1. INTRODUCTION

A particularly famous work in the study of crystal-
lography is the book by Shubnikov' on the symmetry
and antisymmetry of 6nite figures. It opened the Rood
gates to a remarkable development in the theory of
symmetry. For it was not long before it was realized
that the ideas it contained were just those required
to make an analysis of crystals which have a nonzero
average magnetic moment. The next stage was, in-
dependently of each other, that Zamorzaev' first, and
then Belov, Neronova, and Smixnova' derived the
1651 colored space groups. These masterly works by
Shubnikov' and Belov, ' together with other articles,
are now combined in a book' which contains an exten-
sive bibliography of 201 references to work on the
symmetry of 6nite figures.

If the operation of color change in the colored groups
is replaced by the antiunitary time-reversal operator
one obtains the magnetic groups. Of the 1651 magnetic
space groups, 230 correspond to the classical space
groups, 230 to these groups together with time reversal,
and the other 1191 to groups in which time reversal
occurs only in combination with other operations and
not by itself. Likewise there are 122 magnetic point
groups which are partitioned into three types by the
above classification, the number of groups in each type
being 32, 32, and 58, respectively.

Tavger and Zaitzev' first classified the magnetic
point groups and realized their significance in the study
of the macroscopic properties of magnetic crystals.
Since then there has been considerable interest in mag-
netic crystals and in the application of group theory
to the study of their properties.

The main problems of physical interest which have
received attention are the following. First of all there
is the classification problem: given a spin ordered struc-
ture to what symmetry group does the crystal belong?
A knowledge of what symmetry groups are possible

' A. V. Shubnikov, Symmetry and Antisymmetry of Finite
Figures (U.S.S.R. Academy of Sciences, Moscow, 1951).' A. M. Zamorzaev, Generalization of the Space groups:
Dissertation, Leningard University (1953).

3 N. V. Belov, N. N. Neronova, and T. S. Smirnova, Trudy,
Akad. Nauk SSSR, Inst. KristaH. , 11, 33 (1955).

4A. V. Shubnikov and N. V. Belov, Coloured Symmetry {Per-
gamon Press Ltd. , London, 1964).' B.A. Tavger and V. M. Zaitzev, Soviet Phys. —JKTP 3, 430
(1956).

will obviously assist the experimental worker in his
quest for determining the spin order of a given material
and will limit the amount of eGort he has to put in to
determine the structure uniquely. Work along these
lines was initiated by Donnay, Corliss, Donnay, Elliott,
and Hastings' who determined the magnetic structure
of chalcopyrite by neutron diQraction experiments.
Then there is the converse problem of whether a par-
ticular magnetic space group permits an invariant
spin structure; that is, whether the abstract group
has a physical realization. Opechowski and Guccione'
have a good deal to say about this. Also bound up with
this is the solved problem of determining those struc-
tures which can exhibit the various types of permanent
magnetism.

Also at a macroscopic level there is the determina-
tion of those structures which can exhibit certain physi-
cal eGects in the presence of applied fields such as the
electric and magnetic fields. The general problem here
is the determination of the symmetry properties of
tensors and their invariant properties under transfor-
mations of the magnetic point groups. The books by
Birss' and Bhagavantam' give the most comprehensive
accounts of this subject.

There are, of course, a number of problems at the
microscopic level which require analysis of the mag-
netic space groups for their solution. For example, the
classi6cation of the electron energy levels in magnetic
crystals, and the study of second-order phase transi-
tions. The solution of such problems as these depends
on an analysis of the irreducible corepresentations of
magnetic space groups and of their Kronecker products.
The founding father of corepresentation theory was
%ignerm and development of his work in the U.S.S.R.
is due mainly to Kudryavsteva and Chaldyshev" and

' G. Donnay, L. M. Corliss, J. D. H. Donnay, N. Elliott, and
J. M. Hastings, Phys. Rev. 112, 1917 (1953).

~ W. Opechowski and R. Guccione, in Magnetism, G. T. Rado
and H. Snhl, Eds. (Academic Press Inc. , ¹wYork, 1965), Vol
IIA.

s R. R. Birss, Symmetry and Magnetism (North-Holland Publ.
Co., Amsterdam, 1964); also Rept. Progr. Phys. 26, 307 (1963).

9S. Shagavantam, Crystal Symmetry and Physical Properties
(Academic Press Inc., New York, 1966}.' E.P. Wigner, Group Theory and its Application to the Quantum
Mechanics of Atovsic Spectra (Academic Press Inc. , ¹wYork,
1959).

"N. V. Kudryavsteva and V. A. Chaldyshev, Izv. Vysshikh
Uchebn. Zavendenii Fiz. 2, 104 (1962); 3,

'

133 (1962); 4, 98
(1962); 2, 46 (1963); 3, 3; (1965};3, 50; (1965); and 9, 93
(1966).
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in the U.S.A. to Dimmock and Wheeler "though one
must also mention the important papers by Dimmock, '~

and by Karavaev, Kudryavsteva, and Chaldyshev. "
The theory of second-order phase transitions goes

back to Landau and Lifshitz" and is beautifully re-
viewed in its application to crystals belonging to the
classical space groups by Lyubarskii. ' This theory
has been extended to cover the magnetic group case
by Dimmock. '9 The analysis involves the Kronecker
products of corepresentations. More recently problems
in spin wave theory have been put in the setting of
magnetic groups; the groups introduced by Brinkman
and Elliott' for this purpose they term spin-space
groups: these contain more elements than the mag-
netic space groups of the corresponding structures
because the appropriate interaction Hamiltonians have
greater symmetry than the structures themselves.

This article has three aims in view, first to give a
review of the main group-theoretical points of interest
in the applications that have occurred, secondly to
present some new methods of proof which we have
found helpful and which we hope will therefore prove
helpful to others, and thirdly to give sight to certain
ideas (for example, projective corepresentations) which
are current in the Russian literature, ' 6 but which
have so far received little attention elsewhere. Because
the applications are so diverse the theory has been kept
in an abstract form, particularization being made more
easily when the general theory is adequately set out.
Of course, particular physical problems are often dealt
with more quickly by ed hoc methods but these tend
to obscure general procedures. Also many results which
are physically obvious often need heavy mathematical
machinery to give them conclusive support from a
theoretical point of view: this is the reason for the rather
elaborate discussion of the magnetic little group (or
group of k) in Secs. 3 and 4. We also give an outline
of the physical problems for which the theory is useful;
there is no pretence to completeness in this respect —the
fact that several books''9 and long reviewsv" have
been written along these lines speaks for itself. What we

hope to do is to show how the mathematical tools are
used, why they are appropriate, and to compare dif-

'~ J. O. Dimmock and R. G. %heeler, The Mathematics o&

Physics md Chemistry (D. Van Nostrand Co. Inc., New York,
1964), Vol. 2, Chap. 12.

'e J. O. Dimmock and R. G. Wheeler, J. Phys. Chem. Solids
23, 729 (1962).

'4 J. O. Dim~os and R. G. Wheeler, Phys. Rev. 12'7, 391
(1962)."J.O. Dl~mock, J. Math. Phys. 4, 1307 (1963).

'~ G. F. Karavaev, N. V. Kudryavsteva, and V. A. Chaldyshev,
Soviet Phys. —Solid State 4, 2540 (1963).

'~ L. D. Landau and E.M. Lifshitz, Statistical Physics (Gostek-
hizdat, Moscow, 1951 and Pergamon Press Ltd. , Oxford, England,
1958).

'e G. Ya. Lyuharskii, The APPlication of GrouP Theory in
Physics (Pergamon Press Ltd. , Oxford, England, 1960).

»J. O. Dimmock, Phys. Rev. 130, 1337 (1963).
~ W. P. Brinkman and R. J. Elliott, J. Appl. Phys. 3'7, 1457

(1966);and Proc. Roy. Soc. (London) A294, 343 (1966).

ferent methods when more than one method can be
used.

In Sec. 2 we show first of all how to classify and to
obtain magnetic groups, with particular reference to
the magnetic point groups. Then we review the basic
theory of corepresentations. The results were derived
a long ™ ago by Wigner and have appeared in English
translation"; our treatment follows much the same line
of approach as that given by Wigner: so in this part we
give detailed proofs of results only where we have made
simplifications. It may be remembered that corepre-
sentations are of three types; a criterion for determining
which of the three types arises out of a given represen-
tation of the unitary subgroup is presented. This result
is also given by Dirnmock and Wheeler. "The physical
significance of corepresentation theory in classifying
energy spectra is given along with various examples.
Also the diGerent methods available for treating the
symmetry properties of tensors in magnetic groups are
outlined and a new application is made of the group
theoretical approach to this problem.

There follows in the first part of Sec. 3 a short ac-
count of the theory of little groups as applied to crystal-
lographic space groups. No proofs are given here, for
such proofs appear either in the paper by Bradley" or in
earlier works such as the review article by Koster."
This part serves to introduce notation and to give the
reader an idea of the previous knowledge he requires
for an understanding of the later theory in Sec. 3. It will
be recalled that the irreducible representations of space
groups are those induced out of the small representa-
tions of the various little groups (or groups of R). It
is shown in the second part of Sec. 3 how to dehne
magnetic little groups which have a similar fundamental
property, namely that the irreducible corepresentations
of magnetic space groups are those induced out of the
small corepresentations of the various magnetic little
groups. Many authors, including Dimmock and
Wheeler, " ' give a geometrical definition of the mag-
netic little group which is perfectly correct. But,
although the extension from a little group to a magnetic
little group is trivial to effect the proof that the mag-
netic little group so defined has all the required proper-
ties is far from trivial. We prefer to hold the following
point of view: that a little group has significance and
is therefore defined only if the fundamental property
stated above is shown to be satisfied, and that only
then is a meaningful geometrical interpretation to be
given in terms of the vectors in k space. This point
may not have deserved such emphasis if it had not been
for a recent paper by Cracknell2' who defines geo-
metrically (but incorrectly) a magnetic little group;
his group only has the required fundamental property

"C. J. Bradley, J. Math. Phys. 'f, 1145 (1966).
& G. F. Roster, Solid State Physics 5, 1/3, {1957).+ A. P. Cracknell, Progr. Theoret. Phys. 33, 812 (1965).
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for vectors k which are equivalent to —k; fortunately
most of the vectors he treats satisfy this condition so
that his work is only invalidated in part and it has now
been corrected. '4 The presentation here of the mag-
netic little group theorem fills a lacuna in the literature.
Most treatments of corepresentation theory apart
from that in the monumental series of papers by
Kudryavsteva and Chaldyshev" (which is untrans-
lated) omit a rigorous proof and it therefore seemed
sensible to fill the gap, although we are conscious of the
fact that by taking the problem in rather an abstract
setting (one appropriate to any magnetic group with
a unitary invariant Abelian subgroup) we might be
thought over-elaborate. Actually the results here are
more general than those obtained before and may well
be of use in further developments of group theory to
Physics, for example, in the development of the spin-
space groups of Brinkman and Elliott."

The work on magnetic space groups is continued in
Sec. 4. The description and general form of the mag-
netic space groups and Bravais lattices is outlined
and interpretation is made of some of the theory in
Sec. 3. Certain further applications to physical problems
are noted, in particular the spin classification problem
and the effect of time-reversal on energy bands.

Section 5 is devoted to the theory involved in the
reduction of inner Kronecker products of irreducible
corepresentations of magnetic groups. It is shown that
this problem is easily solved by formulae relevant to
the unitary subgroup of the magnetic group. An ex-
ample is given using a magnetic point group. Using
the theorems of Bradley" this is also a useful method
for magnetic space groups. In this connection see also
the treatment given by Karavaev. "Finally the prob-
lems of second-order phase transitions and of the
development of crystal field theory to situations in-
volving a magnetic environment are mentioned as
examples which require results of the analysis of these
inner Kronecker products for their solution.

2. COREPRESENTATIONS OF MAGNETIC
GROUPS

2.1. The Structure of Magnetic Groups

A finite magnetic group M is a finite group of opera-
tors half of which are unitary and half antiunitary.
They occur in physics because the operator 5 of time
reversal in quantum mechanics is antiunitary: we refer
to the work of Wigner' and Bargmann" for proof of
this fact. That exactly half the elements of M are uni-
tary follows from the fact that the unitary elements
form a subgroup G, which, since the product of two

~4 C. J. Bradley and A. P. Cracknell, Progr. Theoret. Phys. 36,
648 (1966).

"G. F. Karavaev, Soviet Phys. —Solid State 6, 2943 (1965)."V. Bargmann, J. Math. Phys. 5, 862 (1964).

antiunitary operators is unitary, is an invariant sub-
group of M of index 2.

%e can therefore express M in terms of left cosets
with respect to G:

M=G+AG, (2.1)

where all the elements of the coset AG are antiunitary.
A can of course be any of the antiunitary elements but
once chosen it remains fixed. (We prove later that the
results themselves are independent, in a sense to be
defined, of the particular choice made —it is simply
for convenience of proof that one fixes on a particular
coset representative. ) Equation (2.1) can also be taken
to characterize an infinite magnetic group in the case
in which G is infinite, but we are dealing almost entirely
with the case in which G is finite. (The theory we de-
velop can be taken over immediately if G is a compact
topological group —as, for example, when G is the ro-
tation group. ) As pointed out by Indenbom s' Eq. (2.1)
gives immediately a method for determining all mag-
netic groups. There are, in effect, just two types of
magnetic groups which contain antiunitary operators.
Those in which 8 occurs in the coset AG, and then it
is convenient to choose A = 8. In this way we see that
for every unitary group 6 there is just one correspond-
ing magnetic group M of this type and we can write

M=G+tIG. (2 2)

'r V. L. Indenbom, Soviet Phys. —Cryst. 4, 578 (1959).

And secondly there are those in which 5 does not
appear in the coset AG. To obtain magnetic groups of
this second type it is sufhcient to note that A =62,
where R is some unitary operator and hence (since 6
cornrnutes with all spatial unitary operators) that

(2 3)

is a unitary group isomorphic with M and that G is a
subgroup of M of index 2. Reversing the argument,
for each unitary group of operators M' which has a
subgroup G of index 2, and hence a decomposition of
the form (2.3), there can be constructed a magnetic
group N. Indenbom's contribution to the argument was
to note that given a group M' of unitary operators then
its subgroups of index 2 are in 1—1 correspondence with
the kernels of those one dimensional representations
of M which consist entirely of the numbers +1 and —1
(occurring of course in equal quantities). Hence to
obtain all magnetic groups of this type all one needs
to do is to search systematically through the character
tables of the unitary groups picking out the appropriate
one-dimensional representations, as described above.
To each such representation there exists a magnetic
group (not all of which may be distinguishable crystal-
lographically) .

Consider for example the crystallographic point group
C4„(4mm). Its character table is given in Table I.
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TABLE I. The character table of C4, (4 mes). (Nore: The nota-
tion used for the operators in Tables I, II, and III is the same as
in Altmann and Cracknell, Ref. 31. As in that paper the active
convention whereby the operators move the points of space and
leave the axes 6xed is also used here.

C4, C2, 0» aZ odds, Odb

Ap
~1
82
jv

1
1—1—1
0

1—1
1—1
0

1

—1
1
0

It has three representations of the appropriate type,
namely, A&, 8&, and 8&. The kernels corresponding to
these representations, that is, the invariant subgroups
of index 2, are the point groups C4(4), Cs„(2m'), and
C&„(2m'), respectively (the two C&„groups having
a different setting with respect to a set of Axed axes,
but being crystallographically indistinguishable) .There
are therefore two distinguishable magnetic point groups
M to be constructed by choosing M'=C4„(4m').
These are named appropriately C4„(C4) and C4„(C&„)
using Schonflies notation, or 4m' and 4mm using the
International notation.

By letting M' run through the 32 crystallographic
point groups one obtains altogether 58 distinguishable
magnetic groups M of this second type. Taken together
with the 32 of the previous type and the 32 point groups
themselves this accounts for the 122 magnetic crystal-
lographic point groups of Tavger and Zaitzev. ' For a
complete classification of these groups see, for example,
Table 12—1 of Dimmock and Wheeler" or the book by
Hammermeshss (in which the Schonfhes and Inter-
national notations are explained).

RA =Z O'J~(R) ~'. (2 4)

We write equations such as this in a shorthand form
in which, for example, Eq. (2.4) reads as follows:

R«l=«1~(R). (2.5)

We now introduce the d functions P; (i=1 to d)
which are produced by operating on f; with A: that is

(2.6)
"M. Hammermesh, Group Theory (Addison-Wesley Publ. Co.,

Inc., Reading, Mass. , 1962), pp. 63-67.

2.2. Coreyresentations

We denote elements of G by E, S, T, etc., and ele-
ments of AG by A, 8, C, etc. We often use the fact
that products such as A' and AB belong to G. We
suppose further that 6 is a unitary irreducible repre-
sentation of 6 of dimension d, with basis

&~ I=« I

so that, for all Eg G,

where
R(v I

= &v I D(R), (2.10)

(~(R) o
D(R) =I (2.11)

0 da(A 'RA))

We often write h*(A 'RA) =D(R). The reason for
this is that A(R) is also a representation of G.

Similarly, for all 8&AG,

B(v I

= &~ I D(B), (2.12)
where

o ~(BA))
!D(B) =I

&~~(A-~B) o )
(2.13)

The set of unitary matrices D de6ned by Eqs. (2.11)
and (2.13) forms what is called the corepresentation
of M derived from d. From what has been said so far
its properties may depend on the choice of A. Using
multiplication and the fact that 6 is a representation
of G it follows that

D(R) D($) =D(R$), (2.14a)

D(R) D(B) =D(RB), (2.14b)

D(B)D*(R) =D(BR), (2.14c)

D(B)D*(C) =D(BC) . (2.14d)

The complex conjugates that appear in Eqs. (2.14c)
and (2.14d) in general prevent D from being a homo-
morphism of M.

Also, looking at the matter the other way round,
any set of unitary matrices D de6ned for all elements
of M and which satisfy equations of the form (2.14)
is called a corepresentation of M.

Let us now perform a unitary transformation U on
the basis (y I

such that (y' I=(y I
U and let the co-

representation of M that follows from using (y'
I

as
basis be denoted by D'; then it soon follows that

As well as acting on functions, A also acts on com-
plex numbers and being antilinear it has the charac-
teristic property of transforming them into their con-
jugates. De6ne

(& I=«, ~I=A, ~., ",e., ~, ~., "~.
I

.(2.7)

Then, from Eq. (2.5),

R(@ !=RA(P
I

=A « I
~(A-~RA) (2.8)

(2 9)

in which Eq. (2.8) holds because A 'RA g G, and where
in Eq. (2.9) the complex conjugate (denoted by an
asterisk) appears because A is antilinear. It follows
that for all R&G

D'(R) = U 'D(R)U—(2.15)
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D'(8) =U 'D(B) U*. (2.16)

(1 O

(0 LP(A —'TA) )
(2.18)

we see that U is unitary, that (p'! = (p! U, and hence
that D' would be unitarily equivalent to D. It is in this
sense that the choice of A in defining the corepresenta-
tion of M derived from 6 is immaterial.

2.3. Reducibility of Corepresentations

Once the concept of equivalence is defined it is pos-
sible to define reducibility and irreducibility of co-
representations. This is done exactly as for ordinary
representations. If the basis of a corepresentation D
can be transformed by a unitary transformation so that
the space it spans devolves into the direct sum of two
spaces both invariant under M then D is said to be
reducible; if not, then D is said to be irreducible. As in
ordinary representation theory reducibility implies a
transformation to matrices all of which are in the same
block diagonal form. Theorems on complete reducibility
hold exactly as in the ordinary representation theory
of finite groups. We now discuss whether or not the co-
representation D de6ned by Eqs. (2.11) and (2.13)
is reducible or not. The answer depends on the relation-
ship between the two representations h(R) and h(R) =
A*(A 'RA) of the subgroup G.

First note that Zi(R) =E*(A 'RA) =&(A 2RA2) =
g '(A')g(R)A(A2) and so Z(R) is equivalent to
h(R) . From this it follows easily that the corepresenta-
tion of M derived from D(R) is equivalent to that de-
rived from A(R) . This means that when we consider
the collection of all irreducible representations of 6
some of them fall into pairs A(R) and h(R) which are
mutually inequivalent and which come together to
form a single corepresentation of M (which from what
we have proved so far may be reducible, though we
shall in fact prove shortly that such corepresentations
are irreducible); and the remainder are such that
b, (R) and rK(R) are equivalent and then the corepre-
sentation D contains 6 twice. (We prove shortly that

This enables us to define two corepresentations D' and
D of M to be unitarily equivalent if there exists a uni-
tary matrix U such that Eqs. (2.15) and (2.16) hold
for all Eg 6 and all Bg AG.

In particular, if we had chosen another antiunitary
operator A'=TA, where Tg G, instead of A as coset
representative the resulting corepresentation D' would
have had as basis (y'! = Q', g'!, where Q'!= Q!,
and

Q' I=A'9 l=»Q I=&(@l=(41~*(A '2'A).

(2.17)

So, with the following choice for U:

('x(R) o )
! !

0 F(R))
where X(R) is equivalent, say, to h(R) and I'(R) to
A(R). Then if

Jt'u b)t

E«)
Eq. (2.15) implies amongst other things that

A(R) c=cX(R). (2.19)

But rX(R) and X(R) are inequivalent, so by Schur's
lemma c=O. Similarly b=O, and hence U is of the form

(a 0)

(0 ~y

But no such diagonal block matrix is capable of reduc-
ing matrices D(B) of the form given by Eq. (2.13),
because D'(8) = U 'D(B) U* will still be in off-diagonal
block form. The conclusion is that when A(R) and D(R)
are inequivalent the corepresentation of M derived
from d is irreducible.

Suppose next that h(R) and A(R) are equivalent.
Then there exists a unitary matrix I' such that

h(R) =PlP (A 'RA )P '

so that, in particular

h(A') =PE*(A') P '. (2.21)

From Eqs. (2.20) and (2.21) it follows, after some
manipulation, that PP*h '(A') commutes with b.(R)
for all EP G. Hence, by Schur's lemma,

PP*=lb h(A'), (2.22)

where X is a scalar. Substituting for 0 (A') and b,*(A')
in Eq. (2.21) we obtain X =V =&1, so that only two
possibilities exist:

PP*=&h(A') . (2.23)

We now prove that the sign which holds in Eq. (2.23)
governs whether or not D is irreducible.

Now D(R), RF G, is already in reduced form but
first it is convenient to apply the unitary transforma-
tion

0)
(0 p-)

so that, using Eqs. (2.15) and (2.16), D is transformed

such corepresentations may or may not be reducible
according to a criterion that we establish. )

Take 6rst the case in which h(R) and rK(R) are
mutually inequivalent. Suppose there exists a unitary
matrix U which reduces D. Since D(R), Rg G, is the
direct sum of irreducibles d, (R) and Z(R) the only
reduced form of D(R) is
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into the equivalent form

(~(R) o )
( o ~(R))

(2.24)

so that Eq. (2.25) becomes

( o
D'(8) =I

(~(BA ')P

—b, (BA ')P)
(2 33)

o )
and

o
D'(8) =I

(r~*(A 8)- (2.25)
o

(~1 ,1)

& 1 .1)
(2.26)

Suppose next that we try to find a unitary matrix V
which will reduce D'(8) to block diagonal form and, of
course, leave D'(R) unaltered. Since V must commute
with D'(R) it follows, using Schur's lemma, that

and

D"(R) =A(R),

D"(8) =WE(BA ')P (2.34)

Tote: The corepresentation with the plus sign is equiv-
alent to the corepresentation with the minus sign.

2.4. The Three Types of Irreducible Coreyresentation

We can now summarize the three cases:

Case (a)
d(R) =Pb,*(A 'RA)P ',

PP*=A(A')

where 1 is the unit matrix and where ), p, v, p are scalars,
which since V is unitary must satisfy Case (b)

h(R) =PA*(A 'RA)P '

PP~ = —h(A')

(2.27)

If we now demand that D"(8) = VD'(8) V* ' should
be in block diagonal form we find the requirement to be

and

(~(R) o )
!D'(R) =I

~(R))

pXPA*(A '8)+pvb (BA)P* '=0

pvPA@(A iB)+phd(BA)P+ i=o. (2.28)

0
D'(8) =I

(4(BA ')P

—~(BA-i)P)
(2.35)

o

Writing 8=AR in Eq. (2.28) and using Eq. (2.20) it
follows after some algebra that

pvPP*= —phd (A') . (2.29)

(6(BA ')P
D"(» =I

o
(2 30)

—6(BA ')P)

In the other case when PP*=—A(A') we have

d(BA)P* '=A(BA ')h(A')P* '= 5(BA ')P, —

Equations (2.29) and (2.23) impose the requirement
pv=&pX. Now if PP*=—h(A') the requirement is
pv=p) and this cannot be satisfied because it would

imply that V was singular; so that in this case we cannot
obtain a reduction. However if pe= —pA no such re-
striction holds; so that if PP*=b,(A') reduction is
possible. We can then choose X=p, =p = 1/V2 and
i =—1/K2 and after some manipulation we find even-
tually that

and

d, (R) not equivalent to D(R) =A*(A 'RA).

(~(R) o )
D(R) =I

( o Z(R))

( o
D(8) =I

(h(BA ')

6(BA))
!

o )
(2.36)

Wigner' has shown that all unitary irreducible co-
representations of M are equivalent to one or other of
these three types, where 6 is some unitary irreducible
representation of G.

The important thing from our point of view is to
know which of the three cases is appropriate for a given
irreducible representation 6 of G. For this Dimmock
and Wheeler" give a very simple test using the char-
acters of h. We remember that if 6' and ~& are two
unitary irreducible representations of G then

and, from Eq. (2.20), that
(2.31) Q 6'(R)„ih&*(R), =(I G I/d, )8;,8„8(, (2.37)

PS*(A—'8) =n(BA ')P-(2.32) where
I
G

I
is the order of G and d; the dimension of 6'.
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Now, if Bg AG, we have

g a(a)„„=g S(ARAR)„„
BRAG ReG

= Q A(A')„A(A 'RA), tA(R)t„.

In cases (a) and (b) the sum is

A(A') „,Q P,o~—'h*(R) „,P„*5{R) t,

=a(A')„P,o* 'Pot*-(l 6 I/d)8„8„,

=(I 6 I/d) A(A')„,P,t*Pt„

=~ (I 6 I/d) &(A') „&*(A')...
=~(l 6 I/d) ~%)-

(2.38)

This follows from Eq. (2.37), 6 and 6 being inequiv-
alent. Collecting these results and writing y for the
character of 5 we have

in case (a)

in case (b)

in case (c). (2.40)

When the group M contains the time reversal
operator 8 itself we can choose A=8, and Eq. (2.40)
reduces to

Z x(R') =~
I
6

I

=—ool6I
=0

where, as Wigner" has shown,

lil case (a)

in case (b)

in case (c), (2.41)

for an even number of fermions or when
spin is not being taken into account,

for an odd number of fermions. (2.42)

2.5. Examples

The physical significance of corepresentation theory
is exactly the same for the classification of the energy
spectra of systems whose Schrodinger group is a mag-
netic group as ordinary representation theory is for this
classification when the Schrodinger group is a unitary
group. That is to say, the labeling and the degeneracy of
each level of a spectrum corresponds to the labeling

In the simplification we have used the fact that 6 and
I' are unitary and that since 6 is of dimension d the
character of the identity E is d and we have also used
Eqs. (2.20), (2.23), and (2.37). In case (c) the sum is

h(A') „QE*(R),th(R) t„=0. (2.39)

and the dimension of one or other of the corepresenta-
tions of the magnetic group involved.

Because of the strong relationship that exists between
the corepresentations of a magnetic group M and the
representations of its unitary subgroup 6 of index 2 it
follows that there is a neat relationship between the
spectra of systems whose Schrodinger groups are,
respectively, M and G. Indeed the physical importance
of the classification in Sec. 2.4 can now been seen. In
cases (b) and (c) the existence of antiunitary operators
in the Schrodinger group M implies a doubling of the
degeneracy that would be expected from merely con-
sidering the operators of 6 alone. But in case (a) there
is no doubling of the degeneracy. Conversely, the
classification in Sec. 2.4 determines whether or not an
energy level splits under a small perturbation which
reduces the symmetry of the system from M to G. In
case (a) there is no splitting. In cases (b) and (c)
splitting of the levels will occur and furthermore one
will know which levels to expect close together, the ones
that derive from a single level or corepresentation of M.

As a first example consider the case of a quantum
mechanical system with an odd number of electrons in
which the Hamiltonian has no symmetry except that
of time-reversal. G has no nontrivial elements and is
therefore the double group of C~, consisting of the
identity E and E. The only representation of physical
significance is one-dimensional and has b(E) =1 and
h(E) =—1. Clearly x(E')+g(I&') =2x(E) =2. Also
co= —1. From Eq. (2.41) we see that we are in case
(b) . Each level of the system, barring additional
(accidental) degeneracy, is therefore doubly de-
generate. This degeneracy, due entirely to time-
reversal symmetry, is called Kramers"' degeneracy and
has been known for nearly forty years.

As a second example consider the case in which 6 is
the 3-dimensional rotation group 03. Let 5& be the
irreducible representation of dimension d;= (2j+1)
( j=0, —',, 1, —',, ~ ~ ~ ). The character in 6t of an element
E whose angle of rotation is 8 is given by

z'(R) = sin( j+-,')%in-', 0. (2.43)

We are interested here in the case f(R) =y&'(R') and

'9H. Kramers, Koninkl. Ned. Akad. Wetenschap. Proc. 33,
959 (&930).

se J. S. Lomont, Applications of Finite Croups iAcademic Press
Inc. , New York, 1959), p. 149.

Now we have to replace the summation over group
elements appropriate to finite groups by an integration
over the group parameters and with a kernel appro-
priate to the double group of Os. For functions f de-
pending only on the angle of rotation 8 this means
(see, for example, Lomont's) replacing

4m

I
6

I
'gf(R) by (2sr) ' f(g) sin' —'0 d8.
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TABLE II. The character table of C2, (2m) .

Cg„

AI
Ag
~1
Bg

1
1—1—1

1—1
1—1

1—1—1
1

since E.' corresponds to an angle of rotation 20 the
integral for evaluation is

4 sin2j 10
sin8

For j an integer the value of this in.tegral is +1 and for

j half an odd integer its value is —1. When j is an
integer (single-valued representations) there are an
even number of fermions and co =+1;when j is half an
odd integer (double-valued representations) there are
an odd number of fermions and co= —1. Hence for
every representation 0 J we are in case (a) . Thus when
the Hamiltonian has the full symmetry of the rotation
group the addition of time-reversal symmetry causes no
further degeneracy.

As a third example we take one for which the time-
reversal operator 5 is not itself a member of the mag-
netic group. It is an example already introduced as an
illustration in Sec. 2.1, namely the magnetic group
C4„(C&„). We study the relationship between its
irreducible corepresentations and the irreducible repre-
sentations of the unitary subgroup C&,. We only con-
sider the single-valued representations of these groups.
In order to prevent us having to introduce definitions
of the operators we use for them exactly the same
notation as Altmann and Cracknell. " Thus the 8
operations of M are E, C2„0-„(Ty, 8C4,+, 8C4, , 6(7g„
(90.&&, the first four of these forming the unitary sub-

group G. In Table II we list the characters of G(Cs„).
In accordance with Eq. (2.1) we fix A = BC4,+. Since
(BC4,+) =Cs, and (Boq,)'=(Boqb)'=E the sum in-

volved in Eq. (2.40) is equal to 4 for Ai and A& and is
equal to 0 for 8& and 82. Thus the corepresentations
D(Ai) and D(As) belong to case (a) and since in these
cases Z(R) =A(E) we can choose 8=1. The actual
forms of D(A&) and D(As) then follow from Eq.
(2.34) and are given in Table III (in which the plus
sign is chosen for the representative of BC4,+). For
D(B) we choose A=St and then, since A 'EA=E,
A 'C~,A=C2„A 'O.~A=a.„and A '0,A=0» it follows
that A=Bs. We are in case (c), the irreducible corepre-
sentation D(B) is of dimension 2 and contains both Bt
and Bs. Its actual form follows at once from Eq. (2.36)
and is also given in Table III.

A compatibility table between the representations

and corepresentations of the groups (C4„+BC4„), C4„,
Cs„and C4„(Cs„) is given in Table IV. From the first
and fourth lines of this table we can see that if there
was a direct transition from a system with symmetry
group (C4„+BC4„) to one with a magnetic sublattice
involving the symmetry group C4„(Cs„) there would
be no alteration in the degeneracies of the energy levels
of the systems. Such a transition might occur at the
Neel point of an antiferromagnetic crystal. However if
in either case the symmetry was reduced to that of the
group Cs, the degenerate levels E or D(B) would split
into the two non-degenerate levels B~ and 82.

A compatibility analysis similar to the above has
been carried out for all the magnetic point groups by
Dimmock and Wheeler" and their corepresentations
are given in full by Cracknell. "

2.6. The Symmetry of Tensors in Magnetic Crystals

Not all the physical problems connected with mag-
netic crystals that can be simplified or solved by group
theory depend on corepresentation theory. This is
because corepresentation theory arises out of the anti-
unitary nature of time reversal in quantum mechanics.
In problems of classical physics associated with macro-
scopic bodies time reversal is to be regarded simply as
the operator which transforms I, into —t and has the
property therefore of changing the sign of certain
physical quantities which depend on the time, simple
examples being velocity, current density, and magnetic
field. For problems such as these it is often appropriate
to use the representations of the unitary group M'
isomorphic with M. To illustrate this we consider the
problem of determining the simplest possible form of
tensors describing static properties of magnetic crystals.
Piezomagnetism, pyromagnetism, and magnetoelec-
tricity are a few examples of static phenomena of
crystals that can be described by means of tensors.
The problem has been solved, the most comprehensive
accounts being given by Birss' and Bhagavantam. ' The
first of these authors gives in his book a good bibliog-
raphy complete up to 1964.Work since then, for example
by Kleiner, 33 has been devoted to tensors describing
transport phenomena. We would emphasize that we
deal here only with those cases which are described by
tensors invariant under the magnetic point groups such
as the static phenomena mentioned above.

It is worthwhile summarizing the methods used by
previous authors for solving this problem. Birss'
demonstrates how to simplify a given tensor in a
magnetic point group, by showing that its form is the
same as that of some other tensor of the same rank in
one of the classical point groups. For tensors of both
even and odd rank for all magnetic groups a prescription
is given for identifying requisite tensors and the corre-

3' S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
(1965).

"A. P. Cracitnell, Progr. Theoret. Phys. 35, 196 (1966).
ss W. H. Kleiner, Phys. Rev. 142, 318 (1966).



C. J. BRAnLEv ANn B. L. DAvrEs 3Iagnetic Groups artd Their Corepreserttatiorts 367

TAELE III. The corepresentations of C4„(C~,) —4mm.

C„(C„) C2. 6C4,+

D (A1)

D (Ae)

D (B)
0 fi 0'l

0 —1 EO —it'

0) (0 —1) 0 1~

&
—1 Oi

$0 1)

l 1 OJ

TABLE IV. Compatibility between the groups (C4,+eC4,),
C4., Csy and C4, (C&,). /Notes: (i) The notation in the last three
rows of the table corresponds to that used in Tables I, II, and
III. (ii) The Grst row of the table lists the corepresentations of
the magnetic group (C4,+6C4,). Since the representations of
C4„are of type (a) with respect to this magnetic group, the co-
representation D(Aq) of (C4„+eC4„) has the same dimension as
the representation Aq of C4, and so on. g

(C4„+6C4„)

C2v

C4.(~s.)

D(Ag), D(B)) D(As), D(Be) D(E) D(Z)

A $3 J3$ A„B, Z Z

Ag Ag B1 Bg

D(Ar) D(As) D(B) D(B)

u F. G. Fumi, Phys. Rev. 83, 1274 (1951); 86, 561 (1952);
Acta Cryst. 5, 44 (1952); Nuovo Cimento 9, 739 (1952).

35 R. Fieschi and F. G. Fumi, Nuovo Cimento, 10, 865 (1953).
ee R. Fieschi, Physics 24, 972 (1957).
~7 V. L. Indenbom, Soviet Phys. —Cryst. 5, 493 (1960)..

sponding classical groups. The problem then devolves
on to the same problem for the classical point groups,
and, for this, one is able to invoke the magnihcent sets
of tables of Fumi, '4 Fieschi and Fumi, " and Fieschi, "
which are complete for all tensors up to and including
rank 6. Bhagavantam' shows how to use group theory
to calculate the number of independent components
that tensors can display in a magnetic environment but
he uses a descriptive and rather lengthy ad hoc analysis
to obtain their precise form. Many authors have
investigated particular cases. One who has inQuenced
our approach is Indenbom, 3~ who examined the mag-
netoelectric case and showed how to obtain the form of
the corresponding tensor in any magnetic point group
by 6nding invariants of E H, where E and H are
respectively the electric and magnetic field vectors.
However he also used a method of inspection, when a
group theoretical method would have been more
powerful. We have made a slight generalization of the
work of Indenbom'7 and Bhagavantam' using the full
power of group theory. The method may be used for
any tensor in any magnetic point group; it is simple to
use even for tensors of high rank.

For magnetic point groups which are a direct product
of a classical point group and time-reversal there is no
problem at all, the results for i tensors are the same as
for such tensors in the classical point groups and
clearly all c tensors invariant under such groups vanish

3

g; = ~~R;;x;, (2.44)

where (R;;) is the orthogonal matrix representing R

identically. (We follow Birsss and call tensors which
transform symmetrically and antisymmetrically under
f) i tensors and c tensors, respectively. ) This leaves us
to discuss the 58 magnetic groups M whose structures
are of the second type, as introduced in Sec. 2.1. Using
the same notation, let M' be the unitary group iso-
morphic with M and let 6 be the unitary subgroup of
index 2 common to both M and M'. When considering
M we use the following labels for the representations of
M': F„ the totally symmetric representation; F, the
representation that corresponds to M—as explained in
Sec. 2.1 this is the one-dimensional representation in
which all elements of G are represented by +1; I'o, the
pseudoscalar representation —it has all proper rotations
represented by +1 and all improper rotations repre-
sented by —1. In certain cases F„may coincide with
F or F„but this does not matter. We shall write F x„
for the direct product representation F F~. For
example, for the magnetic group C4„(Cs„),we see from
Tables I and II that the representations of C4, given in
Table I are to be relabelled for the present purpose
A~=F„A2=F„, Bj.=F, and 82=F &&„. The setting of
the group C2, with respect to fixed axes is critical. If
the alternative setting of C4„(Cs„) is used then the
labels of S~ and 82 get reversed, and the detailed form
of the results are changed. The form of the results often
depends on the orientation of the axes chosen. We use
the same right-handed orthogonal axes in our examples
as Altmann and Cracknell. "Similarly for the magnetic
group Ce, (C4) the labels of the representations of C4„
would be A~=F, =F x„and A2 ——F =F„.

Tensors of a given rank fall into four categories: (i)
polar i tensors, (ii) polar c tensors, (iii) axial i tensors,
and (iv) axial c tensors. These correspond in a simple
way that we shall now describe to the four representa-
tions F„F,F„, and F &&„, respectively.

Let R be an element of M and R the element in M'
that corresponds to S in the isomorphism between M
and M'. The coordinates (xr, aa, xs) of a point in the
frame of the chosen right-handed orthogonal system
will transform under R according to the vector repre-
sentation V of M':
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and apply it to functions d,b. ..& that transform under R
as given by Eq. (2.45). From this equation we see that
this imposes on the coeKcients of d,b. ..& exactly the
same relationships as are imposed by applying the
projection operator

P.= lM l-' g x.(R)e. (2.48)

on a polar i tensor of rank k. All that happens is that
the factor x (R) gets transferred from Eq. (2.45) to
Eq. (2.48) . Hence an n tensor which is invariant under
M suGers exactly the same restrictions and therefore

in V. Let g (R) be the character of R in the repre-
sentation 1' fn=s, re, P, or (rib&&P) j. Then we define
an a tensor of rank k in M to be one that transforms
like the direct product V~ of k vector representations V
multiplied by the phase factor x, thus, d is an 0. tensor
of rank k if it is transformed by R into d' where

d.b. ..b' ——y (R) Q R„„Rbq...Rb,d~, ...,. (2.45)
PQ ~ ~ »g

From definition and from Eq. (2.45) it is clear that
an s tensor is a polar i tensor, an m tensor is a polar
c tensor, a p tensor is an axial i tensor, and an (mX p)-
tensor is an axial c tensor. It is also clear from Eq.
(2.45) that if there were not further restrictions on d
its components would form a basis for the direct product
representation F V. However we also require the
tensor to be invariant under all the operations of M.
This forces various relationships to hold between the
components of the tensor. When these relations have
been satisfied we have the tensor in its simplest form.
If the relations cannot be satisfied nontrivially then the
physical e6ect described by the tensor is forbidden in
crystals invariant under the given magnetic group.

Standard group theoretical arguments provide us not
only with the number of independent components of
the tensor but also with its precise form. The number of
independent components 7- is equal to the dimension of
the space spanned by components of d that are left
invariant by all the operations of M and. which there-
fore transform as basis functions for the representation
I',. This is equal to the number of times F, appears in
the reduction of F V~. Writing x for the character
of V and

l
M

l
for the order of M this means that

=
l M

I

' 2 x-(R) lx(R) }" (246)
ZeM~

Since y is real, this is also the number of times I'
appears in the reduction of V~.

In order to find the precise form of an 0. tensor of
rank k that is invariant under M we have to Qnd

functions from the space spanned by F tsV~ that
transform as basis functions for the representation I',.
To do this we must use the projection operator

P.= IM l-' Z x.(R)~ (2.4~)

has the same simple form as a polar i tensor which
transforms not under I', but under F . This is not
surprising in view of the remark following Eq. (2.46).
A typical polar i tensor of rank k is given by the direct
product of k coordinates x,xb. ~ .x~, where with all such
products the order of the factors must be preserved. If
we apply I' to such a product we obtain from Kqs.
(2.44) and (2.48) the following n-scalars (n tensors of
zero rank)

lM l- g&.(R)R.,R„" R„*,*," *.. (2.49)

cpg g xpxg xgy~ ~ ~ (2.51)

in which the V are real arbitrary constants. But
x„x, ~ x, is a typical polar i tensor of rank k and since
we are dealing with Cartesian tensors it follows by the
principle of contraction that the coefFicients of x~x, ~ .x,
in the expression (2.51) form the most general u tensor
of rank k that is invariant under M.

Hence the components of d b. ..l, are related by the 3~

equations

dab "b Q ~ cab b»" (2.52)

where the coefficients C b. ..I, are to be obtained from
Eq. (2.51) and the X are r real arbitrary constants.
The validity of this method of obtaining the form of
the tensor required rests on the simple fact that if
d,b. ..l, is the most general n tensor of rank k invariant
under M then

dab»» kXaXb' ' 'Xk~ ~ ~
~ ~ ~

~b» ~ » fg

is the most general 0, scalar which includes x,xb -.x~.

We illustrate the theory with an example using once
again the magnetic point group C4„(C2„) and we deter-
mine the form of the magnetoelectric tensor. Since E
is a polar i tensor of rank 1 and I is an axial c tensor
of rank 1 the magnetoelectric tensor is an axial c tensor
of rank 2. The appropriate representation of C4, is
therefore I' &~=82 its characters being given in Table
I. The projection operator corresponding to Eq. (2.48)
is therefore

P X Z= b (E+Cbz C4» C4z 0'z &Z+&da+0'db) ~

(2.53)

The vector representation V fthe set of matrices
R;z appearing in Eq. (2.44)) is determined by the

By varying a, b, ~ ~, k we eventually obtain v linearly
independent 0. scalars of this form, say

Q C~,..., x,x,. ~ x„a=1, 2, ~ ~ ., r. (2.50)
pg ~ ~ » g

The most general o, scalar that can be constructed is
therefore
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following set of equations

E(xi' x2y xe) (xi) xmy xe) y

Cg, (xi, x2, xe)

C4,+(xi, x2, xe)

C4. (xi, x2, xe)

o,(xi,-xe, xe)

o„(xi, x2, xe)

Odu(xg) xgp xe)

0'ag(xi x2 x3)

(—xi, —xg, xe),

(—xe, xi, xe),

(xg, —xi, xe),

( —xi, x2, xe),

(xl x2 xe)

( x2) xi' xe) p

(xg, xi, xe). (2.54)

X 0 0

, 0 0 0,
As an example the reader may like to check that for

the alternative setting of the magnetic group C4„(C,„)
the magnetoelectric tensor has the form

'p, 0 0

0 —p 0

„0 0 0,
Certain property tensors in addition to their in-

variance under operations of the magnetic group M
must be symmetric or antisymmetric (for physical
reasons) under the interchange of pairs of indices.
These extra conditions can be imposed either by
operating with I' only on products which already have
the appropriate symmetry or. antisymmetry taken into
account or by imposing the appropriate conditions on
the final form of the tensor. For example, if one is
looking for an antisyrnmetric axial c tensor of rank 2
one is only allowed to operate on antisymrnetric
products of the form (x,x&—xsx,). Alternatively one
can note simply that all axial c tensors of rank 2 (see
the form of the magneto electric tensor above) are
necessarily symmetric. Either approach leads quickly
to the conclusion that there is no nonnull antisymmetric
axial c tensor of rank 2 invariant under this group.

Using formula (2.46) and the characters as obtained
from Table I and Eqs. (2.54) we find the number of
independent components to be

r = (32+ 1—2—12—12—12—12+12+ 12) = 1. (2.54)

And applying the operator (2.53) to products
x,xt, (a, b= 1, 2, 3) we find the only nonvanishing axial
c scalar to be of the form —,'(xix2+x2xi). From Eq.
(2.52) we deduce that all d.t, vanish except di2= +i =X.
The magnetoelectric tensor therefore has the form

'0 X 0
where, as in all such decompositions, the coset repre-
sentatives r, once chosen, remain 6xed. The coset
r T in the quotient group 6/T is denoted for con-
venience by n. An element Eg 6 has, according to Eq.
(3.1), a unique decomposition of the form (r t.), where
t.F T and up 6/T.

Write

and define
rar p

——raptap ~ rap T)

IQp=rp 'trp&T

(3.2)

(3 3)

Also we denote the coset representative corresponding
to the inverse of n in 6/T by r . With this -notation the
reader may verify that the following relations hold:
The law of multiplication is

(r t,) (rptg) =(r pt pLQptt, ).
The inverse of (r t,) is

(3.4)

(3.5)

And associativity implies (amongst other things)
that

"a.pv rap v (3 6)

t~p ~[t~p], =t~,p, tp7. (3.7)

3.2. Little Groups and Irreducible Representations

Before proceeding to describe how the irreducible
representations of 6 are classified it is appropriate to
de6ne what is meant by subduced and induced repre-
sentations.

Let L be a group and H a subgroup of L. If I' is a

3. MAGNETIC LITTLE GROUPS

3.1. Groups ~ith an Invariant Abelian Subgroup

We return now to the development of corepresenta-
tion theory for the case when 6 has an invariant
Abelian subgroup T. For example, 6 might be a space
group and T the subgroup of lattice translations: then
M would be a magnetic space group. Indeed we shall
apply the general theory of this section to the case of
magnetic space groups in Sec. 4. However we keep the
theory at present perfectly general so that it can be
applied to a wider class of groups. The spin-space
groups of Brinkman and Elliott20 already provide such
an example of magnetic groups of this category whose
corepresentations are needed. Since the number of
groups of interest in physics is for ever increasing it
seems likely that there will be plenty of other examples.
The motive behind the analysis of this section is to
de6ne what is meant by a magnetic little group and to
describe its significance.

Given 6 and T (an invariant Abelian subgroup of
6) we may write

(3.1)
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representation of L then the set of matrices f P(h): h E Hi
is called the representation of H sgbdgced by I'. VVe

shall denote this representation by P j.H.
Suppose further that C is a representation of H with

basis ($q, $2, ~ ~ ~, Pg i so that, for all hgH, we have
equations of the form

defined are the classes of an equivalence relation on the
irreducible representations of T. In this way every
irreducible representation of T is assigned to one and
only one star. Any unitary irreducible representation
Fp& of K~ for which

(3.13)

then, writing

(3.8)

(3.9)

(i.e., whose subduction to T yields an integral multiple
X~& of the representation F) is called a small (or allowed)
representation of Kp. Then follows the key little group
theorem: The representations induced from K~ into 6:

the d
i
L i/~ H

i
functions p.p;, i=1 to d, 0=1 to

[L [/(H ), forms a basis for a representation of L
which is called the ieduct, d representation of C in L.
We denote this representation by Ct' L. This repre-
sentation is unique in the sense that a representation
induced from C using a different choice of coset repre-
sentatives in the decomposition (3.9) turns out to be
equivalent to the one already defined; and so the
notation is unambiguous.

The upward and downward arrow notation is con-
venient and is becoming fairly standard. It was first
used to a large extent by Coleman, "who was impressed
by its use in the lectures of G. de B. Robinson. For
further information about subduced and induced
representations the reader is referred to Bradley" or to
Chap. V of the book by Lomont. "Both these references
give amplifications or proofs of the results we now
survey.

Since 6 has an invariant Abelian subgroup its
irreducible representations are most appropriately
classified within the framework of little-group theory.
To define the little group proceed as follows:

Select an irreducible representation F of T (which is,
of course, 1-dimensional, since T is Abelian) . Select the
irreducible representations F of T defined by the
equations

(3.10)

The set of all those y for which F~(l,) =F(t,), for all

t, g T, forms a subgroup of 6/T called. the little cogroup-
of F in 6 and which we denote by K~. The subgroup
Kp of 6 defined by

(3.11)

is called the little group of F in G.
If we decompose 6 in terms of its left cosets with

respect to Kp.
(3.12)

then the set of representations F„as 0 runs over the
terms in the sum (3.12), forms what is called the star
(or orbit) of F. It is easily shown that the stars so

3S A. J. Coleman, Report No. 102, Quantum Chemistry Group,
Uppsala University, Uppsala, Sweden.

(3.14)

(all allowed j for each star, and running through all
possible stars) are all of them irreducible, and further-
more all unitary irreducible representations of 6 are
obtained in this way once and once only. It is only
because the key little group theorem holds and that it
produces for us a completely unambiguous classification
of all the unitary irreducible representations of 6 that
the little group is defined as it is. In the same way later
on the magnetic little group must produce for us a
similar classification of the unitary irreducible co-
representations of M.

3.3. Character of Representations Induced from
Little Groups

Vile now enumerate some of the properties of Ap&

(see Sec. 2 of Bradley" ). Let f&' be the ch'aracter of
Fp'. Then the character ~& of A~& is, for all Rg 6,

y~ '(R) = P'P~& (r, 'Rr, ), '(3.15)

where the prime means that the sum over o- is restricted
to those 0 in the sum (3.12) for which Rr, gr,K~, that
is those 0 for which Kp =—r,Kpr, ' contains R. In
particular if R=t, g T there is no restriction on 0-, the
sum is over all 0- appropriate to the star of P and

xF&(4) = +4~&(Lt.j.) =+X~&F.(t.). (3.16)

3.4. The Relationship between Small Representations
and Projective Representations of the Little
Co-group

Finally we look for a moment at the form of the
small representations I'F&'. From Eq. (3.13) we know
that

I'p'(t, ) =F(t.) 1p', (3.17)

where 1~J is the unit matrix of dimension XF&'. This
means that we know F~&' for all elements of Kg once
I'~&'(r~) is known for all yg K~. Also since the matrices
(3.17) are diagonal it follows that the set of matrices

This is a famous result: an irreducible representation
of 6 contains one complete star an integral number of
times.
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F(t„,)F(t„)=F(t, ,,t)F(t,e). (3.20)

From Eqs. (3.18) and (3.20) it follows that the matrices
Fr'(r~), considered as functions of y, form an irreducible
projective representation of Kp with factor system Ii,
and conversely any such irreducible projective repre-
sentation can be taken over to yield a small representa-
tion of the little group Kp. The dimensions of these
projective representations j are ) p& and as Rudra'
has shown, they satisfy

Q(XE')'=
l Kt l, (3.21)

the order of the little co-group of P. The problem of
6nding all the irreducible representations of G is thus
simplified to that of 6nding all the irreducible projective
representations j of the little co-groups K& of all the
stars. Since G is usually a group of large order and the
K~ are groups of much smaller order this is indeed a
great simplification.

3.5. The Three Types of Corepresentation Classi6ed
According to the Characters of the Small
Representation

We now consider the group M, as defined by Eq.
(2.1), for the case when M has a unitary invariant
Abelian subgroup T. If we were to follow the procedure
of Sec. 2 to determine the corepresentations of M the
Grst step would be to obtain the irreducible representa-
tions 6 of G. This would be done as indicated in the
previous parts of this section. (For greater clarity we
now drop the indices j and Ii, writing b instead of
ht t, and so on. ) The next step would be to take x, the
character of 6, and to evaluate

Z x(&'):
BcAG

the result would determine, according to Eq. (2.40),
the type of corepresentation. In principle given 6
this sum could be calculated, but it turns out that this
would be a matter of doing more than is necessary.
Indeed we have seen how 5 is determined by the small
representation I' of the little group K. It would obviously
be better to simplify, if possible, the criterion (2.40)
so that it involves only the character f of F and fewer

P. Rudra, J. Math. Phys. 6, 1273 (1965).

F&&(r~), &PKt, must be irreducible. Also from Eqs.
(3.2) and (3.17) they must satisfy the relations

I't &(r,) I'pt(re) =F(t,e) I't &'(r,e). (3.18)

Furthermore, by virtue of Eq. (3.7) the complex
numbers F (t~e) satisfy the equations

F(t .. )F(L~ 3) =F(t ..)F(t. ) (3 19)

But 8& Kt so F(l te,ge) =Ft(ttt, ) =F(ttt, ) and Eq.
(3.19) becomes

of the elements of M: in other words to determine the
type of corepresentation from F rather from b,. To this
end we write

~=lGI- 2 x(~')
BcAG

=
l G

l

—' Q x(ARAR). (3.22)

I=
l
K

l

' Q' ltr(A SA S), (3.25)

in which the prime now means that the sum over S is
restricted to those S for which ASASgK.

Now, if we write
Ar =r

for all ot, it follows from Eq. (2.1) that

M=gr T+Qr;T
a a~

(3.26)

(3.27)

and further the suKces tY, p. ~ ~, ce', p' ~ ~ form a group
isomorphic with M/T. With this provision we can
extend the notation of Eqs. (3.1) to (3.7) to include
the primed sufBces. Now if AS=r t, then ASAS=
r ~ t ~ l t,7 t„so that ASASQK if a"QK. Equation
(3.25) now becomes

I= lK l

' g P lrr(r ~ t ~ Pt,j t,), (3.28)
at'~cK &acT

which, using Eq. (3.17), yields

Z ZF(t--)F(lt.j-)F(t.)4(r--)
a12cK tocT

(3.29)

Now F(l t,j ) =F (t,) and the sum over t, in Eq.
(3.29) will vanish by virtue of orthogonality relations
over T unless tY' is such that F .(t,) =LF(t,)g '. Note
that all such 0.' satisfy 0."QK: so the sum over K in
(3.29) contains no further restriction. When the sum

Using Eq. (3.15) we obtain

J=
l

G
l

' P P'P(r, 'ARARr. ), (3.23)
BcG o

where the prime means that for fixed R the sum over
0. is restricted to those 0 for which K =—r,Kr, ' contains
ARAR.

Reversing the order of summation Eq. (3.23) be-
comes

J=
l

G
l

—'Q Q' f(r, 'ARAR—r,), (3.24)
o RcG

in which the prime now means that for fixed 0 the sum
over R is restricted for those E. for which ARARgK .
Now if AS is such that ASASQK then r,ASr, '=AR
(for some RQ G) is such that ARAR =r,ASA Sr, 'g K
Furthermore, for this o, p(r, 'ARARr, ) =llr(ASAS).
This means that J splits up into

l
G l/l K

l equal parts,
one part for each 0, that is, one part for each member of
the star. Thus
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over t, does not vanish its value is ) T ~, the order of
T. Hence

(3.30)J=
~

K
)

—'QP(r '),
al

in which the sum over n' is restricted to those 0.' such
that F =F ', and

~

K
~

is the order of the little co-
group. Of course it can be that no such 0.' exist in which
case J=0 immediately from Eq. (3.29) .

To summarize: in order to determine which of the
three cases the irreducible corepresentation of M
derived from 6 belongs to, determine those coset
representatives r& in Eq. (3.27) which satisfy Fz F'——
and evaluate the sum

g 4 (rx'),

in case (b)

in case (c), (3.31)

where we include the special case that if no such E'
exist then the sum is zero.

3.0. Magnetic Little Groups and Irreducible
Co-representations

The similarity between the criteria (3.31) and (2.40)
gives us the clue to the delnition of the magnetic little
group.

We define the magnetic little co group Q t-o be the
group of all suffices y for which Ii~=F together with all
suKces E' for which I'~ ——I '. Two cases occur: either
no such E' exist at all and then Q =K; or there exist an
equal number of primed and unprimed suffices so that
K is a subgroup of Q of index 2. The magnetic little

group Q is then defined to have the same relation to Q
as K has to K: thus, if no E' exist Q =K; but, in the
alternative case when both sets of suKces appear in
equal numbers

Q= gr, T+ g r~.T.
~~K XI~Q—K

(3.32)

In the case in which the magnetic little group coincides
with the little group it has the following significance.
We are bound to be in case (c). The appropriate
corepresentation D is derived from the small representa-
tion I' by first using Eq. (3.14) to find 6, and then
Eq. (2.36) to find D. In this case there is always a
doubling of degeneracy due to the presence of anti-
unitary operators. Of course this method is open to us
in the alternative case also, where we use Eq. (2.34) to
Eq. (2.36) in the second step as appropriate. What is
interesting and important is that in this case another

where f is the character of I' in K. Then restricting the
sum to those E' the criterion for the type of corepre-
sentation is

Pf(rx') =
~
K

~
in case (a)

Z 4(«') =
Kt'cQ —K

~
K

~

in case (a)

in case (b)

in case (c). (3.34)

And this is exactly the same criterion (3.31) that
governs the type of irreducible corepresentation of M
that contains A.

It seems appropriate to call A a small corepresentation
of the magnetic little group Q. The alternative method
for determining the irreducible corepresentation of M
that contains 6 should now be clear: it cue also be
derived by inducing the small corepresentation A into M.
It may not be entirely clear what is meant by an
induced corepresentation since this is a new concept.
What it means here is as follows: we are given a co-
representation A of Q. Since M is to Q as G is to K we
can write

M =gr.Q, (3.35)

where the r, that appear in Eq. (3.35) are the same as
the r, in Eq. (3.12), and are therefore unitary. Let the
basis of h. be (n ~; then, for all qg Q,

v(~ I
= (~ I ~(v). (3.36)

Furthermore, since h. is a corepresentation, we have
from Eqs. (2.14), for ki, k2&K and ai, a2$ Q —K,

h. (ki) A. (k2) =A(kik2), (3.37a)

h. (ki) A(ai) =A(kiai), (3.37b)

h. (ai) h.*(ki) =A(aiki), (3.37c)

A. (ai) h.*(a2) =A (aia2) . (3.37d)

Define for each o in (3.35) the set of functions

(ot, f
=r, (u [. (3.38)

Then the totality of all functions that appear in these

method of obtaining the irreducible corepresentation of
M containing 6 presents itself. In order to see why note
first that Q is a magnetic group and that K is its unitary
subgroup. F is an irreducible representation of K. So
it is possible to form an irreducible corepresentation A
of Q containing I'. According to Eq. (2.40) the type of
A. depends on the sum

Z &(&')
BeQ-K

Indeed the criterion is

iP(B') =
) K

~
in case (a)

BeQ—K

in case (b)

in case (c), (3.33)

which on performing the sum over the elements of T
reduces to
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sets as 0 varies over the star of Ii forms the basis of a
vector space which is invariant under M. To see this let
m&M and suppose

case (c), the required results are obtained by inducing
them straight into M, the intermediate step to 6 being
unnecessary.

year, =r~q,

m(n, I
=mr, (a I,

where qC Q; then
(3.39) 3.7'. The Relationship between SmaH Corepresenta-

tions and Projective Corepresentations of the
Magnetic Little Go-group

=«.v(~ I

=r (~l A(V),

=(~ IA(v)

=(n
I

A.(r 'mr, ), (3.40)

in which we have used Eqs. (3.36), (3.38), and (3.39).
In keeping with Eq. (3.40) we define, for all mC M, the
block matrices

(At'M)~, (m) =A(r~ 'mr, )o~, „(3.41)

where h~, , is the unit matrix if mr, gr~Q and is the
zero matrix otherwise. (Notice the exact parallel be-
tween these equations and ideas and induced repre-
sentations as defined in Sec. 2 of Bradley. ") Note that
ns and r~ 'mr, are both of them unitary or both of them
antiunitary. Using this fact and writing H=(A. t'M)
it soon follows from Eqs. (3.37) and (3.41) that Eqs.
{2.14) holds for H for all R, SCG and for all 8,
CCM —G. This means that (A. t' M) is a corepresenta-
tion of M and is said to be iedlced from A.

We now have to establish our assertion that (A t' M)
is equivalent to the corepresentation D of M derived
from A. First we remember that 6 and F are of the
same type, that is, they lead to corepresentations of the
same type. Since A= (r t' G) it follows at once that D
and H are of the same dimension. Secondly the induc-
tion (At'M) is performed using exactly the same r,
as the induction (r f G): see Eqs. (3.12) and (3.35).
And since A. contains F it follows immediately that H
contains h. But we have proved H is a corepresentation
of M. Furthermore it contains 5 and is of the same
dimension as D, which is irreducible and which also
contains A. Since (up to equivalence) there is only one
corepresentation of M containing 6 of the same dimen-
sion as D it follows that H = (A t' M) is equivalent to D.

Not until this point in the analysis is the definition of
the magnetic little group Q really justified. But now it
is seen to be of as fundamental significance for magnetic
groups, which have an invariant Abelian subgroup of
unitary elements, as is the little group for unitary
groups with the same property. Indeed we have proved
that the irreducible corepresentations of such magnetic
groups are induced from the small corepresentations of the

magnetic little groups; and this can be made to include
the special case in which the magnetic little group Q is
nothing more than the little group K, for then Q con-
tains no antiunitary elements, the small corepresenta-
tions become small representations, and since zve are il

Finally we look at the form of the small corepresenta-
tions of Q and prove a result analogous to the fact that
the small representations of K are the irreducible pro-
jective representations of the little co-group K.

In case (a), from Eqs. {2.34) and (3.17),

A(t.) = r.(t.) =P(t.) 1.

In case (b), from Eqs. (2.35) and (3.17),

(3.42)

(3.43)

And in case (c), from Eq. (2.34), for some fixed E',

0
!

r*(r»;it.r». ))
(3.44)

A(t.) =P(t.) 1. (3.45)

Thus in all cases (A $ T) is a scalar matrix. This means
that we know A for all elements of Q once A(r~) is
known for all yCK and A(r». ) for all E'gQ —K. Also
from Eq. (3.2) and the fact that A is a corepresentation
it follows that, for 7, BQ K and E', L'Q Q —K,

A(r, ) A(r ) =F(t, ) A(r, ), (3.46a)

A(r, ) A(r». ) =F*(t,»,)A(r,».), (3.46b)

A(r». ) A*(r,) =F*(t».,) A(r».,), (3.46c)

A(r» ) A*(rr, ) =F(t» r, ) A(r» r. ) . (3.46d)

Furthermore, by virtue of Eq. (3.7), the complex
numbers Ii satisfy

F(t„., )P(t„„)=F(t„,„„)F(t„),
for all p, , vCQ and A& K, and

(3.47a)

F(t„„».)F*(t„„)=F(t„.„» )F(t,».), (3.47b)

for all p, vC Q and E'C Q —K.
Equations (3.46) and (3.47) imply that A considered

as a function on the elements of Q forms an irreducible

r*{r .-'t.r».) =P*(l t.j»,)
=P» *(t.) 1

= (F-') *(t.) 1=F(t.) 1,

where we have used the fact that, since E'CQ —K,
F» =F '. Hence in case (c) also
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projective corepresentation of Q with factor system P.
Irreducible projective corepresentations have recently
been studied by Karavaev et al, ' Kudryavtseva ' and
Murthy, "who have obtained them for certain of the
magnetic crystallographic point groups, and have out-
lined their general theory. Each such irreducible
projective corepresentation of Q can be derived from an
irreducible projective representation of the unitary sub-

group K, of character, say, P and once more there are
three cases according to the criterion (3.31). In the
present context these facts follow immediately from the
preceding theory so there is no need to pursue the
general theory here.

These are the crystallographic space groups 6 of
which there are 230. They have an invariant Abelian

subgroup T of pure translations which characterizes the
Braeais lattice of the crystal. There are 14 possible
distinct Bravais lattices. Different space groups on the
same Bravais lattice are further characterized by
having different sets of rotations, reQections, screw
axes, or glide planes which leave the given Bravais
lattice invariant. A good account of these groups and
tabulation of their elements appears in I.yubarskii. '8

Type II
These are of the form Lsee Eq. (2.2) $

M=G+eG, (4 &)

where 6 is of Type I. There are clearly 230 of these
groups and they too are based on one or other of 14
Bravais lattices.

'
¹ V. Kudryavtseva, Soviet Phys. —Solid State 7, 8Q3

(&965).
~r M. V. Murthy, J. Math. Phys. '7, 853 (1966).

4. MAGNETIC SPACE GROUPS

4.1. The General Form of Magnetic Space Groups

A good description of the general form of magnetic
space groups (or Shubnikov groups) appears in the
book by Shubnikov and Belov.4 As mentioned in Sec. 1

these groups were derived first by Zamorzaev, ' but the
independent derivation by Belov, Neronova and
Smirnova' is the one most authors usually lean upon
for their material.

Of the 1651 magnetic space groups, 230 correspond to
the classical space groups, 230 to these groups together
with time reversal and the remaining 1191 to groups in
which time reversal occurs only in combination with
other operations and not by itself. This classification
into different types of magnetic groups is explained in

general terms at the beginning of Sec. 2. However in
order to understand the general form of magnetic space
groups it is necessary to consider the classification in
rather more detail.

Type III
These are of the form

M'= G+RG (4.3)

must also be a group of Type I. Groups of this type
can be found by running through the classical space
groups M' and locating subgroups 6 of index 2. There
turn out to be 1191 which are crystallographically
distinguishable. However there is a convenient sub-
division of groups of Type III.

Type IIIa

This is when the element R in Eq. (4.3) cannot be
chosen to be a pure translation of the Bravais lattice of
M'. From Eq. (4.2) it can be seen that in this case the
Bravais lattice of M coincides with the Bravais lattice
of 6 and is therefore one of the 14 Bravais lattices
previously mentioned. Altogether there are 674 dis-
tinguishable groups of Type IIIa. They are tabulated by
Shubnikov and Belov.4

Type IIIb

This is when the element R in Eq. (4.3) can be
chosen to be a pure translation (but cannot be chosen
equal to the identity) . In this case R' must be a transla-
tion of T: so what happens in this case is that only half
the translations of M' belong to 6. T, the unitary
invariant Abelian subgroup of pure translations of 6,
still characterizes one of the 14 Bravais lattices above.
But the magnetic group M includes an equal number of
translations which are antiunitary. The group S of all
the translations, given by

8=T+ eRT, (4 4)

characterizes what is called the magnetic 8ravais
lattice. There are 22 distinct magnetic Bravais lattices
of this kind; their classification and diagrams illus-
trating their form are given by Shuvnikov and Belov.4

These authors also tabulate the 517 groups of Type
IIIb.

A very thorough account of the classi6cation of
magnetic groups is given by Opechowski and Guccione. ~

They also tabulate the magnetic space groups of Type
III. Our Type IIIa groups correspond to groups they
designate by the symbol MT. Our Type IIIb groups
they subdivide further into groups for which the anti-
unitary primitive translations never appear as non-
primitive translations associated with screw axis rota-
tions or glide plane rejections of G: these they desig-
nate by M«. The remainder they label with the

(4.2)

where 6 is of Type I and E cannot be chosen to be the
identity. In this case the group Lsee Eq. (2.3) g
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symbol MR . This further subdivision is useful if one
embarks upon performing a complete tabulation but is
not of primary significance as far as this article is con-
cerned.

4.2. Magnetic Cxystals

In this paragraph we give a brief description of the
types of structure whose symmetry groups are the
magnetic space groups of the various types described
above.

Consider first groups of Type II. In all such groups
8 itself is a symmetry operation. Since no axial c vector
can be left invariant by 8 it follows that no structure
with a symmetry group of Type II can have atoms with
localized magnetic moments. Hence groups of Type II
describe paramagnetic crystals, that is to say, crystals
without any long-range magnetic order.

As the temperature of a paramagnetic crystal is
lowered it is possible that the condition of minimum
free energy will impose some long range magnetic order.
The atoms of the crystal lock together through some
exchange eGect with their intrinsic magnetic moments
arranged. in some symmetrical way. If this magnetic
ordering persists throughout the whole crystal the
symmetry group of the structure will be a magnetic
space group of Types I or III. Since 8 is no longer an
element of the symmetry group the total symmetry of
the magnetically ordered structure is lower than before.
The transition temperature is called the Neel tempera-
ture T~. The transitions are second order and this
means that the state of the system must change con-
tinuously through T& even though the symmetry is
altered discontinuously. This fact can be used to draw
some conclusions about the compatibility of symmetries
in the magnetic and nonmagnetic states of a given
crystal; we shall return to this point again in Sec. 5.

When the magnetic order has set in there may be a
net average magnetic moment for the whole crystal.
The crystal is then ferromagnetic or ferrimagnetic. On
the other hand if there is no net average magnetic
moment the crystal is antiferromagnetic.

It turns out that antiferromagnetic spin arrangements
can persist (in theory, at any rate) in all groups of
Types I or III, but that only a limited number (275, to
be precise) can entertain ferromagnetic or ferrimagnetic
spin arrangements. In fact groups of Type IIIb must
necessarily be antiferromagnetic. In order to see this one
must remember that groups of Type IIIb have equal
numbers of unitary and antiunitary pure translations:
this means that whatever net average magnetic moment
there may be in one chemical unit cell of the crystal
is necessarily cancelled out exactly by an equal and
opposite net average magnetic moment in a chemical
unit cell separated from the first by an antiunitary pure
translation. Thus each magnetic unit cell (consisting
of two chemical unit cells) has zero net average mag-
netic moment and the whole structure is therefore
antiferromagnetic.

The excellent account by Opechowski and Guccione'
in Chap. IV of their article describes how to build
invariant spin arrangements for the various magnetic
space groups. In order to understand the limitation on
the groups of Types I and IIIa that is imposed in order
that a ferromagnetic spin arrangement can exist it is
not necessary however to use the full power of their
analysis.

Groups of Types I and IIIa have only unitary pure
translations. This means that any net average magnetic
moment that exists in one chemical unit cell of the
magnetic crystal will appear in the next cell and so on
throughout the whole crystal. It is sufhcient therefore to
concentrate on obtaining a ferromagnetic arrangement
in one unit cell. Now the total magnetic moment
within a unit cell depends only on the magnitudes and
directions of the various component magnetic moments
that combine together to form the total magnetic
moment and not on the precise spatial positions of the
atoms carrying the magnetic moments. What this
means is that the total magnetic moment within a unit
cell transforms under a magnetic space group operation
only under the magnetic point group part of the opera-
tion: for the question at hand all translational parts of
the operations (both primitive and nonprimitive) can
be suppressed. Hence the question of whether a ferro-
magnetic spin arrangement exists reduces to the
question of whether an axial c vector can be left in-
variant under all the operations of a given magnetic
point group. For groups of Type I the relevant point
groups are the 32 crystallographic point groups, and for
groups of Type IIIa they are the 58 magnetic crys-
tallographic point groups. The question of whether
such an axial c vector can exist in these point groups can
be answered by employing the analysis in the last
paragraph of Sec. 2. The answer is that 31 of the 90
groups can exhibit a nonvanishing axial c vector. They
are listed, for example, by Tavger and Zaitzev. ~ Also
the 275 magnetic space groups based on these point
groups are listed by Opechowski and Guccione. ~

Certain further points of physical significance ought
to be noted. First of all these 275 magnetic space
groups are not necessarily ferromagnetic. They can, for
example, carry two or more interlocking ferromagnetic
spin arrangements in diGerent directions. If their
separate moments cancel out the resulting structure is
antiferromagnetic. If their separate moments only
partially cancel the resulting structure is ferrimagnetic.
Secondly it is notable that no cubic point group can be
ferromagnetic. This means that if a cubic paramagnetic
crystal becomes ferromagnetic at low temperatures it
must get slightly distorted and lose its cubic structure
at the transition point.

Finally we mentioned some of the experimental work
that has gone into determining magnetic structures.
This work was initiated by Donnay et e/,.' who used
magnetic space groups to characterize invariant spin
arrangements as obtained. from neutron diGraction
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experiments. Corliss and Hastings" list all the available
data up to 1963 that has been obtained from such neu-
tron diGraction experiments. Other methods can also be
used to study invariant spin arrangements, for example,
Rudel and Spence, 4' who obtain data from the orienta-
tion dependence of nuclear magnetic resonance spectra.

F~({F
~
t})= exp (—zk t).

Now the conjugate of f E ~
t} by f R ~

v } is

(4 6)

{R,[ v }
—'{E

[ t}{R (
v }={F.

~

R —'t}, (4.'7)

so from Eq. (3.10)

FP ({F.
~ t})=F~({E

~
R 't})

= exp ( —zk R 't)

=exp( —iRk t)

=F'-"(f&
I t}) (4.g)

The little cogroup of F"now denoted by G" is therefore
to be thought of as consisting of all those point group
operations R~ such that F~~ =F", that is, which satisfy

R,k=k+g, (49)

where exp (—ig t) =1 for all t. Such vectors g are

4s L. M. Corliss and J. M. Hastings, Anzerican Institute of
Physics Handbook, D. E. Gray, Ed. (McGraw-Hill Book Co.,
New York, 1963), Table Sg-22.

'3 E. P. Rudel and R. D. Spence, Physica 26, 1174 (1960).
4' F. Seitz, Ann. Math. 37, 17 (1936).

4.3. The Corepresentations of Magnetic Space
Groups

We now interpret the theory given in Sec. 3 for the
case in which M is a magnetic space group. G is then
one of the 230 crystallographic space groups of Type I
and T is the subgroup of lattice translations of G. The
theory in Sec. 3 is appropriate because T is a unitary
Abelian invariant subgroup of M. To save trouble with
notation we use the same conventions as Bradley, "
which in turn are in keeping with those first introduced
by Seitz.44 Elements of T are written in the form
{E

~
t}, where t is a lattice translation. An element

r Q G is of the form f R
~

v },where R is a point group
operation. An element r g M —6 is of the form
8{8

~
w },where 8 is the time-reversal operator and

S ~ is a point group operation; v and w„. are either zero
or nonprimitive translations. From Eq. (3.26) it will

be seen that we are writing

A f R. t v.} = 8 f S.
i
w. }, (4.5)

where A is defined by Eq. (2.1). This very general
nomenclature permits us to deal simultaneously with
all types of magnetic space groups; that is, no distinc-
tions need to be drawn between Types II, IIIa, and
IIIb groups.

Each irreducible representation F~ of T is labeled
with a vector k from the first Brillouin zone and is
such that

called reciprocal 1attice vectors and vectors of the form

(k+g) are said to be equiztaletzt to k. The condition
(4.9) is therefore that R,k should be equivalent to k.
The little group of F" in 6, often called the group of k
and now denoted by G" can then be written as

G'= Z {R,I;}T (4»)
ByeG&

If we decompose 6 with respect to 6":
G =g f R,

~
v.}G" (4 11)

then it follows immediately that the set of representa-
tions F~r" forms the star of F". Geometrically one may
interpret the star as consisting of all vectors E,k
appropriate to this decomposition. The irreducible
representations of 6 now follow immediately from the
theory in paragraphs 2, 3, and 4 of Sec. 3. These repre-
sentations are given for all the 230 space groups by
Kovalyev. 45 The more familiar structures are analysed
in the classic papers by Bouckaert, Smoluchowski and
Wigner, 4' and Herring. 4~ More recently very com-
prehensive accounts have been given by Koster" and
Slater."

We proceed now to the definition of the magnetic
little group. Since 8 commutes with all space group
operations the conjugate of f 8 ~

t} by 8 f S ~
~

w .} is

{F.
~

S 't}. Hence it follows, exactly as with Eq.
(4.8), that

F-'(f~ I t})=F'"(f&
I t}) (412)

In order that S should belong to the magnetic little
co-group M~ it is necessary for this to be equal to
(F") '=F ". Hence in addition to the Rv&G" the
magnetic little co-group consists of all S~ such that
Sz k is equivalent to —k. If no such Sz' exist then
M~=6". Finally the magnetic little group M" can be
written as

I"= g {R,~
v, }T+ g 8{Stan. ~

wtr, }T.
ByeO~ S~t'eMk —0&

(4.13)

The irreducible corepresentations of M now follow
immediately from the theory in paragraphs 5, 6, and 7

of Sec. 3. No systematic tabulation of all the various

types of irreducible corepresentations has yet been
made for all the magnetic space groups. This task
rests entirely on the relatively easy classification into
type of the irreducible projective corepresentations of
the magnetic point groups.

In connection with the magnetic little group we make
some comments about an equation which is often

4'O. V. Kovalyev, Irreducible Representations of the Space
Groups (University of Kiev, 1961, and Gordon and Breach Science
Publishers, Inc. , New York, 1965)."L. P. Bouckaert, R. Smoluchowski, and E. signer, Phys.
Rev. 50, 58, (1936).

C. Herring, J. Franklin Inst. 233, 525 (1942)."J. C. Slater, Qz~antgm Theory of Moleclles and Solids,
(McGraw-Hill Book Co., New York, 1965), Vol. 2.
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8 ' exp (zk r) 8= exp (—zk r), (4.15)

that is, 6 transforms a wave function of quasi-momen-
tum Sk into a wave function of quasi-momentum
—hk. The meaning is connected with the physical
interpretation of haik as a quasi-momentum rather than
the geometrical interpretation of k as a reciprocal
length. Any argument about corepresentation theory
which used Eq. (4.14) as a basic postulate and which
went on to use it geometrically would be at best a
plausibility argument and could conceivably be wrong
altogether. (As mentioned in the Introduction this did
happen in one case.)

Finally, if FP is a small representation of G~ with
character fP and bP is the irreducible representation
of 6 induced from F„~ then the corepresentation of M
derived from A„~ has a type which depends on the
following criterion:

g f„"({Srr.I w~. }')= co
I
K

I
in case (a)

in case (b)

in case (c),
(4.16)

where co is defined by Eq. (2.42), and
I
K

I
is the order

of G", and in which the sum over S~ is restricted to
those point group operations S~ in the set (M~—G")
for which S~. is restricted to those point group opera-
tions S~ in the set (M~—G~) for which Szr. k is
equivalent to —k, and where for purposes of evaluation
one chooses for each Sz azzy one clem. ent {S& I wz }
such that 8{Sr'. I w~ }gM. This agrees, of course,
with the formulas of Dimmock and Wheeler "—'~

And for the case of Type II groups it reduces to the
criterion given by Herring' for time-reversal degen-
eracies in paramagnetic space-group structures. To
conclude it should perhaps be remarked as a warning
that if one works with the magnetic little co-group M~
the operators E~P G" must be taken as unitary and the
operators S~ Q (M —G") must be taken as anti-
unitary. (Alternatively one could maintain the unitarity
of S~ and write 6S~. for S~ in the magnetic little
co-group. )

C. Herrjng, Phys. Rev. 52, 361 (1937).

written down in the literature without explanation.
This is the equation

(4.14)

This equation is rzot an analog of Eq. (4.9) be-
cause 8 '{E

I t}8= {EI t} and hence Fe"({EI t})=
F"(8 '{E t}8) =F~({E

I t}) and not F "({E
I t})

as Eq. (4.14) might lead us to suppose if it was an
analogue of Eq. (4.9). This does not imply that Eq.
(4.14) has no meaning: what it does mean is that, for
example,

gzggg (5.2)

are supposed known. Writing f' for the character of
6' the well-known formula for C;;,I, is

C,;,,= I
G I-r Z 0'(Z)4 (Z)4"(Z). (5.3)

A detailed analysis of how to obtain C;;& from this
formula in the case in which G is a crystallographic
space group is given by Bradley. "Other treatments are
given by Elliott and I.oudon, " I.ax and Hopheld, "

~ R. J. Klliott and R. Loudon, J. Phys. Chem. Solids 15, 146
(1960).I M. Lax and J. Hopheld, Phys. Rev. 124, 115 (1961).

4.4. Physical Apylications

The fundamental ideas which relate the theory of
energy spectra with corepresentations have already
been dealt with at some length in paragraph 5 of Sec. 2,
and need not be repeated here. The theory in the last
paragraph extends those ideas to cover quantum
systems involving magnetic space groups, in particular
the classification of electron states in magnetic crystals.

The prime example is the sticking together of electron
energy bands in paramagnetic crystals due to time-
reversal being an allowed symmetry operation for Type
II groups. This work due to Herring" is generalized to
cover degeneracies induced by antiunitary operators in
Type III groups and appears in some length in the
papers of Kudryartseva and his co-authors. "'6 An
instructive artiicial example is given by Dimmock and
Wheeler" who consider the transition between a
paramagnetic and an antiferromagnetic (or ferro-
magnetic) Kronig —Penney model. In this case the
translational symmetry is reduced at the transition
and this has the effect of producing discontinuities in
the magnetic bands which do not appear in the para-
magnetic bands.

Other types of quantum spectra are also influenced by
magnetic symmetry. A case which has received atten-
tion lately is the spin-wave spectrum. For this subject
the reader is referred to the interesting papers by
Brinkman and Elliott '0

5. KRONECKER PRODUCTS OF
COREPRESEHTATIONS

The next problem is the definition and reduction of
the inner Kronecker product of any two irreducible
corepresentations of M, In keeping with the notation of
Sec. 2 we shall write 6' for an irreducible representation
of the unitary subgroup 6 and for notational con-
venience later we define

(E) = 5'(R) =6'e(A 'RA). (5.1)

We denote by D' the irreducible corepresentation of M
derived from 6'.

We assume the decomposition of Inner Kronecker
products within the unitary subgroup are known, That
is to say, the Clebsch —Gordan coeKcients C;;,I, in the
reduction
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Lax," and Birman. " Tables of the reduction coeffi-
cients C;;,& appear so far for very few space groups
because of the tediousness of their calculation. Birman"
does however include tables for the Diamond and
Zinc-Slende structures. The lack of such tables severely
limits the practical application that can at present be
made of the work in this Section.

Berne now, for all m&M, and for any two irreducible
corepresentations D' and D& the matrix D'& whose
elements are

D"(m) „,,„=D'(m) ~D&(m) „(5.4)

so that D'& is the Kronecker product of the matrices
D' and D&:

D"(m) =D*'(nz) g D'(m). (5.5)

Then it is soon veri6ed that D'&' is a corepresentation of
M. That is to say, D'~ satisfied equations of the form
(2.14) .

We know from Sec. 2 that a corepresentation is
uniquely determined (up to equivalence) by the char-

acters of the elements of the unitary subgroup. Writing
x' for the character of D' (when restricted to G), then
from Eq. (5.4) we obtain, for all RQ G,

x"(&)=x'(~) x'(~) (5.6)

and these values characterize completely the corepre-
sentation D'~; In general the corepresentative D'~ will

be reducible under M. Suppose therefore

D'& =D*sD& =Qd;;,»D». (5.7)

The sum over k in Eq. (5.2) will be over all superfixes
both primed and unprimed, whereas the sum over k in

Eq. (5.7) is restricted to unprimed superfixes. Our
problem is to determine the coeKcients d;;,~. The erst
step is to relate d;;,~ to the characters x', x& and y~ of
the unitary subgroup. This comes as a very simple
generalization of Eq. (5.3) (bearing in mind that D»

is possibly reducible under G), and the formula (see
also Karavaevm) is

d„..= I
G I-' 2 x'(~) x (~)x *(~)/I G I-' Z x"(~)"*(~)

ReG
(5.8)

x'(~) =4'(&)

=2+(R)

in case (a)

in case (b)

=f»(E) +P'(R) in case (c) . (5.9)

Thus using the orthogonality relations for characters,

~
G

~

' + x»(R) x»e(R) =1 in case (a)

in case (b)

in case (c). (5.10)

The second step is to convert formula (5.8) into a
relationship between d;, „and the C;;» of Eq. (5.2).
Since the C,; » are known (at any rate in principle) the
problem is then solved for all magnetic groups. A
laborious evaluation of the numerator of Eq. (5.8) for
each particular case is then unnecessary. In particular,
for magnetic space groups, the rather involved method
of Karavaev2~ is unnecessary provided the values for
C;;,I, are erst derived using the formulas of Bradley. "

~~ M. Lax, Phys. Rev. 138, A793 (1965).
's J. L. Birnran, Phys. Rev. 127, 1093 i1962).

Next we assert that if D'is of type (a), (b), or (c) then
the denominator of Eq. (5.8) is 1, 4, or 2, respectively.
This follows from Eqs. (2.34) to (2.36), and is a conse-
quence of the fact that D" contains in case (a) just one
irreducible representation of G, in case (b) one irre-
ducible representation twice, and in case (c) two
inequivalent irreducible representations once. Indeed

There are, taking account of the relation

(5.11)

eighteen diGerent cases to consider according to whether
O', O', D' are of types (a), (b), (c). The formulas are
quite straightforward to establish: one has to substitute
Eqs. (5.9) and (5.10) into (5.8) and to simplify the
result using Eq. (5.3). It is also necessary to use the
fact that if D" is of type (c) then a corepresentation
D'& containing A~ contains A~' an equal number of
times. The values of the d,, ~ are given in Table V.

As an example of the use of Table V let us consider
the group C4, (C,„) in terms of its unitary subgroup
C2, . To make the notation coincide with that of this
Section denote the representations A1, A2, 81, and 82
of Cs„(see Table II) by 6&, 6s, 6s, and 5s., respectively,
and the corepresentations D(Ar), D(As), and D(B) of
C4„(C&„) (see Table III) by D&, Ds, and Ds, respec-
tively.

We assume the Clebsch —Gordan coeKcients for the
Kronecker products of C2„are known. These are

~11,1 ~12,2 C13,3 C13',3' C22, 1 C23,3

=Css, s =Css, r ——Css, s =Cs s,r = 1, (5.12)

and all other C;;,& not derived from these by the
relation

(5.13)
are zero.

Remembering hr and ds are of type (a) and b,s is of

type (c) (see paragraph 5 of Sec. 2) we use appropriate




