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I. THEORY

I. Introduction

In the Grst part of this review we direct our attention
to the theoretical aspects of the excitation of atoms by
electron impact. We examine the atoms in order of
increasing complexity beginning with the simplest of
all atomic systems, atomic hydrogen, and then in turn
consider helium, the heavier inert gases, mercury, the
alkali metals, oxygen, and nitrogen, as well as certain
positive ions. Because a hydrogen atom has only a
single electron, it has been the subject of the most de-
tailed investigations. We therefore begin by developing
the theory for atomic hydrogen leaving the generaliza-
tion to more complex atoms until later. It is important
to realize however that even for the case of atomic
hydrogen, the work involved in obtaining accurate
excitation cross sections is formidable and that indeed
no exact solution for the problem of the excitation of
the two lowest states of atomic hydrogen, the 2s and 2p
states, has yet been obtained. The only method by
which we can assess the accuracy of the various approxi-
mations which have been employed is by comparing
them with each other and with the available experi-
mental data. At the present time the situation continues
to be very uncertain and a great deal of investigation,
both theoretical and experimental, remains to be done.
Our procedure will be to commence with the simplest
approximations and to introduce progressively the
more involved and, in general, more accurate and re-
vealing approximations. However, before proceeding
with this endeavor we draw attention to previous re-
views of the theoretical work on the electron impact
excitation of atomic systems which include the im-
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portant articles by Massey (1956) and by Peterkop and particle satisfying the equation
Veldre (1966). (V'+k„z) G(r, r,) =5(r—r2)

2. Hydrogen Atoms we may write

2m
F„(r)=exp (zk, r) b„l+ G(r, r2)p *(r,)

We consider a system composed of two electrons
denoted by 1,2 moving in the Coulomb Q.eld of a
proton which, to sufhcient approximation, we may
regard as possessing infinite mass. Then the Schrodinger
equation describing this system takes the form

X V(rl, rz)+(rl, rz) drldr, . (9)

8 8 8
(+1 ++2 ) + FT +(rl r2)2' f] 7 '2 f]Q

In order that F„should have the correct asymptotic
form (7) we choose

G(r, rz) =—exp (ik I
r—rz I) /(4zr

I
r—rz I) (10)

(1) Now for large r

where r&, r2 are the position vectors of electrons 1, 2

referred to the proton as origin, r~2 is the interelectron
distance, E& is the total energy of the system, and
0'(ri, rz) is the total wave function characterizing the
two electrons.

We now expand 0' in terms of the orthogonal and
normalized set of hydrogen atom wave functions lP„(r)
satisfying the equation

L (—fi,'/2nz) V' —(e'/r) —E„]g„(r)=0 (2)

where the symbol S denotes a summation over the dis-
crete states and an integration over the continuum
states, substituting into (1), multiplying across by
f„*(rl), and integrating with respect to rl, we obtain

2m
D 2 +4 ]F (r2) ip (rl) V(rl rz)+(rl r2) drl

where
V(rl rz) (e /T12) (e'/Tz)

(4)

is the interaction energy between electron 2 and a
hydrogen atom composed of electron 1 and the proton,
and the wave number k„ is given by

k„z= (2~/52) (8,—Z„).

Let us now suppose that electron 2 impinges upon a
hvdrogen atom in the ground 1s state which we will
denote by 1, the direction of incidence being given by
the wave vector k&. Then the asymptotic behavior of the
function F„(r) for large r takes the form

F„(r) exp (zkl r) 8„1+r ' exp (272„r)f„(8,p), (7)

where f„(8,P) is the scattering amplitude corresponding
to the excitation of the nth state of the hydrogen atom
and 8, g are the polar angles of r referred, to the direc-
tion of incidence as polar axis.

Introducing the Green's function G(r, rz) for a free

where the E„are the associated eigenenergies. Setting

@(rl, rz) =SF„(rz)p„(ri),

k„ I
r—r, I k„r—k„r„

where k„ is a wave vector in the direction of r, and so we
see that

2f.(8, e) =-(4 )-'-„, exp ( zk„—rz) p„*(r,)

X V(r„rz)%(r„rz) dr, dr, . (12)

k
Q~=

I f~(8~ g) 12 sin 8d8dg
1

(14)

Z.1. First Born Approximation

We now make the simplest of all approximations, the
first Born approximation, which depends upon the
assumption that the incident electron interacts only
slightly with the target atom so that its wave function
may be closely approximated by the plane wave
exp (zki r) which would be the correct function in the
absence of all interaction. We may anticipate that this
approximation should be valid when the speed of the
incident electron is great in comparison with that of the
electron in the target atom. This is essentially equiva-
lent to the requirement that k&c)&1, where a is the
range of the electron-atom interaction. Under these
circumstances we may substitute

2 (fl r2) —exp (zkl' r2) pl (rl)

into the right-hand side of (12). This yields the first
Born approximation to the scattering amplitude

2
f„(8,p) =—(4zr) ' exp{i(kl k )—rzI„V„,(r,) dr„

(16)

The diGerential cross section for the excitation of the
eth state of a hydrogen atom is given in terms of the
scattering amplitude f„(8,g), corresponding to incident
electrons scattered through angles 8, P, by the formula

1.(8, ~) =(~./&) If.(8, ~) I'

while the total cross section takes the form
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where

) l(re) —
fig (rl) ) (fr fe)leer(rr)drl. (17)

state of hydrogen may be written in the form

Q.= ,f—~f.(}r})'}rddr,
~1 Km~

(25)

Although the application of this approximation can
only be justi6ed at high impact energies, it appears to
yield quite useful results even for electron energies
which are fairly close to the threshold energy for excita-
tion.

Denoting the momentum change of the incident
electron by the vector SK, where K=k1—k„, and using
Bethe's integral

~

~

~

~

exp (iK.r,) 4p.
dr, = —exp (iK r,), (18)E'

we may express the scattering amplitude in the form

E;—(m/)rd'kg) (E„—Zg), E —2k1. (27)

As illustrative examples let us now consider the exci-
tation of the 2s and 2p states of atomic hydrogen from
the ground is state. It can be readily shown that

~ fp. (K) ~'= 128ap'/(E'ap'+~) ' (28)

where E;~=k&—k„and E „=k~+k„.Since

kP—k P= (2m/fP) (E —Eg) (26)

by the conservation of energy, we see that for high
electron impact energies

f~(K) =—(2meP/)rd'E') 8 (1 e)— (n/1) r

where

(19) and

( fpd (K) ~'=2888p /E'(K'ap'+x)' (29)

d(1—e) fd e(r) e=rp (eK r)dr(r)dr, (20)

the term arising from the electron —proton interaction
vanishing here because of the orthogonality of the
atomic wave functions.

We see from formulas (13), (19), and (20) that
(kz/k„) I„(8,@) depends only on K in the Born approxi-
mation, a result which has been verified experimentally
by Lassettre and his collaborators for the 2'S and 2'9
excitations of helium (Silverman and Lassettre, 1964;
Lassettre and Jones, 1964; Lassettre, Krasnow, and
Silverman, 1964) .

It is sometimes useful to write the diGerential cross
section in terms of a generalized oscillator strength

fq„iE) = (2m/fP) L(Eq—E )/E'g ) d(1—I) )' (21)

which can be shown to satisfy the sum rule

Q fr„(E)=1. (22)

As the momentum change fiK tends to zero, f~„(E)
approaches the optical oscillator strength given by

2m
, (E&—E„) )P„(r)s)P&(r) dr, (23)

and so
E'=kP+k '—2k~k„cos 8

EdE =k1k„sin 8d8

from which it follows that

1„(8,@) sin ede=kg '~ f„(K) ~'Ed'
2me' fg„(E) dK

fPk12 E1—E E
The total cross section for the excitation of the nth

where the s coordinate of the atomic electron is meas-
ured in the direction of K.

Now

where m is the magnetic quantum number of the 2p
state referred to the momentum change vector fiK
as polar axis. We see at once that according to the erst
Born approximation the cross sections vanish for the
excitation of 2p states with magnetic quantum numbers
m=&1 referred to the direction of the momentum
change vector fiK as polar axis. We also note that for
the is—+2s excitation the diGerential cross section is
weakly dependent upon E for small angles of scattering
while for the 1s-+2p0 excitation it behaves like E '.
For large angles of scattering the differential cross
sections for the 1s~2s and 1s~2p0 excitations decay
like E " and E ', respectively; these are much more
rapid decreases with angle than for elastic scattering
which falls off like E 4. The diGerential cross sections
for the 1s-+2s and is-+2p excitations at an electron
impact energy of 100 eV calculated according to the
erst Born approximation are illustrated in Fig. 1.

Substituting expressions (28) and (29) into (25) and
performing the integrations over E yields at high impact
energies

and
Qp, 128(-', ) "p/5k/

Qp~L256(Pp) ' m/k)'j ln (4apkq) r

(30)

where k1 is the wave number of the incident electron,
from which it follows that the total cross sections for the
1s-+2s and 1s~2p excitations decay as E-' and E'ln E, -
respectively, for high energies E of impact. The total
cross sections for the 1s~2s and 1s—+2p excitations of
atomic hydrogen calculated according to the first Born
approximation are displayed in Fig. 2. We see that the
cross section for the 1s~2p excitation, which corres-
ponds to an optically allowed transition, is considerably
larger than the cross section for the j.s~2s excitation,
which is associated with an optically forbidden transi-
tion. In addition the peak of the 1s~2p excitation cross
section occurs at a higher energy than that for the
is—+2s excitation, and decays less rapidly with in-



creasing energy, as was already quite clear from the
asymptotic behavior of the cross sections given by
formulas (30) and (31).

It is also instructive to make a partial wave analysis
of the total excitation cross section:

l,2—

Q-= ZQ-'= Z ZQ-"', (32) 0,3-
1(x5)

I i I I I I

100 125
0where the partial cross section Q„~' is the contribution

to the total cross section arising from incident electrons
having azimuthal quantum number 8 and scattered elec-
trons having quantum number 4', that is incident and
scattered electrons with angular momenta f'tP(/+1) ]"'
and A(l'(8+1) J", respectively, while

25 50

E(eV)

FIG. 2. Total cross sections for the excitation of atomic hydro-
gen, calculated using the 6rst Born approximation (Omidvar,
1964) . Curve 1: 1s—&2s, Curve 2: 1~2p.

excitations are displayed in Figs. 3 and 4, respectively.
It can be readily seen that at a given impact energy
many more partial waves make a signi6cant contribu-
tion to the total 1s—+2p excitation cross section than to
the 1s—+2s cross section.

The contrasting behavior of the is~2s and 1s-+2p
excitation cross sections arises from the fact that their
respective interaction potentials have differing asymp-
totic forms for large radial distances r. Thus V2„~,
decays exponentially with increasing r while V», &,

falls off much more slowly with an r ' dependence for
large r. This provides the explanation for the different
angular distributions given by (28) and (29), the
different high-energy behaviors given by (30) and (31),
and the diferent convergences of the partial wave
expansions illustrated in Figs. 3 and 4.

The first Born approximation has been employed by a
number of investigators to calculate the total excita-
tion cross sections for various transitions connecting
different states of hydrogen. Suppose that e', l', m'

and e, l, m are the principal, azimuthal, and magnetic
quantum numbers of the initial and anal states of the
hydrogen atom, respectively, and let us denote the
excitation cross section for the transition e'l'm'~nlm by
Q„c„,„& . We are mainly concerned with the average
of this cross section over m' and its sum over m, that
is with the excitation cross section for the transition
e'P—+el given by

Q
c QQccc

PM

is the partial cross section corresponding to incident
electrons having angular momentum given by the
quantum number 4 and scattered electrons having all
possible values of the angular momentum. For s—&s

transitions the only nonvanishing partial cross sections
are those for which 4=el', while for s~p transitions
only the partial cross sections Q„cc ' and Q„cc+' are
nonzero. Since

exp zk r= g(28+1)icjc(kr) Pc(cos 0), (33)

where jc(p) is a spherical Bessel function, it follows that
for s~s transitions the 6rst Born approximation to the
4th-order partial cross section is given by

Q '= 4zr(k /kt) (2cl+1) (q ') ', (34)
where

2m "q„=, j c(k&r)jc(k„r) V„t(r)r'dr (35.)
0

A partial wave analysis has been carried out for the
1s~2s and 1s~3s excitations (13ates and Miskelly,
1957) and the 1s~2p excitation (Vainshtein, 1961) of
hydrogen atoms using the first Born approximation.
The partial cross sections Q„c for the is-+2s and 1s—&2P

Q i, c=(2~'+1) 'QQQ c (36)
100

Occasionally we require the excitation cross section for
the transition e'—+e between the levels with principal
quantum numbers e' and e; this is obtained by aver-
aging over l' and summing over l to yield

Q-.-=(1~")ZZQ-"..
lf l

80
oc p0

60

40

20 = (1/n") ZZ(2I'+ 1)Q-,. (37)
8 12

I9(Degrees) In Tables I—III are presented the values of the excita-
tion cross sections calculated by Vainshtein (1965) for
the n'sos, n's +np, and n'—s +nd transitions of atom—ic
hydrogen with n'&n and n', n=1, ~ ~ ., 9. For the sake

FIG. 1. Differential cross sections for the excitation of atomic
hydrogen at 100-eV electron impact energy, calculated using the
Grat Born approximation. Curve 1; 1s—+2s, Curve g: 1s~2p.
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of convenience the energy of the incident electron is
given in threshold units, that is, in terms of the quantity

0

020- I

0.15—

e= E/(E„—E„)=k„'/hE„„, (38)

where AE „ is the excitation energy in rydberg units
and k„ is the wave number of the incident electron.

Veldre and Rabik (1965) have calculated cross sec-
tions for the 1s~es, 1s~np, and ms~(m+1)s excita-
tions of atomic hydrogen using the Grst Born approxi-
mation. Their excitation cross-section curves together
with those for the lower values of e derived from the
calculations of Vainshtein (1965) are displayed in
Figs. 5—7, respectively. Inspection of these figures re-
veals that according to the first Born approximation
the value e~ of ~ for which the cross section attains its
maximum value is insensitive to e for both the 1s—+vs
and the 1s-+mp excitations, although for the res~
(m+1) s excitations esr increases significantly with in-

creasing e. Further we note that for each set of transi-
tions, the smaller the value of e~, the more gradually
does the excitation cross-section decay with increas-
ing &.

Calculations of the excitation cross sections for a
number of transitions in atomic hydrogen have been
also carried out by Milford and his collaborators
(McCoyd, Milford, and Wahl, 1960; Fisher, Milford,
and Pomilla, 1960; Milford, Morrissey, and Scanlon,
1960) using the first Born approximation. They in-

vestigated all transitions between states with principal
quantum numbers n'=3 and m=4; all optically allowed
transitions between states with m'=3 and m=5, be-
tween states with e'=4 and x=5, and between states
with e'=5 and +=6; together with a few other transi-
tions. Some of their excitation cross section curves are
displayed in Figs. 8—j.Q.
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Detailed calculations have also been performed on the
excitation of various levels of atomic hydrogen. (Mc-
Carroll, 1957; Boyd, 1959; McCrea and MCKirgan,
1960; Omidvar, 1965; Kingston and Lauer, 1966a).
Cross sections for the transitions 1s~g (g= 2, , 10),
2s—&e, 2p0—+n, 2p&1—+e (m=3 ~ ~ ~ 10), and 3~v
(m=4, ~ ~ ~, 8) are given in Tables IV-VIII.

The eigenenergy E„of the eth level of a hydrogen
atom is —1/n' rydbergs so that for large values of the
principal quantum number n we have

&L= gS JErf, .

Hence the cross section for the excitation of atomic
hydrogen to all energy levels within the range E„ to
E„+dE„rydbergs is given by

2e'Q dE . —

If Q, (E') dE' denotes the cross section for the ejection
of an electron into the continuum with energy between
E' and E'+dE' rydbergs, it follows that xpn'Q„re-
garded as a function of E„ is continuous with Q;(E').
In Fig. 11 we illustrate this continuity for transitions
emanating from the ground state of atomic hydrogen
(McCarroll, 1957) .

Z.Z. Bethe Approximatioe

A simplification of the first Born approximation
due to Bethe can be readily derived by expanding
exp (iK r) in the formula (20). Choosing the s axis
along the momentum change vector AK, which is
therefore the direction of quantization of the atomic
wave functions, yields

d(1—nlm) =8p lf [p (r)1Pt(r)

&& (1+iEs——',E's'+ ~ -)dr, (39)

where P„~p is the wave function of the state of the hydro-
gen atom with principal and azimuthal quantum num-
bers e, 1 and magnetic quantum number m =0. Setting

s I(.)... I, 2@k,
nl= ln

ktPap' m(E„—Et)
(/=1). (44)

Thus we see that the 1s-+ep excitation cross section
decays as E ' ln E for large values of the impact energy
E=fi'ktP/2m in accordance with the Born approxima-
tion result obtained previously.

For optically forbidden transitions (s) &,„&——0. If how-
ever (s') t,„~ does not vanish we can write

I ft;~-(E) I'=—(~p-/~p')
I (")t.-~ I'. (45)

Neglecting the contribution from Lao&1 and using ex-
pression (45) for Eap~ 1 we 'obtain

Q- =( /k '~') Ll (s') .- I'/~o'j (46)

so that the excitation cross section for a monopole
transition 1s~ms or a quadrupole transition 1s—&lsd

decays like E ' for large values of E as found before.
The Bethe approximation may also be derived by

replacing the interaction energy V(rt, r&) by its asymp-
totic form for large radial distances r2 of the incident
electron. In the case of 1s~nlm transitions this can be
achieved by substituting (rt'/r2'+') P&(cos (f») for 1/r»
in formula (5), where 8» is the angle between rt and
r2, and then evaluating the scattering amplitude by
using formulas (16) and (17). This approach yields the
same expression for ft,„t as the method described pre-
viously except when l=0 for which case it gives a
vanishing result.

The upper limit of the E integration in formula (25)
may be replaced by an adjustable parameter E, which
is chosen so as to produce agreement with the first
Born approximation at high electron impact energies.
Calculations along these lines have been performed by
Milford and his associates (McCoyd, Milford, and

(s) t,„~ is nonvanishing and we may put

Ift.-~-(E) I'=—(4~p-/E'~')
I (s)t..~I' (~=1) (43)

Hence integrating from E;„=(m/h'kt) (E~ Et—) toE, =2k' we find that

(s') t,„t= P„tp*(r)s'Pt(r) dr (40) 3.0l )
~

l M)

we obtain

8 (1—ml0) =iE(z),„(——.,'E'(s'), „t+~ ~ ~

and so

I &~ -~-(E) I'= (4~p-/E'&p')
I (s) t,.~

(41)
cu 0

l3

C3
Y)C
OJ

2.0

II"

72,25~

2.0—

+'(iE) (s') t.~+" ' I' (42)

which converges provided Eao(&1 since ao is the ap-
proximate range of the atomic wave functions. For
Ea&)1 we note that

I ft,„~p(E) I' provides a negligible
contribution to the excitation cross section Q„~.

Let us first consider optically allowed transitions for
which the final state is a p state so that 1=1. Then

I i l i

0
i I

-0,2 -0.[ 0 O. I 0,2

E„(ry d) E(ryd)

Fto. It. Illustration of the continuity of —,'e'Q„as a function of
E„with Q; as a function of E' {McCarroll, 1957). E„ is the
{negative) energy of an excited electron in level n; 8' is the
{positive) energy of an ejected electron in the continuum. The
crosses refer to levels with e=2, 3, 4, 5. The numbers on the
curves are the incident electron energies in rydbergs.
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Wahl, 1960; Fisher, Milford, and Pomilla, 1960;
Milford, Morrissey, and Scanlon, 1960; McCoyd and
Milford, 1963; Milford, 1960; Scanlon and Milford,
1961), their Bethe approximation cross-section curves
being compared with those obtained using the first Born
approximation in Figs. 8—10. Inspection of these figures
shows that the Bethe formula is in reasonably satis-
factory accord with the first Born approximation down
to electron impact energies which are not greatly above
the energy where the Born cross section attains its
maximum value. Since the Born approximation itself
ceases to be valid below this energy, the Bethe approxi-
mation provides a valuable alternative formula for
determining excitation cross sections as long as it is
not employed at low impact energies.

McCoyd and Milford (1963) have used the best
available values of the cutoG parameter E, to determine
the constants C„~,„~ and D„~,„~ in the Bethe formula
for the excitation cross section

Qo v,ot= (Co p,nt/E)» (Dn t .otal)

for all transitions satisfying e—e'=1 or 2 and I—l'=1
with 1&m'&10. The values of these constants when the
impact energy E is given in eV are displayed in Tables
IX and X. An extension of these calculations has been
made by Kingston and Lauer (1966a; 1966b) who in-
vestigated the case m —n'=1 and 2 for 1&m'&6 and
all permissible values of /' and 1. They also evaluated
the excitation cross section Q„,„for transitions between
the levels with principal quantum numbers e' and e.
As long as the impact energy is not too low this may be
satisfactorily approximated by the formula

Q„.n ——(C„.,„/E) ln (D„,„F),
the values of the constants C„,„and D„.,„calculated by
Kingston and Lauer (1966a; 1966b) being displayed in
Table XI.

pression (12), we see that to the second order in V:

f.(t) &) =f "'(e, 4)+f'"(t), 0), (50)

It leads to the result

/2m'&2f "'(t) 4)=(4~) 'I
&fP f

exp Ii(k& r2' —k„r2) I

where

«p (ik
I

r2—r2' I)X, , V„&(r2, r,') dr, dr, ', (53)
&r

I r2 —r2

e2'&

r)
e2 e2

&X, ——,
I f&(r&) dr&.. (54)

where f„&" is just the first Born approximation to the
scattering amplitude given by (16) and f„&2& &s given
by the formula

, $2nt '
fo&'&(&, &&) =(4~) 'I

I
S exp fi(k~ r2' —k„r,) I&f'&2)

exp (ik„ I
r.—r, ' I)X, V„„(r,) V»(r2') dr2dr2'. (51)2' r2—12

Expression (50) is known as the second Born approxi-
mation to the scattering amplitude. We see from for-
mula (51) for f„&'& that it involves a summation over
all the states of hvdrogen including the continuum
states. This makes it very diKcult to evaluate exactly.
However it can be simplified by setting k„=k for all p,
where k is independent of p, in which case the summa-
tion can be performed by using the closure relation

Z.3. Second Born Approocirn&ttion

The first Born approximation neglects coupling to
all states other than the initial state and the final state
of the transition. One method. of allowing for coupling
to other states is to employ the second Born approxima-
tion to the scattering amplitude. This approximation
can be derived in the following manner. We consider
the case of the excitation of the mth state of atomic
hvdrogen from the ground state and insert expression
(15) for 4 into the right-hand side of Eq. (9).Then we
find that to the first order in the interaction energy V:

2m
F„(r)= exp (ik, r) 8„&+ G(r, r2)f„*(r~)

X V(r, , r2)&p, (rq) exp (ik2 r2) dr&dr2. (49)

Now expanding + according to (3), using formula (49)
for F„and substituting into the right-hand side of ex-

Expression (53) for f„&'-& has been used by Rothenstein
(1954) to investigate the 1s—2p excitation of hydrogen
atoms by electron impact. Unfortunately this simpli6-
cation of the second Born approximation does not pro-
duce reliable scattering amplitudes.

Defining the quantities a=Re ( f„"&/f„&'&) and g=
Im ( f„&'&/f„&'&) we see that the differential cross section
given by the second Born approximation is

We note however that this neglects a term of the fourth
order in the interaction energy V contributed by the
real part of the third Born approximation correction
term f„&» while including other terms of the same order
and thus may well give rise to considerable error. Con-
sequently it should be more satisfactory to neglect all
fourth-order terms and use the formula
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FIG. 12. Total cross sections for the 1s~2s excitation of atomic
hydrogen. Curve 1: 6rst Born approximation (Omidvar, 1964).
Curve 2: third order 1s-2s coupling approximation (Kingston,
Moiseiwitsch, and Skinner, 1960). Curve 3: third order 1s-2s-2p
coupling approximation (Kingston, Moiseiwitsch, and Skinner,
1960). Curve 4: 1s-2s close coupling approximation neglecting
exchange (Smith, Miller, and Mumford, 1960).Curve 5: 1s—2s-2p
close coupling approximation neglecting exchange (Omidvar,
1964).

which is correct to the third order in the interaction
energy.

The third-order approximation formula (56) has
been used to investigate the 1s-+2s excitation (King-
ston, Moiseiwitsch, and Skinner, 1960) and the 1s-+2P
excitation (Moiseiwitsch and Perrin, 1965) employing
a simplification of the full expression (51) obtained by
truncating the summation at the states 2s, 2p0, 2p&1
with principal quantum number 2 and neglecting all
states with higher principal quantum numbers. The
results of these calculations are given in Figs. 12 and 13.
Vfe see that for the i.s—+2s excitation the over-all
effect of allowing for coupling to the initial and fi.nal
states, often referred to as distortion, is to increase the
excitation cross section above that given by the first
Born approximation, while allowance for coupling to the
2pO and 2p&1 states, which should be a very important
contributor to the eRect known as polariMtiort arising
from coupling to all states other than the initial and
final states, reduces the excitation cross section below
the 6rst Born approximation curve. These conclusions
regarding the eBect of distortion and polarization are
in general accordance with the results of close coupling
calculations with exchange neglected (Smith, Miller,
and Mumford, 1960; Omidvar, 1964b) which will be
discussed in Sec. 2.15.

With regard to the 1s—2p excitation we see from Fig.
3.3 that the over-all e8ect of the coupling to the Is, 2s,
2pO, and 2p&1 states is to increase the excitation cross
section above the erst Born approximation curve at the
lower electron impact energies but to reduce it below the
erst Born approximation curve at the higher energies,
again in general accordance with the behavior revealed
by close coupling ca1culations with exchange neglected
(Omidvar, 1964b) .

AIIowance for coupling to higher levels has been made
recently by Holt and Moiseiwitsch (1968) who have
evaluated exactly the contribution to the second Born
approximation scattering amplitude from all inter-
mediate levels up to p=5 and have estimated the con-

tribution from levels with iI)&6 by setting k~=ka and
using the closure relation (52). They find that the
eRect of the couplings to the levels with p&3 is to
bring the excitation cross sections closer to the erst
Born approximation at high energies and that the
1s~2p excitation cross section given by the second Born
approximation now lies slightly below the first Born
approximation curve at all energies.

(~2 +k )~ +(r2) = (2m/fi')SE„„+(r, ), (5g)

where

)( (r) =P *(r%*(r)V, (r„r,)r' (rr)err

+4(rr) J t)' "(rr) {&r(rr, r )

—(fi'/2m) (wt2+k &) j F +(r,)dr„(59)
tr8 r I I r
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FIG. 13.Total cross sections for the 1s—+2p excitation of atomic
hydrogen. Curve I: erst Born approximation (OmMvar, $964).
Curve 2: third-order 1s-2s-2p coupling approximation (Moisei-
witsch and Perrin, 1965). Curve 3:unitarized Born approximation
(Burke and Seaton, 1961). Curve 4: impact parameter method
(Seaton, 1962). Curve 5: 1s-2s-2p close coupling approximation
neglecting exchange {Onndvar, 1964).

Z.4. Exchange Scattering

So far we have not taken electron exchange into
account and because of its very great importance,
particularly at low electron impact energies, we now
turn our attention toward methods by which its in-
clusion may be achieved. We express the total space
wave function describing the system in the symmetrized
forms

++(rt, r~) =+(r&, r2) a% (r2, r,), (5't)

where +(rt, r&) is given by the expansion (3) and the
positively and negativdy symmetrized functions M
and ~ are associated with singlet and triplet scat-
tering, respectively. Then the entire wave function of
the system composed of a spin as well as a space part
is totally antisymmetric with respect to interchange
of all the coordinates, both space and spin, of elec-
trons 1 and 2 thus satisfying the Pauli exclusion prin-
ciple.

Substituting (57) into the Schrodinger equation
(1),multiplying across by f„*(rt),and integrating with
respect to r&, yields
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with
Vl (rl rz) (e /rlz) (e%1) (60)

being the interaction energy between electron 1 and a
hydrogen atom composed of electron 2 and the proton,
and

(61)Vz(rz, rz) = (e'/rzz) —(e'/r, )

being the interaction energy between electron 2 and a
hydrogen atom composed of electron 1 and the proton.

Now using the Green's function (10) for a free par-
ticle we obtain the following expression for the scat-
tering amplitude:

2m
&„+(0,p) = —(4zr) ', S exp (—zk„r,)E„„+(rz)drz.

The 1-+zz excitation cross sections Q„+ and Q„cor-
responding to singlet and triplet scattering are given by

k„
Q„+= —

~
f„+(0,P) ~' sin 8dM& (63)

kg

and since they have spin statistical weighting factors
—,
' and -'„respectively, the total 1—+e excitation cross
section takes the form

n=4 n 4 n (64)

Z.5. Borm Oppezzheimer —A pproximcttiozz

Ke now attempt to make allowance for exchange to
the same order of accuracy as that used to derive the
first Born approximation. Again considering the case
of electrons incident upon a target hydrogen atom in its
ground state, we set

F,"(r) = exp (zk& r)

F„+(r)=0 (p/1) (65)

in formula (59) for R„„+and substitute the resulting
expression into (62). Then we obtain the so called
Born—Oppenheimer approximation to the scattering
amplitude which is given by

2m
f-+(tt, 4) = —(4~) ', exp Iz(kz —k-) rz}4' *(rz)

X Uz(rz, rz) Pz(rz) drzdrz

2~ (4zr)-z exp I Z(kz rz —k„rz) I

XP„*(r,) V, (rz, rz) P&(rz) dr&drz. ('66)

The first term on the right-hand side of this formula for
the scattering amplitude is just the 6rst Born approxi-
mation while the second term is the additional contribu-
tion arising from exchange according to the Born-
Oppenheimer approximation.

Closed analytical expressions for the scattering amph-
tude corresponding to the 1s—+2s and 1s~2p0 excita-
tions have been obtained by Corinaldesi and Trainor
(1952) using the Feynman parametrization technique,
the axis of quantization of the atomic wave functions

being chosen along the direction of incidence of the free
electron. They found the exchange contribution to the
scattering amplitude for the 1s~2p&1 excitation to be
zero but this is not so, the correct expression being
given by Bell (1965) for this case. Calculations of the
Born—Qppenheimer cross sections for the 1s—+2s, 1s—&

2p0, and is~2p+1 excitations have been performed by
Wu (1960) but contain numerical errors, by Bell and
Moiseiwitsch (1963) who took the exchange amplitude
for the is—+2p&1 excitation to vanish, and by Bell
(1965) who used the correct expression for the 1s-+
2p&1 exchange amplitude. The results of these calcu-
lations are presented in Tables XII and XIII. We see
that for the 1s—+2s excitation, the Born—Qppenheimer
approximation yields a cross section which is much
larger close to the threshold energy than that given by
the first Born approximation. This cannot be correct:
thus for electrons with 13.6-eV energy corresponding to
k~ ——1 in units of uo ', the zero-order partial cross sec-
tion given by the Born—Qppenheimer approximation
has magnitude 1.59 x~' whereas the maximum possible
cross section for the 4th-order partial wave imposed by
the conservation theorem of Bohr, Peierls, and Placzek
(Mott and Massey, 1965a) is (24+ 1)zrao'/kzz so that the
Born—Qppenheimer approximation violates the theo-
retical maximum for 1=0 at k~ ——1. As we see later, this
gross overestimation of the excitation cross section pro-
duced by the Born —Oppenheimer approximation is a
typical occurrence for 5—+5 transitions. On the other
hand, by referring to Table XIII, we see that the
Born—Qppenheimer approximation predicts a rather
smaller exchange effect for the 1s—z2p excitations.

Z.6. First Order Exchaz-zge A pproximatiorz

The Born—Oppenheimer approximation (66) suffers
from the undesirable feature that the addition of a
constant to the interaction potential V2 produces a
nonvanishing alteration in the exchange scattering
amplitude owing to the lack of orthogonality between
the approximate wave function%'z(rz) exp (ikz. rz) de-
scribing the initial state of the system and the approxi-
mate wave function %„(rz) exp (zk„rz) describing the
state of the system after an exchange event involving
the excitation of the atom has occurred. This arbitrari-
ness of the Born—Qppenheimer approximation can be
seen to arise because (|7z+kzz) Fz+ vanishes for Fz+=
exp (zkz r) whereas it is clear from (58) that this term
is actually of the first order in the interaction potential.
Thus neglecting exchange and the coupling of the
initial state to all other states of the system we see
that equation (58) gives us

(V'z'+ kzz) Fz+ (rz)

= (2m/M) F&+(rz) ~%'z(r&) ~' Vz(r&, rz)drz. (67)

(Note that the argument can be carried through with-
out these simplifying assumptions (Bell and Moisei-
witsch, 1963).)
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The calculations using this approximation have been
confined so far to helium excitation and are discussed
in Sec.3.2. /Note added in proof. Recently Inokuti (1967)
has used the Ochkur approximation to calculate the
1s—+2s and 1s~2p excitation cross sections for atomic
hydrogen. As we see there, the Ochkur approximation
appears to be not only a very useful one but also rather
simple to apply since it is no more dificult to evaluate
than the first Born approximation. g

A modification of the Ochkur approximation based
on a variational principle has been derived by Rudge
(1965). He has applied his formula to the 1s—+2s

excitation of atomic hydrogen, obtaining a cross-section
curve which is substantially smaller than that given by
the first Born approximation and also by the 1s—2s

close coupling calculation with exchange included
(Omidvar, 1964b) .

Z.8. Distorted 8'az)es A pproccirnation

%'e have already examined the use of the second Born
approximation in making partial allowance for' the
eGect of distortion. Full allowance for the distortion of
the incident and scattered electron waves can be
achieved in the following manner. We make a two-state
approximation involving just the initial state, which we
suppose to be the ground state 1 of the hydrogen atom,
and the final state e, and neglect coupling to all other
states. Then the infinite set of coupled equations (58)
reduce to the pair of equations

2 ~ 2 2
+2 +kl Vll(r2) Fl (r2) ~ Ell(rl r2) Fl (rl) drl V1 (r2) F (r2) ~ E1 (rl rz) F (rl) drl '

f2 A2
' f2

(75)

2 + 2 2
V2 +k V (r2) F (r2) W E (rl r2) F (rl)drl= V 1(r2) Fl (r2) ~ E 1(r1 r2) F1 (11)drz

(76)

where the matrix elements V„1(rz) of the interaction the final state n to the initial state 1 is small so that
energy V(r1, rz) are given by the formula (1/) and the Vz„and E1„can be set equal to zero on the right-hand
kernels E„1(r1,rz) have the form side of Eq. (75) which now takes the reduced form

E„1(r1,r2) =)pz(rz)8p„*(rz) I (e'jr12)+Ez+E„—EI. (77)

If we know the solution of the reduced equation

2m
V,2+k.'— V„„(r,) Ã„+(rz)

2
~2 +kl f Vll (r2) tf'1 (r2)

2m
E11(r1, r2) Pz+(rz) dr1 ——0, (81)

where F&+ is chosen to have the same asymptotic be-
E„„(r, r,) df„+(r,}dr,—0 (78} havior as Fp for large r:

df„+(r) exp ( zk„. r)+—r ' exp (ik„r)g„"(8,p) (79) 2zn
f'(8, ~) =-(4 )-' „, ~-+(")

we may express the scattering amplitude f„(8,(td) in
the form

X V„z(rz)F, (rz)a E„1(r1,rz)S1 (r1)dr, dr, . (83)J ~ 1,
1 2m

&. (8, ~) =—— ~™.(")
4m A'

To solve equations (78) and (81) it is necessary to make
a partial waves analysis of 5'~+ and 7,„+in which case the
total excitation cross section Q„may be expressed in
terms of the partial cross sections Q„a' according to the
formula (32). The earliest calculations employing the
distorted waves method were performed by Erskine
and Massey (1952) with, as well as without, the in-
clusion of exchange. They dealt with the j.s—+2s excita-
tion of atomic hydrogen and considered only the 4=

X r t(t )Pl (tt)d= Z t(tt, tt)tl (tt)dtlI dtt (80)

We cannot obtain F~+ without solving the pair of
coupled equations (75) and (76). Since this requires
considerable computational eGort, we introduce here
the so called distorted waves approximation which is
based upon the assumption that the back coupling of

P1+(r) exp (zkz r)+r 'exp (ik,r) jz+(8, p). (82)
obtained by setting the right-hand side of (76) equal to
zero and choosing the asymptotic behavior for large r Replacing Fz+ by Fz+ in (80) yields the distorted waves
to be approximation to the scattering amplitude:
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and the 0, 1 partial cross sections make a negligible
contribution to the total excitation cross section, the
1, 0 curve being too small to be distinguished on the
figure. This is quite diferent from the result obtained
with the first Born approximation which gives the 1, 0
partial cross section as the primary contributor to the
total cross section. At low electron energies the dis-
torted waves method gives the 2, 1 partial cross section
as the most important. Also, as one would expect, it is
found that the 4, 4—1 partial cross sections are much
larger than the i', 8+1 cross sections.

Z.P. Modified Bethe A PProximation

CU
O

l.0—

0,5—

In all the previous sections we have assumed that the
coupling between the initial and final states is weak. In
certain cases however this coupling is obviously eery
strorzg. An example of very strong coupling is the 2s-+2p
excitation of atomic hydrogen. It is found that when the
Born approximation is applied to it, the partial cross
sections Qt, associated with incident electrons having
angular momentum fi,p(i'+1))'/p, exceed the theo-
retical maximum (2i'+1) zrtzps/kpz imposed by the con-
servation theorem (Mott and Massey, 1965a) when 4
is small. A method of dealing with this di6iculty has
been developed by Seaton (1955a). Let Q be the value
of / for which

Qnez e'& s (2~+1)zrtzp'/ks' (/& i'p)

&s(24+1)zrap'/kss (/(4p), (84)

where Qs,zh, t is the partial cross section given by the
Bethe approximation. The modification of the Bethe
approximation suggested by Seaton sets

', (28+1)zrap—'/kss(E& gp) (85)

and is based on the plausible assumption that the par-
tial cross sections for 4&40 can be replaced by their
average value [s (24+1)zrtzp'/'kssg without undue error.
Using this approximation Seaton has calculated the
rate coefficients for the 2s~2pt/s and 2s—+2pp/s transi-
tions in atomic hydrogen at temperatures of 10 000'K
and 20000 K assuming a Maxwellian velocity dis-
tribution of electrons and taking the energy diGerences
between the upper and lower states to be 0.0354 and
0.327 cm ', respectively. The rate coefficients are given
in Table XVI where they are compared with the values
obtained with the Born approximation, the usual
Bethe approximation and a semi-classical approxima-
tion (Purcell, 1952) .

Allowance for strong coupling by means of the modi-
fied Bethe approximation decreases the rate coefBcients
only slightly for the case under consideration because
most of the contribution to the cross sections comes from
distant encounters so that large values of l dominate
and the first Born approximation is fairly accurate.
I'hc effect of very strong coupling is most important

FIG. 16.Partial cross sections for the 1s~2P excitation of atomic
hydrogen calculated using the distorted waves method neglecting
exchange (Vainshtein, 1961). Pp is electron energy in threshold
units de6ned by Eq. (38).g Curve 1: Q»", Curve 2: Q»'',
Curve 3: Q»4', Curve 4: Q»'4, Curve 5: Q»P', Curve 6: QP ',

e
Curve 7: Z Q2„~,

C~
Curve 8:Q2„.

for zz~tz+1 transitions of atomic hydrogen discussed
in the succeeding section and, for example, in the case
of the 3s~3p excitation of sodium examined in Sec. 6.

Q„=2zr P„t(p) pdp.
0

(86)

The transition probability I'„j is evaluated using first-
order time-dependent perturbation theory which gives

exp Iz(E„—Et) t/AI V t(t) dt, (87)

where E~ and E„are the energies of the initial and final
states of the atom, and V„t(t) is the matrix element of
the Coulomb interaction between the incident elec-
tron and the target atom associated with the initial
and final states. In the case of hydrogen

where Pt and f„re tahe atomic wave functions corres-
ponding to the states 1 and n, respectively. The elec-
tron-electron interaction e'/~ rt —rs

~
may be expressed

Z.lo. Impact Parameter Method

In this section we shall be concerned with the use of
the semiclassical method introduced by Seaton (1962) .
Known as the impact parameter method, it is based
upon the assumption that the path of the incident
electron can be taken to be a straight line whose
perpendicular distance from the atomic nucleus is the
impact parameter p. If P„t(p) denotes the probability
that an incident electron having impact parameter p
produces a transition from the ground state 1 to an
excited state e of the target atom, the total 1~m excita-
tion cross section can be expressed in the form
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as a multipole expansion using the formula p& p~, in which case (86) can be rewritten as

(89)

where r& and r& are the lesser and the greater of r» and
r2, eistheanglebetweenr~andr~, andtheP&, (cose) are
the Legendre polynomials. For optically allowed transi-
tions 1s~ep, the only term of the multipole expansion
which provides a nonvanishing contribution to V„» is
the dipole term. When p is large we may replace V„» by
its asymptotic form for large separations. Since the
dipole term corresponding to ) =1 takes the form
e2r~ r2/rms for large r2, we see that

V ~(rm) e' —,~ P„*(r,) r,P&(r&) dr,
r2'

(90)

in which case we obtain

4f(e, 1)
P„»=

hE„»

r, (t)
exp (ihE„~t), dt, (91)

r2' t

where f(N, 1) is the oscillator strength for the 1~v
transition given by

af( )
3 DE„»

(92)

q 2f z.=
Po

('93)

(ii) When the coupling is very strong, one can in-
troduce a parameter p» chosen so that

P-i(p) &k (p&px), (94)

where P„» is evaluated using Grst-order perturbation
theory. Since the actual transition probability when
the coupling is very strong is an oscillating function of p
for p&pq, we may replace P„& by its mean value s for

b,E„» is the excitation energy in rydberg units, and r2
is in units of the Bohr radius ~. Remembering that the
path of the incident electron can be taken to be a
straight line, we have rP(t) =p'+e't', where m is the
speed of the electron. Then the integration occurring
in formula (91) can be performed analytically, the
resulting expression for P'„» being given in terms of the
modided Bessel functions Eo and E».

When the coupling between the initial and anal
states is strong, P„~(p) becomes large for small values
of p and may even exceed the maximum possible value
unity when 6rst-order perturbation theory is employed
to evaluate the transition probability. Two different
methods can be used to overcome this difBculty:

(i) A cutoff parameter po may be introduced which
is independent of electron energy and is chosen so as to
give agreement with the Born approximation at high
impact energies. Then

Qn,n+1=1~1,a ~re y

2 2 (96)

where r„= ~4(5n,'+1) aois the mean radius, are pre-
sented in Table XVII. Seaton's impact parameter
method is particularly valuable for cases of very strong
coupling such as the I +I+1-optically allowed transi-
tions for large e and the cross sections calculated by
Saraph (1964) are to be preferred to those given by the
Born approximation for n&3. It largely supercedes the
modiied Bethe approximation discussed in the pre-
ceding section.

Z.ll. Classicat A pproximation

The earliest application of classical mechanics to the
inelastic scattering of electrons by atoms was made by
Thomson (1912) who regarded the collision as a classi-
cal binary impact between the incident electron and
one of the atomic electrons which was assumed to be
initially at rest. Clearly, at low impact energies, the
neglect of the motion of the atomic electron must be an
inadequate approximation. Consequently a more re-
ined classical theory was introduced by Gryzinski
(1959) making allowance for the velocity of the atomic
electron although still treating the collision as an impact
between two free electrons, the inQuence of the nucleus
being ignored.

Gryzinski (1959) evaluated the total cross section
for the collision of two free electrons, whose initial
velocities v» and v2 make an angle 8 with each other,
such that the energy of the atomic electron changes by
an amount hE. Then replacing the relative velocity V
of the two electrons by the mean value V= (vP+v22) '12

he integrates over 8 assuming an isotropic velocity
distribution for the atomic electron. This yields the
total cross section o (hE) for the transfer of an amount
of energy AE from the incident electron to the atom.
Classically we may suppose that excitation from an
initial state 1 to an excited state e of the target atom
takes place if hE lies in the range of energies

E„—Eg& b E&E~y—Eg. (97)

Integrating over this range of hE therefore gives the
classical approximation to the total 1~A excitation cross

Q =2spP+2n. P„i(p) pdp.
Pl

The procedure employed by Seaton (1962) was to
adopt the smaller of the two cross sections obtained
using formulas (93) and (95) at each electron energy.
The excitation cross section calculated by him for the
1s-+2p transition of hydrogen is displayed in Fig. 13.

Saraph (1964) has employed essentially the same
method as that introduced by Seaton (1962) to evaluate
the excitation cross sections Q,~~ for the e—+m+1
optically allowed transitions of hydrogen. Her calcu-
lated values of the quantity X„+»,„arising in the formula
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section, all final angular momenta of the atom con-
sistent with the speciGed range of energy transfer
being included. It is found that it decays as E-' with
the energy E of the incident electron, which is a more
rapid fall oG than that predicted by quantum theory:
E ' ln E. Stabler (1964) has found a method of inte-
grating over 8 without having to make the approxima-
tion of replacing V by V. This actually leads to some-
what simpler analytical expressions for the total i~a
excitation cross section than given by the original
Gryzinski evaluation. Another modification of the
classical approximation has been introduced by King-
ston (1964) who, on the basis of the known slow varia-
tion zzzQ„with principal quantum number zz of the
upper level (see the end of Sec. 2.1), expresses the 1—+zz

excitation cross section in the form

Q~=zz 'o(E„—Er).

In Fig. 17 we display the total cross sections for the 1-+2
excitation of atomic hydrogen calculated using the
various forms of the classical approximation as well as
the Born approximation. Due to the rapid fall o8 with
electron energy of the classical approximation cross
sections, they are necessarily smaller than the Born
approximation cross section at high energies. We see
from Fig. 17 that this relationship persists down to low
energies for the 1-+2 transition. However for rz~+1
transitions with larger values of e, the classical approxi-
mation cross section becomes larger than the Born
approximation cross section at low energies.

In a more recent formulation of the classical scat-
tering problem, Gryzinski (1965a; 1965b; 1965c) em-

ploys a continuous distribution of velocities for the
atomic electron having the form

f(&) =L(s—2) ~?'(»/~)' exp (—»/s) (99)

The special case s=3 gives rise to a total excitation
cross section which decays according to the law E-' ln E
for large E in accordance with quantum theory. How-
ever it should be noted that the distribution of velocities

2.25

0.75—

for the atomic electron given by (99) is quite different
from the actual quantum theoretical distribution.

Another attempt at obtaining the correct high-energy
behavior of the excitation cross section has been made
by Burgess (1964).His approach to the problem was to
use the semiclassical impact parameter method de-
scribed in Sec. 2.10 for impact parameters p) po and
the classical approximation for p(po. Taking V= V
and assuming that the relative probabilities for the exci-
tation of the 2s and 2p states of atomic hydrogen are
d~t~~~i~~d by f14'r I'IA I'«and J I A I'l&zvl'«
Burgess (1964) has calculated the is—+2s and 1s-+2p
excitation cross sections. His cross section for the 1—+2

transition is displayed in Fig. 17. We note that it
exhibits an interesting maximum just above threshold
as well as the main maximum at higher electron energies.

A valuable review of classical approximations has
been written recently by Burgess and Percival (1968).

Z.1Z. Vairtshteirz, Presrtyakov, Sobelmal Approximatiort

A new method which makes explicit allowance for
the all important repulsion between the atomic and
incident electrons in the wave function characterizing
the collision has been introduced by Vainshtein, Pres-
nyakov, and Sobelman (1963).

They express the total wave function in the form

+(rt rz) =A(rr)g(rr rz) (100)

where fr is the wave function of the initial state of the
hydrogen atom, and then substitute into the Schro-
dinger equation (1). Changing to the new coordinates

R=-,'(r,+r,), p=-,'(r, —r&) (101)

and introducing an approximation which is closely
equivalent to replacing the interaction e'/rz by e'/E,
they arrive at the equation

re g2 ~2

(Va'+V '+2kr')+ ——— g(R, y) =0.
2m R p

We see that it describes the scattering of two free elec-
trons by each other and the motion of their center of
mass in the electrostatic Geld of the proton. Because
the variables R and y are separated in Eq. (102) its
solution g(R, p) can be expressed exactly in terms of
confluent hypergeometric functions F(a, b, s) . It can be
readily verified that

g(R, y) =tV exp {zlr, (R+p) I

XF(iv, 1; ikzR —zkz R)

{00 125 XF( iv, 1; ikztz zkz p), —(1—03.)
E(ev)

FIG. 17. Total cross sections for the 1—+2 excitation of atomic
hydrogen calculated using various forms of the classical approxi-
mation. Curve 1: classical impulse approximation (Stabler,
1964). Curve 2: Gryzinski approximation (Kingston, 1964).
Curve 3: semi-classical approximation (Burgess, 1964). Curve 4:
tn'st Born approximation (Qmjdvar, 1965l.

where v=kz ' and N=F(1 iv) I"(1+—iv).
Vainshtein, Presnyakov, and Sobelman (1963) now

note that the electron —proton interaction e'/r, gives-
no contribution to the scattering amplitude for excita-
tion collisions when the Born approximation is used.
They therefore neglect this interaction ig thug own
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approximation and are able, after the application of a
peaking approximation, to express the scattering ampli-
tude in the form

f, (K) = —(2me2 jfi2E2) Ad(1 —n)

where A is a dimensionless quantity given by

(104)

F(lv, 1; 2klr —zkl r)

v= (k +P 1~2) 1 (106)

To evaluate A, Vainshtein et al. replaced exp (2iK r)
by exp ( —2iK r) in (105). However Omidvar (1967)
has discovered that this further approximation is un-
necessary and has given a method of evaluating A
exactly. Crothers and McCarroll (1965) have intro-
duced a modification of the original approach of
Vainshtein et al. which also enabled them to evaluate A
without approximation but they found that the eGec-
tive charge |and the corresponding value of 1 become
complex which seems undesirable.

The cross sections for the 1s—+2s and 1s—+2p excita-
tion calculated by Omidvar using his expression for the
scattering amplitude with exchange neglected show
subsidiary maxima close to the threshold energy
similar to those found by Crothers and McCarroll. We
note that a subsidiary maximum close to the threshold
was also obtained by Burgess (1964) for the 1s~2p
excitation cross section using a semiclassical approxi-
mation which likewise regards the scattering problem
as a collision between two free electrons.

There are so many approximations of an uncertain
character which are made in the Vainshtein et al. ap-
proach, even as treated by Omidvar, that it seems im-
possible to assess properly the validity of the method.
{ In a recent note by Crothers (1967) it is claimed that
there is an error in the work of Omidvar (1967) arising
from an incorrect analytic continuation. Correction of
this error leads to the removal of the subsidiary maxima
found previously. j

Z.13. Partial lVaee Arlalysis

At the present stage it is convenient to examine the
partial wave analysis in more detail and from a diBerent
point of view. The approach we shall follow is that due
to Percival and Seaton (1957).

gF( iv, 1;—iklr —21r1 r)

&&r ' exp (22K r)dr. (105)

We see that if A is set equal to unity we regain the
first Born approximation.

Unfortunately the terms which have been neglected
in deriving equation (102) give rise to divergences in
the limit k1~0. By introducing an effective charge f,
Vainshtein et al. show that these divergences can be
eliminated if the parameter v is redefined according to
the formula

We suppose that the atomic hydrogen electron has
principal quantum number e and angular momentum
quantum numbers l&, mI', m~' and that the free electron
has wave number k and angular momentum quantum
numbers l2, m2', m2'. The angular momenta of the two
electrons may then be coupled together to yield the
total orbital angular momentum with quantum num-
bers L, ML, and the total spin angular momentum with
quantum numbers S, M&. Since the total orbital and
spin angular momenta are separately conserved
throughout the collision, their quantum numbers re-
main unaltered.

Introducing the spacial function

+@1112 (rl) r2) = g &ml m2 ML 4'nlym& (r1)
«a1&,«s2&

X l I (tt2 $2)r2 F l l (&2) (107)

where C ' '~ '"» is a Clebsch —Gordan vector cou-
Pling coefficient, 1P„l,m, '(rl) is an atomic hydrogen wave
function and P&~, ~ is a spherical harmonic. we may ex-
pand the complete spacial wave function in the sym-
metrized forms

Q +LMLs(rl r2) —2—1/2g{+,LMLs(rl r2)

&O'„LMLs(r2, rl) }, (108)

where v denotes the set of quantum numbers el~l2.
The positive sign is associated with the singlet S=O
scattering case while the negative sign corresponds to
the triplet 5=1 scattering case. Substituting (108)
into the Schrodinger equation (1) then yields the set
of coupled integrodifferential equations for the radial
functions F Ls(r):

l2 l2 1
+k '— F Ls(r)

dr2
"

r2

+(2212/fi') g{V ~ (r) W» L (r)—)F„L (r) =0 (109)
yl

where the V„„L(r) are potential interaction terms and
the W„Ls(r) are exchange interaction terms whose de-
tailed forms have been given by Percival and Seaton
(1957). These equations are independent of ML and
Mq and exhibit no coupling between states of diferent
L, S quantum numbers.

Let us suppose now that the initial state of the whole
svstem of electron and hydrogen atom is v' and that
the final state is v. Then the asymptotic behavior of the
radial function F„Ls(r) may be chosen to have the form
at large r.

F Ls (r)~k„"'{sin (k„r—21l22r) 6».

+cos (k„r—21l22r) R„} (110)
or alternatively

F„Ls(r) k„'"{expL —2 (k„r——.,'l2m. ) jb„„.

—exp Li(k„r——2'l22r) g5„„}, (111)
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where R„„and 5,„. are the elements of the reactance
matrix R and the scattering matrix S, respectively. It can
be readily verified that these matrices are related ac-
cording to the formula

S= (1+iR) /(1 —iR) . (112)

Since the reactance matrix is real and symmetric we
have

and so
R*=R,

S=S,

(113)

which means that the scattering matrix is symmetric
and unitary. The unitary property of the scattering
matrix is equivalent to the conservation theorem of
Bohr, Peierls, and Placzek (Mott and Massey, 1965a).

The cross section can be conveniently expressed in
terms of the transmission matrix T defined by the
formula

T=1—S=—L2iR/(1 —iR) j.
Thus we have

Q„ t;„t, w, Q(——nip, e'lg') /( k„' 2(2lg'+1) ],
where the collision strength 0 is given by

Q(nlg, e'lg')

(115)

(116)

=-,' Q (2S+1)(2&+1) i T(nhi2SI-, n'l&'l~'SI) ~'.
l2l2~SL

(117)

T= —2iRo/(1 —iRe) . (120)

Z.14. Ueitarised Born A pproximation (Sometimes
Enowe as the Bore II Approximation)

The usual Born approximation to the n'l~' —+n/~ exci-
tation cross section follows from the analysis sum-
marized in the previous section by setting

T= —2iRg)

where the matrix R~ is the Born approximation to the
R matrix and has elements

2m GO

R&,„„——— (k„k„)'" j&, (k„r) V„; (r)
0

Xj t 2(k„r) r 'dr. (119)-
Expression (118) for the T matrix corresponds to an S
matrix which does not satisfy the unitary condition
S*S=1 so that the conservation theorem (Mott and
Massey, 1965a) is not obeyed although this is not a
serious matter if T is small.

Seaton (1961) has pointed out that the unitary condi-
tion can be satis6ed by setting R =Ro in formula (115)
for T which yields the unitarized Born approximation
to the transmission matrix

Calculation of the Horn approximation to the R
matrix for transitions involving the states

2
3

5

nip

1$
2$

2p
2p
2p

/2

4—1
8+1

(121)

have been performed by Lawson, Lawson, and Seaton
(1961). Using these matrix elements together with
formula, (120) for the transmission matrix, V. M.
Burke and Seaton (1961) have evaluated the collision
strengths Q(1s, 2s), Q(1s, 2p), Q(1s, 2p0), Q(2s, 2pqt~),
and Q(2s, 2p3iq). Whereas formula (118) for the trans-
mission matrix makes no allowance for coupling between
the initial state or the final state and other states,
formula (120) does include some allowance for such
couplings. In addition, since the conservation theorem
is automatically satisfied by taking the transmission
matrix to have the form (120), one might expect the
resulting cross sections should be more accurate than
those obtained by employing the usual form of the
Born approximation. That this is not necessarily so
can be verified by inspection of Figure 13 where the
cross sections for the 1s—+2p excitation of atomic hydro-
gen, calculated using the unitarized Born approxima-
tion and the 1s—2s—2p close coupling approximation
with exchange neglected, are compared. The inade-
quacy of the unitarized Born approximation for the
1s—+2s and 1s-+2p excitations occurs because the cou-
plings involved are insufficiently strong.

Coupling to the 3s, 3p, and 3d states has been in-
cluded in an investigation carried out by Somerville
(1962; 1963) using the unitarized Born approximation
but the resulting changes in the cross sections were
small.

Z.I5. Close Couplieg A pproximation

A much more satisfactory approach to the problem of
determining excitation cross sections is to obtain the
transmission matrix elements by means of the exact
solution of the coupled integrodiGerential equations
(109) using numerical techniques. Since one cannot
solve an infinite set of coupled equations, the atomic
states which enter into the expansion of the total wave
function (107) are con6ned to just a few of the lowest-
lying states giving rise to a finite set of coupled integro-
differential equations. This is called a close coupling
approximation, the order of the approximation de-
pending upon the atomic states which are retained in
the expansion of the total wave function.

The first calculations along these lines were concerned
with the is—+2s excitation and neglected coupling to
all states other than the initial and final states. Ke
refer to this as the 1s—2s close coupling approximation.
Bransden and McKee (1956) performed a numerical
integration of the pair of coupled equations associated
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with the 4=0 partial wave in which exchange was
neglected. Subsequently Marriott (1958) performed a
similar investigation but included full allowance for
exchange. The resulting values of the 1.s~2s excitation
cross sections for the zero-order partial wave, Qs,o

and Qs,e+, where the absence of a sign indicates exchange
neglected and the positive and negative signs denote
singlet and triplet scattering, respectively, are given
in Table XIV. As we have noted earlier, when exchange
is neglected, the first Born and the distorted waves
approximations both provide partial cross sections
Qs,e which are in fairly satisfactory agreement with the
results of the numerical integration of the coupled
differential equations. However, when exchange is
included, the Born—Oppenheimer and the distorted
waves approximations give rise to partial cross sections
Qs.e+ which are considerably different from those calcu-
lated using the 1s—2s close coupling approximation.

The calculations of Bransden and McKee (1956),
in which exchange was neglected, were then extended
by Smith, Miller, and Mumford (1960) to all partial
waves making a significant contribution to the total
1s—+2s excitation cross section for electron impact
energies up to 54 eV their cross-section curve being
displayed in Fig. 18. They also included coupling to the
3s state, which was found to have the effect of slightly
reducing the total 1s—+2s excitation cross sections; in
addition they calculated the 1s—+3s excitation cross
section using the 1s—3s and the 1s—2s—3s close coupling
approximations. Subsequently Smith (1960) extended
the calculations of Marriott (1958) on the 1s—+2s
excitation, in which exchange was taken into account,
to the l=1 and 2 partial waves.

Referring to the list of states (121) we note that the
states v = 1, 2, 3, 4 are of the same parity and lead to
four coupled integro-diGerential equations for L&0
and to three coupled equations for L=O because the
v=3 state ceases to exist for this special case. Since the
v=5 state has a different parity to the other states, it is
uncoupled to them and gives rise to a separate equa-
tion. The solution of this equation is required only for
elastic scattering and for transitions between the 2p
states with j= 2 and j=~.

These coupled integrodiGerential equations have
been solved numerically by several investigators for a
number of values of L (P. G. Burke, V. M. Burke,
Percival, and McCarroll, 1962; V. M. Burke and Mc-
Carroll, 1962; Damburg, 1962; Damburg and Peterkop,
1962 a, b, c and 1963; Burke, Schey, and Smith, 1963;
Gailitis and Damburg, 1963; Damburg and Gailitis,
1963, Burke, Ormonde, and Whitaker, 1966; Burke,
Ormonde, Taylor, and Whitaker, 1967; and Omidvar,
1964).At the time of writing the most extensive calcu-
lations have been carried out by Burke, Schey, and
Smith (1963) and by Omidvar (1964). In Tables XVIII
and XIX are displayed the partial cross sections Q~
for the is~2s and 1s-+2p excitations of atomic hydro-
gen calculated by Burke, Schey, and Smith (1963)

according to the is—2s—2p close coupling approximation
with allowance made for exchange in which all four
integrodiGerential equations connecting the v = 1, 2, 3, 4
states are solved for each value of L. These values of the
singlet and triplet partial cross sections include the spin
weighting factors ~ and 4, respectively. All L values
making a significant contribution to the total cross
sections were included. Presented in Tables XX and
XXI are the total is~2s and is—+2p excitation cross
sections calculated by Burke, Schey, and Smith (1963)
employing the 1s—2s—2p close coupling approximation
with exchange taken into account. It is instructive to
compare these total excitation cross sections with
those calculated by Omidvar (1964) according to the
is—2s—2p close coupling approximation with exchange
neglected. This comparison is made in Figs. 18 and 19;
we see that the eGect of allowing for exchange is to
reduce substantially both the 1s~2s and is~2p excita-
tion cross sections close to the threshold energy al-
though the behavior becomes more complicated a few
volts above threshold for the 1s—+2s excitation. To
show the eGect of coupling to states other than the
initial and final states of the transitions, we also dis-
play in Figs. 18 and 19 the total 1s—+2s excitation cross
section calculated using the 1s—2s close coupling ap-
proximation and the total is~2p excitation cross sec-
tion calculated according to the is—2p close coupling
approximation, exchange being included in both cases.
We see that coupling to the states different from the
initial and final states of the transition causes a reduc-
tion in the excitation cross sections, except for the
1s—+2s excitation close to the threshold energy where
in fact the coupling to the 2p state produces a small
increase.

Because of the probable importance of coupling to
higher states, Burke (1963) investigated the con-
vergence of the close coupling approximation by solving
the seven coupled integrodiGerential equations involved
in the is—2s—2p —3s—3p close coupling approximation
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FIG. 18. Total cross sections for the 1s-+2s excitation of atomic
hydrogen. Curve 1: Grst Born approximation (Omidvar, 1964).
Curve 2: 1s—2s close coupling approximation neglecting exchange
(Smith, Miller, and Mumford, 1960). Curve 3: 1s—2s—2p close
coupling approximation neglecting exchange (Omidvar, 1964).
Curve 4: 1s—2s close coupling approximation including exchange
(Omidvar, 1964) . Curve 5: ls-2s-2p close coupling approximation
including exchange (Burke, Schey, and Smith, 1963).
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at 16.5 eV. The results of his calculations for the is~2s,
is—+2p, and 1s-+3p excitation cross sections are dis-

played in Table XXII. Clearly the eGect of coupling
to the 3s and 3p states reduces the cross sections sub-
stantially, particularly for the 1s—+2s excitation case.
It is to be anticipated that the still higher states will
have a profound effect upon the total cross sections.

Burke, Schey, and Smith (1963) have also calculated
the 1s—+3p excitation cross section using the is—3p
close coupling approximation. They 6nd a large peak
in the neighborhood of 15 eV as can be seen from Fig. 20
where their cross-section curve is compared with the
Born approximation. However the is—2s—2p—3s—3p close
coupling calculation performed by Burke (1963) shows
that coupling to the 2s, 2p, and 3s states is important,
reducing the is—+3p excitation cross section from 0.319
nut) to 0.250 m.a0' at 16.5 eV. Coupling to higher states
may well be important also.

Very interesting calculations in the neighborhood of
the threshold energy for the excitation of the 2s and 2p
states of atomic hydrogen have been performed by
Damburg and Gailitis (1963) and Gailitis and Damburg
(1963). They employed the 1s—2s—2p close coupling
approximation with exchange included to determine the
1s-+2s and 1s—&2p partial cross sections for L=0.1, 2.
These are displayed in Table XXIII.Using the 1s—2s—2p
close coupling approximation with exchange neglected,
they also calculated the partial cross sections for 1.&3
so obtaining the total cross sections for the 1s—+2s
and 1s-+2p excitations given in Table XXIV. We see
that the L=O, 1, 2 partial cross sections as well as the
total cross sections for the is~2s and 1s—+2p excitations
remain finite in the vicinity of the threshold energy.
This behavior can be understood by virtue of the
following considerations. The effect of the close coupling
between the degenerate 2s and 2p states is to introduce
an additional potential cc/r2 acting upon —the free
electron, where o. is a symmetrical matrix whose
diagonal elements are zero. The centrifugal term
l (2l +21) /r 2occurring in the radial equation (109) then

2.l—

1.8—

1.5—

o 12—

0.9—
(3

I i ! s I i I & I

0 10 20 30 40 50

E(ev)

FrG. 19.Total cross sections for the 1s~2p excitation of atomic
hydrogen. Curve 1: first Born approximation (Omidvar, 1964).
Curve 2: 1s—2s—2p close coupling approximation neglecting ex-
change (Omidvar, 1964). Curve 3: 1s—2p close coupling approxi-
mation including exchange (Omidvar, 1964). Curve 4: 1s—2s—2p
close coupling approximation including exchange (Burke, Schey,
and Smith, 1963).
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FrG. 20. Total cross sections for the 1s—+Bp excitation of atomic
hydrogen. Curve 1: first Born approximation (Vainshtein, 1965) .
Curve 2: 1s—3p close coupling approximation including exchange
(Burke, Schey, and Smith, 1963).

becomes replaced by 71, (X+1)/r', where a=7I, (7i+1) is a
characteristic root obtained by diagonalizing the matrix
/2(l2+1) —c2 so that

7~ = ——,'+ (-,'+a) '.
The threshold behavior of

1
T(v, v') 1', where T is the

transmission matrix, is given by
1

k2"+'t21' so that pro-
vided X+-2' is real the partial cross section for the
v ~v excitation vanishes in the limit as k2—+0 in the
usual way. However if there are negative values of
a( —es then X+22=its, where tc is real and so

1
p x+1/2 12

—
I

p io 12
—1

which means that the excitation cross section remains
finite in the neighborhood of the threshold.

An extension of the above argument shows also that
the cross sections oscillate in the vicinity of the thres-
hold, this being confirmed by the 1s—2s—2p close cou-
pling calculations performed by Damburg and Gailitis
(1963) which reveal that the 1s—+2p excitation cross
section exhibits a minimum just above the threshold
energy.

Very lengthy computations on the behavior of the
1s—+2s and 1s~2p excitation cross sections in the
vicinity of the m=2 threshold employing the 6 state
1s—2s—2p—3s—3p—3d close coupling approximation have
been carried out recently by Burke, Ormonde, and
Whitaker (1966, 1967). Their cross sections are com-
pared with those obtained using the 3-state 1s—2s—2p
close coupling approximation in Figs. 21 and 22. The
effect of adding a number of correlation terms to the 3-
state close coupling expansion has been investigated
by Burke and Taylor (1966) and more extensively by
Taylor and Burke (1967).The results obtained with this
correlation approximation employing 20 correlation
terms, which allow explicitly for the interelectron sepa-
ration r~2 in a similar fashion to that done in bound state
problems, are also displayed in Figs. 21 and 22.

Just above the I= 2 threshold at ki2=0.75 the 3-state
approximation, with and without allowance for correla-
tion, is dominated by an 5=0, L=1 resonance which
presumably would also be found using the 6-state ap-
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proximation if extended to sufficiently low energies.
Above k~' ——0.85 the excitation cross sections given by
the 6-state approximation are dominated by resonances
arising from the m=3 level.

An interesting feature of the three calculations whose
results are presented in Figs. 21 and 22 is their satis-
factory accordance over the energy range from just
above the m=2 threshold to ki2=0.85. This has led
Burke and his collaborators to make the hypothesis
that the close coupling approximation is valid for all
energies which are insufficient to excite resonances and
channels associated with the lowest level excluded from
the expansion. In particular they suggest that the 6-
state approximation should be quite accurate for all
energies below that required to excite the resonances
arising from the v=4 level, that is below about 12.5 eV.

state, the first 8orn approximation to the scattering
amplitude is given by

—27Ã8

A,2E2 exp (iEs)&P„*(r)&P2(r) dr, (124)

where the s axis has been chosen along the momentum
change vector AK. If we now make use of the Schro-
dinger equations satisfied by the exact wave functions
&p2 and &p„of the initial and anal states of the atom, we
find that this expression can be replaced by the alterna-
tive formula:

g2

f„"(E)= i- exp (iEs)
IC(F2 F.„)—

3. Helium

Having examined the various approximati. ons which
have been used to investigate the excitation of atomic
hydrogen, we now direct our attention to their applica-
tion to the study of atomic systems with more than one
electron. The simplest of these is helium which is a
particularly interesting case to treat in detail since it
has been the subject of the most thorough experimental
investigation.

where
Pi(r2, r2) =42(z

~
ri) 42(~

~
r2), (122)

&2(X
~
r) = (X'/ ) 't' exp (—Xr) (123)

the parameter X being determined by the variational
method to be Z=1.6875. (We express radial distances
in units of the Bohr radius a«. ) To represent the excited
states of helium they used symmetrized functions com-
posed of products of hydrogenic orbitals.

Because of the approximate nature of the helium
atom wave functions there is an additional uncertainty
in these calculations beyond that arising from the appli-
cation of the Born approximation. Bates, Fundaminsky,
Leech, and Massey (1950) have pointed out that infor-
mation regarding the error introduced by the use of ap-
proximate wave functions can be obtained by employing
an alternative expression for the scattering amplitude
which weights the various regions of coordinate space
differently. We have already shown that for the excita-
tion of the eth state of a hydrogen atom from the ground

3.1. First Bore Appronmatioe

As for the case of atomic hydrogen we begin by
looking at the Born approximation. The earliest calcu-
lations using this approximation were performed by
Massey and Mohr (1931; 1933b) who applied it to the
excitation of a number of singlet states of helium. In
the treatment of helium excitation we need to use ap-
proximate wave functions to describe the atomic elec-
trons. For the ground state of the helium atom Massey
and Mohr chose the very simple Hylleraa, s (1929)
function

Calculations have been performed by Altshuler (1952;
1953) on the 1'S—&2'F, 1'S +3'F, an—d 1'S~2'S excita-
tions of helium using both forms for the scattering
amplitude, suitably modified to hold for the case of two
electron atomic systems. To represent the ground state
of helium he took the simple Hylleraas function (122)
while for the e'P states of helium he chose

+&ti(2
~

r2) &t'„~ (1
~

r2) }, (126)

where &t& ~ (X
~
r) is the hydrogenic wave function for

the state with quantum numbers e, l, m corresponding
to an effective charge A. For the 2'S state of helium the
function (126) is inadequate because it is not orthogonal
to the ground-state wave function &P2. However this
orthogonalization was achieved by taking

6~2(ri, r2) =2 '"I4~(~
I r2)42M(P I r2)

+&t&1(~
~

r2) &t&200(P
~

r2) I +A42(r2, r2) (127)

where A was chosen so as to orthogonalize &p2«o and &p2

while the screening parameters were determined by the
variational method to be &2=1.98, t2=1.20. The total
excitation cross sections obtained by Altshuler are
displayed in Figs. 23, 24, and 25. We see that although
the absolute magnitudes of the total excitation cross
sections calculated with the aid of formulas I and II
diGer somewhat, their dependence upon energy are
rather similar.

The helium wave functions (122) and (126) give
rise to the verv poor value 0.187 for the 1'S~2'P
oscillator strength compared to the value 0.266 calcu-
lated by Wheeler (1933) using an accurate wave func-
tion for the ground state of helium obtained by Hyl-
leraas (1930) as well as an improved wave function for
the 2'F state. Lassettre and Jones (1964) have calcu-
lated the differential cross section for the 1'S—+2'P
excitation of helium employing the same atomic wave
functions as Wheeler. An interesting feature of their
calculations, erst pointed out by Miller and Platzmann
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FIG. 21. Total cross sections for the 1s—+2s excitation of atomic
hydrogen (Burke, Ormonde, Taylor, and Whitaker, 1967}.
Curve 1: 1s—2s—2p close coupling approximation. Curve 2: cor-
relation approximation. Curve 3: Is—2s-2p —3s—3p—3d close cou-
pling approximation.

(1957), is that although there is very poor accordance
between the diGerential cross section calculated by
Lassettre and Jones using the accurate wave functions
of Wheeler and that calculated using the crude hydro-
gen-like functions (122) and (126) together with for-
mula I for the scattering amplitude, there is satisfactory
agreement between the re6ned calculations of I.assettre
and Jones and the differential cross section calculated
by Altshuler (1952) using formula II and the hydro-
gen-like functions. The calculations of Lassettre and
Jones were extended to larger values of E' by Silver-
man and Lassettre (1964) who compared them with
their experimental data for 500-eV electrons. It can be
seen from Fig. 26 that the agreement between the shape
of the theoretical curve and the experimental data is
remarkably good.

Fox (1965) has also used the Born approximation to
calculate cross sections for the 1'S—+n'S excitations of
helium corresponding to m=2, ~ ~, 10. For the ground-
state wave function he chose the Hartree self-consistent
6eld function given by

pl (rl r2) 41(rl) rt'l(r2)

fitting the one-electron orbital pl to a sum of two ex-
ponential terms, while for the excited e'S state of
helium Fox took wave functions having the form
p„+Apl, where A is a constant chosen so as to orthog-
onalize against IJrl, and

$„(rl, r2) =2 "2
I @1(2 I rl) $„(r2)

+el(2 I
r2) y-(rl) I (»9)

where It„ is a truncated Whittaker function. In Fig. 27
we compare the diGerential cross section for the
1'S—+2'S excitation calculated by Fox (1965) using the
Born approximation with the experimental data of
Lassettre, Krasnow, and Silverman (1964) for 500-eV
electrons. The accordance is very satisfactory. The total
cross sections for the excitation of the e'S states of
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FIG. 22. Total cross sections for the Is—+2p excitation of atomic
hydrogen (Burke, Qrmonde, Taylor, and Whitaker 1967) .
Curve 1: Is—2s-2p close coupling approximation. Curve 2: cor-
relation approximation. Curve 3: 1s-2s-2p-3s-3p —3d close cou-
pling approximation.
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helium calculated using formulas I and II for the first Born approx-
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FIG. 26. Differential cross section for the j'S—+2'P excitation of
helium at 500 eV. Solid curve: Grst Born approximation {Lassettre
and Jones, 1964; Silvermsn and Lassettre, 1964). Q symbols: ex-
perimental data for approximately 500 eV (Silverman and
Lassettre, 1964).

helium for n=2, ~ ~ ~, 10 calculated by Fox (1965) are
displayed in Fig. 28.

Fox (1966; 1967) has also investigated the 1'8~3'D
excitation of helium using the Born approximation,
talung the Eckhart (1930) function for the ground
state of helium given by

4'1(rl rs) =exp 1 (rrrt+—Prs) 1

+exp {—(err, +Jr,) 1 (130)

with rr= 2.14, P= 1.19 and the function (126) for the
3'D state of helium. He obtained the total excitation
cross section displayed in Fig. 29 employing the stand-
ard form I of the Born approximation and the alterna-
tive form II. In the same way as for the excitations of
the 2'S, 2'P and 3'P states of helium treated by
Altshuler (1952; 1953), the alternative form of the
Born approximation gives rise to the larger cross sec-
tion. By calculating the scattering in the forward direc-
tion, Fox (1966) shows further that the Eckhart
ground-state helium wave function produces a cross
section which is larger than that resulting from the use
of a Hartree self-consistant field function for the ground
state.

The Born approximation has also been used by
Moiseiwitsch (1957) to calculate cross sections for the
2'S—&2'P, 3'P', 3'D, and O'D excitations of helium, the
wave functions being chosen to have the genera1 form

(rt, rs) =2 14t(2 1
rt)4 t (rs)

For the 2'S—+2'P, 3'D, and 4'D excitations, the helium
2s orbital was chosen to be

(132)

with n=2.00, /=0. 695 while ps~, @se~, and p4q were
assumed to be hydrogenic. The 2'S—+3'P excitation
cross section was found to be very sensitive to the
parameters of both the initial and Anal orbitals. Con-
sequently, for this particular case, use was made of the
more accurate atomic orbitals derived by Morse, Young,

The results of these Born approximation calculations
are displayed in Table XXV.

In the case of the 2'S—+2'P excitation, the coupling
between the initial and final states is rather strong. For
this reason the Seaton modi6cation of the Bethe ap-
proximation (1961) was also used by Moiseiwitsch
(1957) to calculate the total cross section for the
2'S—+2'P transition, the results being compared with
those given by the Born approximation in Table
XXV. We see that the maximum value of the cross
section is reduced from the Born approximation value of
nearly 300m+' to about 115m'ap the position of the
maximum being displaced to higher electron impact
energies and the shape of the peak being altered sub-
stantially.

3.Z. Exchange A pproximations

The approximations which we are dealing with under
the present heading are the Born—Oppenheimer approx-
imation, the erst-order exchange approximation, and
the Ochkur approximation.

One of the earliest investigations using the Born-
Oppenheimer approximation was concerned with the
1'5~2'S, 2'P, 3'P, 3'D, and O'P excitations and was
carried out by Massey and Mohr (1931; 1933b).
These transitions all involve a change in the total
spin of the helium atom and can only occur as the
result of electron exchange. The exchange scattering
amplitude was obtained by expanding in a series of
spherical harmonics. Their calculations were for 100-,
200-, and 400-eV incident electrons where the cross
sections are all very small. Further calculations were
performed by Bates et at. (1950) who, in particular, in-

vestigated the difference in the cross sections arising
from using the post and prior interaction forms of the
Born—Oppenheimer approximation, often referred to as
the post prior discrepancy—. The prior and post interac-
tions are those between the incident electron and the
atom, and between the scattered electron and the atom,
respectively. If an exchange of electrons has taken
place, these two interactions will be diferent. However,
the scattering amplitudes given by the Born—Oppen-
heimer approximation associated with the post and
prior forms of interaction are still the same provided
exact atomic wave functions are employed which

means that for the case of scattering by atomic hydrogen
there is no post —prior discrepancy. On the other hand,
since we have to use approximate atomic wave func-
tions for scattering by helium, the two forms of Born-
Oppenheimer approximation will lead to different re-
sults in this case. This is illustrated in Fig, 30 where the



B. L. Motsatwrrsctt ANn S. J. Sstrrtt Ejectrett frItpaet Paejtateog of Atottts 261

0.21

0.18

0.15

0.06—

0.03—

0
I

1.0

K' (a.u. )

2.0 3.0

(a)

N
O

C5

~24

.20—

.16—

.08-

.04—

0
25 30

E(eV)

2
3

FrG. 27. DiGerential cross section for the 1'S—+2'S excitation of
helium at 500 eV. Solid curve: erst Born approximation (Fox,
1965). symbols: experimental data for approximately 500 eV
(Lassettre, Krasnow, and Silverman, 1964).

12 '
I

'
I

'
I

'
I

(b)

Cu

O

~ 20 s s i i
I

i i ~ i
I

r s & a
I

i a c s

.16—

~04—

-1.8—
ot

O

(3
O

O
-2.4—

I

'
1,2 1.4

I e I s I

1.6 1,8 2.0

Log, E(eV)

I

22 24

I i & I & I

15 20 25 30 35

E(eV)

Fzo. 30.Total cross sections for the excitation of the 2'S and 2'P
states of helium (a—2'S, b—2'P) (Bates, Fundaminsky, Leech,
and Massey, 1950). Curve 1:Born —Qppenheimer approximation
using post interaction. Curve 2: Born-Oppenheimer approxima-
tion using prior interaction. Curve 3: first Born approximation.

2s6 &

I
i

I
s

—-3.2—
CU

O

Ct
O

0~ -3.8-
{b)

12 14 1,6 1,8 2,0 2.2

Log IpE(eV)

2.4

2.0
U

O
1.0

C3

0
I I I I I I I I I I I I I I

0 50 100

E(ev)
150

FIG. 29. Total cross sections for the 1'S—+3'D excitation of
helium calculated using formulas I and II for the first Born approx-
imation to the scattering amplitude (Fox, 1966).

FIG. 28. Total cross sections for the 1'S—+e'S excitations of
helium for e =2, 3, ~ ~ ~, 10 calculated using the first Born approxi-
mation (Fox, 1965).

total cross sections for the 1'S—+2'S and j.'S—+2'I'
excitations of helium calculated using the post and
prior forms of the Born—Oppenheimer approximation
are displayed. We see that the discrepancy is very
great for the S—+S transition near the threshold but
relatively small for the S—+I' transition. This is in
accordance with the observation made previously that
the Born—Oppenheimer approximation is very poor
for S~S transitions, typically giving rise to greatly
overestimated cross sections.

More recent calculations using the Born—Oppen-
heimer approximation have been carried out by Massey
and Moiseiwitsch (1954; 1960) and by Bell, Eissa, and
Moiseiwitsch (1966) for the excitation of the 2'S and
2'P states of helium. The calculations performed by
Massey and Moiseiwitsch used the simple Hylleraas
ground-state helium wave function (122) while those
carried out by Bell, Eissa, and Moiseiwitsch used the
variational function obtained by Green, Mulder, Lewis,
and Woll (1954) which has the form (128) with

yt(r) =N(e zr+ce 'z')—-(135)

and Z= 1.4558, c=0.6. This is a rather good analytical
6t to the Hartree self-consistent field function for the
ground state of helium. Both groups of investigators
employed the wave functions for the 2'S and 2'P
states obtained by Morse, Young, and Haurwitz (1935)
possessing the form (131) with @&, being given by
formula (133) and ps~ being a hydrogen-like orbital
with a variationally determined screening parameter.
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Fzo. 31.Total cross sections for the excitation of the 2'S state
of helium. Curve 1: Born—Oppenheimer approximation (Bell,
Kissa, and Moiseiwitsch, 1966). Curve 2: Grst-order exchange ap-
proximation (Bell, Eissa, and Moiseiwitsch, 1966). Curve 3:
Ochkur approximation (Ochkur and Bratsev, 1965b). Curve 4:
3-state close coupling approximation (Marriott, 1964) .

Even though diferent ground-state wave functions were
employed, the Born—Oppenheimer approximation cross-
sections calculated by the two groups of investigators
were in good agreement. The cross section curves for the
1'5~2'5 and 1'S—+2'E excitations calculated using
the Born—Oppenheimer approximation are displayed
in Figs. 31 and 32 where they are compared with the
Ocher approximation calculations and with more
sophisticated calculations which are discussed in sub-
sequent sections.

The values of the Born —Oppenheimer approximation
cross sections calculated by Bell, Kissa, and Moisei-
witsch are given in Tables XXVI and XXVII where a
comparison is made with the first-order exchange ap-
proximation cross sections evaluated by the same au-
thors. We see at once that for electron energies & 150 eV
the use of the first-order exchange approximation re-
duces the 1'S—+2'5 excitation cross section given by
the Born—Oppenheimer approximation by about a
factor of 10 although at higher energies the two ap-
proximations tend to each other. Inspection of Table
XXVII reveals that for the 1rS~2sP (M=O) excita-
tion of helium, the cross section given by the Born-
Oppenheimer approximation is somewhat larger than
that given by the Grst-order exchange approximation
for electron energies &50 eV but that above this energy
the two approximations yield similar results. For the
excitation of the 2'P (3II=&1) states of helium the
two approximations are identical.

Calculations on the excitation of the 2'5 state of
helium using a variety of forms of interaction between
the free electron and the atom have been carried out by
Joachain and Mittleman (1965) employing the Born-
Oppenheimer approximation and modifications thereof.
They used the simple Hylleraas ground-state wave
function (122) together with the 2'S state wave func-
tion given by (131) and hydrogen-like orbitals having
variationally determined parameters. The cross sec-
tions obtained by them using the post and prior forms
of the Born—Oppenheimer approximation are in reason-
ably satisfactory accordance with each other and with

the cross section calculated by Massey and Moiseiwitsch
using the Born—Oppenheimer approximation. On the
other hand the cross sections calculated by Joachain
and Mittleman using post and prior forms of the Qrst-
order exchange approximation are in total disagreement
with each other. Moreover their prior interaction cross
section is more than a factor of 2 greater than the Qrst-
order exchange approximation cross section calcu-
lated by Bell, Eissa, and Moiseiwitsch (1966) who also
employed the prior interaction but with a rather better
ground-state wave function.

We now come to the interesting calculations carried
out by Ochkur (1963) and by Ochkur and Bratsev
(1965; 1966) based on the so called Ochkur approxima-
tion already discussed in Sec. 2.7. An important fea-
ture of this approximation is that it cannot give rise to
a post —prior discrepancy since it satisfies the principle
of detailed balancing. The cross sections calculated by
Ochkur (1963) for the 1'S—2'S and 1'S~2'P excita-
tions, using atomic wave functions having the forms
(128) and (129) with the one-electron orbitals being
the simple analytical functions given by Veselov,
Antonova, Bratsev, and Kirillova (1961),are displayed
in Figs. 31 and 32. Ke see that the Ocher approxima-
tion results in total excitation cross sections which are
much smaller than the Born—Oppenheimer approxima-
tion cross sections and indeed considerably smaller
than the 6rst-order exchange approximation cross sec-
tions calculated by Bell, Kissa, and Moiseiwitsch.

Ochkur and Bratsev (1965) have extended the
Ochkur approximation calculations to the excitation of
many other states of helium, both triplet and singlet,
using Hartree —Fock atomic wave functions. Their re-
sults are collected together in Tables XXVIII and
XXIX. It can be verified from Table XXVIII that
the cross sections for the excitation of the triplet states
all decay with electron impact energy E according to
the law E ' which is much faster than the laws for the
excitation of singlet states: 8—' for optically forbidden
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FEG. 32. Total cross sections for the excitation of the 2'P states
of helium. Curve 1: Born-Oppenheimer approximation (Bell,
Eissa, and Moiseiwitsch, 1966).Curve 2: erst-order exchange ap-
proximation (Bell, Eissa, and Moiseiwitsch, 1966). Curve 3:
Ochkur approximation (Ochkur and Bratsev, 1965b). Curve 4:
distorted waves approximation including exchange (Massey and
Moiseiwitsch, 1960). Curve 5: distorted waves approximation
including exchange (Lashmore-Davies, 1965).
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transitions and E ' ln E for optically allowed transi-
tions. Also the cross sections for the excitation of the
states of a given series are proportional to e ', where n
is the principal quantum number. Although the validity
of the e ' law is justi6able only for large values of n it is
found that it holds quite well even for low values of n.

Because the cross sections calculated by Ochkur and
Bratsev for the excitation of the singlet states of helium
include allowance for exchange they should be slightly
smaller than the corresponding cross sections resulting
from the use of the first Born approximation.

Calculations of the excitation cross sections for the
2'5—+n L and 2'S~g'L transitions of helium have also
been performed by Ochkur and Bratsev (1966) using
the Ochkur approximation together with Hartree —Fock
atomic wave functions. The values of their cross sections
are displayed in Tables XXX and XXXI. Satisfactory
accordance with the earlier calculation of Moiseiwitsch
(1957) on the excitation of the 3'P, 3'D, and 4'D states
of helium using the Born approximation was found.

3.3. Distorted Waves A pproocimation

The earliest calculations using the distorted waves
approximation were performed by Massey and Mohr
(1933a) who investigated the 1'S—+2'P, 1'S—&2'P exci-
tations of helium.

More recently Massey and Moiseiwitsch (1954; 1960)
have calculated cross sections for the excitation of the
2'5, 235, and 2'P states of helium using the simple
Hylleraas ground-state wave function (122) while
Lashmore-Davies (1965) has recalculated the total
cross section for the 1'5—+2'P excitation using the
ground state wave function obtained by Green et aL.

(1954). For the excited states of helium both Massey
and Moiseiwitsch (1954; 1960) and Lashmore-Davies
(1965) used the helium wave functions obtained by
Morse, Young, and Haurwitz (1935). Unfortunately
their 2'5 state wave function is not completely orthog-
onal to the ground-state wave function (122) and so
the accuracy of the cross section for the excitation of
the 2'5 state is correspondingly reduced.

The most interesting feature of the distorted waves
calculation for the excitation of the 2'5 state of helium
is the appearance of the very sharp peak in the zero-
order partial cross section just above the threshold
energy. This peak seems to arise as the consequence of
the existence of a doubly excited state (1s2s') 'S of He
with energy slightly less than that of the (1s2s)'S
metastable state of helium, producing a resonance in
the s wave scattering of electrons by the 2'5 state of
helium.

Directing our attention now to the excitation of the
2'P states of helium, we see from Fig. 32 that the dis-
torted waves calculations of Massey and Moiseiwitsch
(1960) and Lashmore-Davies (1965) are in good agree-
ment with each other although the latter investigator
used a rather better ground-state wave function for
the helium atom, &e also note that allowance for dis-

tortion reduces the cross section somewhat below that
given by the Born—Oppenheimer approximation (but
by not nearly so much as that found in the case of the
1'S—+2'S excitation) to give cross sections which are
not greatly dissimilar from that obtained with the
first-order exchange approximation. However we see
from Fig. 32 that the cross section curves obtained
with the distorted waves approximation both lie well
above that given by the Ochkur approximation.

3.4. Close Coup/irtg A pproocimatiort

Marriott (1964) has carried out an investigation of
the scattering of electrons by helium atoms in which
he makes full allowance for the coupling between the
1'S, 2'5, and 2'5 states. For the 1'5 ground state he
employed the simple Hylleraas wave function given by
(122), for the 2'S state he used the wave function
determined by Morse, Young, and Haurwitz (1935)
while for the 2'5 state he used the wave function de-
rived by Marriott and Seaton (1957) which is orthog-
onal to the Hylleraas ground-state function (122). The
1'5 and 2'5 wave functions are the same as those em-

ployed by Massey and Moiseiwitsch (1960) but the
2'S state wave function should be superior since the
2'S function used by Massey and Moiseiwitsch was not
completely orthogonal to the Hylleraas ground-state
wave function. The partial and total cross sections for
the excitation of the 2'S and 2'5 states of helium ob-
tained by Marriott using the 1'S—2'S—2'S close cou-
pling approximation with exchange included are given
in Tables XXXII and XXXIII, respectively. The total
cross section for the 1'5—+2'5 excitation of helium ob-
tained with the 3-state close-coupling approximation
is also displayed in Fig. 31 where it is compared with the
results obtained using less sophisticated methods.

We note that coupling to the 2'P and 2'P states of
helium has been entirely neglected in the above calcu-
lations. Because of the strong likelihood that these cou-
plings could have an important effect upon the excita-
tion cross sections, Burke, Cooper, and Ormonde
(1966) have carried out a calculation allowing for
close coupling to all the five states: 1'S, 2'5, 2'5, 2'P,
2'P. They employed Hartree —Fock atomic wave func-
tions. Their cross sections for the excitation of the
2'S, 2'5, 2'P', and 2'P states of helium from the ground
state are displayed in Fig. 33.

Marriott (1957; 1966) has also investigated the con-
version of the 2'S state of helium to the 2'5 state by
electron impact:

He (2'S) +e—+He (2'S) +e+0.78 eV. (136)

The cross section for this superelastic collision has been
determined experimentally by Phelps (1955) who finds
3X10 " cm' (340n.ao') for thermal electrons. However
using the 2'5—2'S close coupling approximation to-
gether with the atomic wave functions for the 2'S and
2'S states of helium derived by Morse, Young, and
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FIG. 33. Total cross sections for the excitation of helium calcu-
lated using the five-state close coupling approximation (Burke,
Cooper, and Ormonde, 1966). Curve 1: 1'S—+2'S, Curve 2:
1'S-+2'S, Curve 3: 1'S—+2'P, Curve 4 1'S~2'P.

Haurwitz (1935), the cross section for the superelastic
collision (136) has been calculated by Marriott (1957)
to be 60m~' for 0.026-eV electrons which is much
smaller than the observed cross section. In a more
recent investigation using the 1'5—2'5—2'5—3'S close
coupling approximation together with the Marriott
and Seaton (1957) wave function for the 2'S state of
helium and a reasonably accurate function for the 3'5
state, he calculated the cross section for the superelastic
collision (136) to be 150m-ao' at 0.026 eV which is only
about a half of that found experimentally by Phelps.
This increase in the calculated total cross section at
thermal energies is entirely owing to the use of the im-
proved 2'5 wave function, the eGect of including the
helium ground state function being small. In Table
XXXIV we display the partial and total cross sections
for the superelastic conversion of the 2'5 state to the
2'S state of helium calculated using the 1'5—2'5—2'S—
3'S close-coupling approximation. Marriot t (1966)
has also calculated the cross section for the 2'5~3'5
excitation by electron impact for the quartet total spin
state using the close coupling approximation.

An investigation of the excitations of the 2'P, 3'P,
and 4'P states of helium from the ground state has been
carried out by Vainshtein and Dolgov (1959) using the
1'5—m'P close-coupling approximation with exchange
neglected. The importance of the higher-order partial
waves, even for energies quite close to the threshold,
is easily verified by inspecting Table XXXV where the
partial and total cross sections for the 1'5—+3'P excita-
tion calculated by Vainshtein and Dolgov (1959) are
gIven.

3.5. Double Excitation of IIeliurn

The Born approximation has been used by Massey
and Mohr (1935) to calculate cross sections for the
excitation of the (2s') 'S& (2s2p) 'P, (2s3p)'P, (2s4p) 'P,
and (3s2p)'P doubly excited states of helium. For
the ground state of helium they took. the Eckhart func-
tion (130) while for the doubly excited states they

chose the wave function

(r~ rm) =&Ig. (~ I r~) 4.~(P I r2)

+0 (~ I r2)4.s(P I ri) I (137)

where p (X I r) is a hydrogenic function corresponding
to an effective charge X. For the (2s2)'S and (2s2p) 'P
states they took a=2. 00, p=1.58; for the (2s3p)'P
and (2s4p)'P states they took n=2.00, p=1.00; while
for the (3s2p)'P state they chose n=1.20, 8=2.00. The
excitation cross sections calculated by Massey and Mohr
(1935) are displayed in Table XXXVL The smallest
cross section occurs for the excitation of the (2s')'S
state corresponding to an optically forbidden transition,
while the largest cross sections are found for the excita-
tion of the (2s2p) 'P and (3s2p) 'P states corresponding
to optically allowed transitions.

A much more detailed investigation of the excitation
of doubly excited states of helium has been carried out
by Becker and Dahler (1964). They began their study
by using the Born—Qppenheimer approximation to
calculate the cross sections for the excitation of the
(2p') 'P, (2p3p) 'P (2p3d) 'D and (2p3d) 'D states of
helium, none of which are subject to autoionization.
For the ground state they used the simple Hylleraas
function (122) and the Eckhart function (130) while
for the doubly excited states they employed symme-
trized wave functions composed of products of hydro-
genic orbitals. Their cross section curves are given in
Fig. 34. By far the largest cross section arises from the
excitation of the (2p') 'P state, the lowest of the doubly
excited states which is stable towards autoionization.
Seeker and Dahler also used the distorted waves
method and the two state close coupling approximation,
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Fro. 34. Cross sections for the excitation of doubly excited states
of helium calculated using the Born—Oppenheimer approximation
(Becker and Dahler, 1964). Curve 1: (2p')'P excitation using
Hylleraas ground-state function. Curve 2: (2p')'P excitation
using Eckhart ground-state function. Curve 3: (2p3p}'P excita-
tion. Curve 4: (2p3d) D excitation. Curve 5: {2p3d)'D excitation.
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both with exchange included, to investigate in further
detail the excitation of the (2p')'E state of helium,
the ground state being represented by the simple Hyl-
leraas wave function (122) . The resulting cross sections
are displayed in Fig. 35. We see that the distorted
waves method and the two state close coupling approxi-
mation give rise to practically indistinguishable cross
section curves. The implication is that the coupling
between the ground state and the doubly excited state
is fairly weak, a conclusion which is supported by the
smallness (~10 "cm') of the excitation cross section.
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Fro. 35. Cross sections for the excitation of the doubly excited
(2p')'P state of helium (Becker and Dahler, 1964). Curve 1:
Born—Oppenheimer approximation. Curve 2: distorted waves ap-
proximation. Curve 3:2 state close coupling approximation (Curve
3 is identical to Curve 2).

4. Neon and Argon

Extensive calculations using the Born approximation
have been carried out by Veldre, Lyash, and Rabik
(1965a; 1965b) on the excitation of neon and argon by
electron impact.

We 6rst consider the case of neon excitation. Because
of the lack of Hartree —Pock wave functions, hydrogenic
orbitals were used for the different electron shells in
the neon atom. Total excitation cross sections were cal-
culated for transitions between all the terms of the con-
figurations (y)2p, (y)3s, (y)3p, (y)4s, (y)3d, (y)4p,
and (y)5s, where q signifies the core configuration
1s'2s'2p'. Because the formulation was based upon the
assumption that LS coupling prevails for all configura-
tions of the neon atom, and this is known to be invalid
for excited inert gas atoms, the total excitation cross
sections calculated by Veldre, Lyash, and Rabik
(1965b) could be seriously in error.

LS coupling holds for the ground 'So state of an
inert gas atom; however for moderately excited states
of inert gas atoms jl coupling holds while for highly
excited state jj coupling occurs. Realizing this, Veldre,
Lyash, and Rabik (1965a) investigated the conse-
quences of choosing different types of coupling (LS,j l,
jj) between the optical electron and the core of the
excited atom. The wave function of the optical electron
was calculated by solving the radial equation for a
particle in the Geld produced by Gaspar's potential

FIG. 36. Total cross sections for the excitations of neon and
argon from their ground 'So states calculated using the Grst Born
approximation. Le is electron energy in threshold units de6ned by
Eq. (38).g Curve 1: 1s'2s'2p'3p'So excitation of neon using IS
coupling for the ground and excited states. When jl coupling is
used for the excited state, cross section is reduced by factor of 3.
Curve 2: 1s'2s~2p'3p'D2 excitation of neon using LS coupling for
the ground and excited states. When jl coupling is used for the
excited state, cross section is reduced by factor of 15. Curve 3:
1s'2s'2p~3s'3p'4p'So excitation of argon using LS coupling
for the ground and excited states. When jl coupling is used
for the excited state, cross section is reduced by factor of 3.Curve 4:
1s'2s'2p 3s'3p'4p'D~ excitation of argon using LS coupling for
the ground and excited states. Whenjl coupling is used for the
excited state, cross section is reduced by factor of 15.

(1952), which has an analytical form and yields good
wave functions for atoms with fairly large nuclear
charge such as neon and argon. They derived wave
functions for the neon configurations (y)2p, (q)3s,
(p) 3p, (q) 4s, (y) 3d, (y) 4p, and (y) Ss, where y denotes
the core configuration 1s'2s'2p', and for the argon con-
figurations (y') 3p, (y') 4s, (y') 4p, (q') 3d, (y') 5s,
(y') 5p, and (y') 6s, where y' signifies the core configura-
tion 1s'2s'2p'3s'3p

For the excitation from the ground state to an ex-
cited state, LS coupling was used to characterize the
ground state while LS, jl, and jj couplings were chosen
for the excited state of the inert gas atom. Their re-
sults show that the largest cross section is obtained
when LS coupling is chosen for the excited state while
the least cross section occurs with jl coupling. This can
be seen from Fig. 36 where the total cross sections for
the excitation of the states of the configuration (y) 3p
from the ground 'So state of neon and the excitation of
the states of the configuration (y') 4p from the ground
'S0 state of argon, using LS and jl coupling for the
excited states, are compared.

In the case of transitions between excited states of
the inert gas atom, the same type of coupling between
the optical electron and the core of the atom was used
for both states, either LS or jl coupling.

As a consequence of the fact that a change in the
type of coupling between the initial and final states of
the inert gas atom produces a considerable reduction in
the total excitation cross section, Veldre, I.yash, and
Rabik (1965a) found that the cross sections for the
excitation of ground-state inert gas atoms have much
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smaller values than the cross sections for the excitation
of excited atoms.

Calculations of the excitation cross sections for
(y) 2p—&(p) 3p transitions of neon have also been carried
out by Boikova and Fradkin (1965) using the Ochkur
approximation together with I.S, jl, and jj coupling
representations of the (y) 3p excited states of the neon
atom.

5. Mercury

The excitation of mercury to the 6'Pp, 6'P», 6'P2,
and 6'P» states from the ground 6'Sp state has been
investigated by Penney (1932a) using the Born—Oppen-
heimer approximation. He assumed that the wave func-
tion of the core remained unaltered during the transi-
tion and used the Coulomb approximation to determine
the radial wave functions of the two electrons outside
the core. The total wave functions of the S and P
states of mercury were then expressed according to the
formulae derived by Houston (1929). Penney found
that his wave functions yielded oscillator strengths for
the 6'P»—+6'Sp and 6'P»~6 Sp transitions which were
about twice the experimentally determined values. He
therefore only gave relative cross sections for the exci-
tation of the P states of mercury.

The calculations are not very accurate. Thus it
should be noted that the thresholds for the excitations
of the 'Pp, 'P», and 'P2 states are not in the order of
increasing energy as they should be. However, the cal-
culations clearly indicate that the cross section for the
excitation of the 6'P» state is considerably larger than
those for the excitation of the 'P' states, particularly
for electron impact energies above about 15 eV, and
that it has a broad maximum located some distance
from the threshold energy whereas the cross sections
for the excitation of the 'P states are more sharply
peaked and positioned close to the threshold.

The above calculations have been repeated by Yavor-
skii (1947) employing precisely the same method and
wave functions. His excitation cross sections, which
were given in absolute units, are not in satisfactory
accordance with the relative cross sections calculated
by Penney. However, the threshold energies obtained
by Yavorskii are in the correct order. Regrettably the
values 3.71&10 " cm' and 1.05&10 ' cm' for the
6'Sp~6'P» and 6'Sp~6'P» excitation cross sections at
their maxima, quoted by Yavorskii in the text of his
paper, are somewhat greater than the values of the
maximum cross sections obtainable from his figure.

Recently more reliable calculations of the excitation
cross sections for the 6'Pp, 6'P», 6'P~, and 6'P» states
of mercury, employing the Ochkur approximation to-
gether with Coulomb approximation functions yielding
oscillator strengths for the 6'P»—+6'Sp and 6'P»—+6'Sp
transitions in good agreement with the experimentally
determined values, have been performed by McConnell
and Moiseiwitsch (1968). Their cross sections are dis-
played in Fig. 37,

5. Alkali Metal Atoms

We devote this section to the consideration of the
alkali metal atoms each of which is composed of a single
electron outside a core of completely filled electroi
shells. In the ground state of an alkali metal atom th"
outer electron is in an ns state with e= 2, 3, 4, 5, 6 for
lithium, sodium, potassium, rubidium, and cesium,
respectively. We are mainly concerned with es~lp
excitations of the outer electron of the alkali metal
atoms.

Because of the very strong coupling between the
initial and final states of the resonance transition
rsvp, the Born approximation produces excitation
cross sections which are too large close to the threshold
energy. Born approximation calculations have been
carried out by Bates et aL (1950) and by Vainshtein
(1965) on the 3s—+3p transition of sodium, and by
Vainshtein, Opykhtin, and Presnyakov (1964b) on the
resonance transitions of lithium, sodium, potassium,
rubidium, and cesium whose excitation cross sections
are presented in Table XXXVII. We note the very
large values of these Born approximation cross sections
at their maxima. Uainshtein has also applied the dis-
torted waves approximation with exchange neglected
to the 3s—+3p transition of sodium finding that allow-
ance for distortion introduces an oscillation into the
excitation cross section with several maxima. Some of
the partial cross sections obtained by Vainshtein exceed
the theoretical upper bound imposed by the unitary
property of the S matrix, clearly demonstrating the
strength of the coupling.

To overcome the difBculties arising from the very
strong coupling between the 3s and 3p states of sodium,
Seaton (1955a) has used his modification of the Bethe
approximation, previously discussed in section 2.9,
to calculate the total excitation cross section for the
3s-+3p resonance transition of sodium. The cross sec-
tion obtained by Seaton is displayed in Fig. 38. We see
from this figure that the modified Bethe approximation
produces a considerable reduction of the excitation cross
section near the threshold energy.

Calculations on the 3s~3p resonance transition of
sodium using the semi-classical impact parameter
method have also been carried out by Seaton (1962).
He obtains an excitation cross section which is much
below that given by the Born approximation at low
impact energies, in accordance with the modified Bethe
approximation.

Sahnona and Seaton (1961) have used the unitarized
Born approximation, discussed earlier in Sec. 2.14, to
calculate the total excitation cross section for the 3s—+3p
transition of sodium, In this method the Born approxi-
mation to the reactance matrix R is substituted into
the formula for the transmission matrix, thus ensuring
that the unitary property of the scattering matrix is
satisfied. A further approximation made by Salmona
and Seaton was the neglect of all short range interac-
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tions, just the long range interaction 5/r' being re-
tained. The line strength S has been determined by f
value measurements to be 19 atomic units which again
emphasizes the great strength of the coupling between
the 3s and 3p states of sodium. The neglect of the short
range interactions is valid for large values of the angular
momenta of the incident electron while the use of an
approximation which satis6es the conservation theorem
ensures that the small angular momenta are treated
without undue error. Inspection of Fig. 38 shows that
the method used by Salmona and Seaton (1961) pro-
vides a cross section curve which is in satisfactory ac-
cordance with the modified Bethe approximation.

More sophisticated calculations which take account
of the very strong coupling between the 3s and 3p
states of sodium although neglecting exchange have
been carried out by Lane and Lin (1964) and by
Barnes, Lane, and Lin (1965). Designating the total
angular momentum quantum number by I. and the
angular momentum quantum numbers of the atomic
and free electrons by l& and l2, respectively, the fol-
lowing three states of the total system enter into the
excitation problem if we neglect coupling to all states
of the sodium atom other than the initial state 3s and
the final state 3p:

lg

0
1
1

L

(138)

There is also a fourth state of the total system with
quantum numbers I~=1, /2=4, L=E but this has a
different parity to the other three states and so need
not be considered here. For each value of 8 we have
therefore three coupled differential equations to solve.
Because the energies of the 3s and 3P states of sodium
are only 2.10 eV apart, Lane and Lin (1964) made the
reasonable approximation that the initial and final
states are in exact resonance thus enabling them to
decouple the differential equations. In addition, fol-
lowing Salmona and Seaton (1961), they neglected
all the short-range interactions retaining only the long-
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FxG. 37. Total cross sections for the excitation of mercury cal-
culated using the Ochkur approximation (McConnell and Moisei-
vritsch, 1968}.Curve 1: 6'So—+6'Pp excitation. Curve 2: 6'So—+

6'P~ excitation. Curve 3: 6'So—+6'P~ excitation. Curve 4: 6'SD~
6'P1 exCitation.
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FIG. 38. Total cross sections for the 3s—+3p excitation of sodium.
Curve 1: first Born approximation (Karule and Peterkop, 1965).
Curve 2: modi6ed Bethe approximation (Seaton, 1955). Curve 3:
impact parameter method (Seaton, 1962). Curve 4: unitarized
Born approximation (Salmona and Seaton, 1961}. Curve 5:
resonance distortion method (Lane and Lin, 1964}. Curve 6:
3s—3p close coupling approximation neglecting exchange (Barnes,
Lane, and Lin, 1965).

range interaction 5/r'. Then employing the exact
resonance solution corresponding to the incident chan-
nel v=1 they performed a single iteration to obtain
more accurate solutions of the other two differential
equations, the exact resonance approximation being
discarded. All the partial waves from 4=2 to 15 were
treated in this manner. However, because of the great
strength of the S/r' interaction, they were unable to
carry out the same procedure for the 4= 0 and 1 waves
and so arbitrarily chose their partial cross sections to be
—r2x. (24+1)/kr' which is half the theoretical maximum
imposed by the conservation theorem. For the partial
cross sections associated with 4)15 they used the
Bethe approximation. The resulting total cross section
curve is displayed in Fig. 38. Ke see that it is in close
accordance with the cross section obtained by Seaton
using the modified Bethe approximation.

Barnes, Lane, and Lin (1965) have solved the three
coupled differential equations corresponding to the
states v=1, 2, 3 of the total system by numerical inte-
gration. They included the short-range interactions in
this investigation using hydrogenic wave functions for
the optical electron with an effective charge of 2.92
and performed the calculation for all values of 4 up to
15. The partial cross sections obtained by them to-
gether with their total cross sections, the contribution
from the partial waves with 4& 15 being estimated with
the Bethe approximation, are displayed in Tables
XXXVIII and XXXIX.We also give their total cross
section curve in Fig. 38. It is somewhat lower than the
cross section curves obtained with the less accurate
methods discussed above.

Close coupling calculations on the resonance transi-
tions tts—+ttp of lithium, sodium, potassium and cesium
have been carried out by Karule and Peterkop (1964;
1965) for electron impact energies close to the threshold.
The first calculations performed by Karule and Peter-
kop (1964) were concerned with the 2s~2p excitation
of lithium and were carried out at energies of 2.0, 2.5
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and 3.0 eV both including and neglecting exchange.
They used the 1s and 2s analytical wave functions
derived by Clementi, Roothaan and Yoshimine (1962)
and a hydrogenic 2p wave function. Karule and Peter-
kop (1965) subsequently repeated the lithium calcu-
lations using Hartree-Fock wave functions (without
allowance for the eGect of the outer electron on the
core) (Ivanova and Ivanova, 1964) but found that
the changes in the partial cross sections were slight.
In addition they extended their investigation to sodium,
potassium, and cesium using semi-empirical atomic
wave functions for the outer electron. Their calcula-
tions were carried out for the L=O, 1, ~ ~ ~, 8 partial
waves neglecting exchange, for the L=O, 1, 2, 3 partial
waves including exchange for sodium and potassium,
and for the L=O, 1, 2, 3, 4 partial waves including ex-
change for cesium. The agreement with the calculations
of Barnes, Lane, and Lin (1965) for sodium with ex-
change neglected is satisfactory at 4 eV, apart from the
L=O and 1 partial waves. The lack of accordance for
these low order partial waves is presumably the conse-
quence of the use of diEerent atomic sodium wave
functions.

Karule and Peterkop (1965) also calculated the
partial sum

L=O

bv adding the partial cross sections for the low L values,
obtained including exchange, to the partial cross sec-
tions for the higher L values, obtained neglecting
exchange. Since the partial cross sections corresponding
to L&8 make a signiicant contribution to the total
cross section, this means that their values of the partial
sum

mense number of transitions in lithium, sodium, potas-
sium, rubidium, and cesium by Vainshtein, Opykhtin,
and Presnyakov (1964a) also using semi-empirical wave
functions for the outer electron. The Born approxima-
tion excitation cross sections obtained by Vainshtein
(1965) and by Vainshtein, Opykhtin, and Presnyakov
(1964a) are displayed in Tables XLI-XLV.

7. Oxygen and Nitrogen Atoms

In the present section we are mainly concerned with
the excitation of the 'D and 'S terms of the lowest con-
figuration 1s22s'2p' of atomic oxygen from the ground 'I'
term of this configuration.

The erst calculations of the cross sections for these
excitations were carried out by Yamanouchi, Inui, and
Amemiya (1940) who employed a simplified version
of the distorted waves approximation. They found that
their 3P—+'D and 'P+'S excitation cross sections were
dominated entirely by the p wave contribution arising
from the incident electron. This being so Bates et al.
(1950) were able to establish that at their maxima these
excitation cross sections were factors of 89 and 66 times
greater, respectively, than the upper bound imposed
by the conservation theorem.

As a consequence of the above situation, Seaton
(1953a) was led to make a detailed investigation of the
oxygen excitation problem for the incident p wave 'P
scattering case. He showed that the assumption of weak
coupling, inherent in the distorted waves approxima-
tion, was quite invalid for the excitation problem under
consideration. Seaton therefore decided upon an en-
tirely different approach based upon the fact that the
excitation energies of the 'D and 'S terms of the lowest

configuration of oxygen are rather small, as can be
readily veri6ed from the following table:

are considerably lower than the values of the total cross
section. This can be exempliied by considering the
6s~6p transition of cesium for which Hansen (1964)
has carried out a modified Bethe approximation calcu-
lation. His total excitation cross sections are displayed
in Table XL.We see that at 5 eV his total 6s-+6p excita-
tion cross section is 114 m.a0' whereas the partial sum

Term

3P
1D
lS

Statistical
weight

Excitation energy
(rydbergs)

0
0.145
0.308

0
0.152
0.378.

Observed Hartree-
Fock

L 0

obtained by Karule and Peterkop is only 73 ~a02.

Finally we come to the cross sections for other exci-
tations of the alkali metal atoms. Born approximation
calculations on the 3s-+3d and 3s—+4p excitations of
sodium have been carried out by Bates et aL (1950)
using Hartree —Fock wave functions; on the 3s—+4s,
3s~4p, 4s—4p, Ss~6p, and Ss-+7p excitations of
sodium by Vainshtein (1965) using semi-empirical
wave functions for the optical electron; and on an im-

(139)

On expanding the Coulomb interactions e'/r;; be-
tween the electrons of the oxygen atom using the multi-
pole expansion formula (89) it is found that the
energies of the 'P, 'D, and 'S states of the lowest con-
6guration depend only upon the P =0, 1, 2 terms of the
expansion, the main contribution arising from the
spherically symmetrical terms associated with X=0.
The neglect of the terms corresponding to X=2 pro-
duces equal energies for the 'P, 'D, and 'S states and so
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the approximation in which the X= 2 terms are omitted
is referred to as the exact-resonance approximation.
There are also exchange terms between the 2p electrons
and the 1s and 2s electrons belonging to the core of the
oxygen atom which correspond to ) = i. When the X =2
terms are omitted, it is found that these X = 1 exchange
terms do not give rise to energy differences.

With the above consideration in mind, Seaton
(1953a) introduced the following approximations in
dealing with the oxygen excitation problem which to-
gether compose his approximation I:

(i) the energy differences between the 'P, 'D, and '5'
states of the lowest configuration can be neglected,

(ii) the 2p orbitals of the three states of the lowest
configuration can be taken to be the same and equal to
the Hartree —Pock function for the 'D state,

(iii) all the ) =2 terms in the integrodifferential
equations describing the scattering can be neglected,

(iv) all the) = 1 terms corresponding to exchange be-
tween the incident p wave electron and the 1s and 2s
core electrons can be neglected.

Approximation I enables the three integrodifferential
equations describing the excitation problem for the p
wave 'I' scattering case to be uncoupled and an exact
solution to the equations derived. Using this solution as
a first approximation, Seaton then discarded approxi-
mation (i) and obtained a better approximation to the
solution of the three original coupled integrodiGerential
equations by carrying out a single iteration. This he
called approximation II.

To test the accuracy of approximations I and II,
Seaton proceeded to carry out more detailed calcula-
tions at a single electron impact energy corresponding
to the value of the wave number k~ of the incident elec-
tron given by k&'=0.3. This energy was deliberately
chosen to be insufficiently high to excite the 'S term
of the ground configuration, so that only two coupled
equations are involved if the polarization resulting
from the presence of the 'S term is neglected. He erst
carried out the same procedure as for approximation II
but discarding approximations (iii) and (iv) . This
Seaton refers to as approximation III. Finally he solved
the original pair of coupled equations exactly to give
him his approximation IV. The values of the collision
strengths obtained by Seaton for k&'=0.3 are displayed
in Table XLVI, the numerals, 1, 2, 3 signifying the 'I',
'D, '8 terms, respectively. We see that exchange be-
tween the incident p electron and the core 1s and 2s
electrons is fairly important and that approximation
III, which allows for this exchange, provides collision
strengths which are in rather good agreement with the
values given by the exact treatment of the coupled
equations. However we also note that Q"(1, 2) and
Q&(2, 1) differ by about 16% in approximation IV
whereas detailed balancing requires them to be equal.
This is just the so called post —prior discrepancy and is
an indication of the accuracy of the wave functions
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FIG. 39. Collision strengths &'(1, 2), Q&(1, 3), and D'(2, 3) for
transitions connecting the 'E, 'D, 'S terms of the lowest configura-
tion of atomic oxygen (Seaton, 1953a).

I

which were used for the oxygen atom. Since it was not
possible to decide which of Q&(1, 2) and Q"(2, 1) pro-
vide the most reliable values for the collision strength,
Seaton chose the geometric mean given by Q(1, 2) =
(Q(1, 2) Q(2, 1)ji&s.

With regard to the p wave 'D scattering case, Seaton
used the distorted waves method to calculate the col-
lision strength Q&(1, 2) at kis=0.3. He obtained the
value 0.007 which is less than 1% of the corresponding
value for the p wave 'P scattering case. In addition
the d wave contribution to the collision strength Qa(1, 2)
was found by Yamanouchi, Inui, and Amemiya (1940)
to increase slowly from zero at the threshold to the
value 0.077 at kq'=1 and to a maximum value of 0.95
at kis=4; thus we see that Qa(1, 2) is unimportant
within the range of electron impact energies concerning
us here.

The final collision strengths Qo(1, 2), Q&(1, 3), and
Q"(2, 3) obtained by Seaton in his first paper (1953a)
are displayed in Fig. 39. They were derived by multi-
plying the approximation II values of Q&(1, 2), Q&(1, 3),
and Qo(2, 3) by the factor 1.31 which yields agreement
with the approximation III value at k~'=0.3. A satis-
factory feature of these values is that they satisfy the
conservation theorem

Q'(tt, I') ( (2/+1) co(, (140)

where co& is the lesser of the statistical weights co„, co„. of
the states n, e'. We note that a discontinuity in the
slope of Q"(1, 2) occurs at the threshold energy for the
excitation of the 'S state owing to the neglect of this
state below its excitation threshold.

In a subsequent paper Seaton (1955a) further inves-
tigated the accuracy of his calculations on the Q&(1, 3)
and Q"(2, 3) collision strengths and introduced minor
alterations. He also calculated the Qa(2, 3) collision
strength finding that it was not unimportant. The Anal
values of his collision strengths (Seaton, 1956) are dis-

played in Table XLVII, the corresponding cross sec-
tions being given by the formulas

Q(tt, st') = (co„k„'/sr) Q„,„.= (oo .k„'/sr) Q„.,„. (141)

The appropriate statistical weights are to be found in
(139).It has been estimated by Seaton that his calcu-
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8.Z. Betimes Ion

The hydrogen-like ion which has been the subject of
the closest examination is the positive ion of helium
corresponding to Z= 2.

The first detailed investigation of the excitation of
He+ was carried out by Bransden, Dalgarno, and King
(1953) who calculated the zero-order partial cross
section for the 1s—&2s excitation using the Coulomb—
Born approximation, the Coulomb —Born—Oppenheimer
approximation and the distorted Coulomb waves ap-
proximation both neglecting and including exchange.

The 1s—2s—2p close coupling approximation has been
used recently by Burke, McVicar and Smith (1964a)
and by McCarroll (1964) to calculate the total excita-
tion cross sections for the is~2s and 1s—+2p transitions
of He+. Where comparison is possible the two investiga-
tions are in good agreement. The partial cross section
Q~ for the 1s—+2s and 1s—+2p excitations calculated by
Burke, McVicar, and Smith (1964a), who carried out
the more extensive investigation, are displayed in
Tables L and LI, respectively. The values of the triplet
and singlet partial cross sections include the spin
weighting factors 4 and 4, respectively. It is of interest
to note that the partial cross sections calculated neglect-
ing exchange are good approximations to the sums of the
triplet and singlet partial cross sections for the L)4
partial waves, indicating that exchange can be justi-
fiably neglected for these higher-order partial waves.
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Fro. 42. Total cross sections for the is~2s excitation of He+
ions. Curve 1: is—2s—2p close coupling approximation (Burke,
McVicar, and Smith, 1964a). Curve 2: Coulomb —Born approxima-
tion (Tully, 1960). Curve 3: unitarized Coulomb-Born approxi-
mation (Burgess, Hummer, and Tully, 1961).

scattered electrons are given in units of ao ', we obtain

(in sraos)

= (1.28)& 10 ts/E) $f(rt, 1)g//DE t) (in cms) (144)

where the unit of energy is the rydberg. This formula
yields unsatisfactory estimates of the excitation cross
section. It may be improved by introducing a cut-off
into the relevant integration in which case g becomes re-
placed by an effective Gaunt factor g.

Values of g for 1s—+ep excitations of hydrogen ions
are displayed in Table XLIX.
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FIG. 43. Total cross sections for the is~2p excitation of He+
ions. Curve 1: is—2s—2p close coupling approximation (Burke,
McVicar, and Smith 1964a) . Curve 2: Coulomb —Born approxima-
tion (Burgess, 1961).Curve 3:unitarized Coulomb —Born approxi-
mation (Burgess, Hummer, and Tully, 1961).

To obtain the total excitation cross sections use was
made of the higher L value partial cross sections calcu-
lated by Tully (1960) and by Burgess (1961) employing
the Coulomb —Born approximation. Very slow conver-
gence with 1.value was found for the is~2p excitation,
it being necessary to include partial cross sections for
I. values up to 27 for kt ——4. The is-+2p partial cross
sections for L&15 were obtained by an extrapolation
procedure which made use of the fact that the graph of
ln Q~ against 1. is linear for the higher values of I..

The total cross sections for the 1s—+2s and is—+2p
excitations of He+ calculated by Burke, McVicar and
Smith (1964a) are displayed in Figs. 42 and 43 where
they are compared with the excitation cross section
calculated by Tully (1960) and by Burgess (1961)
using the Coulomb —Born approximation.

To assess the accuracy of the is—2s—2p close coupling
approximation, Burke, McVicar, and Smith (1964a)
included the 3s and 3p states in the close coupling expan-
sion for k~'=5 corresponding to 68-eV incident electron
energy. The resulting zero-order partial cross sections
are given in Table LII where they are compared with
the values obtained using the 1s—2s—2p close coupling
approximation. We see that the effect of allowing for
the 3s and 3P states is quite slight for the helium positive
ion in contrast to the case of atomic hydrogen for which
the analogous effect at 16.5-eV impact energy was found
to be considerable as can be veri6ed by referring to
Table XXII. Thus it seems that the close coupling ap-
proximation has nearly converged to the exact solution
with the inclusion of the is, 2s, 2p states for the helium
positive ion. In any event the 1s-2s—2p close coupling
approximation is certainly better for the case of the
helium positive ion than for atomic hydrogen.

Burke, McVicar, and Smith (1964b) have also used
the 1s—2s—2p close-coupling approximation to calculate
the positions and widths of the first few autoionizing
states of helium from the resonances which occur in the
5 and P wave phase shifts for elastic scattering of elec-
trons by He+, these resonances making their appearance
by a rapid variation in the appropriate phase shift by sr
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radians. The calculated positions of these resonances
agree very well with the experimental data of Madden
and Codling (1963) and Simpson, Mielczarek, and
Cooper (1964) as can be seen from Table LIII where a
comparison is made for some 'S, 'I', and 3P autoionizing
levels. It should be remarked however that even when
exchange is neglected, the close coupling calculations
still provide fairly satisfactory values for the positions of
the resonances, which therefore do not seem very sensi-
tive to the detailed assumptions made by the theory.

Calculations of the partial cross sections for the
1s—+3p excitation of the helium positive ion have also
been carried out by Burke, McVicar, and Smith
(1964b) using the 1s—3p close coupling approximation.
Partial and total 1s~3p excitation cross sections are
displayed in Table LIV.

8.3. Helium-like Ioes

The Coulomb —Born approximation has been em-
ployed by Sural and Sil (1966) to obtain a differential
cross section formula for the 1'S—+2'S excitation of
positive ions belonging to the helium isoelectronic
sequence using the simple wave functions derived by
Morse, Young, and Haurwitz (1935).They carried out
detailed calculations for the special case of the 1'S—+2i 5
excitation of Li+ at the threshold energy. An integration
over all angles of scattering gave 0.304&&10 'mao' for the
total cross section at threshold.

8.4. Lithium-like Ioms

Bely, Tully, and Van Regemorter (1963) have used
the Coulomb —Born approximation to calculate the
total excitation cross sections for the 2s—+2p resonance
transitions of the positive ions Be+, C+, 0'+, and Mg +

all of which belong to the lithium isoelectronic sequence.
They employed the simple analytical wave functions
derived by Veselov et al (1961) f.or the 2s and 2p
orbitals of the optical electron. The excitation cross
sections obtained by them are presented in Figs.
44—47. Bely (1962) has calculated the effective free —free
Kramers Gaunt factor g for the resonance transition of
0'+ at the threshold energy obtaining g=0.79.

Bely, Tully, and van Regemorter (1963) also used
the 2s—2p unitarized Coulomb —Born approximation
(also known as the Coulomb —Born II approximation)
to investigate the resonance transitions of the lithium
sequence of positive ions. Only for the Be+ ion does the
unitarized Coulomb —Born approximation produce sig-
nificantly different results from those found with the
ordinary Coulomb —Born approximation.

A detailed investigation of the 2s—+2p excitation of
the N'+ positive ion member of the lithium isoelectronic
sequence has been carried out by Burke, Tait, and Lewis
(1966) using the Hartree —Pock functions obtained by
Weiss (1963).The following approximations were em-

ployed:

(i) the Coulomb —Born approximation,
(ii) the unitarized Coulomb-Born approximation,
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FIG. 44. Total cross sections for the 2s~2p excitation of Be+
(Bely, Tully, and Van Regemorter, 1963). P~ is electron energy in
threshold units defined by Eq. (38).j Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb —Born approxima-
tion.
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FIG. 46. Total cross sections for the 2s—+2p excitation of 0'+
(Bely, Tully, and Van Regemorter, 1963). Ps is electron energy in
threshold units defined by Eq. (38).g Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb —Born approxima-
tion.
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F~G. 47. Total cross sections for the 2s-+2p excitation of Mg'+
(Bely, Tully, and Van Regemorter, 1963). Le is electron energy in
threshold units defined by Eq. (38).j Curve 1: Coulomb —Born
approximation. Curv|: 2: unit@rizcd Coulomb-Born approximg, -
tiog. .

FIG. 45. Total cross sections for the 2s—+2p excitation of C'+
(Bely, Tully, and Van Regemorter, 1963). (e is electron energy in
threshold units defined by Eq. (38).j Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb —Born approxima-
tion.
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(iii) the 2s—2p close-coupling approximation neglect-
ing exchange,

(iv) the 2s—2p close-coupling approximation includ-
ing exchange,

(v) the 2s—2p—3s—3p—3d close-coupling approxima-
tion neglecting exchange.

All of these approximations were found to yield the
same 2s~2p excitation cross section within a few per-
cent. The cross section is displayed in Fig. 48. We con-
clude from this result that the resonance excitation
cross sections for the other positive ions of the lithium
isoelectronic sequence are also given accurately by the
Coulomb —Born approximation, except for Be+ whose
cross section may be overestimated somewhat.

The 2s—+3p excitation of N'+ was also investigated
with considerable thoroughness by Burke, Tait, and
Lewis (1966). Although they found that the excitation
cross sections given by the Coulomb —Born approxima-
tion and the 2s—3p close coupling approximation with
exchange neglected were in good accordance, the eGect
of allowing for exchange and for the coupling to the 3s
and 3d states were found to be rather important, both
increasing the excitation cross section considerably at
the threshold. The application of the unitarized Cou-
lomb —Born approximation gave rise to misleading re-
sults since it produced a slight reduction in the 2s—+3p
excitation cross section below that given by the ordinary
Coulomb —Born approximation. We conclude from this
that the predictions of the unitarized Coulomb —Born
approximation should be treated with caution and it
seems likely that it is a useful approximation only for
resonance transitions with large line strengths. The
cross sections for the 2s~3p excitation of N'+ are dis-

played in Fig. 49.
Burke, Tait, and Lewis (1966) have also employed

the Coulomb —Born approximation to calculate excita-
tion cross sections for other transitions connecting the
v=2 and m=3 levels of ¹+.These are presented in
Table LV.

8.5. Sodium-like Ious

The Coulomb —Born approximation has been used by
Bely, Tully, and Van Regemorter (1963) to calculate
the excitation cross sections for the 3s-+3p transitions
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FzG. 49. Total cross sections for the 2s~3p excitation of N+
{Burke, Tait, and Lewis, 1966).Curve 1:Coulomb —Born approxi-
mation. Curve 2: 2s—3p close coupling approximation neglecting
exchange. Curve 3: 2s—3p close coupling approximation including
exchange. Curve 4: 2s—2p —3s—3p—3d close coupling approximation
neglecting exchange. Curve 5: best estimate of 2s~3p excitation
cross section.

of the positive ions Mg+, Si'+, and Fe"+ which are all
members of the sodium isoelectronic sequence. These
excitation cross sections are given in Figs. 50—52. Ke
see that the cross section for the resonance transition
of Mg+ is decreased considerably by employing the
unitarized Coulomb —Born approximation; however for
the other ions the reduction is much less important.

Krueger and Czyzak (1965) have carried out calcu-
lations on the 3s—+3p and 3p—+3d excitation of Fe"+
using the Coulomb —Born approximation. Their results
for the 3s—+3p transition are in close accordance with
those obtained by Bely, Tully, and Van Regemorter
(1963).The excitation cross section for the 3p—&3d tran-
sition of Fe"+ calculated by Krueger and Czyzak
(1965) is displayed in Fig. 53.

8.6. Po/assium-like Ious

The only member of the potassium isoelectronic
sequence to be studied so far is Ca+. Van Regemorter
(1960a; 1960b; 1961) has calculated total excitation
cross sections for the 4s—+4p, 3d~4p, and 4s—+3d transi-
tions of this positive ion using the Coulomb —Born ap-
proximation as well as the unitarized Coulomb —Born
approximation. His values are displayed in Table LVI.
The total excitation cross sections for the 4s'S~~2—+

4p'Pity and 4s'Si~ti~4p'Pi~ti transitions corresponding
to the H and E lines of Ca+, respectively, are given by

Q(H) = 3Q(4s~4p) = 19.39irao' kt' ——0,

= 17.357'-ap' kf' ——O.I,
3-

OJ
O

O

2—

0

E(~yd)

I

30

Q(X) =—;Q(4s~4p)=38.78m-a(P kf'=0,
=34.70ira(P kt' ——0 1, (145)

where ky is the wave number of the scattered electron.

$.7. Positive Ions Haiing p', p', or p' Configurations

FIG. 48. Total cross section for the 2s—+2p excitation of N'+
calculated using the 2s—2p—3s—3p—3d close coupling approximation
{Burke, Tait, and Lewis, 1966).

Seaton (1953b; 1955b; 1956) has carried out a de-
tailed investigation of the excitation of forbidden tran-
sitions between the terms of the lowest p', p', p4 con-
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FIG. 51. Total cross section for the 3s~3p excitation of Si'+
(Bely, Tully, and Van Regemorter, 1963). t e is electron energy in
threshold units defined by Eq. (38).g Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb-Born approxima-
tion.
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FIG. 52. Total cross section for the 3s—+3p excitation of Fe~~
(Bely, Tully, and Van Regemorter, 1963). Le is electron energy in
threshold units defined by Eq. (38).g Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb —Born approxima-
tion.
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FIG. 53. Total cross section for the 3p—+3d excitation of Fe'"'+

(Krueger and Czyzalr, 1965). Pe is electron energy in threshold
units defined by Eq. (38).j Curve 1:Coulomb —Born approxima-
tion. Curve 2: unitarized Coulomb —Born approximation.

FIG. 50. Total cross section for the 3s—+3p excitation of Mg+
(Bely, Tully, and Van Regemorter, 1963). t e is electron energy in
threshold units defined by Eq. (38).j Curve 1: Coulomb —Born
approximation. Curve 2: unitarized Coulomb —Born approxima-
tion.
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where we have denoted the terms of a given configura-
tion by e= 1, 2, 3 in the order of increasing eigenenergy.

Because the variation with impact energy of the
excitation cross section for a positive ion is rather slow,
Seaton's calculations were performed at the threshold
energy for excitation. The terms corresponding to
m=1, 2, 3 very nearly have the same energy for. a posi-
tive ion and so the basic approximation used by Seaton
was the exact resonance approximation which neglects
the energy differences between the terms. By far the
largest contribution to the collision strengths for the
1~2 and 1—+3 transitions, which both involve spin
change and thus include exchange coupling only, is made
by the p wave, the other angular momenta providing
unimportant contributions. Detailed calculations were
performed by Seaton on the positive ions N+, 0+, 0'+,
and Ne2+ using Hartree —Pock wave functions. The
collision strengths Q(1, 2) and Q(1, 3) obtained by
Seaton (1953b) employing the exact resonance approx-
imation together with certain small corrections are
given in Table LVII. The values given in italics for the
other ions were found by interpolation and extrapola-
tion and are estimates only.

The collision strengths for the 2~3 transitions of
0+, 0'+, and S+ ions have also been calculated by Seaton
(1955b) . Because no change of spin occurs in the 2~3
transitions, potential interaction terms arise in the
integrodifferential equations describing the excitation
collisions. Both potential and exchange interactions
have to be taken into account in the case of the p wave.
The basic approximation used by Seaton (1955b)
for the p wave was the exact resonance approximation,
the X = 2 terms arising from the expansion of the Cou-
lomb interaction e'/r;; between the electrons being
allowed for by the use of first-order perturbation
theory. The presence of the potential interaction terms
results in partial waves other than the p wave being
important for 2~3 transitions. The collision strengths
corresponding to these partial waves were calculated by
Seaton (1955b) using the distorted waves approxima-
tion but neglecting exchange interaction terms. Values
of the total collision strength Q(2, 3) determined by
Seaton &1955b) are displayed in Table I VII.

The exact resonance approximation has also been
applied by Czyzak and Krueger (1964) to calculate the
collision strengths Q(1, 2), Q(1, 3) and Q(2, 3) for the
3p' ious S'+, Cl'+, and Ar'+ as well as the 3p' ion S+.
Their values for S+ differ from those calculated by
Seaton (1953b; 1955b), the discrepancy being rather
large for Q(2, 3). Extensive new calculations on the
cross sections for the excitation of positive ions having
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ground state 2p& and 3p' configurations have been re-
ported by Saraph, Seaton, and Shemming (1966) and
Czyzak and Krueger (1967).

P = 100(3Ii i
—I)/(Ii i+I) . (149)

The first theoretical treatment of the polarization of
radiation was given by Oppenheimer (1927a; 1927b;
1928) and was further developed and applied by
Penney (1932b). Recently the theory has been re-
examined and extended by Percival and Seaton (1958).

Supposing that the atom can be characterized accord-
ing to the Russell —Saunders coupling scheme, we let
L'5'J', LSJ, and L"5"J" be the orbital, spin, and
total angular momentum quantum numbers of the
initial, upper, and final levels of the atom, respectively.
We shall confine our considerations to those instances
for which the initial state of the atom has zero orbital
angular momentum so that L'=0.

We first examine the two electron case of helium
whose nucleus has zero spin and concern ourselves
with the polarization of the light emitted in the line
LSJ—+J" and in the multiplet LS—+L"S. The total
spin 5 of the helium atom can be 0 or 1. The polariza-
tion is zero if the upper level is an 5 state so that L=O.
If L=1, corresponding to an upper P state, the per-
centage polarization takes the form

P= 100G(Qo—Qi)/(hoQo+hiQ, ) (150)

while if L=2, corresponding to an upper D state, we
have

P=1ooG(Qo+Q —2Q)/(hoQo+h Q+h-Q»
where Q~ss. ~~ is the cross section for the excitation of the

9. Polarization of Radiation

The dipole radiation emitted by an atom after excita-
tion by an electron beam is polarized. Let us suppose
that the direction of the incident beam of electrons is
parallel to the Os axis of a rectangular frame of reference
0(x, y, s) . Then the radiation may be regarded as being
due to an electric dipole in the Os direction and two
equal electric dipoles in the Ox and Oy directions. De-
noting the intensity of radiation per unit solid angle in a
direction perpendicular to the Os axis due to the elec-
tric dipoles parallel and perpendicular to Os by I~~ and
Is., respectively, we define the percentage polarisatiorc P
by the formula

P = 100(Iii—Is) /(Ii i+Is). (147)

Then it can be shown that the intensity of radiation
per unit solid angle in a direction subtending an angle 8
with the Os axis is given by

I(8) =3(100—P cos' e) I/(300 —P), (148)

where 4xI is the total intensity resulting from integrat-
ing I(8) over all solid angles. Since I= I~ ~+2Is. we may
express the percentage polarization in the alternative
form

state LSMI.. The values of the constants G, ho, h~, h2

obtained by Percival and Seaton using the Oppen-
heimer —Penney theory are given in Tables LVIII and
LIX.

We now examine the polarization of the Lyman n
line of hydrogen, produced by the electron impact
excitation of the 2p states, and the resonance lines of the
alkali metal atoms. These lines all arise from a 'S
initial state, a 'P upper state and a 'S final state. For
the 'P~~~..—+'5 transition the polarization of the radiation
is zero. For the 'P3~~—+'5 transition and the 'E'—'S
multiplet, the percentage polarization according to the
Oppenheimer —Penney theory is given by formula (150),
the constants Go, ho, h~ being presented in Tables LX
and LXI. The spin of the atomic nucleus is not neces-
sarily zero for these cases and so the constants involved
in the polarization formula were calculated by Percival
and Seaton for the values I=O, —',, 1, ~3 of the nuclear
spin quantum number.

Unfortunately, the Oppenheimer —Penney theory
yields results which depend upon the representation
used to characterize the state of the atom. This occurs
because the probabilities of exciting the upper states
of the atom by electron impact and the optical transition
probabilities from these states are calculated independ-
ently in the Oppenheimer —Penney theory. The more
sophisticated treatment of Percival and Seaton con-
siders the probability of polarized photons being emitted
by the whole system of atom and incident electron. As
in the simpler theory, the polarization is zero for the
2pii2 —+1s transition of atomic hydrogen. For the case of
the 2p@2—+1s transition of atomic hydrogen Percival
and Seaton find

P(2p i ) = 100(Qo—Q )/(1.694Q +2.388Q ) (152)

which is quite close to the expression

P(2p~i, ) =100(Q,—Q,)/(1.667Q,+2.333Q,) (153)

obtained using the Oppenheimer —Penney theory with
I=O, although rather different from that found taking
I=-,'. The polarization of the total radiation from the
2p-+is multiplet of atomic hydrogen is found by
Percival and Seaton to be

P(2p) =100(Qo—Qi)/(2. 375Qo+3.749Qi) (154)

which is not very different from the expression

P(2p) = 100(Qo Qi)/(2. 333Qo+3.667Qi) (155)

derived using the Oppenheimer —Penney theory with
I=O but dissimilar to that obtained with I= ~.

For the case of atomic hydrogen the exact expression
for the polarization is close to the Oppenheimer —Penney
formula with I=0 because the hyperfine structure sepa-
rations are small. However for atoms other than hydro-
gen, the hyperdne structure separations are significant
and then the theory including hyperfine structure must
be employed.

In a recent paper by Flower and Seaton (1967) the
eGect of allowing for hyperfine structure in the calcula-
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tion of the threshold polarizations of the resonance
lines of I.i, I.i, and "Na has been investigated. The
percentage polarizations of the resonance lines calcu-
lated using the measured values of the hyperfine struc-
ture are given in Table I.XII where they are compared
with the values determined experimentally by Hafner,
Kleinpoppen, and Kruger (1965). The agreement be-
tween theory and observation is seen to be very good.

In general the polarization at the threshold energy for
excitation can be evaluated without detailed calcula-
tions of the cross sections since the scattered electron
has zero velocity and therefore zero orbital angular
momentum at the excitation threshold so that only
states with 3Ez=O can be excited. If we set Qi ——0 in the
Oppenheimer —Penney formula (155) for I=0 we obtain
P(2p) =42.9 at the threshold for the polarization of the
2p—+1s multiplet while the more elaborate theory of
Percival and Seaton yields E(2p) =42.1. However, as a
consequence of the close coupling between the 2s and
2p states of hydrogen, this has been shown to be an
unjustifiable procedure by Damburg and Gailitis (1963)
who find that E(2p) oscillates near the threshold and
does not appear to tend towards a definite limit at the
threshold. Their values of P(2p) near the threshold
energy are given in Table I.XIII.

At energies above the threshold the polarization of the
2p—+1s inultiplet has been calculated by Burke, Schey,
and Smith (1963) using their cross sections calculated
with the 1s—2s—2p close coupling approximation. These
values of P(2p) are also given in Table I.XIII.

10. Theoretical Summary

The methods which have been employed to calculate
excitation cross sections can be conveniently classified
according to the strengths of the couplings between the
initial and final states of the target atom and between
these states and other states of the atom.

For high-electron impact energies the weak coupling
approximations are appropriate. They are based upon
the assumption that the back coupling of the final
state to the initial state, and the couplings of these
states to other states of the atom, are small and may be
neglected. The most widely used of the weak coupling
approximations is the erst Bore approximatioe which
represents the free electron by a plane wave and may be
employed without making undue error for electron
impact energies sufficiently far above that for which the
excitation cross section attains its maximum value.
A still simpler approximation which may be used at
moderate as well as high energies is the Bethe approxi
matioe which, in the case of optically allowed transi-
tions, replaces the matrix element V„~, coupling the
initial state 1 to the final state e, by its asymptotic
form for large radial distances. A more elaborate weak
coupling approximation is the distorted roaees approxima
tioe which represents the free electron by functions
describing its motion in the static fields of the atom
before and after the excitation process. The use of this

approximation generally leads to an increase in the exci-
tation cross section above that given by the first Born
approximation. Neither the first Born nor the distorted
waves approximations make allowance for coupling to
states other than the initial and final states. Such cou-
plings can be allowed for by using the second Horn
approximation, provided they are fairly weak, which
should be a valid procedure at moderately high impact
energies.

The weak coupling approximations discussed so far
do not take account of the Pauli exclusion principle
and thus neglect the role of electron exchange. Its
importance is emphasized by the fact that the Born
approximation yields zero for the cross sections for
singlet~triplet excitations of helium which arise en-

tirely as the consequence of exchange. Now the Bore-
Opperiheimer approximatiorl, which, like the first Born
approximation, represents the free electron by plane
waves, is unsatisfactory since it gives rise to excitation
cross sections which are gross overestimates at low and
moderately high impact energies for the case of S—&S

transitions. The failure of this approximation comes
about by the neglect of certain terms of the first order
in the interaction energy between the free electron
and the atom. If these terms are retained one arrives
at the Feenberg or erst order exc-halge approximatioe
which produces excitation cross sections that are sub-
stantially less than those given by the Born—Oppen-
heimer approximation for S—+S transitions. An alterna-
tive approach is to expand the exchange scattering
amplitude given by the Born—Oppenheimer approxima-
tion in powers of k~ ' where k~ is the wave number of
the incident electron, retaining only the leading term of
order ki '. This is the Ochkur approximatioN. It appears
to yield satisfactory results even for quite low electron
energies and has the attractive feature of being no more
difFicult to apply than the first Born approximation.
The distorted waves approximation can also be gen-
eralized to take account of electron exchange. Although
this is the most accurate of the weak coupling approxi-
mations, its application requires an expansion in partial
waves and the greatest computational eGort.

%e now turn our attention to the case of strong cou-

pling between the initial and final states of the target
atom but relatively weak coupling between these
states and other states of the atom. This case generally
arises at low impact energies for transitions between
states with a small energy difference, such as the reso-
nance transitions of the alkali metal atoms and the
ns—+(n+1)p transitions of atomic hydrogen for e
large. All the weak coupling approximations discussed
hitherto fail badly for such cases since they produce
excessively large cross sections near the threshold
energy. This behavior is a consequence of the fact that
the partial cross sections associated with low values of
the angular momentum of the incident electron are
grossly overestimated by weak coupling approximations
in a strong coupling situation, often exceeding the
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theoretically determined maximum value imposed by
conservation considerations. Several strong coupling
approximations have been introduced by Seaton to
overcome this difhculty. The modified Bethe approxima
tioe uses the Bethe approximation for the partial cross
sections which are less than half the theoretical maxi-
mum value Q, t and replaces all Bethe partial cross
sections which exceed this value by —,'Q . t. A somewhat
analogous procedure based upon a semi-classical ap-
proach and known as the impact parameter method has
also been used. Another method of treating strong
coupling cases is to employ the exact expression for the
excitation cross section given in terms of the reactance
matrix R which is then approximated by using the
Born approximation. This automatically ensures that
the conservation theorem, or unitarity, is obeyed and
has been termed the Nrtitarised Borg approximatiol.
Under strong coupling conditions the three approxima-
tions discussed above lead to a considerable reduction
in the excitation cross section below that given by the
Born approximation at low impact energies, and,
judging from the case of the 3s~3p resonance transition
of sodium, the results are quite satisfactory. However,
if the coupling is insufficiently strong, it should be
noted that the very strong coupling approximations
mav, in certain instances, give rise to misleading
results.

If the energy difference between the initial and anal
states of the transition is very small another approach
to the problem may be made. This is called the exact
resonalce approximation and is based upon the assump-
tion that this energy diGerence may be taken to vanish
thus enabling the coupled equations describing the
scattering to be solved exactly. The neglected terms can
then be taken into account by an iterative procedure.
This method has been applied, for example, to the
3P~'D and 'P—+'5 excitations involving the terms of
the ground configuration of atomic oxygen, and to the
3s~3p excitation of sodium for which it yields a cross
section which is in substantial agreement with that
obtained using the modified Bethe approximation and
the other strong coupling approximations.

In many instances the coupling between the initial
and Anal states of the target atom may be fairly weak
while the coupling of the initial or final state to certain
other states of the atom may be strong. An example of
such a case is the is—+2s excitation of atomic hydrogen
for which the coupling between the is and 2s states is
weak although the coupling of the 2s state to the 2p
states, with which it is degenerate, is very strong.
Moreover the coupling between the 2s state and the stp
states with principal quantum numbers n&3 is also
strong and can be expected to have an important effect
upon the is—+2s excitation collision. The most satis-
factory approach to the problem of determining exci-
tation cross sections for such cases is to perform an exact
solution of the coupled integrodifferential equations
connecting the initial and final states and the most

important other states of the target atomic system. This
is referred to as a close cottp/irtg approximatiort H. owever
it appears that many more states of the atom may make
a significant contribution to the scattering than was
originally anticipated so that even the 1s—2s—2P—3s-
3p—3d close coupling calculations performed on the
1s—+2s and 1s~2p excitations of atomic hydrogen may
be some distance from convergence to the actual solu-
tion, except for electron impact energies below that
required to excite the resonances arising from the m=4
level where the 6 state approximation should be quite
accurate.

Lastly we note that classical mechanics has also been
used to calculate excitation cross sections. The classical
approach produces the wrong decay of the excitation
cross section with increasing impact energy although
it seems to yield cross sections of about the correct
magnitude at moderate energies. A synthesis of the
classical method and the semi-classical impact parame-
ter method has been introduced which produces excita-
tion cross sections having the correct energy fall off.

II. EXPERIMENT

11. Introduction

)Pote added irt proof. In this article we discuss se-
lected measurements from the literature. An extensive
compilation of measured electron collision cross sections
is being prepared by the JILA Information Center. ]

In the study of an atomic collision process the theo-
retician has the means, in principle, to obtain descrip-
tions adequate for ordinary purposes through applica-
tion of the Schrodinger equation to the complete
physical system. In low-energy atomic physics the
quantum-mechanical principles are usually assumed to
be fully understood, but the technical difFiculties in-
volved in applying them in full to a complete atomic
system have been insurmountable. As we have seen in
preceding sections it is necessary to simplify the atomic
system conceptually and to develop mathematical
approximations. These approximations tend to fail in
the range below about one hundred electron volts,
which is the energy range of greatest interest in the
microscopic approach to the study of hot gases (stellar
atmospheres, plasrnas, etc.) .

This regime is then an area of opportunity for the
experimental physicist. He may be able to provide much
needed data which cannot be calculated accurately or
he may be able to provide accurate measurements on a
few systems which can be used as a check on the theo-
retical approximations. In the remainder of this paper
we consider the available experimental data on electron
impact excitation of atoms, commenting on quality
where possible.

The experimentalist, as well as the theoretician, has
a problem of simplifying the physical system which he
studies. First, it must be simple enough so that it can be



278 REvIEws oz MoDERN PHYsIcs APRIL 1968

described accurately and concisely. Second, for purposes
of comparison with theoretical work, and to fill the
current need for basic microscopic data, the observed
phenomena shouM be a good approximation to the
single process usually studied by the theoretician. In
this review of experimental work we emphasize those
experimental results which seem to be relevant to the
isolated electron —atom system. In considering an ex-
perimental result, of necessity, the first concern will be
with the evidence that the atomic system studied is
isolated: (1) that the results are independent of pres-
sure or may be extrapolated reliably to zero pressure,
and (2) that the atomic system is not irretrievably
influenced by the presence of macroscopic electric and
magnetic fields. The general criteria for isolation are dis-
cussed further in Secs. 12.1, 12.2, and 12.3. In these
sections we have tried to identify md discuss those
physical properties of atoms, and of the electron impact
excitation process, which must be considered by the
experimentalist if systematic errors of serious proportion
are to be avoided. This discussion is the heart of the
experimental part of the review. It is our contention
that with the physical understanding of electron impact
excitation now represented in the literature and with
the experimental technology now available a very
significant improvement in the quality of results could
be realized in any future work. The general characteris-
tics of excitation functions have been established. The
interest in the immediate future will be in providing
more accurate measurements for detailed comparison
with calculated cross sections and for applications such
as in plasma diagnostics and astrophysical models.

The remainder of the discussion is a rather broad
survey of the apparently better experimental results,
but few of the descriptions in the literature are com-
plete. The great majority of authors do not mention
some of the more important physical and instrumental
effects discussed in Secs. 12.1—12.3. In many cases it is
clear that the physics involved in the excitation meas-
urements could well have been given more careful
attention and measurements could have been more
adequately described in publication.

12. Experimental Methods

Experimental methods which have been used to
study inelastic collisions between electrons and atom fall
into three main categories.

The first and most important of these includes those
experiments in which intensities of spectral lines excited
by an electron beam are used as a measure of the excita-
tion process. The result of such a measurement is a
photon-excitation cross section: the probability for
producing a photon in a given spectral line, per atom
and per unit electron particle Aux.

We note at this point that the photos-excitation cross
section produced by the experimentalist, even if he
succeeds in meeting strict criteria for isolated atoms,
in general cannot be directly compared with the level-
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FIG. 54. Electron beam apparatus used for the study of optical
excitation functions of helium (St. John, Bronco, and Fowler,
1960).

excitation cross section produced by the theoretician.
The differences are due to (1) cascading from higher
levels excited by electron impact, (2) the availability
of several channels for radiative decay of excited states,
and (3) the anisotropic property of the radiation pat-
tern with respect to the electron beam axis [see formula
(148)j.The third of these effects is determined by the
relative probabilities for exciting the atomic dipoles
along the perpendicular to the electron beam axis.
Therefore, the photon-excitation cross section as ob-
served in a given direction should be compared with an
appropriate theoretical statement written in terms of
cross sections for exciting the various magnetic sub-
states of the atom and the transition probabilities which
determine the radiative decay scheme.

This distinction between the nature of the primary
results of experiment and theory has led to the extensive
use of the term optical excitatioe flection We u.se this
term to describe the dependence on electron energy of
the cross section for producing photons in a given line.
The term apparent excitation fuectioii may be used to
describe the excitation function as observed in a par-
ticular direction without some correction (such as for
anisotropic properties of the radiation pattern).

Figure 54 is a schematic diagram of a typical appa-
ratus used for the measurement of optical excitation
functions. Electrons emitted by the heated cathode are
passed through the collision chamber in a parallel beam.
Usually, the geometry of the electron beam is controlled
visually by adjusting anode and grid potentials. In
most work the radiation excited by the electrons is
suflicient to delineate the electron beam visually.
Focussing is usually accomplished purely electrostati-
cally, although a few workers have used axial magnetic
fields.

Through the energy range from erst appearance of
visible light up to the ionization potential the beam is
subject to space-charge spreading. However, in most
work, the optical system is arranged so the image of the
electron beam has its axis perpendicular to the entrance
slit of a monochromator and only partially covers the
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slit length. Under these circumstances the signal is
usually not noticeably sensitive to minor variations in
electron beam diameter.

Above the ionization potential, the beam often can be
maintained parallel with a diameter defined by the
aperture of the electron gun. This evidently occurs
when ion densities are sufficient to neutralize the elec-
tron beam space charge.

Absolute calibrations of the optical system are carried
out by placing a standard tungsten strip lamp in the
position of the electron beam, virtually or actually,
and calibrating the response of the optical system to
the known Qux. Absolute calibrations will be discussed
in more detail in Sec. 12.4.

The optical method discussed in the preceding para-
graphs is only suitable for short-lived states. For states
with very long lifetimes a second method based on the
ejection of electrons from a metal target has been
applied by a number of workers. The metastable atom is
deactivated at the target, the excitation energy going
into kinetic energy of the ejected electron and into over-
coming the work function of the target material. The
yield of ejected electrons provides information about
the long-lived state similar to that which the optical
excitation function provides about the short-lived state.
The optical calibration problem is replaced by the prob-
lem of determining the efficiency of collection and con-
version of metastable atoms at the metal target.

A closely related method is based on deactivation in a
gas of lower ionization potential, the Penning ionization
process.

The third method for studying inelastic electron—
atom collisions is through the study of the energy-loss
spectrum of scattered electrons. An electron beam of
definite energy is passed through a gas. An electron
energy-analyzer is used to measure the energy spectrum
of electrons scattered at a particular angle with the
beam axis. Pressures are reduced to the point that
multiple collisions can be neglected.

Kith the analyzer set to accept electrons of zero
energy loss an electron current due to elastic scattering
is observed. As the energy loss setting is increased only
a background of stray electrons is observed until the
energy-loss component transmitted corresponds to the
first excitation potential. At this setting a peak in the
electron current is observed due to inelastic scattering
leaving the atom in the first excited state. Peaks cor-
responding to excitation to higher excited states can be
observed as the energy resolution of the instrument may
permit.

The method appears to have some interesting advan-
tages. Where energy resolution permits, an energy-loss
component represents the direct excitation to the cor-
responding excited state, with no complications due to
cascading, or due to the lifetime of the excited state. In
practice, however, there are difficulties in applying it to
the measurement of excitation cross sections as a func-
tion of energy. The major problem is in the necessity

for taking data at many angles as well as over a range of
energies. The angular distribution of electrons must be
investigated in detail and used as the basis of integration
in order to obtain a total cross section.

Much significant work has been accomplished with
this method, nevertheless. Lassettre and his co-workers
have used the method, at relatively high incident elec-
tron energies, to study angular distributions of inelasti-
cally scattered electrons, and some of these results have
been used earlier in this paper (3.1) in comparison with
theoretical results. Relative magnitudes of differential
cross sections for different transitions may also be ob-
tained at a particular angle and energy.

Several groups have exploited this method using
high-resolution electron spectrometers at relatively low
electron energies (Schulz and Philbrick, 1964; Cham-
berlain, Simpson, and Kuyatt, 1965) observing peaks
corresponding to many doubly excited states lying
beyond the ionization limit as well as peaks correspond-
ing to singly excited states. Schulz and Philbrick
(1964) and Chamberlain (1965) have ca,rried out high-
resolution studies of inelastic processes by observing a
particular loss component as a function of incident elec-
tron energy. These studies do not yield reliable relative
cross sections, but they have revealed the occurrence of
sharp resonances in the excitation cross sections, which
are apparently associated with excitation through inter-
Inediate short-lived negative ion states.

1Z.1. I'resslre DePendence of Eoccitation Functions

Our goal in this review is to evaluate the present
status of information about the excitation of free atoms
by incident electrons. Consequently, we are interested
primarily in experiments the results of which are inde-
pendent of pressure variations or which can be corrected
to zero effective pressure. This requirement removes
from further consideration many of the older results,
including some from mell-known works still frequently
used.

The major processes which have been recognized as
giving rise to pressure dependence of excitation func-
tions are (1) imprisonment of resonance radiation and
(2) collisional transfer of excitation. Since much of the
following discussion is based on studies of helium excita-
tion, a helium energy level diagram is shown in Fig. 55.

The importance of imprisonment of resonance radia-
tion to measurements of excitation functions was fully
recognized by Phelps (1958), who applied the theories
of Holstein (1947; 1951), and of Biberman (1947) to
the analysis of experimental observations of excitation
in helium. In the interpretation of observed excitation
functions it is convenient to be able to assume that the
photons produced in the de-excitation are subject to a
negligible amount of reabsorption in the gas. This is a
safe assumption for transitions between excited states,
at experimentally practical temperatures, since the
populations of excited states are low. Reabsorption in
these transitions is negligible. However, for the reso-
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FIG. 56. The sensitivity of the
helium 'D and 3D excitation func-
tions to excitation transfer eGects
is illustrated in these curves ob-
tained by Lin and St. John (1962).
The abscissas represent electron
energy, 0-500 eV. Operating pres-
sures are indicated in millimeters
of mercury.
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concluded that partial breakdown of I.S coupling occurs
for m =4 and is essentially complete for n& 6. They
find that n'P —+nF cross sections go approximately as
m', and that the reverse process is about ten percent of
the forward process.

It has been suggested that another mechanism for
pressure dependence may be important near threshold.
Bogdanova and Geitsi (1964) have discovered that
structure in the shapes of some helium excitation func-
tions near threshold is pressure-dependent and, further-
more, mav depend on the presence of impurities. Figure
57 shows excitation functions for the helium lines at
4713 A. (4'S~2'P) and 5876 A (3sD~2'P) with

mercury impurities present in various concentrations.
The helium pressures are about 10 ' Torr for these
curves. The threshold peaks are absent in pure helium,
but are evident with 10 4 Torr of the mercury impurity.
Krypton and hydrogen impurities produce similar
eSects.

Bogdanova, Bochkova, and Frish (1964) have sug-

gested that the threshold pressure dependence is due
to the Hornbeck —Molnar process in the following
sequence:

He+ e-+He*(A) +e

He*(A) +He~Hes++ e

Hes++ e—+He*(B)+He.

The last step in this process is rapid for slow electrons,
which are available from excitation processes due to
electrons of near threshold energies. The relationship
of the impurity component to this proposed process is
not clear, but it has been noted that the eGective im-

purities have relatively high elastic scattering cross
sections for slow electrons and may help confine the low

energy electrons to the vicinity of the electron beam.
Bogdanova and Marusin (1966) have shown that the
pressure-dependent component of the excitation func-
tion is delayed in time (&10 r sec) with respect to the
pressure-independent component.

In response to this interpretation, Heddle (1967)
has discussed these threshold eGects in terms of space
charge due to an intense electron beam. In general,
the space charge fields may cause a washing out of
structure in the threshold region of an excitation func-
tion. The introduction of atoms of low ionization po-
tential may lead to space charge neutralization and
permit the observation of structure. Heddle claims that
this interpretation is consistent with all available experi-
mental data. He suggests that the time delay observed
by Bogdanova and Marusin corresponds to the time
necessary to accumulate a positive ion space charge to
neutralize the electron space charge. Final resolution of
this question will require some additional laboratory
work. since the evidence is sketchy, but Heddle's ex-
planation, presented with quantitative justification, is
much less speculative than the suggestion of Bogdanova
and Geitsi.

Multiple scattering of electrons is another pressure-
dependent-type process which can affect excitation
measurements. Elastically and inelastically scattered
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I'zG. 57. Threshold behavior of the helium excitation function Q
in arbitrary units for the 4713-A. line and the 5876-A. line in pure
helium at 10 ~ Torr (curves 1) and with partial pressures of
mercury ranging from 1)&10 ' to 1&&10 ' Torr (Curves 2—6).
The electron beam current density was 7X10 4 A/cm' and the
effective width of the electron energy distribution was about 0.3
eV. To improve the display the curves are displaced successively
greater distances upward from the abscissas. LBogdanova and
Geitsi, 1964j.
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electrons could in principle destroy the spatial defini-
tion of the beam and thus cause photometric complica-
tions. Such scattered electron current would not have
the same axial symmetry as the primary beam so that
the state of pola, rization of radiation excited by scattered
electrons would be different from that due to the pri-
mary beam. The inelastically scattered electron cur-
rent, and ionization current if large, would produce
excitation characteristic of lower energies than that of
the primary electron beam, so that a distortion of the
excitation functions would occur.

These effects would be pressure-dependent, and there-
fore are not important in any pressure range where the
excitation function can be shown to be independent of
pressure. Since the secondary processes are energy
dependent the safe pressure regimes may be expected
to vary with electron energy, however.

The number of atoms per cc at 10 ' Torr and 293'K
is 3.8&10". Consideration of typical elastic and in-
elastic collision cross sections indicates the extent to
which ga,s scattering could be a significant problem at
pressures commonly used. The peak of the cross section
for ionization of helium is about 3.5&10 " cm' at

100 eV (Kieffer and Dunn 1964). Other inelastic
processes in helium total approximately 3&(10 ' cm'
according to Gabriel and Heddle (1960). The prob-
ability for inelastic scattering of a 100-eV electron per
centimeter of helium at 10 ' Torr is then of the order of
only two-tenths of one percent.

However, for some other atoms the peak ionization
cross section is an order of magnitude larger. Excita-
tion cross sections may also be larger. Krypton, xenon,
mercury, and the heavier all-alis are among the atoms
having large ionization cross sections, according to
Kieffer and Dunn. The electron loss per centimeter
through inelastic processes might then amount to
several percent. One possible result is a significant atten-
uation of the electron beam before it reaches the col-
lector, resulting in an absolute error as well as a distor-
tion. Another possible error is the distortion due to
excitation by the slow inelastically scattered electrons.
Magnetic confinement of radially scattered electrons
could help make this effect important.

In the literature there are many examples of measure-
ments demonstrating the sensitivity of excitation func-
tions to pressure-dependent effects. Effects of imprison-
ment and excitation transfer more or less comparable to
those just discussed occur for excitation functions of
any atomic species, and a demonstration of the depend-
ence of excitation functions on pressure must be a part
of any valid measurement. Much more useful to the
reader than the usual statement that signal is propor-
tional to pressure, is a presentation of the apparent
excitation as a function of pressure, preferably at
several electron energies.

In order to illustrate the nature of effects observed in
different lines we show in Figs. 58 and 59 results ob-
tained in helium by Heddle and Lucas (1963).Figure

58 shows the rapid increase with pressure of the magni-
tude of the apparent excitation function for several
helium lines. For 3'P excitation the increase is primarily
due to imprisonment of 3'P~1'5 radiation. Collisional
transfer loss of 3'P atoms is believed to be negligible
and the 3'P population at increased pressure is con-
trolled bv the probability for the 3'P—&2'5 transition.
At higher principal quantum numbers, however, the
excitation transfer collision may be more nearly com-
petitive with the radiative decay loss. This would result
in a somewhat shorter lifetime with conversion of 'P
atoms into other angular momentum states. We note
that the primary effect observed would be a change of
magnitude.

Of the other excitation functions considered in Fig.
58, the O'D—+2'P function is most pressure sensitive.
This observation is consistent with the suggestion of
St. John and Fowler (1961) and the theory of Lin and
Fowler (1961) to the effect that the 'D states are heavily
fed by excitation transfer to the 'Il states with cascading
to the 'D state.

The O'D—+2'P function is subject to the same type of
feeding through collisional transfer to the higher 'F
states, but the pressure dependence is relatively less
because the O'D direct excitation cross section is larger
than that for the 4'D state (Lin and St. John, 1962).
The 435—+2'P and 3'P~2'5 lines are relatively insensi-
tive to pressure as indicated in Fig. 58. Presumably
this insensitivity occurs because the O'S and 3'P states
are not strongly populated by ca,scading from the 'Il
states. The O'5~2'P line is seen in Fig. 58 to be quite
pressure sensitive, as would be expected since the '5
states are fed by cascading from the 'P states and there-
fore the apparent cross section would show the indirect
effect of imprisonment of resonance radiation. Col-
lisional transfer of excitation is not believed to play a
significant role in the pressure sensitivity of this excita-
tion function because of the energy difference between
the 4'5 and O'P states.

The data on polarization of radiation show the same
general sensitivities to pressure as do the excitation
function data. The curves shown in Fig. 59 indicate
that the contributions from secondary processes are
effectively depolarized. The pressure dependences of
polarization of radiation from several states, notably the
3'P and O'D states, in fact, seem to be greater than for
the corresponding excitation functions. This probably
occurs because the data for excitation and polarization
refer to different energies of the exciting electron.

The Heddle and I ucas pressure dependence curves
represent the behavior of the excitation functions and
of the polarization of helium lines excited at specific
electron energies. Pressure dependences of the 'P and
'S excitation functions due to the trapping of resonance
radiation arise through an independent de-excitation
mechanism and therefore are independent of energy of
the exciting electrons. In the case of the 3'P~2'5
function of helium, for example, a pressure-independent
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correction to the magnitude may be estimated, if
quoted pressures are accurate, on the basis of the theory
of imprisonment of resonance radiation.

In general, effects on the final state excitation func-
tion of collisional excitation transfer depend on the
electron energy. The shape of the excitation function
for the initial state is carried over into the Anal state
excitation function. In helium, the I' states which have
the largest excitation cross sections, are the major
sources for excitation transfer, and the pressure-depend-
ent components of the recipient excitation functions
reQect the broad maxima at about 100 eV of the 'I'
functions.

IZ.Z. The Effects of Polurisatiort
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lar to the electron beam axis. In general, this radiation
is polarized and the angular distribution is anisotropic.
The theory of polarization of electron impact radiation
is discussed in Sec. 9. The angular distribution I(8)
for electric dipole radiation is related to the percentage
polarization as described by Eq. (148)

I(8) =3(100—P cos'8)I/(300 —P)

where 0 is the angle of observation with respect to the
axis of symmetry provided by the electron hearn re-
ferred to as the Os axis in Sec. 9. I is the intensity per
unit solid angle averaged over all solid angle. The
percentage polarization P is defined by Eq. (147),

P= 1oo(III I~)/(III+I~)
where III and Ii are the intensities, observed at 90' to
the electron beam axis, of the components with elec-
tric vectors parallel and perpendicular to the electron
beaITl axis.

The polarization of radiation emitted in a transition
from a state of definite orbital angular momentum can
be expressed in terms of the cross sections for exciting
the various magnetic substates ML, . For example, in
the case of excitation of a I' state, the cross section for
excitation of the

I HID I
=0 substate is different from

the cross section for the
l Mz

l
= 1 substates. The optical

transition probabilities are independent of M~, so that
the relative values of the cross sections, Qo and Qi,
determine the angular distribution and the polarization
of the emitted radiation.

The primary experimental data on excitation func-
tions are related, ignoring cascading, to some combina-
tion of excitation cross sections for the magnetic sub-
states (not to any one of them and not to the total
cross section). The speci6c functional dependence of
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the polarization on the values of Q(Mz) depends on the
6ne and hyperfine structure. This dependence was dis-
cussed in Sec. 9, where expressions are given for the
polarization of several lines of helium and hydrogen in
terms of Qo and Qi. Special cases occur for excitation to
the S states, and at threshold for excitation of any
level. For 5 states, with only the substate

~
3I& ~=0,

the radiation is isotropic and unpolarized. At threshold
the outgoing electron carries away no angular momen-
tum. The incident electron only has angular momentum
perpendicular to the electron beam axis. Conservation
of orbital angular momentum requires that only

~
Mr, ,

'——0 states may be excited at threshold from an
initial state of zero orbital angular momentum.

The data for I(8) can be used to obtain I if the polari-
zation I' is known. In the case of most experimental
data the angle of observation is 9=90' and the expres-
sion for I(0) reduces to

I,(E) =Iii(E)+Ii(E)
and the transmitted intensity

(160)

I~(E) = TiiIii(E)+TiIi(E), (161)

where T~~ and T& are the transmissions of the instru-
ment for the two components measured separately.
It is useful to write, from Eq. (147) and Eq. (160)

Ill(E) = 2LI (E)7f1+[&(E)/1007I

I~(E) = 2[I'(E)]I 1—[&(E)/100]I.

(162)

P(E) of the incident radiation, which is in turn a func-
tion of electron energy E. Therefore, the measured
excitation function is distorted. The incident intensity
I,(E) may be written in terms of components I~~(E)
and Ii(E) with electric vectors parallel and perpen-
dicular to the axis of the electron beam. Then

I=I(90 ) L1—(I'/300) 7. (158) Then use of Eqs. (162) and (163) in (161) leads to

Fquation (158) is the basis for the definition of an

apparent cross section Qi, often used in the discussion
of experimental results. I bears the same relationship to
the total photon-excitation cross section Q which

I(90') bears to Qi, and

Q =Q i[1—(P/300) 7. (159)

However, use of the "correction" of Qi in presenting
experimental results tends to reduce the quality of the
data, introducing the additional uncertainties of the
polarization measurements or calculations. If the pri-
mary experimental results are published in addition to
values corrected for such effects as polarization and

cascading, the maximum worth of the measurement is

preserved, independent of changing information about
polarization and transition probabilities. Comparisons
of theoretical calculations with experimental results

may then be based on separate calculations for the cross
sections for the magnetic substates, with subsequent
comparison with the primary experimental data for Qi
and with the primary experimental data for the polari-

zation, taking appropriate notice of cascading effects.
The most serious omission found throughout the

literature is failure to make proper allowance for instru-

mental polarization. The observation of the excitation
function for a spectral line usually requires the use of a
prism or grating monochromator. Usually, the instru-

ment modifies the state of polarization of the light.
This may occur, for example, at diffraction gratings
where components with electric vectors normal and

parallel to the rulings may have different effective
transmissions, and at prism surfaces where partial
reQection of obliquely incident light may result in

modihcation of the state of polarization.
It can be shown, quite simply, that the ratio of the

transmitted intensity to the incident intensity is not
constant, but is a function of the state of polarization

I (E) =I*(E)-'(Tii+T&) 1+ I

ETii+ Tii 100

(164)

The second term in the square brackets represents an
energy dependence in the ratio of the transmitted to the
incident intensity. If T~ ~

W Ti and I'(E) WO, the meas-
ured intensity is not proportional to the excitation
function. The fractional error in the measured excita-
tion function [in addition to the effect described by
Eq. (158)7, is

30-
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FIG. 60. Instrumental polarization

I

6500 750('

I, ~mgx Tmin) /(~ma +Tmiu)

of a half-meter Ebert-type grating spectrograph, calculated from
measurements by G. Dunn (private communication).

AIi/I, = (Ti~ — T~)/( T~~ +T).P(E)/100 (165)

This error can be very large, in fact, since severe instru-
mental asymmetry is known to occur.

It is important to notice in this connection that the
instrumental transmission coefficients T~~ and Ti are
functions of wavelength, and that the instrumental
error will be different, in general, from one spectral
line to another. Figure 60 shows the polarization of
natural light produced by a half-meter Ebert-type
grating spectrograph blazed at 4000 A. Other examples
are given in a recent review by Heddle (in press) .
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Various devices for depolarizing monochromators
can be applied. One method uses a partially polarizing
transmission element, such as an oblique quartz plate,
which is adjusted at each wavelength to the angle at
which it exactly compensates for the instrumental
polarization. Another method relies on rotation of the
axis of polarization of the incident light by an angle such
that T~~ ——Ti. This method also requires readjustment
at each wavelength, and may be erroneously applied
for some longer-lived states if rotation of the axis of
polarization by stray magnetic fields is neglected
Lsee Eq. (171)j.

A method avoiding the anisotropy associated with
polarization is to observe the radiation, not at 90 to
the electron beam, but at the "magic angle, "that angle
at which the total intensity is equal to the average
intensity over the total solid angle. From Eq. (148) we

may write this condition

I{8')=I
or

3(100—P cos'8ss) =300—P
which leads to cos 8' ——(v3) ' and 8~ ——54'46'. How-
ever, the polarization of light emitted at angle 0 is
related to the polarization of light emitted at 90'
through the expression

Use of Eqs. (162) and (163) leads to the form

P„b, , (P/100) + L(Ti i

—Ts) /( Tii+ Ts)]
100 1+(P/100) [(Tii— i)/(Tii+Ti) j
where P is defined by Eq. (147). The possibility for
errors due to instrumental e6ects is clearly indicated
by Eq. (169).Successful measurement of the polariza, —

tion P requires depolarization of the instrument at
each wavelength or an explicit correction for instru-
mental transmission asymmetry, based on Eq. (169).
Heddle (private communication) has suggested that
depolarization of the instrument may be accomplished
using a polaroid analyzer set parallel or perpendicular
to the electron beam axis, but preceded by a half-wave
plate which may be rotated so that the analyzer passes
either II 1

or Ii through the monochromator. Both com-
ponents are subject to the same instrumental trans-
mission in this method and the error is eliminated.
However, a different half-wave plate is required at the
wavelength of each excitation function studied.

As has been suggested in the preceding paragraphs
Larmor precession is potentially an important source
of systematic error. Precession, about residual magnetic
fields, of atoms with nonzero orbital angular momentum
may result in depolarization, and in rotation of the
polarization axis. The Larmor precession frequency is

P(8) LIii(90') —Is.(90')j sin'8
(166)

100 Iii(90') sin'8+Is. (90') (cos'8+1) L=gtsoH/2rr6=1. 4&&10' gH cps, (170)

and this is finite at gal =54 46'. Therefore, there remain
the problems of instrumental polarization.

Burrows and Dunn (private communication) have
suggested a more complete solution: to observe at 90'
to the electron beam axis but to permit only one com-
ponent of polarization, at 35'14' to the electron beam
axis, to pass into the monochromator. A Polaroid sheet
is used to accomplish this. As a result, the light incident
on the monochromator is composed of two polarizations
according to the relation

I,~ Iii cos' 8sr+Is. sin' 8st= 3Ii i+ 3Is.= ,'I. (1-67)—-
The response is proportional to the total cross section.
Furthermore, since the radiation is linearly polarized at
a fixed angle, 0=35'14', the output is independent of
instrumental polarization eGects. The method by-passes
almost all the problems arising from polarization and
permits a direct measurement of the total cross section,
but information about polarization is lost. Again there
is a possible error for the long-lived states due to Larmor
precession about residual magnetic fields.

Measurement of polarization requires measurement
of the individual components II,

~
and I&. This is accom-

plished by use of an analyzer in the light beam, ahead
of the monochromator. The observed polarization P',b,
is then expressed in terms of the transmitted signals
I~I Tj[ and IJ.TJ.,

P„b,/100= (Ii i Ti i Is-Es) /(Ii ) Ti i+Is.T—s) . (168)

where po is the magnetic moment of one Bohr magneton,

g is the Lande g factor, 2+5, is Planck's constant, and
H is the magnetic field in gauss. Since g is approximately
unity and the terrestrial magnetic field is about 0.5 G,
the angular precession frequency, 2m I, may well be of
the order of 10' rad/sec. The mean lifetimes of a number
of excited states are 10 ' sec or longer so that significant
disorientation will occur if there is a large unattenuated
component of the earth's field or some other field per-
pendicular to the beam axis.

For some experimental work magnetic fields are used
to confine the electron beam. If these fields are homo-
geneous and aligned with the electron beam and are
large compared to the earth's field no disorientation
occurs. For inhomogeneous fields

~

dH/dr
~

= 2 ( dH/ds
~

and disorienting radial fields may become significant
oB the axis. On the other hand, most experimental work
does not involve deliberate use of magnetic fields. In
fact magnetic shielding is frequently used to minimize
deflection of the electron beam. This is especially com-
mon for measurements involving elements with low
excitation thresholds. For the electron in a magnetic
field H the radius of curvature is 3.36(eV)'t'/H cm,
where et/' is the electron energy in electron volts. For
situations in which electron energies of interest are not
too low it is common practice to accept a small residual
field: terrestrial and stray fields of as much as half a
gauss could be tolerated in some work without undue
curvature of electron trajectories.
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FIG. 61. Rotation of the axis of polarization about a magnetic
field perpendicular to the axis of the exciting electron beam, shown
for several states of helium as a function of magnetic field. Obser-
vation is along the magnetic field. The curves are calculated from
Eq. (171) of the text.

Methods of calculating the effect of Larmor preces-
sion on polarization are readily available in the litera-
ture (Ruark and Urey, 1930, p. 359). For the special
case of a residual magnetic 6eld perpendicular to the
electron beam along the direction of observation, the
axis of polarization is rotated through angle 4, where

tan 2C =4m-L/I'. (171)

where I'0 is the percent polarization in the absence of a
magnetic 6eld. The eRect is illustrated in Figs. 61 and
62 showing the rotation of axis and the depolarization
of the e'D states of helium. For states which live as
long as the 6'D states, residual magnetic fields may
cause serious errors. On the other hand, short-lived
states connecting to the ground state are not signi6-
cantly affected by precession.

Here I' is the reciprocal lifetime of the excited state.
The precession is accompanied by a decrease in polari-
zation of the observed radiation given by

P/Po L1+ (4m 1./I'——) 'g—'I',

of uniform density. In this case

E„e;~t—0.3LI„~/(eV)'I'](R ) ' V/cm (173)

at the outer edge of the beam and has a linear depend-
ence on radius within the beam, vanishing at the origin.
Here et/' is the electron energy in electron volts, R
is the beam radius in millimeters, and I„~ is the beam
current in microamperes. The volume average 6eld
within the homogeneous beam is two-thirds of E„~;,i at
the outer edge. From the experimental conditions
described in the literature it is clear that radial fields of
one or two volts per centimeter are commonly tolerated,
and substantially higher fields may be achieved. These
electron space-charge fields may be eRectively canceled
by positive ion space charge for energies above the
ionization threshold. The problem of space charge has
been discussed in greater detail by Heddle (1967).

Jongerius (1961) has noted that a significant distor-
tion of the electron energy scale may occur at the ioni-
zation potential. This is due to the process just cited
whereby the positive ion space charge may build up to a
level at which the electron space charge is neutralized.
Within a small range of applied accelerating potential
the actual electron energy may change by more than a
volt as the negative space-charge depression is over-
come. Jongerius presented this in connection with a
study of the dependence of mercury excitation func-
tions on gas pressure and electron beam density.

Bethe and Salpeter (1957, p. 284ff) have discussed
the mixing of orbital angular momentum states of
atomic hydrogen by electric 6elds. Because of the
degeneracy of states with diferent orbital angular
momenta but equal total angular momenta, very small
electric fields sufFice for mixing in atomic hydrogen.
For the j=m=-,', m=3 levels electric fields must be

0.8

0.6

IZ.3. Electric Field sects
Stray electric fields exist in any practical electron

beam apparatus. These may include space-charge 6elds
due to the electron beam, especially at high currents
and in magnetically confined beams; fields due to con-
tact potentials; fields due to charges accumulated on
insulating surfaces; and penetration of fields originating
in electrostatic electron optical elements. The question
of residual electrostatic 6elds is a difficult and contro-
versial one.

The magnitudes of fields to be expected from space
charge in an uncon6ned beam can be estimated from
a simple calculation based on an in6nitely long beam

0,4
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FIG. 62. Depolarization of radiation excited by electron impact,
due to Larmor precession, shown for several states of helium as a
function of the magnetic field component perpendicular to the
electron beam. Observation is along the perpendicular magnetic
field component. The curves are calculated from Kq. (172). The
mean natural lifetime r for each of the 'D states is indicated on the
figures.
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much less than F,= 1.9 V/cm to avoid mixing. Critical
values of the field strengths, F„ fall off roughly as n 5,

so mixing in higher n values is certainly important in
any experimental apparatus. The critical field strengths
for mixing of the j=-,' states is much larger because of
the Lamb shift, but even here the critical field falls as
n ' and is down to 1.7 V/cm for n=6

In other atoms the degeneracies are removed in the
lower levels, but the very high levels are likely to be
subject to broadening and mixing by small fields. How-
ever, for most lines amenable to study, the effect of
electric field mixing on lifetimes and polarization of
lines can probably be neglected except for atomic
hydrogen.

I2.4. Absolute Measurements of Optical
Excitation FNnctions

The determination of absolute values for optical
excitation measurements may be accomplished by
calibrating the optical system using a tungsten strip
lamp. It is important that this standard lamp be un-
polarized. A calibrated Lamp of known spectral radiance
may be used, or the spectral radiance may be calcu-
lated from Planck's law if the temperature of the strip
can be accurately determined with an optical pyrome-
ter. The use of pyrometers and strip lamps is discussed
in some detail by Kostkowski and Lee in NBS Mono-
graph 41 (1962), entitled "Theory and Methods of
Optical Pyrometry. " That paper adequately points
out the difhculties of attaining precision and accuracy
in these calibrations, and emphasizes the considerable
care and experience which must accompany the use of
strip lamps and pyrometers. Optical pyrometry is an
involved subject and is not discussed in detail here.
However, disappearing filament-type pyrometers cur-
rently calibrated in a national laboratory and used with
care may give results accurate within about ~7'C.
Since pyrometers are universally calibrated on the
International Practical Temperature Scale, a correc-
tion to the Thermodynamic Temperature Scale is
necessary. Radiant Qux in the visible spectrum from a
tungsten strip lamp, calculated on the basis of such
temperature measurements has associated errors of
about &5%, allowing for about 2% uncertainty in the
emissivity of tungsten. This is a statement of minimum
error based on a current, high quality calibration and
skilled operation. Pyrometers not currently calibrated
may well be several times worse because of drift in
pyrometer lamps. Pyrometers calibrated through addi-
tional transfers from national standards are subject
to additional errors.

There remains the problem of illuminating the optical
system to be calibrated with the same effective pattern
of radiation as is provided by the electron beam source.
The usual technique is to place the strip lamp at the
position of the electron beam. The same condenser
lens may be used to focus the radiation from the strip

lamp onto the monochromator entrance slit as is used
for the electron beam source. In this case the effective
solid angle presented to the source by this lens need not
be known, but it must be smaLL enough so that the
optics within the monochromator are not exceeded in
either mode of illumination.

The calibration is achieved by comparing the signal
output produced by the radiation from that area of the
tungsten strip which is focused through the mono-
chromator entrance slit, with the signal produced by
the volume of electron beam from which radiation is
transmitted by the entrance slit. No general statement
of the geometrical calibration factor can be given since
the geometrical analysis varies with the exact arrange-
ment of the optical system. The electron beam and
tungsten strip are usually perpendicular to the slit,
and the images do not cover the slit length. The source
lengths contributing to transmitted radiation are deter-
mined by the slit width and the linear magnification.

The tungsten strip width and %ien's law are used to
calculate the radiant Qux per unit source length per
unit solid angle per unit bandwidth. Multiplication by
the monochromator bandwidth, the product of exit
slit width and reciprocal dispersions, yields radiant
Qux per unit solid angle per unit source length contrib-
uting to the detector signal. This number permits the
signal output from the electron beam excitation mode to
be converted to total radiant Qux per unit solid angle
per unit length of electron beam. If the gas density,
polarization of the radiation, and total electron current
are known, the radiant Qux emitted per unit solid
angle can be converted to an absolute photon excitation
cross section. The electron beam diameter and current
distribution are irrelevant for the geometrical analysis,
as are the dimensions of the optical system and an exact
knowledge of the effective source length.

If different slit widths are used with the two sources,
then the source lengths differ and the ratio of source
lengths must be accurately known. Also if removable
reQectors are used so that the calibrated lamp can be
placed virtually at the position of the electron beam
then the effect of extra reQection losses must be con-
sidered.

Several points at which measurement limitations are
likely to aGect the accuracy of the absolute measure-
ments are:

(1) Determination of radiant flux. This always is of
the order of &5% in the best of circumstances and is
entirely likely to be much larger. Photoelectric pyrome-
ters, capable of more accurate results, have not yet been
applied in this field.

(2) Gas density measurement. This problem has been.
discussed recently by Kieffer and Dunn (1966) in a
critical review of ionization measurements. They em-
phasize that density measurement techniques are in a
very unsatisfactory state. Determination of density to
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within a few percent is impossible and there are indica-
tions that errors of 5 and 10% are common.

(3) Determination of angular distribution of radia-
tion from electron beam excitation.

(4) Determination or elimination of instrumental
polal lzatlon Pins'. ~

(5) Photoelectric detectors usually are not uniformly
sensitive over the receiver surface. Small systematic
changes of electron beam geometry may cause errors.

12.5. Etectroe Beam Measlrememts

Kieffer and Dunn (1966) have discussed many of the
problems associated with measurements based on the
use of electron beams in static gases. Much of their
discussion is relevant for excitation function measure-
ments, and will not be repeated in this review. Accurate
electron beam measurements depend on proper precau-
tions with respect to such effects as gas scattering,
reflection, secondary emission, and ionization, which
can cause incomplete collection of the electron beam or
false electron currents. These effects are energy-depend-
ent so they may result in errors in shapes as well as
absolute values of excitation functions, and are as im-
portant here as they are for the ionization measure-
ments discussed by Kieffer and Dunn.

13. Other Reviews of Electron Imyact Excitation

Among the various reviews of electron-impact excita-
tion work which have been written, two are of special
interest here:

"The Measurement of Optical Excitation
Functions" by D. W. O. Heddle, in Methods

of Experimental Physics, L. Marton, Ed. (Aca-
demic Press Inc. , New York, to be published),
Vol. 8.
"Measurements of Electron Excitation Func-
tions" by D. W. O. Heddle and R. G. W. Kees-
ing, in Advances As Atomic artsd MoLecllar
Physics, D. R. Bates and I. Estermann, Eds.
(Academic Press Inc. , New York, 1968),
Vol. 4.

The spirit of these reviews is much the same as that of
the preceding sections. The authors are intent upon
elucidating the physical and instrumental effects which
must be controlled in high-quality measurements of
excitation functions.

Some other experimental reviews of interest are:

"Excitation and Ionization of Atoms by Elec-
tron Impact, "by H. S. K. Massey, Haedbuch
der Physih, S. Flugge, Ed. (Springer-Verlag,
Berlin, 1956), Vol. XXXVI, Atoms II.
"The Measurement of Collisional Excitation
and Ionization Cross Sections, "by W. S. Fite,
in A tomi c amd Molecllar Processes, D. R.
Bates, Ed. (Academic Press Inc. , New York,
1962).

These latter will serve the reader as excellent supple-
ments to the sections to follow, in which we attempt to
summarize and discuss excitation functions to be found
in the literature for atomic hydrogen, atomic helium,
the noble gases, and the atoms for which the unfilled
shells are one and two electron structures.

I4. Atomic Hydrogen

The excitation of atomic hydrogen has received much
more attention from the theoretical physicist than has
the excitation of any other atomic species, due to the
relative simplicity of the system and the availability of
accurate free-atom wave functions. The experimental
situation is not quite so fortunate in this respect. It is
helium, rather than hydrogen, which is convenient for
experimental purposes. The technical problem of pro-
ducing dissociated hydrogen in the laboratory in an
adequately pure state and in su%.cient concentration
has provided a barrier to experimental work with atomic
hydrogen.

Some early work on the excitation of atomic hydrogen
was carried out by Ornstein and Lindeman (1933),
who recorded the relative intensities of the first three
Balmer lines as a function of bombarding electron
energies. The atomic hydrogen was produced in a Woods
discharge in hydrogen gas. Atom rich hydrogen was
pumped out through a side-tube across the path of an
electron beam. Light excited in the region of electron—
atom interaction was studied with a spectrograph using
photographic recording. The authors recognized the
major difhculty in this method: recombination of
atomic hydrogen on metallic surfaces is so effective that
the use of electrodes to define potentials in the inter-
action region was precluded,

No further progress was made for more than twenty
years. In 1958 Fite and his collaborators published a
series of papers describing work accomplished using
beams of electrons and hydrogen atoms crossed in high
vacuum. The excitation work presented at that time
(Fite and Brackmann, 1958) was based on the observa-
tion of Lyman-0. Qux from the electron —atom inter-
action volume. This region was shielded from electric
fields in order to avoid quenching the long-lived 2s
hydrogen atoms, which then moved out of the interac-
tion volume in a time short compared to the mean
life of the atom. The radiation observed coming from
the interaction volume was all due to radiative decay of
the short-lived 2p state.

A few months later Lichten and Schultz (1959) pub-
lished a measurement of the 2s excitation cross section,
based on detection of free electrons ejected from a
platinum surface on which the metastable atoms were
incident, Other atomic hydrogen excitation measure-
ments have appeared since that time. All are crossed
beam measurements, based on improvements in high
vacuum and electronic measurement technology.

The hydrogen atom crossed beam measurements do
not suffer from the pressure dependent effects discussed
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in the previous section. The pressure is low enough in
any of these beam experiments so that resonance radia-
tion trapping and collisional transfer can be ignore .
The problems of distortion arising from instrumenta
polarization cannot be ignored but they are easier to
h dl h e broad band optical filters are used ratheran ew ere r

On the otherthan prism or grating monochromators. n t e o er
hand, there is a whole new set of problems. Signals to be
detected are indeed minute. Interaction geometries are
complicated. Electron optical problems may be more
severe at the extremely low pressures required, since

ts mi rate readily

14.1. Excitation of H(Zp)

A schematic diagram of the apparatus developed by
Fite and Brackmann (1958) for high vacuum crossed
beam work is shown in Fig. 63. The technique utilizes a
chopped atom beam crossed with a direct current beam
of electrons in a field free region. An ionization chamber

pump Quids and other contaminan g
in a hard vacuum. Progress in the crossed-beam work
has been difFicult and time consuming. As a result only
a few excitation measurements have appeared.

There remains a need for additional work to confirm
the measurements now in the literature, and to extend
the range of information available. There is also a need
for more detailed and quantitative treatment of errors,
so that the limitations of a given measurement are we
defined. A measurement is complete only if the relia-
bility and accuracy of the results are stated quantita-

1 . Systematic geometrical and physical errors
should be identified and evaluated. The statistica
errors of the measurement should be stated separate y
in well defined terms. The statement of a statistically
determined probable error coupled with quantitative
estimates of the magnitudes of systematic errors is
valuable. A presentation of error bars two or three times
the statistical probable error in the expectation that
it covers a host of vaguely defined systematic effects
provides little information.

There have been no accurate absolute measurements
o y rogf h d gen atom excitation cross sections. e paper

dasaby Lichten and Schultz (1959) would seem to stan as a
contradiction to this statement. The authors estimated
o (2s) =0.28~0.14irtto' on the basis of a measurement of
detector yields and other factors. However, in a note
added in proof, they pointed to a possible error and
referred to the Born approximation at approximately
40 V as the basis for an absolute scale. Thus the esti-
mated accuracy of the absolute measurement is un-
specified. ) Normalization to the Born approximation is
frequently used as the basis for quoting absolute values,
and this sometimes obscures the fact that the measure-
ments are relative. The major significance of the experi-
mental excitation work has been to reveal the charac-
teristics of cross sections in the lower energy range
where the conventional approximations used in quan-
tum theoretical calculations are generally found to be
unreliable.
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Shutter~ l ~ Chopper Wheel
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F . 63. Schematic diagram of the major elements of the
crossed-beam apparatus used by Fite and Brackmann o1958 to

~ ~

study the excitation of Lyman-a radiation.

is used to detect the Lyman-a photons and the arrange-
ment is such that the signal of interest must alternate
synchronously with the beam chopping frequency.
Microphonic signals as well as signals due to pressure
modulation originating with the chopped beam may
appear in addition to the signal due to Lyman-o, photons
originating from primary beam atoms. Care is require
to guarantee the absence of such effects.

Another problem is the geometrical variation of the
electron beam with energy. An excitation function can
exhibit the correct energy dependence only if the inte-
gral of atom density over the electron trajectory is
independent of electron energy. In a beam experiment
it is necessary to ensure that all electrons pass throug
the full depth of the atom beam at all energies. It is
also important to evaluate the effect on the integrated
atom density traversed, of variations in the angular
divergence of the electron beam. Further, consideration
is needed of possible changes in photon collection an
detection efficiency with such changes as may occur in
the distribution of electron trajectories. If control of this
geome ry is not ' t demonstrated in some way the va ue

etails of theof the measurement is degraded. Structural detai s o t e
cross section might still be of interest but a comparison
with theoretical shapes over a wide energy range would
be of limited value. Other problems include atom beam
purity, and the degree of spectral isolation of the radia-
tion under investigation from radiation in other atomic
and molecular lines which may be excited.

in ig. areI F' 64 e shown excitation functions for the
rmined b2p—+1s transition in atomic hydrogen, determine y

observation of Lyman-n Qux produced in a region free
of electric fields, emitted in a direction perpendicular to
the electron beam axis. The experimental results dis-
played include the results of the original measurement
by Fite and Brackmann (1958), but exclude points
near threshold now believed to be in error because they
did not reproduce in subsequent careful measurements
by Fite, Stebbings, and Brackmann (1959).The results
of the latter set of authors have also been included, ut
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mann results, which has not otherwise been explained.
Moderately high-energy electrons may have been pres-
ent in the accelerating stages of their electron gun.

This confirmation of the observed 2p—+1s excitation
function permits a more de6nite conclusion that the
theoretical methods described in Sec. 2.15 do not lead
to an accurate description of the 2p—+1s excitation
function in the energy range below about 50 to 60 eV
except in the immediate vicinity of threshold. In Fig.
64 we have included the cross sections Qi calculated
using the Born approximation and the 1s—2s—2p close
coupling approximation 1 Burke, Schey, and Smith
(1963)] together with the formula

FIG. 64. Relative measurements of the cross section for excita-
tion of the 2p-+1s transition in atomic hydrogen LFite and
Brackmann (1958), O; Fite, Stebbings, and Brackmann (1959),
E; and Long, Cox, and Smith (1967), +g compared with the
Born approximation result for Qi (see text and Table XIII)
without cascading (Curve 1) and with cascading (Curve 2), and
compared with the result of a 1s—2s—2p close coupling calculation
for Qi (Burke, Schey, and Smith, 1963) (Curve 3) without cas-
cading. Error bars shown for Fite et cl. (1959) are confidence
limits. Fite and Brackmann (1958) give &12% confidence limits.
Long et al (1967). results are limited by systematic errors of
about 3%.

we have renormalized them by a small factor to a better
fit with recent results of Long, Cox, and Smith (1967).

Long, Cox, and Smith attempted to improve on the
results of Fite et ul. through a strenuous effort to reduce
systematic and statistical errors to the order of a few
percent at most. In the course of this work they found
that the transmission of the lithium Quoride windows
used on the Lyman-o, detectors varied with electron
energy, becoming more opaque at higher electron ener-
gies and with longer continuous exposure. The induced
absorption decayed with a time constant of several
seconds. Heath and Sacker (1966) had shown that
lithium Quoride windows become opaque to Lyman-n
when bombarded with 2-MeV electrons. Heath and
Sacker also found that magnesium Quoride windows are
much less sensitive. Long, Cox, and Smith found that
insertion of a magnesium Quoride window ahead of the
detector eliminated the time —history-dependent eGect,
while insertion of another lithium Quoride window did
not. The conclusion to be drawn is that the lithium
Quoride window transmission is sensitive to x rays pro-
duced by electrons with energies of only about a hun-
dred volts (no detailed study of the phenomena was
carried out). These latter workers expected to obtain
results di6erent from the earlier results of Fite et al.
when the x-ray effect was removed, but as shown in
Fig. 64 the results are in complete agreement, within
experimental errors, except for the small renormaliza-
tion already mentioned. It appears that the eGect was
minimized but not identi6ed in the work by Fite et al.
We suggest that it may have been responsible for the
original failure near threshold in the Fite and Brack-

Qi =0.918Qs„+0.246Qs~, (174)

derived by Burke and Seaton (1960). The experimental
results are normalized to the Born approximation, in-
cluding a small allowance for cascading, at 200 eV.
The measurements and the values calculated by the
Born approximation seem to 6t very well above about
120 eV, and it appears that the close coupling results
may fit the measured values down to about 60 eV, a
distinct improvement. However, below 50 eV the depar-
ture of the close coupling results is quite striking.

This discrepancy leads to the speculation that the
inclusion of the higher states in the close coupling
scheme might reduce the cross section in this region.
The calculations become extremely complex and expen-
sive, and there is as yet no conclusive theoretical demon-
stration of what the effect of including coupling to all
states might be. Burke (1963) showed that inclusion of
close coupling to the 3s and 3p states reduced the value
obtained for the total cross section at 16.5 eV to 0.907
from the value of 1.094 obtained from a 1s—2s—2p close
coupling calculation. This is significantly higher than
the experimental results on the basis of normalization
to Born approximation at 200 eV.

Some intensive calculations have been carried out in
the immediate vicinity of threshold by Burke, Ormonde,
Taylor, and Whitaker (1967). These authors show that
inclusion of close coupling to the n=3 level does not
produce much of a change in the cross section at energies
in the range from the v=2 threshold up to an energy
somewhat below the m=3 threshold. However, it may
be that at higher energies the cumulative effect of cou-
pling to all the discrete levels with m&3 and the con-
tinuum states would account for the diGerence between
the 1s—2s—2p close coupling approximation results and
the observed behavior of the cross section.

Attempts to determine the polarization of Lyman-n
radiation by comparing the excitation functions at two
different angles (for example, 90' and 45' to the elec-
tron beam axis) have failed to yield reproducible and
physically plausible results. The calculation of polariza-
tion from intensities at two angles involves the small
differences in the intensities. Relative errors become
very large and small systematic -geometrical errors,
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such as result from the use of rather extended source
volumes, have large effects.

Long, Cox, and Smith (1967) have concluded that
the major difhculty derives from the sensitivity of
lithium fluoride windows to low-energy x rays. The
window transmissions at a 6xed position are found to
vary with electron energy and with time of exposure.
Furthermore, the behavior of the windows would vary
with position since the exposures are dependent on
position. Therefore, consistent measurements of polari-
zation cannot be obtained using lithium fluoride-covered
detectors.

A new technique, direct analysis of polarization by
reQection at the Brewster angle from a sheet of lithium
fluoride, seems promising, and preliminary results have
been obtained by Ott, Kauppila, and Fite (1967).

Chamberla, in, Smith, and Heddle (1964) studied the
behavior of the 2p excitation cross section in the im-
mediate vicinity of threshold. Working with a carefully
controlled electron beam geometry they obtained the
experimental points for Qs. shown in Fig. 65. The ac-
curacy of these results depended on knowledge of the
energy distribution of the electron beam. The energy
distribution was obtained by analyzing the axial portion
of the beam with a spherical retarding analyzer. The
assumption was made that this energy distribution
applied over the whole of the electron beam. Modifica-
tion of beam energies by space charge fields was small
with the 1.5-pA beam used. Also shown in Fig. 65 is a
curve based on recent threshold calculations for Qs. by
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I'IG. 65. Relative measurements of the cross section for excita-
tion near threshold of the 2p~is transition in atomic hydrogen
LChamberlain, Smith, and Heddle (1964), D; and Fite, Stebbings,
and Brackmann (1959), Oj compared with a composite (Burke,
Taylor, and Ormonde, 1967) of a 3-state+20 correlation term
calculation, below 11.4 eV, and a 6-state close coupling calculation,
above 11.4 eV {Burke, Taylor, Ormonde, and Khitaker, 1967).
The dashed curve was obtained by folding the electron energy
distribution from the work of Chamberlain et g/. into the composite
curve. Error bars for rite et al. are con6dence limits. Error bars
for Chamberlain et ql, are probable errors.
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FIG. 66. Intercomparison of relative measurements for excita-
tion of hydrogen atoms into the metastable 2s state, including
cascade contributions LHils, Kleinpoppen, and Koschmieder
(1966), Q; Lichten and Schultz (1959), solid line; Stebbings,
Fite, Hummer, and Brackmann (1961) Q j. Hils et ot. show error
bars equal to twice rms errors plus 15'%%uo systematic errors.
Stebbings et ul. show confidence limits. Lichten and Schultz
quoted a 15% error for the total cross section, the rms sum of all
systematic errors and three times the probable statistical error.
The dashed curve is the exchange cross section obtained by
Lichten and Schultz, shown in the ratio to the total cross section
determined by them to within 5%.

Burke, Taylor, Ormonde, and Whitaker (1967). The
dashed curve shows the result of folding the experi-
mental energy distribution from Chamberlain et al.
into the calculated resonant threshold. The experi-
mental points have been scaled on the abscissa and
shifted on the ordinate, this being allowable within
reasonable limits since no accurate determination was
made of the contact potentials involved. The resulting
fit is quite good, noticeably better than can be achieved
with a step function cross section or using the earlier
results of Dambrug and Gailitis (1963).

Also shown in the 6gure are some of the points ob-
tained by Fite, Stebbings, and Brackmann (1959) from
their remeasurement of the threshold behavior. While
their results do not reveal the threshold structure, they
are consistent with the results of Chamberlain, Smith,
and Heddle when account is taken of a larger energy
distribution and larger error bars.

I4.Z. Eoccitatiors of H(Zs)

Three measurements of the excitation of the 2s state
of atomic hydrogen are shown in Fig. 66. We have re-
normalized the three available experimental results to
facilitate direct comparison of the shapes. These are
seen to be in fairly good agreement, considering experi-
mental errors. Three aspects of the experimental results
deserve particular notice: (1) the structure in the very-
low-energy range best shown in the results by Lichten
and Schultz (1959); (2) the gross structure through the
medium-and high-energy range found by Hils, Klein-
poppen, and Koschmeider (1966) and which seems to be
reRected in the work by Stebbings, Fite, Hummer, and
Brackmann (1960, 1961); and (3) the over-all energy
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dependence of the measurements of Stebbings et al.
and of Hils et a/. , which departs to a remarkable extent
from that predicted by the Born approximation.

The Lichten and Schultz measurement, already
brieRy described, differed in basic principle from the
other two measurements. The latter two relied on
electric field quenching of the metastable atoms in free
space within the field-of-view of a Lyman-0. detector.
In both cases the metastables were allowed to move out
of the excitation region down the beam into a quench
region.

The Stebbings, Fite, Hummer, and Brackmann meas-
urement was a point-by-point comparison of the 2s and
2p excitation cross sections. The detector was mounted
on a trolley so that the 6eld-free excitation region and a
down-stream region, in which a quenching field was

applied, could be sequentially observed. The results
were presented as a 2s excitation cross section. The
reliability of their result is dependent on the quality of
the 2p excitation cross section used, and this was not
explicitly described.

The method of measurement by Hils, Kleinpoppen,
and Koschmieder was similar to that used by Stebbings
et a/. An iodine counter with lithium Ruoride window
was used to detect the Lyman-n emitted from a region
in which a quenching 6eld was applied to the hydrogen
beam. No chopper was used in this case, the application
of the quenching field serving to differentiate between
the signal and background.

The paper by Stebbings et al. describes in considerable
detail the care taken to minimize errors due to the
angular distribution of metastable atoms resulting from
recoil, and due to spatial extent of the quenching field.
They studied the angular distribution with which
metastables came from the electron-beam —atom-beam
intersection and found that the fraction of atoms with
recoil angles much greater than 20' was very small at all
electron energies. Their apparatus was designed to sub-
ject all atoms within a 45' angle to quenching within the
field of view of the Lyman-0. detector. The only com-
ment we can add is to express the reservation that the
6eld of view of the type of detector used is not homo-

geneous, and that a systematic error is to be expected
from the variation with electron energy of the spatial
distribution of metastables. At low energies the source
volume would be more extended than at high electron
energies.

It may also be noted that the soft x-ray mechanism
for modifying lithium Ruoride window transmission
mentioned in the preceding section could possibly have
been operative in the measurements of Stebbings et ul. ,
and of Hils et al. This effect is somewhat more likely in
the former case because the measurement of 2p excita-
tion used for normalization involved direct observation
of the region traversed by the electron beam. A depres-
sion of the 2p signal due to induced opacity of the
lithium Ruoride could have led to a spuriously high
relative value for 2s excitation at higher energies.

Stebbings et al. do not present their primary data for
the 2p and 2s excitation observed in this work.

The departure of the measured 2s excitation cross
sections from the Born approximation is so striking that
normalization of experimental results to the theory at
high energy is questionable. The usual procedure has
been to normalize to the Born approximation plus a
cascading correction at the highest energies for which
measurements are available. The problem here is that
the observed cross sections are so structured that one is
reluctant to trust such a normalization. Hils et ul. find
a good 6t over the range from 200 to 500 eV, but there
is an abrupt departure from the Born result below 200
eV which does not occur for 2p excitation.

Stebbings et a/. found a good 6t over the range from
400 to 700 eV. We would conclude from consideration
of their error bars that a reasonable 6t is possible from
150 to 700 eV, which results in a higher normalization,
but this normalization is inconsistent with Hils et al. at
lower energies. Stebbings et al. chose to normalize via
the 2p measurement to the Born approximation for 2p
excitation. The measured 2p excitation fits the Born
approximation to a much lower energy than is the case
for 2s excitation, and there is less uncertainty about the
cascading correction for the 2p cross section. On this
basis, Stebbings et al. find their results for 2s excitation
in the 400- to 700-eV range lie about 50% higher than
the Born cross section plus cascading. Their error bars
fail to overlap the Born result at the three points in
this range.
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FIG. 67. The relative cross section near threshold for excitation
of hydrogen atoms to the metastable 2s state, measured by Lich-
ten and Schultz (1959),represented by the bars, is compared with
the results of close coupling calculations. The long dashed curve
is the result of folding an electron-energy distribution of Gaussian
shape and 0.2 eV width into the theoretical curve. The lower set
of curves are the corresponding results for the exchange cross
section. The relative height of the two folded cross sections is
consistent with the ratio determined by Lichten and Schultz.
(Burke, Taylor, and Ormonde, 1967).
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Either of the above methods of normalization leads
to a value for the peak near threshold between 0.1 and
0.15m~'. In Fig. 67 we show the experimental results
in the threshold region, due to Lichten and Shultz,
in comparison with recent close coupling calculations by
Burke, Taylor, Ormonde, and Whitaker (1967). It is
the suggestion of Burke et el. that normalization to the
peak at about 11.7 eV may be valid. This is based on the
observation that inclusion of the higher states has a
small effect on the magnitude of the cross section at the
peak, where the value is ~0.22m~'. This normalization
of the measurements leads to values at 500 to 700 eV
which are about twice as large as predicted by the Born
approximation. This measured peak-to-high energy
ratio is inconsistent with that predicted by the close
coupling calculation, which presumably converges to the
Born approximation at high energies.

In the case of 2p excitation the measurements of the
magnitude at threshold relative to the higher energy
measurements, by S. J. Smith (1965), are consistent
with the results of the close coupling calculation (Burke,
Taylor, Ormonde, and Whitaker, 1967). The 2s excita-
tion cross section is in a relatively unsatisfactory state,
and the theoretical and experimental results must both
be suspect until the situation is clarified by further work.

M3. Zcccitation of BulnMr Lines of Hydrogert

Recent preliminary measurements by Kleinpoppen
and Kraiss (1967) appear to have superseded the meas-
urements of Ornstein and Lindeman (1933) for the
Balmer-a line. The details of this relative measure-
ment have not been published in full, but the principle
difhculties lie in the necessity for diGerentiating the
electron induced signal in the atom beam from the
background of continuous radiation from the hydrogen
disssociator. The Balmer-n excitation function shown
in Fig. 68 includes contributions from populations in
all angular momentum states of the m=3 level. The
peak at threshold may be attributed to excitation of the
3s and 3d states while the broad maximum is mainly
due to 3p excitation.

Figure 69 shows the measured optical polarization of
'tile Balmcr-cx llllcs cxcltcd by clcctl'011 1IIlpact (Klc111-

poppen and Kraiss, 1967) . The fact that these observa-
tions include contributions from all available angular
momentum states and that these states are sensitive
to mixing by electric fields of magnitudes which may
easily be produced by space-charge eGects and field
penetration, means that an interpretation of these ob-
servations in terms of excitation of the states of different
orbital angular momenta cannot be quantitative.

of incident electrons. The incident electron gains kinetic
energy as it approaches the ion with the result that the
2s—+1s excitation cross section is finite at threshold in
the simplest Coulomb —Born approximation. For atomic
hydrogen the finite threshold results from coupling to
other states. Dance, Harrison, and Smith (1966) have
measured the cross section for excitation of He+ from
the ground state He+(is) to the metastable state
He+(2s) using crossed charged beams in high vacuum.
The experimental technique required was quite compli-
cated because of the necessity for discriminating be-
tween the true excitation signal and several sources of
background signal. Modulation techniques were used,
but these were not capable of discriminating against the
eBects of space-charge modulation of one beam by the
other. The correction for this effect was complicated by
a dependence of the modulated ion beam geometry on
the quenching field used for metastable detection.

The experimental results are shown in Fig. 70. In-
cluded in this figure is a trial cross section from the
paper by Dance et al. , chosen to give a good fit to the
experimental points near threshold when folded with
the electron energy distribution. The threshold points
have been omitted from the figure for clarity. The ex-
perimental result is compared with the result of a close
coupling calculation by Burke, McVicar, and Smith
(1964a) . There appears to be a serious discrepancy be-
tween the threshold behavior predicted by the close
coupling calculations and that found experimentally.

16. Helium

Most of the existing helium excitation function data
have been for transitions of the type n(S, I', D)—+

2(S, I') ranging in wavelength from 2945 to 10 829 A.
Transitions to the ground state are in the range from
500 to 600 A, and are outside the range of conventional
spectroscopy. Transitions terminating on levels of
principle quantum number e&3 are generaQy at wave-
lengths longer than 10 000 A., where photographic and
photoelectric detection methods are insensitive. A few
such lines are at wavelengths in the range 8000 to
10000 A, but have not been studied, presumably be-
cause of low intensities due to comparatively small
branching ratios. For the same reasons there are no ob-
servations of transitions corresponding to increasing
orbital angular momentum, except, of course, those re-
sulting from excitation of S states. As a result there has
been no more than one observed excitation function
corresponding to each level of helium. It is understood
that excitation functions refer to lines resulting from
excitation of ground-state atoms.

15. Excitation of Helium Positive Ions

The excitation of He+(is) differs from the excitation
of atomic hydrogen in that the nuclear charge and mass
are diferent. The principal physical difference is the
inhuence of the long-range Coulomb field on the motion

16.1. Helium rI,'P—+Z'S Trarlsitiorls

Figure 71 presents relative measured apparent exci-
tation functions for the 3'P—+2'5 transitions at 5016 A,
taken directly from the published tables or figures. All

observations were made at 90' to the electron beam axis.
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H +(1 ) ground state (Dance, Harrison, and Snd Smith 1966) com-
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FIG. 68. Excitation function of the hydrogen Balmer-a hne
corrected for cascading. ed' Th errors are three times rms errors.
(Kleinpoppen and Kraiss, 1967).

One of the major factors contributing to the system-
atic i erences amond'r™r among the 3'P excitation functions
shown in Fig. 71 is the polarization of the directly ex-
cited component of the 3'P~2'S line. The sources of
such systematic diGerences have been discussed: distor-
tion due to instrumental polarization, and pressure
depolarization occurring to different degrees in the
different measurements.

As has been mentioned, this line is extremely pres-
sure sensitive due to imprisonment of radiation in the
resonance line, 3'P—+1'S.This should not have a drastic
effect on the shapes of the excitation functions. The
major effect of imprisonment is an increase in the in-
tensity of the 3'P—+2'S line, due to effective modifica-
tion of the lifetime of the 3'P state and of the branching
ratios. Some distortion of shapes due to imprisonment
may occur through modi6cation of cascading patterns,
since transitions to the ground state are suppresse .
Im risonment of e'P—+1'S radiation, where e&5, will
increase the cascade contributions to the 3'P popula-
tion from higher e'P states through 'S and 'D states
resulting in deformation of the 3'P—+2'S excitation

tion near threshold. Away from threshold the is-unc ion
tortion will be small because of the similan y o e
e'P functions. Although collisional excitation transfer

th =3 level may not be important, excitation
transfer at higher levels may have some effect on t e
pattern of cascading into the 3'P state. Figure 72 shows
an estimate of the percentage cascade contribution to
the 3'P—+2'S line in the limit of low pressures. In this
simp l e cacual'6 d l l tion the e'P functions were assume

ure 72 alsoto have the same threshold for all e. Figure a so
shows an estimate of cascade contribution at higher
pressures where imprisonment is comp e

~ ~

te but does not
take into account the possible efIects of excitation
transfer.

~ ~ ~

We can estimate the extent to which the anisotropies
in the radiation pattern may lead to the systematic
differences in the excitation functions shown in Fig. 71.
The measurements, carried out at different pressures,
were subject to diferent degrees of pressure depolariza-
tion. Polarization and anisotropy are related in Eq.
(148), which simplifIes at 8=90' to

(I(8, 8) )i ——I(90', 8) 11—LP(E)/300$}, (175)

where we have indicated dependence on energy K Since
olarization is energy-dependent, pressure depolariza-

excitation function at 0=90' from that which would be
obtained at zero pressure.

A comparison of the various 3'P—+2'S excitation
functions which is more meaningful than that shown in
Fig. 71 can be attempted by calculating (I(8, 8) )&„or
each of the measured excitation functions I(90', ).
This requires a knowledge of the polarization I'( ).
For this purpose we have used the measurements of

measurements by several authors are compared. We
have again referred to the results of Heddle and Lucas
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FIG. 73. The results of measurements of polarization of four helium lines excited by electron impact are intercompared t Heddie
and Lucas (1963),Curves 1 and; McFarland and Soltysik (1962), Curves 2 and D, except 4'D which is McFarland (1967); Moustafa
Moussa (1967), Curves 3 and 0; and Dolgov (1959), Curves 4.]

behavior over a wider energy range (0—500 eV) . In fact,
a detailed comparison of excitation functions for other
helium lines, singlets, and triplets, shows that Miller s
data is characterized by smaller initial slopes, and for
the more resonant excitation functions, lower peaks
shifted to higher energies than for the results of other
workers, some of which were particularly concerned
with threshold behavior. The shifts are so pronounced
that they cannot easily be explained as due to electron
energy distribution or space charge effects.

Thieme's excitation function differs from all the
others in that his results fall off much more rapidly at
the higher energies. Again this is characteristic of all
Thieme's results for the singlet and triplet lines of
helium. We have no explanation for this difference.
However, the Thieme high-energy dependence stands
alone against the fairly consistent results obtained by
Yakhontova, Lees, St. John, ef al, and Heddle and
Lucas. Furthermore, a recent experimental result by
H. R. Moustafa Moussa (1967), primarily concerned
with high energy dependence, exhibits a much smaller
slope than Thieme's results and is much morc nearly

consistent with the results of the other authors just
cited.

Moustafa Moussa also showed that the high-energy
slopes of the 'I' excitation functions are determined by
the optical oscillator strengths, and that his own results
for the 'I' excitation functions are consistent with the
theoretical predictions.

The Heddle and Lucas and the Zapesochnyi and
Feltsan curves in Fig. 71 were obtained at such low
pressures that the full polarization correction is re-
quired. While this correction brings the front end of the
Heddle and Lucas curve fairly well into line in Fig. 74,
the tendency of their curve to dip at medium energies
can reasonably be assumed to result from inaccurate
polarization measurements at these values. Heddle and
Lucas summarized their polarization measurements by
drawing a straight line going to zero at 200 eV. The
scatter of the data is such that other choices are possible.
The comparison of Fig. 74 suggests that their polariza-
tion values below 65 eV are rather good, but that their
curve should fall more rapidly at higher energies. In this
medium energy region the data of McFarland and
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tioned below include linearity checks of one form or
another. However, in every case the linearity data con-
tains scatter much larger than a few percent in the
10 ' to 10 4 Torr range. lt must be presumed that all of
the absolute measurements could have been seriously
affected by imprisonment of resonance radiation.

Measurements of the absolute value of the 3'P—+2'S
excitation function at very low pressures were accom-
plished by St. John, Bronco, and Fowler (1960), and
later by St. John, Miller, and Lin (1964). The latter
published a peak value (at 100 eV) for the apparent
excitation cross section of the 3'P level of 350&(10 "
cm' per atom. This value was obtained by absolute
measurement of the intensity in the 3'P—+2'5 line
"at pressures as low as 10 4 Torr. " Transition prob-
abilities calculated by Dalgarno, Lynn, and Stewart
Drom tables published by Gabriel and Heddle (1960)
who referenced these to Dalgarno, Lynn, and Stewart
(1959, private communication) j were used to calculate
the apparent excitation cross section for the 3'P level,
on the assumption that imprisonment of resonance
radiation is negligible at these pressures. A curve of pres-
sure dependence of the excitation is given in Miller's
thesis but the data shown in the low-pressure range are
not sufhcient to support that assumption. Equation
(176) suggests that imprisonment may have been
responsible for 10 or 20% of the observed intensity. No
estimate of the experimental error in the absolute meas-
urement of the excitation function is given.

This "apparent" excitation cross section is uncor-
rected for polarization and cascading effects. The au-

thors did not measure the polarization of the lines ob-
served in their measurements. To obtain a correction
they applied Eq. (158) using the data of McFarland and
Soltysik. (1962).Their correction was —4.4% at 100 eV.
An additional correction for cascading of 4 percent at
100 eV then led to a 3'P level-excitation cross section
of ~322&10 "cm' per atom.

Another low-pressure measurement was carried out
by Zapesochnyi and Feltsan (1965). They worked at
pressures &4&10 ' Torr, where imprisonment effects
could be of the order of a very few percent. They give a

O, I
I I

I

0.08
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0.04

0,02-

I I I

0 2 4 6 8

pp ( IO cm —torr )
-4

FIG. 76. Estimates of the eRect of imprisonment of resonance
radiation on the fraction f~ ~ of helium atoms excited to the 3 P
state which contribute to observed 5016-A. emission. The two
curves are based on imprisonment coeScients g~ and s~ given by
Phelps (1958) in his Fig. 4. The pressure p is in Torr and the
eRective radius of the interaction chamber p is in centimeters.
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peak value of 17.4X10 "cm' for the absolute apparent
excitation function of the 3'P~2 S line. This corres-
ponds to a cross section for excitation of the 3'P level of
about 750&10 " cm'. They estimated the error as
being 50—100% from all causes. Corrected for cascading
and polarization, this becomes 675&(10 "cm'.

V. E. Yakhontova (1959) measured the absolute
value of the excitation cross section for the 3'P level by
working at a pressure of 0.1 Torr where imprisonment of
resonance radiation is essentially complete so that all
excitations to the 3'P level give rise to 3'P—+2'S radia-
tion. Under these circumstances no polarization cor-
rection is needed since pressure depolarization is essen-
tially complete. A magnitude of 3.5&10 ' cm' at 100
eV was obtained for the excitation of the line, uncor-
rected for cascading. This magnitude corresponds to a
cross section for excitation of the 3'P level of about
150)&10 ' cm'. The author refers to an auxiliary inves-
tigation of secondary processes as indicating that these
are small.

Gabriel and Heddle (1960) measured the 3'P—+2'S
excitation function over a range of pressures using
photographic detection. By applying Phelps' trapping
analysis to data taken at 0.011,0.03, 0.06, and 0.1 Torr
they obtained a value for the 3'P level-excitation cross
section of 457&(10 "cm', at 108 eV, corrected for cas-
cading. The radiation is so nearly depolarized at these
pressures that correction for angular anisotropy is
negligible. The method would seem to be subject to
considerable uncertainty since there are several free

parameters; e.g. , the effective radius ( 0.5 cm) and
the collisional transfer cross sections as well as the exci-
tation cross section are simultaneously determined
from the four measurements.

Moustafa Moussa (1967), working at Leyden, has
published absolute excitation cross sections for a number
of helium lines over the energy range from 50 eV to 6
keV. For the 3'P cross section at 10 4 Torr he obtained
260&10 "cm' at 100 eV after correction for polariza-
tion (7%) and cascading (4.1%).The pressure is high
enough, according to Fig. 76, so that a significant im-

prisonment error could have occurred.
Other absolute measurements, by Lees (1932), by

Thieme (1932), and by Stewart and Gabathuler (1959)
were carried out at pressures for which imprisonment of
the resonance line is severe. Phelps has shown that the
results of Lees and of Thieme are consistent with the
theory of imprisonment of resonance radiation if an
effective radius of 0.75 cm is assumed for their some-
what similar excitation chambers.

The range of results, from 150 to 750&(10 ' cm' for
the 3'P level excitation cross section, certainly is
unsatisfactory. If it were necessary to narrow the choice
we would disregard the results obtained by Yakhontova
because of the errors introduced by excitation transfer
at the high pressures used. The remaining results differ
within a factor of three. Zapesochnyi and Feltsan admit

Qz(max) =c/rt, (177)

where c and cx are constants for each value of orbital
angular momentum I., and n is the principal quantum
number. He finds 0.=3 for the 'P, 'D, and 'D levels,
m=4 for the 'S and 'S levels and n=9 for the 'P' levels.
Values for the 2'S, 2'P, and 2'S cross sections are ob-
tained by extrapolation. No physical justification is
given for formula (177).

The same general physical considerations apply to
excitation of the higher e'P levels as apply to the 3'P
level, with the exception that collisional transfer of
excitation may be more severe for the higher levels.
In particular, imprisonment of resonance radiation
presents essentially the same problem for each of the

to the possibility of their result being 1.5—2 times too
large so that the two results are apparently not con-
tradictory, but by inference they are allowing for trap-
ping of resonance radiation. They worked at lower pres-
sures than did St. John, Miller, and Lin. Obviously
there were gross inaccuracies in several of these meas-
urements. It is impossible to make a valid judgment
as to where the correct answer might lie. These absolute
values and those for the higher e'P excitations are
listed in Table LXIV(a), as are absolute values calcu-
lated at 100 eV by Ochkur and Bratsev (1965b). It is in-

teresting to note that there is rather good agreement in
the measured ratios of the 3'P and 4'P' excitation cross
sections at 5016 and 3965 A. The work at a given
laboratory tends to be internally consistent, but the
basic radiometric, pressure, and other calibrations are
not consistent from one laboratory to another. Improve-
ment of radiometric and density standards is needed.

In Table LXIV a—f we have applied branching ratios
to convert the photon-excitation cross sections to cross
sections for populating the upper levels. Zapesochnyi
(1966), in Astron Zh. , has s. ummarized results obtained
in his laboratory over several prior years. His results are
presented as direct excitation cross sections for the
levels corrected for cascading. Because we have not in-
cluded cascade corrections the values we have obtained
from Zapesochnyi and Feltsan (1965) do not agree for
all levels with the values presented by Zapesochnyi
(1966). A level by level comparison suggests that
Zapesochnyi may have introduced corrections other
than for cascading or may have included some results
not otherwise published. For example, Zapesochnyi
(1966) lists the peak 3'P level excitation cross section as
530' 10 "cm'. In the text above we have given a value
of 675X10 ' cm' based on Zapesochnyi and Feltsan
(1965). Since the source of Zapesochnyi's numbers is
obscure we have not included them in our table.

Zapesochnyi found that his peak level-excitation cross
sections for a given series lie along a straight line on a
log—log plot against principle quantum number. The
peak cross sections for each series of levels can be
represented by the expression
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FIG. 81. Relative excitation functions for the helium O'D~2 P
transition /St. John, Miller, and Lin (1964), 1.7 p, Curve 1;
Heddle and Lucas (1963), 1.2 p, Curve 2; Yakhontova (1959),
Curve 3; McFarland (1967), 10 ' y (crossed-beam measurement),
Curve 5; and Moustafa Moussa (196/), ~1p, Curve 6j compared
vrith the O'D excitation cross section calculated by Ochkur and
Bratsev (1965), Curve 4.

old, raised by Bogdanova and Geitsi, leads to some un-
certainty about the validity of peak measurements. %e
have extrapolated the n'S absolute measurements to
100 eV, and compared them in Table LXIVb with the
absolute values calculated by Fox.

16.3. Helium n'D —+2'P

Transitions

The 'D excitation process results in radiation which is
rather strongly polarized (see Fig. 73). Therefore, all
the earlier discussion of distortion due to polarization
is applicable here. The possibility of Larmor precession
causing depolarization is especially signilcant here
because of the longer lifetimes involved (see Figs. 61
and 62) .Also, as discussed by Lin and St. John (1964),
these excitation functions are subject to distortion by
excitation transfer, presumably from the high n'P
states to n'Il states followed by cascading. The pressure
dependence curve for O'D+2'P radiation of Heddle and
Lucas (1963) does not indicate a very great sensitivity
to pressure, but it was made at 35 eV, well below the
peak of the n'P' cross sections. The distortion should be
greatest at 100 eV where the n'P cross sections have
their maxima.

Ke have not calculated the cascading fraction and its
pressure dependence for lack of reliable parameters and
quantitative information about excitation transfer at
higher levels. The 'D excitation functions are of the
same order of magnitude as the 'S functions, while the
n'P~m'D transition probabilities are typically a third
or a fourth of the corresponding n'P~m'S transition
probabilities. Therefore, the n'P~m'D cascading is
relatively smaller than the n'P—&m'S cascading. Cas-
cading fractions for 'D excitation functions should be
smaller than for 'S excitation functions. Cascading
also occurs from 'F states but St. John et a1. estimate the
cascading from 'F levels to be about a tenth of the cas-
cading from 'P levels. They give the total cascading
fraction as a maximum percentage (5 to 8%) at 450 eV.

Figure 81 shows some of the measurements of the
4922 A (4'D—+2'P) excitation function. The polariza-

tion of this line is 60% at threshold and appears to be
signiacant out to several hundred volts. Since the
pressures at which Yakhontova, and Zapesochnyi and
Feltsan made their measurements are not explicitly
stated it is not possible to apply polarization corrections
to the diferent excitation functions. The most complete
treatment covering the region of the maximum is the
work of Heddle and Lucas, explicitly corrected for
instrumental polarization, at an explicitly stated pres-
sure of 1.2 p, coupled with their polarization measure-
ment at 1.3 p shown in Fig. 73. McFarland (1967)
measured the O'D excitation and polarization using a
helium beam. His objective was to study threshold
eEects. The beam pressure in this work was low enough
so that secondary processes would not have been signi6-
cant. His polarization curve is presented in Fig. '73.

McFarland's O'D excitation function, shown in Fig. 81,
and that obtained by Heddle and Lucas are in rather
good agreement. Also shown are Moustafa Moussa's
results, including cascading, and without polarization
correction, for O'D excitation. From 140 to 250 eV
Moustafa Moussa, Heddle and Lucas, and McFarland
have essentially identical slopes. At lower energies
Moustafa Moussa's results are slightly higher than the
others.

These results could possibly be reconciled with Vak-
hontova's results, for example, through depolarization
if she worked at higher pressures than Heddle and
Lucas, or through some instrumental polarization,
which might not have shown up in the 'P work where
pressure depolarization was more nearly complete. The
Zapesochnyi and Feltsan curve is again very different
from those of other authors.

Figure 82 shows the 4387-A. (5'D—+2'P) excitation
functions of Yakhontova, St. John et uL, and Moustafa
Moussa uncorrected for cascading or polarization, in
comparison with the 5'D excitation cross section calcu-
lated by Ochkur and Bratsev. The theoretical result
characteristically falls below the experimental results
at the peak for all the 'D lines of helium.

Additional measurements have been carried out for
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FIG. 82. Relative excitation functions for the helium 5'D—+2'P
transition I St. John, Miller, and Lin (1964), 1.1 p, Curve 1;
Yakhontova (1959), Curve 2; and Moustafa Moussa (1967),
1 y, Curve 4j compared with the 5'D excitation cross section cal-
culated by Ochkur and Bratsev (1965b), Curve 3.
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3'D, 6'D, 7'D, and 8'D excitation (St. John et ttl. ,
Yakhontova, Zapesochnyi and Feltsan, and Moustafa
Moussa). St. John and Jobe (1967) have measured a
helium excitation cross section at 18 695 2L The band-
width of the monochromator is not given and the paper
does not specify whether the measurement includes both
singlet and triplet 4Ii~3D transitions at 18697 and
18686 A, respectively. They obtained a direct 4F
excitation cross section of 17&(10-"cm' at 100 eV.

Measured absolute values for 'D excitation are com-
pared in Table LXIVc.
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Fro. 83. Relative excitation functions for the helium 4'S—+2'P
transition [St. John, Miller, and Lin (1964), 2.0 p, Curve 1;
Heddle and Lucas (1963), 0.5 p, Curve 2; and Yakhontova
(1959), Curve 3g, compared with the 4'S excitation cross sec-
tion calculated by Ochkur and Bratsev (1965b), Curve 4.

16.4. IIeHNm rI,'S—+Z'P Transitions

The helium 'S excitation functions would appear to
be as nearly experimentally fool-proof as any excitation
function. Since the orbital angular momentum is zero
there is no polarization in Russell —Saunders coupling
so that all the problems of instrumental polarization,
pressure depolarization, and anisotropy do not occur.
According to Heddle and I.ucas (Fig. 58) the '5 and 'P
excitation functions are not particularly pressure sensi-
tive. The triplet system is free of direct influence of
imprisonment of resonance radiation, but is subject to it
rather indirectly through collisional transfer of excita-
tion from the singlet system.

The fraction of excitation due to cascading is given
as 20 to 30% for ls5 excitation by St. John, Miller,
and Lin. This rather large contribution reflects the
inaccessibility of the ground state. (The 2'S state exci-
tation is a special case and will be discussed separately. )
Since 'P state excitation function is not pressure sensi-
tive below 7 or 8 p, the component of 'S excitation due
to cascading should not be pressure-dependent.

The 'S excitation functions are displayed in Figs. 83
and 84, and the measured absolute values in Table
LXIV(d) .

An intercomparison of the shapes of the excitation
functions, and a comparison with theoretical results
reveals an interesting difference which seems to be
characteristic of the triplet cross sections. The theo-
retical results are based essentially on an expansion of
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Fro. 84. Relative excitation functions for the helium 5'S—+2'P
transition LSt. John, Miller, and Lin (1964), 5.3 p, Curve 1; and
Yajrhontova (1959), Curve 2j compared with the 5'S excitation
cross section calculated by Ochkur and Bratsev (1965b), Curve 3.
The data obtained by Moustafa Moussa (1967), if normalized t
the other curves at 60 eV, rvould correspond closely to Curve 1
at higher energies.

the cross section as a series in the electron energy, E.
At high energies the leading term, E ', presumably
dominates. The experimental results, without excep-
tion, fall off much more slowly with energy.

The question arises of whether the slow fall off of
the experimental results is instrumental, due to (1) a
high background of stray light emitted by the mono-
chrornator or (2) excitation by slow electrons produced
from the primary beam by scattering at slit edges.
Gabriel and Heddle (1960) give a total excitation cross
section of 9.6&(10 ' cm' for all "observed states, "
and '5 cross sections ranging from 1 to 15)&10 ' cm'
at 100 eV. Therefore a transmission of 1% in light scat-
tered throughout the spectrum would give the observed
high energy tail. This question is not discussed in detail
in the papers but there are indications that the back-
ground level just off the line in question was checked in
most of the work. In this case the theoretician is left
with an interesting problem of accounting for a depend-
ence weaker than E '. Perhaps the slow decay may be
due to a large coeKcient for the term of next higher
order in the expansion of the cross sections in powers of
E.Possibly the slow fall off may arise through cascading
from higher levels where a weakening of the Russell—
Saunders coupling scheme may result in the excitation
cross sections having some of the character of singlet
excitation.

In Fig. 83 we intercompare some shapes of the 4713-A
(OsS~2'P) function. The result is disappointing in
view of the absence of polarization effects. The pressure
at which Yakhontova worked is unspecihed. The rela-
tively low peak-to-tail ratio would be consistent with a
helium pressure of 10 p or higher, where according to
Fig. 58, the excitation function is enhanced and pre-
sumably distorted by excitation transfer. The possi-
bility that space charge effects would account for the
difference would not seem likely.

Some further careful work at low pressure, low elec-
tron current density, and high electron energy resolution
over a broad energy range on the 4713-A excitation
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into the triplet system, much of which would cascade
into the 2'P state.
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FIG. 85. Relative excitation functions for the helium 3'P—+23S
transition LSt. John, Miller, and Lin (1964), 1.5 p, Curve 1 and [7;
Heddle and Lucas (1963), 0.25 p, Curve 2; and Yakhontova
(1959), Curve 3] compared with the 3'P excitation cross sec-
tion calculated by Ochkur and Bratsev (1965b), Curve 4. Data by
Moustafa Moussa (1967), normalized to the other curves at 60
eV, closely correspond to Curve 1 at the higher energies.

16.5. Gelid n'P~2'S TrmsitiorIs

function would be very useful. This line provides a
good oppurtunity for a highly precise and reliable
measurement which would permit a definitive compari-
son with the theoretical results for triplet excitation,
a comparison which may have considerable physical
significance.

The O'D—+2'P excitation function at 4471-A. has been
shown to be quite pressure sensitive, presumably due to
excitation transfer into the higher 'Il states followed by
cascading. This has been discussed in an earlier section.
Quite low pressures are required to obtain reliable
absolute values, and some slight distortion of the excita-
tion function should be evident at pressures of a few
times 10 3 Torr. Figure 86 displays the excitation func-
tion for the 4471-A line and measured absolute values
are listed in Table LXIVf.

Figure 86 illustrates again the remarkable diGerence
between the behavior of the experimental and theoreti-
cal results at higher energies. It also shows that the
peak-to-tail ratio in Yakhontova s results is still smaller
relative to the results of Heddle and Lucas, for this
very pressure sensitive line.

16.7. Excitatiol of the Helium rs= Z Levels

Measurement of helium rI,=2 level excitation presents
a special set of problems which have led to a variety
of measurement techniques. The lowest excited states
are listed below with energies and lifetimes:

The 'P excitation functions appear to be as insensitive
to pressure as are the 'S functions. Here, there is the
added complication of polarization. This polarization is
as high as 25% at low energies and falls oR slowly to
zero above 200 eV. Therefore, some distortion of the
excitation function is possible. The measured excitation
functions at 3889 A. (3'P-+2'5) are compared in Fig. 85
and the absolute values of n'P functions in Table
LXIVe.

The comparison between the data by Heddle and
Lucas and by Yakhontova is much like that of the 'S
case. The lower peak-to-tail ratio obtained by Yakhon-
tova could be accounted for in terms of polarization
only through the assumption that there was nearly
100% instrumental polarization.

The 2'P~2'S excitation measurement at 10 829-30
A, by Zapesochnyi and Feltsan (1965) is worth special
notice. They obtained a value of 2510/10 ' cm' at
26.5 eV. Since all 2'P excitation decays to the 2'S
state, the 2'S excitation function is necessarily larger
than the 2'P excitation function. Measurements of 2'P
excitation functions (Fleming and Higginson, 1964;
ancl Schulz and Fox, 1967) yield values at the peak just
above 20 eV, a factor of ten smaller. The Zapesochnyi
and Feltsan result implies a rapid increase in the 2'P
cross section and therefore in metastable production in
the range from 20 to 26.5 eV. The cascade contribution
would be quite significant at 26.5 eV. Since the measure-
ments were made at pressures of 8 to 25X10 ' Torr
there may also have been significant excitation transfer

State Energy (eV) Mean life (sec)

3'5
2IP
23P
2'S
2'S

22. 72
21.22
20.96
20.61
19.82

3.6X10-8
5.6&10 "
1.05' 10-~

0.14
10'.

As electron energy is increased the metastable states
2'S and 2'S are excited first, followed by the 2'P state
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FIG. 86. Relative excitation functions for the helium 4'D~2'P
transition t St. John, Miller, and Lin (1964), 1.7 p. , Curve 1 and g;
Heddle and Lucas (1963), 1 tM, Curve 2; and Yakhontova (1959),
Curve 3) compared with the 4'D excitation cross section calcu-
lated by Ochkur and Bratsev (1965b), Curve 4. Data by Moustafa
Moussa (1967), normalized to the other curves at 60 eV, closely
correspond to Curve 1 at the higher energies.
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which decays entirely into the 2'S metastable state. At
21.22 eV the 2'P state, which radiates primarily to the
ground state, is excited. The 2'P~1'5 transition prob-
ability is a thousand times larger than the 2'P—+2'5
transition probability so that the probability of exciting
the 2'P—+2'5 line must remain small in the energy
interval immediately above its threshold, even for a
moderate amount of reabsorption. There is no evidence
or expectation of collisional excitation transfer in this
energy range, so that observations of excitation over the
three volt range from 20 to 23 eV have a simple interpre-
tation in terms of a few processes. Good electron energy
resolution becomes of paramount importance in sepa-
rating the effects of excitation of the different n=2
levels.

The oldest method of studying helium excitation in
this energy range is due to Maeir-Leibnitz (1935) and
was recently used again with refinements of technique
by Fleming and Higginson (1964) . An axial filament is
used in a simple concentric cylindrical con6guration of
electrodes and grids. Electrons were accelerated to the
excitation potential V and emitted through a narrow
slit into an excitation volume. An outer collector was
biased to receive only elastically scattered electrons.
The helium pressure was maintained at 0.47 Torr, at
which electrons make a substantial number of collisions
before they reach the collector. Near threshold the drop
in collector current beyond the 6rst excitation threshold
could be analyzed in terms of diffusion theory, taking
into account only elastic scattering and excitation of the
2'S state. A cross section for excitation of the 2'5 state
at the maximum just above 20 eV of 2.6&10 '8 cm'~
17% was obtained.

The other absolute measurement of the 2'S peak that
is of interest was by Schulz and Fox (1957), using a
method of detection of metastables by measurement of
the secondary electron current emitted from a metal
surface due to energy given up by the metastables. This
method was previously exploited by Dorrestein (1942)
and subsequently by Holt and Krotkov (1965) for
relative measurements.

Figure 87 compares the relative measurements of
metastable current from these last three papers. The
shapes obtained in the three measurements compare
quite well, with differences attributable to differences
in energy resolution. Schulz and Fox, using a retarding
potential difference method, had an effective energy
resolution of about 0.1 eV. They used an axially sym-
metric electrode conlguration with the electron beam
projected down the axis along a confining magnetic
Geld. The metastable current was measured at an outer
cylinder. They put the measurement at the 2'S peak on
an absolute basis by assuming isotropic motion of the
metastables and using an efFiciency for electron ejec-
tion by metastables at a gold surface obtained by
Stebbings (1957).Their result was 4&(10 ' cm &30%%u'

the stated error overlapping that given by Fleming and
Higginson,

The first peak in Fig. 87 is unambiguously attribut-
able to the 2'S excitation in the Schulz and Fox experi-
ment because it is well separated from the thresholds
for 2'S and 2'P excitation. Above 20.6 eV the meta-
stable current includes the 2'S contribution and the 2'P
excitation through cascading into the 2'S. The interpre-
tation of each of the humps and bumps in terms of
excitation of a different state has been proved inade-
quate through the work of Schulz and Philbrick (1964),
Chamberlain (1965) and Chamberlain and Heideman
(1965), these studies being based on the measurement
of components of the scattered electron current corres-
ponding to specific inelastic processes. The Schulz and
Philbrick results for electrons scattered at 72' in an in-
elastic process leaving the helium atom in the 2'S state
is included in Fig. 87. These results strongly suggest
that the maximum near 21 eV in the total metastable
production curve is due to a second peak in the 2'5
excitation curve rather than being due to 2'S or 2'P
production, and that the bump near 22.5 eV is due to
resonance structure. In Fig. 88 results of the 6ve-state
close coupling calculation (Burke, Cooper, and Or-
monde 1966) discussed in Sec. 3.4 is compared with the
experimental results of Schulz and Fox. There is an
excellent correspondence between the measured total
metastable production cross section and that predicted
from the theory by summing the calculated contribu-
tions (see Fig. 33), in the range where cascading from
higher states does not contribute.

Chamberlain and Heideman obtained a spectacular
set of curves for the forward inelastically scattered com-
ponents corresponding to 2'5, 2'S, 2'P, and 23P excita-
tion, which demonstrate that these curves are very
heavily structured. These are shown in Fig. 89. Both the
Schulz and Philbrick, and the Chamberlain and Heide-
man results were obtained with electron beams of about
0.06 eV half-width. A comparison of their results re-
veals that the inelastic scattering corresponding to 235
excitation is anisotropic, so the results cannot be applied
to obtain a quantitatively correct subtraction of 2'S
excitation from the total metastable excitation curve.

The work by Holt and Krotkov (1965) is another
very significant contribution to the analysis of the meta-
stable production curve. Their total metastable pro-
duction curve is included in Fig. 87. They capitalized
on the fact that the 2'S metastables can be quenched
with 90% eKciency in a field of 226 kV/cm. The
quenched component of the production provided a cross
section for the 2'5 state excitation, which rises smoothly
from threshold to a broad maximum centered at 22 eV
and with about one-third the amplitude of the Grst 2~S
maximum. The unquenched component gave a total
cross section for excitation of the 2'5 and 2'P states,
since all the 2'P atoms immediately decay into the 2'5
state, and no higher triplet states are excited in the
energy range up to 22.7 eV.

Holt and Krotkov also used an inhomogeneous mag-
netic Geld to spatially separate the three components of
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Fio. 87. The total helium metastable excitation functions
measured by Schulz and Fox (1957), Curve 1 Ethe data were
taken from Schulz and Philbrick (1964)g; Holt and Krotkov
(1966), Curve 2; and Dorrestein (1942), Curve 3 are intercom-
pared on a relative basis. Curve 4 is the 2'S excitation cross sec-
tion measured at 72' by Schulz and Philbrick (1964).
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FIG. 88. The total helium metastable production cross section
obtained by Schulz and Fox (1957), Curve 2, is compared with the
combined results of five-state close coupling calculations (Burke,
Cooper, and Ormonde, 1966), Curve 1. The 2'8 production cross
section obtained by Holt and Krotkov (l966), Curve 4, is also
included, in comparison with the 2 S excitation cross section cal-
culated by Burke, Cooper, and Ormonde, Curve 3.
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Fio. 89. Energy dependences of the components of forward in-
elastically scattered electron current in helium corresponding to
excitation to the 2'S, 2'S, 2'P, and 2'P states. The curves are
smoothed tracings of the original data, and the width of the noise
is indicated by the error bars. (Chamberlain and Heideman, 1965) .

the '5 state. The metastables were allowed to pass
through an aperture out of the excitation region into a
drift space at lower background pressure, where the
magnetic and electric fields could be applied. At the
end of the drift space the metastables were detected by
counting the electrons ejected from a tungsten elec-
trode placed in the path of the beam.

From the 2'S differential excitation cross sections
shown in Figs. 87 and 89 they inferred a total 2'P
excitation cross section which they used as the basis
for calculating the polarization of those 2'S atoms
derived by cascading from the excitation of the 2'P
state.

Cermak. (1966) developed a method of analyzing
metastable production by energy analyzing the elec-
trons, with a Lozier technique, produced by Penning
ionization as a metastable beam is passed through a gas
of lower ionization potential. For his study of helium
excitations he used argon, with an ionization potential
of 15.75 eV. The 2'5 states (19.82 eV) result in elec-
trons of 4.07 eV and the 2'S states (20.61 eV) result in
4.86-eV electrons. Retarding potential analysis was
used to determine the electron currents in each energy
component. The behavior of these electron currents as a
function of the energy of the exciting electron beam
yields excitation cross sections for the two states. The
results are relative cross sections but they could be re-
lated to each other if the cross sections for Penning ioni-
zation were known.

Cermak extended his results up to 60 eV so that his 'S
excitation function includes the cascading from all
excitation into the triplet system. Similarly, the S
excitation function necessarily includes a signi6cant cas-
cading contribution from higher 'P states. The pressure
in the source, 5)&10 4 to 10—' Torr, was high enough so
that some modification of the singlet system cascading
pattern presumably occurred due to reabsorption of
resonance radiation.

Dugan, Richards, and Muschlitz (1967), using a
system somewhat similar to that of Holt and Krotkov,
studied the excitation functions of the 2'S and 2'S
states at electron energies of 25 to 135 eV. They used an
inhomogeneous magnetic field to deflect the M, =&1
components of the 2'S state out of the beam. It was
assumed that this reduces the 2'S population by two-
thirds, leaving the one-third in the M, =O substate
undetected. By this method they could determine the
separate excitation functions and their ratios. However,
the analysis depended on extrapolation to zero pres-
sure from excitation over a helium pressure range of 40
to 130 kg, in order to eliminate effects of imprison-
ment and differential scattering. For their geometry it
seems certain that imprisonment is severe over the
whole range of pressures used, and an extrapolation to
zero pressure cannot be reliable. As Phelps (1958)
has demonstrated, the cross section for excitation of the
5016 A (3'8~2'5) line is tremendously enhanced a,t
he].ium pressures of 40 p, to the point that it alone is
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comparable to the value of the 2'S cross section esti-
mated by Holt and Krotkov. The imprisonment process
is not linear at high pressures. An opposing error should
also occur due to enhancement of the 2'S state as a
result of excitation transfer into the triplet system. The
observations by Lin and St. John (see Fig. 56) show
that this would result in large contributions to the
triplet population at high pressure and at the higher
electron energies. This process would be quadratic in
pressure, not linear.

16.8. Thresholds of Helilnt Excitation Fttrtctiorts

The discussion of the m=2 excitation functions has
centered on behavior near threshold, and has shown that
this is a region of special interest. This interest also
exists in thresholds for the excitation of higher levels
of helium. In the work which has been discussed on the
excitation of the visible helium lines thresholds have
not been emphasized but rather we have been con-
cerned with the determination of the gross behavior of
the excitation functions. There has been a considerable
amount of threshold work, especially as it has related
to the polarization of the excited radiation near thresh-
old.

Perhaps the 6rst experimental work to reveal the
general behavior of the thresholds was by Vakhontova
(1959). Detailed shapes were obtained by Smit, Heide-
man, and Smit (1963). Most of these results were ob-
tained at pressures of 2 to 10 pHg. Zapesochnyi and
Feltsan (1965) measured the shapes of a large number
of thresholds at pressures from 0.3 to 3 tM. None of these
workers considered effects due to the polarization of the
radiation. All used the thermal energy width of elec-
trons from a hot cathode with no further energy selec-
tion. Energy resolution was about a third of an electron
volt for the two more recent works while Yakhontova,
using a more intense electron beam, had resolutions
ranging from 0.7 to 1.2 eV.

Zapesochnyi and Shpenik (1966), using a 127' elec-
trostatic analyzer, studied threshold excitation for a
number of atoms. They give results for the threshold
behavior of 3'S, O'S, 33P, 3'D, and 3'D excitation ob-
tained with electron beam half-widths of 0.3 to 0.5 eV,
showing pronounced structure immediately at thresh-
old.

Heddle and Keesing (1967a) have applied. a hemi-
spherical electron monochromator to the study of the
thresholds for O'5 and O'5 states. The energy spread of
electrons transmitted by the monochromator was nomi-
nally 0.070 eV. The O'S and O'S functions had much the
same behavior, each exhibiting a second maximum
beyond the threshold maximum, which Heddle and
Keesing suggest is a resonance with the con6guration
(is5s ) Sy/g.

To illustrate the threshold behavior Fig. 90 displays
the results obtained by Smit, Heideman, and Smit for
one line from each series. General characteristics of
thresholds within a spectral series seem to be the same.
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FIG. 90. Threshold behavior of the helium singlet and triplet
series excitation functions obtained by Smit, Heideman, and
Smit (1963).

An exception occurs for the 'D series, the structure in
the 3'D—+23P excitation function being absent from the
O'D and 5'D functions.

Polarization of helium lines excited by electron impact
has been a controversial subject since Lamb and Mai-
man (1957) published a measurement of the polariza-
tion of the helium 3889-A. (3'F—+2'5) line, showing a
minimum at 28 eV. Earlier work by Skinner and
Appleyard (1927) showed that the polarization of elec-
tron impact excited radiation for a number of mercury
lines drops toward zero as the electron energy ap-
proaches threshold from above.

In 1958 Percival and Seaton published the theoretical
study of polarization of impact radiation discussed in
Sec. 9. In their paper Percival and Seaton reemphasized
the fact that for many lines conservation of angular
momentum dictates the value of polarization these
lines must have when excited by an electron carrying
only the energy of excitation and no more. Further,
they pointed out that the results of Skinner and Apple-
yard seemed to violate these essential requirements by
going toward zero at threshold, and they suggested that
more careful experimental work seemed in order.

Heddle and Lucas (1961; 1962) and McFarland and
Soltysik (1961;1962) carried out their studies of polari-
zation using helium, and both studies showed polariza-
tion in helium going to zero at threshold. The results
have been reproduced in Fig. 73.
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Hughes, Kay, and Weaver (1963) obtained similar
behaviors at threshold. Their work and the results of
McFarland and Soltysik showed in excellent detail the
structure of the 3'P—+2'S polarization near threshold
first observed by Lamb and Maiman. However, the
work of Hughes, Kay, and Weaver suffers from instru-
mental effects similar to but more severe than those
appearing in McFarland and Soltysik's results. In both,
there are cases of negative polarization increasing with
pressure at fixed electron energy, which must be a non-
physical effect.

The polarization observed (P,b,) at 90' to the elec-
tron beam, through a monochromator, is related to the
true percentage polarization P of the line in equation
(169).We rewrite Eq. (169) to include depolarization
effects.

P.b. (&P/100)+[(T((—Ti)/(Tu+ Ti) ] (179
1+(vP/100) [(T~~—Ti)/(T~~+Ti) j '

Here, p is a pressure depolarization factor which may
take values between zero and unity. At high pressures
depolarizing collisions and depolarization due to such
processes as imprisonment of resonance radiation and
collisional transfer of excitation, may occur. The factor

y becomes small as such effects become dominant and
the observed polarization at sufFiciently high pressure
is the instrumental polarization. Instrumental polari-
zation is also observed at energies such that the true
polarization is zero.

The observations of small values of polarization near
threshold have been the subject of continuing contro-
versy. A simple integration sufFicies to show that the
observed effects cannot be due merely to the finite

energy distribution in the electron beam. McFarland
(1963, 1964) carried out an extensive series of tests to
determine whether the observations might be the result
of radially scattered electrons. In the course of this
work he found low polarization values near threshold
for 3'P, 3'P, O'D, and O'D excitation, but the polariza-
tion seemed to climb toward the theoretical value

again, very near to the threshold.
Heddle and Keesing (1964, 1965) have confirmed

this behavior for the 3'P and O'D excitations, and
Soltysik, Fournier, and Gray (1966) have reproduced
McFarland's results for 3'P, 3'P, and O'D excitation.
More recently McFarland (1967) has carried out a
careful crossed beam measurement of the polarization
of the 4922-A. (4'D~~2'Pi) line of helium. The results
near threshold, shown in Fig. 91, confirm the earlier
measurements. Heddle and Keesing (1967b) have also
carried out very careful studies of O'D, 3'P, 3'P, and O'S
threshold polarization. The predicted zero polarization
of the O'5 case was confirmed. For the states with non-
zero angular momentum, minima as much as several
volts wide near threshold appear to be established as
physical properties of the excitation process, and the
indications are that the threshold polarizations required

by conservation of angular momentum are satisfied by

rapid increases in polarization within the last few tenths
of a volt above threshold.

60—

40

oo 30

0

l0

0
24 25

E (ev)

FIG. 91.Threshold polarization, curve 2, and excitation, curve 1,
of the helium O'D~~2'P1 line obtained in a crossed beam measure-

ment (McFarland, 1967).

17. Heavy Rare Gases

The first significant contribution on the excitation
functions of neon and argon came out of the work of
Hanle (1930), at Jena, who studied the excitation
functions of neon at rather high pressures. He described

some strong pressure dependences. Subsequently Fischer

(1933), also at Jena, studied the excitation functions
for a number of lines of neutral argon originating in

the m=5 shell and terminating in the v=3 shell. He
also studied a number of lines of ionized argon excited
from the neutral ground state. Herrmann (1936) ob-

tained excitation functions for a large number of argon

and neon lines. The pressures used were approximately
20 p, for argon and somewhat higher for neon.

Maeir-Leibnitz (1935) obtained threshold measure-

ments on neon and argon similar to those already de-

scribed for helium, and Dorrestein (1942) studied

metastable production in neon. Milatz and Ornstein

(1935) observed absorption of the 6402-A line to deter-

mine the neon metastable concentration in an elec-

tronic excitation measurement. Milatz and Woudenberg

(1940) obtained absolute values for four neon excitation
functions, referring the measurements to a standard

tungsten lamp.
It would be impossible to critically evaluate these

data. The pressures used were in the range for which

excitation transfer and imprisonment of resonance

radiation are important for helium. There have been no

detailed quantitative studies of pressure-dependent

effects, analogous to those which have been carried out
for helium. The data were taken without regard to the

state of polarization of the observed radiation. Further-

more, there has been surprisingly little duplication of
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measurements so that intercomparison of data is not
productive.

Data taken in the last decade are on a better basis
because 1ower pressures were used to reduce secondary
e6ects. However, there is still little duplication, and
there has been no recognition of the problems of polari-
zation and imprisonment in this work on the heavy rare
gases.

Devyatov and Kaptsov (1955) carried out relative
measurements of krypton excitation functions at about
10 3 Torr. Excitation functions were obtained for ten
neutral krypton lines and four lines of singly ionized
krypton. Photographic detection was used. In 1957
Sin San Guk and A. M. Devyatov published further
relative measurements of krypton excitation functions,
also including some work on xenon. Pressures were again
about 10-' Torr. These measurements were carried out
in sealed tubes, using a barium getter. Photoelectric
detection was used.

Volkova (1959) measured shapes of six argon excita-
tion functions at pressures of 1.0&(10 ' Torr, only one
of which is presented in her paper. Volkova and Devya-
tov (1959) measured the absolute values of these six
lines and one other line at argon pressures of 4.68&(10 '
Torr. They calibrated against a tungsten lamp, and
commented that their results for the 7723—4-A argon
line agreed with the absolute value obtained by Herr-
mann in 1936. Volkova, Devyatov, and Kuralova
(1960) measured absolute values of several lines of
krypton and xenon. Zapesochnyi and Feltsan (1963),
measured relative excitation functions for three neon
lines.

A number of these recent workers have commented on
the characteristic differences between helium excitation
and the excitation functions of the heavier rare gases.
Russell —Saunders coupling holds for only a few levels
for these heavier gases, and intercombination lines are
common. Triplet excitation does not have the strongly
resonant character seen in helium. Zapesochnyi and
Feltsan (1966) presented shapes and absolute values for
excitation cross sections of the ten Paschen levels (2p„)
of argon, and showed an interesting comparison of the
behavior of the 2ps levels of argon, krypton, and xenon,
which we show in Fig. 92. These excitation functions
peak more strongly toward threshold at higher atomic
masses.

18. Alkah Atoms

The properties of the light alkali metals are of much
interest from several points of view. They are, to a
reasonable approximation, one-electron systems and
have been investigated theoretically by a number of
workers (see Sec. 6). They are particularly interesting
as components of stellar atmospheres and other plasmas,
in part because their low ionization potentials (~4-5
eV) lead to high ionization probabilities and put them
in the role of electron donors. Also, in contrast to hydro-
gen, the resonance lines occur in the visible or quartz
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Fre. 92. Measured absolute excitation functions of the (Pas-
chen) 2ps levels of argon (s=18), Curve 1; krypton (a=36),
Curve 2; and xenon (s =34), Curve 3. (Zapesochnyi and Feltsan,
1966).

ultraviolet and may be prominent features of visible
stellar spectra.

Experimentally the alkalis present a unique set of
problems. Appreciable vapor pressures of these metals
can be achieved at temperatures of a few hundred
degrees centigrade, and most of the excitation work has
been carried out in apparatus quite similar to that de-
scribed for helium except that it is operated at elevated
temperatures. Typically, the reservoir of alkali metal is
placed in a sidearm the temperature of which is con-
trolled to achieve a desired vapor pressure. The rest of
the apparatus is usually operated at a somewhat higher
temperature to avoid condensation on the walls. At the
temperatures often used the experimental difhculties
include the fact that glass becomes electrically con-
ducting so that electrical measurements become diK-
cult. Alkali vapors are readily absorbed in glass causing
optical windows to deteriorate. This absorption also
causes possible difhculties in attaining equilibrium.

Some attention has been given to the possibility of
dimer content in alkali atmospheres. Calculations based
on thermal equilibrium indicate that the percentage of
atoms in the molecular form is typically a fraction of
one percent at operating temperatures and increases
with temperature and vapor pressure. Serious contami-
nation of atomic excitation functions would require
that the molecular excitation cross sections be large,
and would depend on the spectral resolution of the
detection equipment. Generally, it is probably not a
serious problem where high resolution spectrometers
are used but must be considered in each case. The effects
of reabsorption of resonance radiation must also be
considered. Another complication is in the dif6culty of
operating electron guns at energies down to one or two
volts in order to observe the excitation threshold. Some
of these experimental problems are circumvented for
measurements carried out with beams of alkali atoms,
but only a few such studies have been made.

For lithium the only available results were obtained
using lithium beams, because of the high temperature
(400'—500'C) required to obtain the necessary static
pressure. The crossed beam results are all relative, no
absolute beam measurements having been attempted.
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FIG. 93. Polarization (Curve 1) and relative intensity com-
ponent II I

(Curve 2) of the 6rst resonance line (2P—+2s, 6708-A,)
of lithium (natural isotopic composition) excited by electron
impact, measured by Hafner and Kleinpoppen (1967). Curve 3,
the total intensity observed at 90' to the electron beam, is calcu-
lated from Curves 1 and 2. Also shown on Curve 3 are the data of
Hughes and Hendrickson (1964), Q.

Hughes and Hendrickson (1964) used a lithium beam
crossed by an electron beam to measure the relative
excitation cross section for the 2p —+2s line at 6708 A
(the 2p—+1s line in terms of a hydrogenic scheme).
An interference filter was used so that the doublet was
not resolved. Beam density and the possibility of reab-
sorption of resonance radiation were not discussed.

In the course of studying the polarization of radia-
tion excited by electron impact, Hafner and Klein-
poppen (1967) have obtained an excitation curve for
the 6708-A line over the range from threshold to about
80 eV, using an interference 6lter to isolate the line.
Their published results show the intensity of the polari-
zation component with electric vector parallel to the
electron beam. The measured function is easily corrected
using their measured polarization to obtain the total
intensity. This measurement and that of Hughes and
Hendrickson were carried out on lithium beams com-
posed of natural abundances of the isotopes. The results
of both measurements are shown in Fig. 93. The agree-
ment is quite good. In connection with their measure-
ment Hafner and Kleinpoppen showed that depolariza-
tion of the radiation occurred as the beam density was
increased, due to reabsorption and reemission of the
resonance radiation within the beam. Their results were
obtained at pressures low enough so that the effect was
negligible. The effect of such trapping on the observed
excitation curve for a resonance line would be threefold:
it would effectively increase the volume from which the
radiation was observed (although in a beam experi-
ment convenient limits are provided by the size of the
beam), it would depolarize the radiation, and it would
result in an increase in the cascading contribution due to
an effective modification of branching ratios from the
higher p states.
'

.. Hafner, Kleinpoppen, and Kruger (1965) measured
an excitation function for the 3'D—&22P (6103-A) line
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Fro, 94. Polarization (Curve 1) and relative intensity com-
ponent I~I (Curve 2) of the 6103-A. (3'D—+2'P) line of lithium
(natural isotopic composition) excited by electron impact, meas-
ured by Hafner, Kleinpoppen, and Kruger (1965). Curve 3, the
total intensity observed at 90' to the electron beam, is calculated
from Curves 1 and 2.

of lithium and observed no depolarization as a function
of beam pressure, consistent with the fact that the 3'D
state does not optically connect to the ground state and
is affected only very indirectly through cascading with
imprisonment effects. Their results are shown in Fig. 94.

The most important result presented in these papers
by Kleinpoppen and his students is a measurement of
the threshoM polarization of Li', Li', and Na". Their
results for the resonance lines show that the polariza-
tions decrease monotonically from threshold as a func-
tion of electron energy, and that the three threshoM
polarizations obtained agree with the three values pre-
dicted from the theory of Percival and Seaton, these
being different primarily because of differences in
widths and separations of fine and hyperfine levels in
the different isotopes. However, the polarization of the
non-resonant 3'D~2'P (6103-A) line appears to fall
below the theoretical value at threshold.

Feldman and Novick (1963) have carried out experi-
ments which demonstrate the existence of long-lived
excited states in lithium, potassium, and rubidium.
These states are presumed to be associated with the
excitation of core electrons, rather than the valence
electron. The energies of such states are above the
ionization energy associated with the valence electron
but below the second ionization potential, and therefore
may be autoionizing states. By collecting either the
ions or electrons produced in the autoionization process,
Feldman and Novick obtained excitation functions and,
by changing the distance from the excitation region to
the detector, obtained measurements of the effective
lifetimes.

All measurements of excitation functions of sodium
and the heavier alkalis were carried out using static
systems rather than beams.

As in the case of lithium the reabsorption of reso-
nance radiation in sodium should be significant down to
quite low pressures. The effect of this on the 6rst reso-
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Fro. 95. Behavior of the excitation function of the resonance
Iine of atomic sodium as a function of pressure: 2.5&(10 4 Torr
(P), 5X10 ' Torr (A), and 1X10 ' Torr (X). The electron
current density was 1.5 X10 4 A/cm'. (Zapesochnyi and Shimon,
1962).

nance line would be to increase the source volume, to
produce some modification of the cascading patterns,
and to depolarize the radiation.

Hafner, Kleinpoppen, and Kruger (1965) have meas-
ured the polarization of the sodium D lines and found
that it decreases monotonically with energy from about
15% at threshold. This results in an anisotropic radia-
tion pattern as indicated by equation (158) but the
polarization is not large and the difference I(90') I—
is 5% or less of I. The distortion due to instrumental
polarization could be 15 /o at most, and this only in the
case of nearly complete instrumental polarization.

The other sodium lines will be subject to greater
errors. Measurements of absolute values are subject
to modi6cation of the effective branching ratios when
imprisonment of the higher resonance lines occurs. The
effects of excitation transfer would be apparent in dis-
tortion of nonresonant lines, but most experimental
work has been carried out at pressures low enough so
that this should not be important.

In general, the shapes of alkali excitation functions
determined experimentally should be somewhat less
subject to imprisonment and polarization eRects than
helium, while the measured absolute values should be
quite sensitive to the eRects of imprisonment of reso-
nance radiation. Unfortunately, there has not been
enough experimental work directed at evaluation of
these pressure and polarization effects. There has not
been enough work for intercomparison to indicate
reproducibility. Much of the available work is confined
to a narrow energy range near threshold, where theo-
retical work is likely to be unreliable, so that compari-
sons with theoretical shapes over the narrow energy
range available are not very illuminating.

Zapesochnyi and Shimon (1962) studied the depend-
ence of the shape of the excitation function for the first
sodium resonance line on pressure. The results are
shown in Fig. 95. The measurements at 2.5&10 4 and
5X10 4 Torr are in agreement, while the curve ob-
tained at 10 ' Torr falls more rapidly with energy. This

behavior is difficult to explain. Modification of cascading
patterns by imprisonment of resonance radiation would
seem not to provide an explanation. The possibility of
contamination of the spectrum, as from the sodium
dimer, does not seem likely. Under the experimental
conditions the dimer content is a few tenths of one per-
cent and rises with temperature as is easily demon-
strated from simple thermodynamic calculations. A
dimer excitation cross section peaked strongly at
threshold would conceivably give the observed result.
A more reasonable possibility is that the trapping of
resonance radiation so extends the eRective life of the
upper state at 10 ' Torr that chemical interactions be-
tween excited states of sodium provide an energy-de-
pendent mechanism for depleting the population of the
upper state of the D line. In any case it is reasonable
to accept the shape obtained at 2.5 and 5)&10 ' Torr
pending a more adequate understanding of the pro-
cesses which cause the distortion.

Haft (1933) measured the excitation functions of a
number of sodium lines, but worked at rather high pres-
sures. Christoph (1935) measured the absolute cross
section for excitation of the sodium D lines using a tung-
sten strip lamp for radiometric calibrations, and working
at a side-arm temperature of 163.5'C. Volkova (1961)
measured absolute values of ten sodium lines at tern-
peratures of 182' and 202'C (P—5 X 10 ' mm Hg) . Be-
cause of window darkening due to sodium absorption
the intensities were determined by comparison with
lines excited in helium at a pressure of 4&10—' Torr.
Absolute measurements of helium excitation by Vak-
hontova (1959) were used to provide the calibration.
This indirect calibration process led to stated errors of
about 70%.

The most extensive set of measurements under condi-
tions of reasonably low pressure have been carried out
by Zapesochnyi and Shimon (1965). They give errors
of 30-35% in absolute values and relative errors not
exceeding 10%.

The absolute value of the sodium D line excitation
function was measured by Zapesochnyi and Shimon
(1965) at 164'C, essentially the same temperature as
was used by Christoph. In fact, Zapesochnyi and
Shimon used an absorption coeKcient of 0.4 cm '
determined by Christoph to correct for absorption of
resonance radiation, so the two measurements, carried
out at the same pressure, are not completely independ-
ent. Figure 96 shows the absolute excitation functions
obtained by Zapesochnyi and Shimon for the principle
series of sodium. Christoph's three absolute measure-
ments for the D line, are shown there for comparison.
Ke have also included Born approximation results
(Vainshtein, 1965) and the results of a close coupling
calculation by Barnes, Lane, and Lin (1965).

Christoph gave his results in terms of cm'/cms per
electron at one millimeter pressure. He gave his working
pressure as 1.6&&10 ' Torr at 163.5'C, which is reason-
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19. Heavy Two-Electron Systems

The experimental study of helium excitation has been
discussed in considerable detail. It is the simplest of the
two-electron systems. It has been studied extensively,
is relatively tractable theoretically, and has import. ant
applications in astrophysics and elsewhere. Of the other
two-electron systems, mercury has also been studied
extensively and some work has been carried out on
cadmium and zinc. These atoms are more complicated,
have not received such extensive theoretical treatment,
and are not quite so interesting with respect to current
applications.

However, they provide some physically interesting
contrasts with helium. In helium, J=S coupling holds
well and the spectrum is free of inter-system transitions.
In the heavier atoms spin —orbit interaction is strong and
inter-system transitions occur with competitive prob-
abilities. The energy levels within a given shell are also
strongly modified by spin —orbit interaction energy so
that there are quite significant differences in energy be-
tween states of different angular momenta. This strong
spin —orbit interaction, and the fact that the electro-
static interaction with the nucleus is less in the heavier
elements, results in a higher lying ground state and
larger intervals between some of the relevant upper
1evels. The transition to the ground state is not so
strongly favored over other transitions, energetically,
as in helium. One result appears to be that cascade
transitions make more significant contributions to the
observed excitation functions, as has been demon-
strated quite effectively in the more recent experimental
work discussed below.

Another result is that trapping of resonance radiation
has relatively less inQuence on the effective lifetime of a
given state of the heavy atom than for helium, and
therefore less effect on the observed intensity of lines
not connecting to the ground state. In helium the
3'P~2'S line may be enhanced by a factor of forty
through trapping of the 3'P—+1IS line. The factor is
presumably lower for corresponding mercury, cadmium,
and zinc lines. The effects of trapping, however impor-
tant, may be expected t'o occur at the same pressures,
within an order of magnitude, as in the case of helium.

L. J. Kieffer's "Bibliography of Low Energy Electron
Collision Cross Section Data" (1967) lists 53 papers
under the headings "Electronic Excitation, Experi-
mental, Hg. "For helium there are 95, for cadmium 6,
and for zinc 3. For the case of helium, there is reason for
desiring rather accurate information about the shapes of
the excitation functions as well as their absolute values.
Considerations of pressure-dependent secondary effects,
especially trapping of resonance radiation, have reduced
the number of helium papers considered in detail to a
relatively small number.

For the case of mercury, the very accurate determina-
tion of excitation functions is much less interesting
because the theory is not in a refined state and because

the applications are not so important. For the case of
mercury, zinc, and cadmium, it is the structure of the
excitation functions which provides the interest. Thus
the essential experimental problems are not so much the
refinement of spectroscopic techniques, to which some of
the earlier workers may have been more alert than many
of the recent workers, but the refinement of photoelec-
tric recording techniques and the techniques of obtain-
ing high-energy resolutions in low-energy electron
beams, at which modern workers are beginning to excel.
The earlier workers did not expect complex structure
and most of them did not see it. Recent work has shown
the excitation functions to be rich in structure. There-
fore, we will confine our attention to the more recent
work. However, we note that authors in this field are
either blissfully unaware of, or find it easy to ignore,
the distortions which result from polarization through
instrumental polarization and as a result of anisotropic
radiation patterns.

The pressure dependence problem in mercury seems
less serious than in helium, although it should not be
ignored to the extent that it is in the literature, partic-
ularly where absolute measurements are involved. The
pressures used are not always stated explicitly. In most
cases the mercury pressures used were probably those
of mercury at room temperatures, for which the equi-
librium vapor pressure is about 10 ' Torr, or lower
temperatures, for example that of melting ice, for which
the pressure is about 2&10 4 Torr. Zinc and cadmium
are used at temperatures of several hundred degrees
centigrade in order to achieve comparable vapor pres-
sures.

Evidence that excitation functions of certain lines are
highly affected at mercury pressures characteristic of
room temperature appear in the literature. Skinner and
Appleyard (1927) noted that it was necessary to work
at temperatures of —15' to —20'C to avoid almost
complete depolarization of the 6'P~—+6'$0 (2537-A) line
which occurs at room temperature. Federov (1965)
studied pressure dependence of the 6'D2 +6'Pq (5770-L)—
polarization curve and found that the portion immed-
iately adjacent to threshold where only direct 6'D2 exci-
tation was effective was decreased by a factor of two in
changing the pressure from 8&10 4 to 10 ' Torr, and
that significant depolarization occurred at 4&& 10 ~ Torr.
His explanation was based on excitation by scattered
electrons but at these pressures this does not seem pos-
sible. Other secondary processes must be invoked. He
noted the appearance of a halo, reminiscient of the
effects observed in helium by I ee and others, and there
attributed to trapping of resonance radiation.

The mercury literature contains two papers which
should be of special interest to experimentalists working
in this or related fields, because they contain unusually
complete and interesting accounts of careful experi-
mental investigations. The first of these, by Zapeso-
chnyi (1954), marks the beginning of the modern high
resolution work which has revealed the extensive struc-
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turing of the excitation functions. He attributed the
structure primarily to cascading. The second paper is a
quite comprehensive report on experimental techniques
by Jongerius (1961). This paper also includes an excel-
lent summary of the older literature. Both papers de-
scribe successful attempts to reproduce results of
earlier workers in order to account for the diGerences. In
addition to papers by these workers and their colleagues,
one other paper of particular signi6cance by Anderson,
Lee, and Lin (1967) has appeared recently. This paper
reports a large number of experimental results. It in-
cludes only the briefest possible account of experi-
mental techniques, but it contains the most complete
analysis and discussion of the structure of the excita-
tion available.

Figure 102 shows the experimental results for the
7'S&~6'Ps (5461-A) line of mercury published by
Frish and Zapesochnyi (1956) in support of their
original interpretation of the structure in terms of cas-
cading. The lower curves taken from their paper show
their interpretation in terms of excitation functions of
higher levels. The interpretation is qualitative with
respect to shapes and magnitudes but quantitative with
respect to intervals between excitation thresholds. It is a
quite convincing demonstration, indicating the great
importance of cascading in the development of the
excitation function. Zapesochnyi (1954) gives similar
interpretations of structure for other mercury lines.

It is interesting to note that while most early papers
present smooth excitation functions for the 5461-A.
line, Seibertz (1931) succeeded in obtaining most of
the essential features in his measurement of the 7'S~—+

6'Eo (4047-A) line for which the excitation function
has the same shape as for the 5461-L line.

Absolute values of a large number of lines have been
obtained by Jongerius (1961) and by Anderson, Lee,
and Lin (1967), with a fair degree of consistency be-
tween the results. The results by the latter group tend
to run higher than those by Jongerius by 15—50%.Older
results by Hanle and Schaffernicht (1930) are substan-
tially higher than the recent values.

Qf special interest are the relative values of excitation
functions with the same upper states. Several such sets
have been studied. Jongerius gives relative transition
probabilities for lines with 7sSt, 8'St, and 6sDs upper
states. Anderson, Lee, and Lin present results for 7'5&,
7'So, 8'Pq, 9'P~, and 10'Pj upper states. These last three
involve comparisons between singlet —singlet and sin-
glet —triplet transitions which yield information about
the mixing coefficients.

Except for some very early work, the only available
data on excitation functions for zinc and cadmium are
from recent work by Zapesochnyi and his collaborators.
These data reveal structure similar in many respects to
that found in mercury. Ke show on Figs. 103, 104, and
105 some results obtained by Zapesochnyi and Shpenik
(1966). This work was accomplished using a 127'
cylindrical electrostatic analyzer to obtain narrow
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FIG. 102. Relative excitation function for the 7'S1—+6'P2
(5461-X) transition in mercury (Curve 1) showing an interpreta-
tion of structure in terms of excitation cross sections for higher
levels I (2) 7'P; (3) 7'S; (4) 8'P; (5) 10'P; (6) 9'P; (7) ioniza-
tion plus excitation) by Frish and Zapesochnyi (1956).
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Fxc. 103. Relative excitation functions for the corresponding S
states in mercury (7'S1), Curve 1; cadmium (6'51), Curve 2;
and zinc (5'S~), Curve 3, measured with an electrostatic electron
monochromator to obtain energy spreads of 0.1, 0.2, and 0.3 eV,
respectively, for the three curves (Zapesochnyi and Shpenilc,
1966).
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FIG. 104. Relative excitation functions for the corresponding P
states in mercury (6'P~), Curve 1; cadmium (5'P~), Curve 2;
and zinc (43P~), Curve 3, measured arith an electrostatic electron
monochromator (Zapesochnyi and Shpenilc, 1966).
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Fro. 105.Highly resolved (~0.1 eV) excitation function for the
mercury 3650-L line originating in the 6'Dz level (Zapesochnyi
and Shpenik, 1966) .
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FIG. 106. Polarization of the mercury triplet 7'S1—&6'P2, 1,p as a
function of electron energy, measured by Federov and Mezentsev
(1965):Curve 1, 4047 k; Curve 2, 5461 A; Curve 3, 4358 L. The
occurrence of finite polarization beginning 0.4—0.5 eV above thres-
hold is attributed to cascading from e'E levels.
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FIG. 107. Polarization of the mercury lines at 4347 L (7'D2—&

6~21), Curve 1; and at 5770 A. (6'D2—+6'E1},Curve 2, as a func-
tion of electron energy, measured by Federov and Mezentsev
{1965).

energy spreads in the electron beam. In Fig. 103 are
compared the excitation functions obtained for lines
with the upper states 7'S&, 6'S&, and 5'S& in mercury,
cadmium, and zinc. The energy spreads used were given
as 0.1, 0.2, and 0.3 eV for the three cases. The fact that
the mercury structure appears to be narrower is due in
part to the energy spread used.

In Fig. 104 are compared the excitation functions
corresponding to 6'P~, 5'P~, and 4'P~ levels in the three
respective atoms, and in Fig. 105 is a highly resolved
6'D3 excitation for mercury. Zapesochnyi and Shpevik
relate the maxima to excitation of higher levels with
subsequent cascading.

Skinner and Appleyard (1927) investigated the
polarization of a number of the mercury lines excited
by electron impact. Their work has been the subject
of a great amount of interest because of their observa-
tion that the polarization of all lines studied went to
zero at threshold. This conQicts with the requirements
of conservation of angular momentum at threshold.
Another main feature of their results was the high-
energy trend to negative polarization of the 6'D2—+6'P&

and 7'D2—+6'P'~ lines, and the observation of negative
maxima in polarization at lower energies for several of
their lines.

From the preceding discussion of the importance of
cascading in the formation of the mercury excitation
functions it is clear that the interpretation of the ob-
served polarization should be quite complex, except
near threshold below energies at which the cascading
mechanisms can be actuated. Furthermore, one would
expect a certain amount of structure in the polarization
which does not show up in the work of Skinner and
Appleyard. Federov and Mezentsev (1965) have re-
cently studied the polarization of some mercury lines in
the region near threshold. Using relatively narrow
energy spreads ( 0.6 eV) they find structure in the
polarization curves related to cascading. They 6nd the
lines 8'So—+6'P~ and 7'SO~6'P~ unpolarized near
threshold.

Their polarization curves for the 7 Sr—+6'Ps, r, s lines
are shown in Fig. 106. The polarization is zero near
threshold but becomes 6nite half a volt above threshold
because of cascading from the n'P levels. In Fig. 107
are shown the polarization curves for the 7'D~~6'P~
(4347-A.) and 6'Dr~6'Et (5770-A) transitions near
threshold. Skinner and Appleyard found the 4347-A
polarization to fall to zero near threshold, but with
better resolution Federov and Mezentsev show that
it rises again as threshold is approached from a higher
energy, in a manner not inconsistent with the require-
ments of angular momentum conservation. The be-
havior is similar to that now found in helium.

20. Experimental Summary

Experimental research in the electron impact excita-
tion of atoms is entering a new phase. Many of the
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important atomic excitation functions have been sur-
veyed again and again in semi-quantitative fashion.
There is little point to more work of this type on helium.
The technology is available to support reliable measure-
ments of relative excitation functions. The technology
must be applied with due attention to the physical
properties of the atom under study and to the effects of
ambient fields on the observations. Hopefully, in this
article we have indicated the important physical prop-
erties and processes to be considered, at least for helium.
For atoms heavier than helium much more study is
needed in order to determine the nature and importance
of secondary processes.

The quality of absolute measurement depends on the
quality of radiometric and gas density standards, and on
the convenience with which they can be applied in the
laboratory. At the present time the reliability of abso-
lute measurement cannot be much better than 10%.
The reproducibility with which the standards are ap-
plied from one laboratory to another is rejected in the
scatter of absolute measurements of a given excitation
function at the same energy, as in Tables LXIVd and
LXIVe. The scatter does not provide an indication of
the true reliability of the measured values, since certain
systematic effects may occur in all the measurements
and since the standards tend to be coupled through
intercomparison and through use of common supporting
d.ata. The significance which may be attached to a
comparison between theory and experiment is limited
accordingly. Other limitations include the uncertainty
in making proper allowance for cascading, polarization,
and imprisonment of resonance radiation.

Some indication of the signi6cance of a shape com-
parison between experiment and theory can be gained
from considering the figures in which we have intercom-
pared the experimentally determined helium excitation
functions. Some authors of the experimental results have
clearly been more thorough in their treatment of
secondary and instrumental e6ects than others. How-

ever, more high quality work is necessary before a com-
parison between theoretical and experimental shapes
could be trusted in great detail. One serious limitation
clearly lies in the current confusion over the polariza-
tion of radiation excited by electron impact, apparent
in Fig. 73; but there are other limitations as may be
seen from consideration of Fig. 83 for the 4'5 excitation
function and of Fig. 79 for the 4 5 excitation function,
for which polarization should not be a factor. Accurate
allowance for cascading may be a serious limitation in
these and other cases.

However, the comparison between theory and ex-
periment has provided some extremely important re-
sults:

(1) In the range of energies below 50 or 60 eV the
close coupling calculations, involving as many states
as it is presently practical to include but omitting higher
states and the continuum, yield results which rise much

higher than can be considered compatible with experi-
mental results,

(2) except in the immediate vicinity of threshold
where all open channels can be included in the close
coupling calculation. In the threshold case there has
been some remarkable agreement between theory and
experiment, as is evident in Figs. 65, 67, and 88.

(3) The comparison between theory and experiment
for the helium triplet excitation functions shows that
there is a serious discrepancy in the high-energy be-
havior, the theoretical results falling off as E ' and the
experimental results falling much more slowly.

If it is dificult to make definitive statements about
the quality of helium excitation functions, it is even
more difEi.cult for the excitation functions of the heavier
atoms. The study of helium excitation gives a picture of
secondary and instrumental effects which must apply to
work on other atoms. However, there is little evidence in
the literature that secondary effects for heavier atoms
have been properly considered, and it must be presumed
that the available data contains serious distortions.

The future of electron impact excitation work may
lie in the further development of methods of measuring
the inelastically scattered electron currents. This would
require measurement of scattered currents at all angles
and subsequent integration over the total so1id angle.
It is not clear that accuracy can be achieved at the
lower electron energies. Nevertheless, the method is
attractive because it would yield direct excitation
cross sections. There would be no cascade problem, no
imprisonment problem, and no collisional excitation
transfer problem. The angular distribution of scattered
electrons would certainly be nonisotropic, which would
present a problem fully as diS.cult as that presented by
the polarization of the radiation in the optical method.

However, the only one of the above problems which
cannot be avoided in the optical method is that of
cascading. It seems that the optical method has not
yet been properly exploited. With a proper considera-
tion of the physics involved, more carefully planned
experimental work, and more adequate treatment in
publishing results, the full value of the optical method
could be realized.
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TAsx.z I. Total cross sections for s—+s excitations of atomic hydrogen, calculated using the erst Born approximation (Vainshtein, 1965) .
Total cross sections in units of maP. '

Impact
energy e in
threshold

units 1$~2$ 1$~3$ 1s—+4s isness is—+6s is-+7s 1s—+Ss 1$-+9$ 2$~3$

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

Impact
energy e in
threshold

units

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

Impact
energy e in
threshold

units

1.16
1.64
2.44
3.56
5.00
6 ~ 76

11.24
17.00
24.04

Impact
energy e in
threshold

units

2. 16(—1)
2.44( —1)
1.94(—1)
1.44( —1)
1.07 (—1)
8.16(—2)
5.04(—2)
3.38(—2)
2.41(—2)

2s—+4$

1.64(0)
2.05 (0)
1.73 (0)
1.31(0)
9.88(—1)
7.54(—1)
4.69(—1)
3.14(—1)
2.25(—1}

3$~7$

1.67 (0)
2.85 (0)
2.61(0)
2.03 (0)
1.SS (0)
1.19(0)
7.40(—1)
4.98 (—1)
3.55 (—1)

Ss-+7s

3.93 (—2)
4.31(—2)
3 37(—2}
2.48(—2)
1.83(—2)
1.38(—2)
8.51(—3)
S.69(—3)
4.05(—3)

2s-+Ss

5.82{—1)
7.20(—1)
6.00(—1)
4.53 (—1)
3.39(—1)
2.SS(—1)
1.60(—1)
1.07(—1)
7.65(—2)

3$~8$

9.30(—1)
1.60(0)
1.4S (0)
i.13(0)
8.57(—1)
6.S6(—1)
4.09(—1)
2. 75(—1)
1.96(—1)

Ss-+Ss

1.42 (—2)
1.S4(—2)
1.20(—2)
8.79(—3}
6.48( —3)
4.89 (—3)
3.01(—3}
2.01(—3)
1.43 (—3)

2$~6$

2.80(—1}
3.4S (—1)
2.86(—1)
2.1S(—1)
1.61(—1)
1.22 (—1)
7.s6(—2)
S.06{—2)
3.60(—2)

3s-+9s

5.80(—1)
9.98 (—1)
9.OS (—1)
7.02 (—1)
S.31(—1)
4.06(—1)
2.53(—1)
1.70(—1)
1.21(—1)

Ss-+9s

6.79(—3)
7.34(—3)
5.70(—3)
4. 17(—3)
3.07 ( —3)
2.31{—3)
1.42( —3)
9.49(—4)
6.7s(—4)

2$~7$

1.58(—1)
1.94(—1)
1.61(—1)
1.21(—1}
9.00(—2)
6.84(—2)
4.23(—2)
2.83(—2)
2.01(—2)

4$~5$

2.71(2)
5.99 (2)
6.48(2)
s.s8(2)
4.50(2)
3.SS(2)
2.32(2)
1.60(2)
1.15(2)

6s-+7s

3.79(—3)
4.08(—3)
3.17(—3)
2 31(—3)
1.70(—3)
1.28(—3)
7.88(—4)
5.27(—4)
3.75(—4)

2s-+Ss

9.91(—2)
1 21(—1)
1.00(—1)
7.51(—2)
5.60(—2)
4.2S (—2)
2.63 (—2)
i.76(—2)
1.25 (—2)

4s—+6s

3.28(1)
8.07 (1)
8.48 {1)
7.0s(1)
s.s3 {1)
4.33 (1)
2.76(1)
1.87 (1)
1.34(1)

6s—+8s

2.33(—3)
2.51(—3)
1.95(—3)
1.42( —3)
1.05(—3)
7.89 (—4)
4.84{—4)
3.23 (—4)
2.29(—4)

2$~9$

6.6S(—2)
8.14(—2)
6.70(—2)
5.02 (—2)
3.74(—2)
2.82 (—2)
1.76(—2)
1.18(—2)
8.37(—3)

4s-+7s

1.03 (1)
2.61(1)
2.70(1)
2.21(1)
1.72 (1)
1.34(1)
8.44{0)
s.71(0)
4.09 (0)

6s—+9s

1.54(—3)
1.66(—3)
1.28 (—3)
9.37 (—4)
6.89(—4)
S.20(—4)
3.19(—4)
2.13(—4)
1.51(—4)

3$-+4$

7.57 (1)
1.24(2)
1.20 (2)
9.82 (1)
7.69(1)
6.02 (1)
3.85 (1)
2.62 (1)
1.88(1)

4s-+Ss

4.57 (0)
1.20 (1)
1.23 (1)
9.99 (0)
7.72 (0)
5.98 (0)
3.76(0)
2.S4(0)
1.82(0)

1.07(—3)
1.15(—3)
8.92(—4)
6.51(—4)
4.79 (—4}
3.61(—4)
2.21(—4)
1.48(—4)
1.05(—4)

3s-+Ss

1.07(1)
1.80(1)
1.68(1)
1.34(1)
1.03 (1)
7.93 (0)
4.97 (0)
3.37 (0)
2.41(0)

4s-+9s

2 ~ 50(0)
6.65 (0)
6.74(0)
S.46(0)
4.21(0)
3.25(0)
2.04(0)
1.38(0)
9.86(—1)

1.01(1}
1.28(1)
1.11(1)
8.66(0)
6.61(0)
s.09(o)
3.20{0)
2. 16(0)
1.S4(0)

3$~6$

3.57 (0)
6.07 (0)
5.59 (0)
4.39(0)
3.35 (0)
2.s7(o)
1.61(0)
1.08 {0)
7.74(—1)

5$~6$

6.40(2)
1.95 (3)
2.37(3)
2.1S(3)
1.78(3)
1.44(3)
9.S4(2)
6.60(2)
4.78 (2)

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

6.51(1)
2.47 (2)
2.93 (2)
2.58(2)
2.08 (2)
1.64(2)
1.06(2)
7 22(1)
S.19(1)

1.85 (1}
7.72 (1)
9.09(1}
7.80(1)
6.19(1)
4.86(1)
3.11(1)
2. 11(1)
1.52 (1)

7.98(0)
3.47 (1)
4.0S(1)
3.44(1)
2.71(1)
2.12 (1)
1.35 {1)
9.14(0)
6.S6(0)

1.15(3)
4.82 (3)
6.61(3)
6.43(3}
5.59(3)
4.69(3)
3.29(3)
2.39(3)
1.81 (3)

9.06(1)
5.82(2)
8.45(2)
7.92 (2)
6.44(2)
5.04(2)
3.10(2)
2.06 {2)
1.49(2}

2.43 (1)
1.76(2)
2.47 (2)
2.2S(2)
1.82 (2)
1.43 (2)
9.00(1)
6.01(1)
4.25 (1)

~ The numbers in parentheses denote powers of 10.
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TABLE II. Total cross sections for s~p excitations of atomic hydrogen, calculated using the Erst Born approximation (Vainshtein,
1965).Total cross sections in units of ~a/. ~

Impact
energy e in
threshold

units as—+2p 1$~3P 1s—+8p 1$~9p 2$~3p

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

7.70(—1)
1.23(0)
1.32(0)
1.22(o)
1.07(0)
9.18(—1)
6.ss( —1)
5.26(—1)
4. 15(—1)

1.41(—1)
2.12(—1)
2. 18(—1)
1,96(—1)
1.69(—1)
1.43 {—1)
1.05 (—1)
7.91 (—2)
6.18{—2)

5.08(—2)
7.57(—2)
7.68(—2)
6.83(—2)
5.83(—2)
4.93 (—2)
3.ss( —2)
2.7o(—2)
z.09(—2)

2.43(—2)
3.59(—2)
3.62 (—2)
3.21(—2)
2.73 (—2)
2.31{—2)
1.67(—2)
1.26(—2)
9,76(—3}

1.35(—2)
1.99(—2)
2.01(—2)
1 77(—2)
1.sa (—2)
1 27(—2)
9.21(—3)
6.91{—3}
5.37(—3)

8.35(—3)
1.23(—2)
1.23(—2)
1.o9(—2)
9.23(—3)
7.78(—3)
5.63(—3)

3.28 {—3)

5.51(—3)
s.ao( —3)
8.10(—3)
7.16(—3)
6.07(—3)
5.12(—3}
3.70(—3)
2.77(—3)
2. 15(—3)

3.83(—3)
5.62(—3)
5.63(—3)
4.96(—3)
4.21(—3)
3.55(—3)
2.56(—3)
1.92(—3)
1.49(—3)

z.7s (o)
1.10(1)
1.70(1)
1.91(1)
1.88{1}
1.76(1)
1.43(1)
1.15(1)
9.45(0)

Impact
energy e in
threshold

units 2$—+6p 2$~7p zs—+8p 2s—&9p 3s—+4p 3$—+6p

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

6.03(—1)
z. as(o)
3.13{0)
3.31(O)
3.14(0)
z.s3 (o)
2.23(0)
1.76(o)
1.41 (O)

2.43 (—1)
8.29 {—1)
1.16{0)
1.19(0)
1.12(0)
9.99(—1)
7.75(—1)
6.05(—1)
4.S3(—1)

1 23(—1)
4.12(—1)
S.66(—1)
s.82(—1)
5.38(—1)
4.78(—1)
3.69(—1)
2.87(—1)
2.28(—1)

7.zo( —2)
z.3s(—1)
3.24(—1)
3.31(—1)
3.04( —1)
2, 70(—1)
z.o7 (—1)
1.61(—1)
1,28(—1)

4.59(—2)
1.51{ —1)
2.04(—1)
2.07(—1)
1.91(—1)
1.69(—1}
1.29(—1)
1.oo( —1)
7.96(—2)

3.12(—2)
1.02( —1)
1.37 (—1}
1.39(—1)
1.28( —1)
1.13(—1)
s.65 (—2)
6.7o(—2)
s.32(—2)

3.25(1)
4.88(1)
8.56(1)
1.10(2)
1.18(2)
1.16(2)
1.02 (2)
8.55 (1)
7.12 (1)

5.29(0)
9.02(0)
1.55(1)
1.87 (1)
1.90(1)
1.80(1)
1.45 (1)
1 21(1)
9.91(0)

1.83(0)
3.37(0)
5.70(0)
6.67(0)
6.65(0)
6.20(0)
5.05 (0)
4.os (o)
3.21 {0)

Impact
energy e in
threshold

units 3$~7p 3s—+Sp 3$~9p 4s—+6p 4s—+7p 4s—&9p ss—+6p

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

Impact
energy e in
threshold

units

8.69(—1)
1.67(0}
2.80(0)
3.23(0)
3.18(0)
2.94 (0)
2.37 (0)
1.89{0)
1.s1(o)

4.90{—1}
9.72(—1)
1.61(o)
1.s4(o)
1.so(o)
1.66(0)
1.33 (0)
1.06 (0)
8.53 (—1)

3.07(—1)
6.21(—1)
1.03(0)
1.16(O)
1.13(0)
1.04(0)
8.31(—1)
6.59(—1)
s.31(—1)

2.66{2)
2. 19(2)
3.Oa (2)
4.os (2)
4.62 (2)
4.76(2)
4.41(2)
3.84(2)
3.28(2)

3.81(1)
3.41(1)
5.16(1)
6.66(1)
7.18(1)
7.06(1)
6.14(1)
5 11(1)
4.25(1)

1.25(a)
1.18(1)
1.85(1)
2.33(1)
2.45(1)
2.37(1)
2.00(1)
1.64(1)
1.35(1)

5.74(0)
5.64(0)
8.99(1)
1.12{1)
1.16(1)
1.11(1)
9.25(0)
7.53(0)
6.17(0)

3.17{o)
3.20(0)
5.15(0)
6.34 (0)
6.52 {0)
6.19(0)
5.13(0)
4.16(0)
3.39(0)

1.15(3)
9.33(2)
9.08(2)
1.16(3)
1.36(3)
1.45(3)
1.41(3)
1.zs (3)
1.09(3)

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

1.52 (2)
1.29(2)
1.42 (2)
1.84(2)
2.06(2)
2.09 (2)
1.90(2)
1.62(2}
1.37 {2)

4.82(1)
4.12(1)
4.93(1)
6.32 (1)
6.88 (1)
6.82 (1)
5.95 (1)
4.95 (1)
4.11(1)

2. 16(1)
1.ss(a)
2.34(1)
2.98(1)
3.21(1)
3.14(1)
2.70(1)
2.24(1)
1.Ss(a)

3.33(3)
3.19(3)
2.43 (3}
2.59(3)
2.94(3)
3.13(3)
3.11(3)
2.82 (3)
2.4S {3)

3.93(2)
4.28(2)
3.64(2)
4.89 (2)
6.23 (2}
7.03 (2)
7.zs(z)
6.71(2)
5.96{2)

1.18(2)
1.29(2)
1.19(Z)
1.52(2)
1.77 (2}
1.84(2)
1 72 (2)
a.so(z)
1.28(2)

4.23(3)
8.47 (3)
9.16(3)
8.22(3)
6.96(3)
5.84(3}
4.17(3}
3.10(3)
2.38(3}

6.32(2}
1.Os (3)
7.43(2)
7.o4(z)
8.23(2)
9.39 (Z)
1.03 (3}
9.87 (2}
9.01(2)

5.75(3)
1.53 (4)
2.11(4)
2.23(4)
2.12(4)
1.94(4)
1.S3 (4)
1.23(4)
9.90 (3)

~ The numbers in parentheses denote powers of 10.
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TABLE III.Total cross sections for s~d excitations of atomic hydrogen, calculated using the 6rst Born approximation (Vainshtein, 1965).
Total cross sections in units of maP. '

Impact
energy e in
threshold

units is~3d is—&4d is—+Sd is—&6d is—+7d is—+sd zs—+3d zs~4d

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

1.50(—2)
2. 14(—2)
1.99{—2)
i.6O( —2)
1.25(—2)
9.73(—3)
6.20(—3)
4.22(—3)
3.03 (—3)

7.o7(—3)
9.96(—3)
9.12(—3)
7.30(—3)
5.66(—3)
4.41(—3}
z. so( —3)
1.90(—3)
1.36(—3)

3.73(—3)
5.21(—3)
4.75(—3}
3.79(—3)
2.93 (—3)
z.zs( —3}
1.45(—3)
9.sz (—4)
7.o4(—4)

2. 18(—3)
3.04(—3)
2.76(—3)
2.20( —3)
1.7o(—3)
1.32 {—3)
8.38(—4)
5.69{—4)
4.os( —4)

1.38(—3)
1.92 (—3)
1.74(—3)
1.39(—3)
i.o7 (—3)
S.33 (—4)
s.zs( —4)
3.58(—4)
z. 57 (—4)

9.29(—4)
1.28(—3)
1.16(—3)
9.30(—4)
7.18(—4)
5.57 (—4)
3.53(—4)
2 ~ 59(—4)
1.72( —4)

6.54( —4)
9.07 (—4)
s.zz( —4)
6.53(—4)
S.o4 {—4)
3.91 (—4}
2.48( —4)
1.6S (—4)
1.21(—4)

4.00(i)
4.61(1)
3.79(1)
z.s6(1)
2.15(i)
1.64(1)
1.O2 (1)
6.87 (0)
4.90(0)

5.64(0)
5.63 (0)
4. is(o)
2.9s(o)
z. 16(o)
i .62 (0)
9.82 (—1)
6.52 (—1)
4.63 (—1)

Impact
energy ~ in
threshold

units zs—+5d zs~6d 2$~7d zs—+8d zs—+9d 3s-+4d 3s~Sd

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

Impact
energy e in
threshold

units

i.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

Impact
energy ~ in
threshold

units

1.16
1.64
2.44
3.56
5.00
6.76

11.24
17.00
24.04

i.ss(o)
1.77 (o)
1.zs(o)
8.95 (—1)
6.44( —1)
4.7s(—1)
2.89(—1)
1.91(—1)
1.35(—1)

3s—+sd

z. 76(0)
3.59(0)
z.s6(o)
2.07(0)
1.51(0)
1.13(O)
6.S6(—1)
4.56(—1)
3 ~ 23(—1)

Ss—+Sd

2 71(1)
1.19(2)
1.38(2}
1.16(2)
9.01(1)
6.97(1)
4.3S(1)
2.95(1)
z. io(1)

s.7s(—1)
8.03 (—1)
s.7o(—1)
3.97(—1)
2.84( —1)
Z. 11(—1)
1.27(—1)
8.42(—2)
5.95 (—2)

3s—+9d

1.75 (o)
z.24{o)
1.77(o)
1.27(0}
9.27 (—1)
6.93 (—1)
4.20(—1)
2.79(-1)
1.98(—1)

Ss—+9d

1 31(1)
5.74(1)
6.42{j.)
5.25 (1)
4.03 (1)
3.1S(1)
1.93{1)
1.3O(1)
9.25 (0)

4.87(—1)
4.39(—1)
3.O9(—1)
2. 14(—1)
1.53 (—1)
1.14(—1)
6.85 (—2)
4.53(—2)
3.20{—2)

4s—+Sd

2.84(2)
7.9s(z)
9.32(2)
8.30(2)
6.79(2)
S.46{2)
3.58(z)
2.47 (2)
1.79(2)

6s—+7d

i.16(3)
3.61(3)
5.'?8(3)
5.97 (3)
5.28(3)
4.43{3)
3.O4(3)
2.15(3)
1.57 (3)

3.Oi (—1)
Z. 69(—1)
1.ss( —1)
1.3O( —1)
9.32(—2}
6.9o(—2)
4. 16(—2)
z. 75(—2)
1.94(—2)

4s~6d

5.37(1)
1.37 (2)
1.41(2)
i.14(z)
8.85 {1)
6.SS{1)
4.31(1)
2.91(1)
2.08 (1)

6s—+sd

1.36(Z)
6. 11(2)
1.05(3)
1.1O(3)
9.76(2)
8.19(2)
5.61 {2)
3.95 (2)
z.s9{z)

2.Oi (—1)
i.7s( —1)
1.Z4( —1)
8.58(—2)
6.13(—2)
4.54(—2)
2.73(—2)
i.si(—2)
1.28(—2)

4s—+7d

z.oo(1)
4.s4 (1}
4.69(1)
3.68 (1)
2.79(1}
2. 13(1)
1 ~ 32(1)
s.s6(o)
6.31(0)

6s—+9d

2. is (o)
2.37 (o)
1.77 (0}
1.26(0)
9.17(—1)
6.86(—1)
4.1S(—1)
z. 7s(—1)
i.9S(—1)

1.47 (2)
z. so(2)
z.44(z)
2.oo(z)
1.56{2)
1.22(z)
7.s3 (1)
5.33(1)
3.83 (1)

4s—+Sd

9.93 (0)
2.32 (1)
z. is (1)
1.68 (1)
1.26(1)
9.54(0)
5.88(0)
3.93(0)
2.80(0)

7s—&sd

1.67(3)
1.39(3)
1.00(3}
7.52 (2)
5.78(2)
4.51(2)
z. s9(z)
1.9s(z)
1.43 (2}

z.67 (1)
3.96(1)
3.43 (1)
Z. 61(1)
1.95 (1)
1.49(1)
9.18(0)
6.14(0)
4.37 (0)

5.77 t'0}

1.31(l)
1.21(1)
9.20(0)
6.86 (0)
5.18(0)
3.19(O)
2. 12 (0)
1.51(0)

7s—+9d

3.1O(2)
7.40(2)
1.73 (3)
2.13(3)
2.06 (3)
i.sz (3)
1.32 (3)
9.52 (2)
7.o7 (2)

9.81(o)
1.36(1)
1 12(1)
8.30(0}
6.12 (0)
4.61(0)
2 82(o)
1.s7 (o)
1.33 (0)

Ss~6d

4.95 (2)
1.9O(3)
Z. 66(3)
2.57 (3)
2.zo(3)
1.Si (3)
1.22 (3)
8.51(2)
6.21(2)

ss~9d

3.88(3)
5.87(3)
5.46(3)
4.37 (3)
3.40(3)
2.65 (3)
1.68(3)
1 13(3)
s.17(2}

4.80(0)
6.41(0)
S.17 (0)
3.77{0}
2.76{0)
2.o7(o)
1.26(0}
8.39(—1)
5.95 (—1)

Ss—+7d

7.80(1)
3.32(2)
4.13(2)
3.62 (2)
2.90 (2)
2.29(2)
1.46(2)
9.97(1)
7.16(1)

~ The numbers in parentheses denote powers of 10.
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TABLE IV. Total cross sections for the excitation of discrete levels of atomic hydrogen from the is state, calculated using the erst
Born approximation (Mccarroll, 1957; Omidvar, 1965).Total cross sections in units of 1ro8 .

Impact energy

(ryd bergs) (eV) Q1,2 Q1,8 Q1,4 Ql, s Q1,6 Q1,8 Q1,8 Q1,0 Q1,10

1.00

1.44

1.96

2.56

3.24

4.00

6.25

13.60

19.58

26.66

33.43

44.06

54.40

85.00

1.2868 0.1787 0.0509 0.0199 0.0092 0.0050 0.0032 0.0018 0.0012

1.5354 0.2782 0.1000 0.0476 0.0265 0.0163 0.0104 0.0075 0.0054

1.4993 0.2798 0.1021 0.0490 0.0274 0.0169 0.0112 0.0078 0.0056

1.3886 0.2600 0.0951 0.0457 0.0256 0.0158 0.0104 0.00/3 0.0053

1.2630 0.2358 0.0862 0.0413 0.0232 0.0143 0.0096 0.0066 0.0048

1.1424 0.2123 0.0775 0.0372 0.0208 0.0128 0.0088 0.0059 0.0043

0.8919 0.1637 0.0595 0.0285 0.0160 0.0098 0.0064 0.0045 0.0033

9.00 122.40 0.7101 0.1290 0.0468 0.0224 0.0125 0.0077 0.0048 0.0035 0.0026

12.25 166.60 0.5780 0.1041 0.0377 0.0180 0.0100

16.00

20.25

25.00

36.00

49.00

72.25

340.00

489.60

0.3468 0.0614 0.0221 0.0105 0.0059

0.2634 0.0463 0.0166 0.0079 0.0044

666.40 0.2075 0.0363 0.0130 0.0062 0.0034

989.40 0.1526 0.0265 0.0095 0.0045 0.0025

217.60 0.4797 0.0858 0.0310 0.0148 0.0083

275.40 0.4050 0.0721 0.0260 0.0124 0.0069

TABLE V. Total cross sections for the excitation of discrete levels of atomic hydrogen from the 2s state, calculated using the 6rst Born
approximation (Boyd, 1959).Total cross sections in units of 1ras .

Impact energy
(rydb erg s) Q2, 3 Q2, , 4 Q2.7 Q2.,8 Q2. ,0 Q2s, 10

0.36

0.64

1.00

1.44

1.96

2.56

3.24

4.00

4.84

5.76

6.76

7.84

9.00

65.019

49.441

37.667

29.488

23.703

19.488

16.326

13.895

11.984

10.452

9.206

8.176

7.317

12.330

9.454

7.150

5.560

4.446

3.640

3.040

2.580

2.200

1.933

i.699

1.507

1.347

4.658

3.612

2.726

2.114

1.687

1.379

1.149

0.974

0.837

0.728

0.640

0.567

0.506

2.312

1.808

1.364

1.056

0.842

0.687

0.572

0.485

0.416

0.362

0.318

0.281

0.251

1.331

1.047

0.790

0.611

0.487

0.397

0.331

0.280

0.240

0.209

0.183

0.162

0.145

0.843

0.664

0.499

0.390

0.309

0.252

0.210

0.179

0.153

0.133

0.116

0.103

0.091

0.569

0.450

0.339

0.264

0.209

0.170

0.142

0.121

0.103

0.090

0.079

0.070

0.062

0.404

0.320

0.241

0.188

0.149

0.121

0.101

0.086

0.073

0.064

0.056

0.050

0 044
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TABLz VI. Total cross sections for the excitation of discrete levels of atomic hydrogen from the 2p0 state, calculated using the first
Born approximation (McCrea and McKirgen, 1960) . Total cross sections in units of m~ .

Impact energy
(rydbergs) Q2ge, s Q2ge. 4 Q2pQ, S Q200, 0 Q200, 10

0.36

0.64

1.00

1.44

1.96

2.56

3.24

4.00

4 84

5.76

6.76

7.84

9.00

74.837

64.529

52.482

42.803

35.403

29.727

25.324

21.836

19' 038

16.759

14.8765

13.304

11.976

14.426

12.323

9.826

7.833

6.352

5.246

4.406

3.755

3.241

2.828

2.491

2.213

1.988

5 ' 259

4.749

3.790

2.993

2.408

1.974

1.649

1.399

1.202

1.045

0.918

0.807

0.726

2.499

2.347

1.859

1.465

1.176

0.963

0.802

0.680

0.583

0.506

0.444

0.393

0.350

1.348

1.072

0.844

0.677

0.553

0.461

0.390

0.334

0.290

0.254

0.225

0.200

0.892

0.861

0.684

0.531

0.432

0.348

0.291

0.248

0.211

0.182

0.160

0.143

0.125

0.601

0.586

0.461

0.361

0, 288

0.234

0.196

0.167

0.141

0.125

0.108

0,095

0.084

0.424

0.417

0.328

0.255

0.207

0.165

0.138

0.119

0.100

0.087

0.077

0.066

0.059

TABLE VII. Total cross sections for the excitation of discrete levels of atomic hydrogen from the 2P&1 states, calculated using the
Grst Born approxi1nation (McCrea and McKirgen, 1960).Totai cross sections in units of 2ra0 .

Impact energy

(ryd bergs) Q20+1,2 Q20+1.0 Q2pal, 5 Q2p+1, e Q2yp1, v Q20s-l, S Q20+1,2

0.36

0.64

1.00

1.44

1.96

2.56

3.24

4.00

4.84

5.76

6.76

7.84

9.00

76.515

57.44

45.051

35.937

29.278

24.313

20.535

17.587

15.248

13.360

11.8125

10.527

9.447'

13.346

10.692

8.181

6.381

5.102

4.173

3.480

2.949

2.533

2 ' 202

1.934

1.713

1.534

4.995

4.052

3.077

2.380

1.891

1.538

1.276

1.077

0.922

0.799

0.700

0.618

0.551

2.512

2.040

1.537

1.190

0.935

0.758

0.625

0.528

0.451

0.391

0.341

0.301

0.272

1.414

1.166

0.883

0.679

0.537

0.435

0.359

0.302

0.258

0.223

0.195

0.172

0.153

0.890

0.740

0.560

0.426

0.342

0.268

0.224

0.190

0.164

0.140

0.123

0.108

0.096

0.600

0.505

0.378

0.288

0.229

0.180

0.151

0.129

0.110

0.094

0.082

0.072

0.064

0.424

0.358

0.270

0.202

0.160

0.128

0.108

0.091

0.078

0.067

0.058

0.052

0.046
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TABLE VIII. Total cross sections for the excitation of discrete levels of atomic hydrogen from the I=3 level, calculated using
the first Born approximation (Omidvar, 1965).Totai cross sections in units of zras .

Impact
energy

(rydbergs} Qs.s Qs, s Qs, s

Impact
energy

(rydbergs) Qs, z Q3,8

0.07
0.08
0.111
0.16
0.36
0.64
1.00

657.1
709.2
735.3
676.9
460.9
322 3
237.4

83.37
126.98
125.33
83.69
56.35
40.33

42.92 19.16
47.26 23.56
31.86 16.08
21.16 10.62
14.98 7.47

9.94
13.67
9.44
6.21
4, 35

1.44
1.96
2.56
3.24
4.00
6.25
9.00

182.5
145.1
118.4
98, 5
83.5
58.5
43.6

30.34
23.69
19.07
15.71
13.19
9.12
6.71

11.19
8.69
6.94
5.70
4.75
3.25
2.38

5.55
4, 29
3.45
2.81
2.34
1.61
1.19

3.23
2.49
1.99
1.62
1.38
0.97
0.66

TABLE IX. Values of the constants C ~,„~ occurring in the Bethe total cross section formula (47) for n'l'~nl transitions of atomic
hydrogen satisfying n —n'=1 or 2 and l l'= 1' —(McCoyd and Miiford, 1963).

s—n'=1

3.0(1) i.70(2)

2.7(2)

S.4(2)

6.9(2)

i.14(3)

1.32(3)

1.47(3)

2.2 (3)

3 3(3)

2 7(3)

2.8(3)

3.8(3)

5.3(3)

7.5(3)

5.0(3)

4.8(3)

6.2 (3)

8.2 (3)

i.10(4)

1.48 (4)

8.4(3)

7.8(3)

9.5(3)

1.22 (4)

1.S8(4)

2. 1(4)

2.7 (4)

1.34(4)

1.20(4)

i.42 (4)

i.76(4)

2.2 (4}

2.8 (4)

3.5 (4)

4.4(4)

2.0(4)

1.76(4)

2.0(4)

2.5(4)

3.0{4)

3.7(4)

4. 6(4)

5.7(4)

7.0(4)

3.0(4)

2.5(4)

2.8(4)

3.4(4)

4. 1(4}

4.9(4)

S.9(4)

7.2(4)

8.7(4)

1.05 (5)

n —s'= 2

10

3.0(1)
3.5(1)

9.3(1)
1.07{2)

i.20(2)

2 2(2)

2 3(2)

2.9(2)

2.9(2)

4.3(2)

4.4(2)

5.5(2}

6.4(2)

5.6(2)

7.7(2}

7.4(2)

9.1(2)

1.10(3)

1.19(3)

9.7(2)

1.27 (3)

1.18(3)

1.42 (3)

1.71(3)

1.96(3)

2.0 (3)

1.54(3)

1.98(3)

1.79(3)

2.1(3)

2.5(3)

2.9 (3)

3.2 (3)

3.1 {3)
2.3(3)

3.0{3)
2.6(3)

3.0(3)

3.5(3)

4.1(3)

4.7 (3)

4.9{3)
4.7 (3)

3.3{3)

4.2(3)

3.6(3)
4. 1(3)

4.8(3)
S.6(3)

6.4(3}
7.0(3)

7.2{3)
6.6(3)

4.5(3)

~ The numbers in parentheses denote powers of 10.



328 REvrEWs oz MODERN PavsxCS - ApzrL 1968

TABLE X. Values of the constants D &, & occurring in the Bethe total cross section formula (47) for n'l'~Nl transitions of atomic
hydrogen satisfying n —n'= 1 or 2 and 1—l'= 1 (McCoyd and Milford, 1963),'

n —n'=1

10

1.03 (—1) 2.7(—1)
5.8(—1)

5.0(—1)
7.6(—1)
1.39

8.0(—1)
1.08

2.6

1.14

1.44

1.77

2.6

4.2

1.6
1.9
2

2

5

5

2

3

3

4

4

5

1.2(1)

3

3

3

5

5

8

1.1 (1)

3

3

4

5

5

6

9
1.6(1)

4

5

5

5

6

6

8

8

&.8(&)

s—n'=2

10

0

1

2

3

5

6

7

8

9

1.41(—1) 3(—1)

8(—1)

5.2(—1)
9.7(—1)
2.7

8.1(—1)
1.2

1.2
2

3

1 1(1)

1.8
1.8
3

5

8

2 (1)

1.8
1.8
4

7

1.3 (1)
3(1)

3

3

8

1.5(1)
5(1)

3

5

7

7

1.6(1)
3(1)
7 (1)

4

5

6

9
1 3(1)
1 3(1)
3(1)
9 (1)

~ The numbers in parentheses denote powers of 10.

TABLE XI. Values of the constants C7t,„and D„,„occurring
in the Bethe total cross section formula (48) for n'~n transitions
of atomic hydrogen satisfying I n'= 1 or 2 (Kingston and—Laner,
1966a 1966b).'

TABLE XII. Total cross sections for the 1s—+2s excitation of
atomic hydrogen calculated using the erst Born approximation,
the Born—Oppenheimer approximation and the erst-order ex-

change approximation (Bell and Moiseiwitsch, 1963).Total cross
sections in units of mao .~

n —n'= 1

C,

n —n'=2

Dn', a
Impact energy

(rydbergs) B.o.

3.02(1) 1.46(—1)

2.51(2) 8.61 (—1)

9.43 (2} 2.27 (0)

2.51(3) 4.36(0)

5.48(3) 7.08(0)

1.05 (4} 1.04 (1)

4.84(0) 2.24(—1)

3.46(1) 2.35(0)

1.15(2) 9.48 (0)

2.81 (2) 2.42 (1)

5.75(2) 4.79(1)

1.05 (3) 8.13(1)

1.00

2.25

F 00

9.00

16.00

0.248

0.167

0.102

1.648

0.204

0.447

0.148

0.0958 0.0905

0.0477 0.0451 0.0447

0.0273 0.0264 0.0263

~ The numbers in parentheses denote powers of 10.
~ 8 =first Born approximation; H.O. =Horn —Oppenheimer approxima-

tion; 81 =first-order exchange approximation.
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TABLE XIII. Total cross sections for the is—+2po and is-+2p~i excitations of atomic hydrogen calculated using the first Born
approximation, the Born-Oppenheimer approximation and the first-order exchange approximation. The axis of quantization of the
atomic wave functions is chosen along the direction of the incident electron. Total cross sections in units of ~ap~.

Impact energy-
(rydb erg s) B O.o BO—=Eg B

Q2u= Q2~+2Q2u+~

B.O.

1.00 0.873 1.498 1.209 0.0830 0.0811 1.039 1.660 1.371

4.00

9.00

16.00

0.732

0.475

0.231

0.134

0.641

0.442

0.227

0.133

0.630

0.441

0.227

0.133

0.275

0.283

0.215

0.159

0.243

0.265

0.211

0.158

1.282

1.041

0.662

0, 453

1.126

0.973

0.648

0.449

1.115

0.972

0.648

0.449

Bell and Moiseiwitsch, 1963.
b Bell, 1965.

B =first Born approximation; B.O. =Born-Oppenheimer approxima-
tion; Pi =first-order exchange approximation.

TAsx,z XIV. Zero-order partial cross sections for the is-+2s excitation calculated using the Born—Oppenheimer approximation, the
distorted waves approximation and the 1s—+2s close coupling approximation. ~

Zero-order partial cross sections in units of me/

Impact
energy

(rydbergs)

Exchange neglected

D.W.b B.O.b D.W.b Ce

Exchange included, singlet scattering
Q+

1.00

2.25

4.00

0.198 0.239 0.204

0.127 0.118 0.102

0.0585 0.0455 0.0450

0.0194 0.0141 0.0155

0.287 0.714

O. oii 0.344

0.014 0.127

0.0738 0.288

0.204

0.069

0.219

0.0968

0.018 0.0255 0.0212 0.0290

Exchange included, triplet scattering
Exchange included,

total scattering
aQ++IQ

B.O.b D.W.b D.W.~ B.O.b D.W.b Ce

1.00 2.02 0.0316 0.013 0.00274 1.59 0.178 0.0741

1.44

2.25

4.00

0.668

0.134

0.010

0.010

0.0205 0.006

0.002 0.00814

0.016 0.00974

0.00624

0.503 0.094 0.0608

0.104 0.035 0.0315

0.020 0.011 0.0119

~ B =first Born approximation; DW =distorted waves approximation;
B.O. =Born-Oppenheimer approximation; C =1s -2s close coupling
approximation.

~ Erskine and Massey, 1952.

Bransden and McKee, 1956.
~ Ochkur, 1958.
e Marriott, 1958.
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TABLE XV. Total cross sections for various excitations of atomic hydrogen calculated using the distorted waves method neglecting
exchange (Vainshtein, 1961).Total cross sections in units of maP, '

Impact energy
c ln

threshold
units b

1$~2$

D.W,b

1$~3$

D,W.

1$~2p

D.W.

1.04

1.16

1.36

1.64

2.44

3.56

5.00

6.76

1.29(—1)
2. 14(—1)
2.45 (—1)
2.40(—1)
1.89(—1}
1,40(—1)
1.04(—1)
7.85 (—2)

6.95(—1)
7.09(—1}
5.20(—1)
4.15(—1)
2.68(—1)
1.82 (—1)
1.27 (—1)
7.95 (—2)

2.37(—2)

3.88(—2)
4.39(—2)

4.24( —2)

3.28(—2)
2.40(—2)

1 77(—2)
1.34(—2)

1.29(—1)
1.04(—1)
8.64(—2)

7.02 {—2)
4.54{—2)

2.97 (—2)
2. 17(—2)
1.59(—2)

4.12 (—1)

7.79(—1)
1.06(0)
1.23 (0)
1.31(0)
1.21(0)
1.06(0,)
9.19(—1)

2. 15 (—1)
1.37 (0)
1.47 (0)
1.39(0)
1.29(O)

1.14(0)
9.90(—1)
8.50(—1)

Impact energy
e ln

threshold
units

1s—+3P

D.W.

1$~3d

D.W.

2$~3p

D.W.

1.04

1.16

1.36

1.64

2.44

3.56

5.00

6.76

7.57 (—2)
1.41(—1)
1.87(—1)
2. 12 (—1)
2. 18(—1)
1.96 (—1)
1.68 (—1)
1.43 (—1}

3.20(—1)
3.44 (—1)
3.19(—1)
2.92 (—1)
2.28(—1)
1.76(—1)
1.49(—1)
1.25(—1)

8.14(—3)
1.51(—2)

1.97 (—2)

2. 16(—2)

2.00(—2)

1.61(—2)

1.26(—2)

9.80(—3)

1.44(—2)

2.57(—2)
2.47(—2)
2.25( —2)

1 72(—2)
i.48(—2)
1.25(—2)

1.04(—2)

4.88(—1)
2.82(0)
6.75(0)
1.10(1)
1.70(1)
i.91(1)
1.88(1)

2.76 (—1)
4.44(0)
2.06(1)
1.69 (1)
1.93 (1)
1,89 (1)
1.77 (1)

Impact energy
sin

threshold
units

2p~3$

D.W.

1s—&4p

D.W.

1s—&4$

D.W

1.04

1.16

1.36

1.64

2.44

3.56

5.00

6.76

1.00(O)

1.52 (0)
1.55 (0)
1.34(0)
1.04(O)

8.57(—1)
7 33(—1}

4.88(—1)
2. 13(0)
2. 18(0)
1.23 (0)
i.02 (0)
7.91(—1)
6.71(—1)

2.75(—2)
5.07 (—2)

6.69(—2)

7.55(—2)
7.65(—2)

6.81(—2)

5.81(—2)

4.92 (—2)

1.42 (—1)
1.30(—1)

1.20 (—1)
1.08(—1)
8.00(—2)

5.98(—2)

4.93(—2)
4.38(—2)

8.62(—3)
1.40 (—2)

1.58(—2)

1.52 ( —2)

l. 17 (—2)

8.54(—3)
6.28(—3)
4.73(—3)

4.15(—2)

3.60(—2)
3.03(—2)

2.46(—2)

1.59 (—2)

1.05 (—2)

7.30(—3)
5.66(—3)

The numbers in parentheses denote powers of 20. B =first Born approximation; D.W. =distorted waves approximation.

TAsLE XVI. Rate coefficients for 2s—+2p transitions in atomic hydrogen (Seaton, 1955a) . Rate coefficients 8' in cm' sec '.~

T=1X104deg K T=2X10' deg K

IV VI

104X8"
104XS"'

0.27

0.45

0.25

0.42

0.24

0.38

0.22

0.35

0.20

0.34

0.18

0.31
0.17

0.29

0.17

0.27

g ' for 2s~2pi~z and g" for 2s —+2p3(z. Approximations: I Bethe; II first Born; III semiclassical t', Purcell, 1952); IV modified Bethe.
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Values of X~~,„
(Impact energy Z in eV)

-0.8

-0,6

—0.4
-0.2

0.0
0.2
0,4

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

2. 2

1.12 1.47

1.34 1.67

0.850 1.55 1.82

1.28 1.70 1.93

1.11 1.48 1.80 1.98

1.36 1.60 1.84 1.97

0.956 1.49 1.65 1.81 1.91

1.22 1.54 1.62 1.73 1.79

1.28 1.43 1.48 1.56 1.59

1.23 1.28 1.29 1.32 1.35

0.529 1.12 1.12 1.12 1.12 1.13

0.640 0.985 0.981 0.950 0.944 0.948

0.650 0.852 0.820 0.802 0.991 0.789

0.611 0.727 0.691 0.672 0.655 0.653

0.555 0.616 0.580 0.561

0.483 0.516 0.483 0.465

lo
10 15 20 25 30 40

—2.6
—2, 4

2 ~ 2

—2.0
—1.8
—1.6
—1.4

1.2
—1.0
—0.8
—0.6

—0.4
—0.2

0.0
0.2

0.4
0.6

0.99 1.3i

1.01 1.21 1.54

1.23 1.44 1.79

1.21 1.46 1.68 2.05

1.08 1.44 1.70 1.92 2.32

1.33 1.66 1.93 2. 16 2.59

1.03 1.55 1.88 2.16 2.41 2.86

1.29 1.77 2. 10 2.38 2.64 3.11

1.52 1.96 2.29 2.57 2, 84 3.33

1.72 2. 13 2.47 2.74 3.02 3.45

1.88 2.28 2.60 2.88 3.14 3.58

2.01 2.37 2.68 2, 94 3.17 3.57

2.09 2.42 2.69 2.92 3.13 3.46

2.12 2.40 2.64 2.81 2.99 3.30

2.09 2.31 2.50 2.69 2.82 2.99

1.99 2.20 2.34 2.44 2.52 2.89

1.89 2.00 2.08 2. 15 2.20 2.29

TAnLz XVII. Values of X„+q, occurring in the formu'a (96)
for the excitation cross section for the n—+n+1 transition of atomic
hydrogen calculated using the semiclassical impact parameter
method (Saraph, 1964) .
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TABLE XIX. Partial cross sections Q» for the 1s—+2p excitation of atomic hydrogen calculated according to the 1s—2s—2p

Impact energy
(rydbergs)

0.81 Singlet

Triplet

0.0384 0.0754 0.1095

0 ' 0007 0.0657 0.0083

=0.010 0.0030 0

0.0505 0.0013 0.0001

1.00 Singlet

Triplet

0.0360 0.1105 0.2532

0.0033 0.0798 0.0458

0.0352 0.0098 0 ' 0025 0.0007

0.1671 0.0438 0.0093 0.0020

0.0002

0.0005

1.21 Singlet

Triplet

0.0359 0.1105 0.3404

0.0068 0.0629 0.0549

0.0863 0.0301 0.0112 0.0044 0.0016

0.1831 0.1046 0.0388 0.0133 0.0050

1.44 Singlet

Triplet

0.0343 0, 0815 0.02895

0.0095 0.0416 0.0539

0.1256 0.0508 0.0229 0.0108 (0.0049)

0.1740 0.1404 0.0732 0.0347 (0.0147)

2.25 Singlet

Triplet

0.0171 0.0176 0.0942

0.0106 0.0133 0.0357

0.0999 0.0695 0.0451 0.0292 (0.0181)

0.1077 0.1342 0.1148 0.0838 (0.0542)

4.00 Singlet

Triplet

0.0035 0.0024 0.0169

0.0052 0.0038 0.0139

0.0302 0.0347 0 ' 0329 0.0286 0.0237

0.0394 0.0624 0.0728 0.0719 0.0647

~ First Born approximation values are given in parentheses. Sum co1umn is the total of all significant partial wave contributions

TABLE XX. Total cross sections for the 1s—+2s excitation of
atomic hydrogen calculated according to the 1s—2s-2p close
coupling approximation with exchange included (Burke, Schey,
and Smith, 1963).

TAaLE XXI. Total cross sections for the is~2P excitation of
atomic hydrogen calculated according to the 1s-2s-2p close

coupling approximation with exchange included (Burke, Schey,
and Smith, 1963).Total cross sections in units of ~a/.

Impact
energy

(rydbergs)

Total cross
section in units

of ~ap'

Impact energy
(rydbergs)

0.81 0.211 0.81 =0.068 =0.223 =0.360

1.00

1.21

1.44

2.25

4.00

0.3616

0.3395

0.2635

0.1604

0.1012

1.00

1.21

1.44

2.25

4.00

0.0997

0.1395

0.1631

0.2244

0.6005

0.8149

0.8539

0.6423

0.2394 0.3928

0.7999

1.0939

1.1801

1.0911

0.8716
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close coupling approximation with exchange included (Burke, Schey, and Smith, 1963). Cross sections in units of naos. ~

io 12 13 Sumb

0.1265

0.0001

0.4481

0.3518

0.0006

O. 0019

0.0002

0.0007

0.0001

0.0003

0.6212

0.4727

(G.0024}

(0.0072)

(0.0012) (0.0006) (0.0003) (0.0001) (0.0001)

(0 0035) {0.0017) (0.0008) {0.0004) {0.0002)

0.6243

0.5558

(0.0124)

(0.0371)

(0.0084) {0.0056) (0.0038) (0.0025)

(0.0251) (0.0169) (0.0113) {0.0075)

0.0016

0.0049

0.0011

0.0033

=0.0007

=0.0023

0.4275

0.6636

{0.0185)

(0.0556)

(0.0154) (0.0127) {0.0104) {0.0084)

(0.0463} (0.0381) (0.0311) {0.0252)

0.0066

0.0199

0.0054

0.0162

D.0044

0.0131

0.2640

0.6076

Spin weighting factors included.

TABLE XXII. Cross sections for the Is~2s, 1s~2p, and 1s~3P excitations of atomic hydrogen calculated according to (a) the
is-2s-2p-3s —3p, (b) the is—2s—2p, and (c) the is-3P close coupling approximations with exchange included at 16.5-eV electron impact
energy (Burke, 1963) . Cross sections in units of m.ao2.

Singlet

triplet

(a) 0.387
(h) 0.0588
{a}0.0042
(b) 0.0051

G.0170
0.0246
0.0663
0.1000

0.0351
0.0645
0.0237
0.0316

0.0132)
0.0232
0.0038
0.0069

(a) 0.227

(b) 0.340

is~3p

Singlet

Triplet

Singlet

Triplet

(a) 0.0368
{b}0.0359
(a} 0.0064
(b) 0.0068

(a} 0.0066
(c) 0.0059
(a) 0.0004
(c} 0.0004

0.0956
0.1105
0.0465
0.0629

0.0276
0.0086
0.0216
O. G209

0.2303
0.3404
0.0525
0.0549

0.0740
0.1376
0.0136
0.0006

0.0036)
0.0863
0.1622
0.1831J

0.0136
0.0468
0.0431
0.0485I

(a) 0.907
{b) 1.094

(a} 0.250
(c) 0.319

~ Spin weighting factors included.
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TAsLE XXIII. Partial cross sections for the is~2s and is—+2p

excitations of atomic hydrogen calculated near the threshold

energy according to the is—2s—2p close coupling approximation
with exchange included (Damburg and Gailitis, 1963). Partial
cross sectior, s in units of ~ao'.

TABLE XXV. Total cross sections for the 2'5~23', 331, 33D,
and 4'D excitations of helium calculated using the 6rst Born
approximation and the modified Bethe approximation
(Moiseiwitsch, 1957). Total cross sections in units of mao .

Q L,Lr+1 Q2 L,L-J
23S~2~P

Impact
energy First Modified

(eV) Born Bethe 2'S—+3'P 2'S—+3'D O'S—+O'D

(0

Singlet( 1

I2

fo

0.01 1.58 {—1) 1.16(—1)
0.03 1.76(—1) l.40{—1)
0.05 1.98 (—1) 1.53 (—1)

0.01 7.8(—2) 1.69(—1) 4.29{—1)
0.03 2.2( —2) 7.9(—2) 2.51(—1)
0 05 1 8(—2) 7 1(—2) 2 28(—1)

0.01 2.65 (—1) 3.9 (—2) 4.20(—1)
0.03 2.44(—1) 4.3 (—2) 3.57 (—1)
0.05 2.38(—1) 4.9(—2) 3.68(—1)

0.01 7.62(—4) 5.40(—4)
0.03 1.12 (—3) 6.64(—4}
0.05 1.45 (—3) 6.59{—4)

1.14
1.22
1.72
2. 18
3.40
4.89
6.66
8.70

13.6
19.6
30.6
54.4
85 ' 0

122

0
173

294
248
202
167
138
101
76
54
34
24
18

79

110
114
112
105
91
77
60
41
30
23

1.08
1.29
1.13
1.07
0.99
0.91
0.78
0.59
0.46
0.37

3.60
6.94
6.34
5.41
3.85
2.81
1.87
1.08
0.70
0.49

1.69
1.73
1.51
1.09
0.80
0.53
0.31
0.20
0.14

Triplet~ 1 0.01 6.47{—2) 1.80(—2) 4.90(—2)
0.03 7.95(—2) 2.83(—2) 4.69(—2}
0.05 8.85 (—2) 3.65 (—2) 4.48(—2}

~ The thresholds for the 2~S~3~P, 33D, and 43D excitations occur at
3.19, 3.25, and 3.92 eV, respective&y.

0.01 2.84(—5) 1.87(—5) 2 ~ 53(—4)
0.03 6.77 {—4) 5.88{—4) 1.71(—3)
0.05 2.50(—3) 2.21(—3) 4.75(—3)

TAm. E XXVI. Total cross sections for the excitation of the
23S state of helium calculated using the Born—Oppenheimer
approximation and the 6rst order exchange approximation {Bell,
Eissa, and Moiseiwitsch, 1966). Total cross sections in units
of &@i) .~

kg„2 is-+2s 1$~2p

0.10

0.03

0.05

0.174

0.174

0.188

0.344

0.283

0.305

TABLE XXIV. Total cross sections for the 1s~2s and is~2P
excitations of atomic hydrogen calculated near the threshold

energy according to the is-2s—2p close coupling approximation
with exchange included (Damburg and Gailitis, 1963). Total
cross sections in units of m.aP.

Impact energy
(rydbergs) BOb

1.44
1.85
2.25
2.56
2. 72

3.24
3.69
4.00
9.00

16.00

9.52(—1}
1.211(0)
8.48 (—1}
6.23 (—1)
5.23(—1)
3.17(—1)
2.08 ( —1)
1.59 (—1)
6.45 (—3)
3.63 (—4)

1.04(—1)
1.43 (—1)
9.79(—2)
6.95 (—2)
5.81 {—2)
3.13 (—2)
1.89(—2)
1.37(—2}
7.35 ( —4)
3,29(—4}

~ The numbers in parentheses denote powers of l o." B.O. =Born-Oppenheimer approximation.
E1 =first-order ezchange approximation.
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TABLE XXIX. Total cross sections for the 1'5—+n I excitations of helium calculated using the Ochkur approximation (Ochkur and

Bratsev, 1965).Total cross sections in units of mao, '

Impact
energy

(eV) 3'I' 4'.P 3'D 5'D

30
35
40
50
60
80

100
150
200
300
400
500

7.3(—2)
9.8(—2)
1.1(—1)
1.3(—1}
1.4(—1)
1.4(—1)
1.3(—1)
1.1{—1)
9-9(—2)
7.9(—2)
6.6(—2}
5.s(—2)

1.5(—2)
2.2(-2)
z.6(—2)
3.2{—2)
3.4(—2)
3,4(—2}
3.3(—2)
2.9(—2)
2.5{—2)
Z. O( —2)
1.7(—2)
1.5(—2)

5.3(—3)
s.z( —3)
1.o(—2)
1.2( —2)
1.3(—Z)

1.4(—2)
1.3(—2)
1.1(—2)
1.o(—2)
8.0(—3)
e.7(—3'j

5.8{—3)

2.5(—3)
4.0(—3)
5.0(—3)
6.2(—3)
6.7(—3)
e.8(—3)
6.6{—3)
5.7(—3)
5.o(—3)
4.0(—3)
3.4{—3)
2.9(—3)

6.3(—4)
s.s{—4)
1.0(—3)
1.1(—3)
1 1(—3)
1.O( —3)
9 0( 4)
6.8(—4)
5.4(—4}
3.8(—4)
2.9(—4)
2.4{—4)

3.0{—4)
4 4(—4)
5.2( —4)
5.8(—4)
5.8{—4)
5.3(—4)

7( 4)
3.6(—4)
2.9(—4)
2.o(—4)
1.6(—4)
1.3(—4)

1.6(—4)
2.4(—4)
2.s(—4)
3.2(—4)
3.2{—4)
3.o(—4)
z.6(—4)
2.o(—4)
1.6(—4)
1.1(—4)
s.6(—5)
7.0(—5)

3.1(—6)
4.3(—6)
4.s(—6)
5.o(—6)
4.8{—6)
4.1(—6)
3.5(—6)
2.5(—6)

1.3(—6)
1.0{—6)
8-1(-7)

3.4(—6)
3.8(—6)
4.0(—6}
3.s(—6)
3.3(—6)
2.8(—6)
z.o(—6)
1.6(—6}
1.1(—6)
s.1{—7)
6 ~ 5(—7)

~ The numbers in parentheses denote powers of 10.

TABLE XXX. Total cross sections for the 2'S—+n3L excitations of helium calculated using the Ochkur approximation (Ochkur and

Sratsev, 1966). Cross sections in units of xgPP

Impact energy
(eV} 3'S 53S 73S 538 10'P

5
6
8

10
15
20
30
40
50
70

100

.".6(o)
3.6(0)
3.6(o)
3.2 {0)
2.S(O)
z. 1(0)
3.7{0)
1.2 {0)
9.o(—1)
7.4( —1)
5.4(—1)
.".s( —1)

3.7 {—1)
5.S(—1)
6.1(—1}
5, S(—1)
5.2{—1)
4.0{—1)
3.2( —1)
2 3(—1)
1.8(—1)
1,4(—1)
1 1{—1)
7.5{—2)

0 ~ 0

1.9(—1)
2. 1{—1)
2 1(—1)
1.9(—1)
1.5(—1)
1.2{—1)
8.7{—2)
6.7(—2)
5.5(—2)
4.0(—2)
2.8(—2)

~ ~ ~

4.5(—2)
5.6(—2)
5.7(—2)
5.3(—2)
4.2(—2)
3.4(—2)
2.4(—2)
1.9(—2)
1.5(—2)
1 1(—2)
7.8(—3)

~ 0 ~

1.2(—2)
1.6(—2}
1.7{—2}
1.6(—2)
1.2(—2)
1.o( —2)
7.2( —3)
5.6(—3)
4.6(—3}
3.3(—3)
2.4(—3)

1 6(0)
1.5 (0)
1.2 (o)
9.8(-1)
9.5(—1)
s.o(—1)
7.s(—1)
7.3(—1)
6.0(—1)
5.5(—1)
4.8{—1)
4.3(—1)

1.8(—1)
3.4(—1)
3 ~ 2(—1)
2 ~ 4(—1)
2.4(—1)
2.3(—1}
2.3(—1)
2.2{—1)
1.9(—1)
1 7(—1)
1.5(—1)
1.3(—1)

~ I ~

1.3(—1)
1.3(—1)
1.O( —1)
1.0(—1)
1.0{—1)
1.0(—1)
9.5(—2)
8.3(—2)
7.7(—2)
6.7(—2)
5.s(—2)

~ o ~

3.3(—2)
3.8(—2)
3, 1{—2)
3.0{—2)
3.1{—2)
3.2(—2)
3.o(—2}
2.7(—2)
2.4{—2)
2. 1(—2)
1.s(—2)

0 0 ~

S.9{—3)
1.2( —2)
9.6(—3)
9.4( —3}
9.9(-3)
1.o(—2)
9.6(—3)
8.5(—3)
7.9(—3)
6.8{—3)
5.9(—3)

Impact energy
(eV) 73D 10'D

5
6
8

10
15
20
30
40
50
70

100

5.7(0)
6.4(0)
6.5 (o)
6.0(0)
5.5 {0)
4.1(o)
3 3{0}
2.3 (o)
1.8{0)
1.5 {0)
1.1(0)
7.6(—1)

6.7(—1)
1 ~ 4(0)
1.5(o)
1.4{0)
1.3{O)
9.S(—1)
7.8{—1)
5.6(—1)
4.3(—1)
3.5(—1)
2.6(—1)
1.s{—1)

~ ~ ~

5.5(—1)
6.0(—1)
5.7(—1)
5.1(—1)
3.9(—1)
3.2(—1)
2, 3(—1)
1.7(—1)
1.4(—1)
i,o(—1)
7 3(—2)

~ ~ ~

1.4(—1)
1.8(—1)
1.7{—1)
1.5(—1)
1.2(—1)
9.4(-2)
6.7(—2)
5.2(—2)
4.2(—2)
3.1(—2)
2 2(—2)

~ ~ ~

4. 1(—2)
5.4( —2)
5.2{—2)
4.7( —2)
3.6(—2)
2.9(—2)
2 1(—2)
1.6(—2)
1.3(—2)
9.6(—3)
6.s(—3)

1.1(—1)
2.4(—1}
2.5(—1)
2.4( —1}
2. 1(—1)
1.6(—1)
1 2(—1)
8.9(-2)
6.6(—2)
5.3(—2)
3.9(—2)
2.8(—2}

~ ~ ~

1.3(—1)
1.4(—1)
1.4{—1)
1.2(—1)
9.1(—2)
7 2(—2)
5.1{—2)
3.8(—2)
3-3{—2)
2 3(—2)
1.6(—2)

~ ~ ~

4. 1(—2)
5.1(—2)
5.1(—2)
4.6(—2)
3.4{—2)
2.7(—2}
1.9(—2)
1 4(—2)
1.2(—2)
s.5 (—3)
6.o(—3)

~ 1 ~

1.3{—2)
1.7(—2)
1.7(—2)
1.6(—2)
1.2(—2)
9.3{—3)
6.5(—3)
5.o(—3)
4.0 {—3)
2.9(—3}

" The numbers in parentheses denote powers of 10.
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TABLE XXXII. Partial and total cross sections for the 1'S—+2'S excitation of helium calculated using the 1'S—2'S—2 S close coupling
approximation (Marriott, 1964) . Cross sections in units of mao .

Impact energy
(eV) 8=0

Partial cross sections Q ~ Total
cross

section

20.000b

20.606

20.010

21.400

21.790

24.580

27.365

1.00(—2)

4.02(-2) 6.86(-2) 2.9S(-5)

7.68(—2) 1.31(—2) 8.16(—5)

s.s2( —2)

7.34(—2) s.27 (—3) 2. 60(—4)

6.56(—3)

1.09 (—1)

8.99(—2)

8.20(—2)

1.14(—2) 4.16(—4) 1.55(—3) 8.06(—5) 1.35(—2)

~ The numbers in parentheses denote powers of 10. Calculated neglecting coupling with the singlet metastable state.

TABLE XXXIII. Partial and total cross sections for the 1'S~z'S excitation of helium calcujated using the 1'S—2'S—2'S close coupling
approximation (Marriott, 1964) . Cross sections in units of map'.

Impact energy
(eV)

Partial cross sections Q ~ Total
cross

sections

20.580

20.606

20.010

21.400

21.790

24.580

27.365

0.00 0.00 0.00 0.00

8.38 (—4) 2.29 (—3) 1.92 (—7)

8.82(—3) 1.72( —2) 1.60(—5)

1.31(—2)

1.39(—2)

S.69(—4)

2.01 (—2) 2 ~ 09 ( —4)

4. 13(—4) 2.57 (—2) 2.58(—3) 1.09(—4)

0.00

3.13(—3)

2.60(—2)

3.4z( —2)

z.ss( —2)

~ The numbers in parentheses denote powers of 10.

TABLE XXXIV. Partial and total cross sections for the superelastic conversion of the 2'S state to the 2'S state of helium calculated

using the 1'S—2'S—2'S—3'S close coupling approximation (Marriott, 1966). Cross sections in units of map .'

Impact energy
(eV)

Partial cross sections Q
'.I otal
cl oss

sections

0.026

0.430

1.210

4.000

6.785

2.20(+1) 1.2s(+2) 6.os( —3)

2.26(+0) 5.31(+1) 6.08(—1)

2.87 (—1) 2.48(+ &) 2.79(+0)

2.54(—2) 1.31(+0) 2.36(+0)

2.08(—1) 1.23(—3) 8.00(—1) 2.61{—1)

1.50(+2)

6.60(+1)

2. 79{+1)
3.70(+0)

1.32{+0)

The numbers in parentheses denote powers of 10.
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TABLE XXXV. Partial and total cross sections for the 1'S~3'P excitation of helium calculated using the 1'S—3'P close coupling ap-
proximation with exchange neglected (Vainshtein and Dolgov, 1959) . Cross sections in units of 10 ' s-ass.

Impact'
energy
{eV) Qlo Q01

Partial cross sectionsb

Q12 Q32

Total
cross

sections

23.342
23.444
23.852
25.484
27. 204
32.012
36.908

4.46(—1)
2.4S (—1)
1.66{—1)
1.32 (—1)
1.O2 (—1)
7.4(—2)-
s.o3(—2)

2.o(—4)
4.3(—3)
2.10(—1}
4.3O( —1)
3.66(—1)
2.98(—1)
2.33(—1)

1 72(—1)
1.52 (0)
3.s2 (o)
2, 72 (o)
2. 12 (O)
1.s2(o)
1.o2 (o)

1.5(—6)
3.s(—6)
1.2(—3)
2.6(—3)
3 2(—3)
2.8(—3)
1.7(—3)

4.6(—s)
s.6(—3)
6.06 (—1)
7.45 (—1)
1.13s (o)
1,286(0)
1.220(0)

~ ~ ~

3.7(—6)
1.2(—5)
i.2(—3)
4.7{—3)
9.78(—3)
1.39(—2}

O. 649
1.808
4.503
4.031
3.731
3.191
2.539

~ Threshold energy is 23.308 eV. The numbers in parentheses denote powers of 10.

TABLE XXXVI. Total cross sections for the double excitation of helium calculated using the first Born approximation (Massey and
Mohr, 1935). Total cross sections in units of mao .'

Impact energy
(ev) (2s)' 'S (2s2p) 'P (2s3P)'I' (2s4p) 'E' (3s2p)~r

75
100
200
300
40O

600

i.1(—S)
1.7(—5)
2.4(—5)
2.8(—s)
3.0(—5)
3.2(—s)

6.8(—4)
9.5(—4)
9.6(—4)
8.2(—4)
'l. 3(—4)
6.o(—4)

3.3(—s)
5.2(—5)
6.8(—s)
6.2(—5)
5.3(—5)
4 ~ 4(—5)

2.o(—s)
3 5(—5)
4.s(—s)
4.5(—5)
4.0(—5)
3.4(—s)

1.s(—4)
3.5(—4)
5.3{—4)
s.8(—4)
5.4(—4)
s.o(—4)

~ The numbers in parentheses denote powers of 10.

TABLE XXXVII. Total cross sections for the resonance transi-
tions of the alkali atoms calculated using the first Born approxima-
tion {Vainshtein, Opykhtin, and Presnyakov, 1964b). Total
cross sections in units of xa02.

TABLE XXXVIII. Partial cross sections for the 3s—+3p transi-
tion of sodium calculated using the 3s—3p close coupling approxi-
mation with exchange neglected. (Barnes, Lane, and Lin, 1965).
Partial cross sections Q& in units of m.a02.

Impact
energy e

in threshold
units

Cs

2s~2p 3s~3p 4s~4P Ss—+5p 6s—+6P

1.02
1.04
1.08
1.16
1.32
1.64
2.28
3.56
6.12

11.24
21.48
41.96

41.4
57.1

77. 1

99.8
120
131
124
103
75.3
50.1

31.2
18.6

30.7

42. 6
57 ' 8
75.6
93.2

104
103
88.4
66.6
45.4
28. 7
17.3

54. 7

75. 7

103
135
166
187
186
159
120
82. 1

52.0
31.4

58.5
81.1

110
146
180
203
202
176
133
91.3
58.0
35.1

75.0
104
141
186
230
260
260
226
172
117
74. 6
45. 2

~ Revised according to private communication from Professor Vainshtein
(19a6).

Impact energy
(ev)

0

2

3
4
5
6
7

8
9

1.0
11
12
13
14
15

0.01
0.87

15.96
12.31
7.94
4.58
2.48
1.30

0.72
1.66
6.02

10.06
9.52
7.90
6.13
4.59
3.37
2.45

0.94 0.54 0.33
1.49 0.65 0.31
2.62 0.99 0.52
6.22 2.44 1.16
7.16 3.72 2.03
6.82 4.23 2.63
5.98 4.21 2.88
5.01 3.92 2.88
4.11 3.53 2.74
3.33 3.12 2 ' 53
2.68 2.73 2.30
2. 15 2.39 2.08
1.73 2.08 1.88

1.81 1.69
1.57 1.52

1.37

4.210 7.364 10.520 16.832 23.144
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TATE XXXIX. Total cross sections for the 3s~3p transition of sodium calculated using the 3s—3p close coupling approximation
vrith exchange neglected (Barnes, Lane, and Lin, 1965) .

Impact energy
(ev)

Total cross
sections in units

of maP

Total cross
Impact energy sections in units

(eV) of z'Qp~

4.210
7.364

10.520

46.8
58.7
57.2

16.832
23. 144

48.9
42. 1

TABLE XL. Total cross sections for the 6s~6p resonance transition of cesium calculated using the modified Bethe approximation
(Hansen, 1964). Total cross sections in units of naP.

Impact energy
(eV)

Impact energy
(eV)

1.60
.l. 74

89
2.03
2. 18
2.90

41,56
48.84
61.27
66.33
70.16
91.54

5.03
7.25

11.60
15.95
23.20
30.45

114.3
118.7
114.6
1.06.2

92.60
81.66

TABLE XLI. Total excitation cross sections for nonresonance transitions of lithium calculated using the erst Born approximation
(Vainshtein, Opykhtin, and Presnyakov, 1964a).' Total cross sections in units of vraP b

Impact energy e

in threshold units 2$~3p Zs~4p Zs—+5p 2s~3s 2s—&4s Zs~5s 25~34 2s—+4d 2s—&5d

1,02 9 67 (—1) 2 24( —1) 8 95 ( —2) 1. . 21(0) 2. 13 ( —1) 7 81 (—2) 1.38(0) 409( 1) 1 79( 1)

1.30(0) 301(—1) 1.20( —1) 1 66(0) 291 ( —1) 1.07 ( —1) ] .90({)) 5 6)2( —1) 2 45( 1)

1.08 1.68(0) 3.84(—1) 1.52 (—1) 2. 21 (0) 3.86(—1) 1.41(—1) 2. 56) (0) 7, 50(—1) 3.26)( —1)

1.32

2.01(0) 4.49(—1) 1.76(—1) 2. 79(0) 4.84( —1) 1.76(—1) 3.31(0) 9.53(—1) 4. 10(—1)

2. 1.1(0) 4.67 (—1) 1. . 77 ( —1) 3, 25 (0) 5.55(—1) 2.01 (—1.) 3.96)(0) 1.11 (0) 4. 73(—1')

1.87(0) 3.91(—1) 1.50( —1) 3, 33(0) 5.58(—1) Z. 00(—1) 4. 19(0) 1.14(0) 4. 78(—1)

2.28 1.39(0) 2.84(—1) 1. . 09(—1) 2.90(0) 4. 76(—1.) 1.60( —1) 3.77 (0) 9.86(—1) 4.08(—1)

3,56 891 (—1) 1. , 84(—1) 7 21(—2) 2, 12(0) 342(—1) 1 21 {—1) 2 82(0) 7. 16(—1) 2. 93 ( —1)

6.12

11,24

21.48

41.96

5.20(—1) 1.13(—1) 4.54( —2) 1,34(0) 2. 13 (—1) 7.50(—2) 1. .81 (0) 4.50(—1) 1.82 ' —1)

288(—1) 667(—2) 2 78(—2) 7 68(0) 1,20(—1) 4 23 (—2) 104(0) 2 56(—1) 1,03(—1)

1.55(—1) 3.85(—2) 1.65(—2) 4. 12(0) 6.43(—2) 2.25( —2) 5.62(—1) 1.37(—1) 5.50(—2)

8.23 (—2) 2. 19(—2) 9.63 ( —3) 2. 14(0) 3.32 (—2) 1.16(—2) 2.92(—1) 7.08(—2) 2.85 (—2)

Revised according to private communication from Professor Vainshtein (1966). " The numbers in parentheses denote powers of 10.



B. L. iVIOIsKIWITSCH AND S. J. SMnH E/ectron Impact Excitation of Atoms 34i

Wl

I

QQ

0
Cd

cd

~ W

A

O

~ W

0
~ W

Cd

E'
~ M

0

Cd

0

~ W

8
4)

V
Cd

Ef

0

0

0
~ Vi

~ H

V

0

0

0

0
~ W

V

V

0
~ H

~ A
V

0

III
~ ~

~ IH

0
~ ~
V

III

0

~ W

g
bQ

V
0

o 8
8

I

l~

I /)

CD

OQ

CD

[»

I/)
QQ

C~

CD

l»
VD

4

h1

CD

CD

lE)

CD

l~

CD
vD

QO
IE)

OO

0

If)

CD

CD

CD

I/)

CD

OO
I/)

CD

I

CD

It)

I

OO

l»

I

l»

QQ

CD

CD

I

(V)

QO

o

OO

I

C~

OQ

CD

o
0
!n

0
4J

0
4J

Q
A

OJ

Cd

rn

E

Q
A

C4

E0

0
~ W

Cd
V

E
60
0
Cd

~ W

0
b4

V

"0
~&

0
Cd

Cd

~ pk

Q
~ ~

~ W

0
~ M

~ pk

0
8
Cd

0

~ M

V

V
cd
V

~ A

0

0
rA

0
~ ~
~ ~

U3

cd

(Ll
V

Cd

0
!II

0

0
V
!A
03

0
V

0
Cd

~ W
V

0

M

I-I

~ W

~ M
t6

0
~ W

V
th

0

~ ~

bQ

&g 0
U!

cd
C4 ~
8

l»

I

I+

I

CD
CD

I

I/)

QQ

l»

OO

I/)

Ch
CD

CD

t»
OQ

I I I

QO

QO

QQ

I I I

CD CD

l» Q QO

I P)

l»

CD

CD CD

lg) I E)

I

OQ

OQ

I

OO
QQ

CD
Ch

uD

OO
CD

OQ

I

OO

QO
I/)

I

l»

0

CP

0

0
LJ

'U

Cd

CP

E

Q

&D

I.i0
~A

E

0
~ W

V

E
20
V
Q
Cd

0

0
V
V
Cd

~ &



342 REvIEAvs oI" MQDERN PHYsIcs APRIL 1968

TAI;LE XI.IV. Total excitation cross sections for nonresonance transitions of rubidium calculated using the first Born approximation
(Vainshtein, Opykhtin, and Presnyakov, 1964a).' Total cross sections in units of wag b

Impact
energy ~ in

threshold.

units 5s—+6p 5s—+7p 5s—+8p 5s—+6s 5$~7s 5s~8s 5s—+4d 5s—+5d 5s—+7d

1.02 2.47{0) 6.48(—1) 2. 79(—1) 1.81(0) 2, 78(—1) 1,06(—1) 1.04(1) 124(P) 3 38(—1) 123( 1)

1.04 3.37(0) 8.84( —1) 3.80{—1) 2.51(0) 3.85(—1) 1,47( —1) 1.43(1) 1 67(0) 4 65{—1) 1 66(—1)

1.08 4.47(0) 1.17(0) 5.01(—1) 3.38(0) 5.22( —1) 1.99(—1) 1,88(1) 2. 15(0) 5.83(—1) 2, 12(—1)

1.16 5.62 (0) 1.46(0) 6.23 (—1) 4.38(0) 6.81 ( —1) 2, 58 ( —1) 2.35 (1) 2.58(0) 6.89(—1) 2.61 (—1)

1.32 6.47(0) 1.67(0) 7.08(—1) 5.27(0) 8. 25( —1) 3.12(—1) 2.66(1) 2. 71(0) 7. 11(—1) 2.60(—1)

1.64 6.68(0) 1.68(0) 7.06(—1) 5.64(0) 8.81 (—1) 3.31 ( —1) 2.62 (1) 2.42 (0) 6.18(—1) 2.27 ( —1)

2, 28 5.73(0) 1.44(0) 6.00(—1) 5.10(0) 7.88( —1) 2.92(—1) 2, 18(1) 1.81(0) 4.62( —1) 1.38(—1)

3 56 4 26(0) 1.05 (0) 4 33 ( —1) 3 84(0) 5 83(—1) 2 14(—1) 1.54(1) 1.17 (0) 2 91 (—1) 1.10(—1)

6 12 2 77(0) 6 76( 1) 2 7—5(—1) 2 47(0) 3 69(—1) 135(—1) 9 52(0) 6 84{—1) 1 79{—1) 6 68(—2)

11.24 1.65(0) 3.98(—1) ) . 50(—1) 1.42(0) 2. 10(—1) 7.67 (—2) 5, 36(0) 3.72( —1) 9.29(—2) 3.66(—2)

21.48 9.29(—1) 2.22( —1} 8.86(—2) 7.66(—1) 1.13(—1) 4. 10(—2) 2.86{0) 1,95(—1) 4.88( —2) 1.93(—2)

41.96 5.08(—1) 1.20(—1) 4.47(—2) 3.98(—1) 5.85(—2) 2. 12(—2) 1.48(0) 9.98(—2) 2.50(—2) 9.97 (—3)

" Revised according to private communication from Professor Vainshtein (1966). " The numbers in parentheses denote powers of 10.

TABLE XI.&. Total excitation cross sections for nonresonance transitions of cesium calculated using the first Born approximation
{Vainshtein, Opykhtin, and Presnyakov, 1964a) .' Total cross sections in units of xaP.b

Impact
energy ~ in
threshold

ulllts 6s—+9p 6s-+7s 6s~8s 6s—+9s 6s~5d 6s—+6d 6s—+7d 6s—+8d

1,02 2.88(0) 7, 64(—1) 3.26{—1) 1.83 (0) 2.93 (—1) 1.02 ( —1) 1.62 (1) 3.44( —1) 2. 76(—2) 2. 18(—2)

1.04 3.95(0) 1.04(0) 4.44( —1) 2. 54(0) 4 08(—1) 1.43( —1) 2. 21(1) 4. 78(—1) 4. 83(—2) 3.38(—2)

1,P8 5.25(0) 1.38(0) 5.84( —1) 3.46(0) 5.60(—1) 1.98(—1) 2.92(1) 6.53(—1) 8.98(—2) 5.46( —2)

1.16 6.66(0) 1.74(0) 7.25( —l) 4.54(0) 7.43{—1) 2, 64( —1) 3.64(1) 8.53(—1) 1.64( —1) 8.74( —2)

1.32 7.78(0) 2.00(0) 8.20( —1) 5.57(0) 9.21(—1) 3.29(—1) 4.09(1) 1.01 (0) 2. 67(—1) 1.28(—1)

1,64 8.04(0) 2.03 (0) 8. 13(—1) 6.09(0) 1.01 (0) 3.59 ( —1) 3.97 (1) 1.04(0) 3, 54( —1) 1.58 ( —1)

2, 28 7. 12 (0) 1.75(0) 6.84( —1) 5.61(0) 9, 13(—1) 3.24( —1) 3.22 (1) 9.12(—1) 3, 70( —1) 1,57 ( —1)

3.56 5.36(0) 1.28(0) 4.88{—1) 4, 27 (0) 6.81 ( —1) 2.40( —1) 2.22(1) 6.89(—1) 3.08(—1) 1.28(—1)

3.53(0) 8.24( —1) 3.06(—1) 2. 76(0) 4.34(—1) 1.52( —1) 1.35(1) 4.55(—1) 2. 11(—1) 8.69(—2)

11 . 24 2. 12 (0) 4.84( —1) 1.76(—1) 1.60(0) 2.48( —1) 8.69(—2) 7.52(0) 2.68( —1) 1,26( —1) 5.17 (—2)

21.48 1.21(0) 2.70(—1) 9.65(—2) 8.62( —1) 1.33(—1) 4.69(—2) 3.98(0) 1.47( —1) 6.93(—2) 2.83(—2)

41.96 6.66(—1) 1.46{—1) 5.14(—2) 4.49(—1) 6.92(—2) 2.41(—2) 2.05(0} 7.70( —2) 3.64( —2) 1.48(—2)

Revised according to private communication from Professor Vainshtein (1966), The numbers in parentheses denote powers of &0,
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TABLE XLVI, Collision strengths for the 'I'~'D excitation of

oxygen calculated for kP=0.3 (Seaton, 1953a) .

Approximation B&(1,2) N'(2, 1) 0&(1, 2)

TAB&,E XLVIII. Deactivation coeScients for atomic oxygen
and nitrogen (Seaton, 1955b; 1956) . Deactivation coefficients for
0 and N (o„„~ in units of cms sec ') .

I
II
III
IV

0.48

0.81

0.98

1.06

0.48

0.62

0.88

0.90

0.48

0.71

0.93

0.98

Electron
tempera- 0

ture
T 109agg 1090.3g 1090.3g 10'a21 1090.3y 109nsg

5 X 102

TABLE XI VII. Collision strengths for transitions connecting 1 X 10'
the ~I', 'D, and '5 terms of the lowest configuration of atomic
oxygen (Seaton, 1955b; 1956).

1.6 1.2 0.6

5.0 3, 5 1,9

0.9 0.8 0.4 0, 5 0, 4

0.8 0.6

2.6 1.8

0.9

k„2

(a.u. )

0.000

0.025

0.050

0.075

0.100

0.150

0.163

r&(1, 2)
(s=2)

0.00

0.15

0.53

0.69

0.97

1.04

&r(1, 3)
(n=3)

0.000

0.017

0.050

0.075

0.100

0.144

n(2, 3)
(n=3)

0.000

0.009

0.024

0.040

0.057

0.088

1X10'

5x104

1X10~

6.7 5.1 3.0

7.6 7 ' 2 5.6

6.8 6 ' 6 6.0

3, 5 2.7

4, 0 3.7

6.9

13

TABLE xLIx. Effective Kramers Gaunt factor g for the is~2P
excitation of hydrogenic ions (Burgess, 1961).

0.2

0.5

0.6
0.7

1.0

To obtain N collision

strengths multiply
0 strengths by

F 06

1.20

1.32

1.53

1.67

1.73

1.77

25/24

0.180

0.238

0.278

0.305

0.324

0.335

0, 344

0.349

0.353

25/8

0.118

0, 167

0, 208

0.240

0.269

0.295

0.316

0, 336

0.354

225/16

Impact energy e

in threshold units

16/3

0.155

0.21

0.37

0.45

0.53

0.21

0.25

0.54
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TABLE LII. Zero-order partial cross sections for the 1$—+2$ and 1$—+2p excitations of He+ calculated using (a) the 1$—2$-2p and
(b) the 1s—2s—2P—3s—3p close coupling approximations at 68 eV (Burke, McVicker, and Smith, 1964a) .

Transition
Cross sections in units of

m'Cp Transition
Cross sections in units of

maP

1$~2$ Singlet (a) 0.00306

(b) 0.00273

1$~2p Singlet (a) 0.00421

(b) 0.00409

Triplet (a) 0.00035

(b) 0.00032

Triplet (a) 0.00073

(b) 0.00071

TABLE LIII. Positions of the autoionizing levels of helium relative to the ground state of helium calculated using the 1$-2$—2p
close coupling approximation (Burke, McVicker, and Smith, 1964b) and obtained experimentally (Madden and Codling, 1963);
Simpson, Mielczarek, and Cooper, 1964) . Positions of the autoionizing levels of helium relative to the ground state of helium given in eV.

No exchange Singlet Triplet

Theory Theory Experiment Theory Experiment

58.151 57.860 57.9b no resonance calculated

62.850 62.916

64. 139

64.653

64. 179

64.673

58.658 58.352 58.5b

63.003 63.132

64. 199 64.247

64.682 64. 701

60.908 60.257 60.12.

63.626 63.683 63.65.

64.444

64.801 64.817 64.81.

Madden and Codling, 1963. " Simpson, Mielczarek, and Cooper, 1964.
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TABLE LV. Total excitation cross sections for transitions of N'+ calculated using the Coulomb-Born approximation (Burke, Tait,
and Lewis, 1966). Cross sections in units of mug.

Incident electron
energy (rydbergs) ' 2s—+2p 2s—+3s 2s—+3p 2s~3d 2p—+3s 2p—+3p 2p—+3d 3s-+3p 3s—+3d 3p-+3d

1.0
1.44
2.25
4.0
4.5455
5.0
6.0
8,0

12
16
24
32

3.87
2.80
1.92
1.20

1.01
0.87
0.69
0.50
0.42
0.29
0.23

0.0304
0.0257
0.0197
0.0134
0.0101
0.0068
0.0051

0.0097
0.0104
0,0112
0.0114
0.0110
0.0099
0.0089

0.0519
0.0462
0.0381
0.0286
0.0230
0.0164
0.0128

0.00316
0.00318
0,00311
0.00287
0.00263
0.00224
0.00196

0.0657
0.0551
0.0420
0.0287
0.0220
0.0150
0.0114

0.190
0.172
0.148
0.120
0.104
0.084
0.071

31.5
17.0
9.4
5.23
3.51
2.12
1.65

2.73
1.25
0.592
0.283
0.185
0.106
0.072

76
36.4
15.4
9.17
4. 19
2.35
1.35
0.94

~ The incident electron energy is given relative to the (ls)~ 2s ground state.

TA&LE I VI. Tota] excitation cross sections for the 4s—+4p, 3d—+4p, and 4s-+3d transitions of Ca+ calculated using the Coulomb —Born
approximation and the unitarized Coulomb —Born approximation (Van Regemorter, 1960a; 1961). Total cross sections in units of map&

4s~4p& 3d~4pa

kP
Coulomb —Born
Vnitarized Coulomb-

Born

0
126.5
58.2

0. 1,

99.7

52.0

0
94.6
58.3

0.1

47. 1

31.5

0.1062
17.35
10.8

0.2062
16.38
10.2

Van Regemorter, 1960a. Van Regemorter, 1961.

TA&LE LVII. Collision strengths for the excitation of forbidden TABLE LVIII. Values of the constants G, hp, h&, h2 occurring

transitions between the terms of the lowest p', ps, and p' con- in the polarization formulas for the helium lines LSJ—+J"
6gurations of certain positive ions (Seaton, 1953b; 1955b 1956).' (Percival and Seaton, 1958).

Configuration

2P'

3P3

Ion

02+

Ne4+

0+

Ne'+

Ne'+

2.39

1.73

1.Z1

0.84

1.44

1.00

O. N

0.95

0.76

0.61

2.02

0.223

0.195

0.17Z

0.157

0.218

O. ZZ1

O. Z34

O. Z55

0.057

0.077

0.09Z

0.11Z

0.383

0.46

0.61

0.5h'

0.53

1.92

3,11

3.51

0.17

0.27

0.30

12.7

SLJ

011

022

110

112

121

122

123

1
—1

1

3
—3

3

—1

1
—1

21
—7

1

3
—3

3

3
—3

3

18
—9

3

hp

1

1

7

5
3

15

1

3
13

47
11

7

5
7

41

9
7

29

41
11
15

1
3

13

9
7

29

3
5

27

73
29
13

15
81

17
15
57

76
25
29

6
10
26

6
18
78

14
18
54

58
34
26

~ Values in italics were estimated by interpo&ation and extrapolation.
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TABLE LIX. Values of the constants G, ho, h&, h2 occurring in TABLE LXII. Threshold percentage polarization for resonance
the polarization formulas for the helium multiplets LS~L"S lines of lithium and sodium.
(Percival and Seaton, 1958).

SL L" Ion Calculated~ Measuredb

01

02
29

6
26

6Lj

7L1

37.5

21.6

14.1

39.7&3.8

20.6&3.0

14.8W1.8

15
3

41
73

67
143

Flower and Seaton, 1967.
Hafner, Kleinpoppen, and Kruger, 196S.

213
213

671
2171

1271 1058
4271 4058

TABLE LX. Values of the constants G, ho, h~ occurring in the
polarization formula for the 'Pq~q~S transition (Percival and
Seaton, 1958).

TABLE LXIII. Percentage polarization of the 2p—+is multiplet
of atomic hydrogen calculated using the is-2s—2p close coupling
approximation is~2p excitation cross sections.

P(%%uo)

3
15
33
81

5
37

161
427

7
59

289
773

TABLE LXI. Values of the constants G, ho, h~ occurring in the
polarization formula for the ~P~'S multiplet (Percival and
Seaton, 1958) .

0.01.

0 03a

0 05s

0.06b

0.25b

0.46b

0.69b

i.50b

17.3

15.7

16.7

20.9

28.35

27.99

26.67

18.00
3

15
33
27

7

53
236
209

11
91

439
391

3.25b

Damburg and Gailitls, 1963.
Burke, Schey, and Smith, 1963.

8.55
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TABLE LXIV. Measured Absolute Values of Helium Excitation Cross Sections.

(a) Helium n'P~2'5

Branching'
ratio

8 (e—+2)
Q(n~2)

(1C 'cm')

Q(n'P)
=Q (n~2) /B (n~2)

(10-oo emo)

Electron
energy

(eV) Reference Comments

4'8

6'P

7'P

0.0231

0.0281

0.0283

0.032

17.4

1.5

8.5

3.9

2.3

150
457
350
750
260
290

53
210
159
300
89.2

114.5

84
140
45.2
58.1

39
72

~30

90-110
108
100
100-110
100
100

100-120
108
100
100-120
100
100

108
100-120
100
100

108
100-120

100-120

cfg
fk

adegi
adgl
ahjl

Theoretical, m

cfg
fk

bdegi
Rd gl
ah j l

Theoretical, m

fk
Rd gl
ah j l

Theoretical, m

fk
Rdgl
Rdgl

(b) Helium n'S—+2'E

n'S

Branching
ratio

a (~ 2)
g(~

(10—20 cm2)

g(n S)
=Q(n-+2) /B (n~2)

(10~' cm')

Electron
energyq

(eV)

Q(n'8)
Translated'
to 100 eV

(10-oo cmo) Reference Comments

3'S

4'S

aiS

O'S

71S

8'S

1.0

0.59

0.471

0.43

0.43

0.43

12

15.1

3.75

2.6

1.5

36
49

131.4

20
16.5
24
25.4

8.0
7.0
9.2

12.3

4.0
4.8
6 ' 0

108
40
32-33

33
108
43
33

33
108
45
33-34

108
45
35-37

35-38

33-36

36.84
31.9

22.3
46. 125

15.25
16.88
15.58
15.41
7.67

17.81

5.21
7.16
6.37

3.64
8.78

4.09
3.14

1.98
4.93

2.95

2.24

bk
bg
bg
bh

Theoretical, m

bg
bk
bg
bg

bh
Theoretical, m

bg
bk
bg
bg
bh

Theoretical, m

bk
bg
bg
bh

Theoretical, rn

bg
Theoretical, m

bg
Theoretical, m
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TABLE LXlV (Continued)

(c) Helium n'D-+2'P

Branching
ratio Q (n —+2)

B(n~2) (1M' cm')

Q(n'D)
=Q(n~2) /B (n~2)

(10~o cm')

Electron
energ~
(e~)

q(n~D)
Translated'
to 100 eV
(10 cm') Reference Comments

3'D

O'D

6'D

7'D

8'D

1.0

0.74

0.652

0.617

~0.617

0.617

26.7

7.9

3.0

5.3

3.0

1.6

25
42

119.2

17.6
12
17.6
36.0

8.5
7.1
9.0

12.1

4.9
3.0
4.7
8.6

1.8

1.4
~2 5

108
46
44-46

40-45
108
53
42-45

44-48
108
53
40-45

42-46
108
53
40—45

108
42-45

108
41&6

26.94
24.09

14.2
7.92

11.88
12.93
13.16
27.22
6.75
4.13
5.70
7.65
6.73

3.80
2. 29
2.99
3.24
3.53

2.00
1.94

1.51

s'
s

fk
degin

dg 1

h j l

Theoretical, m

degin
fk

dg1
dgl
hjl

Theoretical, m

degin
fk

dg1
dgl
hj 1

Theoretical, m

degin
fk

dgl
dg 1

h j 1

fk
dgl

fk
dg 1

(d) Helium n~s~2~P

n'S

3~S

4'S

5'S

7'S

Branching
ratio

B(n~2)

1.0

0.62

0.477

0.454

g(n
(10~o cm')

15
21.9

22.0

6.1
8.2

8.0

3.2
3.7
1.4

1.3

g(n~S)
=g(n 2) ya(n 2)

(10-» cd)
15

107
130.1

24
35
4.4

35
35

12.8
17.2
1.44

12.3
17.0

7.1
8.2
31
1.06
2.9

Electron
energ~

(eV)

108
35
26.5

26.5
30

108
35
27

27
30

108
35
28

30
29
30

108
29

Q(n'S)
Translated'
tn 100 eV
(10-» cm~)

14.68
11.06

3.24
65.98
2.51

4.31
3.6
4.95
1.51
2.46
0.99

1.41
1.27

0.451
1.23

1.04

Reference

s

ll

s
t
U

W

Comments

g

g
h

Theoretical, m

gn
gn

k

g
g
h

Theoretical, m

gn
gn

k
g
g
h

Theoretical, m

gn
g

gn
k
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TABLE LXIV (Conifnned)

(e) Helium nIP~23S

nIP

Branching
ratio Q (n-+2)

B(n~2) (10 20 cm')

Q(n'P)
=Q (n~2) /B (n-+2)

(10-2o cm2)

Electron
en erg~

(eV)

Q(n'P)
Translated'
to 100 eV
(10 "cm') Reference Comments

2'P
3sP

43P

1.0
0.898

0.779

0.686

2510
75
95

10.3

84
106
11
97

135

13

10

2
0.75

27
28
32

108
37
28

32
108
29

108
30

11.21

13.41
17.13
33.81
5.01
4.84

4.88

1.74
2.02
2.44

0.987
1.06

t
ll

W

W

y

dg 1

degln
degin

fk
dgl
dg1
hjl

Theoretical, m
degln

fk
dg 1

hjl
Theoretical, m

fk
dg1
hjl

Theoretical, m

(f) Helium yPD &23P—

AD

33D

4'D

63D

7'D

83D

Branching
ratio

B(n-+2)

1.0

0.7i.3

0.657

g(n 2)
(10-2oc ~)

9.8

11.6

6.1

3.7

1.7
0.8

Q(n'D)
= Q(n-+2) /B (n~2)

(10 "cm')
36
25
31
35

12.4
4.6

12.0
14.7

8.6
3.0
6.2
9.0

1.5
3.9
5.6
0.7

0.01

Electron
energy~

(eV)

26
108
35
27

27
108
35
27.5

30-32
108
38
29.0

108
35
29.0

108
29-30
29-30

Q(~3D)
Translated'
to 100 eV
(10 2o cm~}

9.04
28.35
4.55

1.61
0.11
2.58
5.22
1 .74
5.44
0.471
0.063
3.78
3.41
0.92

0.037
1.70
0.56

0.80

Reference

V

s

s'
S

W

Comments

degin
fk

dgl
dgl
hj1

Theoretical, m

degin
fk

dgl
dg l

hj1
Theoretical, m

degin
fk

dg1
dg 1

Theoretical, m
fk

dg l

dgl
fk

dgl
dg 1

~ Possible error due to imprisonment of resonance radiation.
Substantial error due to imprisonment of resonance radiation.' Complete imprisonment of resonance radiation." Possible large instrumental polarization error.
Some pressure depolarization l ikely.
Essentially complete pressure depolarization.

g' Uncorrected for cascading." Correction for cascading applied by author.
. Uncorrected for polarization.
' Correction for polarization applied by author.
"Extrapolated to zero pressure from data taken at several pressures

ranging from about 0.01 to 0.1 torr.
1 Correction for instrumental polarization applied by author.

Theoretical values do not include cascading contributions.
Possible error due to excitation transfer.
Branching ratios calculated from Wiese, Smith, and Glennon (1966).

~ Values presented in boldface are numbers which appear in the original
Publication.

~ These are the energies at, which the maximum excitation was observed
except for the data (Ref. 3) of Gabriel and Heddle for which observations
were made at 108 eV.

~ Data of Gabriel and Heddle (1960) was translated from 108 to 100 eV
using the excitation function from the appropriate series as measured
by Heddle and Lucas (1963). Since the translation amounted to 8 eV a
negligible error is introduced. Other translations were based on curves
presented in the same papers as the original absolute values.

~ Yakhontova (1959, 1960).
~ Stewart and Gabathuler (1959)."Gabriel and Heddle (1960)."St. John, Miller, and Lin (1964); Miller (1964).~ Zapesochnyi and Feltsan (1965).* Moustafa Moussa (1967)."Ochkur and Bratsev (1965b).' Fox (1965).
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TABLE LXV. Absolute values for excitation of sodium lines.

Transition
~exe

(volts)
Ea:
(eV) Ref. b

Q „X10's (cm')

Ref. c Ref. d

3'S-3~P

3'S-O'P

3'S—PP

3'P-42S

3'P—52S

32P-62S

3'P-72$

3'P-8~S

3~P-92S

3~P—10~S

3'P-32D

3'P-O'D

3'P-5'D

32P-6~D

3'P-7'D

3~P-8~D

3~P-9~D

3~P—10'D

32P—112D

5890-5896

3302-3303

2852.8-2853

11 131-11404

6154-6161

5149-5154

4748-4751

4541-4546

4420-O423

4343

8183-8194

5683-5688

4979-4983

4664—~669

4494-4498

4390-4393

4321-4324

4273-4276

4239-4241

2. 1

3.75

4.34

3.19

4. 12

4.51

4.71

4.88

4 ' 94

3.62

4.28

4.57

4.74

4.84

4.90

4.95

4.98

5.0

10-13

6.5

7.0

5.3(P)

6.2

6.4

6.5

6.8

6.9

7—9

7—10

9—13

9-14

9—14

9—14

9-14

2180

20.6

0.16

90

20 ' 2

6.1

1.3

0.70

0.37

0.18

459

34.8

12.2

5.0

1.9

1.00

0.47

0.28

0.21

(4800)

12.2

3.4

2.3

1.3

Note: Vssxe(volts) —excitation potential; B~»(eV)—location of the
maximum of the excitation function.

Zapesochnyi and Shimon (1965).

' Christoph (1935).
~ Volkova (1961).

TABLE LXVI. Absolute excitation functions of the resonance jines of potassium, rubidium, and cesium; and of the resonance levels,
obtained by summing doublets and applying a correction for cascading (Zapesochnyi and Shimon, 1966) .

Q „X10"(cms)

Atom Transition EN&o (eV) Eimsx(eV) of lines
of resonance

levels

4%n~'Pan, en 7699-7665 1.61-1.62 12-16 6.8 6.3

Rb
5 S1/2-5 P1/2

52' n-5'Pgn

7948

7800

1.56

1.59
9-14

1.56

3.3
~4 5

CSe

6'Sgn-6'P) n

6'Rn-6'Pan

8944

8521

1.39

1.45
6—10

3.27
«9.3


