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Collapse Time for the Bohm-Bttb Hidden
Variable Theory
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Introdlction. In a recent paper by Bohm and Bub'
deterministic equations of motion describing the
collapse of the wave packet in a nonrelativistic theory,
involving hidden variables, were put forth in order to
show that such a theory could logically exist. '' This
concern of theirs —the possible existence of a hidden
variable theory —has been the subject of many recent
papers. The reader may refer to the literature for the
arguments for and against the existence of such a
theory. It does not seem that the construction given
by Bohm and Bub is ruled out by the nonexistence
proofs of J. von Neumann or Jauch and Piron. Exactly
how the proofs which use the abstract logic of quantum
mechanics relate to the Bohm-Bub theory is difBcult
to see for several reasons. Membership in the question
system is hard to decide and this point is critical with
respect to claims of circularity in Jauch and Piron's
arguments. The concept of a logical model admitting
hidden variables is defined without the hidden variables
themselves being defined. Hence it is not clear that the
various authors are referring to the same things when
they use such terms as "hidden variables" and "theory
with hidden variables. "Though the collapse equations
given by Bohm and Bub are coupled, nonlinear, differ-
ential equations, they can be solved for a collapse time
in the two-dimensional case (and also in the I-dimen-
sional case, if appropriate initial conditions are chosen)
by making use of the normalization condition on tt.
Having found the collapse time (call it r.), it can be
compared with the ht given by the time —energy un-
certainty relation (Atd E&5/2) . If r, (Dt, the hidden
variables must remain hidden or else we have a contra-
diction with ordinary quantum mechanics. On the
other hand, if 7.,&ht, one may be able to devise experi-
ments which detect the hidden variables.
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FiG. 2. Cross section of the surface given by the log factor
at the dotted line in Fig. j..

CollaPse time vs randomization time. In the paper by
Bohm and Bube an ad hoc randomization time of h/kT
for the hidden variables is suggested. An experiment on
the polarization of light by Papaliolioss sho~ed t»s
estimate to be too large by a factor of at least 75. Since
the collapse time is connected to the Bohm —Bub theory
in a fundamental way and the randomization time is
not, the outcome of the experiment is of little sig-
nihcance. The relationship of a thermodynamical
variable such as T to a system of subquantal variables
is dificult to envision.

Solution of the collapse equutiorss. Let R;= 1$; I
'/

n

+I'll, I

v=1 at t=o.
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Suppose g I t; I
'= 1 for all t.

1

Consider the following systems of equations:
(a)

n e n
—=sf'g A(Rc RA) ——gK—~PA;

(b)

dJ'
=2y J;Q JA(R, RA)—

dE'
dt

= 2yR;Q I te I
'RA(R; —RP).

Equation (c) is the Bohm —Bub collapse equation where
the $I, 's are the complex hidden variables. y and the
I te I

"s are assumed to be constant in time —or at least
while the differential equations are operative.

Jemmu 1: (a)m(b)m(c)m+ I P; I

'=1 for all t
1

Proof: Using system (a), the fact that

Fro. 1. Domain of the log factor.
is independent of position and that the measured
quantity is conserved (i.e., H is diagonal and Hermitian
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in the appropriate representation), one sees that

dJ; if
PyP;*d'x,

dI, dt

both are continuous in the R s. Now suppose
~

P;
~

'WO,

i =1, 2, ~ ~, e, and let R;WR; for all i&j and R;=
max{Re, ~ ~, R„I at t=0. Then dR;/dt&0 so R;
increases and remains max{ R), ~ ~ ., R„I.Now

JI, Ri—RI, ;d'x
1

Hence the terms in f and Bf/BR; are bounded in the
R),'s. Also f is bounded in the

~
g~ ~

"s if they are bounded
away from zero. From the above observations one can
conclude the following.

(1) There exists a unique solution to system (c) for
any initial conditions compatible with

=2yJ; Q J),(R;—R),)
1 (2) The solutions are continuous in the initial con-

ditions.
( ') (3) The solutions are continuous in the parameters

ik k i i ik
k~ q

~p ~27

=2yJ, Q J),(R;—R),),
1

which is system (b). Notice that we can get the same
result by dropping the assumption on B and. , instead,
assuming an impulsive measurement as Bohm and Bub
do in their paper. Now (b) implies (c) since we have
taken the

~
P),

~

"s to be constant during the measure-
ment process. Finally,

= Q 2yJ; Q Jg(R;—R),),
1 k

n

=2y Q J;J),(R;—R),) =0.
i,k

{ N.B. The solution to system (c) lies in an (n —1)
dimensional hyperplane through (1, ~ ~ ~, 1) in (Rq, ~ ~

R„) space. This is easy to see since

for all t by the above lemma. ) Now let

2 y ~ ~ 2

R= (Rg, ~ ~, R„),

The main question is'. Under what initial conditions
and conditions on the parameters

~
p), ~

' are the limits
reached most slowly and how long does it take?

Cases:
(a) If R)=1, R2=RS——~ ~ ~ ——R =Oat t=0, then ' R=

1, R2= ~ ~ -=R„=O for all t" is a solution, since
R;g

~
P),

~

2R), (R; R),) =0 for—all i This .solution
is unique by the above result.

(b) If Rg=R2= ~ ~ ~ =R;=0, R;+g, ~ ~, R„WO at 1=0,
then, since dR;/dt ~ R;we ,can take the solution
for R&, ~ ~ ., R; to be identically zero. And since
the terms involving R~, ~ ~, Ri drop out of the
other equations, we can treat the problem as an
(I—i) -dimensional case.

(c) If R)——R& ~ ~ ~ ——R„at t——=0, then, since the sums
involve differences, they are all zero. Therefore the
unique solution is R~= ~ ~ ~ =E.„=constant= i.
Notice that these initial conditions do not imply

'=
~ P; ~

' for all i and j, but do imply that
' i= 1, 2, ~, e is stuck at its initial value if

the P; ~

"s are constant.
(d) The nontrivial case is R&&R2& ~ ~ ~ &R„, where

none of the R's are zero and they are not all equal
at t=0. This case is discussed below. (The order
of subscripts results in no loss of generabty since
we can relable. )

I.eel 2:
(a) R;&R; at t=O—PR;) R; for all 3;

(b) R;= R; at t=~R;=R; for all t.

Thus system (c) is dR/dt=f(t, R, P), and Lemma 1

says R (=1 for all t. Notice that f is a third-degree
polynomial in the R s so )))f/M; is of second degree and

I t'00f:

(a) Suppose there is a t))0 such that R;(t~) &R;(t~).
Then since the R's are continuous functions of t,
there is a t* such that R;(t*)= R;(t*). Now take t*
as the initial time. By the existence and uniqueness
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of the solutions, we know that R;=R; for all t,
which is a contradiction.

(b) This case follows from part (a) .

Hence any ordering of the R s is strictly preserved by
the system of collapse equations. Now due to the
continuity in initial conditions, the worst (slowest)
time behavior can be expected when R~& R2= ~ ~ ~ =R„
at t=0

I see case (c) above].
Theorem: The slowest collapse time occurs when

R~& R2= ~ ~ ~ = R„at t=0 and is given by

/Rll' —
& &~ ~ f1—

I Pt I
'RM) ~ «& t' Ri—1 i

&=(2v) '»
I

E Rti E1—
I (, I

'Ri i Uho —1&

where Rio=
I 6(&=0) I

'/
I 61'

Proof:

dR)
R, g I P, I

'R, (R,—R,).
dt

Using I,emmas 1, 2, and the normalization condition on
the $, we get

R,= ~ ~ ~ = R„=(1—
I $, I

sR,)/(1 —
I ft I

s) for all t.

Therefore

«/«= E»R./(1 -IS
I
') 0(1--

I ~ I
'R) (1—R.)

which gives the result by an integration.
Notice that the above result is independent of e,

so it gives the @=2 and n= cases without. change.
The e=2 case involves no special initial conditions
since the normalization constraint is enough to un-
couple two equations. Also the implicit solution is
unique. What one calls the collapse time is somewhat
arbitrary. I take r, to be the time at which

I tpt I
'=

0.99, so r, is got from the above by setting Ri ——0.99/
I
tiI'inEq (1).
In a recent paper by R. K. Wangsness' a solution to

the spin —,
' case is gotten by assuming 2&(Rt—R,) =

constant. It is easy to see that this implies 4ys(Ri-
R&) RtR&( I $i I

'+
I $s I

') =0, which leads only to
trivial cases (see above). Hence this supposition is not
valid. In the above I have taken y—=constant, since
letting p be "nearly" constant is too ill-de6ned mathe-
matically to yield a solution.

Physical ieter pretation ofp. In the paper by Bohm and
Bub the nature of p is left rather arbitrary. Since the
collapse equations involve the particular experiment in
a rather weak way, (the f s are eigenfunctions of the
observable being measured, ) it is necessary to put some
of the actual physics into the y involved. One could
interpretate y as a new fundamental constant which
couples the subquantum level to the quantum level

and quantizes time. Instead I choose to let

~=aE/f = 1/ai,
where

aA

~

d(A)/dh}'

where s= IA
I

A is a Hermitian operator relevant to
the given experiment I,' and (d, A) ' is the variance of A
while (A) is the expected value of A. This choice,
which is made simply by dimensional analysis, allows a
comparison with the time —energy uncertainty relation.
So the collapse time is or is not in contradiction with
ordinary quantum mechanics, contingent on whether or
not the log factor in Eq. (1) is smaller than 1. The line
along which the log factor is equal to 1, for the

I i' I

'=
0.99 case, is given in Fig. 1. In the part of the triangle
below this line we get a violation of AthE&5/2
Hence we would not expect to observe hidden variables
for these choices of initial conditions. As

I ipi I
~1, the

collapse time satisfies 6th E&ft//2 throughout the
triangle. This can be seen by looking at the log factor
analytically or else by computation. In Fig. 2 we have a
cross section of the surface given by the log factor along
the dotted line shown in Fig. 1. Notice that the height
of the surface does not get far from one, so this inter-
pretation of y would make it difBcult to detect any
eGects of the hidden variables. It should be noticed
that the r, involved in the experiment by Popaljolios
would be on the order of 10 's sec, (taking DE=br)
which is less than the times measured by a factor of
1.3X10 '.

Concision. It is clear from the Bohm —Bub con-
struction of the collapse equations that the admission
of the $ s as hidden variables does not violate the
uncertainty relations for noncommuting observables
because the equations depend on the fact that the
measurements are not made at the same time. The time-
energy relation, however, is of a somewhat diGerent
nature, both mathematically and epistemologically.
The above results show that the hidden variables need
not remain hidden, and it is hoped that the validity of
the Bohm-Bub theory may be tested in the laboratory.
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