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With the availability of modern lasers, light scattering can now be used as a probe of the energy, damping, and relative
weight of the various hydrodynamic collective modes in anharmonic insulating crystals. We first give a general review of
the distinction between hydrodynamic and high-frequency {ordynamic) vibrational modes. We then express the intensity
and spectral distribution of scattered light in terms of the Fourier transform of the displacement —displacement correla-
tion function y" (KO), which is the spectral weight of the phonon propagator. This follows some work of Loudon, who
has discussed first-order Raman (or Brillouin) scattering using standard quantum-mechanical perturbation theory.
Next we summarize what can be said about the spectral weight x"(KQ) in the region of low frequencies (or small energy
transfer). We use the model calculations of Kwok and Martin, as weH. as the standard theory of an elastic medium with a
nonlocal form of Fourier s law of heat dift'usion. In the case of pure isotropic anharmonic crystals, p" (K, 0) has resonances
corresponding to first-sound {pressure) and second-sound (temperature) waves, in addition to that from transverse or
shear elastic waves. Unless fairly restrictive conditions are met, the second-sound wave does not propagate and reduces
to the ordinary thermal diffusion mode of Landau and Placzek. The special nature of second sound in He II is discussed
in an Appendix.
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I. INTRODUCTION

In most many-body systems, there is a fairly sharp
distinction between the elementary excitations (or
quasi-particles) and the collective modes involving a
coherent mixture of quasi-particles. One well-known
example is the particle-like excitation and plasma
oscilla, tion of an interacting electron gas. It is now gen-
erally agreed that the most natural way of studying
the dispersion relation, damping, and relative weight
of the quasi-particles is from the poles and their residues
in the spectral representation of the single-particle
thermodynamic Green's function Gi (Fourier-trans-
formed in space and time) . Similarly, collective modes
can be associated with the analytic singularities in the
two-particle Green's function G2. This generally in-
volves the use of infinite-order perturbation theory to
deal with the interactions. However, the Green's
functions can be expressed in terms of self-energies and
vertex functions, and these may be evaluated by low-
est-order perturbation theory in the interactions. ' From
the point of view of studying the quasi-particles, only
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' For many examples, see A. A. Abrikosov, L. P. Gor'kov, and
L. Dzyaloshinskii, Quantum Field Z'heory methods in StatisticaL
Physics (Prentice-Hall, Inc. , Englewood Cliffs, N.J., 1963).

the simplest self-energy Feynman diagrams need be
included, often with a simple vertex and bare propaga-
tors. The approximations used for 62 are usually those
corresponding to a simple self-consistent field. The
basic idea is that the quasi-particles are well-defined
entities with a lifetime r(&o) satisfying' co))1/r(&o).
Moreover, if ~ is the mean lifetime of the majority of
quasi-particles in the system, then a collective mode of
energy 0 can only be treated by some sort of self-
consistent field method if Q))1/r.

This brings us to the possibility of a "hydrodynamic"
collective mode —namely, one of such low energy that
0&&1/r. Since the very existence of hydrodynamic
modes seems to depend on frequent "collisions" be-
tween the quasi-particles, the self-consistent field
method used for "dynamic" collective modes is no
longer applicable. The latter are referred to as being
in the "collisionless" region. In terms of Boltzmann
transport equations, hydrodynamic modes are related
to the possibility that the right-hand side, or "collision
integral, " will vanish. This possibility is closely tied
up with "collisional invariants" or the conservation
laws for energy, momentum, etc.

The standard way of treating hydrodynamic modes
is still that of Chapmann and Enskog, although this
method can be formulated in terms of single-particle
Green's functions~ instead of distribution functions.
The "collisions" do not alter a Green's function ap-
propriate to local thermal equilibrium, which is identical
to that for thermal equilibrium except that the thermo-
dynamic parameters (temperature T, pressure p, etc.)
now depend on space and time. Substitution of this
local equilibrium Green's function into the various
conservation equations results in self-consistent equa-
tions for T(r, t), p(r, t), etc., the solutions of which

2%e generally set A=1.' I.. P. Kadano8 and G. Baym, Quantum Statistical Physzcs (W.
A. Benjamin, Inc. , New York, 1961).
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are referred to as hydrodynamic collective modes. While
these modes also correspond to analytic singularities
in the spectral representations of G&(q, co), physically
speaking they are quite diGerent from the quasi-
particles and dynamic collective modes previously
mentioned.

Generally, a system of strongly interacting quasi-
particles (with nonzero mass) exhibits two low-fre-

quency, long-wavelength hydrodynamic modes. One
is a longitudinally propagating density oscillation or
sound wave L" cq, where c is the velocity related to
the usual thermodynamic derivative (dp/d p),j; the
other is a damped temperature wave (&u

—i'',
where D is the ratio of the ordinary thermal conduc-
tivity to the specific heat).

In the usual discussions of insulating solids, the dis-
tinction between the hydrodynamic and dynamic
collective vibrational modes is either not mentioned
or, if it is, the relation between them is not discussed
at all, This is not merely a matter of academic interest,
since, with the availability of intense, highly mono-
chromatic light beams from lasers, it should soon be
possible to use light scattering in order to study the
excitation spectrum at low and intermediate energies
in crystals (and possibly in He II) in a very detailed
way. We refer to the so-called erst-order Raman ef-

fect,4' sometimes also called Brillouin —Mandel'stham
scattering or the 6ne structure of Rayleigh scattering.
This method perfectly complements the low-energy
studies using artificially introduced sound waves
(~&10s sec ') and the high-energy studies using
thermal neutron spectroscopy (energy transfers of the
order 10" sec ' and higher).

With the expectation that the present small trickle
of Brillouin scattering experiments on solids (and
quantum liquids such as He' and He II) will soon grow
into a major river, we think it useful to review what
the spectral distribution and intensity of scattered
light tells us about the collective modes in condensed
systems, with emphasis on simple crystals and liquids.
In the next section, we show that the erst-order Raman
eGect is a direct probe of the time-ordered displace-
ment —displacement correlation function D(K, 0). Here
K and 0 are the momentum and energy diGerence
between the scattered and incident photons. We give
a quantum-mechanical derivation which is based on an
effective "photon —phonon" Hamiltonian, and is related
to recent work of Loudon' and Fetter. ' The usual

4 The classic reference is M. Born and K. Huang, Dynamical
Theoryof Crystal Lattsces(Oxford, England, Clarendon Press, 1954).

' L. D. Landau and E. M. Lifshitz, Electrodynamics of Continu-
ous Media (Addison-Wesley Publ. , Co., Inc., Reading, Mass. ,
1960), p. 393 B.' Among the many references on the subject of probing crystals
by scattering techniques, we might mention the brief review of A.
Sjolander, Phonons and Phonon Interacteons, T. A. Bal, Ed. (W.
A. Benjamin, Inc. , New York, 1964), p. 84.

r R. Loudon, Proc. Roy. Soc. (London) A2'lS, 218 (1963); a
more general review is given in R. Loudon, Advan. Phys. 13,
423 (1964) .' A. L. Fetter, Phys. Rev. 139, A1616 (1965).

formulation45 is based on the scattering of a light wave
by Quctuations in the dielectric tensor of the medium,
and this is brieQy sketched for comparison with the
quantum-mechanical discussion. Neutron scattering
determines Van Hove's density —density correlation
function S(K, 0), which is a less direct, and less com-

. plete probe of the excitation spectrum.
In Sec. III, we discuss what recent microscopic

calculations"s of D(K, 0) predict about the velocity
and damping of the collective modes. Attention is
called to the occurrence of "second sound" in crystals
and the conditions under which it is weakly damped.
The optimal conditions for its detection are reviewed
in Sec. IV. Additional modes due to atomic diffusion,
crystal surfaces, and phase transitions are also men-
tioned in this last section.

A. High- and Low-Energy Phonons

We shall now discuss the diGerence between high-
energy and low-energy phonons in crystals, and how this
depends on the temperature and anharmonic inter-
actions. Similarities and differences are pointed out
between these phonons in crystals and "phonons" in
classical liquids, He II and Fermi liquids such as He .
The distinction between high- and low-frequency collec-
tive modes has been extensively discussed for quantum
liquids. " We emphasize that this is an important
distinction in crystals as well, but one which is not
suKciently stressed in the literature. '"

The energy spectrum of dielectric crystals considered
as an elastic continuum is a very old and well-known
subject. "The proof that one can treat a crystal as an
elastic medium involves the same sort of problems
(in principle, at least) that arise in justifying the
classical hydrodynamical equations for a Quid. The
modern quantum theory of a crystal was developed4"
between 1910 and 1930 by Einstein, Debye, Born,
Von Karman, Peierls and others. Here the atoms (of
mass M, there being E of them) are considered to be
vibrating around certain equilibrium positions (the
crystal lattice) as a result of two-body forces. If the
force on an atom is proportional to its displacement
from its equilibrium position, the Hamiltonian can be
diagonalized in terms of elastic waves. When the
displacements from the equilibrium positions are

' P. C. Kwok and P. C. Martin, Phys. Rev. 142, 495 (1966).
'o P. C. Kwok, thesis, Harvard University, 1965 (unpublished);

the results are briefly summarized in P. C. Kwok, P. C. Martin,
and P. B. Miller, Solid State Commun. 3, 181 (1965), which in-
cludes further references to the literature."See, for example, D. Pines and P. Nozieres, Theory of Qeantgm
Liquids (VV. A. Benjamin, Inc. , New York, 1966)." See, however, R. A. Cowley, Proc. Phys; Soc. (London)
90, 1127 {1967)."A good reference is L. D. Landau and E. M. Lifshitz, Theory
of Etast~sty (Addison —Wesley PubL Co. , Inc. , Reading, Mass. ,
1960).

"A nice summary (which includes transport theory as mell) is
available in R. Peierls' Qnantum Theory of SoEds (Clarendon
Press, Oxford, England 1955).
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quantized,

u(r„)=P ' (a„+a„*)exp (z& r„),e(k, j)
2ÃMcu; k

one can think of the crystal as a gas of noninteracting
phonons, described by the harmonic Hamiltonian

processes. Such "Golden Rule" calculations have been
discussed in great detail by Kwok'o and many others. '4

At low-enough excitation energies at finite tempera-
tures, this procedure breaks down. When the phonon
of interest has energy &o, (k) «1/7 Lwhere i =7 (cu k&—T)
is the lifetime of a typical (i.e., thermal) phononj, one
can no longer treat the damping by the first few orders
of perturbation theory. In place of

&o= Z fi i(k) L&»*a»+2j (1.2)
one finds

Here ~;(k) is the energy of phonon with wave vector
k and polarization e(k, j), there being three mutually
orthogonal polarization vectors for a given k. %e
consider only crystals with one atom per unit cell, so
that there are no optical modes.

A caret on a vector A denotes a unit vector in the
same direction. Sometimes, however, it is used to denote
a quantum-mechanical operator, as in Eq. (1.1) .

One next includes anharmonic terms which are
cubic and higher in the displacements of the atoms, as
well as scattering effects from impurity atoms (mass
impurities, paramagnetic impurities, etc.) . If these
perturbations are "small, " one can still use (1.2) as a
good starting point. At T=O'K, where a simple per-
turbation theory is valid, the additional terms give rise
to interactions between the bare phonons. The result
is that their energy co;(k) is slightly renormalized, but
is generally still proportional to the wave vector

(u, (k) =v;(k) k, (1.3)

where 8, (k) is the renormalized velocity which depends
on the polarization and direction of propagation. This
linear dispersion relation is generally true for all fre-
quencies &10"sec ', which is the region of interest. In
addition, the phonons now have a lifetime r, (k), al-

though Fo;(k)»1/r;(k) Dor cubic anharmonicity,
1/r, (k) ~ eris (k) j. These zero-temperature phonons
might be considered to be the elementary excitations
of the crystal.

At finite temperatures, the situation becomes con-
siderably more complex. The analysis is somewhat

simplified by the fact that the great majority of phonons
have energies ~kiiT (where T is the absolute tem-

perature), due to the nature of the Bose—Einstein
distribution. As a result, it should not be surprising that
when computing the self-energy in the Dyson equation
for the time-ordered displacement —displacement prop-
agator (or "phonon" Green's function) DDr, &v;(k) j,
we need only consider interactions with the high-energy
thermal phonons (a&,h kiiT) if a&, (k) «kiiT. A further
implication is that the phonon's dispersion relatj. on and
damping can often be approximated by the results
at O'K. The width of the excitation of interest I';(k) —=

2/r, (k) can be found by simple perturbation theory,
keeping only the simplest decay and absorption

I', (k) A T4coi2 (k) ~; (o; (k) &&1/7., (1.5)

where A is some constant. ' Thus for low frequencies,
the phonon damping is proportional to what is essen-
tially the phonon gas bulk (or second) viscosity. The
result given by (1.5) is typical of a hydrodynamic
mode, and was first obtained by Akhiezer" using a
Boltzmann equation approach. At low frequencies, the
collective mode is sharpened in energy as the collision
rate among the excitations of the crystal {the thermal
phonons) increases! Conceptually, this low-frequency
mode is similar to a density wave in a gas of interact-
ing atoms. However, the fact that the "particles"
are in this case phonons (co~ k) to begin with results
in the hydrodynamic mode having a velocity es-
sentially identical to the velocity of- the bare phonons.
In a gas of atoms moving with average velocity 8,
hydrodynamic sound waves have a velocity 8/V3.

The preceding results might suggest the use of some
terminology introduced by Landau in his theory of
Fermi liquids. Thus, low-energy phonons might be
called "first-sound" waves, while the high-energy
phonons are more analogous to "zero-sound" waves.
The "first-sound" description makes sense in that the
low-frequency phonon could be approached from the
point of view of elasticity theory. In Fermi liquids, zero
sound is a collective wave in a system of interacting
quasi-particles —the analog is a high-frequency phonon
as a wave in the lattice of vibrating atoms. Brillouin
light scattering experiments would be especially wel-
come in the "crossover" region co;(k) 1/r. This region
of strong damping is a difFicult (although interesting)
area to study theoretically.

The thermodynamic properties of crystals are deter-
mined almost entirely by the excitations with energy
~k&T. Thus the hydrodynamic modes play no role in
their determination. Of course, in a harmonic crystal
there are no hydrodynamic modes at all—all the pho-
nons are of zero-sound type.

In Eqs. (1.1) and (1.2), we have been somewhat
cavalier about the so-called "zero-momentum" pho-
nons. Strictly speaking, the displacement of the eth

"See, for example, A. A. Maradudin and A. Fein, Phys. Rev.
128, 2589 (1962).

"A. Akhiezer, J. P~s. (U.S.S.R.) 1, 277 (1939).
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atom (with equilibrium position r„)defined by (1.1)
is given with respect to the center of mass of the crystal,
and the summation should leave out k=0. The total
Hamiltonian will contain the kinetic energy of the
crystal as a, whole (I"/2MlY) plus the energy of the
phonons (with k/0) . Here

P=Zp. ,

where p.„
is the momentum of the 1zth atom, relative

to the total crystal momentum

p„=P/lV—i P (Mco, (k) /2E)"'e(kj) (ui„ai—„*)
&& exp (ik.r„). (1.6)

The degree of freedom associated with the center of
mass is often referred to as the zero-momentum phonon.

The wave vector associated with a phonon in a
regular lattice is defined only up to some multiple of
the reciprocal lattice vectors. Thus the summation
over wave vectors is restricted to the first Brillouin
zone. The fact the phonon quasi-momentum flak is only
defined modulo a reciprocal lattice vector plays a
crucial role in the dynamic properties of crystals"
since it gives rise to the possibility of quasi-momentum-
destroying interactions between phonons ("umklapp"
processes). Phonons in crystals are quite different
from the phonons in He II as well as from the hydro-
dynamic sound waves in liquids, both of which carry
true momentum. The true momentum is associated
with the crystal as a whol- in scattering processes
the crystal as a whole takes up the momentum transfer.
A clear discussion of this point is given in a recent
review by Krumhansel. "

In a harmonic crystal, the phonons are exact eigen-
states at all energies. Presumably in this case a sound
wave which wouM carry momentum would be a super-
position of phonon states —such as a Glauber coherent
state. In such a situation, the sound wave would be
definable at O'K, and could have any energy up to
the Debye cutoR ~D. In contrast, hydrodynamic modes
such as "first sound" are only defined at finite tem-
peratures; they only exist at energies much less than
the dominant high-energy thermal phonons. Some
further discussion of coherent states is given at the end
of Sec. IIIB.

Apart from the greater importance of momentum-
destroying processes from umklapp processes, im-
purities, and walls, there is a close similarity between
a crystal viewed as a gas of interacting phonons and
Landau's theory of the low-temperature region of the
superAuid phase of He'. It was thus natural for Pesh-
kov" to suggest. that, under certain conditions, crystals

'6 J. A. Krumhansel, in Perspectives in Modern Physics, R. E.
&Iarshak Ed. (Interscience Publishers, Inc. , New York, 1966),
p. 532.

"V. Peshkov, J, Phys. (U.S.S.R.) 10, 389 (1946).

should also sustain oscillatory temperature waves just
as He II does. This arises because the heat current
carried largely by the high-energy phonons cannot be
dissipated by the normal (or quasi-momentum-con-
serving) phonon interactions, as first emphasized by
Peierls. "In an ordinary gas of particles of finite mass,
momentum-conserving interactions give rise to first-
sound waves if the collisions are suKciently rapid.
Similarly, in a crystal, one finds the possibility of a
density oscillation in the gas of phonons (which Landau
aptly christened "second-sound" waves in the case of
He II). Physically speaking, second sound can be
considered to be a propagating version of the ordinary
damped thermal diffusion mode which is predicted
(along with first sound) by the usual coupled hydro-
dynamic equations describing solids and liquids. "' In
the last few years, there has been considerable theo-
retical interest in formulating more precisely the condi-
tions for second sound in crystals. '" " The most
detailed discussion is that of Guyer and Krumhansel, "
although they based their work on transport equations.
Certainly one of the more interesting subjects to study
in crystals using Brillouin scattering would be devia-
tions from the well-known Landau —Plazcek central
peak. ' This is discussed in Sec. III.

Recently a thorough discussion of the expected
excitation spectrum in He II has been given by Hohen-
berg and Martin. '4 The problem in He II is to show
that the owly elementary excitations at zero temperature
are (longitudinal) phonons up to very high frequencies.
This state of affairs is intimately related to the macro-
scopic occupation by the atoms of a single state. Once
one has derived this excitation spectrum, one can
interpret it in terms of high- and low-energy phonons
in the same way a,s we have sketched for solids. In
general, it seems that the hydrodynamic energy region
ends at somewhat higher energies in crystals. Both
systems can exhibit second sound, although there is a
difference in that phonons in He II carry true momen-
tum. The total momentum P~ is shared between the
phonons and the atoms condensed into some single-
particle state (of total momentum Eke, say) . Neglecting
mutual friction, both can be treated as independent
quantities (although the sum must equal Ps). If a
heat current carried by the phonons (Q=c'P, where c
is the sound velocity) is set up in a certain direction,

'8 See L. D. Landau and E, M. Lifshitz, Fluid Dynamics
(Pergamon Press, Inc. , New York, 1959), Ch. VIII, p. 298 G.

'~ J. C. %ard and J. Milks, Phil. Mag. 43, 48 (1952).
0 R. A. Guyer and J. A. Krumhansel, Phys. Rev. 133, A1411

(1964); also E. Prohofsky and J. A. Krumhansel, ibid. 133, A1403
(1964); and M, Chester, ibid. 131, 2013 (1963)."A. Griffin, Phys. Letters 17, 208 (1965) .

s' R. N. Gurzhi, Fiz. Tverd. Tela 7, 3515 (1965) LEnglish transl. :
Soviet Physics —Solid State 7, 2838 (1966)g.

23R. A. Guyer and J. A. Krumhansel, Phys. Rev, 148, 766
(1966).

'4 P. Hohenberg and P. C. Martin, Ann. Phys. (N.Y.) 34, 291
(1965),
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the superfluid must have momentum Ps —P (this
fixes Eke) . This is why second sound is often regarded
as an out-of-phase motion of the normal fluid (phonons)
and the superfiuid. The resulting special nature of
second sound in He II is discussed in Appendix B.

The special problem in the case of solid crystals of
He4 and He' arises from the large zero-point energy of
these solids which invalidates the standard theory of
solids, since this is based on the idea that the displace-
ments around the equilibrium lattice positions are
"small. " Recently, Fredkin and Werthamer" derived
the existence and dispersion relation of phonons by a
method very similar to Landau's discussion of "zero
sound" in Fermi liquids. "This method is based on the
idea that the interactions between the atoms (or quasi-
particles in Landau s case) give rise to a self-consistent
field and thus one has the possibility of the atoms mov-
ing coherently in a collective oscillation. This approach
in no wa, y depends on the harmonic approximation
being valid, and thus is potentially useful for He' and
He4 crystals. '~ How the Fredkin —Werthamer phonons
are damped is not easily answered; in the "time-de-
pendent" Hartree approximation, the phonon modes
are infinitely long-lived. Until the lifetime is known, the
energy at which one goes over into the hydrodynamic
region is unclear.

This low-frequency region seems potentially interest-
ing in anomalous crystals such as He~and possibly
in ordinary crystals near their melting point, although
this problem is somewhat different. If the energy
spectrum is not exhausted by acoustic-type collective
modes but also contains free-particlelike excitations,
(literally speaking, the atoms), then, to the extent
that the latter play an important role, one expects
that the low-frequency hydrodynamic modes will
resemble those of a liquid rather than an elastic con-
tinuum. In the extreme case, such as in a Fermi liquid,
this means that the low-frequency sound waves have
a somewhat lower velocity than the high-energy zero-
sound waves. On a strictly empirical level, it is known
that even if the atoms are quite "mobile" in crystals,
quantities such as the specific heat and heat conduction
can be explained nicely in terms of acoustic phonons
alone.

Definitive tests of the excitation spectrum of solid
helium or solids near the melting point will require
direct probes, such as neutrons at high energy and light
scattering at low energies. Some direct sound velocity
measurements have been done on He4, but the attenua-
tion was not studied. Thus it is not clear whether the

"D. R. Fredkin and N. R. Kerthamer, Phys. Rev. 138, A1527
(1965)."L. D. Landau, Zh. Eksperim. i Teor. Fiz. 32, 59 (1957)

t English transl. : Soviet Phys. —JETP 5, (1957)g. See also J.
Goldstone and K. Gottfried, Nuovo Cimento 12, 849 (1959).

'7 L. Nosanow and ¹R. Werthamer, Phys. Rev. Letters 15, 618
(1965); F. W. de Wette, L. H. Nosanow, and N. R. Werthamer,
Phys. Rev. 162, 824 (1967).

frequencies used were in the low-frequency or high-
frequency region. In view of our ignorance on this
point, the validity of comparisons (such as made in
Ref. 27) between theory and experiment is not obvious.

Many authors" ""have suggested that the existence
and acoustic-type dispersion relation of phonons may
be considered as a manifestation of broken symmetry.
If one can choose a state of the system which breaks a
continuous symmetry of the Hamiltonian, then collec-
tive modes of zero energy must exist to restore this
symmetry. Since the total momentum P of a crystal is
a constant of the motion, the fixing of the center-of-
mass X breaks translational symmetry. This must be
restored by the existence of collective modes corre-
sponding to uniform translations, these translations
costing zero energy. Thus one has found a mode of
infinite wavelength (tl=O) and zero frequency (re=0).
By the uncertainty principle, the last feature implies
that it is perm:issible to take one position and to calcu-
late internal properties of the crystal relative to this
center-of-mass —for it takes a very long time before
the latter will Inove to another position.

To go from this zero-momentum phonon to the case
of finite q, we require that there be no long-range forces
between the particles. This seems to be closely related
to the assumption that, at low frequencies, "collisions"
dominate over self-consistent field e6ects, and therefore
the system can be described hydrodynamically as a
continuous elastic medium. Combining this assumption
with the fact that there are infinite fluctuations in the
center of mass, one can show that

lim L~(q)/q j
and hence ~(q) ~ q seems to be a good candidate. How-
ever, broken symmetry arguments do not tell us that
the fluctuations are proportional to co(q)/q-'.

By separating the center of mass as a distinct degree
of freedom with all the momentum, the excitations of
finite wavelength q in a crystal do not carry true mo-
mentum. Thus it would seem that the broken symmetry
argument has no relevance to liquids or gases. In these
systems one does not customarily fix the center of
mass, with the result that the excitations of the system
carry momentum. "

The existence of the discrete crystal lattice structure
means that the crystal does not have complete transla-
tional symmetry to begin with. In this case, if the lattice
is simple cubic with a spacing ao, then broken symmetry
arguments show that there is a whole series of zero-
energy collective modes, with wave numbers Q„=
m (2s./as) .

' P. W. Anderson, ConcePts in Solids (W. A. Benjamin, Inc. ,
New York, 1963), p. 175 G.' R. Brout, Phase Transitions (%. A. Benjamin, Inc., New
York, 1965), Chap. 4.

' See, for example, A. Bardasis, D, S. Falk, and D. A. Simkin,
J. Phys. Chem. Solids 26, 1269 (1965).
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The theory of broken symmetry is obviously of some
interest, if for no other reason than that it points out
a common origin for low-frequency modes in quite
diGerent systems. 's ' However, the usual presentations
may lead to confusion in that one seems to be able to
derive the existence of collective modes which are
ordinarily found by solving the equations of motion in
the strong-interaction or hydrodynamic region. In
actual fact, broken symmetry arguments often im-
plicitly make use of the well-known hydrodynamic
description of the condensed system of interest.

II. RELATION BETWEEN BRILLOUIN
SCATTERING AND THE PHONON

PRO GAGATOR

The first-order Raman eRect or Brillouin scattering
of light in condensed systems can be briefly summarized
as follows4': If the incident light wave has frequency
coo and wave vector ko, the scattered light wave at an
angle 8 to the incident direction will be shifted in fre-
quency by an amount

Q=afK
f

s,

= ~2(cap/c) sin (8/2) v. (2 1)

Here c is the velocity of light in the medium; v is the
velocity of the sound wave by which the light wave
mas Bragg-reBected; and K =k —ko is the change in
the wave vector of the light wave, namely, the wave
vector of the sound wave. In quantum-mechanical
language, Brillouin scattering is often said to correspond
to the incident photon creating (Stokes: 0= —Ee) or
destroying a phonon (anti-Stokes: Q=Ep) .

If there are other low-frequency Quctuations with a
dispersion relation co(E) which can scatter the light,
one finds the frequency shift is given by 0=&pp(E).
In general, the only other modes (excepting sound
waves) are of the nonpropagating sort—such as thermal
diffusion and mass diffusion (in liquids). In these
cases, there is an "unshifted" component of the scat-
tered light with width I'(E) =2DE' (where D is the
appropriate diffusion constant). We omit discussion
of ordered systems which also have spin waves or low-

frequency optical modes (which occur in ferroelectrics),
although these oGer a rich field for Brillouin scattering
measurements.

In discussing the spectral density of the scattered
light for a given scattering angle, it is obviously prefer-
able to separate the dynamical factor related to scatter-
ing medium from the essentially kinematical factors
which depend on the details of the experimental ar-
rangement. Once this is done, one can then concentrate
on the dynamical factor. It is well known' that electro-
magnetic waves couple into the electronic charge density
and this in turn affects the motion of the nuclei via the
electron —phonon interaction. If we omit all other
processes as small, the dynamical factor for light

scattering in insulators is directly related to the nuclear
displacement —displacement correlation function.

The usual discussions of light scattering do not make
a clean separation of the dynamical and kinematical
factors, such as is always done in neutron scattering. "
If one is interested in both the low-energy hydrodynamic
region as well as the high-energy region, clearly this
separation is especially important. The standard
formulation assumes that the light is scattered by the
thermally induced Quctuations in the dielectric tensor
of the medium. Since the wavelength of light is so
large with respect to the spacings between atoms, the
electromagnetic wave can be treated classically, al-
though the medium is often treated quantum-mechani-
cally if one is dealing with crystals. (The main effect of
quantum mechanics is to introduce Bose—Einstein
statistical factors. ) The light wave is assumed to induce
an oscillating dipole moment, which in turn radiates
electromagnetic energy in all directions. We briefly
summarize the results of this kind of macroscopic
approach in the case of cubic crystals. "This is followed

by an alternative discussion78 based on an effective
photon —phonon interaction valid for insulators.

A. Macroscoyic Ayyroach

The electric field of the incident light wave in the
crystal is defined by

Ep(R t) =Ep exp Pi (kp'R —capt) ), (2.2)

where kp=a&p/c is the wave number corresponding to
the frequency asap and c=cp/e, with cp the speed of light
il vaclo and I the index of refraction (assumed to be
a scalar for simplicity). One finds that at a point R,
far away from the scattering which took place at the
origin, the electric field of the scattered light at time
I' is

d(d
E(R, t) = —(cop/c) '(4irR) ' —exp fi(K R—cot) )

QQ 27'

k xtk xg(K, a&) E,(R,t)). (2.3)

Here the "momentum transfer" is

I=&—&0 (2.4)

k is the momentum along the scattered direction ff R,
and 5(E, cu) is the double Fourier transform of the

"For liquids, however, this has been done by R. Pecora, J.
Chem. Phys. 40, 1604 (1964);L. I. Komarov and E. Z. Fisher, Zh.
Eksperim. i Teor. Fiz. 43, 1927 (1962) t English transl. : Soviet
Phys. —JETP 16, 1358 (1963)P; see also R. D. Mountain, Rev.
Mod. Phys. 38, 205 (1966) .

"A more complete account has been given by G. Benedek and
K. Fritsch, Phys. Rev, 149, 647 (1966); see also G. Benedek and
T. Greytak, Proc. IEEE 53, 1623 (1965}.
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dielectric tensor:

~ dec—6(q, ~) exV Ez(q r —~t) 3,
(2zr) z 2zr

The limit T—+~ means that the light intensity must
be averaged over a macroscopically small but micro-

scopically large time interval. It is generally easier to
use the equivalent canonical ensemble average, that is,

S(q, ) =V—'f dr dtS(r, t) exp L
—i(q r —~t) j.

(2.5)

Tr {exp ( —PHp)E*(t) E(0) }

Tr {exp (—PHp) }

The volume V will generally be set equal to unity. To
an excellent approximation, we may neglect the change
in the wavelength of the light in computing the momen-
tum transfer, with the result that

X=2(cop/c) sin (-', 0), &2.4')

C
P(K, (o;R) =—lim T '

4x p

dt, exp (—i(utz)E*(R, t,)

where 8 is the angle between k and ko. The error in-
volved is of order (k —kp)/E.

The light detector at point R measures P(co', R), the
average power per unit energy range, per unit solid.

angle. This is given by

=lim T ' dr(E*(t+r) E(r) )p, (2.7)
+~Qo 0

where p—= 1/k~T and Hp is the Hamiltonian of the un-

perturbed crystal. The 6elds are expressed in Heisen-

berg representation. Putting (2.3) into (2.7) and

(2.6), we 6nd

P (K, (a; R) = (c/4zr) (cop/c) ' (4zr&) '

dt exp (—iQt) (B*(K,t) B(K, 0) )p. (2.8)

Here K and Q=~ —coo are the momentum and energy
transferred to the crystal, and

B(K, t) —= [k x (k x@(K, t) Ep) j.

dtz exp (ipptz)E (R, tz) . (2.6)

The average ( ~ ~ ~ ) is over the states of the system.
Introducing the change of variables f~

——7-, t=tl —t2, we
can transform (2.6) to

S(K, a —ppp)
—=P (K, &u; R) da)P(K, (a, R), (2.9)

Theoretically it is convenient if we express the power
in terms of the spectral density of the scattered light,
S(K &u

—(op) . This quantity may be operationally
defined by

C
P(K, cp; R) =—lim T '

4n-.p
dr dt exp ( i~t)—

which is clearly normalized to unity and independent

X(E*(R,t+r) E(R, v) )z . (2.6'). of R. More explicitly, we have

8(K, Q) = dt exp (iQt) (B(—K, t) B(K, O))p 2zr(i B(K, O) i')p. (2 9')

M'S(K, Q) —= dt exp (iQt) (p( —K, t) p(K, 0) )p,

where p(r) is the local density operator
(2.10)

N'

p(r) —=M Q b(r —r"„)=
n=l , exp (zk r)p(k). (2.11)

2zr 8

The differential cross section for neutron scattering is6

(where a is the scattering length)

The tiMe is used in order to distinguish this spectral
density from Van Hove's dynamical structure factor

which is the analog of P(K, cu; R). Alternatively, the
transition probability per unit time for the neutron to
go from state (kp, Np) to (k, Gl) is given by

W(K, Q) =i Vp i' S(K, Q), (2.12')

where V0 is the pseudo-potential for neutron —nuclei

scattering.
The change in the electronic dielectric tensor is

assumed to be linear in the elastic strain components
S p(r, t) . Following fairly standard notation, '."we have

e p(r, t) = —ep' Q p p„„S„„(r,t), (2.13)
y,r

where ao is the isotropic, static, dielectric tensor and

dzpldEde= (k/kp) a' S(K, Q), (2.12) S„„(r,t) —=—', {(8N„/»„)(r, t) +(cjzz„/»„)(r, t) I, (2.14)
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where u(r, t) is the displacement field operator in
Heisenberg representation. The elasto-optical coefFi-
cients p o» may be obtained from macroscopic measure-
ments, (being of order unity), although they may also
be expressed in terms of microscopic theory and are, in
principle, calculable (for example, Loudon') . For a
cubic crystal one has4

and
Paa, aa =Pill Paa, OP= P12 (42 &P),

paO, ap =ppa, ap =ppapa =
, pa8pa , p=—44 (41&P) .

Thus (2.13) may be reduced to

e &(r, t) = —eo212p445.,(r, t)

+(p» —p12 —2p44)5 (r, t)B s+p»V u(rt)8 s), (2.15)

where eo2= (co/c) =22. In an isotroPic (or amorPhous)
crystal, P» —P» ——2P44. A nonviscous (lt =0) liquid is
even simpler, since, in addition, pll ——p12, leaving only
the last term in (2.15). In this case, the displacernent
6eld fluctuations are due entirely to density oscillations.

The spectral density of the scattered light (2.9')
can now be related to the Fourier transform of the

where
u(K, t) = g 24'(K, t)e(K, j)

j=1,2,8
(2.17)

expresses the elastic displacement in terms of com-
ponents along the three polarization directions (for a
given wave vector K). The vectors ((~' ( ~2(1) are
de6ned by"

((K, j) =p44t (Eo K) e(K, j)+(Eo.e('K, j) ) K]

+(pll p12 2p44) g (K) i(Eo) «i(K, j) 1
t,

+P»~.e(K, j)]Eo, (2 1g)

where 1 represents one of the unit vectors along the cube
axes. Finally if we introduce Lkeeping (2.4) in mind]
another set of real vectors

n(j) =k x Lk x ((K,j)],
we may write the spectral density as

(2.19)

phonon propagator D(K, Q) . Using (2.13) and (2.14),
we have

5(K, t) Eo—— 224K—oE g 24'(K, t) ((K,j), (2.16)

Zn(j) n( j')
D'

8(K, Q) =—
dt exp iQte(Kj) ~ (u( —Kt)u(K, 0) )o e(Kt' )

24r g n( j) n( j')e(Kj) ~ (u( —KO)u(KO) ), e(Kj')
i,P

(2.20)

Once the initial and final directions of the light beam are Axed relative to the cube axes of the crystal, the vectors
n are uniquely determined. They are functions of the elasto-optical constants Lhere the analog of 41 in (2.12)]
and the polarization of the elastic displacement of interest. All the dynamical factors related to the crystal, on the
other hand, are concealed in the displacement —displacement correlation function. The kinematical factors
n( j) n( j') depend only on the details of the probing arrangement.

As a special case, let us consider (2.20) for a nonviscous compressible liquid. In this case, we see from (2.18)
and (2.19) that

n( j) =k x (k x Eo) [K.e(Kj)]P»
and hence

n( j) n( j') =b,H,'i(sin' 4)p»
I

where P is the angle between Eo and k. In addition, if we recall the equation of continuity (po= M/Y/V)

we may reduce (2.6") to
P(Kt)/po+iK u(K, t) =0,

P(K, 4o; It) = (C/42r) (4do/C) 4(42rR)
—'- Sin' it'1(Eollp») 2 (P ( —K, t) P (K, 0) )o

dt exp iQt
po

for liquids. For natural unpolarized light, we must average over the direction of Eo in the plane perpendicular to
ko. In this case, sin' p is replaced by —,'(1+cos' 0), where 0 is the angle between k and ko. According to (2.9), the
spectral density of the scattered light is

8(K, Q) = dt exp (iQt) (p( —K, t)p(K, 0) )o 22r(p( K 0)p(K 0) )o.
' (2.22)
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In our simple version of a liquid, 8(K, 0) is directly
proportional to Van Hove's density —density correlation
function S(K, 0) defined by (2.10). This result does
not necessarily imply that all liquids sustain only
longitudinal displacements or density oscillations. In
fact, liquids with shear viscosity may exhibit damped
shear waves.

Phenomenologically, one may describe an isotropic
medium in terms of two complex elastic moduli"
giving the response to isotropic and anisotropic strains,

E(pp) =E'(pp') +io&f'(ops),

P (oi) =ti'(oi') +ionl'((p') . (2.23)

In the absence of dispersion, E' and f' are the cornpres-
sion modulus and volume (or bulk) viscosity, respec-
tively; p' and q' are the shear modulus and shear vis-
cosity, respectively. In terms of linear response theory
(which is discussed in Sec. III, Part 8), one may
interpret the 6nite value of the rigidity p,

' as a result
of the nonlocal response to shearing strains. The com-
plex frequency-dependent shear viscosity is often
approximated by

(2.23')

where r is the so-called Maxwellian relaxation time for
shear stresses to be damped. We have g'=q and p'=
tt/r, if we neglect dispersion. For frequencies co))1/p. ,
the viscous liquid behaves like a solid with rigidity
p' and negligible shear viscosity. In contrast to the
situation at low frequencies, the shear waves are not
damped in this limit. In any event, in dealing with
liquids with large shear viscosity, one must take into
account fluctuations in the dielectric tensor due to
shearing strains. " In terms of the expansion (2.15),
this would mean only setting p» —P»=2P44. The coefli-
cient P44 is often taken to be proportional to ti'(0) .

In (2.13) we have not included the contribution
from thermal Quctuations in the local energy or tern-
perature. This term

Cv 'Bsp/BT fvX—8(r, t)8 s (2.24)

"S.M. Rytov, Zh. Eksperim. i Teor. Fiz. 33, 166, 514, 671
(1957) LEnglish transl. : Soviet Phys. —JETP 6, 130, 401, 513
(1958)g.

is generally neglected' " since the thermo-optical
coeKcient Bsp/BT fv is extremely small compared to
the photoelastic coefficients p s,„„.The latter coeffi-
cients are defined at constant entropy. No confusion
should arise between the dielectric constant eo and the
local energy deviation operator E(rt). The importance
of the term in (2.24) is discussed in Sec. IV. It appears
that it may be more important in crystals than in
liquids.

The only difference between the classical and quantum
calculations is that, in the latter, one has to compute
the matrix elements of the moment (i.e., the electronic
polarization tensor e) and to sum over initial and final
states (properly weighted) in the usual fashion. Thus
we have

pipiV

X
(is

f ns„
f

m)(ms np„
f

is) exp ( pE„)—
2.25g exp ( —PE„)

where
f e),

f
sip) represent the exact electronic states. In

homopolar insulators, the electromagnetic perturbation
can only lead to virtual electron —hole pairs in the elec-
tronic charge density around the atoms. We consider
only the one-photon term in the interaction of the
radiation with the medium,

V,„=—c' j, r Ar dr. (2.26)

The two-photon term

p, (r)A(r) A(r)dr
fr' e&
&2mc'j

is very small in comparison. The virtual electronic
charge density Quctuations produced by (2.26) couple
by the electron —phonon interaction to the vibrating
nuclei. Thus it is possible to change the vibrational
state of the medium through the intermediary of virtual
electron —hole excitations, with the real creation or
annihilation of "phonons. "

If the crystal is polar, the nuclear vibrations can be
directly excited by light f due to a perturbation like
(2.26) involving the nuclear current density). How-
ever, it seems that such effects give rise to much smaller
light scattering than the indirect process through the
electrons. '

One often expands the electronic polarizability in
powers of the nuclear strains, treating the coefficients
as constants which can be determined experimentally
(the elasto-optical constants). This is the meaning of
(2.13), where we use only the linear terms in the ex-
pansion, i.e., one-phonon processes. However, one can
also carry out the calculation of the light-scattering
cross section by standard quantum-mechanical third-

B. Golden Rule Formulation

In Sec. IIA, calculation of the first-order Raman
scattering reduced to calculating the electric moment
induced by the electric field E of the incident light. The
scattered intensity was proportional to the absolute
square of the radiating dipole
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order perturbation theory. Each scattering amplitude
fol' kpppp~ko& (with the creation or absorption of a
vibrational quantum K, 0) will involve V,„(theelec-
tron —radiation interaction) twice and V.i (the electron—
lattice interaction) once.

A clear and complete account of such calculations, as
well as references to the work of other authors, has been
given by Loudon. ' One result of his work is the relation
of the elasto-optical constants and the Raman tensors,
for which microscopic formulas are given. Loudon was

mainly interested in the properties of these Raman
tensors, and assumed the vibrational states were
phonons of infinitely long lifetime. In contrast, we
are mainly interested in the detailed nature of these
vibrational states. Loudon's work can be used to find
a good approximation for the vertex functions involving
one incoming photon, one outgoing photon, and one
incoming (or outgoing) phonon. The virtual electronic
processes are concealed in this vertex function.

Our effective Hamiltonian is

rh, RKi
III= Q Q V I . 14*(k)4p(ko) CaKi+a-K& )bop, &—K,

RRp K )Ip ~ jf
M,p j

(2.27)

which couples the radiation field described by

II„=Q ho»D&g*(k)bi, (k)+-', ),
k,X=1,2

(2.28)

in standard notation (o&p =c&I), and the nuclear displacement field which is given in the phonon representation by
(1.1) . The matrix elements are defined. by

4o k K) (2pre'&

, ~

(23filt') 't't pppIppppp;(E)) 't' Q e;(ko)p)p;. (k),)ei(Kj)iE,.Z; ",
l)p X j eP

(2.29)

where e(k)I,) are the polarization vectors (X= 1, 2) corresponding to the two transverse photons and (i, i', t, l')
refer to components along the cubic axes of the crystal. The Raman tensor depends on the energies

E '"'=R ""f—cps Ipp pp (E))
However, the interband electronic energies are so large compared to typical phonon energies pp;(E) that
we may set pp, (E) equal to zero in the Raman tensor, and o»p~ppp. In this approximation the Raman tensor for
acoustic phonons is given by Eq. (30) of the first paper in Ref. 7, and is the same for emission or absorption of
phonons. This last simplification was already implicitly assumed in (2.27). The explicit relation between the
elasto-optical constants and R is

p;,'II ——(4xe' jm'I') -((op ') R '"'( o», ppo, 0). — (2.30)

Fetter' has recently used an effective Hamiltonian such as (2.27) in discussing intensity correlations in first-order
Raman scattering from oPtical phonons. In addition, such Hamiltonians are often used in the field of nonlinear

optics. '4 Actually, in our calculations, it is convenient to use the displacement field explicitly:

where, using (2.29), we have

and

III= Z ~I If»*(k)4.(ko)
- Geo k'II

kph, Ape ()io 4

/kp k l ps o&pp

e'(ko&o) p'(k&) &&p" n &n (K)
)&O ~ O»OP&O &,'&,I,V

(2.31)

(2.32)

K=k—ko, g, i, (K) =-',it Eai( I)K+Ey, .(K)).
We can now proceed to compute the scattering cross section for the process ko) D~kA with the vibrational state

of the crystal changing from E;—+Sf. This is given by standard first-order time-dependent perturbation theory:

Q g(E() W(E;, ko)~o-+Er, kh) =2pr Q g(E;) I (f; rip+1& pspp 1~ III
~
i; r—ip& Npp) )'t'i(Er E' o»p+o&p) &

—(2 3—3)

~ See, for example, A. Yariv& IREE J. of Quantum Electron. 1, 29 (1965);A. Sealer and H. Hsu, ibid 1, 116 (1965)..
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where we have introduced a canonical ensemble for the initial state of the crystal,

g(@)=exp (—tt&')/Z exp ( PE—),j
and the summation is made over the exact eigenstates of the crystal. If we sum over Gnal states as well and sub-
stitute (2.31) into (2.33), we easily find that

W(kpl~p-+kX) = dt exp Li(p}},—p}},p) tj
&~0 X' j &~0 X j 0

(2.34)

using the now classic manipulations. ' As usual,

B(t) =exp (iHt) B(0) exp (—iHt),

where H is the crystal Hamiltonian.

n(B.) =1, n(kpXp) =0.

Using (2.32) and (2.13), the correlation function in (2.34) may be rewritten as

(-',I)'(p} /p} ) (e(k, X).S+(K, t) ~ p(k, , X,) e(kX) @(K,O) ~ p(k, X,) ),= B+
I

' t B;0
I

(kp k ko k
IIAp P Ao ) ) 0

(2.35)

(2.36)

(2.38)

In Part A of this section we found that the scattering intensity was proportional to (see (2.8)]
C(Kt) —= (B+(K, t) .B(K, 0))„ (2.32)

where B(K, t) —=k x (k x@(Kt) Ep). However, k xk xA is equal to the projection of the vector A onto the plane
perpendicular to the unit vector k. As a result, we may rewrite (2.32) as

C(Kt) = Q (p(kV) Q+(K) t) Ep*p(kl},") @(K)0) Ep)pp(klan') ~ p(kX").

Using the orthogonality of the photon polarization relation function
vectors and taking the initial light wave to be linearly
polarized

Ep=i(2+ipp ) itPp(kp, Xp),

we 6nd that

Z
Ap X i Vp X' j

The dynamical displacement field operator for a crystal
is defined by

= (n'/8irp}p) (B+(K, t) B(K, 0) )p. (2.40)
"

(r) = (E)—' Q u, h (r—r,), -

g=l
(2.42)

For natural light, we must average over the direction
of Ep, for a fixed value of kp. The relation (2.40) enables
one to relate the polarization-averaged transition
probability W(kp~k) Lsee (2.34)j to the scattered
power P(K, pp) /see (2.8)j and the spectral density
}S(K,ppp —ppi, ) Lsee (2.9') $.

For notational simplicity, we have generally made
no distinction between a local variable and the devia-
tion of a local variable from its equilibrium value. The
context should make it clear which is relevant. The
deviations give rise to scattering in the nonforward
direction and enter into the various correlation func-
tions. (We need not consider elastic Bragg scattering
since the momentum transfers of interest are very
small. )

According to (2.20), the spectral density for light
scattering involves the displacement —displacement cor-

and thus

u(K) = (N)-' Q u, exp (—iK r,),
g=1

(2.43)

C(K, 0) = (1/E') g expL+iK (r,—r&)j

dt exp (iQt) (u, (t)up(0) )p, (2.44)

which might be contrasted with the usual form of Van

where rg represents the equilibrium lattice position and

ug the dynamic displacement from equilibrium of the
gth atom. In terms of the atomic displacements, we

have
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Hove's function (2.10)

S(K, Q) =g exp LiK (r, —r~) 7 dt exp (iQt)

po(K) =3I P exp ( —iK.r,); pp
——ME.

In other words, the continuity equation (2.21) relating
the longitudinal displacement and the local density is
valid only for wavelengths much larger than the mean
displacement of the atoms in a crystal. This condition
is well satisfied in light scattering measurements, where
one is justified in working in the continuum limit.
However, the limited validii. y of (2.21) can, in principle,
make the interpretation of neutron scattering data
difficult because S(K, Q) may be an involved function
of the more fundamental displacement correlation
function C(K, Q).

C. Green's Function Formalism

At this point, we formally introduce the standard
thermodynamic Green's function for atomic displace-
ment, or phonon propagator. It is useful to be able to
express the spectral density S(K, Q) directly in terms
of these propagators, since they are the functions used
in almost all fundamental studies of the dynamic
properties of crystals and thus we can make direct
contact with these calculations. '»' """

The phonon propagator is defined by

X (exp fiK u, (t) j exp p —iK uI, (0) ])0.
If we expand p(E) in powers of the atomic displace-
ments, it is easily verified that to first order one has

~p(K)/po=—Et (K) —t o(K) )/po= —iK.u(K),
where the Fourier component of the density for a rigid
lattice is

D p)(t) =i(u. (r, t)up(r', 0) )p,

de—exp ( —i(dt)D p)(Id),2'
D.p((t) =—i(up(r'0) u. (rt) )p,

~ dG)—exp ( i~t—) D.p((~) . (2.47)
QQ 2'

For simplicity, we leave the position variables implicit
in the following manipulations. One may easily verify
the important periodicity condition

D.p'(t+r) =D-p'(t) '

which implies

r= ip, —(2.48)

where

coI 2~t/r, ——1=0, +1, +2, ~ ~ ~

D p)((o) =exp (ia&r) D p~((u).

If we express D p)(&g) in terms of a new function
x-p" (~),

D p)(co) =ix p" (co)/L1 —exp ( —P~) j, (2.49)

then
(2.49')

and finally

x.p" ( ) = —iLD-p'( ) —D-p'( ) 7 (2 5o)

There is an elegant way' ' of obtaining x p" (co) and
hence D p~(co). This takes advantage of the fact that
(2.48) makes working along the imaginary time axis
convenient. Restricting ourselves to the region Re )=0,
—P&Im t&0, we can express D p(t) by the Fourier
series

D.p(t) =r-' Q D.p((oI) exp ( i(erat), (—2.51)

D;„2(r&t&,r2t2) =i(Tu;, (rItI) u;, (r2t2) )0 (2.45)
In addition, one may show that

D p(t) = i(Tu (rt) up(r', 0)—)0,

dM—exp ( i~t)D p(Id), —
2~

(2.46)

where u, ,(rItI) is the ith component of the displacement
operator of an atom whose equilibrium position is r~
in Heisenberg representation. As usual, T orders the
operators so that those at largest times are to the left.
The spectral density for light scattering S(K, Q)
involves the displacement —displacement correlation
function (u„,(ryty) u' (r2t2) )o. This is related to the
time-ordered phonon propagator. Noting that D
depends only on the difference tI —t2 (due to the cyclic
invariance of the trace over the canonical ensemble),
we first introduce the Fourier transforms of

"~~x p (~)
D~p MI

—m 27I (dI —M
(2.52)

The Fourier coeKcients D p(~I) are the functions most
easily found. However, generally one may analytically
continue these coeKcients to the whole complex plane
by the direct. substitution Ides and hence 6nd D p(s)
for s=a&&iO+. Then we may obtain x p" (&o) as the
discontinuity of D p(s) across the real frequency axis,
1.e.)

X.p" (m) =2 Im D p(cvI) ~„I„;p.

Finally we explicitly note that

(2.53)

2 Im D p(cu iO+)—
dt exp (icut) (u (r, t) up(r', 0) ),=

"G.Baym, Ann. Phys. (N.Y.) 14) 1 (1961). (2.54)
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The important periodicity condition (2.48) requires
that"

D p& &(r, r'; t) =Dp ~ ~(r', r; t), (2.SS)

which follows from time-reversal and translational
symmetry. That

D p(r, r') =D p(r-r')

may only be true after we average over the positions
of impurities in the crystal. Also x p" (cv) is real and odd
ln or, and

x.p"(r, r'; ~) =x.p" (I r —r' I; ~)

satisfies Dyson's equation,

n.p '(K, co~) =Ln po(K, co~)]-'—II p(K, coi), (2.58)

where n po(K, co~) is the phonon propagator for a
harmonic lattice and II p(K, co~) is the self-energy or
polarization matrix. One may use (2.58) to develop a
systematic, self-consistent perturbation scheme. In a
harmonic lattice, for each wave vector K, there are
three natural frequencies co, (K) with polarization
vectors e(Kj). The matrix phonon propagator for the
interacting system can also be diagonalized. ""

n p(K, (a&) =M—' Q p, (Kj)ep(Kj) n;(K, co&), (2.59)

where M is the mass of the atoms and

n;(K, (u() = I
—(cg() '+(g '(K) —M—iII;(K, ~,) I

—'.

T

n;„;(K,+~) = dt dr exp L
—i(K r—co~t)]D;„,(r, t),

0 We have assumed that the interactions contained in
II p(K, &o~) do not change the eigenvectors e(Kj),
which is only strictly true in an isotropic solid. Com-
pleting this summary, we introduce the spectral density
of n;(K, co() L'see (2.52)],

~ d~ y;"(K, co)

~2m

D;„.,(r, t) =r
2''

Xexp I i(K r—~it) ]n;„,(K, ~~), (2.57)

n, (K, ~() =for t in restricted time zone. In general, the space in-
tegration would be replaced by sums over the lattice
points. We do restrict the momentum integrations in
(2.57) to the first Brillouin zone. The reason for in-
troducing a time-ordered phonon propagator is that it

We now return to the spectral density for light scat-
tering given by (2.20). Using (2.53) and (2.54), we

may show that

For light scattering problems, we can ignore the
atomic structure of the medium, and thus we consider The diagonalized polarization is degned by
the continuum limit. We have, for example,

II, (K, &o&) =g e (Kj)II p(K, ~&) ep(K, j). (2.61)
a,P

dt exp (iQt)e(Kj) ~ (u( —Kt)u(K, 0) )0 e(Kj') = —g p (Kj)x p" (K, Q)ep(Kj')m( —Q)

=M-' g Le(Kj").e(Kj)]Le(Kj") e(Kj')]

Xx,',"(K,Q) I ~(Q)+ 1]
=M- x;"(K,Q) I ~(Q)+1]8;;. (2.63)

Here e(Q) is the Bose—Einstein distribution. We see the 8(K, Q) can be expressed as a weighted sum of the
spectral densities of the three different polarizations, namely

~(K Q) =2 In{j) I'x "(K Q) t:~(Q)+I] 2~ Q InU) I' d ~~"(K) ~) I:&(~)+I] (2.64)

For cubic crystals, the vectors n(j) are given by (2.18)
and (2.19). More generally, we have

(V).= Z p-, , (E.) (&), (Kj).

Eq. (2.64) is our basic formal result. In the next
section, we discuss g,"(E,Q), particularly for low fr'e-

quencies and long wavelengths. As one special case,
though, let us consider (2.64) for a harmonic lattice.

This spectral weight satisGes

dM—~xt"(K ~) =1
2x

(2.67)

In this approximation, we have

x;"(K,Q) =2m. sgn Q8(Q' —co (IC) ),
=L~/~~(&) ]f ~(Q—~ (&) )—&(Q+~t(&) ) I

(2.66)
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In fact, (2.67) is a sum rule which is always valid. It
may be considered as an integral form of the com-
mutation relations between position and momentum,
and has many guises in terms of other quantities. Using
(2.66), one may reduce the numerator of (2.64) to

n' I'
Ib(Q —(o;(E) )Le(co;(E))+1)

opj E
/p(Q+po;(E) )}N((p, (E))j}. (2.68)

The first term corresponds to the (Stokes) creation of a
phonon and the second to the (anti-Stokes) annihila-
tion of a phonon, each having the appropriate quantum-
statistical weight.

One of the advantages of introducing thermodynamic
Green's functions is that the highly asymmetric statis-
tical weight appears as a separate factor in Eq. (2.64) .
The spectral density of the diagonalized phonon prop-
agator is a function of the temperature only through
the weak temperature dependence of the polarization
or self-energy II;(E, Q). In the hydrodynamic region
we have e(Q)—ksT/Q))1. Thus both lines have equal
weight and 8(E, Q) 8(E, —Q). Of course, for T~O,
the anti-Stokes component vanishes as exp (—Q/k&T),
which is the number of thermally excited phonons
present.

In a crystal, the spectral density satisfies

8(K, Q) = S(K+2prb, Q),

where b is an arbitrary vector of the reciprocal lattice.
The momentum transfer involved in Brillouin scatter-
ing of visible light (Ir —kp ——K+2sb) is so small that
Umklapp processes are not possible. "They do occur,
and are important, in neutron scattering —indeed, it
is only through these Umklapp processes that one can
study transverse modes by neutrons.

III. PHONON PROPAGATOR IN THE HYDRO-
DYNAMIC LIMIT

The hydrodynamic region K~O, 0—+0 is discussed
in Secs. IIIA and IIIB. First we make some general
remarks about the analytic structure of the spectral
weight x;"(K, Q), especially for high frequencies. LFor
more detail, we refer the reader to Refs. 10, 35, and
36.7 If we make use of (2.60) in conjunction with
(2.62), we find the formally exact result

x;"(E,Q) =2 Im n; (E, Q)

211,~(E, Q)

LQP —ppP(E)+II@(E, Q) 3'+Lil'r(E, Q)3"

(3.1)

where the polarization or self-energy for the jth polari-
zation has been separated as usual:

M- 11,(K, Q) =II@(K,Q)+siI, r(K, Q). (32)
~ R. A. Cowley, Advan. Phys. 12, 421 (1963).

pp (E) -II~(E pp (E) )/2po (E)
~~(E) +Ai(E) (3.5)

while the reciprocal lifetime I o: ln
~

exp PiE;(E) ij ~'}

is delned by

r, (E)=—r;(E, Q,)

r(E Qo)/Qp}Z, 'I'(E, Qp),

=11~'(E ~~(E) )/~~(E) &&~~(E) (3.6)

In addition to the renormalized, damped excitation
spectrum of the phonons, the spectral density is also
corrected by the so-called wave function renormaliza-
tion factor

Zj(E, Qo) —=
~

1+(2Qo) 'p)II@(E, Qo)/BQo ~'. ( .7)

While Z is frequently set equal to unity Las we have
done in (3.6) $, its effect on the overall weight is some-
times crucial in order that the quasi-particle approxima-
tion satisfy certain sum rules.

As discussed in the Introduction, for large wave
vectors one may determine P;(E) and I', (E) by simply
expanding the polarization function II;(E, Q) in the
anharmonic and other perturbations, keeping only the
first few diagrams (see Fig. 1). Such calculations have
been made by several authors for both pure anharmonic
crystals, ""~ as well as for crystals with a random

"J.M. Conway, thesis, Cornell University, 1964 (unpublished) .

One may show that II@(K, Q) is an even function of
Q, while Ii,r(K, Q) is odd. In the limit that II,~O, (3.1)
goes over into (2.66), which describes the well-defined
excitations of a pure, harmonic lattice.

If II@(K,Q) and II,~(K, Q) are finite but still smail"
compared to co;(E), it makes sense to interpret (3.1)
in terms of renormalized, damped quasi-phonons. The
energy tp;(E) of these quasi-phonons is defined by the
real, positive solution Qo of the equation

Qp' —ppP(E) +II@(E,Qp) =0. (3.3)

If there is only one such solution and, moreover, if
II,~(E, Q) is a smoothly varying function for Q in the
vicinity of 00, then we can make the approximation
II,~(E, Q) II,~}E, tp;(E)] in (3.1). Making use of
this simplification and the definition (3.3), one may
rewrite (3.1) in the quasi-particle form:

y;"(E, Q) =2~Z, (E, Qp) (2~Qp)-'

—',r;(E, Q,) -,'r, (E, Q,)
(Q Qp) +4 I'~ (E Qp) (Q+Qp) +-,'r, (E Q,)

(3.4)

For a given wave number E and polarization j, we have
a quasi-phonon with the complex energy E;(E)=
tp;(E)+iT, (E)/2. The renormalized energy is

Qo=op;(E) =it~/(E) —II@(E Qo) Jlp
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distribution of impurities. ~~ For low frequencies, no
6nite subset of self-energy diagrams. is good enough—
physically this corresponds to the fact that the inter-
actions between the phonons of thermal energies occur
suKciently rapidly that one can no longer treat them
as unperturbed phonons between scatterings.

However, Kwok, Martin, and Miller' have recently
solved Dyson's equation for three-phonon processes
using a single bubble diagram, with the true propagators
but no vertex corrections. Diagramatically, they solved

(C) of Fig. 1 with a bare 3-phonon vertex, using (3.4)
as an "ansatz" for the spectral weight of the phonon
Green's function to be determined. The result for the
damping I';(E) (defined by (3.6) $ reduced to Akhiezer's
result's in the low-frequency hydrodynamic region (see
(1.5)). As Kwok has emphasized the use of the ap-
proximation (3.4) in place of (3.1) is only justified if
one believes that, for a given wave vector and polariza-
tion, there is only one excitation. In fact, at low-enough
frequencies one may have a second-sound wave asso-
ciated with the longitudinal hydrodynamic first-sound
wave. Kwok et ul." justified their neglect of this addi-
tional mode on the grounds that the propagators occur-
ring in the polarization function are those corresponding
to the high-frequency collective modes, and thus the
possible existence of the low-frequency second-sound
mode need not be taken into account self-consistently.

The existence of lightly damped hydrodynamic
modes depends on strong interactions between particles
(erst sound) or phonons (second sound) but, just as
importantly, also on the fact that the various conserva-
tion laws (in particular, that of momentum and energy)
are obeyed in spite of these collisions. This last require-
ment is only met if the vertex function is properly
treated. For two-body interactions, the necessary
conditions on approximations to two-particle Green s
functions are discussed in Refs. 2 and 40. While the
present author has not completed an investigation of
the analogous conditions for three-phonon interactions,
it seems highly likely that for a phonon propagator
to include collision effects as well as to satisfy the
conservation laws will require that the vertex function
be treated at least in the ladder approximation.

The successful reproduction" (by Kwok ef al. ) of
Akhiezer's hydrodynamic result" for the damping of
erst sound using only a bare vertex seems closely
related to the fact that the long wavelength phonons
already exist in the absence of phonon interactions.
This is in contrast to low-frequency sound waves in a
gas of particles, the very existence of which depends
on the momentum-conserving interactions between the
particles. Physically, one expects that the diagrams
required to give second sound in crystals mll require

~ A. A. Maradudin, . Astrophysics and the 3fany-Body Problem
(W. A. Benjamin, Inc. , New York, 1963), Chap. VIII.

Is E. M. Iolin, Fiz. Tverd. Tela 7, 1490 (1965) LEnglish transl. :
Soviet Phys. —Solid State Phys. 7, 1198 (1965)g.

4s G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).

(A)

=c»c&&c

(c)

+ ~ ~ ~

c)c» &,A

FIG. 1. Dyson's equation for the phonon Green's function is
given formally by (A) . The polarization function is the sum of all
possible irreducible diagrams, the erst few being shown in {B)-for
cubic anharmonicity. These can be summed up by introducing
self-consistent propagators and a vertex function, as in {C).The
ladder approximation for the vertex function is gifen by (D).

~' I . J. Sham, Phys. Rev. 156, 494 {1967);see also %. Gotze
and K. H. Michel, Phys. Rev. 156, 963 {1967).

4' G. Baym, Phys. Rev. 121, 741 {1961).
4~ V. Ambegaokar, J. Conway, and G. Baym, in Lattice Dynam-

ics, R. F. %'allis Ed. {Pergamon Press, Inc., Neer York, 1965),
p.261.

that the vertex be treated in some "conserving ap-
proximation, " such as (D) of Fig. 1. This has been
proven in detail very recently by Sham. "' As far as
first sound in crystals is concerned, the vertex correc-
tions only change the damping by a numerical factor.
However, their [inclusion is absolutely necessary if

the renormalized ',first-sound velocity is to be given in
terms of the adiabatic elastic constants rather than the
high-frequency isothermal constants.

To conclude, we recall the relation'44'4' between
the scattering function S(K, 0) de6ned by (2.10)
and the more fundamental spectral weight of the matrix
phonon propagator 7t„„"(K, 0) given by (2.53) and

(2.54) . One can separate out the part of S(K, 0) which

is rapidly varying at the one-phonon resonances from

the diEuse background, since it can be shown~ that
this part satisfies

~ Ao (E')
2x
—(AS, (K, ar) =Efd(K) j'

i i, (3.8)
&2M&'

where Pd(K) $' is the Debye —Wailer form factor. For a
general anharmonic crystal, one still has interference
effects in S~(K, 0) between one-phonon processes and
two-phonon processes which can complicate the inter-
pretation of neutron scatteririg data.

In the limit of small wave numbers, one has a more
direct relation which the excitation spectrum since

E 'S (K 0) =-,'e—wK
7(,"(K,Q).K(N(0)+1), (3.9)

where Ld(E))'=exp (—W), with Wo:E'. The equality
(3.9) follows from a straightforward expansion of

P(K) =M Q exp P—iK (r„+u„)j
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in the atomic displacements u„.It is correct to order
E2; more precisely, it omits terms of order X'(I' )s,r,,
where u is the displacement 6eld and the subscript L
refers to a cumulant average. 4' LIf the so-called "linear"
approximation4'4' is valid ((I")p,z, =0 for N)2), then
(3.9) is not restricted to small E.j One can rewrite
(3.9) as

1V 'Sn(K Q) =(2M) ' Z Le(Kj) K)'xI (K Q)

XL24(Q) +1). (3.10)

For the small wave numbers of interest in light
scattering, the correlation function given by (2.44)
of course satisfies

e(K, j) C(K, Q) e(K, j) =y;"(K, Q)$22(Q)+1j. (3.11)

Indeed, this relation holds quite generally. In principle,
then, photon scattering is a more direct probe of the
structure of y;"(E, Q) than is neutron scattering.

Some further discussion of sum rules such as (3.8)
is given at the end of Sec. IIIB.

A. Model Calculations of Kwok and Martin

We now turn to Kwok and Martin's direct evaluation'
of the phonon propagator for a simple anharmonic
isotropic solid in the hydrodynamic region. The Hamil-
tonian used is reminiscent of one often used in studies
of He II as well as quantum hydrodynamics, since it
includes only longitudinal phonons which interact by
normal phonon processes arising from cubic anhar-
monicity. The phonons are assumed to have the con-
stant isothermal sound velocity v. For the three-phonon
process to be possible, it is necessary that one take
the finite broadening of the phonons into account'
self-consistently. While admittedly crude, the model
does have all the essential characteristics of a solid
in so far as a discussion of first- and second-sound
oscillations is concerned.

KM's discussion is based on the well-known Kada-
no6—8aym' Green's function formulation of non-
equilibrium problems. After introducing a driving term
into the Hamiltonian of the sort —fdrJ(r) u(r) (where
J(r) is some external source which eventually will be
set to zero), one may generate the equations of motion
for the perturbed phonon-propagator D by functional
differentiation with respect to J(r'). It is convenient
to use the relative and center-of-mass coordinates in
the displacement correlation functions:

D &(r14; rsvp'2)

Lr1 r2 11 12 (rl+r2) ~ (11+12) )
=D&&(r, 1; R, T)

~ Eked dp
, exp Ls(P r—oui))D&&(P, 4e; R, T),

22r (22r)'

(3.12)

the dependence on E, T coming from the driving term.
Once again one has the (local) spectral representation

D&(P, 40; R, T) D&(—P, 4s; R, T) =2y"(P, 40;R, T),

and hence

D&(P, rs; R, T) = 2X"(P, 44; R, T) L1+N(P, o1; R, T)],
where we may think of E(P, rs; R, T) as the local
phonon distribution function in the perturbed system
(similar to a Wigner distribution function). KM then
And the KadanoG —Saym transport equations for

D&&(P, o1; R, T),

assuming the R, T dependence is very slow (hydro-
dynamic approximation). These equations (which can
be considered as the analogue of Peierls' equation)
may be reduced to one for X(P, o1, R, T) and another
for y"(P, o1; R, T). The solution of the latter can be
approximated by a slightly renormalized version of the
spectral density for a harmonic lattice (2.66) .

The equation for E(P, o1; R, T) is solved by con-
sidering deviations from local thermal equilibrium in
the standard way. ' Expressing the total energy and
momentum densities in terms of D&(P, o1; R, T), one
ends up with the various local conservation equations
in terms of the conserved quantities and the local
thermodynamic variables (temperature, drift velocity,
etc.) .

KM's work is simply a Green's function version of the
standard discussions of the dynamic properties of
crystals starting with Peierls' equation. '3 To be more
precise, most discussions (see, for example, Ref. 20)
actually start with a truncated relaxation-time ap-
proximation for the linearized form of this Boltzmann
equation, care being taken to satisfy certain important
conservation laws in making these approximations. "
Peierls' equation (with corrections) has also been
derived using Green's function techniques by several
other authors. ~ 4' However, the precise relation be-
tween these papers and KM is somewhat complex. As
we have mentioned, KM expand their exact equations
of motion in terms of derivatives' with respect to R
and T. In terms of specific diagrammatic approxima-
tions to Dyson's equation in the absence of a driving
term, the significance of this procedure is not trans-
parent (see, however, Ref. 40) .Horie and Krumhansel's
analysis, on the other hand, seems to ignore vertex
corrections. This is somewhat puzzling, since as dis-

cussed earlier, the latter are closely tied up with the
"scattering-in" terms of transport equations.

The end result of KM's analysis is a set of coupled
hydrodynamic equations for the local energy density

4' P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,
Sii (i954).

44 J.S.Langer, A. A. Maradudin, and R.F.Wallis, Lattice Dynum-
4ss, R. F. Wallis, Rd. (Pergan1on Press, Inc. , New York, 1965),
p. 4ii.

~ C. Boric and J. A. Krumhansel, Phys. Rev. 136, A1397
(1964).
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(p(R, T) ) and the local displacement (u(R, T) ) in
the ensemble driven by the source J(r). Following
the classic paper of Kadano8 and Martin, 4' 4' one can
then use these equations to find the equilibrium cor-
relation functions of the conserved quantities. The
Fourier transform of the response function for two local
operators A(r) and B(r) is defined by

BA;(k, ra) =—dt dr exp I
—i(k r—cot) jbA;(r, i)

where

x+i+j (kt )
—co 2'll' 6) (co —M)

(3.17)

For times greater than zero, one has

Xgii(k, 0l) —= dr dk exp Li(k r ~—t) j
bb, (k) —= dr exp (ik r)bb;(r) =

J(k)

Xi~(t) (I A (r, t), B(0, 0) j)o, (3.13)

which involves the retarded commutator The so-called
absorptive response function is defined by

~ii"(k, co) =— dr di exp I i(k r—(oi) j
X(LA(rt), B(0,0)j) (3.14)

and is the spectral density of xgQ(k M),

dQ egg" (k, 0)
2x 0 co

8H(t) = —lim dre"e(t) LJ(r) u(r, t)

+(T(r)/T, )g(r, i) j (3 16)

one can compute by standard techniques the deviation
of the expectation value of A. ,(r) in the perturbed
ensemble from its value in equilibrium:

bA, (r, i) = (A (r, t) )—(A (r) ),.

If one considers the linear response to a mechanical
perturbation of the form

T(k) /T,
~e do not write down the value of bA;(r, t) for times
less than zero, except to remark that it is possible to
show that the result is consistent (for su%ciently small
values ofk) with the interpretation of J(r) and T(r) as
the local thermodynamic variables. That is, we have

bA;(r, t=0) = (BA,/BT) IgT(r)+(aA, /BJ) I, J(r),
(3.18)

where the coefficients are those appropriate to complete
thermal equilibrium

Since we may compute 8A, (r, t) from some appropriate
set of hydrodynamic equations, one may obtain the
spectral density using

Q x„;„,"(k, ~) &b;(k) =«e &A (k, s) I,—+,0 .

This whole procedure46 is simply a systematic way of
incorporating the information contained in the dif-
ferential equations involving conserved dynamical
quantities and their associated thermodynamic param-
eters into the structure of the various correlation
functions.

The displacement —displacement spectral density
found by KM using the above method is

W(.k) 4~r (k)

((oP—w'k') (co'—w'k'/3) Wrs's'k~$—'+aPF'(k) f~ —e'k'g" (3.19)

where W= (Cp/Ci —1))0, Ci,p being the specific
heats per unit volume at constant volume and pressure,
respectively. Some terms proportional to the coupling
of thermal and mechanical variables are not included
in (3.19), although this approximation Lsee (4.19) of
Ref. 9j can be removed. The damping parameter is
found to be

r (k) =.n'k2+ (,.)-i, (3.20)

where v is the phonon relaxation time due to normal
phonon processes. No momentum-destroying processes
(rz) were actually considered, but it is clear that, in
the usual approximations, 20 they would enter in the

46 L. P. KadanoG and P. C. Martin, Ann. Phys. (N.Y.) 24, 419
(1963).

47 P. C. Martin, Statistical Mechanics of Equilibrium and Eon-
Eguilibrium, J. Meixner, Ed. (North-Holland Publ. Co., Amster-
dam, 1965), p. 100.

way indicated in (3.20). One may interpret the two
terms in (3.20) as the damping from the viscosity (or
internal friction) and thermal resistivity of the inter
acting, dissipative phonon gas.

In terms of the time-ordered phonon propagator
for longitudinal phonons, (3.19) corresponds to a
polarization function or self-energy of the form

W(vk)'
M-'IIi(k, ~)=, , (3.21)

co' —e'k'/3+iv) 1'(k) —Ww'k"

where the subscript l denotes longitudinal vibrational
modes. Equations (3.19) and (3.21) have been derived
on the assumption that

cur((1. (3 22)

For a given value of r, this defines the hydrodynamic
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~—xiliz(k, a)) =2(o(1/v+1/2s), (3.21')

region of low energies where the results are valid. The
inequality (3.22) represents the sort which always
arises in the hydrodynamic domain. At high frequencies,
one has a quite different expression for the polarization
function. There the imaginary part would be

which is the standard sort of Golden Rule result zt2., rs
are defxned following (3.20)$. The self-energy given
by (3.21) is due entirely to low-frequency energy den-
sity osci11ations which couple into the particle density
with weight (CF/Cz —1),

To see this more clearly, let us consider the spectral
density of the energy —energy response function

TCF (F2k2/3) s)F(k) ((a2 —D2k2) '
I«"(» ~) =

P(~2 —S2k2/3) (F02 —S2k2) —WS2k2(g2j2+(g2F2(k) L~2 V2k2)2
(3.23)

Clearly this is the spectral density related to a two-
phonon Green's function, since the local energy density
is bilinear in the displacement Geld. Setting 5 =0 for
simplicity, (3.23) reduces to

TC(s'k2/3) a)I'(k)
(~2 S2k2/3) 2+~2F2(k)

Clearly the spectral density of the polarization function
III(k, ~), given by (3.19), is related to X«"(k, ~),

Im IIi(k, c0) = —3WafX«" (k, ~)/Cz T. (3.24)

More generally, we can always express the polarization
function in terms of an irreducible four-vertex function
(sum of diagrams with two incoming and two outgoing
phonons) . This four-vertex function4' is directly related
«Xs."(k ~).

In this regard, we might recall the identity

If F(k) is smail, (323') predicts a resonance at

co =~ (1/V3) sk =+szzk, (3.30)

which corresponds to second sound (a low-frequency
oscillation in the energy density). On the other hand,
if there are too many momentum-destroying phonon
interactions, we have

MTQ(1 ) (3.31)

and hence F(k)))ID. In this case (which is the usual
one except under very special conditions), we have

X,s"(k, c0)~TC(o(Drk2)/PI02+(Dzk2) 2$ (3.32)

where D~=—~zz'v. ~ is the thermal di6usion constant. In
terms of the single relaxation-time approximation KM
used, the static thermal conductivity is given by the
Debye expression,

X„(k,co) = —(k2/2I0) TK(k, co), (3.25) K=K(0, 0) = ISCF'rd=CDr. -(3.33)
where

co

E(k, I0) =~
&3VT' o

X dpi(Q( —k, 0) Q(k, t+2X) )2 (3.26)

might be thought of as a nonlocal form of Kubo's
well-known expression for the thermal conductivity.
The heat current operator Q(r) is defined by the energy
conservation equation

(8/Bt) P(r, t) +V.Q(r, t) =0. (3.27)

The author has suggested" that, in the adiabatic hydro-
dynamic region (&a2.«1), one has

E(0, (o)

~1-(k'/' ) K(0, )/C&

In crudest approximation for the decay of heat cur-
rents, one has

E(0, co) =2Cs'vd(1 zcorg) ' (—3 29)

which brings us back to (3.23'), if we set F (k)—F(0) .
LWe discuss (3.28) in more detail in the next subsection. ]

In contrast to the weakly damped propagating mode
which arises when coo&)1 L(3.22) is always assumedj,
(332) exhibits the usual damped mode corresponding
to thermal diffusion.

Under certain conditions, one can decompose
xi"(k, +) in (3.19) into a suzn of two distinct reso-
nances. ' Such approximations are most easily made
in zi(k, cv), which is given by

F (k) s'= Fz.x'+ Fxz.xz' —~F Fzz/k'. (3.36)

Making use of the fact that W&(1 in crystals, (3.35)
may be solved to give

vz =D(1+A'W),

vix = (s/VE) (1——,'W). (3.35')

M ISI(k, co) =
I02—'v'k2 —Ws'k2+2IOF (k)

(3.34)
L~ &I k +DEFI(k)cojLN siz~k +2FII(k)Mj

for co in the upper-half plane, The denominator has
been written in a symmetric manner, with

(szvzz)'=s'/3$ vz'+szz'= (zzyW) v' (3.35)

F(k) =Fz(k)+I'zz(k);
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If the inequality
Wi'(k) o&(((ttk) '

is also satisfied, the solutions of (3.36) are

(3.3'7)

g~'~I'rr

(~'—»r'k') '+ (roI'rr)

3 (o&1') W(ro' —z 'k') (ro' —z 'k')

«"'—»'k')'+("I'r) ']L(&'—» kr') '+ ("I'»)']
(3.38)

The third antiresonance term is clearly of negligible
importance. The second-sound resonance width is
considerably larger than that of first-sound (by a
factor 1/W), while its relative weight is smaller

(by a factor ~W) s 4 Second sound in He II couples
into the longitudinal displacement correlation function
in a similar fashion.

B. Nonlocal Hydrodynamic Equations

In principle, it is straightforward to generalize KM's
discussion to a more realistic crystal with phonons of
transverse and mixed polarization, as well as momen-
tum-destroying interactions. However, this general
approach' to nonequilibrium phenomena in crystals
su8ers from the same kind of defect that any Chapman-
Enskog method does. Namely, one is led to a specific
set of transport equations which involve various thermo-
dynamic derivatives and transport coeKcients; but
these are already given exp/i'cstly in terms of the prop-
erties of the interacting elementary excitations.

In recent years, considerable interest has developed
in an alternative way of dealing with slow irreversible
processes. In the Kubo formulation, one first tries to
derive from microscopic theory the various equations
of irreversible thermodynamics relating currents and
forces. The proportionality constants (or transport
coefficients), however, are given by formally exact
time integrals of current —current correlation functions
in an equilibrium ensemble. As one example, the static
thermal conductivity is given by E'(0, 0) defined
in (3.26) . One is still faced with the problem of actually

4' R. A. Guyer, Phys. Letters 1'F, 208 (1965); see also R. A;
Guyer, Phys. Rev, 148, 789 (1966}.

49 P. C. Hohenberg and P. C. Martin, Phys. Rev. Letters 12, 69
(1964); see also V. L. Ginzburg, Zh. Eksperim. i Teoret. Fiz. 13,
243 (1943).

I'r (9/4) Wl',

I'rr L1—(9/4) W] I'. (3.36')

If we neglect Ws'k' in the numerator of (3.34), we may
easily express it in terms of partial fractions, with the
result that

M')" ko) = (1—4W) coI'r

(~s s sks)s+(~P )s

(3.39)

(&/8t) (r, t)+V (r)/clt) Qou(rt)]=0, (3.40)

ps(ci'u(r, t)/r)ts)+V e(r, t) =0 (3.41)

where Q (r, t) is the heat current and ~(r, t) is the stress
tensor. Since we take the volume to be unity, po is
the average density. For a fixed number of particles,
constant density is equivalent to constant volume.

The stress tensor is taken to be the usual local ap-
proximation, in which case (3.41) may be reduced
to12,47

psc)'u(r, t) /r)t'= —Vp(r, t) + (Is+rlr)/Bt) V'u(r, t)

+$',p+ ( ', rt+f'r)/Bt) ]V-pv u-(r, t) ]. (3.41')

The proportionality constants r), f, and p are the shear
viscosity, bulk viscosity, and modulus of rigidity,
respectively, and p(r, t) is the local pressure (the
diagonal part of the stress tensor). The part of the

"C. P. Enz, Phys. Letters 20, 442 (1966); C. P. Enz, Ann.
Phys. (N.Y.) (to be published)."J. A, MacLennan, Advancesin Chemical Physics, I. Prigogine,
Ed. (John %iley Bt Sons, Inc. , New York, 1963), Vol. 5; D. N.
Zubarev, Doklady Akad. Nauk S.S.S.R. 162, 532 (1965)g;
t English transl. : Soviet Phys. —Doklady 10, 452 (1965)j; H.
Mori, Progr. Theoret. Phys. (Kyoto) 28, 763 (1962).

evaluating these formal expressions —a not entirely
trivial task. In any event, it is very convenient to be
able to separate this question from the derivation of the
equations describing the response to weak, slowly
varying perturbations. In the Chapman —Enskog ap-
proach, one does not have this separation. To be more
specific, this separation involves deriving a generalized
version of irreversible thermodynamics with transport
coefficients depending on position and time. Several
people have begun such a formulation. '7"""These
nonlocal constitutive equations, in conjunction with
the various local conservation equations, form a closed
set and should be completely sufBcient to formally
describe all hydrodynamic modes. The dispersion
equations of such modes will involve various nonlocal
transport coefficients L(tl, re) (which are a generaliza-
tion of the Kubo formulas used in the limit q

—+0,
o~-+0) as well as thermodynamic derivatives. The
evaluation of these quantities is a separate problem.

In this subsection, we discuss the question of second
sound in realistic crystals in the spirit of the above
approach.

We begin by writing down the Nslal set of conserva-
tion and constitutive equations for the local hydro-
dynamic variables which are sufhcient to describe the
slowly varying properties of a crystal. We consider
an isotropic medium, although qualifying remarks will
be made at certain points as to how the results would
be altered for more restrictive crystal symmetries. The
conservation equations for local energy, number, and
momentum densities are, respectively,

(ag/at) (r, t)+V Q(r, t) =0,
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stress tensor which is proportional to the time deriva-
tives of the strain (i.e., the terms involving the vis-
cosities) gives rise to damping. The viscosity coefficients
are given by the static limit of appropriate Kubo
correlation functions —their evaluation requires a
separate dynamical discussion. The terms proportional
to the strain involve thermodynamic derivatives. Again,
their determination, although considerably simpler
than the dissipative terms, requires a discussion of the
high-frequency excitations of the system, or equiva-
lently, the ground state properties of the crystal.

Before discussing the form of the energy Qux, it is
useful to analyze (3.41') a little further in conjunction
with (3.40). Taking the divergence of (3.41'), we find
an equation for the longitudinal displacernent ui(r, t).
Since

p(rt) = —poV ui(rt), (3.42)

it will be convenient to work in terms of the density,

(a'/at') p(rt) —V'p(r, t) = (sit+&)/po) (a/at) V P(rt)

+( p/po) V p(rt) ~ (3 43)

Now we can express the local pressure in terms of the
local density and temperature:

p(rt) =ap/ap ~,p(rt)+ap/BT ~,T(rt), (3.44)

or, in terms of the local density and entropy s(rt),

p(rt) =ap/ap ~,p(rt)+ap/as ~i s(rt). (3.45)

As usual, we assume the constant part of the local
variables has been subtracted out. For crystals, we
may take s(rt) =8(rt)/ TSubstituting this expansion
into (3.43), we find that

cg p/po (3.52)

and the transverse diGusion constant is simply the
viscosity,

Di = it/po. (3.53)

In an anisotropic (cubic, for example) crystal, there
are sound waves of mixed polarization and the situation
is more complicated. In particular, the nonlongitudinal
elastic displacements may couple to the local tem-
perature (or energy) .

We are faced with solving (3.46) in conjunction with
(3.39) for p(rt) and 8(rt) . The usual step in solids (and
liquids) is to use a local form of Fourier's law of heat
conduction

(3.46) j to derive expressions for the energy —energy
correlation function. However, we could equally well
make use of the local temperature. Finally, ap/as ~i'

is directly related to the thermal expansion, which is
zero in a harmonic crystal.

Next we turn to the transverse oscillations. Taking
the curl of (3.41'), we are left with

po(a'/at') V xu, (rt) = (P+rta/at) V x V'u, (rt) (3.50)

Thus the transverse displacement u& is completely un-
coupled from the local density and temperature. This
crucial fact has already been used in discussing (3.43) .
That is, we have assumed that any one of the three
local quantities (pressure, density, and energy) could
be expressed in terms of the other two. The equation
of motion for u~ can be written as

(a'/at')u, (rt) —cpVou, (rt) =D, (a/at) V'u, (rt), (3.51)

where the transverse velocity is defined by

(a'/at') p(rt) cpV'p(rt) =D—i(a/at) V'p(rt)

+T 'ap/as ~yV'8(rt) . (3.46)

Q(r, t) = EvT(rt)—
to reduce (3.39) to

(3.54)

cg'=—ap/ap i,

and the longitudinal diffusion constant is

Di = (ipt+0) /po

(3.48)

(3.49)

If we neglect the two terms on the right-hand side
of (3.46), Lthat is, neglect the damping effects due to
viscosity and thermal conduction), we are left with a
density oscillation moving with velocity c& defined in
(3.47). One often assumes that BP/as ~i =0, so that
the density oscillation is uncoupled from the local
energy (or entropy) ffuctuations. In terms of (3.45),
this is equivalent to limiting oneself to an adiabatic
pressure wave. We have chosen to treat the local
energy as the basic thermal variable since eventually
we want to use hydrodynamic equations Lsuch as

We have introduced abbreviations for the longitudinal
sound velocity

ci = (xp/Po) +cA y (3.47)

where the adiabatic thermodynamic sound velocity is

(a/at)E(r, t) =EBT/ao ~yV o(rt)+EBT/ap ~,V'p(r, t).
(3.55)

If we can neglect the last term, we are left with the
famous partial differential equation governing heat
conduction at constant density.

The simultaneous solution of (3.55) and (3.46) has
been exhaustively discussed in the literature, especially
for liquids. LFormally, the only difFerence between
liquids and crystals is in the velocity defined by (3.47) $.
Often the local pressure and temperature are used as
basic variables. It is a straightforward rnatter to trans-
form (3.55) and (3.46) for comparison. A very succinct
discussion of the weakly damped pressure waves and
heavily damped temperature waves is given on page
303 of Ref. 18. At low frequencies, the pressure wave
propagates with the adiabatic sound velocity given by
(3.47). At high frequencies (co»1/rz, where rz is the
relaxation time for heat currents to decay), one finds
that the sound velocity involves the isothermal com-
pressibility. Strictly speaking, the local temperature
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and the attendent concept of a thermal conductivity
coefficient requires that &sr~((1 (unless there is a fre-
quency window). For this reason, it seems unphysical
to solve the usual local hydrodynamic equations in
the limit eorms))1 (high thermal conductivity) and use
the results to describe the damping of isentropic sound
waves. Moreover, at high frequencies the thermal
diffusion mode should cease to exist entirely Lrather
than be given by oo = i (E—/Cr) q').

Let us next sketch the general formulation of moelocal

hydrodynamics as given by Martin' and others. ""
Ke apply a dynamical perturbation of the form

bEI(t) = —Q drbb, *(rt) B,(rt), (3.56)

a specific form of which is (3.16). This gives rise to
nonzero expectation values of the various current
operators J; (rt), defined by

(8/Bt)B;(r, t)+V J;r(t) =0. (3.57)

If B is a vector, J will be a tensor. To lowest order, the
well-known calculation of the current response gives

bJ;(k, co) = —Q 2s.s. (k, co) ~ Vbb;*(k, co), (3.58)

on values determined by usj is quite natural, although
it is not often made in the extensive literature on the
response to so-called "thermal" perturbations. It is
convenient to give the current response in terms of the
true local hydrodynamic variables:

bJ;(r, t) = —P dt'L&, &, (r r. ',. t ——t') ~ Vhb, (r', t'),

Next we assume that the perturbation (3.56) is
turned on slowly and then removed, i.e.,

bb, *(r, t) = lim e"0(—t) bb, *(r). (3.65)

It is convenient to introduce the one-sided Fourier
transform

(3.63)

where Ls, s,t(r, t) . is the nonlocal transport coefficient.
One may consider that I. is phenomenologically defined
by (3.63) . Combining (3.63) and (3.58), we may
express the response correlation functions Z in terms
of the transport coeKcients L,

Zs, z, (k~) =. .Q Lz,.s,. (koo) (hb, /Bb;*) (k(o) . (3 64).
l

where the response function is given by the usual Kubo
formula 8A~(r, &o) —= dt exp (icot)bA (rt).

0
(3.66)

Zs,.s,. (k, (o) = dt exp (icot)

X d&(J, (—k, 0) J;(k, t+iX) )o. (3.59)

Thus the basic conservation equation (for t)0)
(a/dt)bB, (rt)+V bJ;(rt) =0

reduces to

(3.67)

A similar calculation of the perturbed values of the
conserved quantities gives ioobB,~(k~—)+ik bJ,~(k, co) =bB;(k). (3.68)

88;(k, co) = Q xn,.ii, (k, co) bb, *(k, (o), (3 60) Here the initial value of the observables,

88, (k) = dr exp (—ik r) bB,(r, t=0),

(3.61)
where the inverse matrix is defined by

Q ~Jgs) +z~s( bz,s) ~

2

This definition is not unique but is consistent with the
usual definition of thermodynamic variables in the
limit co—&0, and then k—+0, namely,

(3.70)

Combining (3.69) with the alternate form of (3.63),
(3 62) we find88, (k, oo) =Q 88;/ctb; i,a bb, (k, oo) .

(3.17) being an example for a slowly turned-on per-
turbation, beginning at I,= —~ and removed at 1=0.

Martin next argues that a reasonable definition of is assumed to be known. Rewriting (3.61), we have
the local thermodynamic variable bb;(r) conjugate to
the dynamical variable B;(r, t) is bb'~(k, co) =Q xa;a; '(k, 0)88,~(k, co), (3.69)

88, (ht) = Q xnf, .n,.(k, co=0)bb, (kt).

This distinction between the true local hydrodynamic
variables (which are what one measures with local
probes) and the external variables b;*(r) Lwhich take

bJ,~(k, (o) = i Q Ls,—s, (k, co) kgb, &(k, a&). .

-oo ' Q t Lsf, s, (k, oo) Ls, s, (k, 0) j kgb,:&(k). (3—.71)

"G.P. de Vault and J. A. McIennan, Phys. Rev. 137, A724 F t- p3 68$ d fg 7jg
(&965j."B.U. Felderhof and I. Oppenhehn, Phyoica 31, 1441 {1965). One can elimiiiate the currents BJ;+(4&) aiid express
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the densities 88;)(kM) in terms of the initial values 88;(k):
z—M88i (k, M) +Q lr LJ J (k M) 'kXB;Bg (k) 0)BBI (ki M)

=&8'(k)+( ) 'Z& LL. ;(k, ) —L, , (&, 0)j.&x, ,-'(k, O)BB (k). (3.72)

These linear algebraic equations play the role of hydrodynamic equations. The existence of the macroscopic con
servation Eqs. (3.67) restricts the discussion to slowly varying disturbances, where the response of the system is
limited to a small number of collective oscillations in the conserved quantities 8;(r) .

Finally by comparing (3.68) and (3.71), after some manipulation, one finds4I

BbI (k LJ J (k M) lr), (k, -)= 8 -Z '. ' "..-(k, o) (3.73)
207

This result may be viewed as an implicit dispersion
relation for collective modes since the zeros of the
denominator correspond to an infinite response of the
local hydrodynamic variables to a finite external dis-
turbance. These collective modes are related to the
poles of the response correlation function g, as is clear
from (3.64). Moreover, the form of (3.64) and (3.73),
as well as some speci6c examples, suggests that the
nonlocal transport coeKcients L(lr, M) will be smooth,
well-behaved functions of k, even near the poles of
Z(lr, M). Thus one might make the approximation
LJ,J, (k, M)~LJ,J,(k=O, M) in the denominator of
(3.73). On the other hand, (3.64) implies that

lim (bb;/8b;*) (k, M) =8,; (3.74)

lim IJ.J (k, M) =2J J (k=o, M). (3.75)

M= 3t LJ J, (k, M—) lr/xF, .
E. ,. (k, 0)

reduces to the more useful result

(3.76)

zk ZJ, J,.(0, M).k
88,/Bb; (,p

(3.77)

The preceding formulation is a valid description of
the evolution of a many-particle system only in the
hydrodynamic region of frequencies much less than
collision frequencies between the elementary excita-
tions of the system. Felderhof and Oppenheim" have
given a useful analysis of the physical validity and
implicit assumptions involved. For a specific system,
one has a whole set of diferent relaxation times asso-
ciated with the decay of the various correlation func-
tions. Some of these relaxation times may be much
larger than the "collision times" describing the rate at
which energy and momentum are transferred between
the excitations. One often refers to collective modes
involving nonlocal transport coef5cients as including
"memory" or non-Markovian eGects.

Combining this approximation with the one made in
going from (3.61) to (3.62), the dispersion relation
of the hydrodynamic modes

Equations (3.58) and (3.60) are valid even for a
noninteracting system of quasi-particles, at any fre-
quency and wave vector, assuming one is clever enough
to construct the appropriate driving term (3.56). For
large M (by "large, " one always means large relative
to some reciprocal relaxation time), the response
functions reduce to

P

ZJ,.J,. (k, M) ~(—iM) ' dX(J;( —k, 0)J,(k, iX) )P
0

+O(1/Mz). (3.7g)

Inserting this into (3.76) gives an undamped mode
One can include damping by keeping the next terms in
the high-frequency expansion of ZJ,.J,.(k, M) . The con-
sistency of such high frequency expansions and the
whole low-frequency hydrodynamical scheme must
always be kept in mind. As a pertinent example,
p@@(k, M) is given exactly by (3.78) for all frequencies
in a harmonic crystal. While such a crystal will clearly
exhibit infinite "thermal conductivity, " it does not
have any hydrodynamic modes satisfying (3.76) .

The local version of the hydrodynamic equations
which we originally wrote down Lsee (3.46), (3.55),
and (3.51)j may be derived from (3.72) by using local
transport coefEcients. This is justified in the hydro-
dynamic region of low frequencies and long wavelengths
because the difference between L(q, M) and L(O, 0)
is small. Thus, in a single relaxation-time approxima-
tion to an appropriate current —current correlation
function, one expects that

&(q=o, )=z(q=O, =O)/(1 —z „).(3.79)

However, in general, this result is only physically
significant for co7&&1, since r& is essentially the same
relaxation time as 7-, the one which describes the rate
at which the local conjugate hydrodynamic variable
(pressure, temperature, etc.) varies. To simplify mat-
ters in the following discussion we could stick to local
viscosities and a local rigidity modulus, since there is
no reason to expect any significant nonlocal behavior
for pure monatomic crystals. 54 However, the thermal

54 G. P. de Vault and J. A. McLennan, Phys. Rev. 138, A856
(1965).
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conductivity is quite different since it is well known
from studies on the static case that there are many
phonon processes which do not lead. to any dissipation
of the heat current. "Using the notation of Sec. IIIA,
one expects that it is possible to satisfy"

and
cu«1/r

co))1/rd

(3.80)

(3.81)

Ke might also note that

x.:,"(k, ~) =~'x-.-p" (k, ~)
and

(3.83)

Mx„"(k,(o) =po'k'xg" (k, co). (3.84)

Let us first discuss the transverse part y~"(k, co),
which is decoupled from both longitudinal displace-
ments and the local energy. We Gnd

DP(~) k'~~ '«"(k'") =[ 2 .k@2+[De( )k2 ),
where the frequency-dependent transverse diffusion
constant is given by

D( )=DR( )+ D'( )=(~/p)L(1 —~ ) 'j
(3.86)

simultaneously [see discussion following Eq. (3.30)g.
If co is in this "frequency window, " then one can expect
to find significant nondissipative behavior arising from
the nonlocal nature of the energy current response to
a change in the temperature gradient. The crucial
condition is that the relaxation time ~ which determines
the validity of the hydrodynamic domain (crudely
speaking, where the concept of local temperature has a
well-defined meaning) can be much smaller than the
relaxation time v& which governs how rapidly heat
currents decay. This situation seems to require that
the high frequency elementary excitations have an
acoustic dispersion relation, although the necessity
for this condition is not clear at the present time. The
possibility of a frequency window in an interacting
spin-wave system seems unlikely.

One can use (3.72) to give a systematic discussion
of hydrodynamic modes. Details of this somewhat
complicated task are deferred to a future publication,
where we shall apply it to systems undergoing phase
transitions. Here we only discuss some results for
isotropic crystals and liquids when we neglect the k
dependence of the various transport coefBcients, as we
did in (3.75), and in going from (3.76) to (3.77) .

The spectral density of the displacement —displace-
ment correlation may be split into a longitudinal and
transverse part in an isotropic system [see also (2,59)j:
~x„.„"(k&u)= (k,kp/k') xg" (k, a))

+[8 p
—(k kp/k') j«"(k, (a). (3.82)

in a single relaxation-time approximation. The trans-
verse sound velocity is now

instead of (3.52). For an excellent discussion of the
physical meaning of a frequency-dependent shear
viscosity, we once again refer to Landau and Lifshitz
(see p. 130 of Ref. 12). We note that a liquid (p, =0)
may exhibit undamped shear waves for co7,»i, with
an effective rigidity coefficient tI, '=rt/r~ [see (2.23')7.
Formally, these high-frequency shear waves are the
close analogs of undamped temperature waves as
derived from a nonlocal thermal conductivity [see
(3.23) and (3.28) j. While bulk viscosity and thermal
conduction may exist, they play no role in x&"(k, aa).

We next turn to the spectral density for longitudinal
modes. To begin with, we consider sufBciently high
frequencies such that the density oscillations are
isothermal. We find

D (a)) k'(o

[~2 p(2k212+ [DB(~) k2&52'

where

D(co) —=D((o)) +xD(((o)=D~+iDr,— (3.88')

and the velocity is now

eP=w'+s)D ((o)

Here eo is the isothermal sound velocity. In the notation
introduced in (3.88'), we have D(co=0) =D~, where
D& is given by (3.49) .

We have included the effect of a nonlocal bulk (or
second) viscosity

A(~) = (~r„' ~0')/(1 —i rr), — (3.89)

as well as a nonlocal shear viscosity, although the latter
is generally small in comparison. We assume that the
shear viscosity can be treated in the local approximation
(i.e., err,«1) . In contrast, the nonlocal bulk viscosity
involves some relatively slow relaxation process. The
classic case is the slow transfer of energy from the trans-
lational degrees of freedom to internal atomic or
molecular degrees of freedom", '::,(rotation, vibrations,
etc.) It is a well-studied phenomena in liquids and gases,
but should be also of interest in crystals. (We refer the
reader to pp. 305 and 527 of Ref. 18 for a more detailed
discussion. ) The two velocities which enter into this
problem are the low-frequency (carr«1) sound velocity

vo'=—~P/~t lr+~t /po

and the high-frequency sound velocity

~P/~p l~+frt /po

Here A denotes the additional quantity of interest
which is weakly coupled to the local density. Its relaxa-
tion rate is usually approximated by

dA/dt = A/rr, —



190 RzvIzw oz MoDERN PHYsIcs ' JANUARY 1968

DP(tp) rr(v„'—vp'). (3.89')

Here eo is the isothermal thermodynamic sound velocity
and (since tt=0)

=vsd = (Cr/Cv) viso ~

Rewriting (3.89'), we have

D ~k = ((Cp/Cv) 1)rrvp k'— (3.89")

which is consistent with the single relaxation-time
expression given by (3.89) .

It is useful to relate (3.88) to the result of Kwok
and Martin discussed in the preceding subsection Lsee
(3.19) and (3.21)j. First of all, it is important to
remember that in the model of a crystal used by KM
(also by Guyer and Krumhansel), both the rigidity
and the shear viscosity are zero. In addition, the bulk
viscosity involves the rapid exchange of momentum
between the phonons (terr«1) and hence

This, in conjunction with (3.88), is in essential agree-
ment with the first term in (3.38) . As we noted follow-
ing (3.20), the bulk viscosity in the phonon gas with
p=&=0 arises from the coupling of density Quctuations
to energy Quctuations.

We might emphasize here that (3.20) has been
derived on the assumption that conditions (3.80) and
(3.81) are valid. Other limits can be approximately
found using (3.88'). For the case of an interacting
phonon gas, v~ is the time required to reach local thermal
equilibrium —thus one is limited to the local region
port«1. In molecular crystals (such as solid hydrogen
and methane), one may have other contributions to
the bulk viscosity which exhibit considerable dispersion.

A more detailed study of xi"(k, pp) indicates that
even if we neglect the thermal conductivity, (3.88)
predicts the existence of a damped diffusion mode
(i.e., a peak in the spectral density xi"(k, tp)/tp at
to=0). Approximating D(te) Dt(ce) in (3.88'), one
can rewrite (3.88) as

1 xi"(k, tp) rr k'(v„'—vo')

M tp 1+teprro [M2 ko(vo2+&srrpv 2)/1+Moors j2+[Mrrk~(v s vo~)/1+M~r ~)P
(3.90)

The erst factor suggests that the diffusive mode will

have a width of order 1/rr. One can express xi" (k, po)

explicitly as the sum of this diffusion mode and the two
sound wave resonances. This has been done by Moun-

tain, who was the erst to notice that the use of a
frequency-dependent bulk viscosity implies the exist-
ence of a damped density Quctuation as well as the
usual modification of propagating sound waves. (We
refer to Mountain's work for detailed calculations of
the relative weights of the various modes. ) Probably
the simplest way of proving that there is an unshifted

central. peak is to compute the second frequency deriva-

tive of xi"(k, tp)/cp at pi=0. One finds that a peak
occurs only when

(kvprr)') 2/(1+v %o') &1.

If the momentum transfer is too small to satisfy this

condition, the Brillouin peaks are so close in that they
effectively wash out Mountain's mode and the spectral
density xi"(k, tp)/s& has a minimum at co=0. In dis-

cussing experimental results, it is probably just as
well to use (3.90) directly, rather than various ap-

proximations to it.
It should be clear that a discussion similar to that of

Mountain for a nonlocal bulk viscosity applies also to
a nonlocal shear viscosity. The effect of the latter is

pp R. D. Mountain, J. Res. Natl. Bur. Std. 70A, 207 (1966).
The diffusion mode predicted by Mountain eras recently observed

by W. S. Gornall et ol. , Phys. Rev. Letters 17, 297 (1966). For
further details, see G. I. A. Stegeman, M. Sc. thesis, University of
Toronto, 1966 (unpublished) .

D2v, k4

(tp2 v sk2)s+(MD k2)2

(cp'/v ') (Di —Ds)

oi'+ (Dsk') '

(oi' —v 'k') X ID2k'W+L(ops —v 'k')/v ')X (D,—D,) I

(too v, 'k') '+ (piD—ik2) '

(3.90')

where W=—(C~/Cv —1). One finds Di~Dt+Dt W and

to give rise to extra longitudinal and transverse diffu-
sive modes with width~1/r„.

The damping of all these modes (independent of the
momentum transfer and proportional to collision rate)
indicates that they are trot hydrodynamic collective
modes (such as first sound and therinal diffusion or
second sound). Rather, they can be related to the
motion of some additional nonhydrodynamic degree
of freedom (the internal energy of molecules, local
order, etc.), which is damped exponentially due to
collisions between the particles of the system.

The spectral density for longitudinal modes given by
(3.88) does not contain the effect of temperature
Quctuations. Let us consider the effect of a local thermal
conductivity E'(oi) E(0) Cvv're (i.e., cprp«1) in
conjunction with the nonlocal bulk viscosity given by
(3.89). Now vp is the adiabatic sound velocity v, . The
limit cvr~&&1 corresponds to the case worked out in
great detail by Kadanoff and Martin. ' One 6nds

V.'xpp" (k, tp) 7tt" (k, pp) (v,k)' WD,ks

too+ (D k')'
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Ds Dp= K—/Cp under the assumptions cur&(1 and
o&rr((1. The first term in x»"(ka&) may be identified
with the thermal Quctuations which couple into the
density Quctuations due to the finite thermal expansion
coefficient. This result is essentially equivalent to
Eq. (87a) of KM.4s Actually all but the first term in
(3.90') should be multiplied by the factor

I v.4/Lv'+~'(Di —Ds) '3 t=»
which is related to the damped mode of Mountain
previously mentioned.

Next we consider the case ore~&)1, co7~&&1. After more
lengthy algebra, we obtain

v, 'y»(k, re) r4Dpk'W

(g&+ (Dsks)

y22D1~2

4+~2(D D }2) (~2 v 2k2) 2+ (~Dik2) 2

(3.90")
with r=v, /v and

Di (Dg/oi'rr2) +r'WDp,

D2 Dy —r28'DP

We have omitted the antiresonance terms in (3.90")
Lthe analog of the last two terms in (3.90')j. If we set
Cp=Cv, the second term in (3.90") reduces to (3.90)
in the limit cur~&&1, as it should.

The idea of generalizing low-frequency hydrodynamic
theories by using frequency and wave-number-de-
pendent response functions is of course quite old.""
Generally this has been limited to dealing with fre-
quency-dependent shear and bulk viscosities. These
basically phenomenological theories have been quite
successful in explaining high-frequency sound propaga-
tion (as well as Brillouin light scattering experiments)
in liquids. More recent versions of this approach have
considered the co—+ao limit of all kinds of nonlocal
response coeScients. The reactive parts which are left
Lsee (3.78) j are easily evaluated and one is led to
predict the existence of various new propagating modes
(see, for example, Ref. 57). In general the physical
significance of such extrapolations is not too clear, since
the validity of any hydrodynamical approximation is
always restricted to co((1/r&, where r& represents the
relaxation time for the various local thermodynamic
variables. Physically significant nonlocal behavior only
arises when the associated transport coeKcients are
characterized by relaxation times r&&r&

Recently a Cornell group" has made a serious attempt
IJ. Frenkel, Esaetic Theory of Ltqutds (Clarendon Press,

Oxford England, 1946), particularly Chap. IV.
~~ H. L. Frisch, Physics 2, 209 (1966); N. S. Gillis and R. D.

Pu8, Phys. Rev. Letters 16, 606 (1966).
~ S. Yip and M. Neklin, Phys. Rev. 135, A1241 (1964); S. Yip

and S. Ranganathan, Phys. Fluids 8, 1956 (1965);M. Nelkin and
S. Vip, Phys. Fluids 9,380 (1966); see also T. G. Greytalr and G.
B. Benedek, Phys. Rev. Letters 1V, 179 (1966).

If we limit ourselves to the problem of isobaric thermal
waves, one finds that /compare (3.28}j

K(k, (e) =E(k, (o) 1
( 1 )

( 9 )
Cp

For the reasons discussed following (3.73), we expect
a good approximation lies in using E(k=0, ce) in the
denominator. Using (3.75), one thus has the following
dispersion relation for thermal waves in an isotropic
media:

(ro/k) '= iro. $K(k =0, ce) j/C—p,

59A. A. Abrikosov and I. M. Khalatnikov, Zh. Eksperim. i
Teor. Fiz. 41, 544 (1961) /English transl. : Soviet Phys. —JETP
14, 389 (1962)g.

to compute the density —density correlation function
using various Boltzmann transport equations appro-
priate to dilute as well as dense gases. Their work
reproduces the usual hydrodynamic expressions for
S(k, ce) in the appropriate limit. , but, more importantly,
numerical calculations show in a very detailed way how
the shape of S(k, &o) changes as one goes over from the
low-energy region to the high-energy region.

It would be of great interest to derive from the
appropriate transport equation for dense gases the
hydrodynamical equations involving frequency-de-
pendent volume and shear viscosities, since the domain
of validity of such descriptions would then be manifest.
In essence, this justification has been given for the
frequency-dependent thermal conductivity"' in the
case of an interacting phonon gas. Whether a liquid
is best viewed as a dense gas or as a crystal with highly
mobile atoms is an old question. "In this connection, the
reproduction of a frequency-dependent shear viscosity
from microscopic theory would add much to our under-
standing. Experimentally, light-scattering studies of
the damping of high-frequency shear waves in simple
liquids would be useful.

The dynamical properties of real liquids are much
more dificult to calculate than those of crystals and
dilute gases. The only exceptions are the quantum
liquids formed by the two isotopes of Helium. The
spectral density x»"(k, co) for He H and He' has been
computed using Landau's phenomenological theories. ""

The thermal collective mode t'which appears most
clearly in z«"(k, re) given by (3.23) but which also
enters into y»"(kco) with a small residue) is often
discussed" in terms of the simply understood hydro-
dynamic equation

«)&Da/at) Q (r, t) j+Q (r, t) = —KVT(r, t) . (3.91)

When this is combined with (3.39), one finds the
modified form of Fourier's differential equation

«&&(asr/aP)(r, t)+(ar/at)(r, t) =(K/Cp)V'T(r, t).
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which is a natural generalization of the standard ther-
mal diffusion mode. If we make use of (3.25), an
equivalent form of (3.92) is

x«(&, ~) =x«(&, ~)/t:1+x«(&, ~)3

where X«(k, co) plays the role of a polarization func-
tion. 4~ It would be useful to understand more clearly
the distinction between x«(k, ce) and g«(k, co) in
terms of diagrammatic perturbation theory. 43'~'

As a specilc example of (3.92), Kwok and Martin' s
calculation gives (setting CI =Cv for simplicity)

E(k co) ='icoCV'/3/Pcs' —s'k2/3+i~ F ()'2) g. (3.93)

Inserting this into (3.92), we find

g()'I (o) —~CV2/3/)Io2+. ~P ()I)j (3 93 )

This clearly shows how the second-sound pole is re-
moved from E(k, co), the remaining weak k dependence
now being from the damping.

In the spectral densities we have discussed P(3.85),
(3.88), and (3.90)j, we have used the lr=0 limit of
the various nonlocal transport coefficients. This means
that we are only considering the correlation between
Buctuations at diferent points in time. The spatial
correlations are completely neglected. Certainly one
expects the k dependence to be important near second-
order phase transitions. Moreover, the case of E(k, co)
for the interacting phonon gas Lsee (3.93') j suggests
that it may be important in other cases as well, espe-
cially in the region where hydrodynamics is breaking
down (cvrN &1).

In Appendix A, we evaluate E(q=0, ~) from erst
principles for the simple case of a harmonic crystal
which is isotopically disordered. It is argued that the
crucial normal phonon interactions have little eBect
in the limit q—&0. A direct computation of E(q, co)

near the second-sound resonance for a cubically an-
harmonic crystal is much more complicated, since it
involves the 6nding of appropriate solutions of an
integro-diGerential equation with a structure similar to
Peierls' transport equation4"' (more or less). As we
have tried to emphasize, the actual frequency and
wave-number dependence of transport coeBicients of
an anharmonic crystal is probably very poorly described
by the single relaxation-time approximation we have
used for illustration in this subsection. (We refer the
reader to the work of Guyer and Krumhansel2' for a
detailed study of Peierls' transport equation. ) We
restrict ourselves to a brief discussion of the special
effects arising when the mean free path X (due to quasi-
momentum conserving three-phonon processes) is much
smaller than the typical cross-sectional diameter of
the specimen (denoted by R) . If the quasi-momentum-
destroying phonon processes (apart from boundary
scattering) give rise to bulk mean free path )I,„onelnds

rs ,'(R/s) 'r———if X&(X,&&R' (3.94)

+Z7 if XX),«R2. (3.94')

It is clear that the minimum frequency for undamped
second sound (Io»1/rs) is much smaller if Poiseuille
Row conditions exist than what one would expect from
simple boundary scattering (1/rs s/R). Moreover, in
this region the damping of second sound is proportional
to the inverse of the specimen's cross-sectional area.

In Sec. IA, we noted briefly that, in a harmonic
crystal, a sound wave such as excited by ultrasonic
methods corresponds more truly to a coherent (or
Glauber) state. ~ Since the displacement and momen-
tum operators of the 22th atom Lsee (1.1) and (1.6)j
are linear in the phonon creation and annihilation
operators, the thermal averages of tt„and y„clearly
vanish in a harmonic crystal. Let us now consider
(1.2) in conjunction with the perturbation

l'= —Z J"(1) u

=-Z J(-1,~) u(1 ), (3.95)

where u(k) is defined by (2.43) and J(r, t) is some
"classical" driving force (a real c number). If we
calculate the expectation value of u„in the perturbed

that the damping of heat currents depends very much
on whether X&)X or ),(&X. In particular, if X,&)X, the
phonons reach the boundary (where they dissipate
their momentum) by a sort of Brownian motion due
to the strong normal phonon processes. Such a condi-
tion corresponds to a convective heat Row on a local
scale, and is referred to as Poiseuille Row. One expects
(and indeed finds) that the effective heat relaxation
time vd is of the "random walk" type:

r~ (R/) ) 'r = (R/s) sr I&&R/s

where v is some mean sound velocity.
In terms of hydrodynamical equations for an inter-

acting phonon gas, one Ands in a natural way that the
local heat current has a contribution proportional to
the local drift velocity (local convection) as well as a
term proportional to the local temperature gradient
Lsuch as assumed in (3.54)j. Under Poiseuille flow
conditions (X«R, )I, XX,»R2), the former contribution
is dominant. The local drift velocity of phonons may
be proportional' to the local temperature gradient to
the extent that the phonon heat current is proportional
to the total quasi-momentum.

Recent work by Enz" has clarified in what way one
can treat convective eGects such as Poiseuille Bow in
terms of the correlation function method used in this
subsection. Roughly speaking, I'(k) is once more given
by (3.20) but now'2

'"In computing X(q, rs), we need only consider irreducible
diagrams. See L. J. Sham, Phys. Rev. (to be published).

60 P. Carruthers and M. N. Nieto, Am. J. Phys. 33, 537 {1965);
further references are given there.
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ensemble, the linear response to the driving term is
given by

u(k, ~) =M-' pe(kj)n;(k, ~) XLe(kj) J(k~) j,

If we denote the quantum-mechanical operator corre-
sponding to some conserved quantity by B, one may
show

dc@
(3 96) —~"x»"(» ~)

QQ 2X
where 5), (kcp) is given by (2.60) generally. In a har-
monic crystal, all higher-order terms vanish and thus
(3.96) is exact, with

n (k cp) =1/I cd,s(k) —cp'].

Similarly the expectation value of the momentum
operator in the perturbed harmonic crystal can be
shown to be given by

M—'p(k, cp) = —icpu(k, cp) .
The simplicity of these exact results simply mirrors

the fact that the effect of (3.95) is to generate coherent
states of the harmonic crystal. These may be repre-
sented by

(cc»+ n»~)—
I
0)',

where the ground state is defined by

";Io)'= .; I
o)'

for all modes (k, j) . Explicit calculation~ gives

nq, = —iL2MScp (k)] 'I'I J(—k, cp;(k) ) e(kj) j. (3.97)

Fourier-transforming (3.96), one easily finds that
result may be expressed as

u(k, t) =pe(kj)L2/M~ (k)7" In» I

)&cos Lcp, (k) t —y(kj)], (3.98)

where n»=
I n» I exp +(—kj) .We recall that

I n» Is gives
the number of phonons in mode (k, j) in a coherent
state

I
0)'.

In the general case of an anharmonic crystal, the
linear response result (3.96) is no longer exact and, in
addition, 5);(k, cp) contains self-energy effects. Working
to first order in V, one Gnds that, in contrast with
(3.98), u(k, t) now corresponds to a oscillatory wave
of 6nite lifetime. In the absence of a driving force such
as (3.95), it is not obvious that (il„)p=(p )p=0 for a
general anharmonic crystal. However these results
follow if one has inversion symmetry (such as exists in
a monoatomic, Bravais lattice). This completes our
discussion of coherent states in crystals.

The various spectral densities which we have dis-
cussed obey certain exact sum rules, some of which
were mentioned or used in passing. Such sum rules

play two very important roles in many-body prob-
lems. "~ "Firstly, they provide a check on the validity
of specific dynamical approximations. Secondly, they
sometimes enable one to circumvent approximate
calculations completely, especially as to the relative
weight of the various collective modes.

~ des—cpx„.„s"(k, cp) =cl p/M. (3.100)

Here x„„"is defined by (2.56). Recalling (2.56), we
have

x;"(k, cp) =Me(kj) x„„"(k,cp) e(kj),

and thus easily verify (2.67) as a special case of (3.100) .
The equivalent sum rule for the density-density

correlation function is

f
~ Ao—cpx„"(k,cp) =pp'(k'/M).
co 2x

(3.101)

x„"(k,cp) is closely related to Van Hove's function
defined in (2.10):

„"(k,) =2 'LcV-'S(k, )g(1——").
Substitution of this result into (3.101) enables us to
derive the famous Placzek sum rule

der—ppS(k, cp) =N(k'/2M),
~(Q 2'

where we have used

S(—k, —cp) =e—e"S(k, I).
These relations should be compared with (3.9) and
(3.8), respectively.

For re=1, the right-hand side of (3.99) is propor-
tional to k', with a factor involving only the mass of
the atoms. Higher moments involve rel.atively sensitive
functions of the interparticle potential, @ and for this
reason are not used very often.

There is another kind of frequency sum rule which
makes contact with thermodynamic derivatives. These
give more weight to the low frequencies, and are only
true for suKciently long wavelengths. As a result, they
are often referred to as hydrodynamic sum rules. For

"R. D. Puff, Phys. Rev. 1ST, A406 (1965).

= ( '"/2V) (L(8"/Bt")B(—k, t), B(k, 0) j7)o I, , (3.99)

for N)0 (see Appendix B of Ref. 46, for example).
Clearly the R.H.S. is an ensemble average of n equal-
time commutators, and is related to the short-time
dynamical evolution of the operator B. The left-hand
side obviously gives extra weight to high frequencies. If
B is the local displacement u(r), the first moment
(I=1) is easily worked out, giving the well-known
result"
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the energy spectral density, we have

d(u x,s"(k, ze)
lirn — ' = lim xss(k, 0)
g~p co 2' 6) g~p

=CpT. (3.102)

The isothermal and adiabatic thermodynamic sound
velocities satisfy the identity

Due to the use of the harmonic approximation in Kwok
and Martin's computation of certain equilibrium
parameters, (3.23) sat. isfzes (3.102) only to the extent
that C&~Cp. The other important example is probably
the "compressibility" sum rule, which for liquids is

d(o x p" (k, ez)
lim —" ' =lim x»(k, 0),
k~p co 2z' M g~p

=p(dpldP) lr

=p/cz'. (3.103)

where the two isothermal sound velocities are

«=L(sp+&z)/po)'" «= (p/po)"" .(3 1o8)

A cubic crystal is described by three isothermal elastic
constants c~~, c~2, and c44. An isotropic medium requires
the further restriction 2c44=cij —c~~. In this case one
usually introduces the Lame constants, X =c» and
zz=c44, in terms of which we have Ez=X+(-'s)zz. If the
atoms in the crystal interact only by central forces,
one has the Cauchy relation p=X. This implies that
cz ——43c, and, in addition, the adiabatic longitudinal
sound velocity is given by czz'=(Cz/Cv)cz&', as in
liquids.

The hydrodynamic results for xz"(4&) and z&"(k~)
satisfy (3.107), as we should expect. One may in fact
use the sum rules for x»"(ku) given by (3.99) and
(3.107) to estimate the relative weights of collective
oscillations if there are only two; this is often done" in
He II. If we make the ansatz Lcompare with (2.66)j

cz'/ca'=Er/E~=Cv/Cz'i (3 104) X„"(k,z0) = (pssk'/M) 2s (sgn cu)

the last relation holding for isotropic solids as well.
Such low-frequency sum rules as (3.103) may be
derived by comparing the coefficients of the local
variables in (3.18) with the theoretical result

&& I ~zb(~' —&z'k') +~zi&(~' —szz2k') I, (3.109)

the sum rules give the following results:

ZI = 1 Zrr)

which is the analog of (3.17) for times t&0 Amore.
general version of (3.103) which is valid for crystals
has been discussed by several authors recently. If one
specializes Stillinger's general result" to an isotropic
crystal, one finds

lim x„(k,0) =p/E, (3.105)

where E is the isothermal Young's modulus defined by"

~ '=sf(&z) '+(3/p) j (3.106)

"F.H. Stillinger, Phys. Rev. 142, 237 (1966}."' W. Gotze, Phys. Rev. 156, 951 (1967).

Clearly (3.105) is in disagreement with the hydro-
dynamic results previously discussed. A more satis-
factory derivation of the "elastic" sum rule has been
given by Gotze." He has shown that, for long wave-
lengths, the main effect of the anharrnonic self-energy
is to replace the isothermal elastic constants by their
adiabatic values. The elastic sum rule is then simply
another way of writing down Dyson's equation for the
phonon propagator I) s(k, &v=0) in the limit k~0. For
an isotropic medium, the transverse and longitudinal
displacements completely decouple and thus we find
the two sum rules

dk) x;"(k, ez)
lim (psk) ' — ' =ps/c' (3.107)
R~p —co 2x' co

(3.110)

At low hydrodynamic frequencies, it is reasonable to
take vI to be equal to the adiabatic sound velocity.
With this assumption, we have

~zz-—f(Cz /Cv) —1)- (3.111)

Baym" has shown how one can express each of the
elastic constants in terms of the phonon propagator.
These relations are sum rules of a kind similar to
(3.107).

IV. GENERALIZATIONS AND SUGGESTIONS FOR
EXPERIMENTS

The second sound or thermal diffusion mode in
solids scatters light very weakly compared to the
ordinary sound waves. The relative weight is H/"~

(Cz/Cv —1), which even at room temperature is only
of the order of 0.1. Beautiful confirmation of the line
shape of the Landau —Placzek unshifted resonance has
been recently reported for liquids using Brillouin
scattering. ""As a first step, similar measurements
should be done on crystals. This should be possible at
suKciently high temperatures. Care must be .taken to

~ N. C. Ford, Jr., and G. B. Benedek, Phys. Rev. Letters 15,
649 (1965). The relative intensity had been verified for a long
time; for a recent reference, see H. Z. Cummins and R. W. Gam-
mon, J. Chem. Phys. 44, 2785 (1966).

~ See, for example, Physics of Quantum Electronics, P. L. Kelley,
B.Lax, and P. K. Tannenwald, Kds. (McGraw-Hill Book Co., Inc. ,
New York, 1966), Part 2, p. 137.



ALLAN GRIzzrN Brittouin Light Scattering 195

subtract out the Rayleigh scattering of light directly
from impurities in the crystal. This is easy enough
since this spurious scattering is temperature inde-
pendent and gives rise to a Lorentzian central peak
with a width proportional to ~0', independent of q
(see p. 388 of Ref. 5) .

Unfortunately, very low temperatures are needed
for the appearance of a significant "frequency window. "
Presumably the most suitable temperature region" is
somewhat above the point of maximum thermal con-
ductivity (which usually occurs at around 1/20 of
the Debye temperature). At higher temperatures, the
scattered light might still disclose significant differences
from the simple Landau —Placzek behavior even in the
absence of a well-de6ned second-sound doublet. Devia-
tions from the Landau —Placzek result must occur when
the momentum transfer q becomes of the order of
z/3' or somewhat larger. Here n is some average
high-frequency phonon velocity a,nd DT E/Cr is ——the
thermal diffusion constant. Either hydrodynamics
breaks down or there is a frequency window. If there
is, the broad central peak goes over smoothly into a
"second-sound" doublet. The higher the temperature,
the smaller the frequency window becomes.

Since the scattered power increases as the fourth
power of the initial photon frequency Lsee (2.8) j,
naturally it is advantageous to work with the largest
frequency which is consistent with the above conditions.

Direct time-dependent thermal studies do not have
to contend with the smallness of t/t/'. Very recently, for
example, a group at Duke" has verified that tempera-
ture pulses in a single crystal of isotopically pure He4

move with the expected second-sound velocity (with
negligible diffusion) when the typical frequency com-
ponent of the pulse is in the frequency window. This
positive result should spur attempts to excite directly
a temperature wave by rapidly varying the temperature

. of one end of the specimen. However, it seems that the
available thermometry is not yet good enough to
measure temperature oscillations with a frequency
~j.o" sec ', which is a typica1 value needed for weakly
damped thermal waves. Light scattering methods seem
potentially superior because the spectral density of the
scattered light is a more direct probe of the excitation

spectrum, and hence is more easily compared to theory.
In recent years, several ways of enhancing ordinary

Brillouin scattering have been developed. " In theory,
similar tricks may be used to overcome the smallness
of 8' and make second-sound waves more easily ob-
servable. Thus one might apply a longitudinal sound
wave (of frequency e~*) to the crystal from which the
light is being scattered. %e assume the frequency m*

is in the region where the temperature waves are weakly
damped. If the scattering angle 0 is such that the
momentum transfer q is equal to the wave number of
the temperature wave (&u%ii), we should expect a

"C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A.
Guyer, Phys. Rev. Letters 16, 789 (1966),

strong "second-sound" doublet at Q=&co*. This ar-
rangement will also enhance the doublet corresponding
to first sound by the same amount. (In an isotropic
crystal, the transverse sound-wave doublet will be
uneffected. )

Throughout this paper, we have neglected nonlinear
effects arising from the coupling between the light
waves and the medium. The usual discussions" work
with a harmonic phonon field (1.12) coupled to the
radiation field (2.28) by the nonlinear interaction given
by (2.27) . To deal with the low-energy hydrodynamic
region, the displacement field, of course, must be dealt
with more adequately. (Probably the simplest pro-
cedure would be to use Kwok and Martin's Hamil-
tonian. ') As a first step in the problem at hand, one
might proceed even more phenomenologically by
simply including electrostrictive terms (o:E') in the
stress tensor in (3.41).

However, it would seem that stimulated Brillouin
scattering" will not be very useful in overcoming the
small second-sound scattering cross section. The thresh-
old would occur when the average power fed into the
second-sound mode is greater than the rate at which
second-sound decays. However it is known from studies
of other systems that if there are two or more types of
boson excitations in a medium, the excitation with the
smallest width gives rise to almost all the stimulated
Brillouin scattering. (Consider the example of crystals
with acoustical and optical phonons. ') When we recall
that the second-sound resonance has a much larger
width than first-sound (by a factor W ', in fact), the
situation does not justify much optimism. Recently it
has been suggested"' that in addition to electrostriction,
one should include an energy source on the right-
hand side of (3.39) due to electric field heating. It
then obtains that thermal waves may have a lower
threshold for stimulated emission than sound waves if
the ratio of Cp to the thermal expansion coeKcient is
small enough.

Brillouin light scattering from crystals at tempera-
tures near a phase transition" is often quite strong. Such
transitions occur in quartz, as well as in solid hydrogen
and methane. The effect is the analogue of "critical
opalescence" in liquids. " In liquids, the isothermal
compressibility diverges at a second-order phase transi-
tion, and so does Cr (the specific heat at constant
pressure). In contrast, Cv is essentially uneffected. As
a result, the coupling between the energy and density
Quctuations is greatly enhanced near the transition
temperature. "

The existence of long-range correlations in crystals

~'R. H. Herman and M. A. Gray, Phys. Rev. Letters 19,
825 (1967).

~V. L. Ginzburg, Usp. Fiz. Nauk '77, 621 (1962) )English
transl. : Soviet Phys. —Usp. S, 649 (1963)g; V. L. Ginzburg and
A. P. Levanyuk, J. Phys. Chem. Solids 6, 51 (1958); R. W.
Gammon and H. Z. Cummins, Phys. Rev. Letters 17, 193 (1966).

7 A discussion in the same spirit as Part 8 of Sec. III is given
by B.U. Felderhof, J. Chem. Phys. 44, 602 (1966).
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means that the limit k—&0 must be done with more care,
and the hydrodynamic mode dispersion relation given
by (3.76) cannot be simply approximated by (3.77).
Moreover the description of the new phase in crystals
below T, involves specification of the appropriate
"order" parameter. "This observable and its Quctua-
tions must be included and thus one Ands the possible
existence of new low-frequency, long wavelength collec-
tive modes, as well as anomalous dispersion in the
original hydrodynamic sound waves. The Quctuations
in the dielectric constant related to those in the order
parameter give rise to intense light scattering. In a
future paper, we shall give a detailed discussion of the
intensity and damping of temperature waves near
second-order phase transitions.

-While the phenomenon is not restricted to the hydro-
dynamic region, one expects anomalies~'8 in Brillouin
scattering from crystals with two-level scattering sys-
tems (energy separation 6) when the phonon involved
has energy d. Examples include donor impurities in
semiconductors and paramagnetic impurities in di-
electrics. The question of how the phonon interacts
with the two-level system is somewhat subtle, depend-
ing as it does on whether or not the impurities interact
with each other. The phonon width will not be propor-
tional to the difference in population of the two levels
(as argued in Ref. 68) if a resonance fluorescence
calculation" is more appropriate.

Several sources Of light scattering have been neglected
here. First of all, thermally induced diffusion of atoms
from site to site will produce density Quctuations in
crystals and liquids with short range crystalline order.
These Quctuations decay very slowly and hence give
rise to a strong narrow undisplaced line, with width
t10~1/ro. Here ro is the mean time that it takes for a
given atom to move to another site." Such processes
must be sufficiently rapid to produce an observable
line. This condition may be satis6ed in crystals near
the melting point, as well as in quantum crystals of
solid helium, where diGusion is due to the large zero-
point energy (see Introduction) .

Apart from a remark at the end of Part 3 of Sec. II,
we have also ignored the direct light scattering from
thermal fluctuations. If we include this contribution,
the spectral density of scattering light is proportional
to Lcompare with (2.64)j

r

yg" (k, oi) (,riso
so'k' Z ln(j) I'

' ' +I Cv-' —'
M & BT„if, Bso

X»n' gxss" (k, ro)+2P12 I Cv
—'

I
so2

BT oo

Xsinspx, ,s"(k, ot)/po pn(oi)+1j. (4.1)

6 S. A. Al'tschuler and B. I. KocIIelaev, Zh. Eksperim. i Teor.
Fiz. 49 862 (1965) t English transl. :Soviet Phys. —JETP 22, 600
(1966)

As before, P is the angle between the propags, tion
direction of the scattered light and the initial electric
field vector Ep. In writing down the cross terms in the
local energy and strain, we have for simplicity used
the approximation'

g;,s"(k, co) kx, ,s"(k, Io) /pok'. (4.2)

For an isotropic crystal, this result is exact since the
transverse displacements do not involve local energy
fluctuations. One may obtain xo,s"(k, co) from the
hydrodynamic equations discussed by Kwok and
Martin. ' We find

&po &' CI —Cv

BT Ii TEr ' (4.5)

where E~ and a are the isothermal bulk modulus and
thermal expansion, respectively. For the case of liquids
where the thermal waves are strongly damped,
x, ,s"(k, Io) is given by Eq. (87c) of Kadanoff and
Martin. " It also satisfies a hydrodynamic-type sum
rule given by Eq. (77b) of the same reference.

We see that the thermal diffusion mode (or second
sound in the case of small damping) contributes to
each of the correlation functions in (4.1). The part
from the first A@0 terms in (4.1) can be reduced to (for
P11 P12)

Boo l' t Cv~t Cp'
I sopoX —

I
X&r 'XI 1——IX 1+&, , (4.6)

&p r& & CI i Cv'

where

Bop
It.=

I
u—IX——Beg

I
po-

r)p .i (4.7)

The .coefFicient E is a measure of the strength of direct
light scattering from Quctuations in the local energy,
relative to the part which couples into the local density.
The combined strength given in (4.6) is proportional
to (CI —Cv), while the last term in (4.1) is propor-
tional to (CI —Cv)1~2. Since W is very small, this means
that insofar as we are interested in light scattering as a
probe of temperature waves, the major contribution
may be from the cross terms involving g, ,,"(k, &o) if

k I;„,s"(k, co) = (3CvW/T) II2~ok

-'ssk2
XIm

I (4.3)
ELoo' —ssi'k'+siol'I)I oi' —Nrrsk'+roil'rr ji

where the notation is the same as was introduced in
Sec. IIIA. In the limit F-+0, we Gnd

x, ,s"(k, or) = TBp/r)T II (-42) 112(oos
I

k I)

XLSS(io2—Niisks) —2rb(ro2 —Nrsks) j. (4.4)

Use was made of the well-known thermodynamic
relation
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the electronic dielectric constant is fairly temperature-
dependent. The application of an external temperature
wave to the specimen might be used to overcome the
smallness of the thermo-optical coeKcient and hence
enhance the importance of the last two terms in (4.1).

Finally, we have always assumed that the light waves
scatter off the collective modes of an in6nite medium.
Actually, there is much to learn from Brillouin light
scattering from the surface of condensed systems. As
is well known, crystals exhibit surface sound oscillations
called Rayleigh waves (see p. 105fF of Ref. 12). In-
troducing a free surface as a perturbation in an other-
wise harmonic crystal (by setting the interactions
across a plane equal to zero), Maradudin and co-work-
ers" have discussed such surface oscillations in some
detail. The spectral density of scattered light is given
by (2.20) once again, or

where

E(co)—=E(q=0, c0) = (3VT)—' dt
0

Xexp (not) dX(Q(0) .Q(t+iX) )e. (A2)
0

This approximation was expected to be valid in the
region where damping eftects due to second viscosity
(rs'k') were much smaller than those arising from
thermal conduction (1/rs) . This is the region of direct
physical interest, even though the momentum-destroy-

ing processes are much slower than momentum-con-
serving phonon interactions. If v is not very much
smaller than r&, we can only expect to 6nd deviations
from the standard result of damped thermal waves

((o/q)'= —iceIE(q=o, (v=0)/Cg I, (A3)

XL~(f))+1j, (4.g)

where the retarded phonon Green's function G(kj,
lr'j'; a&) for a harmonic crystal with a free surface is
given explicitly by Eq. (16) of a paper by Maradudin
and Melngalis. "It has a pole corresponding to Rayleigh
surface waves, in addition to those for the bulk phonons.
Brillouin scattering is a very direct way of studying
the dispersion relation of these surface oscillations.
Surface thermal diffuse scattering" of x rays is much
more indirect. Liquids also sustain surface capillary
waves" (third sound in He II), which can be studied
in the same way as Rayleigh waves. In surface
scattering, the angle 0 in (2.4') is measured with respect
to the elastically reQected beam.
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APPENDIX A. COMPUTATION OF THE
NONLOCAL THERMAL CONDUCTIVITY

In Sec. IIIB, we suggested that a good approxima-
tion to the dispersion relation for thermal waves is

rather than weakly damped second-sound waves.
In this appendix, we compute E(&o) in two different

examples. We do not include the decay of (Q (0) Q (1) )s
from anharmonic phonon interactions. Although there
may exist relatively strong normal phonon processes,
we make use of the fact that their role in the decay
of heat currents is small. This procedure is justi6ed
by detailed theoretical calculations" of the lattice
thermal conductivity in the static limit ~0.

Normal phonon interactions play a direct role in

(Q( —q, 0) Q(q, t) )s, which occurs in the expression
for E(q, co). Physically speaking, this is obvious. The
Fourier component Q(q) is no longer proportional to
the total quasi-momentum, and hence momentum-
conserving processes will lead to damping. The effect of
umklapp phonon interactions on (Q (0) Q (t) )s is
qualitatively similar to any other momentum-destroy-

ing, scattering process.
It is convenient to have E(cu) in terms of a single

time integral,

(A4)

as Langer and others have noted. By expanding the
heat-current correlation function in eigenstates of the
total Hamiltonian, one may show that the real part of
E(co) is given by

Eg (M) = (7r/3 Vr) ~ L(ss"—1)/co) p(a)), (As)

(re/q) '= i PE(~) /Cp j, — (A1) where

"A. A. Maradudin and J. Melngalis, Phys. Rev. 133, A1188
(1964); R. F. Wallis and A. A. Maradudin, Phys. Rev. 148, 962
(1966).~ A preliminary experiment of this kind has been recently
reported: R. H. Katyl and V. Ingard, Phys. Rev. Letters 19,
64 (1967).

x&(~—LE —& ]).
As discussed in Sec. IIC, the method of thermodynamic
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Green's functions is concerned with time-ordered Green's
functions, such as

dudin explicitly computed F(&o), with the result

(F'( )) =g gs(kj, j,) s( j,&,)
F(~) —= P'Q(~) Q(o)) . (A6)

k k'
PU2 Pg24

F(N) =r ' Q F((oj) exp(cojN);
co

M j=2&jz/pj

where the coeS.cients are given by

F(coj) = F(N) exp (—(aju) dl.
0

The discontinuity of the analytic continuation of these
coeKcients is what we need, since

As with the phonon propagator, the evaluation of F(t)
is most easily done for "times" on the negative imagi-
nary axis. Defining t=iN and noting that F(N+p) =
F(u) for —p(N(0, we have the Fourier series
expansion

X d"i9(~~)+0(~—~i))

X ~
(~"(kji; k'j2; "i) )~(~ (kj3; k'j4, ~—~1) )4

+(6+ (kji,'k'j4,' "&) )~(6 +(kj2, k'j3, (g —",) )„).
(A10)

The brackets ( ~ ~ ~ )z represent impurity (or isotope)
position averaging. For this particular problem, the
vertex corrections do not enter —the average of the
product of two phonon Green's functions is effectively
equal to the product of two averaged phonon prop-
agators. The usual transformation of the infinite sum
over discrete frequencies co~ to an integral is the origin
of the factors 8(&u), defined by

~-'1mF(s) ~, +;0 =—F(~), 8(co) =—(p'/2) coth (pre/2). (A11)

= (c'"—1)~(~)
Finally, ~,+ +(~) is the spectral density of the Fourier
coeKcient

which, upon insertion into (AS), gives &+ +(~~)—
&~++(~))

(A12)

Ea(~) = (~/3~&) LF(~)/") (A8)
related to the ionic displacement propagator

Thus the evaluation E~(~) boils down to finding the
spectral density of the Fourier transform of F(t) for t

on the negative imaginary axis. The imaginary part of
E(or) is probably most easily obtained by noting that
the transport coeflicient E(a&) satisfies causality. As a
result, the real and imaginary parts are related by the
well known Kramers —Kronig dispersion relation

"da)' Re E((o')
Im E((o) = F ~-

o

where F stands for principal part. In particular, (A9)
shows that if

S++(kj;k'j'; t) =(Tdk+(t)dk '+(0) )o, (A13)

where we have defined

dkj+=~kj+' —kj*

=~kj*—+—kj (A14)

in terms of the usual phonon-held operators. For con-
venience, we follow some of Maradudin's notation and
conventions, although they are somewhat diGerent
than those used in the main body of this paper.

The homogeneous energy-current operator for
'

a
lattice in the harmonic approximation is

then

Ep((o) =B(1+(~r„)']—',

EI((d) =COTTLE~(M).

Q—= g S(kjj')d,+d, ,—,

with (in standard nota, tion)

(A15)

Maradudin" has made a careful study of the static
(~—A) thermal resistance of isotopically disordered
cubic Bravais crystal, in the harmonic approximation
and to lowest-order in the "impurity" concentration.
His work can be extended to the frequency-dependent
thermal conductivity. This is easily done since Mara-

'+ A. A. Maradudin, J. Am. Chem. Soc. 86, 3405 (1964).

v, (kj) =$8",(k)/Bk„)= —v„—( —kj); p~ p=x~ g~ s.

(A17)

S(kjj') = ~~j'(k) P;;v(kj)+v(kjj')), (A16)

cup(k) —cu,"(k) ~ pe„(kj)
L&a;(k)(vj'(k))'" „gk„

=v„(kj'j),
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The existence of the second term' in (A16), which
depends on "polarization mixing, " has been rioted by
several authors in recent years. " Since it is phase-
dependent, (being nondiagonal in the phonon number
representation), one cannot deal with it easily using
ordinary transport theory based on simple distribution
functions. While this oscillating term in the energy
Aux of a harmonic lattice is probably of little importance
when one considers the time-averaged transport of
energy, it is obviously of potential interest in the
propagation of high frequency waves. For notational
simplicity, however, we consider only the first or
"Peierls' " term of (A16) in our reduction of (A10).
Later we discuss the nondiagonal term in a pure har-

monic lattice and show that, - quite generally, its major
eGect is to alter slightly the velocity of second sound.

Inserting the spectral densities 6++ Maradudin
found and keeping only the diagonal heat current
operator as mentioned, we may rewrite (A10) as

F'(~) )~ = Z ~iL~(~i)+~(~—~i) ](2~i' —~i~)
kj —m

&~pi
' P(kj; coi) &(kj; co —coi)

'

where a= L(M —M')/M], M' being the impurity mass;

p is the fractional impurity concentration; and

&(kj' ) —=L '(k) —'+ p '(k) ( )]'+L'p '(k)&( )]' (A19)

with

1—eco2Gii(co')
a(co) =

L1—eco'Gjc (co') ]'+Lcco'G? (co') ]'
(sign co) eco'Gr (co')

L1—e~'Gic (co') ]'+feco'Gr (~') ]'

G(co') = (3$) ' g Lco2—co '(k) i0]—'= G@(—co') +iGr(co') . (A21)

If we approximate the denominators P(kj; co) using the quasi-particle approximation discussed in the beginning
of Sec. III, we may do the +& integration by standard contour integral methods, with the result that

T

/2co '
(F(co) )/ ——P 8'(kj) (21r) '

~

— L8(co) +8(co—co) ] ~

&p

21'(kj) 2I'(kj)
co'+L21"(kj)]' (2co —co)'+L21'(kj)]' &co&

+, , +0 — . A22

Here
r(kj) =,p, (k) &(-)/2, (k), (A23)

tions for the specific heat per mode per unit volume in
the harmonic approximation

where ~ is the solution of

co'(k) —co2 —opco'(k) a(co) =0. (A24)

Ke neglect the phonon energy shift and hence set
co~co, (k). Furthermore, as a result of the coth factors,
the typical phonon entering the sum in (A22) has
energy k&T. Since k&T))co (by a factor of 10'—10' iil
the best of cases), we may omit the remainder in the
last factor in (A22), since it is of order (co/keT) relative
to the first. Making further use of co, (k)))co in (A22)
and inserting the result into (AS), we have

Ep(co) —,
' Q n'(kj) Ci (co, (k), T)r(kj)

XI)1+( .(kj))']-'+L1+(,(k) 2.(kj))']-'}.
(A25)

Following Maradudin, we have introduced abbrevia-

7' R. J. Hardy, Phys. Rev. 132, 168 (1963);Ph. Choquard, Hel.
Phys. Acta 36, 415 (1963); A. :A. Maradudin, Scientific paper
63-129-103-P1, Westinghouse Research Laboratory, Pittsburgh
(1963).

Cv(co, T) =—(k~/V) (-,'Pco)' csch' (-',Pco) (A26)

and the phonon lifetime

r(kj) '—=21"(kj) =oPco;(k) bLco, (k)]. (A27)

Actually we may omit the second term in the bracket
of (A25), since, for the low temperatures of interest;

,(k)»[ (kj)]-'. (A28)

Indeed, (A28) is the condition for the quasi-particle
approximation to be good in the first place.

To summarize, we have

&~(~)=3 Z ~'(kj)Cr(~ (k), T)r(k)
kj

L1+(cor(kj) )'] ' (A29)
and, using (A9),

Kr(co) =-', Q c'(kj) Cv(co;(k), T)r(kj)
kj

cor(kj)

Pj 2 ]
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In the static limit (pp—4), (A29) reduces to the usual
Debye-type formula, as discussed by Maradudin.
However the preceding derivation gives more insight
into the correctness of a relaxation time approximation
than the usual kinetic-equation approach. The phonon
lifetime appearing in (A29) is identical to the one found
when using time-dependent perturbation theory in
conjunction with the T matrix of scattering theory.

%hile Maradudin's calculation was speci6cally for
an isotopically disordered crystal, the perturbation is
of the form

V=K Z VI lEd.„;d.„;j,
ill R2/2 (gI gp)

which typifies a wide class of phonon-impurity inter-
actions.

In a certain rough sense, we expect (A29) and (A30)
to be generally valid. Under fairly weak conditions, we
have

E{pi)= (3VT) ' dt exp (ipit) dt'I'(t —t')
0

xl(Q(0) Q(t)+Q(t) Q(o) )o (A31)

where I'(t) =—(2/v5) Xlog coth (Ir
~

t ~/2') . Actually
the equivalence of (A4) and (A31) is just another way
of stating well known Quctuation —dissipation theorem.
The symmetric function I'(t) is strongly peaked at
t=0 and thus one might replace it by Pb(t). This is
only true in the limit h—+0 and thus the resu1t

E((o) = (3VkHT ) dt exp (ipit) (jQ(0), Q(t) I )p

In the static limit, one would get the Debye-type
result with r'(kj) as the phonon lifetime appropriate
to the decay of lattice heat Row.

Having found E(co), it is a simple matter" to use
the second-sound dispersion relation to 6nd in what
way the frequency of a temperature wave depends on
the propagation vector q. Using (A34) in (A1), one
finds, to lowest-order in L~r'(kj) j ', that second sound
in an anharmonic crystal has a group velocity

1 1/v(1) +2/v(2)
V3' 1/v'(1) +2/v'(2)

The lifetime v„is, to the same order, given by

(A35) involves a different combination of v(1) and
v(2) than the usual result found from simple Boltz-
mann-type transport equations. ' This difference has
been clariied to some extent by Enz.' Numerically,
(A35) gives extra weight to v(2) j as does the older
result'p ppg, and v„v(2)/v3' is a good approximation
in most cases.

The nondiagonal heat current operator Q"~ in a
harmonic crystal is given by the second term in (A16) .
For simplicity we compute E(co) for a pure harmonic
crystal; as we shall see, the effect of dissipation is
generally very small. Using (A32), we find, after
some straightforward calculations, that

E (pp) = (3VkHT')-I(-') Q Q vP (he ')

(A32)

is essentially a classical approximation. Indeed such
expressions were first derived by Green several years
before the work of Kubo and others on quantum sys-
tems. Now the simplest sort of dynamical approxima-
tion to (jQ(0), Q(t) I)p is that of exponential decay
due to dissipative phonon interactions. Thus we might
use

(jA.;.(0), A;(t))),=(j .;.(o), ;(o) j)
Xexp j

—t/r'(k j)$, (A33)

where r'(kj) is an "appropriate" relaxation time per
mode and n» is the number operator for phonons. By
taking the thermal average on the right-hand side
of (A33) with respect to Hp (the harmonic lattice
Hamiltonian), one easily finds that

E(~)=(8) z v'(kj)CV(~I(k) T) . , k. (A34)
r'(kj)

kj 1 i&or' kj—

Lpp;(k)+pi;. (k) j'
L~I(k) —~'(k) 7- '

pi;(k) co; (k)
, (2(nR;)p+1) . (A3'/)

We note that (nR,nR;. )p
——(nRp)p/i;;. and hence such

terms do not contribute since v(kjj) =0. In the har-
monic approximation, there is no contribution to
E(p~) due to cross terms such as (Qs Q p)p. If we had
included a dissipative mechanism, we would expect
that the denominators in (A37) would contain extra
terms of order v ', where v is the phonon lifetime such
as in (A27). However, these corrections are negligible
if the phonons are well defined excitations Lsee (A28) j.
Finally, the co' terms in the denominators of (A3'/)
may be omitted. The possibility of resonances at
pp+ =Lpi;(k) &pit. (k)j is of only academic interest, since
the important thermal phonons have frequencies in
the range 10"—10"sec—'

Since E~s(cp) in (A37) is purely reactive, adding
it to (A34) will simply alter the second-sound velocity
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predicted by the latter. We may reduce (A37) to

E~ (a&)~(12Vk~T2) —'i(o Q D(lr) (4v.) '

X —2(v~ —v~) '+ —2(vg —v~)'
'V)Vg

X ((N~~)0+(N~~)0), (A3g)

where
D(&) —= (I'(12)+I'(13));

"(lj') I&I (A»)
(Be„(lrj)

8

The average of D(lr) over the orientation of Ir is found
to be (D(k) )= (2+2) =2, and hence

g D(k) (e~;)0——2 (V/2v') ~ (k,T/v, )'J(2) (A40)
k

at low temperatures, with

*D dxx'
J(2) = =2/(3) =2.404.

o e' —~

Using these results, (A38) reduces to

E"~(a)) —(3X2'vF) —'
I

—
I

ZGD

4 P'J

X I g '(1+7/)' —2(1—rl)'](1+r/ ')
eg j

—4(1-g) 'S (A41)

E'(~)=',Cpv'Pr'/(1 i(or') ],— (A42)
where

Cr—= (2v'/15) kg) (AT/vg) '(1+2rl—') . (A43)

Inserting E(co) =E (cv)+E (cv) into (A1), we find

~(-', Hr') Lq'/(1 —bq') ].
co~(1/v$) vq(1 —bq') -'~';

where, for q = 1/vS (a typical ratio),

b(T) =E ~(M)/icoC

= (v)/ksT)'5. )4X10 'I 1—7.5X10 '((oo/k~T)'].

(or'((1, (A44)

(or'»1, (A45)

(A46)

Even if we are in the region of "nonpropagating"
thermal waves, the nondiagonal heat current alters
the behavior of temperature waves as given by Fourier's

with q= v&/v~&. 1. —
Let us now consider how E ~(co) given by (A41)

aGects the solution of the dispersion relation for tem-
perature waves. For simplicity, we shall approximate
E~((o) in (A34) by

law of heat diBusion. However, it is clear that even
under the best conditions (~~, q large; T small),

I
b

I
q'&&

1.Thus it would seem that the nondiagonal heat current
is on the borderline of observability.

APPENDIX B. SECOND SOUND IN
SUPERFLUID SYSTEMS

We have discussed second sound as a hydrodynamic
collective mode in an interacting phonon gas. A reason-
able question to ask is about the relation between this
interpretation and the usual one in superQuids, where
second sound seems tied up with the movement of the
condensate. While not directly related to the subject
of this paper, we should like to make some remarks
(historical, pedagogic, and speculative) about this
question. For an excellent resume of our theoretical
understanding of He II, we refer the reader to Hohen-
berg and Martin. "References to the original literature
can be found there. Unfortunately, these studies make
no attempt to understand the velocity and damping
of second sound on the basis of microscopic theory.

Around 1940, both Landau and Tisza developed a
generalization of classical hydrodynamics which was
appropriate to a two-Quid model. The equations pre-
dicted that if the "superfluid" and "normal" Quids
were set in out-of-phase oscillation, the local density
(or pressure) would not vary but the local temperature
would. This new mode (second sound) was thus closely
related to the extra degree of freedom introduced by
the independent motion of the superQuid relative to
the normal Quid. Thermal conduction in He II could
be thought of as a limiting case of second sound of
in6nitely long wavelength —thus one has a natural ex-
planation of the large static thermal conductivity of
He II. An important feature of the movement of the
superfluid is that it does not carry any entropy.

The microscopic justi6cation of the two-fluid model
as appropriate to He II is necessary before one can
compute the various thermodynamic parameters enter-
ing in the hydrodynamical equations. Moreover the
evaluation of the dissipative coeKcients requires an
understanding of the elementary excitation spectrum,
although these damping effects (clearly related to the
normal fluid) can be introduced phenomenologically,
as one does in classical hydrodynamics. Tisza clearly
identi6ed the superfluid as the analog of the condensate
formed in an ideal Bose—Einstein gas. However, his
interpretation of the normal Quid as composed of
weakly interacting atoms excited out of the condensate
had little contact with reality. Landau quickly realized
that the normal Quid should be expressed in terms of
excited states of the whole liquid, namely, weakly
interacting excitations of true momentum k. Landau
concluded that, for wavelengths even of the order of
the interatomic spacing between atoms, the only
excitations were simple density oscillations (~~k).
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For very long wavelengths (X & 10'as) one might expect
that the excitations would be acoustic for a variety
of general arguments. The key feature of Landau's
spectrum was that even the relatively high-frequency
excitations were phonons. Landau also used the specific
heat data to suggest the existence of a "roton" dip
in the dispersion relation at X 1 k In the light of later
work, it is probably unfortunate that the label "roton"
was ever introduced.

For all of Landau's brilliance in dealing with the
normal Quid, the background superQuid plays a some-
what mysterious role in his work. His reluctance to
identify it with a sort of Bose—Einstein condensate
occurs once again in his work on superconductors. It is
interesting to recall that Landau's famous condition
for the undamped relative motion of the condensate
followed directly from the phonon nature of the low-

lying excitations forming the normal Quid. This example
shows that it is very misleading to separate the discus-
sion of the superQuid aspects of He II and superconduc-
tors from the "normal" properties.

In a certain sense, Bogoliubov's fundamental work
after the war justified the viewpoint of Tisza (in regard
to the superQuid) and Landau (in regard to the normal
Quid). Working with a gas of weakly coupled atoms
obeying Bose statistics and with a repulsive inter-
action, Bogoliubov introduced the condensate by
approximating the zero-momentum creation and an-
nihilation operators as c numbers. The condensate
acted as the reservoir or vacuum from which one could
excite well-defined elementary excitations. The disper-
sion relation was linear in k for small k, and quadratic
in k (particle-like) for large k. While this model calcula-
tion is clearly not very relevant to the observed spec-
trum of He II, it is of obvious theoretical importance
since it does reproduce many properties of the two-Quid
model.

Almost all of the detailed calculations of the prop-
erties of a dilute Bose gas which have followed Bogo-
liubov's original work, however, have been restricted
to absolute zero (see, however, Ref. 24). This is un-
fortunate since the phenomenological two-Quid model
description of He II worked out in great detail by
Landau and Khalatnikov~' is, after all, a hydrodynamic
theory appropriate to local equilibrium. There has
been some recent progress in deriving the simple two-
Quid model in terms of thermal Green's functions, ~'

but little discussion is given to the damping of the
normal Quid by various transport coeKcients. ~' This
latter aspect of the problem is of greatest interest to
us. The dependence of the attenuation of second sound

'2 I. M. Khalatnikov, An Introduction to the Theory of Super-
jlgidity (W. A. Benjamin, Inc. , New York, j.965)."J.Kaneand L.P.KadanoB, J. Math. Phys. 6, 1902 (1965) and
references given here.

73~ Bogoliubov's school has recently derived and solved the
hydrodynamic equations for a dilute Bose gas and explicitly ex-
hibited 6rst and second sound as poles of the Green's function.
See I i Cheng-Chung, Dokl. Akad. Nauk USSR 169, 1054 (1967)
t English transl: Soviet Phys. —Doklady 11, 714 (1967)7.

on the various relaxation processes between the elemen-

tary excitations gives graphic insight into the true
nature of this collective mode.

In an interacting gas of phonons, the second-sound
mode was given by Lsee (3.20) of textj

where

to'= sir'k'(1 —ttonrr),

sir'= (p,/p„)(Ts'/C)

(83)

(84)

tt» = (p /p ) (1/p) (-'t).+1-)+ (&-/C) (83)

Here p, and p„arethe usual superffuid and normal Quid

density, respectively. The phonon thermal conductivity
(which seems to be the main source of damping) is
found to be

(86)

where s is the entropy per unit mass. At low tempera-
tures ( &1'I), the relaxation time r„,is that for pho-
non —roton scattering. There is strong phonon —phonon
scattering, the corresponding relaxation time r» being
much smaller than any other, but these momentum-
conserving processes do not effect the thermal conduc-
tivity E„.They are crucial in so far as they enable rapid
energy exchange between phonons, which is necessary
for local therInal equilibrium.

There is no easy comparison of (83) with (81) or
(82), although, in a rough sense, rs is the analog of
r~, and 7 is similar to 7». The damping of second sound
in He II according to (83) and (86) is proportional
to r„„,which is similar to (82). However in the latter
case, one has nothing but a heavily damped oscillation,
in disagreement with (83). We emphasize that the
transport properties of a gas of Landau excitations is
somewhat more complex than that of a simple model

for 1/r&(a&(&1/r. If M &1/rs, one finds simple thermal
d:iffusion:

&e~—t (E/C) P~—(i/3) tt'Prs. (82)

In the case of He II, the only available theory of the
attenuation of second sound is that developed by
Landau and Khalatnikov. ~' They generalized the
two-Quid hydrodynamics to include the effects of
various viscosities and thermal conduction, in analogy
to ordinary Quids. To evaluate these transport coefFi-

cients, they needed to know how the elementary ex-
citations interacted. This coupling was introduced
phenomenologically by expanding the Hamiltonian
appropriate to a quantized hydrodynamical field around
the equilibrium density. The successive terms in this
expansion may be interpreted in terms of anharmonic
coupling between the elementary excitations.

The Landau —Khalatnikov theory predicts that the
damping of first and second sound is proportional to
the various transport coeKcients. Thus second sound
satisfies
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Q =J.—pJ (89)

Here J, is the energy current, J is the matter current,
and p, is the chemical potential. The local expectation
value of the entropy current in He II is given by (for
zo~)

(Q) = (v„)psT E„VT, —
where

J=pnvm+psvl) p =p0+pn. (811)

Under the usual conditions of thermal conduction
experiments, there is zero matter flow (J)=0. This
implies that

(v ) = —(p./p ) (v.) (812)

where (v, ) is fixed by the external constraint. The
convective term in (810) gives rise to the singular
term in (87). An alternate but equivalent form of
(810) is (for o~~0)

(J )= (&+T&)p(v )+pp. (v, v„) I&„VT. — —
The analogy of (87) to the better-understood case

of the frequency-dependent electrical conductivity in
the case of superconductors is important:

o (oi) = —(p,e'/miio) +o„(o~), (813)

of an interacting phonon gas used by Kwok and Mar-
tin. ' However, these differences do not explain the
completely opposite behavior of the attenuation given
by the Landau —Khalatnikov two-Quid model and the
interacting phonon gas.

The explanation of this puzzling state of affairs is
that the interacting phonon gas calculation does not
include the possible free motion of the condensate. In
crystals, the analog of the condensate is the center of
mass (or, equivalently, the rigid lattice background'4) .
This is fixed by external constraints. In He II, however,
the condensate can move —and indeed the second sound
mode first discussed by Landau (and Tisza) appears
to be directly related to the out-of-phase motion of
the condensate with respect to the gas of excitations. Its
physical origin is thus quite different from the oscilla-
tory mode in a gas of phonons discussed in this paper. To
express this in terms of a nonlocal thermal conductivity
coeKcient, we are suggesting that in He II one has4'

E(o&) = —(Cezz'/i(a) +E„(oi), (87)

where in a single relaxation time approximation, one
might use

E„(o~) E„/(1—io~r„,) . (88)

Here E„is given by (86) and ezz by (84). We em-

phasize that the actual form of E„(o~)may be much
more complicated than (88); however, the latter
illustrates the basic physical conjecture in the simplest
possible form with the expected limiting behavior for
coo-~&)1 and ayr„„(&1.The thermal conductivity coefh-
cient E„(o&) is given by (3.26), where now Q is the
entropy current operator

r, (k)/[1 —ioir, (k) $ (816)

in the integrand. Here r, (k) is the usual relaxation
time which is appropriate to impurity potential scatter-
ing 1/r, (k) =[a,(k)/ep)&((1/r„), with r„the normal
state relaxation time and v, (k) the group velocity for
BCS excitations of wavevector k.

The important point is that the entropy current
response given by (815) does not involve a convective
term in the same way as (810) does. Under the condi-
tion (J)=0, one has

—p, (v, )„=Ei(Xi)„+E,(—VT/T) „,(817)
74 See J. R. Schrieffer, Theory of Superconductivity {W. A.

Benjamin, Inc. , New York, 1964), Chap. 8. See also Chap. 7 of
Ref. 1 for effect of impurity scattering on 0.„(co).

7~ J. M. Luttinger, Phys. Rev. 136, A1481 (1964).
'6 M. J. Stephen, Phys. Rev. 139, A197 (1965).
7' See discussion in Quantum& Iiluids, D. F. Brewer, Ed. {North—

Holland Publ. Co., Amsterdam, 1966) .

where p, is now the number of "superconducting"
electrons. The first term in (813) is due to the dia-
magnetic term in the current response to the transverse
part of an external magnetic vector potential. The
analog of (810) is London's equation. As is well known,
there is a completely satisfactory, self-consistent deriva-
tion of (813) for a wide class of superconductors from
microscopic theory, the dissipative term (at o~=0)
being due to electrons scattering from phonons or
random impurities. The actual form of o„(co) is con-
siderably more complex than a simple Drude-type form
[the analog of (88) j, most of this difference being
due to the presence of an energy gap 6 in the excitation
spectrum. '4

The electronic thermal conductivity of superconduc-
tors is less than in the normal state. While it is un-
doubtedly true that the current theory of thermal (and
thermoelectric) effects in superconductors is still not
at the stage of theory of electromagnetic effect, s, some
progress has been made in recent years. ""In discussing
this question, one generally aims at the theoretical
reproduction of some sort, of two-Quid picture with
corrections. That this is relevant to superconductors
is still a controversial question, " since in most cases
the electrons come to local thermal equilibrium with
the lattice (via impurity and phonon interactions)
rather than with themselves. Indeed, these external
interactions are often the only ones considered in
proving that the normal Quid does not freely accelerate
(in contrast to the condensate) under the application
of an external field. In the work of Stephen, " one is
led to the following nonlocal thermoelectric equations:

(~.).=E (-) (X).+E.(-) (-»/T). ; (814)

(Q)„=—E,(oi) (Xz)„+E4(cu)( VT/T)„, (815—)

where Xi=—(eE+Vp)/re. In the single relaxation-time
approximation discussed by Stephen, " the various
transport coefBcients for the BCS-type excitations all
involve momentum integrals with



(J,)„s——E4(or =0) X (—VT/T) „s. (819)

On the other hand, there is a convective contribution
to the energy current for 6nite co because

(J.)-= T( -)-—(P T) (1/P )( /(1 ))
y ( VT/T)„—+K4(~) ( VT/T)„—. (820)

Here we have used the single relaxation-time approxi-
mation of Stephen to estimate Ei and E2. The average
value ( ~ ~ ~ ) denotes an appropriate integral over
momentum. ~6 We expect that the 6rst two terms of
(820) will tend to cancel each other until ~r,&&1. The
work of Luttinger ' and others suggests that the
conclusions we draw from (820) are much more
general than the speci6c model calculation of Stephan.
If this is so, then we see that the occurrence of second
sound in superconductors will only come from the
possible reactive behavior of the nonsingular trans-
port coeflzcients E', (a&), just as in crystals. How-
ever, there is no more reason to expect that a "frequency
window" will occur in superconductors than in water.
Hence the hydrodynamic region is limited by some such
condition as cur,«1.

While qualitative, the preceding discussion does
indicate that a quantitative understanding of the
thermal transport properties of superconductors is
almost within our reach. No anomalous static thermal
conductivity is expected, nor are weakly damped
thermal waves. In contrast, the discussion of the trans-
port properties of superQuid He II is still at a very
phenomenological (albeit very successful) level. Clearly
a Grst step would be to try to compute the entropy—
current correlation function E„(co) in (87) using a
dilute Bose gas model. Recalling the case of super-
conductors in Gor'kov's approximation, one expects
that the Kubo-type formulas for transport coefficients
for He II will provide the most natural way of under-
standing the role of typical "coherence" factors.

It is clear that (87) is in essential agreement with
(83), since insertion of the former into the dispersion
relation for second sound gives

~'/&' =»I' —uuZ„(co)/C. (821)

The highest frequencies used in second-sound propaga-
tion experiments up to the present (co (10' sec ') are

7 V. Ambegaokar and G. Rickayzen, Phys. Rev. 142, 146
(1965).
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and thus

(J.) = (&2/+I) jp. (v.) +&2(—»/T) I

+E4(—VT/T)„.(818)

Under steady-state conditions (a&—4), we have XI=0
and hence

just below what we need for the frequency dependence
of E„(cv)to be signi6cant. Thus for T~0.8'K, compari-
son of the experimentally observing damping of second-
SOund WaVeS With 4zzZ=E„(0)/»I2CZ giVeS a Value
r„„~5&(10I sec ' (see review article by de Boer in
Ref. 6). If one could get into the frequency window

1/r„„«a)«1/r„„, (822)

one might expect a second-sound velocity to be given
by an expression similar to

I Iz'=(»I'+(s) v' —p»/3P-) . (823)

The attenuation will be proportional to 1/r~. At very
low temperatures, we have

»I = (P /P ) && (~'T/&) =(s) v' (824)

but, in addition, p s T p„s',—and thus Pzz=s/v3
once again. The quantitative significance of this result
should not be taken too seriously since it depends fairly
sensitively on the simple form (88) .

The singular term in (87) due to reversible relative
motion of the two Quids gives rise to high thermal
conductivity and weakly damped temperature waves
for all frequencies satisfying cur»«1. No lower limit
on co is required, as with second sound in crystals. The
fact that He II sustains second-sound waves with
frequencies much less than a kilocycle is naturally
explained. In this connection, the anomalous properties
of second-sound propagation for temperatures &0.5'K
seem to be (among other things) closely related to
the inability to satisfy cur»&&1 necessary for local
thermal equilibrium.

We felt it was simpler not to complicate the dis-
cussion in the main part of this paper with the ano-
malous aspects of second sound in He II arising from
the reversible out-of-phase motion of the gas of excita-
tions and the condensate.

Actually, our present understanding of second sound
in a gas of phonons seems to be on a much firmer micro-
scopic basis than in He II. In this connection, we recall
our brief remarks about Poiseuille Qow in Part B of
Sec. III. It would seem possible to achieve this kind of
heat flow in He II, with r& given by (3.94). If this
was the case, the damping of second sound would have
a characteristic dependence on the container's cross-
sectional area. Note also that the local drift arising in
Poiseuille Qow of a phonon gas is formally very similar
to the convective heat Qow due to the out-of-phase
motioni n the two-Quid model. In both cases the resulting
temperature distribution has a sharp change near the
boundary (which might be thought of as a "thermal"
Meissner effect) .

In concluding this appendix, we would like to make
(87) more understandable in terms of the standard
hydrodynamic equations of the two-Quid model. To
begin with, the only dissipative effect we consider is
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the static thermal conductivity E„.The conservation
law for entropy is now

(8/Bt) (ps)+psV v„=(1/T) )&V.(E„VT). (B25)

Performing i,he usual manipulations (see Ref. 18,
page 517 ff.), one is eventually led to

(&Q/r) T) +&n'Cv VT= E„—(r)/Bt) ~ VT. (H26)

If we neglect the coupling of first and second sound
(Cv—Ca), then the partial differential equation for the
local temperature is

T/r)t'= ~rr'V'T+ (+ /C) ' (r)/r)t) V T (I)27)

The generalization of (827) for a nonlocal thermal
conductivity in a single relaxation time approximation
ls

In the preceding remarks, we have made use of a
linearized version of the two-Quid model and ignored
mutual friction and the effects of vorticity. To get some
idea of the latter, we might use the modified equation

(Bv,/Bt)+Vtz= ( 1/rv, „)(v, ——e„). (829)

In place of (827), we then find that temperature waves

are governed by

1 t'p) 8 8T E„
I

—I+— ———V'T =&rr'VsT (830)
rv., &p~i Bt Bt C

We see that there is now a minimum frequency for
weakly damped second sound, which occurs for

~»(1/rv-) (pip.)

In the last year or so, several authors have discussed
the excitation spectrum of He II at temperatures within
a few millidegrees of Tq. In this region, Landau's
famous dispersion curve and the two-Quid model
predictions based on this spectrum are no longer valid.
Ferrell et al."have suggested that the long-wavelength
entropy waves just below T& have a dispersion relation

A(k) kst', where A(k) depends only logarithmically
on k. What we would like to point out here is that the
thermal expansion coefBcient diverges~ as T—+Tq,

going as log
I
T Tz I. Th—is means that the entropy

Quctuations will be more strongly coupled to the density
as T—+Tz, with a consequent increase in the scattering
cross section. " Unfortunately this "critical opales-
cence" is small, as can be seen from the fact that for
Tz —T~10 "K, we still only have LCp/Cv —1)~0.02.

~' R. E. Ferrell, N. Menyhard, H. Schmidt, I".Schwabl, and D.
Szepfalusy, Phys. Rev. Letters 18, 891 (1967).

~ C. E. Chase, E. Maxwell, and W. E. Millett, Physica 27, 1129
(1961);M. H. Edwards, Can. J. Phys. 36, 884 (1958).

8' B.I. Halperin and P. C. Hohenberg, Phys. Rev. Letters 19,
700 (1967).


