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The significance oi chemical relaxation experiments (e.g. , temperature jump measurements) for kinetic investigations
of reaction systems involving any degree of complexity is examined. On the basis of a general solution of the relaxation
problem, the properties of experimentally measurable relaxation curves —characterized by a relaxation spectrum —are
discussed. Usually, actual theoretical or experimental determinations of complete relaxation spectra and their use for
kinetic analyses are practicable only for fairly simple reaction systems. In the case of more complex systems an evaluation
of relaxation experiments in terms of mean relaxation times is suggested. The mean reciprocal relaxation time is of partic-
ular significance. This quantity is shown to be fairly easily accessible experimentally. On the other hand, it can be compu-
ted without a complete solution of the relaxation problem. Examples are given to demonstrate the procedure and its
potentialities with respect to the investigation of complicated reaction processes.

I. INTRODUCTION

Relaxation methods have brought about substan-
tial progress in the investigation of the kinetics of
chemical reactions in solution. ' Unlike classical experi-
mental procedures, these techniques do not initiate
the reaction process by mixing of the reaction part-
ners —which would not allow measurements below 10 '
sec—but by perturbing a time-independent stationary
state of the system, usually the chemical equilibrium.
Such perturbations can be brought about in less than
10 ' sec. Since the time course of the induced chemical
relaxation process can generally be followed by some
means, very fast reactions may be studied in this way.
Furthermore, if intermediate states and more than
one elementary reaction step are involved, a spectrum of
relaxation times will occur which provides much more
information about the kinetics and mechanism than
the rate of the over-all reaction determined by classical
methods.

Generally, in order to describe the relaxation behavior
by a relaxation spectrum, sufficiently small pertur-
bations have to be applied. In this case the rate equa-
tions can be linearized so that they may be solved, in
principle, by well-known mathematical operations.
One finds the same number of relaxation times as
there are linearly independent elementary steps
involved in the system, each relaxation time depending
in a more or less complicated manner on the rate con-
stants of all the elementary processes as well as on the
concentrations of the reaction partners,

During the past ten years, a number of relaxation
techniques have been developed and very successfully
employed in the study of numerous fast reactions in
solution. Temperature jump techniques —for relaxation
times from 10 to 1 sec—and ultrasonic absorption
methods —suitable in the time range 10 to 10
sec—have proved to be of particular versatility. '

Almost all the reaction systems investigated so far
by relaxation experiments have been relatively simple,
i.e., there was only one relaxation time (i.e., only one

' M. Eigen and L. de Maeyer, Technique of Organic Chemistry,
S. L. Friess, E. S. Lewis, and A. Weissberger, Eds. (Interscience
Publishers, Inc. , New York, 1963), 2nd ed, , Vol. VIII/2, p. 895.
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reaction step), or e1se the spectrum consisted of
a few relaxation times differing considerably in their
magnitude. In such cases the relaxation spectrum
can be determined experimentally without great dif-
hculties, and the necessary theoretical calculations
can be carried out quite readily. Unfortunately, the
situation becomes much more unfavorable if more
complex reactions involving a greater number of ele-
mentary processes are to be studied. Then, actual
calculations of the relaxation spectrum will usually be
extremely tedious —even with the help of a computer-
or not practicable at all. Under these circumstances,
an experimental determination of the complete spec-
truin is generally not feasible. Nevertheless, there are,
of course, numerous reactions of the more complicated
type which are of interest, particularly as far as pro-
cesses of biological significance are concerned(e. g. ,
conformation changes of biopolymers' '). Thus the
question arises, what can actually be measured in
such cases by relaxation methods' %hat quantities
are accessible experimentally even if the complete
relaxation spectrum cannot be deterrninedP Can such
quantities eventually be calculated theoretically and
interpreted in terms of the reaction mechanism with-
out a solution of the complete relaxation problems

This article deals with these problems. The chemical
relaxation of a reaction system comprising an arbitrary
number of elementary reaction steps is reviewed erst
from a general point of view. Although the theory has
been discussed already in the literature in various
aspects, ' ~ a very general but compact representation
of its essentials is given here in order to lay the necessary
foundations of the considerations in the following sec-
tions. The calculations require some knowledge of
matrix algebra. It is strongly recommended that one
acquires this knowledge if one is seriously interested in
the analysis of chemical relaxation data. However,

s D. M. Crothers, J. Mol. Biol. 9, 712 (1964).' G. Schwarz, Ber. Bunsenges. Physik. Chem. 08, 843 (1964).
4 G. Schwarz, J. Mol. Biol. 11, 64 (1965).

G. Schwarz, Biopolymers 5, 321 (1967).' J. Engel, Biopolymers 4, 945 (1966).
'G. W. Castellan, Ber. Bunsenges. Physik. Chem. 67, 898

(1963).
8 K. Kustin, D. Shear, and D. Kleitman, J.Theoret. Biol. 9, 186

(196S).
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for the present, the following calculations are not
absolute prerequisites for the discussion later on and
may be skipped if one is interested only in the results.
Subsequent to the basic introduction, the properties
of experimentally observable relaxation curves are
investigated, especially for the practically important
cases of stepwise and periodical perturbations of a
stationary state (e.g. , due to temperature jumps or
ultrasonic waves, respectively) . Evaluation of the
complete relaxation spectrum from such a curve pro-
vides a maximum of information from one experi-
ment which may be utilized for a kinetic analysis of
the reaction system. This involves difhculties which
are not readily surmountable if the underlying reaction
mechanism is too complicated. It is shown, however,
that even under these circumstances certain mean
relaxation times can be determined from the experi-
ments. They may be used for kinetic interpretations.
Since those mean values do not reQect as much infor-
mation as a complete relaxation spectrum, more perti-
nent experiments are necessary.

The mean reciprocal relaxation time proves to be
of particular importance. This quantity is related to
the initial rate of the relaxation process taking place
after a stepwise perturbation. It can be determined
fairly easily even for rather complex reaction systems—
experimentally as well as theoretically. Knowledge of
the complete relaxation spectrum is not required.
After a general treatment, examples are given to dem-
onstrate the procedure of calculation and the sig-
ni6cance of the results with respect to kinetic analyses.
The analysis in terms of mean relaxation times —as
discussed in this article for chemical relaxation —can
be extended analogously to any other relaxation
process.

II. GENERAL THEORY OF CHEMICAL
RELAXATION

Reaction System

The geo,eral case of a chemical reaction system may
comprise n elementary processes involving m different
reaction partners 2; (i = 1, 2, ~ ~, srt). The elementary
reactions can usually be expected to be unimolecular
or bimolecular. However, in order to include all types
of reactions, we describe them in the most general way:

k.
vsle41+ve2~2+' ' 'vsme4mv —vsl e41+vss e42+' ' 'vsm e4m (1)

k.'

(s= 1, 2, ~ ~ ~, tt) . Normally, only a few of the stoichio-,
metric coeKcients v and v' are different from zero as far
as a special reaction is concerned. A substance A;
catalyzing the process may appear on both sides. The
rate constants of the forward and reverse reactions are
denoted by k, and k,', respectively. Then, according to
the principles of reaction kinetics, the corresponding

elementary rates of reaction are

n = (v
'—v ) '(. d-c/dt) =te c ""c""~ ~ c "*"

n, '= (v., v„—') '(dc;/dt), '= J'es'cl"'"cs""' ~ ~ c "" . (2)

The c; are the concentrations of the A;. The differential
quotients stand for the temporal rates of change of
any c; due to the special reaction in view (number
s, forward or reverse). This is meaningful only for
those A; which are actually converted (i„Wv„').

Summing up the effects of all the elementary proc-
esses yields the total change of c;:

dcc/dt= Q (v„'—v.;) (n, —tt, ') (i=1, 2, ~ ~, ttt). (3)

Thus a set of differential equations is obtained which
describes the kinetic behavior of the reaction system. In
the absence of external effects, the system approaches
the state of chemical equilibrium as determined by
its thermodynamic properties. By appropriate external
means, however, some other stationary state may be
maintained. For any stationary state we have dc;/dt =0,
i.e., the respective concentrations constitute a time-
independent solution of (3). Consequently the sum

(3) has to be zero. In the special case of chemical
equilibrium, each single term of it must vanish, i.e.,
the equilibrium values of the elementary rates 8, and
v,

' are equal for any individual elementary process:
/Vs= Vs )

or, because of (2),
Delvvelesvves ~ ~, C vvem)/(Clvelesves . .C vem.)j—tt /Q

v —Q

(c; are equilibrium concentrations. ) Accordingly, if
chemical equilibrium is attained for the over-all reac-
tion, it is established also for each elementary process.
E, means the respective elementary equilibrium con-
stant. [Strictly speaking, this holds true for dilute
solutions only; yet relation (4b) remains formally
correct under any conditions if E, is taken as an
apparent equilibrium constant which is pertinently
composed of the true equilibrium constant and the
activity coefficients of the reaction partners. ) The
above expressions (4a, b)—known as "principle of
detailed balance'" —cannot be derived from ordinary
classical thermodynamics, but are a consequence of
the more general "principle of microscopic rever-
sibility. "

A solution of the Eqs. (3) may be extremely dif-
fj.cult even for fairly simple systems, especially if
nonlinearities are introduced either by elementary-
reactions of higher than the hrst order or by time
dependent rate constants (due to change of the tem-
porary equilibrium state). Nevertheless, the general

R. H. Fovrler, Statisticat Mechanics (Cambridge University
Press, London, 1929).

es L. Onsager, Phys. Rev. 3ye 405 (1931); 38e 2265 (1931).
"R.C. Tolman, Phys. Rev. 23, 699 (1924).
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rate equations can always be linearized and solved in
principle if they are applied to chemical relaxation
processes caused by sufficiently small perturbations
of the chemical equilibrium or some other stationary
state which is maintained by external means.

The Relaxation Equations

First we introduce some set of time-independent
reference concentrations c; (i=1, 2, ~ ~ ~, m). Then
p;=c;—c;, y;=c,.—c may describe the deviations of
the actual concentrations c; and the stationary state
concentrations c; from the reference values. The net
rate of an elementary process e,—v,

' is expanded in a
Taylor series about the stationary state, yielding a
power series in the quantities c,—c,=p, —p;. Terms
higher than the first order are neglected, assuming the
deviations to be sufficiently small (7;—p,&&c,). The
factor of y, —y; can be evaluated using the Eq. (2).
The condition of stationarity requires that the total
rate of change dc;/dh=dy;/dh vanish for y;=y, . Thus,
by inserting the linearized elementary rates into (3),
the general rate equations turn into a set of differential
equations which are linear with respect to y, —y, .'

dy~/dt= g a;;(y;—'r;), (Sa)

(which are written as transposed row vectors using
the conventional superscript f). Then the relaxation
equations (Sa) can be simply expressed as

i= A(v —v)

(The dot indicates differentiation with respect to
time) .

In the case of relaxation about chemical equilibrium
the diagonal matrix G= LB,,/(c;) '~'j (with Kronecker's
8 symbol equal to unity for i=j and equal to zero
otherwise) may be used to introduce a new matrix

A'=GAG '.

Taking Eq. (5d) into account its elements turn out
to be

a''=I:( )'"/( ')'"] '

Consequently A' is a symmetric matrix. For this rea-
son—as is well known from linear algebra —there exist
precisely m linearly independent orthogonal and nor-
malized eigenvectors x„'with respective real (i.e., non-

complex) eigenvalues ).„satisfying the equations

where
X„x„'=A'x„' (where x„"x,'= 8„). (10)

a;;= —g (v„—v„')I (.„v,—v.,'v. ')/c;j. (Sb)

Since the temporary stationary state may still be a
function of time, the quantities 8„8,', c,, and, conse-
quently, the coeScients a;, are not necessarily con-
stants. However, under the assumption of small devi-
ations from the reference state, i,e., for

I v, I, I ~J I &«P = c;, (Sc)

this effect produces only small variations of the second
order. Thus they may be neglected and the a;; assumed
to be independent of time.

If the chemical relaxation takes place towards chem-
ical equilibrium —as is frequently the case in prac-
tical applications —the coefficients a;; of the relaxation
equations (Sa) can be somewhat simpliffed by means
of the "principle of detailed balance. " Due to (4a)
we have

~ij = &si ~si (Sd)

A= (a~g) (i, j=1,2, ~ ~ ~, m) (6)

as well as the column vectors

v=8 v, " v-)' (7)

The General Solution of the Relaxation Equations

In principle, the relaxation equations (Sa) can be
solved by means of standard mathematical procedures.
For this purpose it is suitable to employ matrix algebra.
Let us define first the matrix

X~= G Xp ) fr= Gx (11a)

It follows from (10) and (11a) that

X„x„=Ax„, X,y, t = y, tA. (11b)

Thus, in the case of th e generally nonsymmetric
matrix A, the vectors x„and y„~form a set of column
and row eigenvectors, respectively. Because of the
orthogonalization and normalization of the x„', we
have

fr Xs= ~rs (11c)

The eigenvalues X, remain the same as for A'. They
may be obtained as the roots of the characteristic
equation

I
A —HEI =0, (12)

(E being the unity matrix and I A —XE
I

being the
determinant of the enclosed matrix, ) which is an
algebraic equation of the mth order.

It has been assumed so far that A describes relaxation
towards chemical equilibrium. As a matter of fact,
eigenvalues can be computed for any matrix A by
means of Kq. (12). Usually the respective sets of
eigenvectors according to Eqs. (11b, c) exist also (e.g.,
if all the eigenvalues are difierent from each other).
Therefore the mathematical procedure pointed out
here can generally be applied to relaxation processes
occuring after small perturbations of any stationary
state. However, complex eigenvalues can be excluded

Now two more linearly independent sets of vectors
may be defined:
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only for chemical equilibrium. In the case of other
stationary states, the "principle of detailed balance"
cannot be used; then the relaxation matrix cannot be
symmetrized according to (9a, b) .

Now the general solution of the relaxation equation
(8) may be obtained in the following way: We repre-
sent the vector in demand, y, as well as the vector of
the respective temporary equilibrium values, y, by a
linear combination of the eigenvectors x„,i.e., we set

y=Q n,x„, j=Q n„x„. (13a)

This is always possible because of the linear independ-
ence of the x„.It follows immediately from (11c) that

o.„=y„~y, 0,„=y„~y. (13b)

Equations (13a) describe a coordinate transformation.
The new coordinates u„and n„,respectively, are called
normal coordinates (or normal variables). They may
be used to build up the two column vectors

to mass conservation. At least one such relation must
exist in a closed system, so the number of zero eigen-
values esp satisfies the inequalities 1&@so&m. It is
advisible, especially for actual calculations, to elimi-
nate ~ concentration variables appearing in the re-
laxation equations (5a) for (8), respectivelyj together
with the corresponding differential equations by taking
advantage of the mo linear dependences. Then the orig-
inal set of equations is reduced to a formally simpler
system of only m —iso linear differential equations.
This system can be treated and solved in the same
manner as above. The m —mo eigenvalues will be iden-
tical with the nonzero eigenvalues of the original system.
For this reason one may always assume the relaxation
equations to be of the reduced type with no zero eigen-
values.

The general solution of the relaxation problem is
easily obtained by evaluation of (18). For any set
of time-dependent a, (t), the n, are found to be

+= (ab &» ' ' '
~ a~) a= (ni, n2, ~ ~ ~, a ) t. (14) a„=exp ( t/r„) —[exp (t/r, )/r, ]a,(t) dt. (19)

Then (13a) can be written in the alternative form

where the transformation matrix M and its inverse
M 'read:

M= (xi, x„~~ ~, x„),
(15b)

LThis representation of M ' is readily verified by
means of the relations (11c).j If we insert (13a) into
(8) and take into account (11b), the relaxation equa-
tions become

Qn„x„=Q(n„—a,)Ax„=gX„(n„—a„)x„.(16)

Since the x„are linearly independent, the individual
terms of these sums must be equal to each other sep-
arately. After having introduced the relaxation times T T iAj'dt. (21)

The as-yet undetermined integration constant of the
indefinite integral has to be fixed in compliance with
the boundary conditions of the special problem in
consideration. A representation of (19) in terms of the
original concentration vectors y and j may be given
usiog the matrices

T(t) =MR(t)
= )exp ( —t/r i)xi,

exp�(

t/r2) x2, ~—~ .],
T '(t) =R '(t).M '

= L exp (t/ri) yi, exp (t/r2) y» ~ ~ ], (20)

where R(t) =P exp ( t/r~) ~ 8;;] is—a diagonal matrix.
The relations (19) can be written as

for any X,/0, we find that

n„=—(a,—a„)/r, (for ),„~0), a„=O(for X„=O).

This is the general solution of the relaxation equation
(8) . The matrix T satisfies the homogenous differential
equation T= AT. Any other solution, i.e., any T'= TC
with a constant matrix C, could be used in (21) instead
of T, as can be easily verified by inserting (21) into
(18).

Thus the relaxation equations are particularly simple
if formulated in terms of normal variables. This is due
to the fact that M and M ' transform A to a diagonal
matrix of the eigenvalues: M 'Ada= (X;8,,) . According
to (18), a zero eigenvalue results in a constant (time-
independent) normal coordinate u, . Since the n, are
linear functions of the original concentration variables
y;, this means a relation of linear dependence for these

Vice versa, any such linear dependep. ce results
in a zero eigenvalue. This occurs, for instance, as a
consequence of conditions imposed one the system due

Summary of the Mathematical Analysis

The various steps in the mathematical analysis of
a given relaxation problem may be summarized. First,
the relaxation equations as represented in (5a) must
be established by linearizing the kinetic rate equations.
Linear dependences (e.g., due to mass conservation)
should be eliminated in order to reduce the number of
variables as much as possible. Then the eigenvalues of
the relaxation matrix A LEq. (6) j, i.e., the roots of
its characteristic equation (12), have to be evaluated
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resulting in the relaxation times of the system according
to (17). Once the eigenvalues are known, the eigen-
vectors x„and y„~can be obtained by solving the sets
of linear equations (11b). The eigenvectors have to
be normalized so that they satisfy the relation (11c).
After that the transformation matrices M and M '
fEqs. (15b)) can easily be written down. Application
of (19 or (21) yields the solution of the given problem
if the special boundary conditions are used to deter-
mine the integration coo,stants.

In principle, the computational procedure described
. above may be used in any case. Its practical appli-
cability, however, is restricted to systems where the
eigenvalues and eigenvectors of their matrix A can be
calculated with reasonable effort (a computer may be
necessary). The method is generally not practicable
for high-order matrices, i.e., for systems with a greater
number of independent elementary reactions.

Special Solutions of the Relaxation Equations

Two cases of relaxation problems are of particular
importance with respect to experimental applications:

(a) Approach to a constant stationary state (e.g. ,
the process of equilibration after a temperature jump).

The stationary state to be approached may not
cha~ge for t&0. If this state is taken as the refer-
ence, we have y, =a,= 0 for any r. Then Eq. (19)
easily yields

a,=a, exp ( t/r„), — (22a)

y=MRa=g a, exp ( —t/r, ) x„ (23a)

if a constant stationary state is approached, and

where n„denotes the value of e„att=0.
(b) Periodic variations of a temporary stationary

state (e.g. , due to pressure or temperature oscillations
cs,used by sound waves).

In the case of harmonic oscillations of angular
frequency co, the stationary state values p; and
a„may be represented by y;= j;exp (iait) and
a„=a,exp (ia&t), respectively, p; and a„being the
amplitudes. Under these conditions (19) leads to

n, =a„/(1+ivor„)~ exp (iait) =a,/(1+ jeer, ) . (22b)

With 0. being a column vector made up by the u„,the
original concentration variables are readily obtained
employing (13a) or (15a):

trations, respectively, are given by
p p ~p
y=MO, = ~u„x„. (24a)

These boundary conditions determine the factors n„
for the special problem under consideration. %e find

o,=M 'j, ~ p g
p

(24b)

III. GENERAL PROPERTIES OF EXPERIMENTAL
RELAXATION GURVES

Relaxation Functions

Chemical relaxation of a reaction system is followed
experimentally by measuring some appropriate quan-

tity which responds to the changes of concentrations
of the reaction partners. Frequently such a measur-
able quantity (e.g. , optical density) may be represented
as a linear function of the concentrations. Otherwise
it can be linearized at least in the vicinity of a reference
state by means of a Taylor expansion. There the
deviation of a given measurable quantity (or observ-

able) P from its reference value P'= P(ci, c2, ~ ~ ~, )
may be written generally as

8P= P—P',

=Q (BP/Bv~). ;=0 v'

=Q (BP/Bn„).,=p a„, (25)
r

Lwhere (BP/By; ) ~,. 0= (BP/Bc;).. .,0$. The experimen-

tally measurable change of 5P during a relaxation
process is readily obtained by substituting the respec-
tive solutions of the relaxation equations for the p; or
Gr ~

Let us consider the two special relaxation processes
discussed above. If the stationary state is constant
for t~0, it may be taken as the reference state. The
deviation of P from P'=P may be equal to SPO at
t=0. The decay of 8P is then described by

BP= C (t) ~ BP„(t&0), (26a)

thus defining a pertinent relaxation function C(t).
If the stationary state is oscillating harmonically

with angular frequency co, 8PO may denote the ampli-
tude of the variations of the stationary state value P.
The amplitude 8P' of the actual fiuctuations of P is
represented here by a respective relaxation function

qr(ai) according to the relation

y=g fa,/(1+mr„)$ exp (mt) x„(23b) BP=y(o)) ~ BPp. (26b)

=Q fa„/(1+~r„)1 x„

for harmonic oscillations of a temporary stationary
state. The deviations of the concentrations from their
stationary state values at t=0 or the amplitudes of
the periodical variations of stationary state concen-

Taking into account Eqs. (22), (23), and (25), the
functions C (t) and y(ai) may be expressed as

C(t) =P P„.exp ( t/r„), —

~(~) =Z P./(1+i r.)j (2&)
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where

P,= (n„/8Pp) (BP/Bn, ),
After multiplying this by exp (—upt), we find directly
that

and

=(y.' /»o) Z (~P/~»)„= *;

~Pp= Q n„(&P/&n, ).,= p

(28a)
q (M) = — (dC/dt) exp (—upt) dt

0

=1—up C(t) ~ exp ( up—t) dt,
0

(31a)

(x„;=Bp;/Bn„is the jth component of the eigenvector
x„,cf. Eq. (13a).7 The obvious relation g„p,=1
reffects the fact that C(t) and y(oi) become equal to
unity for t—+0 or o&—+0, respectively.

In the special, but important, case of relaxation
towards chemical equilibrium, the relaxation function
C'(t) does not involve complex exponential terms.
As pointed out above, then X„=—1/r„can be shown
to be an eigenvalue of a symmetric matrix A' and
consequently a real quantity. Thus we may conclude:
In any reaction system which is either sufFiciently
close to its equilibrium or involves reactions of the
first order only, periodic reactions (described by
complex exponential functions) cannot occur if the
temporary equilibrium is changing nonperiodically.
Then the relaxation function C(t) may have only
m*—1 maxima or minima, where m* equals the number
of 6nite relaxation times. "This is a consequence of the
principle of detailed balance, which ensures the sym-
metry of A' LEqs. (4a), (Sb, d)7''"". Far from
chemical equilibrium, where this principle does not
apply, periodic reactions cannot generally be excluded
in agreement with actual experimental observations. '

The relaxation function y(oi) has been defined as a
complex quantity. Its absolute amount describes the
damping of the (real) amplitude of the oscillations
of I', whereas its phase measures the phase shift of
oP versus 8Pp. We may split &p(oi) into a real and an
imaginary part:

i.e., y(o&) is the Fourier transform of dC/—dt, and
iL1—y(oi) 7/&e is that of C (t) .The practically significant
real and imaginary parts of pp(o&), readily yield by
means of real Fourier integrals,

y'(&o) = 1—oi C (t) ~ sin pit dt,
0

p" (oi) =pi C (t) cos pit dt.
0

(31b)

For a mutual conversion of y'(pp) and y"(o&) we have
the general Kronig —Kramers relations"

2 "uy" (u)
y'(ip) = —C du

7r 0 I —OP

"p'(~) .
C (t) = 1—— sin pit dpp,

Ã 0 CO

"p "(~)
cos cot Ao.

o

They may be used to compute C (t) from either rp'(cp)

or p"(ip).

(33)

"p (u)
q) (pp) = ——pp C 'flu (32)

7r 0 Q 0)

which hold for any o»0 as may be veriied readily
from Eqs. (29b). (The symbol Cf indicates a Cauchy
principal value with regard to the singular point u= &p.)

Inversion of the Fourier integrals in (31b) results
in the expressions

with
v'( ) =v' ( ) —i'v' ( ) (29a) Relaxation Spectra

(29b)

The important, experimentally observable relaxation
functions C (t), y(oi), p'(&e), and pp" (oi) can be con-
verted into each other by mathematical operations.
Differentiation of C (t)—as represented in (27)—
immediately yields.

dC/dt= —g (P„/r„) exp ( t/r, ). (30)—

' W. Jost, Z. Naturforsch. 2a, 159 {1947)."J.Meixner, Kolloid-Z. 134, 3 {1953)."B.Bess, K. Brand and K. Pye, Biochem. Biophys. Res.
Commun. 23, .102. (1966).

The distribution of relaxation times as determined
by their weight (or amplitude) factors p„is called the
relaxation spectrum of the reaction system with respect
to the observable I'. Since the relaxation times are
derived from a matrix A, which involves only the
elementary rate constants and the concentrations of
certain reaction partners, the r„represent specific
properties of the reaction system. Strictly speaking,
they depend also on the thermodynamic conditions of
the relaxation process (e.g. , whether it is adiabatic or
isothermal) ." However, this effect usually can be
neglected for chemical reactions in solution. ' In con-
trast to the r„,the weight factors p, are essentially
determined by the measured quantity I' and the

"R. de L, Kronig, J. Opt. Soc. Am. 12, 547 {1926);H. A.
Kramers, Physik. Z. 30, 522 {1929).
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boundary conditions of the relaxation process, as is
clearly demonstrated by Eq. (28a).

The relaxation spectrum can be calculated on the
basis of a definite reaction mechanism, although this
may not be practicable in more complex cases. On the
other hand, a direct experimental determination of the
spectrum is generally not possible. It is the response
of some measurable quantity I' to a relaxation experi-
ment which can be measured in terms of a relaxation
function Pe.g., C(1) or p(cp)g. Thus the question is
raised whether the relaxation spectrum can be eval-
uated from an experimentally obtained relaxation
function. For instance, can the P, and r„appearing in
Eqs. (27) be computed from the respective functions
C (t) or y(cp)? There are, in principle, appropriate
mathematical procedures to perform such inversions
if the relaxation functions are given as analytical
functions, especially in the case of virtually continuous
spectra (e.g. , the method of Fuoss and Kirkwood'P).
In this latter case C(t), for example, essentially be-
comes a Laplace integral. Then the spectral distri-
bution function is obtained by an inverse Laplace

- transformation. Unfortunately the relaxation functions
are very insensitive with respect to the underlying
relaxation spectra; i.e., minor changes of those func-
tions generally result in considerable effects as far as
the spectrum is concerned. This was realized years
ago in the investigation of dielectric, mechanical, and
other relaxation processes. "" With regard to our
problem of the spectral analysis of measured chemical
relaxation functions, from these considerations we

may conclude: Although it is generally possibLe to cal-
culate some distribution of relaxatiou times which yields
a good approximatiou of the experimemtal curve, this
does rot necessarily mean that any physical meauimg

can be attributed to it. Due to the restricted measuring
accuracy, other distributions which are quite different
could produce similarly good approximations. Then
the spectrum of physical significance determined by
the reaction mechanism cannot be detected. Apparently
the necessary accuracy of measuring permitting a use-
ful spectral analysis is often far beyond the limits of
experimental techniques. Fundamentally we find our-
selves confronted with the general problem of fitting
theoretical expressions involving adjustable parameters
(the P„,r„in our case) to experimental curves. As is
well-known, such a procedure becomes less and less
trustworthy as the number of those parameters in-
creases. There are favorable cases where satisfactory
determinations of relaxation spectra can be carried
out. This is true; for instance, if only a few relaxation .

times occur, and if these differ from each other by at
least one order of magnitude. According to the ana-

"R. Fuoss and I. G. Kirkwood, J. Am. Chem. Soc. 03, 385
(1941).' F. H. Miiller, Kolloid-Z. 134, 77 {1953).

' A. J. Stavermann, Kolloid-Z. 134, 189 (1953).
!P E. Hiedemann and R. D. Spence, Z. Physik. 133, 109 (1952),

lytical representation given by Eqs. (27), the relax-
ation functions are then made up of superimposed,
but sufficiently separated, partial relaxation curves,
each pertaining to one individual relaxation time only.
Under these conditions, the mathematical procedure
of calculating the ~„from the relaxation equations can
be performed fairly easily. Fortunately, reaction
systems of this kind are frequently encountered in
practical work (especially as far as the comparatively
simple reactions of inorganic and organic chemistry
are concerned). ' It may be possible to determine even
a fairly complicated relaxation spectrum from experi-
mental curves if its general functional type is already
known, (e.g. , as the result of a pertinent theory, ) so
that only one or two parameters have to be adjusted.
For systems where no such favorable circumstances
can be utilized to evaluate the complete relaxation
spectrum, a kinetic analysis of experimental relax-
ation curves can still be carried out in terms of mean
relaxation times as is demonstrated in the following.

Mean Relaxation Times

Certain mean relaxation times may be introduced
as time constants appropriate for the description of the
temporal course of a chemical relaxation process. We
define the mean reciprocal relaxation time (harmonic
mean) r* and the arithmetic mean r by the relations

1/ *=2 (~./"), -=Z~.",
r

(34)

where the respective P„values appearing in C(t) or
y(&p) are used as weight factors. Such mean values
contain less information than the complete relaxation
spectrum; they have, however, the great advantage
of being much more easily accessible, experimentally
as well as theoretically. This is especially true for r*.

The mean relaxation times 7.* and z are readily
correlated to the corresponding relaxation functions.
First we have

1/r*= —(dC/dt) ( p,

4tdt,
0

(35)

as follows immediately from (30) for 1=0 and by
integra, tion of C(t) as shown in (27), respectively.
With respect to &p(cp) we derive the relations

00

1/r*=
7i 0

q'(pp) da)=lim cpq "(&u), (36a)

"1-p '(~) . v "(~)
7'= ~ d(u =lim, (36b)

7r 0 CO co~0 0)

which can be verified directly by inserting the defini-
tions of p'(co) and pp" (a&) according to Eqs. (29b).
The experimental significance of the above expressions
is discussed in the next section.

The first relation in (35) permits a comparatively
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simple theoretical access to the mean relaxation time
r*. A chemical relaxation process is usually initiated
by perturbing an originally existing stationary state
(for the most part, chemical equilibrium). On the
basis of a definite reaction mechanism, the initial
relaxation rate due to a stepwise perturbation, and
consequently also v*, may be then calculated using
only elementary rate constants and stationary state
(equilibrium) properties of the system. The procedure
is demonstrated in more detail in Sec. V. Solving the
rate equations, computing the relaxation spectrum,
and calculating r* according to its definition in (34)
would require considerably more effort.

The value of either v-* or z yields no information
about the extent of the relaxation spectrum. Only a
comparison of both quantities could be utilized for
this purpose. A more appropriate way to estimate the
width of the spectrum may be obtained by comparing
r* with the quadratic mean of the 1/r, '.

Z (~,/;') =(1/ **) . (37)

Q

I (1/& ) &p (&) Idoi (3g)

Apparently r*"' is essentially determined by the initial
curvature of C'(t). Thus it may be computed in an
analogous way as pointed out for ~*. The relative
quadratic deviation of 1/r, from 1/r*, i.e.,

Z, ~,(1/"-1/.*)'
(1/r*)'

( g/ aa)s (39)

may be introduced as a measure of the width of the
relaxation spectrum, at least for processes with P„)0.
The latter seems to hold true in many cases of practical
interest. It can be shown, for instance, that, sufIiciently
close to chemical equilibrium the relaxation of certain
thermodynamic properties is described by nonneg-
ative P, values only. (Cf. the case of chemically induced
acoustical relaxation discussed in the next section. )
In principle, however, negative weight factors, and
even negative p* values, cannot be excluded.

A more adequate interpretation of p* can be deduced
by expanding the deviation of C (t) from exp (—t/r*)
in a Taylor series. The result may be written as

C(t) = exp (—t/. *) + ',p*(t/. *)'+-(40)~ ~

Thus p* measures how well C (t) can be approximated
by exp ( t/r*). The sign of p—* indicates whether the

As can be verified using the representations in (27)
and (29b), we have

(1/, *+)s= (dsC/dt ) ~
= lim r0'ip'(o~),

0

FIG. 1. Chemical relaxation of a measurable quantity I due to
stepwise perturbation of a stationary state. The stationary state
value Po is suddenly changed to P=Po+BP at the time t= 0. The
actual course of P(t) is determined by the kinetics of the system.
r* is the mean (reciprocal) relaxation time defined by (34).

relaxation proceeds slower (p*)0) or faster (p*(0)
than the single exponential function which would
occur in case of a one-step process.

IV. THE EVALUATION OF RELAXATION
EXPERIMENTS

Relaxation Methods Employing Stepwise Pertur-
bation

A sudden perturbation of an existing stationary
state (usually the chemical equilibrium) may be ex-
ecuted in some way by rapidly changing the external
conditions, thus establishing a different stationary
state of the system. Provided the initiated equilibration
process can be registered somehow, such a procedure
constitutes a very direct mode of measuring chemical
relaxation. Pertinent techniques of this kind —especially
those producing temperature or pressure jumps'"—
have proven to be of considerable versatility and have
been applied already to numerous kinetic investigations.
Usually, optical density or electric conductivity has
served as the measured quantity P.

Let us assume the perturbation takes place at the
time t=0, changing the stationary state value of P
from Pe to P=Po+bP. According to (26a), the time
course of P is then described by

P= P C(t) ~ 5P— (41)

Thus jump techniques lead directly to the correspon-
ding relaxation function C (t) . Furthermore, taking
advantage of (35), we immediately find

(1/.*)= (1/»)(dP/«) =o,

r = (1/bP) (P P)Ct. —(42)

One realizes readily how the mean relaxation times
7* and r can be determined graphically from an experi-
mental curve. An example of such a curve is shown in
Fig. 1. It is easily verified that the tangent to this curve
at the time of perturbation (t= 0) intersects the asymp-
tote of the curve at 3=7*, as demonstrated in the

20 G. Czerlinski, Chemical Relaxation (M. Dekker, Inc. ,
New York, 1966).
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diagram. On the other hand, & is apparently given by
the area between the curve and its asymptote (dashed
area in Fig. 1) divided by bP.

According to (37), (39), and (41), the square mean
of the reciprocal relaxation times may be written as

(1/r"'*) '= —(1/BP) (O'P/dP) ~

this term may be neglected in the frequency range of
interest for chemical relaxation. ) The second term
describes the chemical contribution ~,'". According to
the general definition given in Eq. (26b), it can be
written as a product of its equilibrium value R,'" and
the pertinent relaxation function q ((p):

."= .'" p( ); p( )=ED'./(1+' .)) (46 )

The latter relation can be utilized for a determination
of 7-**from experimental values of p* and r*.The quan-
tity p* is obtained in the following way. First the diGer-
ence D(t) =C(t) —exp ( t/r*) —has to be evaluated
from the relaxation curve. This is suitably done by
using a semilogarithmic plot because exp ( t/r ) —is
readily drawn theo as a straight line which is the tan-
gent to the experimental curve at t=0. As shown by
Eq. (40), a plot of 2r*' D(t)/P versus t finally yields
p* by extrapolation towards t= 0. Apparently, however,
th e determination of r ** requires a higher measuring
accuracy than does the determination of 7-*.

where
(( ch V—lgb, ~ P,=b„/Qb;,

b, = (BV/Ba„)s,...,(~) (Bc~ „/Bp)s (46b)

(a, is the equilibrium value of a„). As pointed out by
Meixner, " b„&0. Consequently, any nonvanishing
weight factor P„describing ultrasonic relaxation close
to equilibrium must be a positive quantity.

Now, if we insert ((,=((, +((,'" pp((p) into (44) while
taking into account R,'"«a, , we find the sound wave
to be represented by

Ultrasonic Relaxation Due to Chemical Relaxation
with

2 ~ exp ( ax)—~ exp {p(p{t—(x/v') $ I, (47a)

Periodic perturbations of a chemical equilibrium
may be caused by the periodic change of pressure
taking place due to the application of a sound wave.
Because of the finite relaxation times of the system,
the induced changes of concentrations cannot follow
the equilibrium Quctuations of the system fast enough
if the frequency is suKciently high. This results in a
dispersion of the sound velocity as well as in sound
absorption, 'both of which may be measured and eval-
uated in terms of the chemical relaxation spectrum.
Ultrasonic absorption techniques have already proven
very useful in the investigation of many fast reactions
in solution, especially in the case of processes which
are too fast to be measured by other means.

A sound wave propagating in the x direction induces
small oscillations of quantities such as pressure or
density to be represented by the expression

A exp {pppft (x/v) jI, —

v'= v —Avp q'((p)

where

a= (Avp/v ')(ppp" ((p), (47b)

v = (pp((.") 'I'

»p= v~ —vp= ~ppv~ Kz (47c)

(v vp are limiting values of the sound velocity for
very high and very low frequencies, respectively; »o
is the total velocity increment due to chemical relax-
ation. ) Thus the dispersion of the (real) sound velocity
v' is described by pp'((p), while p"((p) determines a,
the corresponding absorption coefficient of the sound
amplitude. Accordingly those relaxation functions can
be obtained by appropriate ultrasonic relaxation meas-
urements. Absorption data are frequently evaluated
by plotting the absorption coefBcieot per wavelength
04 versus frequency. Apparently this quantity is
simply proportional to pp" ((p):

where
v=L(op~. ) "j (44)

ah = 2pr (hvp/v„) pp" (pp) . (47d)

(A = amplitude, (p= angular frequency) . The sound
velocity v depends on the density po and on the adia-
batic compressibility

(( = —V '(BV/Bp)8

Also the mean relaxation times g* and 7- can. be deter-
mined directly from the experimental curves. Using
(36a, b) and (47b), we get from the velocity disper-
sion curves by integration,

V'(BV/BP) s.-;— m»p
(v —v') Ckp,

—V '~ (BV/Ba„)s, ,(g„)(Ba„/BP)8 (45)

(V= volume, p= pressure, S= entropy) . The first
term represents the adiabatic compressibility of the
system without the contribution of the chemical reac-
tion (a;=const. , the a; being the normal variables);
it is to be denoted by ((, . (Frequency dispersion of T = Evp/v~ a~, 7 = (v '/hvp) (a/(pP) „p, (48b)

2 ~, Ao7'= (v vp)
~»O 0

while they may be obtained from absorption measure-
rnents by using limiting values:
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with n being the total increment of the absorption
coefEcient (for or-+oo) which is due to chemical relax-
ation. An advantageous graphical procedure to eval-
uate v-* and 7'- from absorption curves may be discussed
in more detail.

The method is simple if applied to curves described
by a single relaxation time ~„.Such curves are found
in cases where there is either only one relaxation time
or where the other relaxation times are suKciently
diferent from r, so that their contributions can be
neglected in the frequency range around car„ i. Then
the respective part of a reads

(2s Atb/e„)p~r„
(1+oPr„').

Any such curve has the same shape if plotted versus
frequency on double-logarithmic graph paper. Two
examples are given by the dashed curves in Fig. 2.
A stencil of the particular curve shape in consideration
Ldescribed by x/(1+x), x being the abscissa) may
be adjusted to an experimental curve in order to eval-
uate its parameters from the coordinates of the vertex
{L~)j. =(w~;/.„)P„~=1/;».

A more complicated situtation is encountered if
contributions of more than one relaxation time overlap
so much that they cannot be separated clearly. In any
case the resulting nX curv- being a superposition of
the simple functions car„/(1+oPr,') multiplied by a
weight factor—is broader and Batter than the curve
type described by a single relaxation time. This is
the obvious consequence of the fact that the p„must
be positive. The solid curve in Fig. 2 illustrates an
example of such a composite o.X curve.

According to (47d) and (36a), we find

aX~2s. (Ass/t „)/(or*

for co—&0o. The same holds true for the auxiliary curve

that of the experimental curve, while placing its vertex
at an ordinate value of sAvs/tt„(which must be known
from experiments or by calculations) . Then the vertex
will appear at co= 1/r*. This'graphical procedure is
demonstrated in Fig. 2. It is, of course, equivalent to
the analytical relation in (48b) . If the stencil is adjusted
to the low-frequency part of the nX curve, the same
method yields 7. as also can be seen in Fig. 2. This is a
consequence of

n) ~2m (Aep/e„) o&r

for co~0, which results from (47d) and (36b) or
(48b), respectively.

Other Relaxation Methods Employing Periodic
Perturbations

In principle, any relaxation process involving periodic
perturbations of angular frequency co yields the relax-
ation function y(co) of the respective measured quantity
and may be treated analogously to the ultrasonic case.
So far, however, there is only one more such process
which is of certain signiGcance for chemical relaxation
measurements, i.e., dielectric relaxation. It has been
shown theoretically as well as experimentally that
reactions taking place in a strong static electric Geld

may display dielectric dispersion due to perturbations
by a small superimposed periodic electric field."
Actually such an e6ect may be found even without
applying the static field if chemical relaxation proceeds
faster than orieotational relaxation. " This can be
expected, e.g. , for conformational changes of biopol-
ymers. '3

V. DETERMINATION OF RATE AND MECHANISM
OF A REACTION BY MEANS OF

RELAXATION DATA

Fundamental Aspects
(2whvs/s„o~r*/(1+r0'r ~),

which is easily drawn using the stencil mentioned
above. One has to adjust its high-frequency part to

In principle, chemical relaxation methods may be
applied to reaction systems of any complexity. Of
course, useful results can be expected only under
conditions yielding sufficient perturbation and meas-
urable response of the special system under consider-
ation. Then a relaxation function and certain mean
relaxation times may be determined directly from the
experimental data as pointed out above. The minimum
number of discrete individual relaxation times which
can be recognized from the shape of the measured
curve indicates a minimum number of elementary
processes involved in the over-all reaction. A more
detailed evaluation of the relaxation experiment with
regard to rate and mechanism usually requires more
information about the system —such as the results of

m =1/tlog u'A

tog vr-~vo
Vos

~' K. Bergmann, M. Eigen, and L. de Maeyer, Ber. Bunsenges.
Physik. Chem. 67, 819 (1963).

ss G. Schwarz, J. Phys. Chem. (to be published).
~' G. Schwarz, in Jt/Ioleculer Relaxation Processes (The Chemical

Society, London 1966), Special Publication No. 20, p. 191.

—log ~
FIG. 2. Double logarithmic plot of the sound absorption co-

eKcient per wavelength nX versus frequency f (co 2sf) The=.
dashed curves correspond to nX(au) plots for a one-step process
(with a single relaxation time) . They may be drawn by means of a
stencil and used as auxiliary curves for the determination of ~ and
r* as pointed out in the text.
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more relaxation experiments under diBerent conditions,
as well as thermodynamic data. A few reasonable
hypothetical reaction mechanisms can then be tested
by comparing their theoretically calculated relaxation
behavior with the experimental findings. If there is
no agreement, the mechanism being considered is in-
correct and can be ruled out. Once su%.cient evidence
has been found to indicate that a certain mechanism is
the true one, the theoretical relations between the
rate constants and the experimentally accessible
individual or mean relaxation times may be calculated
and utilized to determine those rate constants.

Discrete Relaxation Spectra

A spectrum of relaxation times which are suKciently
diGerent from each other to be distinctly recognized
in the over-all relaxation curve is called a discrete
relaxation spectrum. Spectra of this kind are encount-
ered in the case of fairly uncomplicated reaction mech-
anisms comprising only a few elementary processes
which differ considerably in their respective rates.
Then the individual relaxation times may be calculated
without serious difficulties following the procedure
pointed out above. The analysis of such reactions-
in particular, processes characterized by only one
relaxation time (i.e., one-step reactions) —has been
discussed in detail elsewhere. '

Due to degeneracy phenomena, even rather com-
plicated reaction systems may display a relatively
simple discrete relaxatioo spectrum. This is shown,
for instance, by the recently elucidated allosteric
binding mechanism of the enzyme glycerol-aldehyde-
3-phosphate dehydrogenase (from yeast) and nicotin-
amide-adenine-dinucleotide (NAD). P4 In spite of the
presence of nine linearly independent elementary proc-
esses here only three relaxation times actually occur.
That could be clearly recognized from the relaxation
curves. The investigation of this system represents an
excellent example of the exceedingly valuable poten-
tialities offered by chemical relaxation methods for the
study of a fairly complex reaction.

Complex Relaxation Spectra

As has been emphasized already, individual relax-
ation times may differ too little to be determined
accurately enough from the measured relaxation func-
tions. Under unfavorable conditions this may happen
even for a two-step process. Naturally, such complex
relaxations can be expected to a greater extent in
systems with a large number of relaxation times (i.e.,
with a large number of intermediate reaction steps).
Since, under these conditions, the mean relaxation
times 7.* and ~ can still be determined from the experi-
mental curves, a kinetic analysis can be attempted

' K. Kirschner, M. Eigen, R. Bittman, and B. Voigt, Proc.
Natl. Acad. Sci. (U.S.) 56, 1661 (1966),

in terms of these quantities. Unfortunately, however,
the solution of the complete relaxation problem is
frequently not practicable for complex systems des-
scribed by too many relaxation times, as has also been
emphasized before. In such cases r* and 7 cannot be
calculated according to Eqs. (34). Under these circum-
stances it becomes especially advantageous to use
x* because it can be calculated without a complete
solution of the relaxation equations, no matter how
complicated they are.

Calculation and Significance of v.* for a General
Reaction System

YVe consider the general system introduced in Sec.
II. According to (2), the net rate of the sth elementary
process reads

V,—V = k jK CIvelC vs2. ..C vsse C v slC v e2. ..C v seel
I ( I I

a a s f s 2 m fn 4

(49a)

This equals zero if we assume chemical equilibrium to
be established (c;=c;). A sudden change of the equi-
librium conditions at t=0 (e.g. , by a temperature
jump) resulting in k,'~k, '+8k, ', E, +E,+8E,—then
yields an initial net rate of

(Vs —ns') I~——(k,'+bk. ') CI"sICp"s& ~ C "s™8Ee (49b)

In case of a small perturbation of equilibrium, bk, '

may be neglected. Now utilizing (42) and (3), a
relation for the mean relaxation time v* pertaining to
the measurable quantity P can be derived:

1/r*= (bP) '(dP/dt), p-
= (8P)—' g(BP/Bc;) „=;,(dc~/dt) .I=p.

(50a)

where

g, =c," Icp" e ~ c„ve™(8ln E,/t'IP)

XQ (v„—v„')(BP/Bc;),,=;, (50b).
is determined by equilibrium properties of the system
(b ln E„bP=total changes of In E„andP due to the
change of equilibrium). In an analogous way, r* may
be obtained for small perturbations of other stationary
states.

The above procedure remains useful even for a large
perturbation described by E,'—+E, , k,o—+k, , p;0—+g; .
Evidently the initial slope of the P curve can be cal-
culated according to (50a, b), with k.=k, and c;=c,p,

while 8 ln K,/bP has been substituted for by

(EE,/dP)/E. " (dkK. =E," K,', AP=P P'). — —
One has to bear in mind, however, that under these
circumstances r* can be interpreted as a mean relax-
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ation time only if all the elementary reactions are of
the 6rst order; otherwise it has only formal meaning.

Since v* depends on P, on the t.";, and on the express-
ion Sin K./5P, (which is determined by the special
kind of relaxation experiment under consideration, )
variation of these quantities may permit one to measure
many dift'erent relaxation times r*; (j=1, 2, , S)
with the same system. On the basis of a given reaction
mechanism, the above theory yields the equations

1/r;*= g g;,k, (g=1, 2, ~ ~ ~, E) (51)

k

Tp Rp,
k/'

(n-i+1)kg
R; i+F= =R; (/=1, 2, ~ ~ n, ).

(52)

Recombination and dissociation of a single binding
site and a ligand molecule are described by the rate
constants ku and kD, resepectively. K~——ku/k~ is to
be called the "microscopic" association constant,

"J.Monod, J. Wyman, and J.-P. Changeux, J. Mol. Biol. 12,
88 (1965).

involving pertinent thermodynamic coefFicients g,.
Comparison of these relations with experimental data
oGers valuable assistance in searching for the true
reaction mechanism. If that mechanism is known,
Eq. (51) may be utilized to determine rate constants
from the measured w* values. Two definite cases of
practical interest may be considered to demonstrate
the virtues of the procedure.

Example I: Cooperati, ve Intramo/ecu/ar Trunsformati, ons
of BioPo/ymersP

Such processes proceed via a huge number of inter-
mediate reaction steps. Consequently they are char-
acterized by a virtually continuous relaxation spectrum.
Since its evaluation encounters considerable difhculties,
an analysis in terms of v.* is suitable here. A detailed
discussion for the special case of the helix-coil transition
of polypeptides can be found elsewhere. ' 4 An investi-
gation of the general problem ' ' is in progress.

Example II: An A//osteric System

Another important reaction scheme of biological
significance is the allosteric binding mechanism pro-
posed by Monod et a/."A substance E (e.g. , an enzyme)
may exist in two states, TQ and EQ, each of which has
e identical binding sites for the ligand F. The afljnity
of binding is assumed to be different for the T and
the R states. For the sake of simplicity we consider
here merely the special case with no binding to the
T state. If E.; means that i sites of E are occupied by
the ligand, the complete reaction system can be formu-
lated by means of the following n+1 elementary proc-
esses:

1/rp= k+[0'/(1+a)"j,
vnth v ~&(v.p.

(56)

L= k'/k the "allosteric" constant. The various symbols,
E Tp, and R, , may be used also to denote the cor-
responding concentrations. Then B=g; iR; equals
the concentration of occupied binding sites (bound
ligands). With S, F, and Ft,~ being the concentrations
of free sites, free ligand, and total ligand, respectively,
we have

B+S+nTp= nE; B+F= Ftot, , (53)

where the 6rst relation describes the conservation of
binding sites, while the second one is due to the con-
servation of the ligand.

That fraction of the maximum concentration of
binding sites which is actually occupied, i.e., I'=
B/(nE), may be called the degree of saturation. It is
usually a measurable quantity. On the basis of (52)
and (53), the equilibrium values of Y and Tp can be
readily evaluated to be

I'—a(1+a) '/LL+(&+a) "3

&'p= {L/{L+(&+a)"3} E (54)

A plot of V versus a=E&F yields a sigmoidal curve of
the type encountered with allosteric systems. E& and
I. can be determined by adjusting the theoretical
curves to the experimenta1 ones.

The reactions (52) are described by n+1 linearly
independent rate equations. Thus, in general, the
relaxation spectrum of the system is composed of
(n+1) individual relaxation times. Let us consider
only the two equations describing the temporal change
of the occupied sites and that of TQ, respectively:

dB/dt=kuF S k~B=kD{K~—SF B}, (55a)—
dTp/dt= k Rp —kTp= k{LRp Tp} ~ (55b)

If the unimolecular transition TQ~RQ is frozen, the
identical binding sites on the various R states do not
differ from each other. Then the e binding processes
of (52) degenerate into one process, namely the recom-
bination —dissociation process of the ligand and the
binding sites as represented by (55a). Only the relax-
ation time r~ for this one-step process will occur so
far as the relaxation of I' or Ii is concerned. The con-
tributions of the other (n —1) relaxation times formally
associated with the system vanish because of zero
weight factors (cf , Kirschner . et al.").The situation
remains essentially the same so long as the transition
TQ~EQ proceeds much more slowly than the binding.
This process, however, contributes a second relaxation
time rr. It can be calculated from (55b) under the
assumption that RQ is always in equilibrium with the
other R;. We find readily from (55a, b) that

1/rg =kg (S+F)+ko,
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(r* ) I=(~To) '(dTo/«) =

=k(8 ln L/ti ln Tp). (58)

correlating the rate constants kD and k with the mean
reciprocal relaxation times pertaining to Y(=8/(NE) )
and To, respectively. The thermodynamic factors may
be calculated by means of (54); they may also be
determined experimentally from equilibrium proper-
ties of the system. In the case of perturbation by a
temperature jump, we have

8 ln EA (d,HA/ZT')

81n Y dY/dT

If the allosteric conversion TO~ED is not sufficiently
slow, it changes Ep during the relaxation of Y (or F).
Due to this effect, the binding sites on the various
E.; species become distinguishable from each other;
consequently the relaxation spectrum is no longer
degenerate. In general, all the (e+1) relaxation times
now appear. The resulting complex spectrum is suit-
ably evaluated using mean relaxation times. I,et us
assume that F and To can be measured. Step-wise
perturbation of an original equilibrium (at t= 0)
described by Ez +Ez'+—pEz, L +'L+hL—yields, accord-
ing to (55a, b):

(dB/dt), =p kD S——F pEA,

(dTp/dt) i=p=k. Rp 8L. (57)

According to (42), this may be transformed to the
relations

(rr*) '=(~Y) '(dY/«)i~

=kD(bin EA/kiln Y),

(T is the absolute temperature, AHA and BBI,are the
molar enthalpy changes of the "microscopic" associ-
ation and the "allosteric" conversion, respectively. )

While it should usually be possible to measure I',
there might be no experimental access to To. Then,
of course, k (or k') cannot be obtained from 7.* meas-
urements. It may be evaluated, however, from the 7-

value or the course of the relaxation curve, provided
that v- or the relaxation function can be calculated—
possibly by means of a computer. If kz (or kD) and
the pertinent thermodynamic properties are known,
k (or k') is the only unknown quantity to be determined
by comparing the experimental and theoretical re-
sults. In case the calculations are too tedious to be
carried out, there is still the possibility of determining
rz* via the square mean of the reciprocal relaxation
times. How this latter quantity can be determined
experimentally has been pointed out in Sec. IV. Its
theoretical calculation does not require a complete
solution of the relaxation problem. The differentiating
of (55a) and the taking into account of (53) yields

(d'8/dP), ,= $k (8+—F) +k j(dB/dt)
—nk F(d Tp/dt) i=p. (60a)

After expressing 8 by I, further transformations
using (43), (56), (58), and (54) finally lead to

1 ' 1 1 L 1

(1+a)" ' r *+ . (60b)

This relation permits the determination of 7.~ from
by means of equilibrium parameters only, pro-

vided that v&* is already known.
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