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A group-theoretic study is made of the degeneracies of the normal modes of vibration of a crystal and of the manner
in which the polarization vectors describing these modes transform under the operations of the space group of the crystal.
To describe the effects of the spatial symmetry operations a set of 3r-dimensional matrices is constructed, where ~ is the
number of atoms in a primitive unit cell of the crystal, each of which commutes with the Fourier-transformed dynamical
matrix for each value of the wave vector labeling the modes. These matrices are shown to provide a multiplier representa-
tion of the point group of the wave vector. The reduction of this representation yields the degeneracies (due to spatial
symmetry) and transformation properties of the polarization vectors corresponding to a given wave vector, while the
forms of the eigenvectors are obtained by projection operator techniques. For appropriate wave vectors, the consequences
of time-reversal symmetry on the degeneracies and polarization vectors are investigated by introducing an anti-unitary
matrix operator which commutes with the Fourier-transformed dynamical matrix. A criterion for the existence of extra
degeneracies due to time-reversal symmetry is presented. The symmetries of lattice vibrations and selection rules for
two-phonon absorption processes corresponding to several values of k in the Grst Brillouin zone of diamond are deter-
mined to illustrate the methods developed in this paper.

1. INTRODUCTION

The normal modes of vibration of a crystal are
labeled by a wave vector k and by a branch index j.
The allowed values of the first index are determined
by the cyclic boundary condition on the atomic dis-
placements, and they are uniformly and densely dis-
tributed throughout the first Brillouin zone for the
crystal. The second index diGerentiates among the 3r
normal modes associated with the same value of k,
where r is the number of atoms in a primitive unit
cell of the crystal. '

The squares of the 3r normal mode frequencies
[cess(k) I corresponding to a given value of k are the
eigenvalues of a 3rX3r Hermitian matrix D(k) called
the (Fourier-transformed) dynamical matrix, whose
elements {D tt(ns'1k) I are labeled by the Cartesian
axes (u, P=x, y, s) and by the indices of the atoms

*This research was supported in part by the Air Force Once
of Scienti6c Research, Once of Aerospace Research, U.S. Air
Force, under AFOSR Grant No. 1080-66.

' It is assumed that the reader is acquainted with those elements
of the theory of lattice dynamics which are discussed, for example,
in (a) M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford University Press, Oxford, England, 1954); (b) A.
A. Maradndin, E. W. Montroll, and G. H. Weiss, Theory of
Lattice Dynamics in the Harmonic APproximution (Academic
Press Inc. , New York, 1963).

comprising the primitive unit cell (tt, «'= 1, 2, , r) ~

The eigenvectors 1e(tt1kj) f of this matrix describe
the displacement pattern in space of the atoms com-
prising the crystal when the latter is vibrating in the
mode (&j). Knowledge of the forms of these eigen-
vectors and of their transformation properties under
the symmetry operations which send the crystal into
itself is often useful for the solution of certain types of
lattice dynamical problems. Among these, for example,
is the establishment of selection rules for processes such
as two-phonon lattice absorption and the second-order
Raman effect, or phonon-assisted electronic transitions
in solids, in which normal modes associated with the
same or with different wave vectors participate.

The use of group-theoretical arguments greatly sim-

plifies the determination of the form of the dynamical
matrix for a crystal and of its eigenvectors for values
of k lying at points of symmetry inside or on the
boundary of the Brillouin zone. The first application of
group theory in this context seems to be due to Yana-
gawa, ' who studied the vibrations of crystals of the
rocksalt and diamond structures for values of k at
symmetry points in the interior of the 6rst Brillouin
xone. He made use of the fact that the eigenvectors of

s S. Yanagawa, Progr. Theoret. Phys. (Kyoto) 10, 83 (1953)
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the dynamical matrix are basis vectors for the small
representations' of G~, the space group of the wave
vector k, i.e., that space group whose purely rotational
elements leave k invariant (modulo 2zr times a trans-
lation vector of the reciprocal lattice). However, it is
not clear that the method he used in this paper can
be applied without modification to the determination
of the forms of the eigenvectors associated with k
vectors on the Brillouin zone boundary for crystals
belonging to nonsymmorphic space groups, that is, to
space groups among whose elements are found screw
axes and/or glide planes. Subsequently, a similar kind
of analysis, based on the theory of little groups, 4 was
carried out by Raghavacharyulu' and was applied to
the study of the dynamics of crystals of the diamond
structure. More recently, Streitwolf6 has considered
this problem anew. He has given a detailed and general
discussion of the symmetry properties of the dynamical
matrix, but his discussion of the symmetry and trans-
formation properties of the eigenvectors is rather brief.
Streitwolf constructs a set of 3r-dimensional matrices
which commute with the dynamical matrix, and es-
tablishes that this set of matrices provides a represen-
tation of the group G~. Standard methods are used to
reduce this representation into the irreducible represen-
tations which it contains, from which the transformation
properties and the forms of the eigenvectors of D(k)
can be obtained.

A group-theoretic method for determining the sym-
metry properties of the normal modes of vibration of a
crystal, which resembles that of Streitwolf, has also
recently been given by Chen. ~ The main difference
between the two methods is that Chen uses a form
for the dynamical matrix which is a periodic function
of k with the periodicity of the reciprocal lattice while
Streitwolf6 does not. Chen's work contains the most
thorough discussion of the transformation properties of
the eigenvectors of the dynamical matrix which is
presently available.

Despite the attention which has been devoted to the
problem of determining the symmetry properties of the
normal modes of vibration of a crystal labeled by a
given wave vector k, and the forms of the eigenvectors
of the dynamical matrix corresponding to those modes,
it was felt that the methods for dealing with these
problems have not yet been formulated in as simple,
explicit, and complete a manner as is possible. The
desire to present a somewhat simpler and more explicit
treatment of the symmetry properties of the dynamical
matrix and of its eigenvectors than is to be found in
preceding discussions motivated this paper.

' L. P. Bouckaert, R. Smoluchowski, and E.signer, Phys. Rev.
50, 58 (1936).' J. S. Lomont, Applications of Finite Gronps (Academic Press
Inc. , New York, 1959).'L V. V. Raghavacharyulu, Can. J. Phys. 39, 830 (1961).

6 H. W. Streitwolf, Phys. Status Solidi 5, 383 (1964).
7 S. H. Chen, "Neutron Scattering Studies of Lattice Vibrations

in Metals". Unpublished Ph.D. thesis, Physics Department,
McMaster University, Hamilton, Canada (Sept. 1964).

In the present paper we describe a group-theoretical
method for simplifying the dynamical matrix of an
arbitrary crystal belonging to an arbitrary symmorphic
or nonsymmorphic space group and for determining
the forms of its eigenvectors. This method can be used
as easily when the wave vector k lies on the Brillouin
zone boundary as when it lies in the interior of the zone.
It is based on the so-called multiplier or weighted
representations of the point group of the wave vector k,
i.e., of that crystallographic point group whose oper-
ations applied to k leave it invariant (modulo 2s times
a reciprocal lattice vector). These representations seem
to have been used for the first time in the context of
problems of solid state physics by Kovalev and Liu-
barskii in their study of the degeneracies of electronic
energy bands in crystals. The multiplier representations
of the 32 crystallographic point groups were subse-
quently published by Boring, 9 and the use of these
representations in problems of solid-state physics was
described in some detail by Liubarskii. ' Nevertheless,
it is still true that the use of the multiplier represen-
tations of space groups is less widespread today than
is the more conventional group-theoretical method due
to Herring" which is based on the factor group Gq/T~.
Here T~ is the subgroup of all lattice translations
through vectors t for which exp ( —zk. t) =1.

The reason for this comparative lack of interest in
the use of multiplier representations may lie in the
fact that until recently tables of the irreducible multi-
plier representations of the point groups of the wave
vectors k associated with symmetry points of the
Brillouin zone were not available in a form which per-
mitted their direct application to problems such as the
one considered here. However, the recent publication
of a book by Kovalev' in which are tabulated the
irreducible multiplier representations of the point groups
of the wave vectors corresponding to most" of the
symmetry points in the Brillouin zones for all 230
space groups now makes the multiplier representations
practically useful as well as formally useful for the
solution of solid-state problems in which space group
symmetry plays the central role. Perhaps the appli-
cation of these representations described here may

~ 0. V. Kovalev and G. Ya. Liubarskii, Zh. Tekn. Fiz. 28, 1151
(1958) t English transl. : Soviet Phys. —Tech. Phys. 3, 1071
(1958)j.' W. Doring, Z. Naturforsch. 14a, 343 (1959)."G. Ya. Liubarskii, The App/ication of Group Theory ie Physics
(Pergamon Press, Inc. , New York, 1960); see also P. Rudra, J.
Math. Phys. 6, 1273 (1965)."C. Herring, J. Franklin Inst. 233, 525 (1942) .

n O. V. Kovalev, Irreducible Representations of the Space Gronps
(Academy of Sciences of the Ukrainian SSR, Kiev, 1961)
t English transl. : (Gordon and Breach Science Publishers, New
York, 1964) .j"In a private communication to one of the authors (A.A.M.)
J. Zak has pointed out that Kovalev's tables are incomplete. k
vectors corresponding to points of symmetry in the Brillouin zone
whose point groups fall into certain crystal systems have been
omitted from his tables. These omissions are recti6ed in a forth-
coming book by Casher, Gluck, Gur, and Zak.
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stimulate interest in their use in other solid-state
physics problems.

The outline of the present paper is as follows. In
Sec. 2, the Fourier-transformed dynamical matrix for
an arbitrary crystal is introduced and some of its
general properties are established. Also the fundamental
vector Geld character of the atomic displacement vectors
is exploited to derive a matrix representation for the
transformation law of the eigenvectors of the dynamical
matrix under crystal symmetry operations. In Sec. 3
the transformation properties of the dynamical matrix
under the application of the operations of the space
group of the crystal are established, and the multiplier
representations of the point group of the wave vector
are introduced. In addition, Sec. 3 contains a discussion
of the effects on the dynamical matrix of combining
space group operations and complex conjugation, for
appropriate crystals and wave vectors, which lead to
the introduction of a set of anti-unitary symmetry
operations. In Sec. 4 the transformation properties of
the dynamical matrix under space group operations
are employed to determine the form and transformation
properties of the eigenvectors of the dynamical matrix.
A complete discussion of the consequences of time
reversal symmetry for the eigenvectors and eigenvalues
of the dynamical matrix is given in Sec. 5. Finally,
Sec. 6 is devoted to the working out of several examples,
illustrating the results obtained in the preceding sec-
tions.

2. FOURIER- TRANSFORMED DYNAMIGAL
MATRIX

The potential energy of an arbitrary crystal in the
harmonic approximation can be written as

C =C'p+ —', Q g Q C p(lx; lV)u (lx)up(lV), (2.1)
«a~ aP

where Co is the potential energy of the static crystal,
u (Ex) is the n-Cartesian component of the displacement
of the ~th atom in the Eth unit cell from its equilibrium
position, and the },4 p(lx; lV) } are the atomic force
constants of the crystal. From the formal deGnition of
the latter coeKcients, viz. ,

C p(lx; l'K') =a'4/au, (la) l9up(l'K'l ~p, (2.2)

where the subscript 0 indicates that the derivatives
are evaluated in the configuration in which all atoms
are occupying their equilibrium positions, it follows
that they are symmetric in the indices (lxa) and
(l'x'P):

C p(k; l'x') =Cp (l'x'; 4). (2.3)
Let us now subject the crystal to an arbitrary oper-

ation of the space group G of the crystal. That we can
do so implies that we are dealing with a crystal of
infinite extent, and in all that follows we assume that
this is the case. We represent such a symmetry operation
in the Seitzr4 notation by IS

~
v(S)+x(m) }.Applied

'4 F. Seitz, Ann. Math. 37, 17 (1936).

—=x(LE), (2.4)

which is to be interpreted in the active sense, " that is,
as point transformations. S is a 3X3 real orthogonal
matrix representation of one of the proper or improper
rotations of the point group of the space group, v(S)
is a vector which is smaller than any primitive trans-
lation vector of the crystal, and x(m) is a translation
vector of the crystal. Nonzero values of the vector v(S)
are associated with the symmetry elements called glide
planes and screw axes. Space groups for which v(S) is
identically zero for every rotation S of the point group
of the space group are called symmorphic. All other
space groups are called nonsymmorphic. The second
equality in Eq. (2.4) expresses the fact that, because
the operation IS

~
v(S)+x(m) } is one which sends the

crystal into itself, the lattice site (l)'s) must be sent
into an equivalent site which we label by (LE). Here,
and where no confusion results from its use, we adopt
the convention of labeling by capital letters the site
into which a given site is transformed by the operation
IS

~
v(S)+x(m) }.

With each operation IS
~
v(S)+x(m) } we associate

a linear operator O(fS
~
v(S)+x(m) }),which is de-

fined" through its eGect when applied to a scalar
function of x(k):
O(IS

~
v(S)+x(m) })f(x(k))

=f(IS i v(S) +x(m) }
—'x(lx) ),

=f(S-'x(k) —S-'v(S) —S-'x(m) ). (2.5)

Under the space group operation {8
~
v(S)+x(m) },

the displacement vector u(lx) is both rotated and
transferred to the site (LE) into which (lx) is sent

by this operation. Thus, at the site (LE), the new
displacement vector u'(LE) is expressed in terms of
the displacement vector u(la) according to'r

u '(LE) =O(I8
~
v(S) +x(m) })u. (LE)

=g S pup(k), (2.6)

which is just the transformation law for a vector Geld.
Equation (2.6) is central to the discussion since it

"S. L. Altmann and A. P. Cracknell, Rev. Mod. Phys. 37, 19
(1965)."E.P. Wigner, Grogp Theory (Academic Press Inc., New York,
1959)."E.P. signer, Nachr, Akad. Kiss. Goettingen, Math. —Kl.
Physik, p. 133 (1930) (English translation in R. S. Knox and A.
Gold, Symmetry in the Solid State (W. A. Benjamin, Inc. , New
York, 1964)g.

to the position vector of the equilibrium position of
the xth atom in the Eth unit cell, x(lx) =x(ll+x(x),
where x(l) is the position vector of the origin of the
/th unit cell and x(x) is the position of the ath kind
of atom relative to the origin of the cell, this operation
transforms it according to the rule

Is
~
v(S)+x(m) }x(lx)=Sx(4)+v(S)+x(m),
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C' p(l»; lV) =P C „„(l«;lV) S„,S„p, (2.9)

where the bar on 4 indicates that the derivatives in
Eq. (2.2) are evaluated with x(l«) replaced by x(LK),
x(l'«') replaced by X(L,'E'), etc. Using the interchange
symmetry (2.8) allows C„„(l»;l'«') to be replaced by
C'„.(LK; L'K'), so that (2.9) becomes

C' p(l»; lV) =P C„.(LK; L'E') S„S„p, (2.10a)

or, equivalently,

C„,(LK; L'K') =P S„S„pC p(l»; P«'). (2.10b)
txP

Equation (2.10) is the fundamental transformation law
for the atomic force constants under crystal symmetry
operations, and it may be used to determine the inde-
pendent force constants. '8

From Eq. (2.10), when {S
~
v(S) +x(m) }=

{e
~
x(m) } and where e is the 3X3 unit matrix, we

see that

C p(l+m, »; l'+m, «') =C p(l»; l'«'). (2.11a)

By setting m= l or m= ——l', we see that C p(l»; l'«')

depends on l and l' only through their difference:

provides a matrix representation of the operations
{S~

v(S)+x(m) }.
The invariance of the potential energy under ro-

tations, translations, and interchange of equivalent
particles de6nes the transformation law for the atomic
force constants when the crystal is subjected to a space
group operation. According to Eq. (2.5) the new po-
tential energy C", arising from the operation {S

~
v(S)+

x(m) },is defined in terms of C by

C'(. ~ ~ {S
~
v(S)+x(m) }x(k)+Su(k) ~ ~ ~ )

=C (~ ~ x(k) +u(k) ~ ),
=C ( ~ ~ {Si v(S)+x(m) }x(l«)+Su(k) ~ ~ ~ ), (2.7)

where the second equality follows from the invariance
condition. Similarly, the invariance of C under inter-
change of equivalent particles requires that

4 (x(k) +u(k), ~ ~, x(LE) +u(LE), ~ ~ ~ )
=C (x(LE)+u(LE), ~ ~, x(k) +u(k), ~ ~ ~ ). (2.8)

It should be emphasized that Eqs. (2.7) and (2.8) are
general invariance conditions on 4 for any rotation-
translation operation and interchange of equivalent
mass points. Making a Taylor series expansion of (2.7)
and noting that the displacements u(k) are arbitrary
leads to the condition

where 3f„ is the mass of the ~th kind of atom, can be
simplihed to a set of 3r equations in 3r unknowns by
the substitution

u~(k) =
{ u~(«)/(M )"'$ exp Lik x(l) ia)t—j, (2.13a)

where the amplitude u (») is independent both of l
and of the time t. The form of the solution (2.13)
can be derived by use of group theory as follows:
According to Eq. (2.11a), the equations of motion
(2.12) are invariant under the translation operation

{e
~
x(m) } which takes l into L=l+m. Therefore, we

may require the solutions to transform according to
the irreducible representations of the translation group,
that is, we require the new displacement vector at
LE, u'(LE), to be related to the old displacement
vector at LX by

0({e
~
x(m) })u(LE)

=exp L
—ik x(m) fu(LE). (2.13b)

On the other hand, from Eq. (2.6) we have

0({e
~
x(m) })u(I.E) =u(lE),

=u(L —mE), (2.13c)

which when combined with Eq. (2.13b) gives

u(LE) =exp [ik x(m) 5u(L mE)—. (2.13d)

Taking m=L results in

u(LE) =exp haik x(L) ju(OE), (2.13e)

from which Eq. (2.13a) follows. Thus, if we start with
solutions which transform according to the irreducible
representations of the translation group, it is then
reasonable —in fact, expected —that we will generate a
representation of the group of the wave vector k by
considering the transformation properties of the so-

lutions under the crystal symmetry operations which
leave the wave vector k invariant (modulo 2m times a
reciprocal lattice vector) . This will be explicitly demon-

strated in the next section.
When we substitute Eq. (2.13a) into Eq. (2.12), the

resulting equations for the amplitudes {u («) } can be
written in the form

co'u. («) =g D p(»«'
~
k) up(»'), rr, P=x, y, s

expressed by Eq. (2.11), the equations of motion of
the crystal,

M„ii (l») =BC./Bu„(k),
= —P C.p(k; lV)up(lV), (2.12)

C p(l»; l'«') =C p(0«;l' —l«'),

=4 p(l P«; 0«') . (—2.11b)

Because of the property of the atomic force constants

K K=1 2

(2,14)

' G. Leibfried, in EIandbuch der Physi k, S. Fliigge, Ed.
(Springer —Verlag, Berlin, 1955), Vol. 7, Part I, p. 104.

where the elements of the 3rX3r matrix D(k), called
the Fourier-transformed dynamical matrix, are given
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explicitly by

D p(»»'
i k) = (M„M„.) '" Q C p(l»; l' »)

(with no loss of generality) can be chosen to have the
periodicity of the reciprocal lattice:

Ia;(k+2zrb) =a);(k), (2.20a)

Xexp L
—ik (x(l) —x(l') )). (2.15)

Because of the property expressed by Eq. (2.11), the
sum on l' on the right-hand side of this equation is
independent of /.

The allowed values of the wave vector k appearing
in Kqs. (2.13)—(2.15) are usually determined by postu-
lating that the atomic displacement amplitudes {zt (l») }
obey the cyclic boundary condition, i.e., that they are
periodic with the periodicity of a macrocrystal contain-
ing X atoms, which can be taken to be the crystal of
physical interest. This postulate has the consequence
that the allowed values of k are uniformly distributed
throughout the first Brillouin zone of the crystat. with
a density equal to V/(2zr)', where V is the crystal
volume. We do not need the explicit values of k in the
succeeding discussion.

The condition that the set of homogeneous linear
equations (2.14) have nontrivial solutions for the ampli-
tudes {I(») } is that the determinant of the coeffIcients
vanish:

det
I
~'~- ~-p D-p(»»-'

I
k) I

=o.

For each value of k Eq. (2.16) has 3r solutions for caz.

We display the dependence of or on k explicitly, label
the solutions by an index j ( = 1, 2, ~ ~ ~, 3r), and adopt
the ordered convention for the roots whereby aotz(k) &
aI;~Iz(k). It is sometimes convenient to regard the
{~P(k)} as the 3r branches of a multivalued function
aP(k). From Eq. (2.14) we see that the {&dtz(k) } are
the eigenvalues of the matrix D(k), and that the
{I(») } are the corresponding eigenvectors. To make
explicit the fact that a particular eigenvector I (»)
associated with a wave vector k has as its corresponding
eigenvalue cap(k), we rewrite the former as e (»

~ kj),
whereupon the eigenvalue equation (2.14), whose so-
lutions they are, takes the form

ZD p(»»'I k)ep(»'Ikj) ="P(k)e (»Ikj) (21&)
~~p

Equations (2.10), (2.15), and (2.17) provide the start-
ing point for the subsequent analysis.

The dynamical matrix D(k) has some general prop-
erties which are useful in what follows.

(A) From its defInition, Eq. (2.15), together with
the fact that

x(l) b =integer, (2.18)

where b is an arbitrary translation vector of the re-
ciprocal lattice, we see that D p(»»'

~
k) is a periodic

function of k with the periodicity of the reciprocal
lattice

D p(»»'
~
k+2zrb) =D p(»»'

~
k). (2.19)

As a consequence of this result, the normal mode
frequencies and the associated polarization vectors

e(»
~
k+2zrbj) =e(»

~
kj). (2.20b)

The relation (2.20b) appears to be less fundamental
than the relation (2.20a). Strictly speaking, if the
normal modes associated with the wave vector k are
degenerate, the right-hand side of Eq. (2.20a) should
read an't (k), where j' labels one of the modes whose

frequency equals &o, (k) . We have merely made a
natural choice in setting j =j, since this convention
allows us to treat points of degeneracy on an equal
footing with points of no degeneracy. However, the
fact that e (»

~
k+2Irbj) is an eigenvector of D(k)

with an eigenvalue co;(k) does not permit us to conclude
that e (»

~

k+2zrbj) equals e (»
~ kj), except to within

an arbitrary phase factor of unit modulus (to assure
preservation of normalization). We have chosen this
phase factor to be unity purely for the sake of con-
venience.

(B) It follows directly from Eq. (2.15) that

D p(»»'
~
k) =D p*(»»'

~

—k) . (2.21)

(C) If we combine Eqs. (2.3) and (2.15), we obtain

Dp, (»'»
~
k) = (M„M„.)

—'" Q C p (l»'; l'»)

)&exp L
—zk (x(l) x(l') )j-,

= (M„M„) '" Q C' p(l'»; l»')

&&exp { ik (x(l') —x(l))g,
= (M„M„) "' Q C p(l' —k; 0»')

)&exp Lzk (x(l') —x(l) )],
=D.p*(»»'

~
k) . (2.22)

g p *(»
~
kj)p (» ~

kj') =bg. ,

Q e *(»
~ kj) ep(»'

~
kj) =a„„"a.p.

(2.23a)

(2.23b)

In terms of the eigenvectors e(»
~
kj) and corre-

sponding eigenfrequencies aI;(k), the atom displace-
ments in Eq. (2.13) may be written as

zt (l») =$e (»
~
kj)/(M, ) '"jexp {zTk x(l) —ca;(k) tj}

(2.24)

for the normal mode (kj) . It is clear physically that if
the crystal is subjected to a symmetry operation

Therefore, the matrix D(k) is Hermitian.
As corollaries to the last result it follows that the

cotz(k) are real, and that the eigenvectors {e(»
~ kj) }

can be chosen to satisfy the orthonormality and closure
conditions:
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with solutions

I„'(LK)= [e„'(E
i
kg') /(MIr) "'j

Xexp {i[k' x(L) —Ip; (k') t]}, (2.26)

where e„'(E
i
k'j') is a solution of Eq. (2.17) with

o.', P, E, E, i', E', k, andj replaced by zz, I, L, E, L', E',
h', and j', respectively, in the appropriate places of
Eqs. (2.15) and (2.17) . On the other hand,

I„'(LK)=p S„.zz. (lE) (2.27)

{8i v(S)+x(zIz) }, the normal mode (2.24) will now

propagate with a wave vector Sk. Because the relative
atomic positions are not altered by a symmetry oper-
ation, the frequencies of the normal modes are not
affected by such an operation, so that the frequency
of the transformed mode remains co;(k). The new dis-
placement at the (LE) site is given by Eq. (2.6).
This interpretation is seen to be correct by noting that
the equations of motion for the crystal in the new
orientation are

Mzii„'(LE) = —Q I„„(LE;L'E') I„'(L'E'), (2.25)

= —Q S„C p(lE; l'~')Np(lY),
aptIxi

C „„(LE;L'K') S„pSpI, Iu), '(L'E'),
pv) L,iKi

= —g 4 (LE L'E')I '(L'K') (2.28)

where Eqs. (2.12), (2.10), and (2.27) have been used.
To write the solution (2.27) in the form (2.26), we
note from (2.4) that

x(l) = {Si v(S)+x(zN) } 'x(LE) —x(E), (2.29a)

=S 'x(L)+{Siv(S)+x(zIz) }
—'x(E) —x(E).

(2.29b)

Therefore

is also a solution of (2.25) if zz (lE) is a solution of
(2.12), since for a symmetry operation the atoms
labeled by E and E must be of the same kind, (i.e.,
MH=M. ); therefore

Mxii„'(LE)

=M„P S„ii (lE),

and
exp [ik x(l) ]=exp [iSk.x(L) j exp (ik [{S i v(S) +x(zN) } 'x(E) —x(E)j) (2.30)

zz„'(LK) = [g[S„e (~ i kj)/(M„)IIPj exp (ik.[{Si v(S)+x(zN) }
—'x(E) —x(E)g) ]

a

Xexp {i[8kx(L) —Mj(k) t)}. (2.31)
Comparing Eqs. (2.26) and (2.31), we have

and

k'= Sk; pIp (Sk) =co;(k) (2.32)

e~'(E
I
Skj') =g S„e,(E I kj) exp (zk [{SI v(S)+x(zN) }-Ix(K)—x(.) j), (2.33)

which is what we anticipated above. Moreover, Eq. (2.33) provides us with a transformation law for the eigen-
vectors e(kj) under crystal symmetry operations. With no loss of generality j may be replaced by j in Eqs. (2.32)
and (2.33) if k is a point at which co(k) has no degenerate branches; by means of continuity the same identification
can be made at points of degeneracy. This point is discussed further in Sec. 4.

The eigenvectors e(kj) have 3r components, while the transformation law (2.33) does not emphasize this view-

point. In order to cast (2.33) into the form of a relation between two vectors of 3r components, we introduce
Kronecker symbols into the right-hand side of Eq. (2.33) in the following way:

e„'(K
i Skj) =P S„exp (zk. [{8i v(S)+x(zIz) } 'x(E) —x(EI) j)B(EI, Fp '(E; S) )e (aI } kj), (2.34)

where the index x was eliminated by writing
ip=F '(E S), (2.35a)

which expresses the fact that the index E uniquely labels the kind of atom ~ that is brought into the E position

by the symmetry operation {S i v(S) +x(zN) }. That only the rotational element S of the operation
{8i v(S)+x(zzz) } is required to specify uniquely the connection between II and E follows from the fact that a
pure translation of the crystal through the vector x(zN) cannot affect the labeling of the constituent sublattices,
and the vector v(S) is determined uniquely once the rotational element S is specified. To express the fact that II

is carried into K by {S i v(S) +x(zl) },we write

E=Fp(A; S). (2.35b)
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(2.38)

Thus Eq. (2.34) can be written succinctly as

e'(Skj) =I"(k; {S~
v(S)+x(m) })e(kj), (2.36)

where F(k; {S } v(S) +x(m) }) is a 3rX3r matrix whose elements are given by

I" a(»»'
) k; {S( v(S) +x(m) })=S tsb(»', Fo '(»; S) ) exp (zk L{S ( v(S) +x(m) } 'x(») —x(»') ]). (2.37)

From (2.35) it is clear that b(»', Fo (»; S) ) =b(», Fo(»'; S) ), the form used in any particular application being
dictated by convenience. It is often useful to write the exponent in the form

k ({8~
v(S)+x(m) } 'x(») —x(»')/=8k {x(»)—{S

~
v(S)+x(m) }x(»')j.

F(k; {S
~
v(S)+x(m) }) is a periodic function of k

with periodicity of the reciprocal lattice,

I (k+2zrb; {8
~
v(S)+x(m) })

= I (k; {8~
v(S)+x(m) }), (2.39)

since L{8 ~
v(S) +x(m) } 'x(E) —x(») j of Eqs. (2.29)

and (2.33) is a lattice vector.
The matrix I'(k; {S ~

v(S) +x(m) }) plays a central
role in our treatment. In the next section it is used to
derive the transformation properties of the dynamical
matrix D(k) under symmetry operations and to gener-
ate a matrix representation of the group of the wave
vector k, G~.

3. SYMMETRY OF THE DYNAMIt AL
MATRIX AND MULTIPLIER

REPRESENTATIONS

In the previous section the transformation law for
the polarization vectors e(kj) under a crystal sym-
metry operation was deduced from the fundamental
transformation laws of the displacement vectors (2.6),
the atomic force constants (2.10), and the equations
of motion (2.12). On the other hand, the polarization
vectors and the normal mode frequencies are defined

by the eigenvalue equation (2.17), and in many respects
it is advantageous to work directly with this equation
to derive the properties of the normal modes implied

by symmetry. To bring the power of group-theoretical
methods to bear on this problem it is helpful to have a

set of matrices in the 3r-dimensional space of the
eigenvectors corresponding to the crystal symmetry
operations which leave the dynamical matrix D(k)
invariant under unitary transformations and provide
a matrix representation of the relevant group. These
matrices would then play a role similar to Wigner's'6
operators P~, which leave the Hamiltonian invariant
under unitary transformations which correspond to
symmetry operations of the physical system. In this
section we show that the matrices F, defined by (2.37),
fulfill the above requirements if the crystal symmetry
operations {8 ~

v(S) +x(m) } are restricted to the oper-
ations which leave k invariant, i.e., to the elements of
the space group of the wave vector k, Gj,.These matrices
are then used to derive a multiplier representation''0
of the point group Go(k) of the space group Gt, .

In addition, we see from Eq. (2.21) that taking the
complex conjugate of D(k) is equivalent to reversing
the wave vector h. Thus, if the point group of the
crystal contains an operation which reverses k, it is
possible to combine this operation with complex conju-
gation to produce an operation which commutes with
the dynamical matrix. We will construct a number of
such operators and consider their algebra at the end
of this section. This type of operation is the analogue
of Wigner's" time-reversal operator for a particle with
spin.

From the definition of F(k; {8
~
v(S)+x(m) j) given

in Eq. (2.37), it is straightforward to show that F is
unitary:

r tt+(»K ( k; {S) v(S)+x(m) j)=rtt *(»'» (k; {S
~
v(S)+x(m) }), (3.1a)

=Stt b(»', Fo(»; S)) exp (—zk /{8 ~ v(S)+x(m) } 'x(»') —x(»)]), (3.1b)

=r.tt
—'(»»' }k; {Si v(S)+x(m) }). (3.1c)

In component form, a unitary transformation on D(k) with F(k; {S} v(S)+x(m) }) is

P P r„.(E»
~
k; {8} v(S)+x(m) })Dt (»»' {k) rt.+(»'E'

~ k; {S ~
v(S)+x(m) })

=g g S„b(E,Fz(»; S) ) exp (zk L{S } v(S) +x(m) } 'x(E) —x(») ))(M„M,.) 'tz
aa P~i

XQ C tt(l» l» ) exp {—zlzz.'Lx(l) —x(i ) g j S„pb (E', Fo(»'; S) )

(3.3)

Xexp (—ik { {8~
v(S)+x(m) }

—'x(E') —x(»') j), (3.2)

exp {—ik 8 'Lx(L) —x(L')$},
aP ll' (MtrMtr. ) '"
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where we have used (2.29a), the analogous expression relating (L'E') to (i'»'), and the fact that in a symmetry
operation the atoms labeled by E and ~ must be of the same kind, so that Mz must equal M„, even when the
space group operation {SI v($)+x(nz) } can interchange the sublattices of nonprimitive crystals so that E need
not equal ». The transformation law for the atomic force constants, Eq. (2.10), allows the right-hand side of
Eq. (3.3) to be reduced to

(lgrrMrr. ) '~2 Q—C „(LE.L'IC) exp {—iSk [x(L) —x(L') j}=D„„(EE'
I Sk), (3.4)

where I,
' has been replaced by I-' as a summation variable. In matrix notation the relation can be written com-

pactly as

p
8(»; Po(»; Si$2) )=p 8(»; &0(»'; si) )b(»'; Fo(»"; $2) ).

a~

Substituting Eqs. (3.9b) and (3.10) in the right-hand side of Eq. (3.8) yields

P(S1) s&(»; ~0(»'; si) ) exp (ismk [{SiI v(si)+x(mi) } x(») x(» )1)

(3.10)

Pa~

X (S2)pP(»'; &o(»; $2) ) exp (ik [{S2
I v(si) +x(iii2) } 'x(»') —x(») j)

=2 I'-s(»»'
I S&; {SiI v(si)+x(ili) })I's, (»'»"

I k; {SiI v($2)+x(~) }). (3.11)
Pa~

Therefore we have established the result that

r(k; {S,I v(si)+x(mi) }{SiI
v(si)+x(t'ai, ) j)=1"(Sk;{SiI v(si)+x(mi) })r(k {Sm I v(si) yx(iii ) j). (312)

I-(k; {S I v($) +x(ni) })D(k) I-+(k; {S I v($) +x(m) })=D(Sk) . (3.5)

Thus the matrices D(k) and D(Sk) are related by a unitary transformation.
To investigate the group properties of the matrices I (k; {SI v($) jx(m) j) we must derive the relationship

between the matrix corresponding to the product of two crystal symmetry operations and the matrices corre-
sponding to the individual operations. Consider the product

{SiI
v(si)+x(mi) }{S2

I
v($&)+x(~) }= {SaS& I

Si['v($2)+x(m&) j+v(si)+x(mi) },
which must be a symmetry operation and can be interpreted as a point transformation according to

x(1») =[{SiI v(si)+x(mi) } {SiI v($~)+x(~) }7x(~"»") (3.7a)

{Si
I v(si) +x(mi) }x(l'K ) ~ (3.7b)

The corresponding matrix I'(k; {Si I v(si) +x(mi) }{S2 I v($2)+x(rii2) }) in component form is

I -.(-" I k; {S,
I
v, (si) +x(mi) }{S2

I
v, ($,) +x(m, ) j)

= (S,S,).,5(», &,(»"; sis, ) ) exp (ik [{S,
I
v($&)+x(iii ) }-'{Si I v($,)+x(~) }-'x(»)—x(»")j). (3.8)

The form of I' in Eq. (2.37) suggests that the exponent in Eq. (3.8) be written in the form

k ' [{Sg
I
v (sg) +x (irii) } {Si I

v (si) +x (mi) } 'x (») —x (K )j
=ST [{SiI v(si)+x(mi) } 'x(») —x(»')]+k [Si 'x(»') —S2 'v(si) —S2x(iii2) —x(»")j, (3.9a)

=Sik [{SiI v(si)+x(mi) }
—'x(») —x(»') j+k [{Sm I v($2)+x(iris') } 'x(»') —x(»")j, (3.9b)

where Sik x(»') =k Si 'x(»') has been added and subtracted. Also, according to Eq. (3.7), b(K Fo(» ' si$2) )
can be ex ressed as

It is important to note that Smk occurs in the first
term on the right-hand side of (3.12) . This is consistent
with the transformation properties of the polarization
vectors discussed in Sec. 2, as can be seen as follows:
The operation {S2Iv(si)+x(~) } rotates the wave
vector k to S2k and is represented by I'(k; {Si

I v(sg) +
x(iii2) j). When the operation {SiI v(si)+x(mi) } is
performed, it operates on a polarization vector whose

wave vector is Sik. Thus the matrix I' for this operation
depends on Sik. Because of this k dependence, the
matrices F do not form a representation of the whole

space group G.

Let us now restrict ourselves to those operations
which comprise the space group Gj, of the wave vector k.
These are the operations" {R I v(R)+x(m) } which
take the crystal into itself arid whose purely rotational
elements {R}have the property

Rk=k —2n.b(k, R), (3.13)

where b(k, R) is a translation vector of the reciprocal
lattice. It is clear that b(k, R) vanishes if k lies inside

'9 Just as we have used S to denote a rotational element in the
space group G, we will use R to denote a rotational element in the
space group Gj,. -
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the first Brillouin zone of the crystal, and it can be
nonzero only if k lies on the boundary of the zone.
In view of Eqs. (2.19) and (3.13) we see that for the
operations {R

~
v(R) +x(m) } Eq. (3.4) takes the form

I'(k; {R
~
v(R)+x(m) })D(k)

XI '(k {R i v(R)+x(m) })=D(k). (3.14)

That is to say, the unitary matrices I'(k; {R
~
v(R) +

x(m) }) commute with the Fourier-transformed dy-
namical matrix. Equation (3.14) can be used to de-
termine the form of the matrix D(k), i.e., the inde-

pendent, nonzero elements of this matrix. Moreover.
these matrices provide a 3r-dimensional unitary repre-
sentation of the space group Gq as can be seen from
Eqs. (3.5), (3.12), and (3.13); that is,

I (k j {Ri
~
v(Ri) +x(mi) }{R2

~
v(R2) +x(mz) })

= I'(k; {Ri
~
v(Ri) +x(mi) })

Xr(k; {R, j v(R,)+x(m, ) }). (3.15)

Because the vector tx(a) —{S~
v(S)+x(m) }x(v,')] of

Eq. (2.38) is a translation vector of the crystal, if we

combine Eqs. (2.37), (2.38), and (3.13) and make use
of Eq. (2.18), we find that the elements of the matrix
I'(k; {R

~
v(R) +x(m) }) are given explicitly by

I'~p(«'
~
k; {R

~
v(R)+x(m) })=Ropo(K) Fo(K'y R) )

Xexp (ik Lx(a) —{R
~
v(R)+x(m) }x(a')j). (3.16)

Rather than making the result expressed by Eq.
(3.15) the basis for a discussion of the symmetry
properties of the eigenvectors of D(k) as Streitwolf'
and Chen' have done, we find it convenient to proceed
somewhat differently. The purely rotational elements
{R}in the space group Gi, taken by themselves com-
prise a point group Go(k) called the point group of
the wave vector k. Kith each element R of the group
Go(k) we associate a matrix T(k; R) which is defined
in terms of the matrices {I'(k; {R

~
v(R)+x(m) })}by

T(k; R) =exp Lik (v(R)+x(m) )$

XI (k; {R ) v(R)+x(m) }), (3.17a)
or

r.p(«'
I k;R) =R.pb(a, Fo(a';R))

Xexp jik j x(a) —Rx(a') g}. (3.1'lb)

This dednition is clearly unique despite the fact that
each rotational operation R is associated with an
infinity of operations in the space group Gi,.

Although there is a one-to-one correspondence be-
tween the elements {R}of the point group Go(k) and
the matrices {T(k;R) }, the latter, in general, do not
provide a representation of the group Go(k) in the usual
sense. To see this, let us determine the multiplication
rule obeyed by the matrices associated with two ele-
ments R, and R; of the group:

T(k;R;)T(k;R;) =exp jzk Lv(R;)+x(m;)]} exp {zk Lv(Rt)+x(m;)]}

XI'(k& {R;
~
v(R;)+x(m;) })I'(k& {R, ~ v(R;)+x(m;) }),

=exp jik Lv(R;)+x(m, )]}exp {zk (v(R;)+x(m, )j}
Xexp j —zk @trav(R;) +R'x(m;) +v(R;) +x(m;) ]}T(k;R;R;),

=exp j z(k —R 'k) (v(Rt)+x(mt))jT(»R*»). (3.18)

If we define a translation vector b(k, R, ') of the re-

ciprocal lattice by

R; ik=k —2zrb(k, R; ') (3.19)

a,nd use Fq. (2.18), we obtain for the multiplication
rule obeyed by the matrices T(k; R;) and T(k; R;)

T(k; R,) T(k; R;)
=exp L2zrzb(k, R;—') v(R;) jT(k; R,R;) . (3.20)

A set of matrices {T(R)} in one-to-one correspond-
ence with the elements {R}of a group and obeying a
multiplication rule of the form

T(R;)T(R,) =P(R;, Rt)T(R;R;) (3.21)

is said to provide a multiplier representation of the

group; the scalar function g(R, , R;) is called the
multiplier. In the present context the multiplier

@(k;R;, R;) equals exp L2zrib(k, R; ') v(R;) g.

From Eqs. (3.17b), (3.20), and the result that

&p-*(a'~
I k; R) =&.p '(«'

~
k; R), -(3.22)

we can say that the matrices {T(k;R)} provide a 3r-
dimensional unitary multiplier representation of the
point group Go(k) of the wave vector k. (Several
properties of multiplier representations which will be
useful in what follows are summarized in Refs. 8 and
10.) However, if k lies entirely within the Brillouin
zone, the reciprocal lattice vector b(k, R; ') is identi-
cally zero, and the multiplier exp L2zrzb (k, R, ') v(R, )g
equals unity. Alternatively, if we are dealing with a
crystal which has a symmorphic space group, so that
v(R) is zero for every rotational element R, this multi-
plier is also equal to unity. In each of these two cases,
therefore, we see from Eq. (3.20) that the set of
matrices {T(k;R) } provides an ordinary representation
of the point group Go(k). Put another way, it is only
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when k is on the boundary of the Brillouin zone for a
crystal that belongs to a nonsymmorphic space group
that the representation of Go(k) provided by the
matrices {T(k;R) } can differ from an ordinary repre-
sentation of this point group, and even in such a case
it need not diGer from an ordinary representation.

If we combine Eqs. (3.7), (3.14), and (3.17a), we
see that the matrices {T(k;R) } also commute with the
Fourier-transformed dynamical matrix D (k):

under the inversion operation ic is sent into Ic, then lc

is simultaneously sent into ic. This follows from the
property that applying the inversion operation twice in
succession returns the crystal to its original configur-
ation. We shall illustrate the consequences of (3.26)
with a few examples.

(A) If every ion is at a center of inversion, so that
K = K and K = K we see from Eq. (3.26) that the
matrix C(k) whose elements are given by

D(k) =T '(k; R)D(k)T(k; R). (3.23) C e(K»'
( k) =exp { ik—x(K))D e(»»'

( k)

Fqus, tions (3.14) and (3.23) are equivalent for de-
termining the form of the matrix D (k) .

So far we have considered the consequences of spatial
symmetry alone for the form of the dynamical matrix
D(k) of an arbitrary crystal. We conclude this section
by considering the additional conditions imposed on
the form of the dynamical matrix if the point group
of the crystal contains a rotational element S such
that SM= —k, that is, if —k is in the star'0 of k.
(Recall that the star of k is de6ned as the set of in-

equivalent wave vectors generated by applying the
point group operations S on a given wave vector k.)
If for some crystal —k is in the star of k only for special
values of k, then the following considerations are
applicable to those values of k only. From Eqs. (3.2)
and 3.4 we have

Xexp {ik x( .K)) (3.27)

is a real symmetric matrix. This result can be used in
conjunction with Eq. (3.23) to determine the form of
D(k) or, equivalently, C(k). The eigenvalue equation
(2.17) can be rewritten in terms of the matrix C(k) as

Q C e(KK
~
k) {exp L

—zk. x(K')]ee(»'
~ kj) }

=&viz(k) {exp L
—ik x(K) )e (K

~ kj) } (3 28)

Because the matrix C(k) is a real, symmetric matrix
for crystals with each ion at a center of inversion, it
follows from Eq. (3.28) that the eigenvector

w (»
~
kj) =exp P—zk x(»))e (K ( kj) (3.29)

where Fc and R' are the labels of the atoms into which
theatoms»and»'aresentbytheoperation {S

~
D(S ) }.

Using the relation (2.21), Eq. (3.24) can be put into
the form

that is, the elements of the dynamical matrix which are
diagonal in fc and Ic are complex conjugates of one
another. A relation between the oB-diagonal elements
(Kn; Kp) and (Kp; »n) can be obtained by taking K'=K
in Eq. (3.26) . It follows that K'=K, so that

{exp t
—zk x(») ]D»„(KK'

~
k) exp [zk x(K')]}*

=p(S )„{expt —ik x(K)]D e(»K
~
k)

D.,*(»K ( k) =D.e(K»
~ k),

=De *(K»
i k),

(3.31a)

(3.31b)&&exp Lik x (K') )}(S }„p. (3.25)

( )
can be chosen to be real for such crystals.

D» (KK
I

k) =g(S )» D e(K» I k) (S ).p (B) If under the inversion operation K is sent into K,
then Eq. (3.26) gives useful relations between the

@exp { zk. Lx(K)+x(») x(K') —x(K'))} (3.24) elements labeled by K and K. Take K'=K, then»'=K and

D.;(»K
~
k) =D.,(« ~

k), (3.30)

When coupled with the fact that D(k) is Hermitian,

Fq. (3.25) gives relations between elements of D(k)
not contained in the symmetry conditions (3.14) for,
equivalently (3.23)), and therefore reduces the number
of independent parameters in the dynamical matrix
D(k).

The relation (3.25) is especially useful when the
point group of the crystal contains the inversion, i,
since in this case —k is in the star of k for general k.
Taking S =i, Eq. (3.25) reduces to

{exp p zk x(»))D.S(KK'
(

k—) exp Lzk x(K'))}*

=exp L
—ik x(K))D p(KK'

) k) exp Lik x(K')). (3.26)

In applying Eq. (3.26), it is helpful to note that if

since D (k') is Hermitian. Thus D e(KK f k) is symmetric
in the indices n, P.

For the special case of two like atoms per primitive
cell which are interchanged under the inversion oper-
ation, Eqs. (3.30) and (331) require the dynamical
matrix to have the form

D(k) =
D(11

~
k) D(12

~
k)

D*(12
i k) D*(11

( k)
(3.32)

where D(11
~
k) is Hermitian and D(12

~
k) is sym-

metric.
The"analysis of the combined effect of the crystal

symmetry element {S ~
v(S ) } and Eq. (2.21) on
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KoD (k) Ko ——D*(k) . (3.34)

Thus, if —k is in the star of k, combining Eqs. (3.4)

the eigenfrequencies and eigenvectors of the dynamical
matrix is facilitated by recasting Eq. (3.24) into a
form analogous to Eqs. (3.14) and (3.23). To this end
we introduce the anti-unitary operator" Ko to represent
the complex conjugate operation; we deine it by its
effect on an arbitrary vector%' in the 3r-dimensional
space:

(3.33)

Clearly Ka'%'=%', and therefore Ko ' ——Ko. Using Ko to
perform a similarity transformation on D(k) we have

and (3.34) with Eq. (2.21) results in

K,r(k; {S ~v($ )})D(k)r '(k; {S ~v(S )})K,
=Kg)( —I ) K, =D*(-l ) =D(k). (3.35)

That is, the anti-unitary matrix operator Kpi )(
(k; {S ~

v($ ) }) commutes with the dynamical matrix
D(k) .Equation (3.35) is just a symbolic way of writing
Eq. (3.25) in which the invariance of the dynamical
matrix under the combined effects of the space group
operation {8

~
v($ ) j and complex conjugation is

expressed in a form in which the anti-unitary matrix
operator Kor (k; j 8 ~

v(S ) }) plays a role completely
analogous to that of the unitary matrix operator
I'(k; {Rj v(R) }) in Eq. (3.14) .

In order to proceed with a group-theoretical analysis, the products of the anti-unitary matrix operator
K,r(k; {8 ~

v(S ) })with the matrices r(k; {R
~
v(R)+x(m) })and T(k; R) are required. We first note that

Eq. (3.35) remains valid when {S ~
v($ ) } is replaced by any of the following crystal symmetry operations:

{S
~
v(S ')+x(m) }, {SM

~
v(S R)+x(m) }, and {Rs

~
v(RS )+x(m) j, since either of the products S Rk

or RSJt produces a vector equivalent to —k. Using the definition of Ko and Eqs. (3.5), (3.12), and (3.13), we

have

Kor(k;{S (v($ )+x(m,)})r(k;{R(v(Z)+x(m2)j)=Kal(k;{8 (v(S )+x(m&)j{R~v(&)+x(~)j)
(3.36)

and

r(k; {R}v(R)+x(m)})K,r(k; {8 ~v(S )+x(ml)})

=Kpr*(k; {R
~
v(Z)+x(m2) j)r(k; {S ~

v(S )+x(mt) }),
=K,r(k; {R

~
v(Z)+x(~) }j S

~
v(S )+x(m, ) }), (3.37)

where in the last step of Eq. (3.37) we have used the relation

r*(k; {8i v($)+x(m) })= I'(—k; {8i v(S)+x(m) }),
=r(SJr; {8

~
v(S)+x(m) j).

We also find that

Kar(k; {SRg
~
v(S Rg)+x(m&) })Kor(k; {8R2 j v(S A)+x(m2) j)

=r*(k; {8R]
~
v(S—Rg)+x(ml) })I(kj {8R2

~
v(S R2)+x(ma) })~

=r(SWA; {8-R~ I v(SW~)+x(m, ) j)r (k; {SRs I v($-&2)+x(~) }),
= r(k' {8-R~

I v($~~) +x(m~) }{8-R2 I v($-A j+x(~) })

(3.38)

The product of two anti-unitary matrix operators is a unitary matrix corresponding to an element of G~, since

SM~S Ra is anelementof Ga(k). Thus, thematrixoperators I'(k; {R
~
v(R)+x(m) })andKoI'(k; {SR

~
v(S E)+

x(m) })' form a symmetry group with a one-to-one relationship to the elements of the space group containing the
crystal"symmetry operations {Rj v(R) +x(m) } and {SM

~
v(SM)+x(m) }.This space group, which is a sum

of the space group Gt, plus the coset {8 j v(S ) }Gt„is designated by the symbol Gz; z. It should be noted that

Gj, is an invariant subgroup of G&; z.
Equations (3.15), (3.36), (3.37), and (3.39) are the analogs of Wigner's" equations (26.18), (for an even

number of electrons, ) and could be used as the starting point for a group-theoretical analysis and a determination

of the irreducible corepresentations'6 of the space group G&, &. On the other hand, the purely rotational elements

{R}and {SM}in the space group Gz, z taken by themselves form a point group Go(k; —k) in which Go(k) is

an invariant subgroup. In analogy with Eq. (3.17), with each element SM in the coset 8 Gp(k) we associate an

anti-unitarymatrixoperator T(k;8 R) whichisdefinedintermsof thematrixoperators {Kar(k; {SR
~
v(S R)+
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x(m)})j by
T(k; S R) =Kp exp {—ik [v(SM) +x(zzzl]} I (k; {SM

~
v(S R) +x(m) j ),

=exp {+ik [v(S R)+x(zN)]}KpI'(k; {SR
~
v(SM)+x(zzz) j).

(3.40a)

(3.40b)

This definition is unique despite the fact that each rotational operation SM; is associated with an infinity of
operations in the space group GQ;—Q. Moreover, since Gp(k) is an invariant subgroup of Gp(k; —k), to each element
SM; there is associated a unique element R,S, where R, =8M,S with v(R, S ) =v(S R,). Therefore, from
their definition the corresponding anti-unitary matrix operators T are equal:

T(k; SM;) =T(k; R,S ) . (3.41)

To emphasize the anti-unitary aspect of the matrix operator T(k; S R), a rotational element in the coset S Gp(k)
will be denoted by A and the corresponding matrix operator by T(k; A) .

The products of anti-unitary and unitary matrix operators T(k; ~ ~ ~ ) can be obtained with the aid of Eqs.
(3.12), (3.37), (3.38), and (3.39) and their definitions (3.17) and (3.40) . For example,

T(k; A )T(k R ) =Kp exp [—zk v(A )]r(k; {A;
~
v(A) })exp [ik v(R ) ]I'(k; {R;~

v(R ) }),
=exp {zk [v(A;) —v(R;) ]}exp {—zk [v(A;) +A v(R;) ]}T(k;A;R,),

Similarly,

and

=exp {—i[k+A 'k] v(R;) }T(k)A,R;) .

T(k;R;}T(k;A;) =exp {i[k—R; 'k] v(A;) }T(k;R;A, )

T(k; A~)T(k; A;) =exp {—i[k+A 'k] v(A;) }T(k;A;A;).

(3.42)

(3.43)

(3.44)

A product of rotational elements containing an even
or odd number of A's is a member of Gp(k) or S Gp(k),
respectively. This property is essential in deriving Eqs.
(3.42) —(3.44) . Comparing Eqs. (3.42) and (3.44) with

Eqs. (3.18) and (3.43), we see that the multiplier
has a different form if the anti-unitary matrix operator
is the first factor in a product. Introducing R to denote
an element in the point group Gp(k' —k) 'then Eqs.
(3.18), (3.42) —(3.44) can be combined into a single
equation:

T(k; R;)T(k; R, ) =P(k; R;, R;)T(k; R;R;), (3.45)

where for R;=R;

p(k; R;, R;) =exp {z[k—R; 'k] v(R;) } (3.46)

and for R;=A,

p(k; A;, R,) =exp {—i[k+A; 'k] v(R;) }. (3.47)

If either k lies entirely within the &rillouin zone or the
space group GI,. & of the crystal is symmorphic, so that
v(R) is zero, then the multiplier @(k; R;, R;) is unity.

It is clear from Eqs. (3.35) and (3.40) that the
anti-unitary matrix operators T(k; SM) commute with
the Fourier-transformed dynamical matrix D(k). In
terms of the R notation this result and Eq. (3.23) may
be expressed as a single equation:

D(k) =T '(k; R)D(k)T(k; R). (3.48)

As has been emphasized by Wigner, ' the matrices
which transform the eigenvectors of an eigenvalue
equation that is invariant under the operations of a
group which contains anti-unitary operators do not
form a representation (ordinary or multiplier) in the

usual sense. In Sec. 5 it will be necessary to introduce
the multiplier corepresentation matrices to describe
the transformations of the eigenvectors of D(k) under
the group of matrix operations T(k; R), where R is a
rotational element of Gp(k; —k). In particular, it is
shown there that the irreducible multiplier corepresen-
tations of the point group Gp(k; —k) can be expressed
in terms of the irreducible multiplier representations of
the point group Gp(k) (which is discussed in the next
section) .

In the above discussion the extension of the group
of symmetry operations that commute with the dy-
namical matrix D(k) to include the anti-unitary oper-
ations was dependent on the k vector and crystal
symmetry in that the existence of a rotational element
S was required. In this context the special case where
the wave vector k is equivalent to —k (i.e., k=zr
times a reciprocal lattice vector =zrb) should be singled
out in that here there always exists a set of anti-unitary
symmetry operations which commute with the dynami-
cal matrix, since D (zrb) is real:

D(zrb) =D(zrb —2zrb) =D(—zrb) =D*(zrb). (3 49)

Similarly, from Eq. (2.39) it is clear that the matrix
I'(~b; {R

~
v(R)+x(zzz) }) is real. Combining Eqs.

(3 23) and (3.49) and expressing the result in operator
form yields

KpT(zrb; R)D (zrb)T i(orb; R)Kp = KpD(zrb)Kp

(3.50)

Therefore the group of matrix operators that commute
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with the dynamical matrix D(srb) are T(srb;R) and
KpT(srb; R) regardless of whether the crystal point
group does or does not contain an element S . Even
though the anti-unitary elements KpT(srb; R) are not
given by Eqs. (3.40), we continue to use the notation
T(srb, A) for them, and denote the group made up of the
operations T(srb, R) and KpT(orb, R) by Gp(orb; —srb).
The wave vector srb is sufhcient to distinguish this case
from the others. The analogs of Eqs. (3.42), (3.43),
and (3.44) for products involving anti-unitary operators
are

T(n.b; A,)T(srb; R;).=y (srb; R;, R;)T(srb; A;R;),

(3.51)
T(nb; R;)T(srb; A;) =exp Li2srb v(Rt) ]

Xy~(orb; R„,R;)T(srb; R,A;), (3.52)

T(srb; A,)T(n.b; A;) =exp [—i2~b v(R,)]
X4 (mb; Rt, R;)T(nb; R,R;) . (3.53)

The multipliers in these equations are not the same as
those given in Eqs. (3.46) and (3.473. However, this
does not affect the results of the general theory given
in Sec. 5.

Another important case in which the dynamical
matrix is real is for the wave vector at the center of
the Brillouin zone, i,e., k=O, as is clear from Eq. (2.21) .
Setting k=O in Eqs. (3.16) and. (3.17) we see that the
matrices I'(0; [R ) v(Z)+x(rtt) }) and T(0;R) are
equal and real. The comments and results of the pre-
vious paragraph are applicable here except that all the
multipliers are unity, since mb is replaced by the wave
vector 0. In. this special case the point group Gp(0) of
.the space group of the wave vector is the point group
of the crystal symmetry group.

Henceforth, the invariance of the dynamicaI matrix
D(k) with respect to unitary and anti-unitary sym-
metry operations will be distinguished by referring to
the former as invariance withr r'espect to spatial sym-
metry Le.g. , Eqs. (3.14) and (3.23)]; and to the latter
as invariance with respect to time-reversal symmetry,
Le.g., Eqs. (3.35), (3.48), and' (3.50)].

4. TRANSFORMATION PROPERTIES OF THE
EIGENVECTORS OF THE DYNAMICAL

MATRIX

We are now in a position to determine the trans-
formation properties of the eigenvector e(»

~ kj) under
the operations of the space group G of the crystal and
of the space group Qq of the wave vector k. We begin
by establishing several general properties of the eigen-
vectors Ie(» ) kj) } and of the eigenvalues Imp(k) }
which are independent of the specific space group to
which the crystal belongs. The consequences of ex-
tending the group operations to include time-reversal
symmetry: are discussed in Sec.'5.

If we replace k by —k in Eq. (2.17), take the complex

where we have used the fact that ps'(k) is real because
D(k) is a Hermitian matrix. From Eq. (4.1) we see
that the squared frequencies I ppg (—k) } and the squared
frequencies I pal(k) } are eigenvalues of the same matrix
D(k) . If k is not a point in the 6rst Brillouin zone at
which D(k) has degenerate eigenvalues, we therefore
obtain the result that

(4.2)

By continuity we extend this result to points of de-
generacy, since in such cases Eq. (4.2) merely gives us
a prescription for labeling the modes at —k in terms of
those at k.

Because the vector e*(—kj) satisles the same equa-
tion as the eigenvector e(kj), then, as long as k is not
a point of degeneracy, the two vectors can differ at
most by an arbitrary factor of modulus unity (to
preserve normalization):

e*(—kj) =e'&e(kj). (4.3)

Two choices for the phase. factor e'& are in common use.
Leibfried'8 makes the choice e'&= —1, while Born and
Huang" make the choice e'&=1. Clearly, no result of
any calculation of a physical property of a crystal can
be affected by the choice of one value for this phase
factor in preference to another. In what follows we
follow Born and Huang and choose the phase factor to
equal unity:

e *(»
I

—kj) =e (» I kj). (4.4)

Equation (4.4) was derived on the assumption that k
is not a point of degeneracy. When k is a point of
degeneracy, the most we can infer from Eq. (4.1) is
that e (»

~

—kj) is an arbitrary linear combination of
the eigenvectors Ie (»

~
kj') } for which pp (k) =tass(k).

However, it has become conventional to choose this
linear combination in such a way that Eq. (4.4) re-
mains valid at such points as well if the degeneracy is
due to spatial symmetry only. For these points Eq.
(4.4) gives us a convention for labeling the normal
modes at —k in terms of the labeling at h, which is
consistent with that given by Eq. (4.2) .

The eigenvalue equation (2.17), associated with the
wave vector Sk, can be written in matrix form as

D(Sk)e(Skj) =a&tP(Sk)e(Skj). (4.5)

If we multiply both sides of this equation from the left
by the matrix F '(k; [S j v (S)+x (rrt) }) and make ust;

"Reference 1a, p. 298.

conjugate of the resulting equation, and make use of
Eq. (2.21), we obtain the result that

D e(«'
I
k)ee*(»'

I kj) =cpP( —k)e *(»
I

kt')
«IP

(4.1)
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pf Fq. (3.4), we obtain the result that

D(k) {r I(k; {S
~
v(S) +x(m) })e(skj) }

=u,2(sk) {I-'(k;{S{ v(S)+x(m) })e(Skj)}. (4.6)

Cpmparing Eq. (4.6) with Eq. (2.17), we see that the
{Id/(sk) } are eigenvalues of the matrix of which the
{a&,'(k) } are also eigenvalues. If k is a point at which
none of the eigenvalues of D(k) are degenerate, then
clearly we must have the relation

~P(k) =~7(sk). (47)

Ifk is a point at which two or more eigenvalues {~P(k) }
are equal, then, in general, the most we may say is that

cuP(sk) =rod'(k),

where c0; '(k) is one of the eigenvalues at k which equals
s&P(k). However, with no loss of generality we may
replace j by j on the right-hand side of this equation,
since all that this does is to give us a particularly con-
venient way of labeling the modes at Sk in terms of
those at k. Put another way, by continuity we extend
Eq. (4.7), which was established on the assumption
that k is not a point at which D(k) has degenerate
eigenvalues, to points of degeneracy as well. Equation
(4.7) states that coIs(k) has the full symmetry of the
ppint group of the crystal. However, from Eq. (4.2)
coP(k) is an even function of k even if the point group
of the crystal does not contain the inversion.

If k is not at a point of degeneracy, the vector
I '(k; {S~

v(S)+x(IN) })e(skj) can differ from the
eigenvector e(kj) by a complex phase factor of unit
modulus (to preserve normalization),

I '(k; {S~
v(S)+x(m) })e(Skj)=ele(kj),

or, using (3.12),

6(Sk,) =:I(Sk; {.I x(~) })I(k; {SI v(&) })e(kj).
(4.8)

Because the effect on the displacement 6eld of trans-
lating the crystal through one of its periods enters only
through the factor exp LI'k x(l)] on the right side of
Kq. (2.13) and not through the eigenvector e(kj), it is
convenient to choose for the phase angle e in Eq. (4.8)
the value Sk x(m). The motivation for this somewhat
arbitrary choice is that the law of transformation for
the eigenvector e(kj) becomes

e(skj) =F(k; {S
~
v(S) })e(kj), (4.9a)

or, in component form,

exp L
—iSk x(FO(E; 8) )]e~(FO(E; S)

~
Skj)

=P S.s exp L
—iSk v(S)]

Xexp L—ik x(E)]es(E }kj). (4.9b)

The transformation law given by Eq. (4.9) is con-

venient in that as the left-hand side of Eq. (4.8) is
independent of the translation vector x(m), itis natural
to insist that the right-hand side be independent of this
vector as well.

When k is a point at which D(k) has degenerate
eigenvalues, the most we can infer from Eq. (4.6) is
that I '(k; {S

~
v(S)+x(m) })e(Skj) is some linear

combination of the eigenvectors {e(kj')},where j'labels
those branches of co'(k) for which co (k) =rag(k)
However, with no loss of generality we can take the
point of view that once we know the vector e(kj)
associated with a point of degeneracy, then Eq. (4.9)
describes how this vector transforms when the vector k
is taken into the vector Sk by one of the symmetry
operations of the crystal, provided that the symmetry
operation is not such that 8k=k —2~b(k, S), where
b(k, S) is a translation vector of the reciprocal lattice.
It only remains to determine the forms of the eigen-
vectors {e(kj)} associated with a point of degeneracy
in the first Brillouin zone. These are determined by
the symmetry operations (spatial) which leave the
wave vector k invariant (modulo 2~ times a reciprocal
lattice vector) in a way which will be described below.

We will make one exception to the transformation
law for eigenvectors given by Eq. (4.9). If the ro-
tational element S is in the point group of the crystal,
we will make a different choice for the phase factor in
Eq. (4.8) than that which leads to Eqs. (4.9) for
S=S . Taking x(m) =0 and S=S in Eq. (4.8), we
obtain

e+ = —e-'~ exp }
—ik v(S )],

and obtain the transformation law

e (E }
—kj) =—e '& exp {—ik Lx(II) —Sm(E)]}

(4.11)

xg(s ).,s,(.{kj). (4.12)

When s.(E {
—kj) can be replaced by e—&e '(E {kj),

then the choice of phase in Eq. (4.11) cprresppnds tp
choosing the vectors e(kj) to be eigenvectors of the
anti-unitary matrix operator T(k; S ) of Eq. (3.40)
with eigenvalue equal to —1. Also in this case, if S
is the inversion operator i and every ion is at a center

e, (II I
—kj) =e'F exp {-ik Lx(a) —S~(E)—v(g )]}

Xg(S ).,S~(.}kj), (4.10)

where the atom labeled by ~ is sent into 2 by the crystal
symmetry operation {S { v(S ) }. Comparing Eq.
(4.10) with Eqs. (4.3), one might be tempted to replace
the left-hand side of Kq. (4.10) with s +e *(E } kj);
however, this is not always possible, as will become
clear in the next section. On the other hand, in cases
where it is'possible Kq. (4.10) yields a valuable relation
in that it relates the components of e(kj) to e~(kj).
With this in mind, it is convenient to choose the phase
factor according to
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of inversion symmetry, so that »=», it follows directly
that exp I

—ik x(») )e(kj) is real.
We now turn to a determination of the transformation

properties of the eigenvectors {e(kj)} associated with
k vectors which correspond to points of symmetry in
the first Brillouin zone. Such points are points for
which the group of the wave vector k, G~ is larger than
the invariant subgroup of pure translations, or, equiva-
lently, they are points for which the point group of the
wave vector k, Go(k) contains more than the identity,

Our starting point is the eigenvalue equation (2.17)
together with Eq. (3.23). Multiplying both sides of
Eq. (2.17) from the left by the matrix T(k;R) and
using the fact that T(k; R) commutes with D(k), we
obtain

D(k) {T(k;R)e(kj)}=tots(k) {T(k;R)e(kj)}. (4.13)

This result tells us that if e(kj) is an eigenvector of
D(k) with an eigenvalue &ots(k), then so is T(k; R) X
e(kj), for every operation R of the point group Go(k) .
Consequently T(k; R)e(kj) is a linear combination of
the eigenvectors of D(k) whose eigenvalues are equal
to &ots(k) .To express this result conveniently we replace
the single index j by a double index O.X, where 0 labels
the distinct values of &osP(k) for a given wave vector k,
and X(=1, 2, ~ ~, f,) labels the linearly independent
eigenvectors associated with the eigenvalue &o,s(k).
Therefore f, is the degeneracy of the normal mode whose
frequency is &o,'(k) . The eigenvalue equation (2.1/) in
this notation takes the form

Equating the right-hand sides of Eqs. (4.16) and (4.17),
we obtain

f»

P r&,-g.& (k; R') r&,.&«& (k; R)
M=1

=y(k; R', R) r&,-&,& &(k; R'R). (4.18)

We now establish one additional useful property of
the matrices {~&'&(k;R)}.From Eq. (4.15) and the
orthonormality of the eigenvectors {e(kaX)}, Eq.
(2.23a), we find that

r&,g &'& (k; R) =Q P e *(»
I kaX)

«a «~P

X T.,(«'
I k; R)ep(»' I

ka)&'). (4.19)

Now let R be the identity transformation R=e,
where e is the 3X3 unit matrix. From Eq. (3.1'lb)
we see in this case that

Tggp(»K I ki e) =b~pb(»q K ) q

from which it follows that

(4.20)

r»&,.& & (k; e) =P g e,*(»
I
kaX) b pb (», »') ep(»'

I
kaX'),

«a dP

=P e *(»
I kaX) e (» I ko) '),

Eq. (4.16) as

Q (k; R', R)T(k; R'R) e (ka X)

f»
=P(k; R', R) P r&,-&,&'&(k R'R) e(kaX"). (4.17)

D (k) e(kaX) =to,a(k) e (ka&i) ), =1, 2, ~ ~,f,. (4.14) (4.21)

gn view of Eq. (4.13) and the discussion following it,
we can write

T(k; R)e(kaX) = p r&,.&& &(k; R)e(koX') (4.15)

for every operation R of the point group Go(k) .
The f, dimensional matrices {~"(k; R) } can be shown

to provide a multiplier representation of Go(k). For if
we multiply both sides of Eq. (4.15) by the matrix
T(k;R'), where R' is an arbitrary operation of the
group Go(k), we obtain

T(k R')T(k R)e(koA)

f»
=Q r&, &,

& & (k; R)T(k; R') e (ko X'),

f» f»

Q r& &,&'&(k;R)rb &, &'&(k;R')e(kaX"). (4.16)
V-z X«-x

Using Eq. (3.20) and the fact that Eq. (4.15) must
hold for every element of the group Go(k), because
R'R is in this group, we rewrite the left-hand side of

Thus the matrix ~&'&(k; e) is the f Xf, unit matrix
Combining the results given by Eqs. (4.18) and

(4.20), we find that
f»

g rg, i&'&(k'R)r q, ~~&&'&(ki R ) =f(k'R, R ')bn»,

(4.22)
so that

~&'(k R ') =P(k R R ')~"(k R) ' (423)

Let us now take the complex conjugate of both sides
of Eq. (4.19):

r&a, &'&(k; R)*

=P P e (» I ko) ) T p*(»n'
I k; R) ep*(»'

I kaX'),
«a «~P

=P Q e a(»
I
kaX') Tp *(»'»

I k; R)ep(»' I kaX),
«a «~P

=g g e-*(» Ika&') T-p '(«'1»R)ep(" Ikal ),
«a «IP

(4.24)

where we have used the fact that T(k; R) is a unitary
matrix. ln just the same way that Eq. (4.23) was
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established we can prove the result that

T p (KK
~
k; R) = { p&(k; R, R—')) 'T p(KK j k jR )

(4.25)

matrix which block-diagonalizes every matrix T(k; R)
corresponding to one of the operations of Gp(k) into
the form given by Eq. (4.30) by a similarity trans-
formation

Substituting this result into Eq. (4.24), we find that

r&&,.&'&(k)R)*=Ly(k; R, R ')) 'r», &'&(k) R ') (4.26)

ck(k; R) =e '(k)T(k; R) e(k),

=er(k) *T(k;R)e(k) . (4.31)

T(k R)e(k) =e(k)4(k;R),
where the 3rX3r matrix A(k; R) has the form

's"&(k R) 0 0 ~
'

(4.29)

~"&(k; R) 0

Combining Eqs. (4.23) and (4.26), we finally obtain
the desired result:

r&,&, &'&(k; R) '=rg
&,'~&(k; R)*, (4.27)

. i.e., that ~&'& (k; R) is a unitary matrix.
It is a well-known result of group theory that in

the absence of accidental degeneracy, the eigenfunctions
corresponding to each eigenvalue of an operator trans-
form irreducibly under the symmetry transformations
which leave the operator invariant. " In other words,
the f. eigenvectors {e(koX)} ('A=1, 2, ~ ~, f.), which
correspond to the eigenvalue o&,'(k) and which are sent
into linear combinations of themselves under multipli-
cation by the set of matrices {T(k;R)}, cannot be
divided into two or more groups such that the members
of any group are sent only into linear combinations of
each other by the matrices {T(k;R) } and do not mix
with the members of the other groups. This means that
in the absence of accidental degeneracy the set of
matrices {~&'&(k;R) } constitute an f;dimensional irre-
ducible multiplier representation of the point group
Gp(k).

Let us now assume that we know all the eigenvectors
{e(koX)} of D(k) for a given value of k. From Eq.
(4.15) it follows that if we construct a 3rX3r matrix
e(k) whose columns are just the vectors {e(kaX)},so
that the (ota; ok) element of this matrix is given by

(4.28)

we obtain as the equation for e(k)

LThe unitarity of the matrix e(k) is an inunediate
consequence of Eqs. (2.23) .) In other words, the matrix
of the eigenvectors of D (k) reduces the reducible repre-
sentation of Gp(k) provided by the 3rX3r matrices
{T(k;R) } into its irreducible representations.

It may be found that some irreducible representation,
i.e., some matrix ~& &(k;R), appears more than once,
say c times, in the reduction of the representation of
Gp(k) given by the set of matrices {T(k;R)}, as
expressed by Eq. (4.30). This means that there are
that many distinct sets of f, eigenvectors {e(koX)},
each of which corresponds to a different value of o&s(k),
(since o labels the distinct eigenvalues) which have
the property that the eigenvectors comprising a given
set transform into linear combinations of each other
under the operations {T(k;R)} in the same way as
do the eigenvectors comprising each of the remaining
c—1 sets. This circumstance Lthat c sets of matrices
(where c)1) {~&'&(k;R)} are, in fact, identical) has
the consequence that o. is not a unique label for the
irreducible representations of Gp(k) contained in the
reducible representation provi. ded by the matrices
{T(k;R)}. Therefore it is convenient to generalize
our notation still further. We will use the index s to
label the irreducible representations of Gp(k) and will
add to it a "repetition" index a which di6'erentiates
among the different eigenvalues whose associated eigen-
vectors transform according to the same irreducible
representation of Gp(k). The index a takes on the
values 1, 2, - ~ ., c„where c, is the number of times the
sth irreducible representation of Gp(k) is contained in
the representation given by the matrices {T(k;R) }.

In the new notation the eigenvalue equation (2.17)
takes the form

D (k) e (ksaX) =o&„s(k)e (ksa'A)

& =1, 2, ~ ~,f„a=1,2, ~ ~ ., c,. (4.32)

4(k;R) = (4.30) At the same time Eq. (4.15) takes the form

fa

T(k; R)e(ksaX) = P r&,.&,
&'& (k; R)e (ksuX') . (4.33)

In Eq. (4.30) e&»(k;R), ~&"(k;R), ~ ~ ~, are the ma-
trices of the irreducible multiplier representations of
Gp(k) corresponding to the frequencies ppr (k), o&s'(k),
~ ~ ~, respectively, in the sense of Eq. (4.15).

From Eq. (4.29) we see that the matrix e(k) is the

"See, for example, V. Heine, GrouP Theory in Quentum Me-
chonrcs (Pergarnon Press, Inc., New York, 1960), p. 44.

The irreducible representation matrices {e"(k; R) }
have been tabulated for all 230 space groups by
Kovalev, " and are therefore known. (However, see
Ref. 13.)

The reduction of the reducible representation of Gp(k)
provided by the matrices {T(k;R) } into its irreducible
representations is carried out by standard methods. '
If we denote the characters of the reducible represen-
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tation {T(k;R)j byx(k;R),

x(k; R) =Tr T(k; R),
=Q R. b (», Fp(»; R) )

Xexp {2k Lx(») —Rx(»)]j, (4.34)

and if we denote the characters of the sth irreducible
representation {e&*&(k;R) j by &&&'&(k; R),

&&&*&(k R) =Tr ~&'&(k R), (4.35)

then the number of times the sth irreducible represen-
tation is contained in the representation {T(k;R) j is'p

c,=h ' Q x(k R)&&&'&(k;R)* (4.36)
R

where h is the order of the group Gp(k) .

If we denote by%' an arbitrary 3r-component vector
whose elements are {f (») j, then it is straightforward
to show that the vector

E(k s)) =P»2&'&(k) g (4.38)

for any axed )' transforms under the application of
the matrix T(k;R) in exactly the same way as the
eigenvector e(ksaj&) does. Let us apply the matrix
T(k; R') to both sides of Eq. (4.38):

The forms of the eigenvectors {e(ksaX) j can be
obtained by projection operator techniques. The analog
of the usual projection operator'0 in our 3r-dimensional
space is the BrX3r matrix P1&,, &'&(k) defined as

P», , &'& (k) = (f,/h) g 2», , &'& (k R) *T(k;R) . (4.37)

T(k; R')E(k; SX) = ( f,/h) p re &'&(k; R)*T(k;R')T(k; R) g. (4.39)

Using Eqs. (4.26) and (4.18), we can write

211 &'&(k; R)*=L&(k;R, R ')] r&,~&,&'&(k; R ')

=L&t(k;R, R 1)g(k;R 1R' 1, R')] 1pr&, 1,&'&(k;R 1R' 1)r&„&,&'&(k; R'),
Xg

@(k;R'R) R—'R'-')

(k;R, R—') (k;R 'R' ' R')

Substituting this result into Eq. (4.39), we obtain

(4.40)

T(k; R')E(k; s)&) =Q r»„,&&(k; R') —' Q ' ' ', , r1,&, &'&(k;R'R)*T(k;R'R) (441)
h tt @(k;R,R ')&t(k;R 'R' ', R')

Ke now use the general results that"

@(kj R1)R2) Q (k j R1R2) R3) —@(kj Rlp R2R3) Q (k j R2y R3) p

g(k R, R ') =p(k R ' R)

to establish the result that

y (k.R—'R' ') R')
&I& (k j R—', R)

(4.42a)

(4.42b)

=&b(k; R'R, R-1R'-') @(k R', R) . (4.43)

It follows, therefore, that

T(k;R')E(k; s&&) =P „,„& &(k; R') {P„,„,& &(k)qj,

=g r» &(k R')E(k; SX,), (4.44)

which is the result we set out to establish. To prove
that P2x.&'&(k) is a projection operator, we apply it to
the eigenvector e(ks'a&&). Then, using Eq. (4.33), we
have

P&,x.&'& (k) e (ks'a) 1) = ( f,/h) ++ 2.11.&'& (k; R) *

Xr&„1,&"&(k;R)e(ks'a) 2) . (4.45)

which projects out of an arbitrary vector that part
which transforms according to the sth irreducible repre-
sentation, for example

P& &(k)e(ks'a& ) =b„,e(l san). (4.49)

In the special case that the sth irreducible represen-
tation appears only once in the reduction of the repre-
sentation of Gp(k) provided by the matrices {T(k;R) j,

orthogonality of the matrices {s&'& (k; R) j ex-
pressed by

Q r11 "(k;R) *r&„1,'"(k;R) = (hlf. )b- b&&,b) 1,

(4.46)
allows Eq. (4.45) to be reduced to

P2&,.&'& (k) e(ks'a2, ) b„b»,=„e(k. sax) . (4.47)

Thus P» 2&'(k) is a projection operator. In some appli-
cations it is useful to deal with the matrix

P (k) =Z P (k),

=(f /h) Q &&&'&(k R)*T(k R) (4.48)
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so that c, and the corresponding repetition index "u"
both equal unity, the vector E(k; sX), constructed
according to Eq. (4.38) and normalized to unity, can
be taken to be the eigenvector e(k; st) of D (k) .

In the case that the sth irreducible representation of
Go(k) appears more than once, the vector E(k; sX) is
no longer an (un-normalized) eigenvector of D(k).
Rather, in general, it is some linear combination of the
c, eigenvectors {e(ksuX) } (u=1, 2, ~ ~, c,) corre-
sponding to the distinct eigenfrequencies {Id„(k)}.In
this case, multiplication of the vector E(k; s) ) by the
matrix D(k) yields the c, complex homogeneous equa-
tions in the c, unknown complex components of this
vector which sufBce to determine the c, eigenvectors
{e(ksuX) }and the associated eigenfrequencies {au„'(k)}.
In terms of real quantities one has 2c, homogeneous real
equations in 2c, real unknowns. Actually, since the
equations are homogeneous, one must only solve for
2(c,—1) real quantities and then normalize the eigen-
vector to unity.

If for a particular wave vector or crystal point group
the symmetry group of the dynamical matrix can be
enlarged to include anti-unitary operations, the problem
of determining the eigenvectors is simplified further.
For example, if time-reversal symmetry does not intro-
duce additional degeneracies, it is possible to reduce
the number of unknown real quantities in E(k; sX) from
2(c,—1) to (c,—1) when c,)1. A complete discussion,
including conditions for determining when additional
degeneracies occur from the properties of the irreducible
multiplier representations of the point group Go(k), is
given in the next section. On the other hand, since
additional degeneracy due to time-reversal symmetry
is the exception rather than the rule, it is useful to
derive a few simple properties of the irreducible multi-
plier representations under the assumption that ad-
ditional degeneracy does not occur, without recourse
to the general theory of corepresentations. This allows
the interested reader to turn to the applications of the
above results in Sec. 6 before studying Sec. 5.

If time-reversal symmetry does not produce ad-
ditional degeneracy for the wave vector mb where Eq.
(3.50) is applicable, then it is always possible to require
e(zrbsuX) to be real, i.e., to be an eigenvector of the
anti-unitary operator T(zrb; A) =Ko.

that

where A and E are related as in Eq. (4.12). In the
special case that the sth irreducible representation
appears only once in the reduction of the representation
of Go(k) provided by the matrices {T(k;R)}, the
eigenvector e(ksuX), as given by Kq. (4.38) and Eqs.
(4.50), simply serves to specify a convenient form for
the eigenvectors. On the other hand, if the sth irre-
ducible multiplier representation is multidimensional,

f,&2, and appears more than once in the reduction,
c,&2, the form of the eigenvector E(k; sX) constructed
according to Eq. (4.38) may be incompatible with

Eqs. (4.50). To avoid duplication Eq. (4.50a) will be
considered to be a special case of Eq. (4.50b). The
following theorem provides a useful necessary condition
on the form of the irreducible multiplier representation
matrices {~&'(k;R)} for E(k;sX) to be compatible
with Kqs. (4.50):

If the matrix T(k; R) commutes with the anti-
unitary matrix-operator T(k; S ) and the vectors
e(ksu)) are eigenvectors of T(k; S ), then the irre-
ducible representation matrix s&'~(k;R) of T(k;R)
must be real.

The proof is straightforward. From Kqs. (4.50) and
(4.33) we have

T(k; R)T(k S )e(ksu'A) = —T(k; R)e(ksuX),

= —P rg.g&'&(k R) e(ksuX')

and

(4.51a)

T(k; S )T(k; R)e(ksuX)

T(k; S )e(ksuX) —=Ko exp $ —ik v.(S )j
XF(k; {S ~

v(S ) })e(ksuX) = —e(ksu'A), (4.50b)

or, applying Ks to both sides of Eq. (4.50b) and writing
the result out in component form, we have

e ~(A { ksu'A) = —exp {—zlzz Lx(a) —S x(K) j}
Xg(S ) pep(E

~
ksuX), (4.50c)

Koe(zrbsu) ) =e*(zrbsuX),

= e (zrbsuX) . (4.50a)

=T(k S )gr„,„&&(k;R)e(ksuz'),

= —g rI;I,&'&(k R)*e(ksuX'). (4.51b)

In the general case governed by Eq. (3.45), even when
time-reversal symmetry does not produce additional
degeneracy, it does not necessarily follow that the
e(ksuX) can be chosen to be eigenvectors of one of the
anti-unitary matrix operators T(k; SM) when f,)2.
In this section, for purposes of simplicity, we limit
outselves to cases where it can be done and choose
the phases according to Eqs. (4.4) and (4.12) so

rgg&'(k R) =r),.),&'&(k R)' (4.52)

which is what we set out to prove.
Also, a condition on the representation matrix

If T(k;R) and T(k; S ) commute, since the vectors
e(ksuX') are orthogonal, the coeKcients of each e (ksuX')
on the right-hand sides of Eqs. (4.51) must be equal:
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~&'&(k S ') follows from

T(k; S )T(k; S )e(ksaX)

=p(k; S, S )T(k; S ') e(ksaX),

=p(k; S,S ) g rg~gt~& (k; S 2) e(ksaX ) .
XI

But if e(ksaX) is an eigenvector of T(k; S ), so that

T(k; S )T(k; S )e(ksa) ) =e(ksaX),

we obtain the condition

4 (k; S, S-)rv&,"(k; S ') =&&, &,.
Often this condition is an identity in that for certain
crystals it can occur that

T(k; S )T(k; S ) =T(k; e).

This is the case, for example, when S =i.
The irreducible multiplier representations {r ~'& (k;R) }

of G0(k) do not necessarily satisfy Eq. (4.52) .However,
since the matrices {~(k;R) } may be defined in terms
of the eigenvectors e(ksaX), it is always possible to
obtain an equivalent irreducible multiplier represen-
tation which does satisfy Eq. (4.52) when e(ksaX) may
be chosen to be an eigenvector of T(k; S ). The im-
portant conclusion is that if we wish the vector E(k; sX)
in Eq. (4.38) to be an eigenvector of T(k; S ) the pro-
jection operator (4.37) must be constructed from an
irreducible multiplier representation in which all the
matrices ~t'(k; R) corresponding to T(k; R)'s which
commute with T(k; S ) are real. This is not a sufficient
condition for the vectors E(k;sX) to be compatible
with Eqs. (4.50). For example, the irreducible multi-
plier representation ( f,&2) may be real with matrices
~(k; R) corresponding to elements T(k; R) which do
not commute with T(k; S ) in diagonal form, while
matrices ~(k; R) corresponding to elements T(k; R)
which do commute with T(k; S ) in nondiagonal form.
Clearly this is incompatible with E(k;sX) being an
eigenvector of T(k; S ) . Thus the irreducible multiplier
representation used in Eq. (4.37) should be chosen
according to the following: (i) The matrices s&'& (k; R)
corresponding to T (k; R) 's which commute with
T(k; S ) must be real; (ii) As many as possible of
these ~&'&(k; R) should be in diagonal form. Given
any irreducible multiplier representation of Go(k), it is
a trivial matter to And an equivalent representation
which conforms with these requirements.

The results given by Eqs. (4.36) and Eqs. (4.38)
formally solve the problem posed in this paper, except
for additional degeneracy due to time-reversal sym-
metry. From Eq. (4.36) we can obtain the symmetries
of the normal modes described by the wave vector k,
i.e., the irreducible multiplier representations of Go(k)
according to which they transform; the dimensionalities
of the irreducible representations contained in the
representation {T(k;R) } give the degeneracies of the
modes corresponding to the wave vector k due to

P e (ksaX) e+ (ksaX) = e„, (4 54)

where e, is the 3rX3r unit matrix, and (4.53) can be
rewritten as

D~(k) =g ~ '~(k)e(ksay)e+(ksay). (4.55)
sa'A

To focus on the frequencies associated with the s'
irreducible representation we project onto this subspace
by applying the projection operator Pt"&(k) defined in
Eq. (4.48) to both sides of Eq. (4.55) and obtain

P "'(k)D"(k) =Q &o ~ '"(k)e (ks'aX) e+(ks'aX) . (4.56)

The eigenvectors on the right-hand side can be elimi-
nated by taking the trace of both sides of (4.56) with
respect to "ao." and using the normalization condition
(2.23a), that is,

Tr{g ar,.'"(k)e(ks'Aa)e+(ksha)}
aX

=g co„'"(k)g e (z
~

ksaX)e *(&t~ ksaX),
aX AK

=Q (o„'"(k),

=f.Z ~-"(k). (4.57)

Writing the dP; aa element of the matrix D"(k) as
[D"(k'))t& "'", the diagonal elements of the matrix on
the left-hand side of Eq. (4.56} are

P(f //g) Q x&&&(k R)*2' t&(g&t'
~
k; R) g)&(k))s ~'~

«~P R

=(f.P)2 2 x"(»R)*

Xexp {~k.Lx(~) —Rx(FO '(a; R)))}Rs

Xg)-(k)) ~o '&'~& (4.58)

where the explicit form (3.17b) has been used for
2' »(~~'

~
k; R) . Equating the trace of (4.58) to (4.57),

we have finally the result that the sum of the 2mth

spatial symmetry. From Eq. (4.38) we can obtain
the forms of these eigenvectors. Examples of the use
of these results are given in Sec. 6.

We conclude this section by deriving a result which
may be useful in determining the frequencies of indi-
vidual normal modes. It is the extension to the lattice
dynamical case of a theorem erst established by
Wigner'~ in the context of molecular vibrations.

Repeated application of the matrix D(k) to both
sides of the eigenvalue equation, Eq. (2.17) yields the
result that

D~(k) e(ksay) =co,.'~(k)e(ksay). (4.53)

Introducing the column vector and row vector notation
for e(ksaX) and its Hermitian conjugate e+(ksaX), the
closure relation (2.23b) can be recast into the matrix
form:
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Xg LDn(k) j Ee (a;B)e (4.59)

In the special case that the sth irreducible represen-
tation occurs only once in the representation of Gs(k)
generated by the {T(k;R)}, so that the repetition
index a can be suppressed, we obtain the simple result
that

Ie,'(k) =II—' Q Q X&'&(k; R)*
R «aP

Xexp {I'k Px(E) —Rx(FS '(II; R) )j}
XFl pDp (Fs I(E; R)E

~
k). (4.60)

The result given by Eq. (4.59) is also useful if the
sth irreducible representation appears twice in the
representation {T(k;R)}.If we denote the two fre-
quencies associated with this representation by oI,IS(k)
and or,ss(k), then from Eq. (4.59) we have that

or,ts(k)+oI, ss(k) =II,(k),

oI,I'(k) +oI,s'(k) =b, (k), (4 61)

where I4(k) and b, (k) are obtained by setting rr=1
and I=2 in the right-hand side of Eq. (4.59), re-
spectively. Solving the pair of equations (4.61) we
6nd that

~ I'(k) =-'{& (k) —L2b. (k) -~ '(k)j'"}

o&.s'(k) =—'{a,(k)+L2b, (k) —u'(k) j'"} (4.62)

If a particular irreducible representation occurs more
than twice in the representation {T(k;R) },this method
of computing the {o&„(k)} loses its simplicity.

5. CONSEQUENCES OF TIME-REVERSAL
SYMMETRY

The fact that, under special circumstances, time-
reversal symmetry can produce extra degeneracies in
the lattice vibration frequencies in addition to those
due to the multidimensionality of the irreducible repre-
sentations of the space group G& was pointed out by
Herring" in a classic paper on the eGects of time-
reversal symmetry on energy bands. Herring's treat-
ment was based on Wigner's" early work on time-
reversal in which the reality of the Hamiltonian and
"C. Herring, Phys. Rev. 52, 361 (1937).
23 E. Wigner, Nachr. Akad. Wiss. Goettingen, Math. —Kl.

Physik, p. 546 (1932) /English translation in Gregp Theory and
Solid State Physics: I. P. H. Meijer, Kd.

'

(Gordon and Breach
Science Publishers, New York, 1964)j.

powers of the frequencies whose associated eigenvectors
transform according to the sth irreducible multiplier
representation of Gs(k) is given by

Ce

Ie,.'"(k) =b—' Q Q xt'l (k R) *
a=1

Xexp {zk (x(lr) —Rx(Fs I(II; 8) ))}

the property that the operation of complex conjugation
commutes with the spatial symmetry operations play
an essential role. To apply this approach to our problem
would in essence require us to deal with the eigenvalue
problem in real form, for example, by use of Eq. (2.12)
and the irreducible representations of the space group G
of the crystal, even though the anal conditions for the
existence of extra degeneracies could be expressed in
terms of the irreducible representations of the space
group Gi, . Rather than taking this approach, we prefer
to use Wigner's more recent method of corepresen-
tations, " modified to include the multipliers of Eq.
(3.45), which allows us to deal with the eigenvalue
problem in terms of the dynamical matrix and the
symmetry operations T(k; R) of the point group
Gs(k; —k). This modilcation of Wigner s method will
be referred to as the multiplier corepresentation method.
The conditions for the existence of extra degeneracies
due to extending the group of unitary symmetry oper-
ations {T(k;R)} of the point group Gs(k) to form
the enlarged symmetry group {T(k;R) }, containing
unitary and anti-unitary operations, of the group
Gs(k; —k) will be expressed entirely in terms of
the known irreducible multiplier representations"
{e&'&(k;R)} of the point group Go(k) which is an
invariant subgroup of Gs(k; —k). In particular, we
will see that under the inQuence of an anti-unitary
symmetry operation the irreducible multiplier repre-
sentations separate into three types with properties
which are similar to those of the analogous ordinary
irreducible representations. "With one type are associ-
ated no additional degeneracies; with the other, there
are two. The method of multiplier correpresentations
has been used recently to study the electron energy
spectrum in crystals. '4" In the following analysis we
assume that we are dealing either with a crystal whose
symmetry is such that —k is in the star of k or with a
wave vector which equals ~ times a reciprocal lattice
vector, so that Eq. (3.50) applies. The latter case
will be treated as a special case of the former, keeping
in mind that for a product involving an anti-unitary
operation the multipliers in Eqs. (3.46) and (3.47)
are altered according to Eqs. (3.51), (3.52) and (3.53).

Before beginning the general analysis we wish to
derive a few results which will prove useful in the
following. From the definition of the matrix operators
T(k; R) we see that multiplication is associative for
unitary and anti-unitary operations:

LT(k; RI)T(k; R,))T(k; Rs)

=T(k; RI) LT(k; Rs) T(k; Rs) j. (5.1)

Carrying out the multiplications according to Eq.

'4 G. F. Karavaev, N. V. Kudryavtseva, and V. A. Chaldzskev,
Fiz. Tverd. Tela 4, 3471 (1962) /English transl. :Soviet Phys. —
Solid State 4, 2540 (1963)g."N. V. Kudryavtseva, Fiz. Tverd. Tela 7, 998 (1965) t'English
transl. :Soviet Phys. —Solid State '7, 803 (1965)g.
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or
T(k A-I) =y*(k A A-') T-'(k; A) (5.5a)

T '(k;A) =p(k A, A ')T(k;A '). (5.5b)

Setting AI ——R3——A and R2=A ' in Eq. (5.3b') yields
the useful relation

@(k A, A-') =@*(k A-' A). (5.6)

The extension of the analysis that leads from Eqs.
(4.13) to (4.33) to include anti-unitary matrix oper-
ators is straightforward. Operating on both sides of

(3.45), we obtain

y(k; RI, R2) T(k; RI, R2) T(k; R3)

4(k) Rl) R2) 4 (k) RIR2) R3)T(k; RIR2R3) )

=T(k; RI)y(k) R2, R3)T(k; R2R3) . (5.2)

To reduce the last term in Eq. (5.2) further it is
necessary to distinguish the unitary and the anti-unitary
possibilities for T(k; RI) . Using the notation RI and AI
for R& to distinguish the two cases, it follows directly
from Eq. (5.2) that the multipliers ()b(k; R;, R;) satisfy
the functional equations

@(k;RI, R2) @(k;RIR2& R3)

=@(k)RI, R2R3) y(k; R2, R3), (5.3a)

@(k;A„R,)y(k; A,R„R,)
=y(k; AI) RRR3)y*(k; R2) R3). (5.3b)

A second useful result concerns the inverse of T (k; A) .
From Kq. (3.45) we see that

T(k A)T(k A ') =@(k A, A ')T(k; ), (5.4)

so that multiplying both sides of Kq. (5.4) from the
left with T '(k; A) gives

Eq. (4.32) from the left with the matrix operator
T(k; A) and using the fact that T(k; A) commutes
with D(k), we obtain

D(k) }T(k;A) e(ksaX) I
=p)„2(k) IT(k; A) e(ksaX) }.

(5.&)

Therefore, if e(ksaX) is an eigenvector of D(k) with
eigenvalue o)„2(k), then so is T(k; A) e(ksa)() for every
operation A of the coset S Gp(k) of the point group
Gp(k; —k). Consequently, T(k; A)e(ksa)k) is a linear
combination of the eigenvectors of D(k) whose eigen-
values are equal to p), '(k) .

Instead of introducing the concept of corepresen-
tations at this juncture we prefer to derive the con-
ditions for the existence of additional degeneracies due
to time-reversal symmetry by a direct investigation of
the linear dependence of the eigenvectors e(ksaX) and
T(k; A) e(ksaX) . Clearly, if the two sets of eigenvectors
are required to be linearly independent by time-reversal
symmetry, there is an additional degeneracy. To pro-
ceed we de6ne

e(ksaX) =—T(k; Ao) e(ksaX), (5.8)

and consider the transformation properties of the eigen-
vectors e(ksaX) and e(ksaX) under the spatial sym-
metry operations T(k;R) of the point group Gp(k).
The Ap is an arbitrary element of the coset S Go(k),
the choice being governed by convenience only. Recall
from Eq. (4.33) that

fe

T(k; R)e(ksaX) =g rk.k(') (k; R)e(ksaX') . (5.9)

To obtain the effect of T(k; R) on e(ksaX) we make
use of the matrix-operator identity Lsee Eqs. (3.45) and

(53)7

T(k; R)T(k; Ap) =T(k; ApAp 'R) T(k; Ap),

=r)I)*(k; A(), A,—'R) T(k; A, )T(k; Ap-'R)T(k; Ap),

=p) P(k Ap Ap IR) (t P(k Ap 'R, Ao) T(k; Ao) T(k; Ao 'RAo),

=r)I)P(k Ap Ao 'RAp) (Qb(k; R, Ap) T(k; Ap) T(k) Ao 'RAo)

and the fact that Ao IRAp is an element of G, (k) . Therefore, using the form in Kq. (5.10a), we have

T(k; R) e(ksaX) =T(k; R)T(k; Ap) e(ksaX),

=@*(k;Ap, Ao
—'R) Q*(k; Ap 'R, Ap) T(k; Ap) T(k; A RAo) e(ksaX),

fi
=@*(k Ao Ap IR)@*(k Ao 'R, Ap)T(k; Ao) prkk('&(k Ao

—'RAo)e(ksaX'),

(5.10a)

(5.10b)

=&)"(k; A», A 'Rl&)" (k; A& 'R, I») Q»&'&(k; )4 'RA&) "e(ks»'k'). (5.11)

That is, the f, eigenvectors e(ksaX) transform into linear combinations of themselves under a unitary operation
T(k;R) according to the unitary irreducible multiplier representation I~&')(k;R) } of the point group Gp(k),
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where, according to Eqs. (S.ii) and (5.3),
~&'&(k R) =—y*(kp App Ap 'R)&t*(k Ag 'Rp Ap) ~"(k A.

p 'RAg)*,

=&*(k Ag Ag IRAp)y(k;R, Ap)~&'&(k; Ag 'RAp)*.

(5.12a)

(5.12b)

The unitarity and the irreducibility of the ~&'& (k; R) are direct consequences of the unitarity and the irreducibility
of the s&'&(k;R).

We now prove that the matrices {~&'(k;R) } defined by Eqs. (5.12) form a multiplier representation of Gp(k)
with the same factor system (i.e., multipliers) as occur in the representation provided by the {~"(k; R) I. Taking
the complex conjugate of Eq. (4.18) to evaluate the product of the matrices ~&'(k;RI) and ~&'&(k;Rp) gives
Lthe choice made of (a) and (b) forms is for convenience only7:

~&'&(k; RI) ~&*&(k;Rp) =&*(k;Ap, Ap 'RI) p*(k; Ap 'RI, Ap) &t *(k; Ap) Ap 'RpAp)

X@(k;Rp, Ap)0 (k'Ap 'RIAp, Ap 'RpAp)~&'&(k; Ap 'RIRpAp)*, (5.13}
which must be related to

g&'&(ki RIRg) =qP(k& Ag Ap 'RIRp)4*(ki Ap 'RIRp, As) s '&(k; Ap 'RIRpAp)*.

By repeated application of Eqs. (5.3) it can be shown that

P*(k; Ag IRIAp) Ag IRpAp) =P(k Ap 'RI, Ap)g*(k. Ap 'RI, ApAp IRpAp)g(k Ag, Ag IRpAp)

and

@*(k)Ag 'RI, AgAg 'RpAp) =&*(k;Ag IRI) Rp) @*(k;Ap 'RIRp, Ap) P*(k;Rg, Ag),

=P(k; Ap) Ap RI)g(k; ApAp RI) Rp)qP(k; Ap, Ap RIRp)

(5.14)

(5.15)

XP*(k; Ap RIRp, Ap)$*(k;Rp, Ap). (5.16)

Substituting Eqs. (5.15) and (5.16) for the appropriate multiplier in Eq. (5.13) and performing the obvious
cancellations yields

c&'&(k; RI) g&'&(k; Rp) =y(k; RI, Rp)qP(k; Ap, Ag 'RIRp)p*(k; Ag 'RIRp, Ap) ~'&(k; Ag 'RIRpAp) *,

=y(k RI Rp)~&'&(k RIRp), (5.17)

=&t*(k Ag, Ap 'A) Y p.q &,
&'&(k Ap 'A)*e(ksag')

and
(5.18)

T(k; A) e(ks&I)&)

=T(k; A)T(k Ap)e(ksa), ),
=P(k; A, Ap) T(k; AAp) e(ksaX),

=g(k A Ap) p p'g x& &(k' AAp)e(ks&IX') . (5.19)

which is the desired result.
For later reference it is useful to record the results of

applying an anti-unitary matrix operator T(k; A) to
the eigenvectors e(ksa) ) and e(ks&I)&,). From Eqs.
(3.45), (5.8), and (5.9) we obtain

T(k; A) e(ks&IX)

=T(k; ApAp
—IA) e (ks&I)&),

=&t*(k Ap, Ap 'A)T(k; Ap)T(k; Ap IA)e(ks&I)&),

fe

(k~ Ap) Ap
—A)T(k. Ap) Qp~, ~&s& (ki Ap

—A)e (ksgy ))

Ap ' and AAp are elements of Gp(k), so that the corre-
sponding ~'& matrices in Eqs. (5.18) and (5.19) are
well-dined.

%e now turn our attention to the question of the
linear dependence of the eigenvectors e(ks&IX) and
e(ksaX). This question can be resolved by considering
the relationship between the irreducible multiplier
representations {~&'&(k;R) } and {8'&(k;R) } of the
point group Gp(k) which define the transformation
properties of the eigenvectors e(ks&I)&) and e(ksa)&),
respectively, under the operations of the unitary ma-
trices T(k; R). Noting that the irreducible Inultiplier
representations «'~ and ~&' belong to the same factor
system, they can be either equivalent or inequivalent.
The latter of these two possibilities is simpler and will
be treated first.

If the irreducible multiplier representations «'& and
~&'& are not equivalent (such representations will be
referred to as of the third type) the eigenvectors
e(ks&I)&) and e(ks&I)&) are orthogonal, since they belong
to diGerent irreducible multiplier representations of the
point group Gg(k). Since e(ks&I)&) and e(ks&IX) are
eigenvectors of the dynamical matrix D(k) with equal
eigenvalues p&„'(k), the f;fold degeneracy is doubled
to 2f, by time-reversal symmetry for this case.
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In the alternative situation ~&'~ and c&'& are equivalent.
At first sight one might expect that the eigenvectors
e(ks&tX) and e(ks&tX) could not be linearly independent.
However, signer" has shown that it is possible under
special circumstances to have additional degeneracies
in this case. The analysis for multiplier representations
is very similar to that for ordinary representations. "
For the sake of completeness we carry out the analysis
for multiplier representations and derive a criterion for
determining whether the eigenvectors e(ks&tX) and
e(ksaX) are linearly independent or whether they are
linearly dependent.

Since ~&'& and ~&'& are equivalent and belong to the
same factor system, they are related by a similarity
transformation:

~&'(k R) =y*(k; Ap, Ap 'R) yP(k Ap 'R) Ap)

X~&'(k Ap 'RAp) *=
g '~" (k' R) g) (5.20)

where g is a unitary matrix. We now show that the
property of the irreducible multiplier representation
that causes the eigenvectors e(ksaX) and e(ks&tX) to be
linearly independent is reQected in the "structure"
{ see comment below Eqs. (533)g of the unitary matrix

P and is expressible as a condition on the matrix gP.
To gain some insight into the way in which this comes
about we begin by showing that the matrix g is unique
up to a phase factor and that it may be expressed in
terms of the irreducible multiplier representation ma-
trices {~&'&(k;R) }.

The uniqueness of form for g follows from the
irreducibility of the matrices {s&'&(k;R) }, since, if y
is a second matrix which connects ~&'& and ~&'& as in
Eq. (5.20), then

y '~&'&(k R) /=y 'c&'&(k R) y (5 21)

for all elements R of Gp(k). Multiplying Eq. (5.21)
by y from the left and g

' from the right gives

{~&'&(k;R)} are determined by Eqs. (5.12) once the
matrices {~&'&(k;R) } and Ap are given, the matrix g
is de6ned up to a phase factor by the irreducible
multiplier representation {~&'&(k;R) } and the element
Ap. The matrix defined by Eq. (5.25) is a null matrix if
the representations {~&'&(k;R)} and {~&'&(k;R)} are
inequivalent, as can be seen from the orthogonality
theorem as expressed in Eq. (4.46) . Thus these results
are consistent with irreducible multiplier represen-
tations of the third type.

In the last paragraph we emphasized that not only
the existence but also the "form" of the matrix g is
a unique property of an irreducible multiplier represen-
tation. We now show that the structure of the matrix g
characterizes the irreducible multiplier representations
which satisfy Eq. (5.20) by deriving a condition on the
matrix gP. Substituting the rotational element Ap 'RAp

for R in the complex conjugate of Eq. (5.20) and using
Eq. (5.12a) we obtain

8'&(k Ap 'RAp)*=) '*~&'&(k; Ap 'RAp)*P, (5.26a)

=@(k Ap Ap 'R)@(k Ap 'R, Ap)

Xg '*~"(k'R) g*,

=g(k Ap, Ap
—'R)@(k Ap 'R, Ap)

X5 '*5 '~"(»'R) 55*, (5 26b)

where Eq. (5.20) has been used in the last step. On
the other hand, replacing R by Ap 'RAp in Eq. (5.12a)
and taking the complex con)ugate of the resulting
equation yields

~&'&(k Ap 'RAp)*=y(k; Ap, Ap 'RAp)

Xy(k Ap 'RApy Ap) ~&*&(k Ap
—'RAp'). (5.27)

Noting that Ap ' and ApP are elements of Gp(k), then
s&'& (k; Ap

—'RApP) may be written as a product of three
~&'& matrices by applying Eq. (4.33) twice:

~"(»'R) V5 '= VS '~" (k; R) (522) &&(k Ap 'RAp') =&*(k;Ap ', R)g*(k Ap 'R, Ap')

that is, the matrix yg ' commutes with all the matrices
of an irreducible multiplier representation of the group
Gp(k). It follows from Schur's Lemmas'P" that the
matrix yg ' is proportional to the unit matrix, so that

X~'&(k; A ')~&'(k. R)~"(k A') (528)

Substituting Eq. (5.28) in Eq. (5.2'/), after repeated
application of Eqs. (5.3) on the multipliers, one obtains

y=cg, (5 23) 0& (k' Ap RAp) =Q (k Ap Ap )$(k' Ap Ap &R)

g=c' Q ~&'&(k R')X~&'(k; R') t (5.25)

satisfies (5.24) for arbitrary X. Thus, since the matrices

where
~

c ~=1. Furthermore, Eq. (5.20) may be re-
written as a condition on g, namely that g is a matrix
that satisfies the relation

g=~&'&(k R) g~&'(k R) t. (5.24)

It follows from the above discussion that any non-null
matrix that satisfies Eq. (5.24) is proportional to g.
In particular, the matrix

X P(k Ap 'R, Ap)~&'&(k; Ap ')~&'(k R)~&'&(k Ap')

(5.29)

Equating the right-hand sides of Eqs. (5.26) and (5.29)
yields the important result

(gP)-'~&'&(k R) gP=@*(k Ao', Ap-')

X~"(k' Ap ') ~"(k R)~"(k Ap') ~ (5'30)

Clearly, the matrix gg*~&'& (k; Ap ') commutes with all
the matrices ~&'&(k;R) of an irreducible multiplier
representation, and therefore must be proportional to
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the unit matrix. It follows that

gp=c~&'&(k Ao'). (5.31)

Since all the matrices in Eq. (5.31) are unitary, cc*=1.
To obtain c, set R=AO' in Kq. (5.20) and use Eq.
(5.31) to express «' (k; A ')

y*(k Ao, Ao) y*(k Ao, Ao) ~&'&(k A ') *

=&*(k Ao A&&)'cpIl,

=ll I~"(k AO2) ll,

=c 'Ll IIlIl*{l=c ILl*Il. (5 32)

Therefore c=&P(k; A0, Ao) and

or
yy*=y(k; A„A,) ~& &(k A,')

gp= —g(k Ao, Ao)~&'&(k; Ao').

(5.33a)

(5.33b)

~'&'&(k R) =U I~&'&(k R)U. (5.34)

Then there exists a set of matrices {~'&'(k; R) } that is
related to the set {~'&'&(k;R) } in the same way as the
sets {8'&(k;R) } and {s&'&(k;R) } are related —that is,
according to Eq. (5.20) with {l replaced by a new
matrix g'.

p&'&(k; R) =qP(k' Ao Ao IR)y*(k' Ao IR, Ao)

These two cases are referred to as being of the erst
and second types, respectively. If (as is often the case)
the element Ao is such that g(k; AD, Ao) ~&'(k; Ao') is
equal to the unit matrix, that is, Eqs. (5.33) become
gP=&l, then the matrix g is symmetric or anti-
symmetric, respectively. This is an example of what
was meant by the "structure" of the matrix g in the
paragraph below Eq. (5.20). It is shown below that
the eigenvectors e(ksaX) and e(ksaX) are linearly
independent when the matrix Il satisfies Eq. (5.33b),
and thus time-reversal symmetry produces an ad-
ditional degeneracy. If Eq. (5.33a) applies, time-
reversal symmetry does not aGect the degeneracy.

An important feature of Eqs. (5.33) is that their
form is invariant under a unitary transformation on
the representation matrices. To see this, let the repre-
sentation ~" undergo a unitary transformation with a
matrix U:

=+p(k; Ao) Ao) U I~&'& (k Ao') U

=a/(k; Ao, A&&) ~'&'&(k Ao'), (5.38)

which is the result we wished to demonstrate. Thus the
"type" of the irreducible multiplier representation can-
not be changed by a similarity transformation.

I.et us now turn our attention to the problem of the
linear independence of e(ksaX) and e(ksaX) for Eq.
(5.33b). For convenience we introduce a bra-ket type
of notation for scalar products. Let rg and Q be 2
arbitrary vectors in the 3r-dimensional space. Then the
(Hermitian) scalar product { see Eq. (2.23a)$ is de-
noted by

(5.39)
a,a

It is important to distinguish the effect on the scalar
product of a unitary and an anti-unitary transfor-
mation on the vectors y and Q. In particular,

while

&T(»'R)e T(»R) e)=(o 4) (5.40)

(T(k; A) (g, T(k; A) It&) = (g, y). (5.41)

Instead of dealing with the eigenvectors {e(kseX)}
which transform according to {~&'&(k; R) }={I3 I)(
~&'&(k; R) Il} under the operations {T(k;R) },it is con-
venient to introduce a linear combination of {e(ksaX) }
which transforms according to {~&'&(k;R) }.Let us de-
note this combination by e'(ksaX), and define it by

fe
e'(ksa), ) =Q P„&,

—Ie(ksati),
p=l

fe

(5.42a)

=T(k A )P P &,
' e(ksap) (5 42b)

tM;I

Then, from Eqs. (5.11), (5.12), and (5.20), it follows
that

where we have set the arbitrary phase factor equal to
unity. The important feature of Kq. (5.37) is that,
in general, g' and $ are lot related by a similarity
transformation even though ~'&') and ~&') are. Thus,
from Eqs. (5.33), (5.34), and (5.37), we have

y'y'* =U-'yU*U-'*y*U =U-'yy*U

x~"&(k; Ao 'RAO) *, (5.35a) fe

(5 35b T(k;R) e'(ksaX) = Q r&,"g&'&(k;R) e'(ksaX") . (5.42c)
X~~=I

=y'-I~'& &(k R) y'.

Using Eqs. (5.20) and (5.34) in Eq. (5.35a), we obtain Also, by inverting Eq. (5.42a) we obtain

~'&'&(k; R) =U I*~&8&(k R)U*, (5.36a) fe

T(k; Aa) e(ksaX) —=e(ksaX) =g P„qe'(ksa&«) . (5.42d)
=U I*) IU~'&'&(k R)U &AU* (5.36b)

Therefore
g'=U I)U*,

The effect of T(k; Ao) on e'(ksaX') can be expressed
(5.37) in terms of the eigenvectors {e(ksaX) } by use of Eqs.
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(5.42b), (3.45), and (5.9):

T(k; A )e'(ksaX) =T(k A )T(k Ap) gP„„—'*e(ksatt),

fs
=@(k Ap Ap)T(k ApP) g P„i, '*

Xe (ksatt),
fe

=4 (k; Ap, Ap) P P,~
"

T(k; Ap)e'(ksaX) = g P„i, '*{yy*]„,„e(ksatt'),

= Z P„&e(ksatt') (5.44a)

or
fs

T(k; Ap) e'(ksaX) = —Q P„i, '*[j9P*]„.„e(ksatt'),

= —Q P„.),e (ksatt') . (5.44b)

Now consider the scalar product of e'(ksaX') with
e(ksaX). Since these eigenvectors belong to the same
irreducible multiplier representation, it follows from
Kqs. (4.46) and (5.40) that

(e'(ksa)i'), e (ksaX) )
frt

=h~.$f, ' P(e'(ksatti), e(ksatti) )j. (5.45a)

On the other hand, from Eqs. (5.41), (5.42d), (5.44),
(5.45a), and the unitarity of the matrix g we obtain

(e'(ksaX'), e (ksaX) )
= (T(k; Ap) e(ksaX), T(k; Ap) e'(ksaX') ),

fe
=~ P p„i,*p„,i;(e'(ksatt), e(ksatt') ),

=~bi,„.{ f,—' P(e'(ksatti), e(ksatti))$. (5.45b)

Clearly, if gP satisfies Eq. (5.35b) so that the minus
sign in Eq. (5.45b) is appropriate, then

(e'(ksa) '), e (ksaX) )=0. (5.46)

Also, the eigenvectors {e(ksa'A) } and {e(ksaX) } are
orthogonal, since the latter may be expressed as linear
combinations of {e'(ksaX)}. It is worth emphasizing
that this orthogonality does not depend on the details

Xr„.„&'&(k; Ap') e (ksatt') . (5.43)

Therefore, depending on whether g(P satisfies Eq.
(5.33a) or (5.33b), we obtain

of the way in which the set {e(ksaX) } is chosen, but
requires only that the set transform according to an
irreducible multiplier representation of the second type
under the symmetry operations {T(k;R)}.For ex-
ample, the vectors {Le(ksaX) +ce'(ksaX) j} and
{T(k;Ap) Le(ksak) +ce'(ksaX) j}are orthogonal if they
belong to the second type of irreducible multiplier
representation. Thus, the minimum dimension of the
sub space that is invariant under the operations
{T(k;R)} of the point group Gp(k' —k) is 2f, if
{~"(k; R) } is of the second type.

If the matrix g satisfies Kq. (5.33a) (that is, the
irreducible multiplier representation is of the irst type)
then Eqs. (5.45) do not say anything about the linear
dependence of the eigenvectors {e(ksaX) } and
{e (ksaX) },and we must consider the two possibilities.
If they are lin.early dependent, then from Eq. (5.45a)
they can diGer by at most an arbitrary phase factor,
and there is no additional degeneracy. On the other
hand, if they are linearly independent, this situation
can be referred to as ai accidental degeneracy, since
the 2f;dimensional subrace consisting of the eigen-
vectors {e(ksaX) } and {e'(ksaX) } is reducible into two
f;dimensional subspaces each of which is invariant
under the symmetry operations {T(k;R) } of the point
group Gp(k; —k). If the eigenvectors {e(ksaX) } and
{e'(ksaX) } are linearly independent, then the eigen-
vectors {e(ksaX)+e'(ksaX) } and {e(ksaX)—e'(ksaX) }
are also. In fact, the latter two sets can be made
orthogonal by adjusting the arbitrary phase factor in
the set {e(ksaX) } so that (e(ksah), e'(ksaX) ) is real,
since

(e(ksaX) —e'(ksaX), e(ksaX) +e'(ksaX) )
= (e(ksaX), e'(ksaX) )—(e'(ksaX), e(ksa)i) ).

Clearly, each set transforms according to the irreducible
multiplier representation {~&'(k;R)} under the sym-
metry operations {T(k;R) } of the point group Gp(k) .
Also from Eqs. (5.42d) and (5.44a) we ind that

T(k; Ap) {e(ksaX) +'e(ksaX) g

=a+ P„gLe(ksatt) ae'(ksatt) j (5.47).
And since

T(k A) =y*(k; AAp ', Ap)T(k AAp ')T(k; Ap),

(5.48)

there is no mixing of the eigenvectors from the two
sets for any operation of the point group Gp(k; —k).
Therefore, each of the sets of eigenvectors {e(ksaX)+
e'(ksaX) } and {e(ksa) ) —e'(ksaX) } individually is a
set of basis vectors for the symmetry operations
{T(k;R) } of the point group Gp(k; —k) and thus
symmetry does not require the two linearly independent
sets to exist. . This completes our proof that for the first
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type of irreducible multiplier representation time-re-
versal symmetry does not produce any additional de-
generacy; if it did occur, it would be considered acci-
dental.

From the above results it is a simple matter to de-
termine the irreducible multiplier corepresentations.
%e begin by introducing the corepresentation concept
for a group of symmetry operations, some of which
are anti-unitary. Returning for a moment to the "j"
index of Eq. (2.17) for labeling the branches of &o(k),
since for any element R of the point group Go(k; —It)
the matrix operator T(k; R) commutes with the dy-
namical matrix D(k), the effect of applying this oper-
ator to the eigenvector e(kj) can be expressed as

T(k. R)e(kj) =QO;;(k; R)e(kj'), (5.49)

where the sum over j' extends over all branches of the
phonon spectrum at the point k for which &os.o(k) =
&oP(k) . It follows directly from Eqs. (5.40) and (5.41)
that 0(k; R) is a unitary matrix. Applying a unitary
operation T(k; R) to both sides of Eq. (5.49) from
the left and following the same steps that lead to
Eq. (4.18), we obtain

0»(k; R)e(k; R) =cg (k; R, R) 0»(k; RR), (S.soa)

where $(k; R, R) is defined in Kq. (3.46) .Alternatively,
performing the same type of analysis with an anti-
unitary operator T(k; A) instead of with T(k; R), we
have

T(k; A) T(k; R)e(kj)

=p(k; A, R)T(k; AR)e(kj),

=p(k; A, R) p 0;-;(k; AR) e(kj"), (5.51a)
j//

=QO;;(k; R) T(k; A)e(kj'),
p

= g Op, (k; R) O~t .s. (k; A) e (kj"). (5.51b)
jlj./I

Comparing Eqs. (5.51a) and (5.51b), we are led to the
result that

e(k; A) 0(k; R)*=y(k; A, R) 0(k; AR), (5.50b)

where g(k; A, R) is defined in Kq. (3.47). Note the
complex conjugate in Kq. (5.50b). Clearly, the unitary
matrices {0(k;R) } which satisfy Eqs. (5.50) are not
a representation of the group of unitary and anti-
unitary symmetry operations {T(k;R) } in the usual
sense. For this reason they are called multiplier corepre-
sentations. '6'4

In the preceding analysis it was shown that the
dimensions of the subspaces of eigenvectors, which are
invariant under the symmetry operations {T(k;R) } of
the point group Go(k; —k), are f, or 2f„depending
upon the irreducible multiplier representation to which

they belong for unitary symmetry operations. There-

{~&'&(k R) } and

{~&'&(k; R) }= {y*(k;Ao, Ao 'R)

X&&*(k;Ao
—'R Ao) ~&'&(k' Ao 'RAo)*}

are equivalent. The unitary matrix g which transforms
~&'& into ~&' satisies the equation gP=P(k; Ao, Ao) X
~&'&(k; Ao'). The invariant subspace has f, dimensions,
and the basis vectors are {e(ksa)&)}.In this case from
the definition of 0(k; R) in Kq. (5.49) we have

(5.52a)0»&'&(k; R) =~&'&(k R)

while, from Eqs. (5.42d) and (5.44a),

e&&(k; A, ) =y, (5.52b)

and combining Eqs. (5.48), (5.52a), and (5.52b) gives

0'&(k; A) =P*(k; AAo ' Ao) ~&'(k AAo ') II (S.S2c)

Seco&i&t type. The irreducible multiplier represen-
tations {~&'&(k;R) } and {~&'&(k;R) } are equivalent as
in the first case, but in this case I3 satisfies the equation
II {Io= —

qh (k; Ao, Ao) ~&'& (k &
Ao') .The invariant subspace

has 2f, dimensions. The first f, basis vectors are {e(ksuX)
and the second f, basis vectors are {e'(ksa)&) },defined

by Eq. (5.42a). For convenience we partition the
2f,X2f, irreducible multiplier corepresentation matrices
{0&'&(k;R) } into four f,Xf, blocks. Then from Eqs.
(5.9), (5.42c), and. (5.49) it follows that

(~&'& (Ir; R) 0
e&&(k R) =~ (5.53a)

0 s&'&(k R))
while from Eqs. (5.42d), (5.44b), and (5.49), we have
that

e&&(k; A.) =~ (S.S3b)

and combining Eqs. (5.48), (5.42d), and (S.44b) with
Eq. (5.49) gives

e&.&(k. A) &&o(k. AAo
—i Ao)

(' o
xi

(~&'&(k; AAo ') II

Third typo. The irreducible multiplier representations

—.& &(k; AA;i) y)
(S.S3c)

o j

fore, the dimensions of the irreducible matrices
{0»(k;R) } are either f, or 2f,. By using the appropriate
eigenvectors {e(ksa)&)}, {e(ksa)I) }, and {e'(ksa)&) } as
basis vectors, it is straightforward to construct an
irreducible multiplier corepresentation that satis6es
Kqs. (5.50) for each type of irreducible multiplier
representation. The corresponding irreducible multiplier
corepresentations will be referred to as being of the
6rst, second, or third types also, and will be denoted by
{0&'&(k;R) }.We now summarize the results.

Forst type. The irreducible multiplier representations
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{~&'&(k;R)} and

{~&'&(k R) }={&*(kAQ Ao
—'R)

Xy*(k; Ap 'R, Ap) ~&'&(k) Ao 'RAo) *}

are inequivalent. The invariant subspace has 2f, di-

mensions; the first f, basis vectors are {e(ksaX) } and
the second f, basis vectors are {e(ksa)i) } Lsee Kq.
(5.8)J. If for convenience we partition the 2f,X
2f, irreducible multiplier corepresentation matrices
{e&'&(k;R) } into four f,Xf, blocks, then, from Kqs.
(5.9), (5.11), (5.12), and (5.49), it follows that

(~&'&(k R)
e&&(k.R) =!

while, from Kqs. (5.18), (5.19), and (5.49),

o
!

~&I&(k R))
(5.54a)

and

(0 &b(k; Ap, Ap) ~&'&(k; Ap'))
e&'&(k; Ao) =!

o )
0

e&&(k; A) =!
(&b*(k Ao, Ap 'A) ~&'&(k Ao 'A)*

y(k; A, A,) ~& & (k; AA, ))
!

o )

(5.54b)

(5.54c)

The relation between the irreducible multiplier repre-
sentations {~&'&(k;R) } and {~&'&(k; R) } is reciprocal in
that if we had started the analysis that leads from Eq.
(5.8) to Eq. (5.12) with eigenvectors {e(ksaX) }—=

{T(k;Ap) e(ksaX) }, where {e(ksaX)} belongs to
{~&'&(k;R) },then we would have found that {e(ksaX) }
belongs to the irreducible multiplier representation
{~&'&(k;R) },which is equivalent to {~&&(k'; R) }.To see
this we note that ~t'& must be related to ~&'& in precisely
the same way that ~&'& is related to ~&'&. Accordingly,
from Eqs. (5.12) and (5.29), we have

~&'& (k; R)

=&*(k Ap Ap 'R)y*(k Ap 'R, Ap)~&'(k; Ap 'RAQ)Q,

=&/(k AQ' AQ ')~&8&(k AQ ')~&'&(k R)~"(k AQ')

=~'&(k Ap') '~&'&(k; R) ~&'&(k) Ap'). (5.55)

The consequences of time-reversal symmetry on the
number of times the sth irreducible multiplier represen-
tation is contained in the representation {T(k;R)}
Lsee Eq. (4.36)] follow directly from the above results:
Irreducible multiplier representations of the first type
may occur any number of times, while the second type
must occur an even number of times, and irreducible
multiplier representations of the third type always
occur in pairs. Therefore the existence of anti-unitary
symmetry operations in the symmetry group of the
dynamical matrix D(k) reduces the labor involved in
determining the eigenvectors by a factor of two. For
eigenvectors which belong to representations of type
one, the number of unknown real quantities in E (k; sX)
of Eq. (4.38) may be reduced from 2(c,—1) to (c,—1)
when c,)1 by use of Eqs. (5.49) and (5.52b). This

case is especially simple if the matrix g is diagonal or
has one nonzero element in each row. For eigenvectors
which belong- to representations of type two, E(k; sX)
will contain (c,/2) pairs e(ksaX) and e'(ksaX), where
c, is an even integer. By use of the operator T(k; Ap)

one can again reduce the number of unknowns from
2(c,—1) to (c,—1). In the case of type three, after
finding the eigenvectors that belong to {~&'(k;R) } we
can obtain the ones that belong to {~&' (k;R) } by
applying T(k; Ap) to the former.

In principle, the above results describe the eGects of
time-reversal symmetry on the eigenvalues and eigen-
vectors of the dynamical matrix. However, the criteria
for establishing the type of representation one is dealing
with are cumbersome in that they require the irreducible
multiplier representation {~&'&(k;R) } to be constructed
by use of Eq. (5.12); then its relation to {~&'&(k;R) }
must be determined from an orthogonality theorem.
If they turn out to be equivalent, then the matrix g
which connects them must be found Le.g., Eq. (5.25) j
and its "structure" determined by use of Eqs. (533).
On the other hand, it is well known that there is a
criterion due to Frobenius and Schur (see for example
Refs. 21, 22, or 23) which allows ordinary irreducible
representations to be classi6ed in a manner which is
very similar to the types used here and involves only
the characters of the ordinary irreducible represen-
tations. We shall now derive the analogous criterion
for irreducible multiplier representations. This criterion
will also clarify the close connection between Herring's"
results and ours.

To derive the criterion we note the fundamental
difference between equivalent and inequivalent types
of irreducible multiplier representations in terms of the
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orthogonality theorem (4.46) and Eq. (5.20):
&'&(k R)~r„„&'&(k R)

= (h/f. ) P~

=0
first or second type, (5.56a)

third type. (5.56b)

=0) third type, (5.57b)

where the unitary property of g has been used to
simplify the right-hand side of Eq. (5.57a) . A compari-
son of Eqs. (533) and (5.57) suggests how the first
and second types of irreducible multiplier represen-
tations may be distinguished; namely, multiply both
sides of Eqs. (5.57) by P(k; Ao, Ao) 1'yp&'~ (k; Ao'), sum
over p, and use Eqs. (5.33) to simplify the right-hand
side. After a little algebra we arrive at the interesting
result:

Q $(k; AOR, AOR) rg, &'& (k AORAOR)
R

=+ (k/f. )&),i,
= —(h/f, )Bg, ,

first type, (5.58a)

second type, (5.58b)

=0, third type, (5.58c)

where the left-hand side has been simplified by use of
the identity

g(k; Ao, Ao 'R) p(k; Ao 'R, Ap) p(k; Ao, Ao)

Xg(k; Ao' Ao 'RAOR)p(k Ao 'RAO, R)

=@(k ~ APt) (559)
which may be demonstrated by repeated application
of Eqs. (5.3). Although Eqs. (5.58) may be used to
identify the type of irreducible multiplier representation
one is dealing with, it is customary to express the
criterion in terms of the characters x&'i of Eq. (4.35) by
setting X'=X and summing over ) . Thus

p(k AOR, AOR)x'&(k AORAOR)

=0

first type, (5.60a)

second type, (5.60b)

third type. (5.60c)

Using the delnition of ~&'& in Eq. (5.12a), which is
valid for all three types, the left-hand side of Eq. (5.56)
may be written as

g y(k' A0 Ao 'R) y(k A 'Rp AQ) r "(kp Ao 'RAO)
R

y~„„.& &(k; R).
Substituting this form in Eqs. (5.56) and summing
over v (after setting p,

' equal to v) yields

Q $(k; Ao, AD 'R)

&&y(k Ao 'R, Ao)y(k; Ao 'RAO, R)r &'i(k Ao 'RAOR)

= (h/f, ) L(gP) i]„„, first or second type, (5.57a)

first type, (5.61a)

second type, (5.61b)

(5.61c)=0, third type.

If either k lies entirely within the Brillouin zone or the
space group Gz; i, of the crystal is symmorphic (so that
v(B) is zero) then the multiplier p(k; R;, R;) is unity.
In the special case the criterion takes the form that
the wave vector is equal to ~b, so that Eqs. (3.49) to
(3.53) apply. Equations (5.12) are replaced by

~&''(n.b R) =exp ti2~b v(Z)]~&'&(~b R)*, (5.62)

and from Eq. (3.53) the multiplier P(k; A, A) must be
replaced by exp [—i2xb. v(R)]p(wb;R, R). Thus in
this special case the criterion (5.61) becomes

g exp I
—erg)+R 'b] v(R)]x&'(mb; R')

=0

first type, (5.63a)

second type, (5.63b)

third type. (5.63c)

The special case of the wave vector at the center of
the Brillouin zone (i.e., k =0) is covered by Eqs. (5.63)
with ~b set equal to 0.

In comparing these criteria with Herring's work, '2 it
should be noted that we have followed Wigner's' more
recent classification, so that the second and third types
of the present work correspond to Herring's cases "c"
and "b", respectively. With this in mind, the equiv-
alence of the two methods is clear. The above criteria
provide a complete solution to the problem of deter-
mining the additional degeneracies due to time-reversal
symmetry in terms of the characters Ix&'&(k; R) ), the
rotational element Ao, and the multiplier P(k; AOR, AOR)
without recourse to either the representation I

~&'& (k;R) I
or the matrix g. For determining the eigenvectors which
belong to the first and second type of irreducible
multiplier representations it is helpful to have the
matrix g available. Fortunately, the matrix g is often
known from the type of representation alone. We con-
clude this section by examining the matrix g in these
special cases.

Consider the situation where @(k;Ao, Ao) ~ ' (k; Ao')
is equal to the unit matrix. This occurs quite often
since in many crystals there exists an element Ap such
that T(k; Ao)T(k; Ao) is equal to T(k; e). Important
examples are: (1) The point group of the crystal

Also, instead of summing over the rotational elements
R of the point group G0(k) as in Eqs. (5.58) and (5.60),
one can express the criterion as a sum over the ro-
tational elements A of the coset S Go(k) (or AOGO(k) )
since AOR corresponds to a unique element A. For
example„Eq. (5.60) becomes

Q y(k; A, A) y&'& (k A')
A
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contains the inversion, i.e., Ap=i' (2) The dynamical
matrix is real, so that T(k; Ap) may be taken to be Kp.

First type. According to Eq. (5.33a), gP=1; and
since g is unitary, it must be symmetric. Therefore it
can be put into diagonal form by the bilinear trans-
formation (5.37). In particular, with U=g'/2 where
g'/2 is a symmetric unitary matrix and gl/2P'= g, we
have

gz —
y
—1/2y yl/2P —yl/2yl/2a (5.64)

In Sec. 4 we commented that in certain cases it was
possible for e(ksa)1) to be an eigenvector of the anti-
unitary matrix operator T(k; Ap). The necessary and
sufhcient condition for this to be possible is now clear:
The irreducible multiplier representation must be of
the first type and z)/) (k; Ap Ap) ~~ ) (k Ap ) = l.

I et us now assume that the irreducible multiplier
representation has been transformed so that g is di-

agonal. Then, from Eq. (5.20), the representation must
satisfy

zt)*(k; Ao, Ao 'R) pI)*(k; Ao' 'R, Ap) ~&z& (k; Ap 'RAp) a

x(K=1) =0, (6.28)

x(K=2) = (r/2) (1, 1, 1). (6.2b)

Following Kovalev, " in this section the factor 2m is
included in the definition of the reciprocal lattice vec-
tors:

bi= (2r/r) ( —1, 1, 1), b2 ——(pr/r) (1, —1, 1),

bp=(~ /r) (1, 1~ —1) (6.3)

To save writing where possible 6-vectors and the 6&(6
transformation matrices will be written in the abbrevi-
ated forms

vectors of the crystal can be chosen to be

x(l) = llal+lpa2+lpap, (6.1a)

al r——(0, 1, 1), a2 ——r(1, 0, 1), ap ——r(1, 1, 0), (6.1b)

where li, Q, lp are three integers which are positive,
negative, or zero and 2r(=/2) is the lattice parameter.
The positions of the two atoms in a primitive unit cell
are given by the two basis vectors

~(zi(k. R) (5 65)

This is the generalization of Eq. (4.52) to include all
elements R of Gp(k).

Second type Accor. ding to Eq. (5.33b), gg = —1;
and since g is unitary, it must be anti-symmetric.
Therefore the dimension f, of the representation must
be even. In this case it is always possible to find a
unitary matrix U such that Lsee Eq. (5.37))

where

(e(1))
E~(2))'

z/~))
4(K) = 4"(K)

4'(~) /

(6 4)

0)
(5.66) (6.5a)

where g' has been written in a partitioned form, with 1'
being a (f,/2) X(f,/2) unit matrix. g' can be substi-
tuted into Eq. (5.53b) to obtain the effect of T(k; Ao)
on the eigenvectors.

Finally, if zt)(k; Ap, Ap) s&') (k; Ap') is equal to minus
the unit matrix, then clearly (5.64) and (5.66) are
interchanged. For example, this could come about if
Aop = a and @(k;Ap, Ap) = —1. It should be emphasized
that e (ks/2X) cannot be made an eigenvector of T(k; Ao)
for either the Grst or second types in this situation.

6. EXAMPLES

To illustrate the applications of the results to specific
lattice dynamical problems, we consider the normal
modes propagating in the L110) and [001) directions
(including the points on the Brillouin zone boundary)
and the selection rules for two phonon processes in a
crystal of the diamond structure. The notation and
classification of Kovalev'2 is used (except that the ro-
tational elements will be designated by R instead of h);
where possible, it is related to Herring's" notation.

The space group of diamond is Oy,~. The translation

where, according to Eq. (3.17b),

A(K, K') =b(K, Fo(K'; Il.)) exp Iik Lx(K) —R x(K ))j

(6.5b)

k, = (22r/r) (tz, tz, 0), 0(tz(/z. (6.6)

and R is a 3&(3 matrix. The particular rotational ele-
ments R, with their corresponding v(R) and their
eGects on the sublattices, required for the present work
are given in the appendix. It is worth noting that the
transformation matrix T(k; R) in Eq. (6.5a) is diagonal
or off-diagonal in the indices (K, K ). Since the point
group for diamond structure contains the inversion
operation, we may invoke time-reversal symmetry for
all wave vectors. If Ao is taken to be the inversion,
then AoRAoR in Eqs. (5.60) reduces to R'. Also, from
results of Sec. 5, eigenvectors which belong to the irst
type of irreducible multiplier representations may be
chosen to be eigenvectors of T(k; Ap) .

The wave vector k for propagation in the L110)
direction in a fee crystal is designated by kz in
Kovalev's" classification (Z in Herring's"):
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TABLE I. Irreducible multiplier representations'
of the group G0(Q).

Rg Rgg R28 Rav Ref. 11

~(x}

&0)
~(3)

~(4)

1
1

—1
—1

1
—1

—1

1
—1

1

Zg

Z2

Z4

ZI

~ See Ref. 12.

x(lr; R~) =o, x(lr4; Rsz) =2. (6.8)

The irreducible multiplier representations" of the
group Gs(lr4) are all one-dimensional and are given in
Table I. Clearly, the elements of the representation
matrices in this case are also the characters {x&'I (lr4; R) I.
These characters together with those given by Eq. (6.8)
when used in Eq. (4.36) yield the following results for
the number of times, c„ that the sth irreducible repre-
sentation of Gs(lr4) is contained in the representation
{T(R„R)I:

C1=2, C2, = 1) C8= 1j c4=2. (6.9)

The point group of the wave vector lr4, Gs(lr4) is the
group C2„. The four rotational elements are R1, R16,
R~s, and R87. The point p= —,

' on the Brillouin zone
boundary does not introduce any additional symmetry
elements. Using the notation (6.5), the matrices
{T(lr4;R) I are found from Eqs. (3.17b), (6.2), and
(6.6) to be

(RI 0)
TO;R.) =I

(0 RI)

( 0 p4*RM)

!T(lr4; RIs) =l
pR„0

P4*R~'r
T(ir4;Rzs) =l !

(P4R~ 0 )
I'R„o )

T(lr4; Rsz) =! (6.7)
(0I R„)'

where p4=exp Lzjr4 x(2))=exp (z2zrp). From these ma-
trices we obtain the characters x(lr4; R):

x(lr4; RI) =6, x(&'RIs) =0

T(lr4; RI) g=
A(2)

A(2)

,4"(2)J

P4 4's(2)

p4*4'(2)

T(ir4;RM) It=

T(lr4; Rzs) g=

—.*a.(»

p44"(1)

p44"(1)

,—p44*(1),

p4 4'*(2)

P4'4's(2)

—P4*4'.(2)

P44'*(1)

P44s(1)

.—p~. (1) i

'4'(1)~

zation vectors of the modes which transform according
to the irreducible representations ~&" and ~'4} it is neces-
sary to diagonalize two 2X2 matrices (cI——c4=2). This
is a considerably simpler problem than having to
diagonalize the 6&&6 matrix D(k) with which we

originally started. This result seems to have been
pointed out 6rst by Vanagawa. ' If only the frequencies
are required, the results derived in Eqs. (4.59)—(4.62)
may be used.

The effects of the matrices {T(lr4;R) ) on an arbi-
trary six-dimensional vector g are found to be

'A'(1))

Because all the irreducible representations of Gs(ir4)
are one-dimensional, there is no degeneracy of the
normal modes for the wave vector lr4, which is required
by spatial symmetry. The criterion (5.60) is trivial to
apply in this case, since R'=R1=a for all R and
@(lr;A, A) =1.Therefore all irreducible multiplier repre-
sentations of Gs(lr4) are the irst type; thus time-
reversal symmetry does not produce any degeneracy
either. In order to obtain the frequencies and the polari-

T(k„R„)g=

i4'*(2),
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E(k4; 1) =
bj

p4C]

E(k4; 2) =

Substitution of these results (together with Table I)
into Eqs. (4.37) and (4.38) leads to the following
results for the vectors E(k; s) . (Because the irreducible
representationS ~&'), ~ ~ ~ ~(4) are all one-dimensional, we
can suppress the index )I,):

Cy

Longitudinal-Acoustic (or Optic) or Transverse-
Acoustic (or Optic), depending on the orientation of
the polarization vectors relative to the wave vector k
and the frequency of the mode as k—+0. According to
this classification it is clear from Eq. (6.10) that
E(k4; 1) is LA+TO, E(k4; 2) is TO, E(k4; 3) is TA,
and E(k4; 4) is LO+TA.

For waves propagating in the L001$ direction the
wave vector on the Brillouin zone boundary must be
treated separately from the interior points. In
Kovalev's" classification the interior wave vector is
designated by

kp = (2zr/r) (0, 0, ts), 0&p, &&, (6.11)
p4Gy

,—p4bg& 0

a4

(6 in Herring's" notation). Tile point group of the
wave vector kp, G, (kp) is C4„with eight rotational
elements: Rz, R4, R&4, R», R26, R2&, R37, R40. From Eqs.
(3.17b), (5.2), and (6.11) the matrices (T(kp; R) I are
found to be

E(k4; 3) =
p4~3

E(k4, 4) =
—p484

(6.10)

—p484

I p,b J

where the quantities a„and b„are complex. According
to Eq. (6.9), the representations ~&'& and ~"& occur
once. Thus the eigenvectors e(k421) and e(k431), after
normalization, can be taken to be E (k4; 2) and E(k; 3),
respectively. On the other hand, the representations
~(') and ~&) each occur twice. Thus in the form of
E (k s) in (6.10) two real quantities for each eigenvalue
must be determined from the eigenvector equation to
specify the corresponding eigenvectors e(k4sa). (The
normalization and the arbitrariness of the phase has
been used to reduce the number of undetermined real
quantities from 4 to 2.) The problem can be simplified
further. Because the eigenvectors belong to the first
type of irreducible multiplier representation, we may
invoke Eq. (4.50c) with S =Ap ——i, Lsee Eq. (4.12)j,
which in the present case takes the form

e *(1!k4stt) =p *e (2!k4sa) .

pp*Rz,)
!

o )
p,*R.~)

!

o )
p,*R )

o )
,.*R„l

!

o )

('R, O)
T(k„R,) =!

(0 Rj
(R4 0 )

T(k, ;R,) =!
(0 R,j
(0

T(k 'RZ4) =l
(p,R,.
)t' 0

T(kp; R„)=I
(p,R„
(0

T(kp, RM) =!
(p,R„

T(kp, Rpz) =!
(ppR2z

fR O)
!T(kp, Rpz) =!

(O R„)
(R4p 0

T(kp; R4p) =I !

&o R)' (6.12)

This condition requires the elements a&, as, and b4 to
be real, while b&, +, and c4 must be pure imaginary.
Using these results, the determination of the eigen-
vectors e(k411), e(k412) and e(k441), e(k442) reduces
to the trivial problem of solving a single linear equation
for the ratios (ibi/a, ) and (b4/ia4), respectively. This
linear equation is obtained by multiplying the vectors
E(k4; 1) and E(k4; 4), respectively, by P)(k4) —to'Is,)
and equating the result to zero. It is worth remarking
that D(k4) is of the form (3.32) in this case.

The lattice vibration modes are often labeled as

where pp=exp (ikp. x(2) )=exp (ittzr). From these ma-
trices we obtain the characters x(kp, R):

y(kp, Ri) =6,

x(kp,.Ri4) =0,

x(kp, RM) =0,

y(kp, Rpz) =2,

x(k, ;R4) = —2,

x(kp, Rip) =0,

y(kp, Rpz) =0,

X(kp, R4p) =2. (6.13)

There are 6ve irreducible multiplier representations'2 of
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the group Go(ke), (four one-dimensional and one two-
dimensional) and they are given in Table II. The
representation matrices for the two-dimensional case
are expressed in terms of the 2)&2 Pauli spin matrices:

(1 0)

Eo 1)
(0

o)
which satisfy the relations

(0

(1 0)

(1 0)
(6.14a)'

ko -1)'

&~&y = —~y&x =i&z) etc.

(6.14b)

(6.14c)

The characters for the two-dimensional representation
are also listed. Using Table II and the characters (6.13)
in Eq. (4.36) yields the following results for the number
of ti~es, c„ that the sth irreducible representation of

Go(k6) is contained in the representation IT(k6, R) I:
c2=0, @3=0, ct; ——2. (6.15)

r 0 0

Since ~&@ is two-dimensional, two lattice vibration
normal modes of the wave vector k6 are required to be
twofold degenerate by spatial symmetry. Since R&42=

R~ =R4 and R'=R~ for the remainder of the elements
of Go(k6), it follows from Eqs. (5.60) and Table II
that the irreducible multiplier representations are of the
first type; thus time-reversal symmetry does not require

any additional degeneracy.
Following the procedure leading to Eq. (6.10), we

find the following vectors E(ks, sX):

t'O R )
=ps I f

Ko.
(R» 0 )

(6.18)

It is straightforward to show that T(ks; S ) commutes
with all the matrices T(k6;R) given in Eq. (6.12).
Therefore, according to Eq. (4.52), the irreducible
multiplier representation ~~5& can be put into real form

by a similarity transformation with a unitary matrix.
From an examination of g&'~ in Table II and the Pauli
spin matrices in Eq. (6.14a) it is clear that a satisfactory
transformation should take 0, into &0„, and d„ into
~g,. Recalling that the Pauli spin matrices transform
like the components of a 3-vector under rotations, '6

a rotation of 90' about the x axis gives the desired

result; that is, 6,—+d„d„~d„and 0,—+—d„. The new
z& & representation is designated by ~'"& in Table II,
and the corresponding vectors E'(k6, 5) ) are

Gg
' —pa'551

In the present case Eqs. (4.12) and (4.50c) take the
form

e *(1
[ ksaX) =p6*e (2

~

ksuX). (6.17)

Therefore u& is real and a4 is pure imaginary. Also,

E(k6, 11) and E(k6; 41) are LA and LO, respectively.
If one attempts to simplify the vectors E(k6, 51) and

E(ks; 52) by invoking Eq. (6.17), one arrives at the
absurd results that a5=b5=0. The source of the diK-
culty is that we have not taken the precaution to
insure that the irreducible representation ~&'& conforms
with Eq. (4.52). Taking S =R» ——i, the anti-unitary

symmetry operator T(k&, 8 ), according to Eqs. (2.37)
and (3.40), is

(O R„)
!T(k6,. S ) =psKO

l

(R» O)

E(k6, 11) = E(k6, 41) =
E'(ke, 51) = E'(ka 52) =

—p6a'
(6.19)

E
—p664,

p6C75

E(kg, 51) =
ip6b5

—Zp685

E(kg, 52) =

—sb5

—p6Cg

, oJ

(6.16)

Clearly E'(k6, 5X) is TA+TO, each being twofold de-

generate. Applying Eq. (6.17), we have as*——pal*6, or

b& ——p6a5*. Thus the two atoms vibrate with equal ampli-

tudes, their relative phase being the only unknown

quantity to be determined from the eigenvector equa-
tion. If we write a5 in the form

~
a~

~
exp )in(ke) j, the

phase n(k6) is determined by multiplying E'(ke, 51) by
g3(ke) —co'I&~g and equating the result to zero. In the
limit @~0, n(k6) —&0, and n.j2, corresponding to the
TA and TO modes, respectively.



A. A. MARAnvniN ANn S. H. Voslo Korraat V47rratgpgvs of a Crystal

TAigLE II. Irreducible multiplier representations' of the group Gg(irg).

RI R4 RI4 Rgs R.g Rpg Rsv R40 Ref. 11b

g(0
~(&)

~(3)

g(4)

~(fg)

X(fi)

gI(5)

1
1

Zdz

0
—id@

1
1

—1
—1

&~z

0
lily

1

l$*

0
dg

1

—1

dy

0

1
—1
—1

1

bI
b I

b,g
g 1

ft See Ref. 12. Gk/Zk, which contains twice as many elements; however, the connection
It should be noted that Herring (Ref. 11) deals with the factor group can still be made.

The wave vector on the Brillouin zone boundary for
the t 001j direction in Kovalev's'g classification is desig-
nated by

kip-—(vr/r) (0, 0, 1), (6.20)

(X in Herring's" notation). The point group of the
wave vector kio, Go(kio) is D4s with sixteen rotational
elements: R1, R2, R3, R4, R~e, R14, R~, RM, R», R26 R27,

R28, R37, R38, R39, R40. Here we see an advantage of the
multiplier representation approach in that there is no
need to extend the point group as in the Gg/Tq method. "
The matrices tT(kip,.R) I are found from Eqs. (3.17b),
(6.2), and (6.20) to be

(Ri 0
!T(kio,' Ri) =I

(o R)
(Rg 0

T(kio,.Rg) =I
( o —R,)
(R O

T(kM,' Rs) =I !

(O —R,)
(R4 0

T(kio, R4) =I
(0 R.)'
( O iRig)

T(kio, Ris) =I
(iRig 0'

( o -'R,.I
T(kip; Ri4) =I iR„0 )

( O —iRis)
T(kio,' Rig) =I !(iR„o )

( o iRM)
T(kio, Ris) =I !(iR„0 )

( O iRgs)
T(kio; Rgs) =I !

I R„o)'

( o
T(kist Rgs) =I

('R„
( o

T(km, Rgv) =I
&'R„

( o
T(kip,.Rgs) =I

iRgs

(R„
T(km, Rs, ) =I

(Rss
T(kio,' Rss) =

I

(Rsg
T(kio,.Rsg) =I

I 0

(R4o
T(k,o, R.4o) =

I

—iRgs)
!

o j
—iRgv)

!

o )
iRgs)

!

o )

!

Rsv)

—R,.)
o

—R,g)

0)
!

R.,)
(6.21)

The characters obtained from these matrices are listed
in the last row of Table III.

There are four two-dimensional irreducible multiplier
representations" of the group Gp(kip). The represen
tation matrices are given in Table III in terms of the
Pauli spin matrices (6.14) along with the characters
Using the characters of the IT(kip, R) f matrices and
the characters of the irreducible representations given
in Table III in Eq. (4.36), we find the number of times

c„ that sth irreducible multiplier representation of
Go(kip) is contained in the representation [T(kip, R) I:

cy= 1) C3= 1, c4=0. (6.22)

Since kip ——
g (bi+bg+bs), the dynamical matrix D (kip)

is real, and the consequences of time-reversal symmetry
are described by Eqs. (3.49)-(3.53). The criterion for
determining the type of representation is given in Kq.
(5.63), from which it is easy to see that only the first
type occurs for Gp(kip). /Note the difference in defi-
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V
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V

sl

A

0

O
~ A

tD

V
~ &

8

V
'0

MMM

'0 O '0 '0 O Q Q ~ eu co

C4 I I I I

R

I I

'033 '0 '0 33 33O ~ ~ O ~ ~ O O
I I I I I I

'o 'o
I

8
C3 0g ~ '~ O

I

I I

~~ O
I

eo oo

I

O

'0 O
I I

eo ou.

gp

eo su

C4

O'0 '0

O'0

O-'0 '0

O

I I I

I I I

'0 '0
'c4 'H O

'0
'c4 O

'0
~o 'a O

433 8'0 '0 '0O

O O

'0 O O

O O

O O'0

'0 O O

'0 O O

~~ O O

'0 '0 O '0 '0 O '0 "0 O ' '0 O O
I I

C3 ~ ~ OP
C4 ~ C3 po ~ CC

K

g '0 '0 O '0 '0 O '0 '0 O '0 '0 O O
I

0

j.
e(kI,111)=-

42

0
e (k33112) =—

0

0
(6.23a)

0

and
oj

(ol

f o,

0

1 0
e(kI3211) =— 0

e(kIp212) =— (6.23b)

0

0

l.o, ,'oj

Clearly the eigenvectors in Eqs. (6.23a) and (6.23b)
each represent a two-fold degenerate transverse mode.
However, it is not possible to decide which is acoustical
or optical on the basis of symmetry alone.

The situation for ~~3' in Table III corresponds to the
discussion below Eq. (4.52). Namely, Kovalev's irre-
ducible representation v&@ is real; however, it is two-
dimensional (f,=2), and a number of the irreducible
representation matrices which correspond to elements
which do not commute with Ko are diagonal, while the
matrices representing T(kIp, Rg), T(kIp, Rg) T(kIp' R33),
and T(kIp, R33) which do commute with Kp are non-
diagonal. Since the matrices T(kIp, R) for R=RI3, RI4,
Rg5, RM, R25, R26, R27, and R28 are imaginary, they must

nition of reciprocal lattice vectors in Eqs. (5.63) and
(6.3).] Therefore each lattice vibration normal mode
is twofold degenerate for the wave vector km and the
eigenvectors may be chosen to be real, (i.e., eigen-
vectors of Kp). From Eq. (6.21) we see that the
matrices T(kIp, R) for RI, Rg, R3 R4 R37 R33 Rgg,
and R40 commute with Ko. Therefore, according to
Eq. (4.52), the corresponding irreducible representation
matrices ~(k; R) must be real to insure that the eigen-
vectors are compatible with Eq. (4.12b). From Table
III we see that the Kovalev" form of ~&'& and c&'& do
not satisfy Eq. (4.52) for R37, R33, Rgg, and R43. It is
clear that a similarity transformation corresponding
to a rotation of 90' about the z axis which transforms
d,—+6„, d„—+—d„and d,~d, produces an irreducible
representation of the required form. These represen-
tations are designated by ~'&o and ~'&'&. Using ~'~'& and
~'"& in Eqs. (4.37) and (4.38), we obtain the eigen-
vectors:

0I
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0

be represented by imaginary s(k;R) when the basis
vectors are real. An examination of ~(3& in Table III
shows that we must transform d„d„, d, into +0„
~d, &d„, respectively, to obtain a representation of
the desired form. This is accomplished by a unitary
transformation corresponding to a 240' rotation about
the (1, 1, 1) axis. The new equivalent irreducible repre-
sentation is designated by ~'&3) in Table III, and the

12
corresponding eigenvectors are

21
&0l t'0l'

4.1
0

TABLE IV. The form of the matrices M„(&sas'a').

s'a'

41

a1.

0
a4

0

0

e(k)0311) =
0

0

e(kg0312) =
0

,oJ

(6.24)
12

21

31

42

—a2

—a3

0

ae

0

which clearly describe longitudinal vibration modes.
That is, the I A and LO modes for propagation in the
$0015 direction become degenerate at the zone boundary
in a crystal of the diamond structure.

Another type of application is the determination of
selection rules. Ke illustrate this application with an
example. The p-Cartesian component of the dipole
moment operator for a crystal can be expanded in 42

owers of the nuclear dis lacements accordin to"

b1

bi

0
0
0
0

bo

b4

0

0
0
0

—bg,

0
0

0
0
bg

0
0
0

(6.26a)

p p g

M„=M„to~+P M„, (l~)N (ltd)+-', g P M„, p(ltd; lV)N (lit)Np(lY)+. . (6.25)
lpga laa l~a~P

It is the second-order terms comprising M„(2& with which we are particularly concerned here. If we make the
transformation to phonon 6eld operators according to

N, (ln) = (fi/2EM„)'t' P(e~(tt
~
kg)/(co (k) )'"5 exp Lt'k x(l)5A»,

where

then we may write M„"& in the form
A g,

——Ag+

M„&»=-', Q M„(kjq'p)A», +A»,

(6.26b)

(6.27)

with
M (kj&jp) =-2fi, (te;,(k) co;,(k) )—'t' g g P M„, p(lac; lY)

aP

XLe~*(tt ( kjg)/(M„)'t25pep(n' [ kj2) /(M„) '"5 exp L
—t'k (x(l) —x(l') )5, (6.28)

where the invariance of M„, p(ltt; l'tt') under translations has been used 26 that is,

M„„p(k; l'tt') =M„, p(l —l'tt; Oa'),

=M„, p(Otal; l' l~'). — (6.29&

Regarding the coefIicient M„(kjtj2) as a 3rX3r matrix in the branch indices j& and jm, we ask: Which are the nonzero

elements of this matrix when k is a point of symmetry in the erst Brillouin zone of the crystal? The interest in
this question stems from the fact that the coeflicient M„(kjxj2) enters multiplicatively into the expression for the

strength of the infrared lattice vibration absorption~ by two phonon processes in which the incident photon
interacts with two phonons of equal and opposite wave vectors k and —k which belong to the branches j~ and j~

"Reference 1a, p. 219.
"Reference 1a, p. 363 ff.
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of a&s(k) . Knowing the nonzero elements of M„(kjij&), we know between which branches of the phonon spectrum
at k phonon transitions can occur.

From Eq. (6.28) we see first that M„(kjijr) has the following two general properties:

M„( kjg—'s) =M„*(kjrjs),

M (—kjrjs) =M, (kjsjl),

(6.30)

(6.31)
so that it is a Hermitian matrix.

To determine the restrictions placed on M„(kjijs} by the symmetry and structure of the crystal we require the
result that under a space group operation, Eq. (2.4), the crystal dipole moment transforms as a polar vector
with the result that the coeKcients {M„,p(k; lY) } transform according to the law' s

M„,.p(LK; L'K') =Q S„„S.pSp, M„,~(l xlV) (632)

If the point group of the space group G contains the inversion, and if we denote by (lr4) the lattice site into which
(lx) is taken by a space group operation containing the inversion, then we can rewrite Eq. (6.28) as

M„(kjrjs) = ——',lrt(4o (k)oi (k) .)—' ' p p p M„p(lrr, ; l'rr') Le (x I kj&)/(M;) "s1
KKr

Xexp {—zlzz Lx (r4) +x (x) $}Lep*(rr'
I kjs)/(M~ ) '"j exp {4'k

I
x(rr') +x(x') j}

Xexp {zk I x(l)+x(a)+x(x) —x(l') —x(a') —x(x')]}= —M„*(kjijs). (6.33)

It follows from comparing this result with that given by Eq. (6.30) that for crystals which possess a center of
inversion

Consequently, for such crystals
M„(kj&js) = —M„(kjs'74) .

M„(kjj) =0, (6.34')

a well-known result. '8

If we make use of Eqs. (6.32), (3.3), and (3.7), we can rewrite Eq. (6.28) for an arbitrary crystal as

M„(kgiys) =-', ft(4o;, (Sk)oi (Sk))—'~' P S g P PIM„, (lx; l'x')/(M M )"'g exp L
—iSk (x(l) —x(l'))g

v l~ KKr ptr

X {P 1,.*(xxi
I k; {SI

v(S)+x(nz) })e.*(xi
I kji) }{Q I'.p(x'xs

I k; {SI v(S)+x(m) })ep(xs I kjs) }. (6.35)
KI4x «g

If S is not a rotation in the group of the wave vector and is not the inversion, then, according to Eq. (4.9a), we
have the transformation law

M„(kjijs) =Q S„„M„(Skjijs). (6.36)

Let us now restrict the symmetry operations {S I v(S) +x(m) } to be those belonging to the space group of the
wave vector k. In this case, we can rewrite Eq. (6.35) in the form

M„(kgigs) =-', $(M;, (k)40;, (k) )—'i' Q g„„QQ PLM„(lx; 1' )/x(M„M„.)"g, xep L
—zk (x(l) —x(l') )]

V l~ Kd pty

X{2T.-*(«r
I
»'R) p-*(xi

I kji) }{27'-p(x"s
I
»'R) pp(xs I kjs) }. (6.3»

K Itx

To proceed beyond this point we introduce the more general notation of the preceding section and obtain

M„(ksa)As'u'X') =g R„„Pr&„~"(k; R) *ri„i, '"(k; R)M„(ksu)~is'a'4) . (6.38)
V

From this result one can determine the form of the coefficient M„(ksahs'a'7') regarded as a BrX3r matrix in the
indices (saX) and (s'a'X') .

For example, if k is a vector lying along the
I 110$ direction in the first Brillouin zone of a crystal possessing

the diamond structure, Eq. (6.38) together with the results obtained in the first part of this section enables us to
establish that the matrices M„(k4sirs'u') (ii =@, y, s) have the forms summarized in Table IV. In obtaining these
results, we have made use of the fact that crystals of the diamond structure possess a center of inversion, so that
Eq. (6.34) applies.

The result expressed by Eq. (6.38) contains more information than merely between which branches of the
phonon spectrum at the point k in the first Brillouin zone two-phonon absorption can occur. This is equivalent

"L. E. Gurevich and I. P. Ipatova, Proceedings of the International Conference on Semiconductor Physics, Exeter (1962); R.
Loudon, Phys. Rev. 137, A1784 (1965); and M. Lax, iME. 138, A793 (1965).
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to knowing which are the nonzero elements of the tensor M„(kstt) s'a'X'). From Eq. (6.38) the complete form
of this tensor can be obtained, including any relations among its components.
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APPENDIX

This appendix contains the rotational elements R in matrix form, and the v(R) for a crystal of the diamond
structure vrhich enter the particular applications discussed in Sec. 6. The corresponding symbols used by Herring"
are given. For the choice of origin (6.2) it is straightforward to show that for all cases where v(R) =0 the sub-
lattices go into themselves under a crystal symmetry operation, while for v(R) &0 the sublattices are interchanged
(«= 1~2, «=2—+1) . Therefore, we separate the rotational elements R accordingly.

v(R) =0:

R3—52„——

(o
R3z —y~—

(0
R39——~4, '= 1

0 1 0

o o —i)

0 0

o )
0 0

(1O 0)
Ry=e= 0 1 0

(0 0 1)

(
—1 o 0)

o 0)
0

~ -)
o 0)

0)
0 0

~ )

R4 ——62, —— 0

o

R38 ——4z = —1

( o

R4p ——y~ — —1

R2=62, =' 0 —1

v(&) =x(2) = ( f'2) (1, 1, 1):

( o

R&3 ——82~ —— —1

( o

Res= &4

(—1

0)
0 0

0 0

~ )
0 0.)

R25 ——i= 0 —1 0

0 0 —1)
(1 0 0)

Re= y„= 0 —1 0

(0 o 1)

(0 -i 0)
Rq4=64, —— 1 0 0

(0 o 1)
(o i 0)

RM= S2~= 1 0 0

10 0 —1)
(—100)

R&6= y.= 0 1 0

0 0 1)
(i o o)

Res= y.= 0 1 0

.(0 0 —1)


