
REVIEWS OF MODERN PHYSICS VOLUME 40, NUMBER j JANUAR Y 1968

:"'quations-o1:-', V. ;otion ', V. ;et ioc. anc. t'xe
'. "'xtenc.ec. S'~e'. . '.V. 'oc.e'.*

D. J. ROWE
Department of Physics and Astronomy, University of Rochester, Rochester, Nero York

This paper presents the equations-of-motion method as a useful and Qexible tool in the study of nuclear spectroscopy.
It is partly a review, but also it introduces a new and much more powerful equations-of-motion technique which supercedes
the older linearization methods. The older methods worked with operator equations. To obtain closed expressions they
had to be linearized in a rather arbitrary manner. The present approach works with the ground-state expectation of
operator equations and thereby avoids all problems of linearization. Thus, like the Green s function method, the equations-
of-motion method becomes potentially exact. It has many advantages over Green's function methods, however, among
which are its greater compactness, simplicity, and the physical insight it yields.

The method is 6rst applied to rederive the random phase approximation (RPA) and the quasi-particle RPA (QRPA)
and to show precisely what terms they neglect. It is demonstrated that some of these terms have coherent phases. A higher
RPA and QRPA are then derived to include these terms. The corrections have some interesting effects: notably, there is
a reduction of the effective interaction strength and a stabilization of the nucleus against sudden phase transitions. The
equations-of-motion method is also used to generalize, in a very simple and natural way, the Hartree-Fock (HF) and
Hartree —Bogolyubov (HB) concepts of independent particles and quasi-particles to nonsimple ground states.

The equations-of-motion method is presented as a simple extension of the shell model to the treatment of excitationg
of a correlated ground state. By concentrating on the quantities of direct physical interest, the complexi. ty of wor»»
with correlated wavefunctions is avoided.

I. INTRODUCTION gets out of hand before significant improvement is
achieved.

Now if the significant quantities of the problem
are excitation energies and ground-state transition
strengths, this is not an optimal procedure. These are
relative quantities, concerning an energy difference and
a transition density; they are not necessarily sensitive
to the full complexities of the stationary-state wave

functions.
A less oblique approach (in this respect) is the ran-

dom phase approximation (RPA), which calculates
these observable quantities directly, treating the
stationary-state wave functions as of secondary im-

portance. The several calculations that have been made
with the RPA' indicate that, in cases where it is ap-
plicable, it gives a much better and more consistent
description of nuclear spectra than comparable shell-

model calculations. In particular, it satisfies sum rules

and separates out spurious excited states (which other-

wise are a problem).
But in spite of its successes the RPA is still criticized

for its rather shaky foundations. The derivations of
the RPA fall essentially into three classes:

It is generally agreed that the nucleus is a rather
complicated system. Nevertheless many very simple
nuclear models have been extremely successful. This is
not surprising, for even complicated systems have their
simpler aspects. But frequently one finds that, while
the general features of some data can be understood in
simple terms, a more accurate description involves a
considerable eGort that is not always rewarded by
substantially improved results. This does not necessarily
mean that the eGort is worthless, but it does mean that
eGort should be conserved by designing the approach to
optimize the significant aspects of the problem. This is
the philosophy underlying the equations-of-motion
approach to nuclear spectroscopy.

As an example of an approach that is not optimized
consider the shell-model calculation of the spectrum of a
closed-shell nucleus. A first calculation would assume
the ground state to be a determinant of independent-
particle wave functions and would assume excited
states to be particle-hole states. Such calculations,
which are also known as Tamm —DancoG calculations,
have been very successful, but they are not sufEcient.
A notable deficiency is their inability to explain the
extraordinary strength of some of the low-lying col-
lective states, which sometimes more than exhausts the
closed-shell (nonenergy-weighted) sum rule. To im-

prove the situation, which necessarily involves en-
hancing the sum rule itself, one may try to compute a
better ground state by allowing admixtures of two
particle —hole excitations and better excited states also

by including more complicated configurations. Un-
fortunately, the problem escalates so rapidly that it
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(iii) the method of linearized equations of motion4
(also known as the quasi-boson approximation) .

But there are many variations on these methods, many
of which are discussed in Lane's book. s

The Green's function method is usually considered
the most rigorous. The method is to derive an approxi-
mate expression for the two-particle Green's function
by summing a restricted class of bubble diagrams in a
perturbation expansion. The 6rst objection to this
method is that it is inconsistent on energetic grounds:
whereas the bubble diagrams are summed to all orders
(just because they can be summed), other low-order
diagrams are neglected. The argument that other dia-
grams contribute incoherently is not altogether con-
vincing. The second objection is that summing only
bubble diagrams violates the Pauli exclusion principle,
since the diagrams that would compensate are neglected.
Green's function methods are, of course, potentially
exact and can correct these defects. The problem is that
one is confronted with an infinity of diagrams, but
little indication of their relative importance or their
physical significance is given.

TDHF theory is physically appealing and is useful
in relating the RPA and the phenomenological vibra-
tional models'; but, as a derivation of the RPA, it has
nothing to add to the linearized equations-of-motion
method (to which it is equivalent) .r

One variation of the method of linearized equations of
motion is to approximate particle —hole (or two quasi-
particle) pairs as bosons. Such an approximation clearly
violates the Pauli principle and, when used to linearize
the equations of motion, implies approximations equiva-
lent to the Green's function method. This method has,
in some circles, fallen into disrepute because it often
tends to be a prescription rather than a derivation.
Nevertheless, it is the most Aexible method; as such, it
has been used in different ways by different authors to
extend the RPA to higher order in an attempt to cor-
rect its defects. We show in this paper, however, that
the equations-of-motion method can also be put in a
form which is potentially exact, but which is much
simpler than the Green's function method.

Some of the 6rst extensions were made by Sawicki'
and by Tamura and Udagawa, ' who generalized the two
quasi-particle excitation operators to include four quasi-
particles. These extensions are known as second RPA's. "
They are undoubtedly an improvement on the RPA,
but are still subject to the criticism (although to a

'K. Sawada, Phys. Rev. 106, 372 (1957); M. Baranger, ibQ.
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7 D. J. Rowe, Nucl. Phys. 80, 209 (1966).
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'0%e reserve the term "higher RPA" to describe a higher par-
ticle-hole RPA without the inclusion of two particle —hole oper-
ators.

lesser extent) that they involve a rather arbitrary
linearization procedure. A similar (and essentially
equivalent) second RPA was also derived by da Pro-
videncia, "based on an analogous extension of TDHF
theory. His treatment has the virtue of establishing a
connection with the Srueckner theory of the ground
state. Improved linearization methods are also used by
Do Dang and Klein" and coworkers in an attempt to
understand the anharmonicities of vibrational spectra.

Other authors have tackled the problem from the
quasi-boson point of view. The simplest method, due
to Ikeda eI, a/. ,"was merely to renormalize the quasi-
boson operators in a plausible (although rather arbi-
trary) manner to correct for violation of the Pauli
principle. It was found that the interaction strength is
effectively reduced in such a way as to increase the
excitation energies of low-lying states and thereby
stabilize the nucleus against phase transitions. More
elaborate and very elegant methods have been de-
veloped by Helyaev and Zelevinsky, " Marumori and
co-workers, ' and, more recently, by da Providencia. '
These methods recognize that quasi-particle pairs are
not good bosons, but they suppose that ideal bosoms

do exist. ' Thus a series expansion in ideal bosoms

is attempted, 6rst for the quasi-particle pairs and then
for the Hamiltonian itself. In this way one is left with
an anharmonic oscillator Hamiltonian and a direct
connection with phenomenological treatments. Our only
criticism of this approach is that boson methods are
only really appropriate for large numbers of particles
with an even larger density of states. Without these
conditions, which are not well satisfied for nuclei, series
expansions in terms of ideal bosoms tend to be slowly
convergent.

The equations-of-motion method described in this
paper is a new and a particularly simple one which
shows promise of much greater Qexibility than previous
methods. It differs from the above treatments in cer-
tain fundamental respects. The equations of motion
are not expressed as operator equations, but rather as
the ground-state expectation of operator equations.
Thus while the relation to other methods remains
apparent, all arbitrariness of linearization procedures is
avoided. Similarly, the necessity for ideal bosons is
dispelled. The formal equations become exact closed
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Phys. (Kyoto) 33, 22 (1965).

'4S. T. Belyaev and V. G. Zelevinsky, Nucl. Phys, 39, 582
(1962)."T. Marumori, M. Yamamura, and A. Tokunaga, Progr.
Theoret. Phys. (Kyoto) 31, 1009 (1964);T. Marumori et al. , ibid.
32, 726 (1964).

'6 J. da Providencia (preprint)."In some cases the ideal bosons are supposed to exist in another
space, but with a one-to-one correspondence to the space of the
nucleus,
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expressions which do not violate the Pauli principle,
which are fully consistent, and which are not subject
to the early objections to the RPA. The method may be
regarded as a straightforward extension of the shell
model to admit the complexities of wave functions but
(at the same time) to bypass them by concentrating on
the quantities of direct physical interest.

Of course it is not expected that the equations can be
solved exactly, but it is clearly an advantage that the
formal statement of the method should be exact. Fur-
thermore, the equations have been designed so that
good approximations are possible. Generally speaking,
the approximations that must be made are those of
standard shell-model computations. Firstly, the vector
space must be truncated, and, secondly, some assump-
tions must be made about the ground state. Here the
extended shell model is better off than the conventional
shell model because it absorbs most of the information
needed directly from the Hamiltonian. As a conse-
quence, the results imply a higher order of ground-state
correlations than those fed in. This reflects the fact that
the equations, according to our philosophy, are as
insensitive as possible to the complexities of eigenstate
wave functions.

The general equations of motion are derived in Sec. 2.
Their formal properties are investigated in Sec. 3. It is
found that the properties of the RPA equations, as
described by Thouless, ' are quite general and hold to all
orders of approximation. The reader who is familiar
with these properties (and is prepared to accept that
they do generalize) may therefore omit this formal
section. Sections 4—7 are devoted to the particle —hole
approximations. The equations are derived in complete
generality and solved first in the RPA. This approxirna-
tion is shown to neglect important coherent contribu-
tions, due to violation of the Pauli principle, which are
then included in a higher RPA. As a byproduct of deriv-
ing the general particle —hole equations, it is also shown,
in Sec. 6, how the equations-of-motion method can be
applied to generalize the HF definition of single-particle
energies and wavefunctions, to non-HF ground states.
Section 8 treats the two quasi-particle approximation in
a similar manner. A discussion of the approximations
is given in Sec. 9, together with some comments on
the interpretation of the 6nite vector-space equations
in terms of centroid energies. Concluding remarks are
made in Sec. 10.

2. THE EQUATIONS OF MOTION

where we put fr= 1 and where 0, O~ are boson operators
satisfying the commutation relation

$0, Ot)=1. (2)

From the solution to these equations a set of eigenfunc-
tions can be constructed, defined by

ohio)=o,

0'
I
o)=

~
1&,

Ot
i
n)= (n+1)'t'

i n+1),
and with the eigenvalues

E = (n+-,')(u.

(3)

It is apparent that the solution to Eqs. (1) and (2) is

given, in Hilbert space, by

~n+1 ~la &) all e&m,

where co is a constant independent of e. We now define
the concept of the harmonic space as that region of
Hilbert space spanned by the set of eigenvectors e&m.
If the Harniltonian is not in the least harmonic, then
m=0 and the harmonic space is the one-dimensional
space of the ground state. Certainly this is not much of
a space, but it is in fact adequate.

Now if Ot is given the form

o'= Z(n+»'"
I
n+1) (n I + 2 ~-

I P) (V I

n=0 y,q~
for arbitrary C„„it is apparent that Eqs. (1)—(3) are
still satisfied, provided they are allowed to operate only
within the harmonic space. In other words, we can
write, quite generally,

LH, 0 tj= au 0t+P,

$H, 0j=—&uO —Pt,

LO o'j=1+Q

Ot=g(n+1)'ts
I
n+1&(n

n=0

Let us now consider whether this approach can be
adapted to a more general Hamiltonian, which will
eventually be identified with the nuclear Hamiltonian.
Suppose that our Hamiltonian is not completely
harmonic but has a harmonic spectrum up to the mth
level. By this we mean that

The equations of motion for a harmonic oscillator
Hamtiltonian of frequency co are

where

P
~
n)=P!

~
n)=Q

~

n)=Q'
~
n)=O, all n&m.

$H, Otj=s)0t,

$H, Oj= —o)0,

"D.J. Thouless, Nucl. Phys. 22, 78 (1961).

These equations can be put into a more tractable
form. Premultiply the first equation of (8) by an arbi-
trary operator R and the second by R~; then take the
expectation of the first plus the Hermitian conjugate of
the second with respect to a wave function

~ g ). Pro-
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vided
I p) lies within the harmonic space, we obtain

8 I I R, Le, o'jjI y&=~A I LR, o'j
I y&, all R.

(10)
Similarly

(~ IL'R, C&, ojjl~)
~(y I I R, O1 I y), all R.

The advantages of using the double commutator in
these equations, rather than a simple product, are two-
fold. Firstly, the two equations are Hermitian con-
jugates, so that we need only consider one. Thus
both O~ and 0 should emerge as solutions of one equa-
tion with energies ~or, respectively. Secondly, the com-
mutator of two operators is of lower particle rank than
the product, and hence its matrix elements require
less knowledge of the wave functions. As we shall see,
these features are vital to the success of the method.
%e also have the pseudo-boson commutator

9 IIo o'jI4)=1

0I I O., o,'3 I
0)=s„,

for different solutions O,~ and Og~. The corresponding
equation for arbitrary

I p) is not necessarily expected,
even for a harmonic spectrum. '

Now, in general, the ground-state wave function is
not too well known a Priori, although we may have a
good zero-order approximation to it in terms of Hartree-
Fock theory, for example (or the shell model). We
therefore retain the symbol

I p) to distinguish such ap-
proximate ground states from the exact ground state,
which should be self-consistent according to Eq. (3).
To obtain better results it may be worthwhile to iterate

'9 For example, O, ~ and Q, ~ might be associated with different
harmonics of the same normal mode. Thus, if O, ~ has the form
given by (7), then Q, t might be

(fft-1)/2

(2~+1)"'ll+2)(~i+ & OmiP)(gi
a/2M yg&Ns

with frequency co&=2',. Thus, unless i p) is an eigenstate,
g i LO„Oqtj i p) is not necessarily equal to B~. On truncation of
the vector space, .

I,
'e.g. , to the space of single-particle operators).

this possibility often disappears.

The usefulness of this approach is that the solutions
are independent of

I g ), which can lie anywhere within
the harmonic space. Now strictly speaking, the nuclear
Hamiltonian is not harmonic at all, which means that
I p ) must be restricted to the ground-state wave func-
tion

I
0). However, by setting up the equations in the

general harmonic vector space, we have insured that
they are as insensitive to the wave function as possible.
Restricting

I p ) to be the ground state also ensures that
the matrices that occur are Hermitian. As we show in
the following section, many useful properties follow from
this Hermiticity —in particular, the orthogonality rela-
tion

Thus we expand

O.t= QX (x)ri, t

and obtain from (13) the eigenvalue equations

ZQ I I ~-, &, ~~'j I &)Xt (x)

=~ Z(& I IU. Uf'j I4)Xt(s) (16)

or
QM pXp(x) =co.+N sXs(x) (17)

with obvious notation.
These equations are very similar to the standard

eigenstate equations for diagonalization of a Hamil-
tonian in a Gnite con6guration space. Indeed, if we
assume that

I p) is already the exact ground state

&
I ~)=&.

I ~)
and set up excited state configurations

I n)=~.t
I y), ~. I

y)=0, all n&0,
» Like the orthogonality relations, (13) does not necessarily

hold exactly throughout the harmonic vector space. But this does
not imply any approximation, since we now require i p) to be
the ground state. It simply means that (13) is not quite as in-
sensitive to

i pl as we would have wished.

the solution of the equations using (3) to define a
better approximation

I Q) to
I 0). Such a procedure

would be suggested, for example, if an uncorrelated
wave function had been used for

I p), but the so1utions
subsequently revealed the presence of large ground-
state correlations. Since the equations are not very
sensitive to

I p), we may expect convergence to be
rapid, except for certain pathological cases which we
discuss later,

Unfortunately, Hermiticity of the equations is not
guaranteed for an approximate ground-state wave
function

I p), and this is inconvenient. To regain the
Hermitian properties we can generalize (10) to

Q I I."R» o'j
I e)=~(e I L» o'g

I 4»»1 R (13)

where the double commutator I R, H, Otj is defined

2I'R, H, Otf=
I R, PH, Otjj+LLR, Bj, Otg. (14)

Equation (13) follows exactly from (10) in the limit
where

I p ) is an eigenstate" when

Q II@,L'R, o'jjIy)=0.
Suppose now we wish to find solutions O,t, ce, of (13)

within some Gnite operator space spanned by the set
of basis operators Irf tI. Since we also want solutions
0„,—ao„ to emerge, this set must include all adjoint
operators q- ~ where
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then (16) reduces to the set of equations of half the
dimensionality:

2(- I
~

I ~)Xs( ) =(~.+-.) 2& I ~)X ( ),
p&0 p&o

all 0.&0.
These are the general Tamm —Dancoff equations. They
are inferior to (16) for the following important reason.
The Hamiltonian matrix elements are the ground-state
expectation of operators q Bqpt which are opera-
tors of a particle-rank. which is two greater than the
corresponding operators Pg, II, gstj of the equations-
of-motion method. Consequently, the Tamm-Dancoff
method relies on considerably more detailed knowledge
of the ground state. This results in the fact that, in
contrast to Tamm-DancoG, the equations of motion
take ground-state correlations into account to a higher
order than those (if any) contained in

~
P).

The price paid for this improvement is twofold.
Firstly, the equations have double the dimensions and,
secondly, the metric matrix N p ceases to be positive
definite. Indeed, since the basis operators Iii tI will

not generally be orthonormal with respect to the cor-
related ground state, the metric matrix may not even
be diagonal. This is not a problem formally (which we

will discuss in a separate paper). It does add to the
technical difBculties of solving the equations, but it
adds little more than the conventional RPA.

3. FORMAL PROPERTIES OF THE EQUATIONS

It is shown in Sec. 5 that a erst approximation to the
equations of motion is the standard RPA. The formal
properties of the RPA equations have been investigated
by Thouless. ' These properties, as we now demonstrate,
are completely general.

3.1. Adjoint Pairs

In the exact solution of the formal equations we

expect that solutions will appear in adjoint pairs cor-
responding to excitation creation- and destruction-
operators, with energies +or, respectively. Let us ex-
amine whether or not this result also follows for an
approximate ground-state wave function

~ p ) and for a
finite operator space. If 0„is given by (15), its adjoint,
which we write as

0;t—=0.,
is given by

0„-t=+X~(~)vgt=+X-~(~)q t.

for all anti-Hermitian operators F, within the Gnite

operator space considered. We shall refer to this in-

equality as the stability conditioe, by analogy with the
stabBity condition for the HF state. '

Consider an eigenvector F(74,) of the matrix M:

QM pFp(7) =XF (7), all n.

Since M is Hermitian, its eigenvalues X are real. From
the symmetry of M, there exists another eigenvector
degenerate with F (X) given by

Taking the complex conjugate of (17), putting bars
over the indices, and using the above symmetry rela-
tions gives

QM pXs(R) = —oo„*+ÃpXs(R).
p p

Thus, for aeey wave function
~ p), solutions always

appear in adjoint pairs with energies co„and —ao„~

unless ~, vanishes. If ~, vanishes, the corresponding
solution (or pair of solutions) may be self-adjoint.

3.2. StabiTity conditions

Consider a small displacement e of the wave function

~ p), given by the unitary transformation

I X)= exp(eF) I 0)
where Ii is an arbitrary anti-Hermitian operator. The
energy expectation

(x I
&

I x)= 8 I
&

I &)+e Q I 2» F1 I &)

+!"9 IP', Ã, PjJI~)+".
can be regarded as a multidimensional energy surface.
The linear term in & is its slope and the quadratic term
its curvature along some line in this surface specified

by the choice of F. If
~ @)were the exact ground state,

its slope would be zero and its curvature positive in all
directions (unless the ground state is degenerate, when

it may vanish). For convergence of an iterative cal-
culation of the ground state, as suggested in Sec. 2,
it is not essential that the slope be zero for all P;
otherwise

~ @) would already be an eigenstate. But it
should be in the region of positive curvature surround-

ing the point on the energy surface corresponding to
the ground state. We require therefore that

~ P)
approximate the ground state sufficiently closely that

e ~ r» r» FZ I~)=Z~-*M-sos&0

Thus we obtain gM pFe*(X) =XF *(X), all e.

N-p= —N p*.

X (rc) =X-~(~).

From the definitions L(16) and (17)j
N p, we also get

3f p=M p*,

of ~ p and This Pair of degenerate eigenvectors can be recombined
to form new eigenvectors whose elements are

F (X) —F ~(li) or i(F (li)+F ~(li)),
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which correspond to anti-Hermitian operators and can-
not both vanish. Thus, if M has any negative eigen-
value, it is possible to construct an anti-Hermitian
operator F violating the stability condition. Therefore
the stability condition is that M is positive definite:

gY *M
p Yp&0 (20)

The left-hand side is the expectation of a Hermitian
positive-definite matrix, and so it is a real nonnegative
number. The coefIicient of ~„onthe right-hand side is
similarly real, and so, if or„is complex, it must vanish.
The expectation of a Hermitian matrix can only attain
its minimum value for an eigenvector, which implies
that X(II) is an eigenvector with eigenvalue zero. If
this is so, cv„is also zero. Thus we conclude that, pro-
vided the stability condition is satisfied, ~„cannever
be complex.

This proof apparently breaks down if E has a zero
eigenvalue. We show elsewhere that this can happen
only if the vector space is overcomplete, which is
automatically recognized and corrected in the solution
of the equations.

for all Y.
Following Thouless, "we now show that, provided this

stability condition is satisfied, all solutions of Eq. (16)
have real energies. Suppose that there exists a solution
X(II) with complex energy cv„.Then

Qx ~(II)M pxp(g) =(o„+X*(A)X pxp(~). (21)

derivation of the ground state. It is apparent that we
should not require the correlated ground state

~
0)

to be the vacuum of such operators, but rather an
eigenstate. If

~ p) is not already an eigenfunction, it
can be made so by projection. In practice, however, it
appears that projection is not such a good idea for the
following reason: Nearly all our understanding of
nuclear structure is based on the belief that the nucleus,
to some extent, resembles a system of independent
particles. But if we insist that the nucleus have definite
center-of-mass momentum, we apply a constraint on
the particle coordinates which destroys all semblance
of independent particle motion. The same happens if
we demand definite angular momentum for deformed
nuclei or definite particle number for superconducting
nuclei. Now in the case of translational motion, the
nucleus can be localized by the application of a field
in the center-of-mass coordinate. Such a field cannot
affect the intrinsic structure, since the center of mass
and intrinsic motion are completely decoupled. But it
regains the possibility of a nondivergent description
of the nucleus in terms of an independent particle basis.
We believe that something similar can be done for
deformed and superconducting nuclei. But here there
is an essential difference in that the intrinsic structure
of deformed nuclei does depend, to some extent, on the
rotational angular momentum, and the structure of
superconducting nuclei does depend on the particle
number. These problems and the derivation of the cor-
related ground state will be discussed in more detail
elsewhere.

3.3. Spurious Solutions

We have shown that complex energies should not
occur. What about zero energies? Clearly any operator
that commutes with the Hamiltonian will produce a
zero-energy solution of Eq. (10). For example, the
momentum operator I' commutes with the Hamiltonian
and hence

Q j PR, PH, Pjj ( y)=0, all R.

Other examples are the angular momentum operator
and the number operator. Of course, the solution of
Eq. (13) for an approximate ground state

~ p ) and for a
finite vector space only give solutions with energies
approximately equal to zero.

These solutions are spurious in the sense that they do
not correspond to real excitations of the nucleus. On the
contrary, they represent operators which should be
diagonal. They do correspond, however, to real degrees
of freedom. It is a very satisfactory feature of this kind
of approach that spurious excitations associated with
these degrees of freedom should separate out and
appear, at least formally, with zero energy. At the
same time, the mere existence of spurious solutions
raises problems of another kind which concern the

Unless ~q and ~„*are equal, therefore, both sides of this
equation must vanish. If ~=X, then, provided the
stability condition (20) is satisfied, M is positive
definite,

M„+X*(~)N pxp(II) )0

and co„,~& are real. This suggests orthogonality relations
with the normalization

Qx *(~)Xpxp(X) =+8.i if co„&0,

if a)„(0. (22)

Spurious solutions, with co=0 and which correspond
to IIermitian operators, are self-orthogonal.

3.4. Orthogonality and Normalization

Consider two solutions X(A) and X(X) of Eq. (16).
Since the matrices M and E are Hermitian,

Qx *(II)M pxp(X) =(vi,gx *(~)1V pxp(X),

=~.*gx.*(~)Ã.pxp(z).
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9 I [o„,o, ] I
y)=s co«O 0) (24)

which gives us orthogonality of excited-state wave
functions just to the extent that

I g ) is a good approxi-
mation to

I 0), in as much as (23) is sensitive to
I
0).

Clearly, if we iterate until self-consistency is achieved,
i.e., until

I @)becomes the vacuum of the O„operators,
then exact orthogonality of wave functions will be
achieved.

3.5. Closure Relations

For orthogonality of excited-state wave functions we
require that

(~ I
x)= (0I [0„,Oy ] IO)=8,y, (o.)0. (23)

Equation (22) shows that

Hermitian operator S' is defined by

SEw= +co„
I

(~ I
W

I 0) I'

&. =l(~l[w, I&, w]]I~&

=l (4 I [w, a, w]
I y&, (28)

=-', (0 I [W, PH, W]] I
0). (27)

Now the double commutator in this ground-state matrix
element is essentially a constant or a single-body oper-
ator for most transition operators 8' of interest. Con-
sequently its expectation is particularly insensitive to
the wave function. This, of course, is the value of the
energy-weighted sum rule, as opposed to the nonenergy
weighted. One therefore defines an energy-weighted
sum by

If there are no spurious solutions, either because the
corresponding operators have been removed from the
operator space, because the degeneracy of the ground
state has been lifted by the addition of a field to the
Hamiltonian, or because the equations have been re-
duced by transformation to an angular momentum
representation and we are considering a subspace with-
out spurious solutions, then the usual arguments" can
be applied to show that the solutions form a complete
set.

Any arbitrary vector P within this vector space
can therefore be expanded:

I'= +[a„X(~)+a„-X(r()],
«)0

which is either equal to $E» or a very good approxima-
tion to it.

Consider the situation when S' has angular mo-
mentum for which there are no spurious solutions. 8'
can then be expanded:

W= g(a„o,t+u. *o.),
K)0

where

Inserting this expansion into (28) and using the
orthogonality relations (24) gives

sgw=-', pa *e~t~~(y
I [o„,o,t]

I e&

where
a„=QX *(~)1V,pF'p,

a;= —QX *(R)1V pFp
nP

«,X)0

=Z~ l~ I',
«)0

= g~„I &y I
[o., w]

I y &
I'.

&4 I [o",o.] 14 & I,

(29)

= —QX (x)1V pTp.
a8

Thus we obtain the closure relation

QQ[X (~) Xp*(z) X*(~)Xp—(~) JiVp, 8,. (25)——
«+0 P

3.6. Matrix Elements and Sum Rules

The matrix element of some operator kV between the
ground and an excited state,

&~i wl0&= &0I [o w] I0»

is given, to whatever approximation one is working, by

& I
ll'I0)=Q

I
[o., W] I ~&

= QX *(a)1V pWp. (26)

The exact energy-weighted sum rule SEw for a

«)0

Thus the transition strengths of (26) exactly exhaust
the energy-weighted sum SFw.

If 8' has the angular momentum of a spurious state,
a sum rule for intrinsic excitations can still be devised

by subtracting from W that component which operates
on the spurious coordinate. For example, the electric
dipole operator

protons

D=e QZ,

can also be written

D ', e+Z, =', e—pro(i)—Z—;,

where the sum is now over all nucleons. The 6rst term
operates only on the center-of-mass coordinate and
can therefore be subtracted to leave an intrinsic dipole
operator. The above arguments now apply to show that
the solutions of the equations of motion exactly exhaust
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(a)

]s v'Ikey
/4 y'

aery

and a wave function I &I&&), the construction and solu-
tion of Eq. (31) is straightforward.

For particle —hole operators, the orthogonality rela-
tions (22) become

Q [ Y;*(&&)U,„;F„;()&)—Z, *(&&)U„;„;*Z„;()&)I

ik y

FIG 1. (a) Some low-order self-energy insertions which are
eliminated by the representation and single-particle energies g„of
Eq. (42). (b) Additional self-energies included in the single-
particle energies g„&+& of Eq. (43). (c) OB-diagonal self-energy
insertions neglected in the definition of 8„&+&PEq. (43)j.

the energy-weighted sum rule for this intrinsic dipole
operator.

4. PARTICLE —HOLE APPROXIMATION

A erst approximation is to restrict the operators O~

to particle —hole form:

Ot =g ( F„,u„ta;—Z,&s;"u ) . (30)

Here (and throughout this paper) the subscripts
rN, n, p, and q are reserved for particle states (single-
particle states above the Fermi energy) and i, j, k,
and i are reserved for hole states (single-particle
states below the Fermi energy) ."

Inserting (30) into (16), we obtain, the matrix
equation

a )(v) (U o )(I)
(»)

E~ ~*) &Z) Eo -U*) EZ)

lf Goff+0,

if &0„(0. (34)

The closure relations (25) become

QQ I 7'„,(&&) F,s*(&&)—Z„;*(«)Z~s ( &&) I U„s„,=o„„8,;,

QQI Z;(K) F„s*(«)—F„,*(«)Z„s(«)I U„s„;=0,(35)

and the transition matrix elements (26) become

&. I wIo)= g [I'„,*(.)U„,„,w„,
tninj

+Z„;*(«)U, ;*W;„I. (36)

S. RANDOM PHASE APPROXIMATION

Suppose we choose for
I p ) the particle-hole vacuum

).We hand

~--'=~', &I -L» .'1I)+~-&I "L» jl)+v-"'
The single-particle representation still remains to be

specified. The obvious choice is the one which diago-
nalizes the single-particle matrix elements:

&I ~-L» o-'j I )=~-g-

&I o"L» ~i] I)=—~'g'. (37)

In fact this is the Hartree-Fock (HF) representation;
the S„areHF single-particle energies, and the particle—
hole vacuum

I ) is the HF wave function.
In this representation we obtain 6nally

&minj f&mnf'&ij (gm gi) +Vmjiny

for the column vectors (I';) and (Z;), where 2 and
U are Hermitian and 8 is a symmetric matrix defined by

~minj omni jy

Unpin j ~mn~ij p (38)
~-- =

&& I L~'"~-, » ~.'~ 3 I 4 )

&--;=-&~IL'"-,» '"jl»
U-- = 8 I I:~"~-,o-'~i]

I 0) (32)

Given a well-behaved Hamiltonian, which we write in
the general antisymmetrized form

H= QT,„~G, Q,~+@ Q Vpm~n~Gp Qp &sn~cp~, (33)
vv~

and (31) becomes the standard RPA equation.

6. GENERAL PARTICLE-HOLE EQUATIONS

It is well known that the RPA is inconsistent from
the point of view that the HF wave function is not the
vacuum of the RPA excitation operators:

o( ) I )&0.
"The term "Fermi energy" is used rather loosely here. It is to

be understood as that energy such that, if all particles occupied the
lowest-possible single-particle states, aH states below the Fermi
energy would be occupied and all states above it would be empty.
Single-particle states and their energies can be defined in many
ways. For the moment, we shaH be completely general and delay
their definition until the most appropriate definition becomes
apparent.

The corresponding statement in Green's function lan-

guage is that the Pauli exclusion principle is violated.
If ground-state correlations are large, this may intro-
duce serious errors. Let us therefore examine the struc-
ture of the ma, trix elements (32) when

I p) is the fully
correlated ground state

I 0).
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6.1. Complete Equations

We find

a.,„,= &o I
u;t[a, u,] I o)5„„—(I Iu", La, u~] I I ) &o I u. 'u-

I o)

+ &o I
u Ca, u„t]

I 0)5,,—(I Iu„,Ca, u„']II ) &O I u;u [o

+v- -—Zv. '-(0 I .' - I o)—Zv - &0 I .' I o)
P

—p v„,„„&0I u„u,' I o)—p V.;,„(0I
u„tu„I o)

+Qv„„„„(0[:u,tu„'u,u. : I 0)+Qv„;;„(0[:u."u„'u u, :
I 0)

pv PV

+-,' Qv„„,„(0I:u„tu„tuu, :
[
0 )+-,'Q V„,„„(0[:u;tu„tu„u„:

I
0 )

Ca, u,']! I ) &o I u„u,'
I

o )+ (I Iu, t, La, u„]I I ) &o I u,'u.
I o) I

+ V.„,,—gv„.;;(0 [u„tu [o)—gv „,;(o I u„tu„[o)
—gv„„„,(0 [u„u,t [0)—gv „,„(0[u„u,t [0)

+QV„„„,(0 I:u u„'u,u. :
I
0 )+Y'V„„;„(0I:u u„tu,u: I 0)

PV PV

+-', p v„„„„&0I:u,'u, 'u„u„:
I
0 )+-',gv„„;(0I:u, 'u„'u u„:I o )

II (39)

II (40)

U ...=5..(O [ u, tu;
I O) —S,; (O [

u„tu.I O), (41)

where the operators enclosed by dotted brackets
(: ~ ~ ~ .) are to be arranged in normal order with
respect to the particle —hole vacuum [ ).

cases. Thus we define single-particle energies 8&+':

(0 [ u [H, u„t]
I 0)—5 (0 [ u [H, u„t][ 0)

6.2. Single-Particle Terms I

The equations look frightful, but are simpli6ed con-
siderably by a suitable choice of single-particle basis.
A desirable choice would be one which diagonalizes all
the single-particle matrix elements labeled I in (39)
and (40), but it is not clear how one would achieve
this exactly. A natural basis is one which diagonalizes

(0 I u, t[H, u;] I 0)=Be (0 I u;t[a, u~] I o)

where
P-= (0 I

u-'u- I o »

I,=(o
I u,u, t [o).

(43)

(44)

(o I Iu„[a,u„']II o)= &o I ILu., a], u„'}I o),
=2-+Zv. :"&0[ .".Io)

(42)

This is a generalization of the HF basis in which the
self-consistent field is replaced by a single-particle Geld
calculated for the true rather than the HF density. In
diagrammatic language these self-energies correspond
to the elimination of all self-energy insertions of the
type shown in Fig. 1(a).

A very reasonable approximation now is to assume
that this representation also diagonalizes all the single-
particle matrix elements I."Angular momentum conser-
vation guarantees this, of course, in the majority of

"This assumption underlies the whole of the shell model;
without its fulfillment to a high degree of accuracy, it would be
hard to understand the persistence of shell structure.

p„is the number of particles already occupying the
particle state m, and h; is the number of holes occupying
the hole state i. These single-particle-energies include
self-energy diagrams of the type shown in Fig. 1(b),
[in addition to those of 1 (a)] but neglect off-diagonal
diagrams of type 1 (c).

The remaining single-particle terms are an order of
magnitude smaller and can be approximated a little
more crudely. Rather than introduce a third single-
particle energy we therefore approximate"

&I Iu", La, u]I I)=—5'P'

&I Iu-, La, u-']I
I
)=5-g- (43)

"It is observed in HF calculations Lsee K. T. R. Davies, S. J.
Krieger„and M. Baranger, Nucl. Phys. 84, 545 (1966)g that the
single-particle energies converge much more rapidly than the self-
consistent field. This indicates that the single-particle energies are
insensitive to the field. Thus, if the ground state is described at all
well by HF theory, the above simplification is hardly an approxi-
mation at all.
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particle density of the ground state, are given for
A;„;by

V, ,„(1—p„,—p„—fi;—hj)

and for 8;„,by

V „g(1—p —p„—Ir, —hj). (49)

(c)

FIG. 2. Some low-order diagrams contributing to the particle-
hole interaction terms II of Eqs. (39) and (40): (a) V;;„;(b)
Low-order Pauli correction to A;„j;(c) V;., ; (d) Low-order
Pauli correction to B~;~;.

The sum of the single-particle terms I of A;„;then
becomes

B„„B,,[8„~+~(1—p„)—g Ii;—8,'—'(1—h, ) +F„p„).(46)

The terms I of 8;„;vanish.
The single-particle energies 8„,8 &+', and 8,' & are

experimentally observable quantities: 8„is the centroid
for the total strength of the single-particle state v, as
evidenced in stripping and pick-up reactions; 8 &+' is
the centroid of just the stripping strength of the particle
state m; 8;& ' is the centroid of just the pick-up strength
of the hole state i.

With these assumptions, the metric matrix (41)
becomes

+minj ~mn~ij(1 pm hi) ~

The fact that this matrix becomes diagonal is extremely
useful because it can be inverted very easily to convert
(31) to standard RPA form.

6.3. Particle-Hole Interaction Terms II and III

Some of the low-order diagrams contributing to these
terms are shown in Fig. 2.

The correlation terms III .are not simplified by the
choice of particle basis. Some of the lowest-order dia-
grams, which are summed in these terms, are illustrated
in Fig. 3.

Some low-order diagrams which are conspicuously
absent are those of the type shown in Fig. 4. These
diagrams represent a coupling of a one particle —hole
phonon to a two- (or more) phonon state. Such a cou-

pling will cause a splitting of the one-phonon strength,
but it cannot shift its centroid energy, which is pre-
dicted exactly by the equations-of-motion method (see
Sec. 9.2). To account for the energy shift of specific
states due to coupling to states outside of the space, one
can always renormalize the interaction in the usual
manner. A formal statement. of how this is achieved for
equations of RPA form is given by da Providencia. "

7. HIGHER RPA

If we neglect the correlation terms and the difference
between 8„and 8„&+~ in the Pauli correction terms of
(46), then the equations simplify considerably. We
obtain

A.;., = S „S;j(g.~+& —g,~-~) (1—p.—h, )

+V in(m1 pion &' p h')

~minj Vmnij ( 1 pm ~i pn kj) ~

U„,„,=5„„8;;(1—p„—h;) .

Under the above assumptions, the interaction terms Since U is a diagonal matrix, it is readily inverted and
II of (39) and (4), which depend only on the single- (31) can be written

In more compact form, this becomes

(50)

where
"t(„;=(1—P —Ir,) 'j' V;,
z;=(1—p —h, )'j2Z

„

S,.;=8 .8;, (E &+& —F„~-&)+(1—p —h;)'j V,;„(1—p.—h, )'t',

s,„;=(1—p —j'i,)"-V „,, (1—p —hj)"',
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and we have neglected some terms quadratic in the p's
and k s.

These equations are of the same form as those of the
RPA (38), differing only by a renormalization of the
two-body interaction.

Transition matrix elements are given by

(. [ W ) 0)= ALII:„„(1—p„—I „)~l~g. *(&)

pgm

FgG. 4. Some low-order diagrams which do not contribute to the
particle —hole equations.

+)I'-(1—p.—I ')'"~-*(x)3, (52)

which (again) is the RPA result, but which is now given
for a renormalized transition operator.

These results are almost identical to those obtained
by an extended linearized equation-of-motion pre-
scription. The small difference may, however, be very
important. In this method, the equations of motion

)II, a'a$—a'a+ a'a'aa

are linearized by replacing pairs of particle creation- and
destruction-operators by their correlated grolmL-state
expectation values. " The results differ from ours in
that the single-particle energies involved are G„rather
than 8„(+',but otherwise they are identical.

The correlation diagrams of Fig. 3 occur 6rst at the
same order as the Pauli correction diagrams for the
forward-going graphs LFig. 2(b)] and actually at a
lower order for the backward-going graphs LFig.
2(d) ).Therefore they cannot be neglected on energetic
grounds. However, it is supposed that they contribute
with random phases and consequently are unimportant.
But it is abundantly clear that the Pauli violation cor-
rections, which we now include, do contribute co-
herently and do effect a reduction of the effective inter-
action strength.

Whether or not the approximation of random phases
for the correlation terms is justified is an important

8. TWO QUASI-PARTICLE APPROXIMATION

8.1. General Equations

Whatever wave functions |g ) one uses as an approxi-
mation to the ground state, the particle —hole treatment
can only make sense if ground-state correlations are
not too large. Otherwise the distinction between particle
and hole states becomes arti6cial. In particular, if
ground-state correlations are of the superconducting
type, the particle —hole vacuum could be almost orthog-
onal to the correlated ground state. In such a case, a
two quasi-particle approximation is more appropriate
for the excitation operators:

0 = Q( FppClp CXy +Zp|CLp&p) . (53)

The quasi-particles are de6ned by the Bogolyubov-
Valatin transformation

cx„~= U„a„~—V„a„-,

question that should be decided by computation. The
important point is that we now have closed expressions
which makes their computation feasible. The only
remaining problem is how to derive the correlated
ground state —or at least its one- and two-particle
densities. Suggested methods for doing this will be
discussed in a separate paper.

a;t =U.a;t+ V,a„, (54)

where U„and V„arepositive real numbers which remain
to be de6ned, but which are subject to the normalization

U 2++2 (55)

(b)

P&G. 3. Some of the lowest-order diagrams contributing to the
correlation terms III in Eqs. (39) and (40) of (a) A;„;and
(b) &m, n~..

"This approach has been used by Ikeda et al. (see Ref. 13) in
the two quasi-particle approximation for a "pairing +F2" inter-
action, but the method is general.

A„,„,= (y ~
[n„n„,H, n„'n,'] I y ),

8„.„;= (y ~
Ln„a„,II, n„.u..$ ~ y),

U.""= (4 I L~. .. " ~ '3
I 4). (56)

A barred index v refers to a single-particle state which
is the time-reverse of v.

Substituting the above expression (53) into the
equations of motion (15) and (16), we derive equations
identical in form to those of the particle —hole equations
(31), but with submatrices:
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These may be expanded:

~.:"=(l—s'..) C(&+7.7.")(8 I .C» "'31~»,
—

&I I~., C» ~"'3} I ) 9 I ~"~.I & &) +U.""'"
—l(l —si") &4 I C~. IC» ~"3,~"'}3~.10&

--,'(l-s.")&~l "'L., f ., C» .'3}3l~&
-(l+s..A:) &41:-.tI;, C»; t3}-.:I ~&3,

~.,"=(l —s"")C(i+a.A") &I I~. L» ~"3}I) &e I
~~" I 4&

+0p pv'v' (B)

+2(l —si") &4 I C~. IL» ~'3 ~"}3~ I &&

+l(l —p.")&@I C . I . C» "3}3"14&
+(i+7",A ") 9 I: I~., C» ~'3}~~":14&3

U.""=(l—s"")C&- ~- —~- &41~"'~ 14 &
—~- &O I "~ I e&3,

(57)

(58)

(59)

where p„„is an operator which permutes the indices

p, v. '0„„„.„.& & is defined by

'U"."'"=lf L . {C» "3 "'}3} (6o)

and is the quasi-particle generalization of a forward-
going particle-hole graph CFig. 2(a) 3. 'U„„„„.&a& is
defined by

'U„„„.„.&s'= --,' Ia„,Cn„, I C» e„.3, u„.}3} (61)

and is the quasi-particle generalization of a backward-
going particle-hole graph CFig. 2(c)3.

8.2. Quasi-Particle Random Phase Approximation
(QRPA)

Suppose we choose for
I g ) the quasi-particle vacuum

& given by

The coeKcients U„and V„aredefined by the require-
ment that

=8.„C(U2 —V,2) A, —2U, V„(8„—X) 3=0, (64)

where 6„is the gap parameter defined by

&I Is-., C» o"3}I&= &I Io' C& o"'3} l&=~-A' (65)

Explicitly,

Av=2ZVrl vv&l sp ol I)= k+VrpvvUIV„(66).

These equations, together with the normalization (55)
and the number equation .

(67)
I &=II(U.+v'.".-') I-),

v)0

where I-) is the bare vacuum. We Gnd that

"=(~—7i")C(i+RA ") &I ~.C» ~"'31)~-

(62) define the quasi-particles completely. The quasi-particle
energy E„,defined by

&I I~., C» ~"'3} l&=~- (I I~ C» ~.'3} I&=&-&

(68)
+&pvtv'v'

To evaluate this expression, the particle basis v and
the parameters U„,V„must be specified. This we do in
accord with Hartree —Bogolyubov theory, but we use
the equations-of-motion method, which is more in
keeping with the present development. The method is
simple and has the advantage that it is readily general-
ized to a correlated ground state. Since this method will
be described more fully elsewhere, here we merely note
the salient expressions.

The single-particle basis is chosen as the one which
diag onalizes"

(I Io C» o"'3} I&=&- (8.-&). (65)
~ Since we are utilizing quasi-particles which do not conserve

particle number, it is appropriate to modify the Hamiltonian in
the usual manner: H~H —Xg, where X is the chemical potential
and n is the number operator.

I (8 y)2+A 2}1/2 (69)

With this choice of quasi-particle basis, the sub-
matrices of the QRPA become

~.""= (i 72")L~u'~- (F..+—F- ) +'0."""'3
&.""=(& A.) 0u"" '—
U.""=(&—A)&u'~ "
8.3. Higher QRPA

(70)

The QRPA can be taken to a higher order just as the
particle-hole RPA. For

I p ) we take a correlated ground-

after some manipulation of the above equations, is
given by

E„=(U,2—V,2) (8„—X) +2U„V„A„,



(73)

The expression (69) for the quasi-particle energy E„,
now defined by

(ol t „,la, „,'3 lo&=S„..Z„, (74)

remains unchanged.
The quasi-particle energy E„becomes the combined

centroid for creation and destruction of a quasi-
particle. However, in Eqs. (57)-(59), only the centroid
energy for creation of a quasi-particle appears. Thus we
define

&0 I ~„La, „'3I 0&=~„„.&0 I ~„la, ,'j I 0)
=B„E,'+' (1—N,),

where X„is the number of quasi-particles occupying
the state v in the correlated ground state:

N„=&0 [ a„tn„[0). (75)

It is doubtful whether, in practice, E„&+& will diBer
significantly from E„.

If we now make the assumption of random phases
for the correlation terms of (57) and (58) and follow
exactly the same steps as in the derivation of the higher
RPA, we again obtain equations of RPA form with

g„„=(1—N„—N„)'I'F„„
Z„„=(1—N„N„)'IsZ„„—

) p , g , (g (+)+.p (+))

+ (1—N —N )"'0 ~ ' '(1—N —N )'"j
e„,„,= (1—p„)(1 N» —N.) "U~.~" —'

X(1—N —N, )'"

&.„"= (1 6)~u'~- ~— (76)
rs $n tbe quasi-particle treatment, we do not suppose [ 0) to be

the exact ground state with definite particle number for the reasons
stated in Sec. 3.3. Rather, it is considered a good wave function if
its 9-particle components approximate the A-particle ground
states. As a result, the quasi-particle equations-of-motion yield
spectra which are averages over a few nuclei in the neighborhood
of the nucleus in question. This is the penalty one must pay for
the simplicity of quasi-particle methods.

state wave function
I 0) containing the vacuum plus

admixtures of quasi-particle excitations. " Now the
equations defining the particle basis and the transforma-
tion to quasi-particles generalize to a correlated wave
function without any change in form. They become

&0 I [a„,$H, a„t]} I 0)=8„„(8.—lt), (71)

&Ol [., Le, „-,3[[0&
L(U,' —V') g,—2U, V„(8„—&,) )=0, (72)

where

~„=&0[[a„-,La, a„j»Io)=-,'gv„-„„-„&0I~„-~„Io)
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9. DISCUSSION OF THE APPROXIMATIONS

The approximations that must be made in order to
solve the equations of motion are of two types: ap-
proximations for the ground-state wave function and
approximations of the truncation of the vector space.
These we discuss separately.

9.1. Approximations for the Ground State

For the particle-hole (two quasi-particle) equations,
the only input data required of the ground state are its
one- and two-particle densities. In the RPA (QRPA)
these are approximated by HF (HB) values. By ex-
tending these approximations to a higher order, we
have shown that they neglect important coherent con-
tributions which are particularly associated with cor-
rections to the one-particle densities or diagrams of the
types shown in Figs. 1 and 2. The inclusion of these
contributions in the higher RPA is manifested in two
ways. Firstly, the HF particle-hole energy is replaced
by (8 t+& —8;& '), which inevitably is larger. This
replacement is advantageous because the 8&+' (rather
than HF energies) are observable centroid energies sr

Secondly, the effective interaction strength is reduced.
Both corrections increase the energy of low-lying excita-
tions for a given Hamiltonian.

Without detailed calculation it is not easy to predict
the consequence of including the remaining neglected
terms Lnamely, the correlation terms associated with
corrections to the two-particle densities or diagrams of
the type shown in Fig. 3g. It is hoped that the correc-
tions will be small due to a random phase cancellation.

9.2. Truncation of the Vector Space

Ke now assume that the ground-state wave function
is exact, and we consider the eGect of truncating the
vector space. The first observation is that the O„t

I 0)
cease to be exact eigenstates and the O. I 0) may not
completely vanish. We then must consider the sig-
nificance of the energy co„ofthe equation

&0[LO., a, O, tg [0)=b„,~„.
Expanding in terms of exact eigenstates [ n&, we find

~ =Z(&-—&) [I &~ I O. [0& I+I &~l O. l 0& ['I.

(77)

Thus co„is the centroid energy for the O.t, 0, strength.
This is an exact and very significant result, for it tells
us just what to expect when the vector space is en-
larged. If the original truncation was reasonable, the
bulk of the strength would reside in a single eigenstate
close in energy to the centroid. As the vector space is
enlarged, the strength of the original solution becomes

~ If, for lack of experimental information, one takes the energies
of only the lowest states with single-particle strength rather than
the centroid of aO such states, then the particle —hole energy is
inevitably underestimated.
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split among a number of solutions which, in the limit
of an infinite space, become the eigenstates. It is
apparent therefore that ezztargizzg the vector space carz

only loner the energy of the lower solutions.
Similarly, if we wish to take into account the coupling

to vectors outside of the space by the use of an effective
interaction, it is clear that, for the lowest states, al/
such effective zrzteractiorzs must be attractive. For example,
if the original vector space included only Vice particle—
hole (two quasi-particle) excitations, then the effective
interaction associated with coupling to 3fico excitations,
two-particle-two-hole excitations, etc. , (e.g. , diagrams
of Fig. 4) can only be attractive.

10. CONCLUDING REMARKS

The higher RPA goes a long way towards the in-
clusion of superconducting effects without giving up
number conservation (as does the QRPA). If we as-
sume that HB theory accurately describes single-
particle energies

t

and single-particle occupancies

p
—p' s

but that nevertheless the Fermi surface is suKciently
sharp to justify the neglect of quadratic terms in p„
and tz;, then the QRPA and the higher RPA become
equivalent. In fact, such a situation is almost certainly
nonexistent, for under these circumstances a super-

conducting solution is unlikely to exist. Nevertheless,
it is very satisfactory that the equations continue into
the domain of each other in this way.

It is well known that, in standard RPA theory, the
excitation energy of the "collective" state falls as the
interaction strength is increased; eventually it vanishes
and starts to become imaginary. This (as Thouless" has
shown) indicates the instability of the HF wave func-
tion and the occurrence of a phase transition. The cal-
culations of Ikeda et a/." indicate that, for the higher
RPA, this no longer happens. We differ from Ikeda et
al. , however, in the interpretation of this result. It does
not mean that phase transitions cannot occur; that is
unrealistic. It means, rather, that phase transitions are
not sudden and that the correlated ground state slowly
makes the transition, leaving excited states always at
positive, real energies. In the difficult region of a phase
transition, the particle —hole or two quasi-particle
truncation is almost certainly inadequate, but the
elimination of imaginary roots is surely an essential
feature of any realistic calculation. "

In this paper we have tried to indicate some of the
usefulness of the equations-of-motion approach. But its
potentiality has not yet been fully explored. Because of
its simplicity and formal exactness, it has a flexibility
which holds considerable promise for its successful
application to further problems of. nuclear spectroscopy.

"Note added i~z proof. Since the completion of this manuscript,
the significance of imaginary roots and the meaning of a phase
transition have been more fully investigated in terms of general
varistional equations tD. J. Rowe, NucL Phys. (to be pub-
lished) ].


