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Proofs that closed-shell molecules must be diamagnetic are shown to be restricted to two-electron systems. An exact
nonrelativistic ground-state wave function having four or more electrons is shown to possess a nodal structure which
arises from the Pauli principle. These nodes cause the proofs that a closed-shell molecular wave function is necessarily
diamagnetic to be invalid when more than one pair of electrons is present. The physical situation is examined with special

reference to the diatomic BH molecule.

I. INTRODUCTION

Practically everyone knows that most closed-shell
molecules are diamagnetic. Both electron spin and
electron orbital angular momenta are oppositely paired,
so that no permanent moment remains for alignment
by an external magnetic field.! The field must create a
moment due to electronic currents, induced according
to Larmor’s theorem (or Lenz’s law), in a direction
which produces a force opposing introduction of the
molecule into the magnetic field.? These effects are
temperature-independent, and some orders of magni-
tude smaller than the temperature-dependent paramag-
netic effects when a permanent magnetic moment is
present. While this relatively small diamagnetic effect
dominates the magnetic susceptibilities of most closed-
shell species, careful measurements have yielded evi-
dence in some complex salts? for the existence of a weak
temperature-independent paramagnetism.

Van Vleck!# developed a perturbation theory for the
molar susceptibility x of an N-electron molecule in its
nth electronic state with energy E,. His result is
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where N, is Avogadro’s number, u is the permanent

1J. H. Van Vleck, The Theory of Electric and Magneiic Sus-
ceptibilities (Oxford University Press, London, 1932).

2 It should be recalled that if there is more than one nucleus
Larmor’s theorem does not strictly apply. However, it is common
to speak of a “diamagnetic circulation hindered by the bonds”
when considering the electronic currents induced in a molecule.
See also Ref. 1, p. 90.

3 (a) T. Ishiwara, Sci. Rept. Tohoku Univ. 3, 303 (1914);
(b) E. Rosenbloom, Z. Phys. Chem. 93, 693 (1919) (c) P. Wein
and P. Collet, Compt. Rend. 178, 2146 (1924), 181, 1051 (1925);
182, 105 (1926); (d) S. Berkman and H. Zocher, Z. Phys. Chem.
124, 318 (1926); (e) R. Ladenburg, Z. Phys. Chem. 126, 133
(1927); (f) S. Freed and C. Kasper, J. Am. Chem. Soc. 52, 4671
(1930) (g) W. Gray and J. Dakers, Phil. Mag. 11, 297 (1931);

(h) W. R. Angus, Proc. Roy. Soc. (London) A136, 579 (1932);
(i) P. Henkel and W. Klemm, Z. Anorg. Chem. 222, 71 (1935);
(j) D. P. Raychandhuri and P. N. Sengupta, Ind1an J. Phys.
10, 245 (1936); (k) See also J. S. Griffith, The Theory of Transi-
tton—M etal Tons (Cambridge University Press, New York, 1961),
p. 278ﬁ for an approximate theoretical treatment.

4J. H. Van Vleck, Phys. Rev. 29, 727 (1927); 30, 31 (1927);
31, 587 (1928).

molecular magnetic dipole moment, and mS=
—(e/2me) (Li+-2S;) is the instantaneous magnetic
dipole moment of the ith electron at r; possessing
orbital angular momentum L; and spin angular momen-
tum S; in the absence of a magnetic field. We shall not
consider open-shell systems which require the first
term, describing temperature-dependent paramag-
netism; this first term, when present, is a few orders of
magnitude larger than the other terms. For a closed-
shell molecule’ (u=0) in its ground electronic state
(n=0), the second term is positive representing the
temperature-independent paramagnetic susceptibility
x®, and the third term is negative representing the
diamagnetic susceptibility x@. Thus the unusual
examples® of temperature-independent paramagnetism
arise when |x® | > | x@ |. Theoretical support for
these unusual experimental examples is lacking, be-
cause Eq. (1) requires wave functions for all electronic
states, including the continuum, for these complexes.®
Recently, Guy, Tillieu, and Baudet’ have presented
a proof that x® cannot be larger in absolute magnitude
than x@ for closed-shell molecular systems, and hence
that these systems are mecessarily diamagnetic. This
proof, discussed below, is based upon Van Vleck’s
theory and the variation principle. These investigators
then conclude that the explanation of temperature-
independent paramagnetism is to be sought elsewhere.
Rebane?® gave a similar proof in a one-electron treat-
ment, in which the perturbing operators were expressed
as functions of the magnetic vector potential, and a
gauge more flexible than that used by Van Vleck was
chosen. Rebane did find a gauge transformation® which
caused x® to vanish, thus demonstrating that the total
susceptibility is diamagnetic, but he pointed out that
his proof failed if the one-electron function had nodal
surfaces. Thus, he concluded® that his results applied

5 Nuclear spins and molecular rotation also make small contribu-
tions to the susceptibility, but these effects are neglected here. See
Ref. 1, p. 259 and Footnote 34 on p. 277.

¢ More recently a semi-empirical calculation of the susceptibility
of the paramagnetic closed-shell ion MnO,~ has been attempted
on the basis of Van Vleck’s formula. See A. Carrington, Mol. Phys.
3, 271 (1960).
7J. Guy, J. Tillieu, and J. Baudet, Compt. Rend. 246, 574
(1958); J. Tillieu, Ann. Phys. (Paris) Z 471 (1957).

8T. K Rebane, Zh. Eksperim. i Teor Fiz. 38, 963 (1960)
[Enghsh transl.: Soviet Phys.—JETP 11, 694 (1960)].

. Hameka, Advanced Quantum Chemistry (Addison-
Wesley Publ. Co., Inc. , Reading, Mass., 1965), Chap. 9.
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only to the ground state. This point has been discussed
briefly by other authors.?

Confusion still exists,! therefore, as to whether or
not theory permits a closed-shell molecule to be para-
magnetic. One facet of this problem is the interpretation
of molecular rotational magnetic moments g in terms
of electron “slippage.” For rigid body (RB) rotation
(no electron slippage) of a diatomic molecule about an
axis A, there is a nuclear contribution Ny and an elec-
tronic contribution® to the rotational g factor,

HFB=N+Kyxon?, (2)

where K, is a constant for the molecule. On the other
hand, if perturbations to the rigid body rotation are
included, the relation to susceptibility is

(3

The usual interpretation when ga> g\BB is that electron
slippage has reduced the electronic contribution from
the rigid body value, thus resulting in a more positive g
value.”® Now, if a closed-shell molecule could be para-
magnetic we would have gx<g\RB. Shall we call this
effect “anti-slippage”’? At least, the meaning of this
concept needs to be clarified. At most, the possible
presence of weak temperature-independent paramag-
netism would lead us to suspect the interpretation of
the slippage concept.

Accordingly, we felt that the theoretical possibility
of temperature-independent paramagnetism in closed-
shell molecules should be reinvestigated. In Sec. II,
Rebane’s formulation is generalized to N-electron
wavefunctions for closed-shell systems, and the results
are then related to ordinary perturbation theory. In
this section, as well as in Sec. III, where relations are
developed between the approaches of Rebane and of
Guy et al., we see that the proofs of the relation x<0
for the N-electron case are not valid if the wave func-
tion has nodal surfaces. This is a generalization from
the one-electron systems considered by Rebane. In
Sec. IV we show that the Pauli principle introduces
nodal surfaces into a ground state N-electron wave
function when N>2, and hence it is %ot impossible for
a closed-shell molecule having four or more electrons
to be paramagnetic. Finally, the interpretation of this
net paramagnetism is discussed in Sec. V.

II. REBANE APPROACH WITH MANY-ELECTRON
WAVE FUNCTIONS

In a manner parallel to Rebane’s treatment of a single
electron,? one may express the energy change due to a

10 A, D. McLachlan and M. R. Baker, Mol. Phys. 4, 255 (1961).
See also Ref. 24, below.

1 Compare Refs. 7-10 for example, and see also A. D. McLean
and M. Yoshimine, J. Chem. Phys. 45, 3676 (1966).

12 G, C. Wick, Z. Physik 85, 25 (1933).

18 G, C. Wick, Nuovo Cimento 10, 118 (1933).

147, R. Eshback and M. W. P. Strandberg, Phys. Rev. 85, 24
(1952) ; W. Weltner, J. Chem. Phys. 28, 477 (1958).

15 Tt i1s commonly assumed that slippage occurs to some degree
in all rotating molecules. See, e.g., Ref. 11.

H=N—EKnna®.
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uniform magnetic field H of arbitrary (fixed) direction
with respect to a closed-shell N-electron molecule in its
ground state ¥,

AE= -2 > il
= , V4 A 2 ¥,) — —— n -1
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where

Ar=Apu+Vif(1---N) (5)

is the vector potential for the kth electron, V;, xA,=H,
Vi*Ay,=0, and f(1--+N) is an arbitrary scalar function
of the space and spin coordinates of the NV electrons.
The eigenfunctions ¥, are solutions of 3C¥, = E, ¥, for
3Cp, the Hamiltonian for the field-absent case. The
susceptibility is found by employing the relation

AE=—xH2/2N,. (6)

Although AE is invariant with respect to the choice for
f, each termin (4) depends upon this choice. In particu-
lar if f satisfies the equation

N N N
% kz: Vk2f+ kE Vlcf‘ Vk\I’0+ Z Ao/,' V}c‘I’o=0 (7)
=1 =1 k=1

the second term in (4) vanishes and the energy change
becomes

AE= 5 (W] 3 (At wif)? | ),
2 N
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e N
=5 (ol 1; (4> =Vif-Vif) [ W),  (8)

where the last two lines of (8) were obtained after
multiplying (7) by f¥, and integrating. The first line of
(8) shows that the molecule must be diamagnetic if a
solution to (7) exists. Following Rebane, we may ex-
press this solution!®

2 N
f(1e-N)= f—n Z (En—Eo)71 (¥ | I;Aok‘vk | o)

770
X[Wu(1e++N) /Ho(1---N) ] (9)

However, we see immediately that f becomes infinite in
regions where ¥, possesses nodal surfaces not identical
to those of ¥, resulting in the possible divergence of
integrals in (8). As Rebane has pointed out® the
existence of these integrals is essential to the proof of

18 We have chosen to obtain f(1--+XN) as a function of the spin
variables as well as of the spatial coordinates. Alternately, one
could sum over the spin variables in (4) before obtaining the
equation corresponding to (7).
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the inequality AE>0. The problem thus becomes one
of examining the nodal structure of the solutions of the
N-particle Schrodinger equation for the molecule in
the absence of the field. We return to this problem in
Sec. IV.

Let us now examine the relationship of this gauge
transformation theory to ordinary perturbation theory.
In the latter method, we find for the second-order
energy

AE= (T | 3¢ | %) + (¥ | 3@ | T®) | (10)
where
e N
3@(2) = Z A0k2;
2me? 1 o
7 X
0= =3 Ay Vi, (11)
Me =1
and where ¥® is the solution of the equation
T = — (3Cy— FEy) 713COF,, (12)

Note that here we restrict the vector potential to the
Coulomb gauge. By expanding ¥ in solutions of the
zeroth-order Schrédinger equation

VYO =5, (13)

we obtain the usual equations for 4,
eh? N
bo=— —— (Ea—E0) ™ (Va| 2 Aqis Vi | W), (14)
ichm k=1

By comparison with (9) and (13) we see that the two
methods are related through the expression

YO = (ie/hc) ¥, (15)

and that f will have singularities if ¥, possesses nodes
which are moved by the operator 3C®. A similar be-
havior in the case of one-electron functions was noted
by investigators concerned with perturbations to
molecular orbitals.”?

III. VARIATION METHOD

The x<0 proof of Guy, Tilleu, and Baudet’ (GTB)
rests upon the ability to reduce to a special simple form
the variationally minimized expression for

E=(¥|¥) (¥ |3c|¥), (16)
where
W =[14(eH/2ific) Gu ¥
JC =3C0+3C1; 3€0‘I’0 = Eo‘I’()
eH & e2H? X
3= — 2 Lt —— 2—u?), 17
JC1 2mck§1 k+8mc21§(rk ?) 17)

17 See Ref. 10; also M. Karplus and H. J. Kolker, J. Chem. Phys.
38, 1263 (1963); M. Karplus and R. G. Parr, ibid. 38, 1547
(1963) ; H. J. Kolker and M. Karplus, ibid. 41, 1259 (1964).

for a uniform magnetic field H=Hu (u=x, y, or 2)
and for Ly, the # component of orbital angular momen-
tum of electron % with spatial coordinate #,. After sub-
stituting (17) into (16) and varying the function G, to
minimize E, one obtains the following equation for G,:

N N
()W D Vi2Gutili D, ViGor Vil O Lialo=0

k=1 k=1 %
(18)
which may easily be shown to be identical to (7) after

recalling Ly, = (27,/iH) Ao+ V. thus relating this method
to the Rebane method through the equation!8

f=—(H/2)G.. (19)
Using (18), one obtains finally
e2 2 N
E= E0+ St I; (‘I’o I (7'k2_uk2) —zaGu/6¢k1t
+ViGu ViGu | %) (20)
or
e?H2 N
E=FE+ Z (Yo | (2—m2) — ViGu+ VG | ¥g),
8mc® 1o
(21)

with 8/0¢ku= (i/%) Lyu. After comparison with (8) we
see that the proof of GTB must be subject to the same
limitations as that of Rebane, namely, the proof is not
valid if ¥, possesses nodal surfaces, a problem which
we now consider.

IV. NODAL STRUCTURE OF,GROUND-STATE
ELECTRONIC WAVE FUNCTIONS

It has been pointed out previously that it is possible
for a wave function corresponding to the stationary
state of lowest energy of a system of several identical
particles to possess nodes.!® Indeed it is obvious that if
two electrons have the same spin coordinate (41 or
—3) then because of the Pauli exclusion principle the
spacial-coordinate part of the wave function must
change sign upon an interchange of coordinates of the
two electrons and vanish when these coordinates
coincide. In addition to these “Fermi holes” there may
be additional nodal structure, and it is this latter type
of node we wish to investigate in more detail, since we
see upon examining (9) that the existence of Fermi
holes is not sufficient to cause the integrals in (8), (20),
or (21) to diverge.

If we do not insist on the Pauli principle then it can
be shown that the ground-state solution® ¢® of the

18 See also S. I. Chan and T. P. Das, J. Chem. Phys. 37, 1527
(1‘9’682e)é, for example, L. D. Landau and E. M. Lifshitz, Quantum
Mechanics, Non-Relativistic Theory (Addison-Wesley Publ. Co.,
Inc., Reading, Mass., 1958).

20 Superscripts are used here to label energy eigenvalues, and

are not to be confused with the superscripts of perturbation
theory employed in earlier sections.
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nonrelativistic Schrodinger equation

3 (r)y(r) = Ey(r)

is nodeless,? nondegenerate,? and for a symmetric
Hamiltonian is completely symmetric® with respect to
an interchange of the spatial coordinates (r)=
(11, Iy, +++, Ty) of any two electrons. In addition, since
[3¢, P]=0 for all permutations P of the N particles,
every solution of (22) must belong to an irreducible
representation of the permutation group Sy. We may
thus label these solutions according to their permuta-
tional symmetry: for ¢® a solution of (22),

Hogn® = Eghy®  m=1, eeo f*

k

PY®= Y Y ®T®(P),,

m=1

(22)

(23)

The eigenfunction corresponding to the lowest eigen-
value F; of (22) is nodeless and belongs to the one-
dimensional totally symmetric representation of 8y:

Py =y (24)

for all P belonging to Sy. All other eigenfunctions are
orthogonal to ¥ and thus possess nodes.

Now the total, physically acceptable eigenfunctions
of 3¢, which we denote by ¥,z (1, 6), must be totally
antisymmetric upon a simultaneous permutation of
space and spin coordinates:

PrP% sy, 5, =¥ su,5,, (25)

where Pr, P are, respectively, permutation operators
acting on space and spin coordinates alone, and e,

2 R. Courant and D. Hilbert, Methods of Mathematical Physics
(Interscience Publishers, Inc., New York, 1953), Vol. 1, p. 452.
See also B. W. Downs, Am. J. Phys. 31, 277 (1963); T. Kato,
Trans. Am. Math. Soc. 70, 195 (1951); and E. C. Kemble, T%e
Fundamental Principles of Quantum Mechanics (Dover Publica-
tions, Inc., New York, 1958), pp. 195-197, 215-217. Although
the node theorem proved by Courant and Hilbert holds for any
number of independent variables, there is some question as to
whether it holds rigorously for unbounded potentials, i.e., the
Coulomb interaction. Here we have essentially assumed, along
with other authors,!? that it does. It is evident, however, that our
proof does not depend critically upon the statement that the
lowest eigenfunction ¥ is nodeless; for if y® did indeed possess
nodes, then these nodes would also be present in the physically
acceptable state formed from y®. The cardinal statement is that
a physically acceptable eigenfunction Wgpr,z,(r, ) cannot be
formed from a nodeless ¢® (r) for N> 2.

2If there existed two or more linearly independent eigen-
functions corresponding to the lowest eigenvalue, a linear combina-
tion of these functions could be chosen such that the resulting
function was an elgenfunctlon still belonging to the lowest eigen-
value, but possessing nodes.

2 Since JC is symmetric, it commutes with any permutation P
of the electrons, i.e., [3¢, P]=0. Hence an eigenfunction, upon a
permutation of its coordinates, remains an eigenfunction of 3C
with the same eigenvalue. If the first eigenfunction y® were
antisymmetric with respect to the interchange of the coordinates
of any two electrons, however, this function would have a node
wherever these coordinates coincided.
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denotes the parity of P:
€= + 1’

P even
P odd.

Furthermore, since the Hamiltonian 3C is not a function
of the spin coordinates, and since the solutions of (22)
transform according to (23) upon a perturbation P of
the spatial coordinate, an acceptable physical state will
be of the form

fk

‘I,SMch(ry d) = Z ‘Pn(k) (l') eSM,n( d)

n=l
where the Ogu,. are a set of spin eigenfunctions be-
longing to the irreducible representation associated
with the ¢,®:

S*0sum=S(S+1)Osar,s,
S:O0sm =M Osn,n,

j‘k

2 &OsumI'® (P) s

m=1

POgy = (26)

For the lowest eigenfunction @, this implies that we
must construct a set of spin functions that belong to the
totally antisymmetric representation of 8§y:

POsia(8) =€¢0sm,1(8).

But for N> 2, this cannot be done since the spin vari-
ables ¢ can assume only two possible discrete values.
Thus ¥®, which is the only eigenfunction which is
nodeless, must be rejected for N>2. Hence each
acceptable eigenfunction, including that for the ground
state which we have denoted ¥,, must have in addition
to the Fermi holes the nodal structure of one of the
higher eigenfunctions of (22).

V. DISCUSSION

We now see that the demonstrations that molecules
are diamagnetic are valid only for molecules with less
than three electrons. It is therefore reasonable to expect
that the Van Vleck theory of magnetic susceptibilities
can be employed to provide a basis for a theory of tem-
perature-independent paramagnetism. The physical
explanation for this effect in this theory is the un-
quenching of electronic orbital angular momentum in
the molecule.*% Consider, for example, the formation
of a closed-shell diatomic molecule from two atoms each
having a net spin and orbital angular momentum. As
the atoms approach one another to form the molecule in
its 12 ground state (1) the electron spins become
oppositely paired, (2) an additional orbital angular
momentum is created due to exchange effects between

2 Reference 1, pp. 276-279.
% C.P. Shchter, Principles of Magnetic Resonance (Harper and
Row, New York, 1963), Chap. 4



358 REvVIEWS oF MoDpERN Prysics - Aprir 1968

the two atoms, (3) the electronic orbital angular
momenta quantize appropriate to the molecular
symmetry (A=0), and (4) the net orbital angular
momentum perpendicular to the internuclear axis is
quenched due to torques arising from the nonspherical
nature of the molecular potential. This quenching is
such that the average value of the total orbital angular
momentum squared is nonvanishing although the
expectation value of any component is zero. The total
angular momentum of the free molecule is necessarily
constant, but there are fluctuations between the elec-
tronic orbital angular momentum perpendicular to the
internuclear axis and the angular momentum due to the
molecular rotation.

When a uniform magnetic field is applied, there is a
tendency for the field to align the net orbital angular
momentum which is thus partially unquenched. The
result is a paramagnetic contribution to the suscepti-
bility. This partial unquenching is of such a nature that
the average value of the component of orbital angular
momentum in the direction of the field is no longer zero.
Superimposed upon this unquenched orbital angular
momentum 1is, of course, the usual Larmor precession
which opposes it and which gives a diamagnetic effect.
Whether a molecule is diamagnetic or paramagnetic
depends upon which effect dominates. A molecule which
is likely to be paramagnetic is thus seen to be a system
(1) which possesses a large quantity of (quenched)
orbital angular momentum in the absence of the field
and (2) whose orbital angular momentum is un-
quenched to a large degree by a magnetic field. The
amount of orbital angular momentum of a molecule is
intimately related to the nodal structure of its wave-
function, thus relating the physical explanation of
closed-shell paramagnetism to the mathematical dis-
cussion given in the earlier sections. The degree of
unquenching, on the other hand, depends primarily
upon the spectral energy separations between the
ground and excited electronic states of the molecule,
being greater when low-lying excited states are present.
A paramagnetic molecule is also likely to exhibit the
phenomenon of magnetic antishielding, resulting in a
low-field chemical shift, since the unquenched electronic
orbital angular momentum is likely to create a magnetic

field at the nucleus which is in the same direction as the
applied external field.

We also remark that the concept of negative “slip-
page” becomes less mysterious within this framework
since slippage is shown to be related simply to un-
quenching of orbital angular momentum by the mag-
netic field due to molecular rotation.

We conclude by restating that the explanation for
weak temperature-independent paramagnetism is possi-
ble within the Van Vleck theory of magnetic suscepti-
bilities. We also emphasize, however, that although
experimental evidence for weak paramagnetism exists,
no ab initio numerical calculations have been performed
upon systems for which experimental data are available.
On the other hand, an @b initio coupled Hartree-Fock
treatment of the '2 BH molecule predicts this molecule
to be paramagnetic,? but (1) there is no experimental
value for the susceptibility of the BH molecule with
which to compare this result, and (2) the Hartree-Fock
perturbation theory used in this calculation is only an
approximation to the Van Vleck formulation, although
calculations on other molecules suggest it may be a
rather good one.”” An experimental determination of
the susceptibility or of the rotational g factor of the
BH molecule is therefore highly desirable. A quantita-
tive agreement between theory and experiment for BH,
for example, would be the first conclusive verification of
the theory of temperature-independent paramagnetism.
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