
example of Bell. As Misra has pointed out in particular
the quest for hidden variables becomes a meaningful
scientific pursuit only if states, even physically non-
realizable states, are restricted by physical considera-
tions.

The example of Bell was useful, because it shows that
one of the hypotheses of our theorem )condition (4)')
was not only sufhcient but also necessary for the aQirma-
tion of the theorem.

A similar remark applies to the example of Bohm and
Sub."Here we have the additional objection that they
postulate a modification of the evolution of states
during the process of measurement. This means ac-
cording to them that all systems evolve with a Schro-
dinger equation except those which constitute a meas-
urement.

It is contrary to good scientific methodology to
modify a generally verified scientific theory for the
sole purpose of accomodating hidden variables.

' D. Bohm and J. Bub, Rev. Mod. Phys. 38, 470 (1966).
~ J. M. Jauch and C. Piron, Helv. Phys. Acta 37, 293 (1964).' C. Piron, Helv. Phys. Acta 37, 439 (1964). Translated into

English by Michael Cole, G. P. O. Engineering Department, Re-
search Station, Dollis, Hill, London N.W.2, England.

4 J. von Neumann, 3IIathematische Grlndtagen der Qnanten
mechanik (Julius Springer-Verlag, Berlin, 1932).

5 P. Mittelstaedt, Philosophische Probleme der Modernen
Physik (Mannheim, Germany, 1966), especially Chap. VI.'I. E. Segal, Ann. Math. {2)48, 930 (1947).

I. E. Segal, Mathematica/ Problems of Relativistic Physics
(American Mathematical Society, Providence, R. I., 1963).

8 B. Misra, Nuovo Cimento (to be published).' J. S. Bell, Rev. Mod. Phys. 38, 447 (1966).
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Hidden Variables in Quantum
Mechanics Reconsidered

STANLEY P. GUDDER
Department of 3IIathematics, University of Wisconsin, .

Madison, S'isconsin

Recently D. Bohm and J.Bub' published a refutation
of Jauch and Piron's proof' that hidden variables can
be excluded in quantum mechanics. The objections
upon which this refutation is based can, to a large
extent, be overcome. This is accomplished by a change
in terminology, a reinterpretation of some of the
physical concepts, and a weakening of the axiomatic
model used by Jauch and Piron. In any case, whether
or not the reader agrees with these new interpretations,
this theory extends the class of models for which hidden
variables are excluded, beyond those considered by
Jauch and Piron.

In the author's opinion the main difhculty en-
countered in hidden variable arguments is an in-
correct phrasing of the problem. One should not ask
whether a physical system admits hidden variables or
not, but only if a particular model used to describe the

system admits hidden variables. It is conceivable that
there are many mathematical models for a physical
system, some admitting hidden variables and some not.
The problem then becomes that of finding which model
most closely describes the physical situation. In this
note it is shown that a quite large class of mathematical
models do not admit hidden variables.

However, it has been demonstrated in the papers of
BelP, and Bohm and Bub4 that there are mathematical
models for quantum mechanics which do admit hidden
variables. The question then is whether the additional
complications introduced by these models are justified
in terms of new results or predictions not obtainable by
the use of simpler models. Thus the author agrees with
Sell, Bohm, and Bub to the extent that hidden vari-
ables cannot be excluded from quantum mechanics in
an absolute sense, but only as far as certain mathe-
rnatical models are concerned. On the other hand, the
author has attempted to show that their objections
concerning Jauch and Piron's specific model can be
overcome.

Sohrn and Bub seem to have three basic objections to
Jauch and Piron's proof. The first is the use of the word
"proposition" to denote the experimental questions
concerning a physical system and the confusion this
causes because of its similarity to the logic of thought
processes. The second is the interpretation of the con-
cept of compatibility of quantum propositions. The
third objection is directed against Jauch and Piron's
Axiom (4) /or its weakened form (4') g which says that
it two quantum propositions c and 6 are true with
certainty in some state, then the proposition "a and b"
is true with certainty in that state. The 6rst two ob-
jections can be overcome by a change of terminology
and interpretation. The third, however, seems to be
much more serious. As is pointed out by Bohm and
Bub, ' if u and b are incompatible, the quantum propo-
sition "u and b" is in many cases the absurd proposition;
and this implies that the quantum proposition a and the
quantum proposition b can never be true with certainty
in the same state. Bohm and Bub demonstrate that this
need not happen in all physical cases. s (Bell also objects
to this postulate in his recent paper. ') This third
objection is eliminated by weakening the axiomatic
model so that the quantum proposition "u and b" need
not exist at all.

The Axiomatic Strlctlre. Let S be a physical system
upon which we make laboratory experiments. I et Qs=
I tt, b, c, ~ ~ ~ }be the set of experimental qttestiorts that can
be asked concerning the system S. To be quite explicit,
u is an experimental question concerning S if it is
possible to construct a definite laboratory experiment
(or collection of experiments) on 8, the outcome of
which is capable of giving both a vEs and a No answer
to u. This is a slightly different interpretation than is
usually given. Experimental questions are usually
assumed to be any meaningful questions one may ask
concerning the system. Here we insist that the questions
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be experimentally answerable by an actual, definite
experiment or collection of experiments. At the risk of
sounding philosophical, it seems reasonable that if a
question is not experimentally answerable, it is useless
for a physicist to ask it. We next assume that there are
two idealized questions 0, and 1.0 is the question which
has a No answer for every experiment which answers it,
and 1 is the question which has a Yzs answer for every
experiment which answers it. Notice that 0 and 1 are
not in Qo. We let Q denote Qo together with 0 and 1,
and call Q a question system.

We now postulate properties that Q should possess.
If whenever a has a vzs answer b also has a vzs answer,
we write a&b and say "a precedes b "Ev. idently Q
should be a partially ordered set under & with first and
last elements 0 and 1, respectively: that is,

(Q1) a& a for all aC Q;

(Q2) if a(b and b&c, then a&c;

(Q3) if a&b and b&a, then a=b;

(Q4) 0&a& 1, for all aC Q.

The physical interpretation of the equal sign in (Q3)
is that, as far as our experiments are concerned, a and b

are indistinguishable.
I.et aP b be the question: Is the answer to a amd b

vEs? Now it is possible that aAb is an expenmeltal
question: that is, there might be an experiment capable
of giving both a vzs and a xo answer to ap b. For
instance, one might be able to carry out an experiment
answering a and another experiment answering b which
do not interfere with each other, thus giving an answer
to ah, b. However —and this is the point at which this
model divers from most others —we do not assume that
aA b necessarily exists as an element of Q. Similarly, we
we define uPb as the question: Is the answer to a or b

vzs? And again we do not assume that necessarily
a V b C Q. The following postulates should be intuitively
obvious.

(Q&) If aAbCQ, then aAb(a, b; and if c&a, b,
then c&aAb. (And the dual property holds for
aVb. ) If Ia:aC AIC Q, we define Aa, Va, if
they exist, in the obvious way.

We now postulate a map a~a' from Q into Q which
satisfies:

(Q6) (a')'=a, for all a&Q;

(Q7) If a(b, then b'(a';

(Q8) aV a'=1 for all aC Q.

The experimental question a' is interpreted as the
experimental question which has a vzs answer when-
ever a has a No answer. Evidently a and a' are answered
by the same experiment. If a&b', we say a and b are
disjoint, and we write aJ b. We say that a and b are
compatible, and write a~b, if there are mutually dis-

joint elements ai, bi, cC Q such that ai V c, bi V c6 Q and
a=a&Vc, b=b&Vc. If u and b are experimental questions,
answering a may interfere with answering b. If this is
not the case, then a and b are supposed to be described
by compatible elements in Q. We now indicate briefly
why this is so. Disjoint elements are the most obvious
kind of noninterfering experimental questions, since,
to get a vzs answer for one, all we need is a NO answer
for the other; thus both experimental questions may be
answered using the same experiment; no interference
results. The same would be true for three mutually
disjoint elements a&, b&, and c, and thus a&Vc and
b&Vc do not interfere. Conversely, if a and b do not
interfere, then aA b should exist as an element of Q and
so should aA (aAb)' and bA (aAb)'. Now evidently
aA b, aA (aA b) ', and b A (aA b)

' are mutually disjoint
elements: a=LaA (aAb)']V (aAb) and b=(bA (aA
b) '$ V (aA b); thus a and b are compatible according to
our definition.

If a and b are not compatible, one might not expect
aAb and aVb to exist as elements of Q. Nevertheless,
in certain cases (for instance, when the interaction is
not too great or the experimental questions not very
precise) we may have aAb or aVb existing for in-
compatible a and b. For example, suppose S.is the
system consisting of a particle p nioving in the positive
x direction away from the origin 00. We might consider
the following experimental questions: (a) Is p at the
point 10 cm from 00, (b) Is the x momentum component
of p 10 g cm/sec? Now aAb does not exist in Qo since,
by the Heisenberg uncertainty principle, there is no
experiment capable of answering ap b affirmatively.
Also aP b/0, since the answer to a&, b is not always No
for every relevant experiment. Thus a A b f Q. However,
for a less precise question L(c) Is p between 2 and 3 cm
from 00, (d) Is the x momentum component of p
between 1 and 2 g cm/sec?] we see that cAd is an
experimental question.

Now it is a well-known and universally accepted fact
that in any nontrivial quantum-mechanical system
there are processes which interfere with each other.
This, of course, is one of the basic differences between
quantum and classical mechanics, and even Bohm and
Bub' accept this. Since we cae ask experimental
questions about such processes, it follows that there are
experimental questions which interfere with each other,
and thus are described by incompatible elements of Q
in our mathematical model.

We now give our last two axioms for Q.

(Q9) If Ia:nP A I are mutually compatible
elements in Q, then Va and Aa exist in Q.
(Q10) If a& b, then there is a cg Q such that aJ c
and b=aV c.

(Q9) would be obvious if it concerned a flnite number
of elements. We postulate it for an arbitrary set of
elements as a concession to the mathematics. (We
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need it to prove our theorems. ) This additional assump-
tion seems harmless since the u are mutually com-
patible. (Ql.0) corresponds to Jauch and Piron's'
Axiom P and i: equivalent to the physically intuitive
statement that if a&b, then a~b.

Now the condition of the system S is determined if
we know the probability that any experimental question
has of getting an aS.rmative answer. Thus the condition
of S may be given by a function m on Q called a state
which satisfies these conditions:

(M1) 0&m(a) &1 for every aQQ;

(M2) m(1) =1;

(M3) m(uV b) =m(u) +m(b) ifaJ b.

If m; is a sequence of states and);&0, i=1, 2, ~ ~ ~,

and gX;=1,we define the state m= gX;m;by m(a) =
QX,m;(u) for every a& Q. We call m a mixture of the
states m, . The pair (Q, M) is called a quantum system
if Q is a question system satisfying (Q1)—(Q10) and M
is a set of states on Q which is closed under mixtures
and satisfies these conditions:

(M4) If u/ 0, there is an m C M such that m(a) = 1;
(M5) if m(a) =m(b) =1, mCM, and if ag, b

exists, then m(upb) =1;
(M6) if {a:nCA} are mutually compatible and

m(u ) =1 for all crC A, mgM, then m(Pa ) =1.

Notice that (M5) corresponds to (4') and (M6) is a
weakened version of (4) in Ref. 2.

Dispersion Free States -und Bidden Variables. A state
m is dispersion-free if nz has only the values 0 and 1.
In a dispersion-free state our system is completely
and precisely determined. That is, every experimental
question has a vEs or xo answer with certainty, all
probabilistic considerations having vanished. When
such states exist, this is exactly what we mean physi-
cally by a system admitting hidden variables. We thus
say that Q admits hidden nariabtes if there is a set of
states M which are mixtures of dispersion-free states
such that (Q, M) is a quantum system. For those who

may be bothered by the fact that we are allowing mix-
tures of dispersion-free states, we may —if we desir"
omit mixtures: that is, it is easily shown that Q admits
hidden variables if and only if there is a set M of
dispersion-free states which satisfies (M4), (M5), and
(M6) .

Before we present the "hidden variables theorems, "
we need a few mathematical definitions. The center Z
of Q is the set of experimental questions which are
compatible with all experimental questions. Q is
coherent, a Boolean algebra, or trivial if Z={0, 1},
Z=Q, or Q= {0, 1},respectively. An element a&Q is
an atom if a/0 and b& a implies b is a or 0. Q is atomic
if every nonzero element in Q is preceded by an atom.

J'heorem 1. A quantum system (Q, M) has a dis-

persion-free state if and only if Q has an atom in its
center.

Sketch of proof. To prove necessity, let m be a
dispersion-free state and let Q ={uCQ: m(a) =1}.
Using Zorn's lemma, one can show that Q has a
minimal element ai. i.e., if bg Q and b(ai, then b =ai.
One next shows that ui(a for all uC Q . Now one can
show that ui&Z and that ui is an atom. To prove
sufficiency let aiC Z be an atom and let m(ui) =1.It now,
follows that m is dispersion-free.

Corollury. A nontrivial coherent quantum system has
no dispersion-free states.

Theorem 2. A question system Q admits hidden
variables if and only if Q is an atomic, Boolean algebra.

Sketch of proof. Suppose Q admits hidden variables.
If a/0, there is a dispersion-free state m such that.
m(a) =1. As in the proof of Theorem 1, there is an
atom are Z such that ai& a, and hence Q is atomic. To
show that Q is a Boolean algebra let a, bg Q and let
{a:n&A} and {be.ilgB} be the atoms preceding a
and b, respectively. Let ai= V {a:a(b'}, bi= V {be
be&a'} and c=V {u:a (b}=V {be'.be&a}. One now
sees that a&, b&, and c are mutually disjoint, and that
u=aiVc and b=b&Vc. Conversely, if Q is an atomic,
Boolean algebra, let {u,:uCA) be the atoms in Q.
Define the state m, by m (a) =1 if u, &a; otherwise
let m (u) =0. Then M={m:aCA} is a collection of
dispersion-free states which satisfies (M4), (MS), and
(M6), and thus Q admits hidden variables.

Now a coherent question system is one which has no
superselection rules, ' and thus the corollary to Theorem
1 tells us that a question system Q which has no super-
selection rules cannot have even one dispersion-free
state. This is much stronger than the statement that Q
does not admit hidden variables. As we have pointed
out, any question system corresponding to a truly
quantum-mechanical situation has incompatible ex-'

perimental questions; thus Theorem 2 implies that no
physically interesting quantum-mechanical question
system admits hidden variables.

In the usual formulation of classical mechanics the
question system Q is taken to be the subsets of phase
space, and thus Q is an atomic, Boolean algebra. Apply-
ing a representation theorem for atomic, Boolean
algebras, one can conclude (from Theorem 2) that the
only question systems which admit hidden variables are
those in classical mechanics.
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