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PREFACE

l )NTIL quite recentjy the theory of "chemical constants" —that part of
statistical mechanics which deals with the vapor pressures of crystals

and liquids and which yields theoretical results easily comparable with the re-
sults of experiments —was none too satisfactory. For substances yielding
monatomic: vapors the agreement between the calculated constants in the va-
por pressure equations and the constants actually found by experiment upon
the crystalline and liquid substances was in general close; and that part of the
theory may be said to have been satisfactory. But when one came to study
the mathematical treatments then existing for substances whose vapors were
dia/omic, one found that all sorts of supplementary assumptions and special
considerations, more or less plausible, had been made in order to account for
the observed constants.

So far at least as diatomic substances are concerned these difficulties
seem now to have been overcome. We believe that it is now possible to pre-
sent the theory of the constants in the vapor pressure equations of such sub-
stances in a form which is nearly if not yet quite logically complete and free
from ad hoc assumptions. In this article therefore we shall indicate how such
a theory is to be developed from the comparatively simple yet profound prin-
ciples which are believed to form the basis of modern statistical mechanics.

In extending the theory from monatomic to diatomic substances we at
once encounter explicitly additional comphcations due to (1) nuclear spina,
(2) non-combining sets of ortho- and para- states, and (3) mixtures of iso-
topes. Complications (1) and (3) are really present in a concealed form even
for monatomic substances, but for such they are universally ignored and
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rightly so, for they are without effect on any results. For diatomic substances
all these complications must be explicitly included from the outset. It is found,
of course, that in general they do not affect the results even here except in
certain outstanding cases, where, however, they are essential to the satisfac-
tory clearing up of the whole subject.

In order that this article may be of an introductory nature and at the
same time sufficiently complete in itself we shall include in it a short account
of the theory of the "vapor pressure constants" of monatomic substances,
even though this simpler part of the theory has been adequately described
elsewhere. But this procedure will also have the advantage of allowing us to
introduce first in their simplest form those general methods of enumerating
states or wave functions which are almost essential in the more complicated
discussions of the later sections of this article and which are in fact a most
valuable tool of statistical mechanics in general. We shall include in this ar-
ticle therefore a short modern version of the methods of statistical mechanics
specially designed with a view to their application to the vapor pressure
problem.

Closely associated with "vapor pressure constants" are questions con-
cerned with the entropies of crystals at extremely low temperatures, equa-
tions of dissociative equilibria, and the accuracy of Nernst's Heat Theorem.
We shall naturally proceed therefore from our discussion of "vapor pressure
constants" to discussion of these allied questions. They will occupy us in the
closing sections of this article. Since we shall be forced to conclude that
Nernst's Heat Theorem is not universally true or at least not when applied
straightforwardly to the data of the practical physical chemist, we have felt
it necessary to discard altogether the name "chemical constant" for the con-
stant in the vapor pressure equation. This old name for the constant is at
best a misnomer, but justifiable on account of the other uses of this constant
if Nernst's Heat Theorem were universally true. This failing, a change is forced
on us. The constant in question does still appear to be important enough to
have a name, and the name vapor pressure constant already used is obvious
and seems suitable. *
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* To a considerable extent, this article is based both upon the relevant parts of Fowler's
Statistical Mechanics, and upon the extensions of them made by Sterne while obtaining his
doctor's degree at Cambridge University and summarized in an unpublished dissertation by
Sterne in the summer of 1931.The form and content of this article follow to a considerable
extent those of the latter dissertation. Thus Chapters V, VI, VII, VIII, Appendix I, and some
of the material of Appendix II, have been'taken over almost unaltered; while Chapters I, III,
IV and IX contain much that was embodied in the dissertation. The Preface, and considerable
parts of Chapters I, II, III, IV and IX are additions made by Fowler.
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CHAPTER I

INTRODUCTION TO THE STUDY OF THE VAPOR PRESSURES AND ENTROPIES

oF CRYsTALs

)1.1.The vapor pressure e|luation of classical thermodynamics

Consider an assembly containing originally a gram molecule of a con-
densed substance, at an absolute temperature 12, and a pressure p2 which is
its natural vapor pressure. The vapor is supposed to be an ideal gas, and hence
to obey the simple law for an ideal gas p V——RT, where V is the volume of the
vapor and R the gas constant. Allow the condensed phase to evaporate com-
pletely at temperature T2. The heat absorbed by the assembly is A2, the heat
of evaporation at this temperature per gram molecule. The increase in en-
tropy of the assembly is/12/T2. Now allow the vapor to expand isothermally
to a lower pressure p&. The heat absorbed by the assembly is RT& log (P&/P, ),
and the increase in the entropy of the assembly is R log (p2/p&). Lower the
temperature, keeping the pressure constant at pI, until condensation starts;
the process being so carried out that supercooling does not occur. During the
cooling from T2 to the temperature T~ at which condensation starts, the
heat lost by the assembly is fr', C„dT; the loss in entropy is fr'C„dT/T. C„
is the specific heat per gram molecule of the vapor, at constant pressure;
at what pressure does not matter for an ideal gas. Now decrease the volume
until the vapor is entirely condensed, at temperature T&. The loss of heat by
the assembly is A&, and the loss of entropy is /t&/T, . Finally warm the con-
densed phase, without allowing evaporation and at a pressure always equal
to its vapor pressure, to the original temperature T2. This sequence of pres-
sures will just suffice to prevent evaporation. This gives to the condensed
phase an amount of heat fz,'(C„) „~ dT In this inte.gral (C~) „~ is the spe-
cific heat of the condensed phase under these conditions, and the integral
includes all the heats of transition, if any transitions occur in the con-
densed phase between T& and 12. The corresponding increase of entropy is

fz,*(C„)„&dT/T. The cycle is reversible, and if we apply the second law of
thermodynamics we find

A2 Ag P2———+ R log —— [C„—(C„)„,JdT/T = 0.
T2 T] P&

This equation can be reduced to an equality between two expressions, the
first depending upon TI only, and the second upon T2 only; each of these ex-
pressions must therefore be equal to a constant and we find, dropping sub-
scripts,

A r C„(C)„i-
logp = — + dT + z

ET
(1.01)

where i" is some constant.
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If we apply the first law of thermodynamics to the same cycle, we find
that

Tg

Ap —A& = [C„—(C„),.~]dT'.
T 1

If in this equation we let T& =0, we have

(1.05)

Ar = [C„—(C,),.t]dT'+ Ap
0

where Ao is the work of evaporation per gram molecule at the absolute zero.
Combining Eq. (1.01) with the last equation we have

Ao 1
log p = — — [C„—(C„) ..& ]d T'

RT RT

+ dTI + 'll

pr 0 RT'

If we differentiate the second term in the right-hand member and then inte-
grate it again we see that

T dT'
logp = — + [C„—(Cp) „)]dT"+ p"'

RT 3 RT'2

It is convenient to break up the specific heat of the vapor into two parts
(C„)p and (C„)~ of which (Cp) p is a constant part (constant over the tempera-
ture range which may be in question) and (Cp)& a variable part. This can al-
ways be arranged so that the double integral in the equation below converges
when the lower left-hand limit in the integration is made zero. ' The term in

(C„)p integrates and gives [(Cp)p/R] log T besides contributions to i"' We.
are left finally with

Ap (C„)p TdT T

log p = — + log T + [(C„)~—(C„),.(]dT"+'. (l. l)
RT R p

RT'2
p

For reasons mentioned in the Preface, the constant i, formerly known as
the chemical constant, will be called here the vapor pressure constant of the
vapor in question. In deriving this equation we have assumed, beyond the
first and second laws of thermodynamics, merely that the vapor obeys the
ideal gas law p U= RT, and that the vapor pressure is so small that the work
done by the condensed phase in expanding against it in the last stage of the
cycle is trivially small. The last assumption, which it was necessary to make
in deriving Eq. (1.05), is found to be true in all the experiments, actually
performed, relevant to this discussion. As far as existing vapor pressure meas-
urements are concerned we may neglect the utterly trivial differences between
the specific heat of the condensed phase at zero pressure (or at one atmos-

~ The implications of this choice of the lower limit in question are considered in detail in

p.a.
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phere) and at the pressure of its own vapor; we shall do so throughout this
paper. The Eq. (1.1) then, depends only on the laws of ideal gases and upon
classical thermodynamics for its validity. It should hold not only for crystals
but also for liquids. It may be used with values of (C„)„imeasured at any
convenient standard pressure. About the actual values of A.p and i classical
thermodynamics has nothing to say.

)1.2. The experimental determination of i
The Eq. (1.1) has been used in the reduction of observations by many

experimenters. In practice common logarithms are used, and the pressure is
expressed in atmospheres. The constant term in the new and slightly different
equation

Ao (C„)o
r dT'

Iogio p = — —+ log&o T + —
I [(C,) i —(C,)a.i]dT"

RT log10 R p RT" log10 8p

+ — —6.006
log 10

(1.2)

which results may be denoted by i'. The experimenters assume some value
for (C„)o which corresponds to the constant part of the specific heat of the
gas for the range of temperatures used; the value of (C„)o thus depends upon
the temperature range, and different values of the vapor pressure constant
i will result from the use of different values of (C„)o. The pioneer in all this
field was of course Nernst; perhaps the greatest number of accurate measure-
ments are due to Eucken. The reader is referred to his paper' for a description
of the way in which he obtains values of i' from his observations of vapor
pressures at definite temperatures over a certain temperature range; and it
is sufficient to note here that (1) he corrects his o "s for the deviations of his
vapors from the ideal gas laws, and (2) he adjusts not only i but also iso so
as to cause his experimenta1 results to have the best fit with the theoretical
vapor pressure Eq. (1.2), taking account of imperfections in his gases.

$1.3. The theoretical determination of o

The interest of trying to calculate theoretically what the value of i should
be is obvious and has engaged the attention of many workers. Since classical
thermodynamics has no bearing on the value of i, it is a matter at least for
classical statistical mechanics and in fact, in its usual form, requires consid-
erations derived from the quantum theory. The first successful calculations
were those of Sackur~ and Tetrode4 and Stern' who obtained the correct
value of i for a monatomic vapor by arguments which may be regarded as in-
complete versions of those we use today, and their theoretical result was first
compared with experiment by Nernst. ' The method of predicting values of i

~ Eucken, Zeits. f. Physik 29, 1 (1924).
3 Sackur, Ann. d. Physik 40, 67 (1913).

Tetrode, Ann. d. Physik 38, 434; 39, 255 (1912).
' Stern, Phys. Zeits. 14, 629 (1913).
' A general account is given by Nernst in his Grundlggen des ¹uen Warmesctses (1918).
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is to compare an expression for the vapor pressure, which we shall obtain by
statistical mechanics, with the thermodynamical Eq. (1.1). As we shall show
in the next chapter, this comparison furnishes us with theoretical values of
the vapor pressure constants of monatomic vapors which are found to be in

good agreement with experiment in the case of a considerable number of sub-
stances. The arguments of the next chapter are essentially those which appear
in Chapter VII of Fowler's Statistical Mechanics, recast into the simpler and
more satisfactory form provided by quantum mechanics. The earliest form
of these arguments which may claim to be logically complete is due to Ehren-
fest and Trkal. '

A somewhat more complicated theory is necessary for diatomic gases,
and in particular, vapors made up of molecules composed of two atoms of the
same element require to be given, in general, a special treatment. No early,
investigation, not even that of Ehrenfest and Trkal in spite of its formal cor-
rectness, yielded results of much value here; for it is essential to examine the
details and this can only be done in the light thrown by quantum mechanics.
The case of hydrogen vapor was investigated by Fowler, ' taking account of
the existence of the two sorts of hydrogen molecules, first suggested by Den-
nison' to explain the specific heat, namely ortho-hydrogen with odd rota-
tional quantum numbers, and para-hydrogen with even rotational quantum
numbers. These molecules retain their type over long periods at very low
temperatures. By the use of classical statistics for the vapor, it was possible
to show that at very low temperatures hydrogen, as obtained by cooling
hydrogen gas from ordinary temperatures, ought to have very nearly the ex-
perimentally observed vapor pressure constant. Since Dennison's theory of
the rotational specific heat of hydrogen yields correct values at all tempera-
tures, it follows from (1.1) that, at ordinary temperatures also, Fowler's
theory would yield a correct value for the vapor pressure constant. In these
calculations it was assumed that the molecules of hydrogen were able to ro-
tate in the crystal with very nearly the same energy levels as in the gas.

Fowler's analysis for hydrogen, however, cannot be taken over directly
for other diatomic molecules of type X.. For, though symmetry properties
must always be considered in investigating vapor pressures when the mole-
cules of the vapor are made up of two atoms of the same element, it appears
from the recent work of L. Pauling" that whereas in some crystals, as of
hydrogen, the molecules are able to rotate quite freely, in others they cannot;
they "oscillate" instead about orientations of equilibrium. The problem is
thereby altered, and is further complicated in general by the existence of
isotopes of the elements concerned. This semi-classical investigation of the
vapor pressure constant of hydrogen yielded a value for the vapor pressure
constant of hydrogen in good agreement with experiment. The use of the
classical statistics is however theoretically incorrect, Vfe shall show in the

Ehrenfest and Trkal, Proc. Sect. Sci. Amsterdam 23, 162 (1920).
8 Fowler, Proc. Roy. Soc. A118, 52 (1928}.
' Dennison, Proc. Roy. Soc. A115, 483 (1927).

L. Pauling, Phys. Rev. 36, 430 (1930).
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third chapter that by using the correct Einstein-Bose statistics for the vapor
precisely the same value, " to our order of accuracy, will be obtained for the
vapor pressure constant. We prove in short that the classical approximation
can always be used for the vapor without significant error. In the fourth chap-
ter we shall investigate the nature of the quantum states of diatomic mole-
„"ules in crystals;" we shall need these results in subsequent chapters. In the
fifth chapter we shall present in detail an investigation of the vapor pressure
of chlorine, " taking account of the isotopic composition of chlorine. The in-
vestigations of the third, fourth and fifth chapters should, we hope, provide
a clear account of how one ought to consider, in statistical mechanics, as-
semblies containing crystals whose vapors are composed of molecules made
up of two atoms of the same chemical element.

The remaining chapters VI—VIII devoted to vapor pressure constants
deal firstly with the vapor pressure constants of molecules of type XY such
as HCl, which after our discussion of type X2 are comparatively simple. They
then pass on to a study of mixed crystals in general, in which the discussion
is no longer limited to the perfect mixing which we have assumed up to this
point. Though the generalizations of this chapter are not applied in this ar-
ticle it is desirable to examine carefully the important assumption of perfect
mixing, and the generalized formulae of Chapter VI I may prove to be of
some importance in future investigations. Finally in Chapter VIII we review
and tabulate all the available data of reasonable reliability, for diatomic
molecules.

CHAPTER II
QUANTUM STATIsTIcAL MEcHANIcs AND THE VAPOR PRFssURE CQNsTANTs

oF MQNATQMIc VAPQRs

fl2. 1. The basis of quantum statistical mechanics*

There are few differences between quantum statistical mechanics and the
older classical version. We postulate always that the observable properties
of any assembly of systems are to be determined by averaging over all the
accessible states of the assembly. There are two ways in which this average
can be taken. We can take a simple average over all accessible states of given

energy, assigning to each such state an equal weight or a priori probability.
Or we can follow Gibbs in preferring the more general method of averaging
over all accessible states, of no matter what energy E, provided we assign to
each such state an c priori probability e ~', where 0 is a parameter which of
course turns out to be proportional to the absolute temperature. It is a matter
of little importance, primarily a matter of taste, which method is chosen —they
lead to identical results. In this article we shall use the former, and determine

' Sterne, Proc, Roy. Soc.A130, 367 (1931);A133, 303 (1931)."Sterne, Proc. Roy. Soc. A130, 551 (1931)."Sterne, Proc. Roy. Soc. A131, 339 (1931).
* For a more complete discussion of matters lightly passed over here, an~ of the method

of considering the wave functions of the molecules in a gas, the reader is referred tt Fowler's
Statistical Mechanics.
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all properties of our assemblies by averaging over all accessible states of given en

ergy, assigning equal weights to all distinct states. We have based this pro-
cedure on a postulate, but this postulate is capable of analysis and (to some
degree at least) of formal justification by deduction from the laws of quantum
mechanics. But into this field in which the leaders have been von Neumann"
and Dirac" we shall not attempt to penetrate here. The analogy between the
classical and the quantum mechanical versions is very close, and if we replace
each accessible state by a corresponding accessible region of phase space we
at once regain the classical version.

)2.11.The specification of accessible states

It is however necessary to examine with great care what we mean by an
accessible state in quantum mechanics. It is possible, fortunately, to specify
the accessible states quite precisely when we have specified the nature of the
systems of which our assembly is composed. We are no longer left in doubt
about tiresome "symmetry factors" as in the classical theory. By a state we
mean of course a stationary state of the whole assembly characterized by a
definite value of the energy E and a corresponding wave function%', E and
4'„, say, which 'k satisfies the complete Schrodinger's equation for all the sys-
tems in the assembly taken together for the specified E . Every such distinct
wave function%'„ is to be counted as a separate state and all 4„'s are distinct
which are not identically linear combinations of each other In all thi. s there is
no grave departure from classical considerations —one's tools are merely
sharper and simpler. By an accessible state we mean a state in which the
assembly might be found at some later time, if it starts in a given initial state,
and is then left to itself and to random interactions with its surroundings.
This however imposes a severe non-classical limitation, because if the as-
sembly contains a number of systems, electrons, protons, atoms X, or mole-
cules XY or X2, which are indistinguishable among themselves, only those
states are accessible from an initial state which have the same symmetry
characteristics as the initial state with respect to the indistinguishable sys-
tems. And in fact we know that (with certain rare exceptions to which we shall
return) the accessible states of all assembHes are those and only those which are
antisymmetrical in all the electrons and also antisymmetrical in all the Protons,
account being taken of their spins Since in. fact all assemblies are presumably
assemblies of electrons and protons only (usually in equal numbers) these
symmetry requirements should be sufficient for all purposes, and so no doubt
they are. But for the sake of treating an assembly in a way which corresponds
closely to its physical nature it is inconvenient and of little value to regard
it as an assembly of electrons and protons when it is in fact an assembly of
permanent helium atoms or of permanent hydrogen molecules, and we need
secondary derived symmetry rules for these permanent complex systems.
Suppose such a complex system contains n protons and m electrons. Then,
since interchange of a pair of complex systems means interchange of (n+m)

"von Neumann. Gott. Nach. p. 245 (1927)."Dirac, Proc. Camb. Phil, Soc. 2S, 62 (1928).
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pairs of electrons and protons in each of which pairs the wave function is
antisymmetrical, the wave function of the assembly will be symmetrical in

the complexes if (n+m) is even and antisymmetrical if (n+m) is odd. We
have therefore at least these derived symmetry rules and as we shall shortly
see these are not only necessary but also sufhcient.

We shall therefore be able to turn this difficulty. If we can decide a priori
from our knowledge of the properties of these secondary systems, atoms,
molecules, or nuclei, what systems can be effectively regarded as the perma-
nent population of the assembly, then we can appeal to the following

Lemma: It is sufficient, in enumerating the wave functions characterizing the

accessible states of the complete assembly, to construct formally, and so to enumer

ate, all those linearly independent wave functions which have the correct symmetry
properties in tke permanent systems, conceived as wholes, of which the assembly

is composed The. wave function of any permanent system must have tke correct

symmetry properties in the electrons and protons of which that system is corn

posed, but the direct analysis of the complete assembly into the electrons and pro
tons of which it is ultimately composed may be omitted, for the total number of
admissible wave functions is not thereby altered

This simplifying lemma is easily established, but as a formal proof would
be long and clumsy, we can be conterit with illustrative examples in which
the argument is obviously general. It is a well-known property of the solu-
tions of Schrodinger's equation for an assembly that the neglect of the inter-
actions between various constituent systems can never alter the number or
symmetry type of the various stationary states, though of course it alters
their energies and can allow new degeneracies to come in. Consider for one
example an assembly of two electrons and two protons in a box, for which
we are told that the actual permanent systems may be assumed to be two
hydrogen atoms. Let P (1, I) be the wave function of the system electron 1

and proton I in the box, describing a particular stationary state with neglect
of the interaction with electron 2 and proton II. This is then the wave func-
tion for a freely moving hydrogen atom in a given electronic state and a given
state of translatory motion, and we need not specify it further. Let Pp(2, II)
have the obvious similar meaning. Then the wave functions describing a
specified state of the assembly (one atom in state n and one atom in state P)
are

P (1, I)gp(2, II), P (2, Ilg p(1, I)

and the unique wave function symmetrica/ in the two hydrogen atoms as
wholes is

k-(I 1)A(2, II) + 4-(2, 11)A(1 I). (A)

This wave function is not antisymmetrical in the electrons and protons,
but it corresponds to just one such function, as the lemma requires. This
function is

I4'-(I 1)A(2, II) + 4-(2, 11)4p(1, I) I
—(P (2, I)gp(1, II) + P (1, II)Pp(2, I) I . (8)
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Of course we may not argue that to (8) correspond two functions of type (A),
namely the two terms I I in (8), for to admit both these functions denies
the permanency of the hydrogen atoms —we must then regard the assembly
as one of electrons and protons and we are then driven back to the unique
(8) itself.

For one more example consider an assembly of eight electrons and eight
protons for which we know that the permanent systems may be regarded
as two zx particles and four free electrons. Let f,(1, 2, I, , IV) and Ps(3, 4,
V, , VIII) represent wave functions for the two rr. complexes each of the
proper internal antisymmetry in their own electrons and protons. Let P~(5),
fz(6), P, (7) and Pz(8) be the wave functions for the extra-nuclear electrons.
The only wave function 4 for the complete assembly which is antisym-
metrical in the extra-nuclear electrons, symmetrical in the o. particles, of
the given grouping for the systems grouped in theu complexes, and represent-
ative of the specified state of the assembly (rz particles in states n and P, free
electrons in y, 5, s, $), is

f,(1, 2, I, , IV), P (3, 4, V, VIII)

Pp(1, 2, I, , IV), Ps(3, 4, V, , VIII)

Pz(3), 11 (6), 4.(7), 1iz(8)

4 (3), 4 (6), 4 (7), 4 (g)
X

0.(3), 4 (6) 4 .(7) 0 (8)

A(3), kz(6), A(7), kz(8)

(C)

In (C) ~~ ~~
denotes a permrzzzent, that is, a determinant but with the signs

of all its terms positive, and
~ ~

denotes a determinant. It is easy to see
that from any such function we can construct just one 40 antisymmetrical
in all the protons by summation with the proper signs of the terms P„4 over
all permutations P„of the protons which make a significant change in 4
(such as for example an interchange of I and V but not of I and II). We can
then construct just one% 00 antisymmetrical in both protons and electrons by
similar summation of the terms P,+0 over all significant permutations P, of
the electrons. The order of these operation. s is irrelevant. Conversely from
given elementary P's for the electrons and protons, we obviously can con-
struct only one function with the groupings and symmetries of (C). Hence
the lemma.

XVe must not however forget that though this is the way in which the
symmetry requirements of the assembly with permanent complexes oifght to
be satisfiable, yet nuclei containing an odd number of electrons, e.g. , NI4, Li6,
appear to be exceptions and to behave zzs if the nuclear electrons made no
contribution to the nuclear symmetry. These are the rare exceptions referred
to above. We do not yet understand this, but fortunately, if we accept the
fact, it does not cramp our procedure. For we always treat nuclei as perma-
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nent complexes in any terrestrial problem and therefore by the lemma we
should in any case proceed by satisfying the symmetry requirements of the
assembly merely in all sets of equivalent nuclei. Whether or not we are able
correctly to analyze this symmetry in terms of component electrons and
protons does not in fact matter at all. Permanent complexes may be treated
as the primary constituents, by the lemma if they are analyzable into com-
ponents, by hypothesis if they are not.

We have so far formulated the lemma for the analysis of permanent com-
plexes into electrons and protons, but there is no need so to restrict it. It
applies equally to the analysis of permanent complexes X into any permanent
component secondary units V and Z. For example, in an assembly of chlorine
atoms Cl» the complete wave functions must be antisymmetrical in the Cl»
nuclei. But the assembly will often consist entirely of permanent molecules
(Cl,s), . Applying the lemma, therefore, we see that the symmetry require-
ments of the assembly will be satisfied, and that the enumeration of wave
functions will be correct, if we make the wave function of each molecule cnti-
syrrlmetricul in its nuclei and then make the combined wave function of the
assembly symmetry ca/ in the molecules.

$2.2. The statistical mechanics of an assembly containing a substance in the
crystalline and monatomic gaseous phases. The method of enumerating
wave functions

Let us consider an assembly containing in all X atoms of some pure
chemical element; and let there be N atoms in the gaseous phase and I' atoms
in the crystalline phase. We suppose for simplicity that the lattice of the latter
is an atomic one, and that in any specified state of vibration or translatory
motion the atom is represented by a single wave function; i.e. , that the weight
of its internal state is unity. For the moment however let us ignore the crys-
talline phase, and fix our attention upon the vapor. Let us also for the mo-
ment neglect completely the internal motions of the atoms, and consider that
the energy associated with each atom in the gas is simply its kinetic energy
of motion plus its potential energy due to its position outside of the crystal.
Let the possible energy levels of each gas atom then be ~0, e&, e2, ~ ~, where
the degenerate levels if there are any are written here as many times as there
are linearly independent wave functions to represent them.

To a first approximation a complete wave function for the vapor alone is
a linear combination of products of the individual wave functions of the N
atoms in the gaseous phase, symmetrical or, it may be, antisymmetrical in all
the N atoms. Since the atoms are neutral they will require symmetrical wave
functions unless we are concerned with one of the exceptions with an odd
number of electrons in the nucleus. We have no example of such a vapor and
shall omit the antisymmetrical case, the treatment of which however follows
exactly the same lines as the treatment of the symmetrical case. Let the r'th
wave function of the k'th atom be denoted by P„(k); then such a linear com-
bination, symmetrical in all the atoms, might be for instance the permanent
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4'o(I), li'o(2), fo(3), Po(N)

4'o(I), 4'o(2) 4'2(3) ' ' ' 4'2(N)

$2(1), $2(2), P2(3), . $2(N)

6(1), A(2) 44(3) 42(N)

1I 2(1), P2(2), |i'2(3), $2(N)

which is the only combination symmetrical in all the atoms which is repre-
sentative of the specified state of the gas (two atoms in state 0, one in state
3, and so on). This 212 corresponds to an energy for the gas of

I" = 260+ t3+ 64+ ' ' ' + 6).

It is now easy to see that the total number of linearly independent wave func-
tions with the correct symmetry properties capable of representing the gas of
N atoms, when the total energy of the gas is F, is simply the coe%cient of
Wzz' in the series II;(1—xz'2) ', where the product is taken over all the pos-
sible energy levels ~;; for we may write the product in the form

II =

(1 + xz'o + x'z'" + x'z'" + )

X (1 + gz22 + g2z222 + x2z222 +. . . )

(1 + gz22 + g2z222 + g2z222 + ' )

X (. 2 )

(2.2)

~ ~ ~

~ ~ ~

Let us now consider the crystal phase alone. The number of linearly inde-
pendent wave functions symmetrical in all the atoms which can represent
the crystal, that is, its number of accessible states, when its total energy is
U and it contains I' atoms, can be cast into the form of the coefficient of z
in a function [K(z) ]~, which is the partition function corresponding to Debye's
analysis of the normal modes of the crystal. In order not to interrupt the argu-
ment this analysis is given in Appendix I.

If we regard the atoms in the gas and the crystal as distinct, then of course
the total number of accessible states of an assembly composed of N atoms in
the gas with total energy I" and I' atoms in the crystal with total energy U
is the product of these coefficients:

[coeff x z in II;(1 —xz'2') '] X [coe8 zu in [22(z)] ] (g)

and the representative wave functions are the products of the gas and crystal
wave functions already constructed. Such wave functions will of course not
have the full symmetry over all atoms. But the lemma of )2.11 applies again,
and the number of wave functions so obtained is the correct number of wave
functions with the full symmetry.
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But now we know in fact, about the energy, merely that the total energy
of the assembly is 8= Ii+ U. To obtain the total number CN of accessible
states of the assembly when its total energy is B, and when there are N atoms
in the gas and P=X—fjf atoms in the crystal, we must sum (A) over all
values of Ii and U subject to the above condition. We thereby obtain the
coef6cient of xNsE in

[s(s) ]x—+II,(1 xs'~)-'.

By using Cauchy's theorem for functions of a complex variable we may
write this as"

1 '
j I' dxdsII;(1 —xs'~) '[s(—s) j~-"

CN =
Il~

2

~
~

~~

~
~

~~
~

~ ~ E
~ ~~ ~«N

7

2mi 3 J gN+1~E+1

where the integrals are taken along closed contours about the origins in the
x and s planes, within the regions in which (8) is holomorphic.

To evaluate these integrals we make use of the method of steepest de-
scents. We shall in this article merely sketch the correct method and its re-
sults, referring for a more complete discussion of the method of steepest
descents in general to Chapters II, V (excluding fja5.6 and 5.9) and XXI of
Fowler s Statistical Mechanics. Since a rigorous application of the method to
the enumeration of the wave functions capable of representing an assembly
containing crystals is nowhere available in print, we shall present such a
treatment in Appendix II of this article. Consider the integrand of (2.21) on
the positive real axes of x and s. For a value $ of x between 0 and eb, and a
value 8 of s between 0 and 1, the integrand has a unique minimum. For the
contours of integration take circles about the origins of radii $ and 8 in the
x and s planes, respectively. Then for values of x on the circle in the x plane
x = $e' say, x = $, es =0 is a strong maximum of the modulus of the integrand.
Similarly for values of s on the circle in the s plane s =8e'jj say, z = 8, p =0 is

a strong maximum of the modulus of the integrand. Owing also to the fact
that the dilferential coe%cients of the integrand vanish for n=0 and p=0,
the complex terms there are trivial and the whole effective contribution to
the integral comes from very small values of n and p. The result is that

16 pur procedure in this article for considering assemblies containing crystals is more rig-
orous than the different procedure used in $5.6 of Fowler's Statistical Mechanics. The latter
method, although it leads to the correct results, is deficient in rigor and is really incorrect. It
depends upon the application of the method of steepest descents to the evaluation of a double
integral denoting the number of accessible states corresponding to all possible choices of N.
The integrand of this integral contains the factor 1 —@it(s) in the denominator, and the regions
of importance in the evaluation of the integral by the method of steepest descents are so close
to the singularities of the integrand which result from the presence of this factor that when one
reduces the integrand to the form similar to Fowler's Eq. {346),the terms in a3, etc. and e4, etc.
are as important as the quadratic terms in the exponential. Accordingly, the method of steepest
descents does not appear to be applicable to the double integral in $5.6 of Fowler's Statistical
Mechanics, and we have departed in the text above from this earlier and incorrect treatment,
Throughout this article we shall use the new and rigorous treatment,
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(2.211)

where $ and 8 are the unique positive roots of

8 P Iog (1 —$8'~) —' = N (2.212)

and
8. rc'(8)

8 —P log (1 —$8'~) —' + (X —N) 8—= E
80 a(8)

Here V is the volume of the gas phase, and Jo is a certain Jacobian determi-
nant which varies only slowly with N, and which we may in fact treat as a
constant in the following discussion. The term O(1(V') is an error term which
becomes trivial when V becomes large. The parameters 0 and (, which we
have been led to introduce because of the nature of the mathematics, corre-
spond to the absolute temperature and thermodynamic partial potential, re-
spectively. In fact, O=e '~"~ where k is Boltzmann's constant.

In these calculations we have thus far kept the number of gas atoms fixed
and equal to N. But we know in fact merely that the total number of atoms
in both phases, N+I', is fixed and equal to X. Therefore the total number of
accessible states of the assembly when its energy is E, that is, the total num-
ber of linearly independent wave functions with the correct symmetry prop-
erties which can represent it, is given by

C= AC+ (2.213)

summed over all values of N from 0 to X. We wish to find the average value
N of N, defined by

CN = +NCv. (2.214)

We proceed as follows. The value N' of N for which C~ is a maximum is ob-
tained by equating to zero the total derivative of logC& with respect to N,
and if we neglect as we may the nearly constant term log(JO) '" we have

8 E d$ 8 s'(8)g log (1 —$8'i) ' ———+ —g log (1 —$8'i) —~ + (X —N)
dE 80 z(8)

E d8————log «(8) —log $ = 0.
de

Since the bracketted expressions vanish, the maximum value of C~ corre-
sponds to a value of $ given by

(2.215)

with a trivial error. The corresponding value N* of N is given by (2.215) and
(2.212). It is easy to show that N and N* are equal. We have merely to ob-
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serve that the rapidly varying part of the right-hand member of equation
(2.211)

X exp I
—-'; [(N —N*)'/AN*] + cubic and higher terms in (N —N*) I

by Taylor's theorem, since the first derivative vanishes. Here the expression

I ]* is to be evaluated for a value of N equal to N*. To show that the
denominator in the exponential is of order N*, we may use the approximate
expression for 2; log (1—$8'&) ' which we shall introduce shortly for finding

¹ The exponential factor in the above expression diminishes with extreme
rapidity as ~N ¹~/N* i—ncreases, when N is large, and thus the significant
contributions to the sums (2.213) and (2.214) come only from terms for
which N is very nearly equal to N*. Thus N = N~ with great accuracy when
N* is large. Hence we have finally

where

(2.24)

Eq. (2.24) gives a value for N, according to the Einstein-Bose statistics. It
is in practice sufficiently accurate to use the classical approximation to these
statistics for the gaseous phase. The arguments on pages 535—537 of Fowler's
5/utistical Mechanics show that we may replace the II in the integrand of
(2.21) in all ordinary cases by e*~&*'; where F(s) is the ordinary partition
function for a gas atom. A partition function f(8) of a system is simply the
sum

where the c,-'s are the possible energy leveis of the system and p; is the number
of linearly independent wave functions capable of representing the system in

the j'th level.
Accordingly, we may replace (2.24) by

N = F(8)/i&(8).

Still neglecting internal motions, we have for a monatomic gas (C„)p
——

SR/2, where R is the gas constant, and (C„),=0. We make use of the relation"

pV = EkT

where p is the pressure of the vapor, and V is the volume. Let us take for
the state of zero energy of an atom the state in which it is when it is condensed
in the crystalline phase at the absolute zero, and is in its lowest quantum
state of internal motion. Then «(0) = 1 and it follows from the corollary to the

"Fowler, Statistical Mechanics, p. 45.
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lemma which we shall prove in the next chapter that

T dp~ T'

log E(T)=, (C„),t dT"
I)

RT'2

where X(T) = x(8). Again, the gaseous partition function for such an atom is"

F(T) = (2wmkT)'"Ve "'"r/k'.

It follows from Eq. (2.25) and the subsequent relations, therefore, that

x T dpi' T'

log p = — + —log T—,(C„) „~dT"
kT 2 0 RT' p

+ log

(2.26)

Here g is the work which must be done to remove an atom from the state of
zero energy dehned above and place it at rest, in its lowest quantum state of
internal motion, at infinity. The quantity m is the mass of an atom, and h is
Planck's constant.

Now if the reader will compare Eq. (2.26) with Eq. (1.1) of the last chap-
ter, bearing in mind that 3/Ik =R where M is Avogadro's number, he will see
that the two equations are identical; and that for our monatomic gas the
vapor pressure constant must be given by

i = log [(2am)et k I /ke], (2.27)

the formula of Stern and Tetrode.
Let us now remove the restriction to a unique internal state for the atom

(and its nucleus). If internal motions and nuclear orientations are taken ac-
count of, the gaseous partition function for an atom is no longer simply F(T),
but becomes F(T)f(T) where f(T) is the partition function for the internal
motions, including nuclear effects. Similarly, the crystalline partition func-
tion X(T) must be replaced by K(T)f'(T) say, where f'(T) is the partition
function for the internal motions (including nuclear orientations) of an atom
in the crystal. '9 By the same corollary we shall now have

T dgl' T'

log E(T)f (T) —log cop =
I (C ) ~ dT

12

where cop is the statistical weight of the lowest energy state of internal motion
and nuclear orientation of the atom in the crystalline phase. More precisely
cop is the number of linearly independent wave functions of proper symmetry
which can represent the lowest quantum state of a crystal made up of I'
atoms. The result is that if we leave the first three terms of Eq. (2.26) un-

altered, we must then replace the expression (2.27) for i by
's Fowler, Statistical Mechanics, p. 39."See Appendix l.
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i = log [(2sm) ~ P ~ /h~] + log [f(T)/zoo].
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(2.28)

If the nuclei have a spin with co different orientations it is clear that to the
present approximation these spins, which are practically independent of the
external electronic structure of their own atoms and a fortiori of other atoms,
serve merely to introduce an extra number of possible wave functions for
each atom, there being now just Co times as many difterent functions for each
atomic state as before. This Fo will enter as a factor into both f(T) and aro and
will be without effect on i. We shall ignore it altogether wherever possible,
but we shall be required to consider the part that nuclear spins play for di-
atomic molecules in detail in later chapters.

)2.3.The vapor pressure constants of some monatomic vapors

The observed values of some monatomic vapor pressure constants i' are
shown in Table I, with the pressure expressed in atmospheres and the log-
arithms taken to the base 10, so that

i' = [i/log10] —6.006,

together with the values calculated from the preceding theory. The lowest
spectral terms of free mercury, cadmium zinc, lead, and argon atoms are all
of type 'S and can therefore be represented by only a single wave function
in each case; the other terms are so much higher that f(T) in Eq. (2.28) is in

all of these cases the same as coo, and therefore only the first term in (2.28)
contributes to i. For sodium and potassium, the lowest spectral terms of the
free atoms are of type 'S and can each be represented by two linearly inde-

pendent wave functions; at ordinary temperatures the partition function for
internal motions of a sodium or potassium atom in the free state

f(T) = Qp s—««&»

is nearly equal to its first term, which is simply 2. To find what Np

should be, we observe that both sodium and potassium crystals are
metallic conductors, and apply the electron theory of metals in the
manner of Sommerfeld. We may think of the atom as being dissociated
into electrons, and positive ions; the latter having statistical weights
unity (nuclear weights being neglected) since they are formed of perfect
closed groups of electrons. The electrons have weight 2 for their spin ori-
entations. The positive ion lattice may be considered by the usual Debye
analysis and contributes merely the factor unity to the total number of lin-

early independent wave functions which can represent our crystal made up
of P positive ions and P electrons. The electrons may be considered to form
an electron gas, obeying the Fermi-Dirac statistics (i.e. , the wave functions
for the electron gas must be ant&symmetrical in any two electrons), in an en-
closure at nearly constant potential. This electron gas is perfectly degenerate:
At the absolute zero there exists only one state for the electron gas, namely
that in which there is only one electron in each of the P states of lowest en-
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ergy, and for this state there is only one possible wave function. Hence, for
sodium and potassium, Q)p = 1.The departure of the potential from uniformity
within the metals in no way invalidates this conclusion.

The case of hydrogen at very low temperatures will be considered sepa-
rately in the next chapter; it is included in Table I merely for the sake of com-
pleteness. The monatomic vapor pressure constants of chlorine, bromine and
iodine require, however, further discussion here. The lowest spectral term of a

TABLE I. Some monatomic vapor pressure constants.

Vapor

Hg

Zn

Pb

Hg

K

Cl

Br

Atomic
weight

200.6

112.4

65.37

207. 2

39.88

2.015

23.0

39.1

35.46

79.92

126.9

i ' calculated

1.866

1.488

1.135

1.887

0.813

—1.132

0.756

1.10

1.44

1.87

2. 17

i ' observed

1.83 + 0.03

1.45+0.1
1.57

1.10+0.1

1.8 +0.2
2.27+0 ~ 36

0.79+0.04

—1.09+0.02

0.63
0.78 +0.1
0.97

0.92
1.13

1.44+0. 2

2.03+0.2

2.21+0.2

Authorities
for i ' observed

(1)

(1)
(6)

{1)

(1)
{7)

(1)

(2)

(3)
(8)
(4)

(3)
(4)

(5)

(5)

(5)

AUTHORITIES

(1) Egerton, Proc. Phys. Soc. Lond. 37, 75 (1925).
(2) Eucken, Zeits. f. Physik 29, 1 (1924); at very low temperatures only.
(3) Edmonson and Egerton, Proc. Roy. Soc. A113, 533 (1927).
(4) Zeidler, Zeits. f. phys. Chem. 123, 383 (1926).
(5) See Fowler, Statistical 3fechanics, note (7) on p. 156.
(6) Lange and Simon, Zeits. f. phys. Chem. 134, 374 (1928).
(7) P. Harteck, Zeits. f. phys. Chem. 134, 1 (1928).
(8) Ladenburg and Thiele, Zeits. f, phys. Chem. 7, 161 (1930).

free halogen atom is an inverted doublet, 'I'; so that the normal state is a
term 'P» of statistical weight 4, while the next higher state is a term 'I'I~2 of
statistical weight 2 which is however but slightly higher. The halogen crystals
are in all probability molecular, the atoms being present as diatomic mole-
cules performing spherical oscillations about a direction of equilibrium. It
will be necessary to discuss such crystals in detail in Chapter V. It would
interrupt the argument too much if we were to proceed otherwise than by
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simply using here the results of the discussions of this later chapter. If we sup-
pose that the nucleus of the particular halogen considered has an n quantum
spin, then it follows from the discussion of Chapter V, since the ground state
of a halogen molecule is probably of type ' Z, that at the absolute zero a crys-
tal made up of P atoms of a halogen may be represented by (2n+1) linearly
independent wave functions. Hence coo in Eq. (2.28), by the general rule for
interpreting it given in fl2. 2, should be simply 2m+1. If the lattice were
atomic we should have obtained the result s&o ——4(2m+1). For f(T) in Eq.
(2.28) we need only consider the 'P term mentioned above, in this case of the
halogens; and this term contributes two terms to the partition function, cor-
responding to its doublet structure, thus:

f(T) = (26 + 1)(4+ 2e ~ "r)

where AI' is the difference between the energies of the components of the in-
verted doublet. Accordingly the last term in Eq. (2.28) becomes simply

log (4 + 2s API kr)—

and the nuclear weights disappear as we should expect. The following table
is taken from Fowler's Statistical Mechanics.

TABLE IA. Values of log1p (4+2e ~&l&&) for the ground states of halogen atoms.

Atom

Br

Mean Temp.
oK

1000

1700

1350

1200

AP (volts)*

0.11

0.94

APIAT

1.28

0.752

3.88

9.1

oglp (4+2e AP/k7)

0.66

0.69

0.6
0.6

* Flectron volts; values from Turner, Phys. Rev. 27', 397 (1926).

In calculating the i' in Table I we have used for chlorine the value 0.7 for
the last term (to the base 10) in Eq. (2.28), and we have used for bromine and
iodine the value 0.6,

As already explained we can ignore here the effects of nuclear spins for
Hg, Cd, Zn, Pb, A, Na and K (atomic lattices); for the effects are nil since
they merely call for the introduction of equal multipliers in both numerators
and denominators of the fraction in the second term of (2.28), for all these
substances.

The errors given in Table I in the third column are not probable errors,
but are, rather, ranges of error. For instance, in the case of mercury the evi-
dence indicates that i' lies between 1.80 and 1.86 apart from concealed errors
in the specific heats used. Owing to difficulties of extrapolation the real un-

certainly in i' may well be greater than the range.



656 R. H. JATOS'LER AND T. E. STERNE

CHAPTER III
THE VAPOR PRESSURE CONSTANT OF HYDROGEN

)3.1. The statistical mechanics of assemblies containing hydrogen gas and
mixed crystals of para- and ortho-hydrogen

In order to represent the properties of an assembly containing hydrogen,
at low and ordinary temperatures, we know that owing to the half quantum
spins of hydrogen nuclei we must regard the hydrogen as made up of two sorts
of molecules —molecules whose rotational wave functions are symmetrical in

the nuclei and whose nuclear spin wave functions are antisymmetrical in the
nuclei, called para-hydrogen, and molecules whose rotational wave functions
are antisymmetrical in the nuclei and whose nuclear spin wave functions are
symmetrical in the nuclei, called ortho-hydrogen. Under ordinary experi-
mental conditions no transitions para —&ortho or ortho~para take place, even
during times which are long compared with the duration of an experiment. "
It is therefore correct and necessary to treat the assembly as a mixture of two
different constituents, para-hydrogen arid ortho-hydrogen, present in the
proportions given by the long-time statistical equilibrium ratio to which the
hydrogen will have settled down before the experiment began.

A molecule of para-hydrogen in a given state of translation and rotation
can be represented by only (2j+1) linearly independent wave functions,
where j is the rotational quantum number, corresponding to the (2j+1) pos-
sible eigenvalues of the s component of rotational angular momentum. A
molecule of ortho-hydrogen, however, can be represented by any one of
3(2j+1) linearly independent wave functions, corresponding to the (2j+1)
possible eigenvalues of the s component of rotational angular momentum and
the three possible eigenvalues of the s component of nuclear spin angular
momentum. The pair of nuclei being symmetrical in the spins must have a
total spin of 2+q = i. The spins and the rotations may for the purposes of
this enumeration be assumed to be without interaction. In Dirac's language
the observables involved commute with each other so that we may assign
these eigenvalues independently. By the lemma of )2.11 it is then sufficient
to make the wave function of an assembly of hydrogen molecules symmetrical
in all of the molecules. We are interested in the total number of linearly inde-
pendent wave functions of this type capable of representing the assembly
when the total energy of the assembly is E, which we call the total number
of accessible states.

We consider that a complete wave function for the crystal is a linear com-
bination, symmetrical in all of the molecules in the crystal, of functions of
the form f lp@, to a first approximation. Here li is a wave function repre-
senting a set of normal modes of vibration of the crystal lattice, and fq is
a wave function representing a set of eigenstates for the molecules in the

"Sterne, Proc. Roy. Soc. A130, 367 (1931).
' For the experimental verihcation of such properties of hydrogen see BonhoeSer and Har-

teck, Sitz Preuss. Akad. Wiss. , Berlin, 103—108 (1929); Zeits. f. phys. Chem. &4& 113-141
(1929).Also A. Eucken, Naturwiss. 1'F, 182 (1929).
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crystal. The reader is referred to Appendix I for a detailed examination of the
wave functions of crystals, and for a more rigorous derivation of the partition
function of a mixed crystal than that which we shall present in this chapter.

Let N be the number of molecules of para-hydrogen in the gas and let
N' be the number of molecules of ortho-hydrogen in the gas. Let P and I"
be the numbers of molecules of the two sorts in the crystalline phase. The
partition function for the normal modes of vibration of a mixed crystal con-
taining in all L molecules of both sorts of hydrogen is of the form [s(s) ]~, no
matter what the ratio PjP' nor how the different types are arranged P' and
we suppose that the rotational partition functions for the molecules, both in
the crystal and in the gas (we defer until later an analysis of this assumption)
are for the para-hydrogen

j(s) — P (2j+ 1 )sr ( /+ 1)~

2=-0 2 4

and for the ortho-hydrogen

j'() = Z(2j+ 1) "'"', (3.10)
g=l 3 5 ~ ~ ~

where e = h'/(Ss'I), h being Planck's constant and I the moment of inertia
of the molecule. The normal modes of vibration of the crystal contribute to
the total number of accessible states of the whole assembly a factor equal to
the coe%cient of sOin [~(s)]P+ ', when the total energy of the normal modes
of vibration of the crystal is Q. We take as the standard reference state of
zero energy a state in which all the molecules are condensed in the crystalline
phase, at the absolute zero, and in which. the molecules are in their lowest
electronic and nuclear vibrational states, and are free from nuclear rotation.
This last specification means that our standard state is not a possibfe eigen-
state if ortho-molecules are present; but it will suffice as a zero of energy not-
withstanding.

We must now obtain an expression for the factor, contributed to the total
number of accessible states, by the molecular rotations in the crystal. Con-
sider first, for simplicity, a "crystal" made up of three similar molecules ar-
ranged in any manner among the lattice points a, b, c. Two of the molecules
are to have rotational wave functions of class A, and the other of class B.
There is only one independent wave function of class A, but class 8 has two
linearly independent wave functions 8' and 82. Then, if we neglect oscilla-
tions, the possible linearly independent wave functions for the crystal, sym-
metrical in all of the molecules, are to a first approximation the 'permanents

A .(1), A .(2), A .(3)

A „(1)
A g(1)

8,'(1)

A g(1), A g(2), A g(3)

8.'(1), 8.'(2) 8.'(3)
A, (1) A.(1)

8,'(1), 8g'(1)

A, (1) A, (1)

8.'(1)
A b(1)

A, (1)

8.'(1)

A, (1)

A, (1)
~ Since the masses are the same. See Appendix I.
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here for instance 8,'(2) means the first rotational wave function of class 8
for the second molecule associated with the lattice point c. We have written
explicitly only the first columns of the permanents for the last five wave func-
tions. In this enumeration we have made the complete wave function sym-
metrical in all the molecules 1, 2, 3, and are therefore allowing for complete
interchanges of molecules. If however A and 8 refer to para- and ortho-states,
respectively, then in the restricted assembly the individual wave functions of
molecules 1 and 2 must remain of class A; and those of molecule 3 of class B.
The possible states are then represented by

A.(1)
~ (), A, 1 A, 1

&.'(3) & '(3)
A b(1) A.(1)

A. 1
»'(3)

A, (1)

Ai, 1
B.'(3),

A„.(1)

Ab 1 8.'(3) .
A, (1)

We observe that in both enumerations the number of wave functions and
therefore the number of distinct accessible states is

I'2'3!/(2!1!)= 6.

The identity of these enumerations is another aspect of the lemma of !!2.11.
We see at once by generalizing this example that the number of accessible

states of the assembly contains as a factor

p p '(i + ~') l(2 'i '!)

when the P molecules have one set of wave functions p in number and the
P' molecules another different set p' in number. If these sets are degenerate,
these states possess rotational or orientational energy pe+p. 'e'=S, say. If
instead of supposing that each set is degenerate we merely restrict the total
energy of this type to be S, and if

f(s) = Zus' f'(s) = Z~'s"

are partition functions for the sets of states of the tw'o types of molecule in
the crystal, then by a further generalization of the same type we see that the
total factor in the number of accessible states due to these possibilities of ro-
tation and orientation is the coefficient of s in

[f(s) ]'[f'(s) ]'(~ + &') V(2' &' )

If we repeat this argument, after specifying that the total energy Q+S
of the crystal, made up of P and P' molecules of the two sorts respectively,
is U', we see that the crystal possesses a number of accessible states equal to
the coeScient of s~ in

[f(s) ]'(f'(s) ]' [ «(s)1'+'(& + 2") ~P(2"I")
in complete agreement with the results found more rigorously in !IA1.6 of
Appendix I.
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The vapor, if its energy is Ji, has a number of accessible states equal to
the coefficient of x x' 's~ in

11,(I —xs;)-rll, (1 —x'2"')-3,

where the II's are taken over all the energy levels: The primed and unprimed
letters refer as before to ortho- and para-hydrogen. Hence by the arguments
of $2.2 the total number of linearly independent wave functions, symmetrical
in all the molecules, capable of representing the entire assembly of energy 8
when there are N and E' molecules of the two sorts in the gas and P =X—N
and P' =X' —N' molecules of the two sorts in the crystal, respectively, is the
coe%cient of x~x' 's in

[(P ~ P')!/(P!P'!) ] [f(s) ] [f'(2) ]
'

[ «(2) ] + 'II, (1 —xs'r)-'II3(1 —xr2'3') ' (df)

Hence this number of accessible states C~,& is given by

1 '(P+ P )!
f 'f Id*d*'d If(*j]'If'()]'I ()]""

CN, X'
2m. i E!P'!~

~

~

xN+ 1x~N'+ 1~E+1

(3.101)

where the integrals are taken along closed contours about the origins in the
x, x and 2 planes, within the regions in which (A) is holomorphic.

To evaluate these integrals we make use of the method of steepest de-
scents, "as we did for the simpler case of a monatomic vapor in $2.2. We find
that

(P + P') [f(8)]' [f'(8) ]' [«(8)]"'
CN, N'

(2x) 3/2P IP) IfN)rN'8E
(3.102)

1 1
&& II.;(1 —t8') 112(l —&r8' ') ' J3 '" + 0

v'&' y5f2

where $, $' and 8 are the unique positive roots of

8 g log (1 —$8df)
—' = E

8$

8
Y —Z»g (1 —Y8'"') ' = &'

A:

and

(3.103)

(3.104)

a l9
8 —p log (1 —$8df) ' + 8 —g log (1 —$'8da') ' + P8 —log f(8)

80 a 80

8 8
+ P'8 log f'(8) + (P+ P—')8 log «(8) = E. —

80 88

(3.105)

'3 For a more complete discussion, see Appendix II.
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Here V is the volume of the gas phase, and J, is a certain Jacobian determi-
nant which varies only slowly with N and X', and which we may in fact treat
as a constant in the following discussion. The parameters (, $' and 8 corre-
spond to the thermodynamic partial potentials and to the temperature, re-
spectively. En fact, e=e "'~ where k is Boltzmann's constant.

If we wish to find the total number of linearly independent wave functions
C capable of representing the assembly when we know merely the total energy
8 and the total numbers of particles of the two sorts X and X', we must sum
CN, N over all values of N and N' from 0 to X and from OtoX', respectively,
thus:

X X'

N=O ¹=0 (3.106)

We wish to find the mean values N and E'of N and X', respectively, defined

by the equations

and

X X~

CN = Q QNCN, ~
N=O N'=0

X X'
CN' = Q QN'C~, ~ .

N=0 N'=0

(3.107)

We proceed as in f2.2; the values N* of N and N'" of N' for which C~ ~ is
a maximum are obtained by equating the partial derivatives of log CN z with
respect to Xand N' to 0. We use Stirling's asymptotic formula log P!=P log P
—P for approximating with sufhcient accuracy to the factorials in the right-
hand member of equation (3.102), and we may treat the bracketted expres-
sion involving Jo '" as a constant. We find, using the relations (3.103),
(3.104) and (3.105) that C~,~ is a maximum when

P 1

P+P' x(8)f(8)

P' 1
gl

P+P' x(8)f'(8)

(3.108)

(3.109)

These two equations, considered simultaneously with the three equations
(3.103), (3.104) and (3.105) serve to define N* and N'*.

It is possible to show, by a slight generalization of the argument employed
in f2.2, that Cz, & diminishes with extreme rapidity from its maximum value
C~e~eas IN —

¹ j(N*or 1N' N'*~/N'*i r nce eafsr—osmzero, provided that
N* and 1V'* are large. Accordingly, the significant contributions to the sums
(3.106) and (3.107) come only from terms for which N is very nearly equal
to N* and Ã' is very nearly equal to N'*. Hence N=N* and N'=N'* with
great accuracy when 1V* and N'* are large. It follows that we can obtain N
and N' by inserting in Eqs. (3.103) and (3.104) the values of $ and $' given
by (3.108) and (3.109).
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We have, because of our choice of the zero of energy, s(0) = 1, and there-
fore /((8) &1. It follows from the dicussion of R. H. Fowler'4 that we may
replace the expression (3.103) for 7 by"

(2~r/&f/T) 3/2Vs x/ RT — ]as—(a—1&&l/ kT

(2j+1)s "/(/+&&~/&r (3.14)
8$ h3 n=1 'I j=9,2, 4, ~ ~ ~

where m is the mass of a molecule of hydrogen and k is Boltzmann's constant;
since it follows from (3.108) that $ & 1. x is the work which must be done to
remove a molecule from the zero of energy defined above and place it at rest,
at infinity, in its lowest electronic and vibrational state, and in a state with-
out nuclear rotation. Further, although $' may be enormously greater than
unity, it follows from (3.109) that $'0"' is always less than unity; so that
the expansion of the logarithms in series, and the subsequent use of Fowler's
discussion, is valid for this case also. Hence

gf n~-(n-1)X/ kT

xg
g5/2

n 1 7'=1 3 5 ~ ~ ~

3(2j + l)s +/(/+&&~/~r

(3 (2~r/&kT)3/sVe ""r
gl ~/

/~I h'
(3.141)

It remains to determine the. ordinary temperature ratio of para- to
ortho-hydrogen, which is the value of X//X' to be used in applications of
these formulae. For this purpose we have merely to consider the equilibrium
distribution of hydrogen molecules between the sets of states enumerated by

and

f(s) =

f'(s) = 3

7=0,2 4 ~ ~ ~

j=1,3,5, ~ ~ ~

(2g + 1)s/(/+1&e

(2j + 1)s/(/+&&~

(para-),

(ortho-) .

This is an ordinary problem of classical gas theory, the complete partition
function for the rotational and orientational states of a single molecule when
ortho-para transitions can occur being F(s) =f(s)+f'(s) At temp.erature T
therefore the long-time equilibrium ratio is given by

(2j + I)/,—&'(/ l&E/+k r
para- 1; 0,2,4, . . .

ortho- 3
(2j + 1)e '('+"'/"

g'=1 3 5 ~ ~ ~

1
3 (T~oo ).

~4 R. H. Fowler, Stati stica/ Mechanics, pp. 535, 536.
2' In Sterne's paper, reference 20, he carelessly omitted the factors involving y from the

equations corresponding to (3.14) and (3.141); so that the chemical constant found for hydro-
gen at very low temperatures was too large by 0.02. Sterne corrected this mistake in a subse-
quent paper: Proc. Roy. Soc. A133, 303 (1931).
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For our purposes ordinary temperatures, 300'K and above, are infinite and
we have

X' = 3X.

f3.2. The vapor pressure constant of hydrogen at low temperatures

It is possible to show" from the results of the last section that the ratio
of ortho-hydrogen molecules to para-hydrogen molecules in the crystal will

be, when the system is in equilibrium, very nearly 3:1.Hence, in accordance
with (3.108) and (3.109) we have (=1/[4f(8)K(8)] and Q'=3/[4f'(8)x(8)].
It follows from these results and from Eqs. (3.14) and (3.141), with sufhcient
accuracy when T is small, that

where

G(T) "
1 + 3"/9"-'S+S'=

K(T) 4nm8/2 [K(T)sx/kr]n i—
(2irr//7/T)'/ Ve x—

G(T) = )
h3

(3.20)

the partition function for the translatory motion in the gas, and K(T) = z(8).
For hydrogen at 17'K, the midpoint of Eucken's range at low temperatures, '
we find from thermal data" that K(17') = 1.23, approximately; and also that
e""r is roughly 225: Using these values in Eq. (3.20) we find that

T// + 1V' = G(T)/K(T) (3.21)

very nearly. For hydrogen at these very low temperatures (C~)o =SR/2,
where R is the gas constant, and (C~), = 0. We make use of the relation

PV = (77 + 7') k T

and of the corollary to the lemma which we are about to prove, from which
it follows that at these low temperatures in the case of hydrogen

dT'
log K(T) = i, (C~),.i dT"

gT~2

Hence, at these very low temperatures,

logP = x 5 ' dT'
+ log T — ~, I (C,) I.i dT"

kT 2 Jp ET'2 dp

(2x//z) '/'Ii'/2
+ log

h'

"Sterne, Proc. Roy. Soc. A130, 367 (1931).With the correction of the preceding note, the
ratio becomes almost precisely 3:1,"Eucken, Zeits. f. Physik 29, 1 (1924).

2S Simon, Zeits. f. Physik 15, 312 (1923).
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Accordingly we find for the vapor pressure constant of hydrogen at these
very low temperatures the value

i' = —1.13

in fair agreement with Eucken's experimental value

i' = —1.09 + 0.02.

It will be observed that at these temperatures ~' has the same value as it
would have if molecules of hydrogen were ideal structureless atoms of mass
2.015.

$3.3

Lemma: Let the state of zero energy of a gram molecule of crystal be defined
as its state at the absolute zero of temPeratzzre, when itis subjected to zero external
pressure Iet .the exact partition function for the entire crystal, II[V, T], be a
function only of the volunze V arid tenzperature T of the crystal Let the s. pecific
heat of the whole crystal C„be measzzred zn any manner at all, such that at eaclz

stage of the process of measurement the pressure p acting on the crystal is a defi
nite function p(T) of the temperature, provided that it is zero when T = 0. Then

H [V(T), T] r dT' r' 1
h log = C„dT" + — P(T')V'(T')dT',

H [V(0), 0] z T", T

wkere V(T), a function of the temperature, is the volume which the crystal mzzst

have at the temperature T if tke pressure acting on it is p(T).
Proof: The energy of the crystal at a temperature T is

T r
E[U(T), T] = f C„dT' — p(T')d V(T')

0 0

= hT' log FI[V(T), T]
T

by the principles of statistical mechanics. Here 8/8T operates only on T, not
on V(T). Further,

(d/dT)H [V, T] = (8/BT) log H [V, T] + V'(T)(8/BV) log H [V, T];
and by the principles of statistical mechanics

p(T) = hT(B/BU) log II(V, T).
Hence

H[V(T) T] v dT'
k Jog [C. —p(T")U'(T") ]dT"

II [V(0), 0] z T" z

T p Tf
+ U'(T') d T',

pl

and by a simple reduction the theorem follows at once.
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A simple consequence of this theorem, and one which will be very useful,
is that when the measurements are so carried out that p(T) is always zero,
then

H[V(T), T] r dT'
k log C dT"

II [V(0), 0] p
T'i (3.31)

The reader can readily verify that if the measurements are not carried out at
zero pressure, but at the vapor pressure of the crystal, which in practice is
small, the errors introduced by the use of Eq. (3.31) with (Cp)„z instead of
C„will be trivial. A useful corollary of the lemma is:

Corollary: I.et the partition function for a gram molecule of crystal be of the

form IK(T)[f~(T)]' [fe(T)]' }v wkere P is the number of molecules in
the crystal. In this approximate expression, K(T) is the partition function per
molecule for normal modes of oscillation, and f~(T), fe(T), etc. , are partition
functions for the quantum states of individual molecules of sorts A, 8, etc , in the.
crystal. The reference state of sero energy need not, here, be a possible state of the

crystal; but is suck that K(0) = 1. The eigenstates of lowest energies will in general
have statistical weights &cop, Bco0, . . .

, and energies g 60, Bfp,
' ' ', fespecti vely.

Then

r dT~ r'
(C.) -z d T" = log I K(T) [f~(T) 1 [be(T) 1'

3p ET 0

A 60 B&0+ 8 + 6 + ' ' ' 8 logy(dp 6 log B(op
kT kT

where (C„),.z is the "specific heat at constant presszzre" of the crystal as usually
measured, i e , with p(.T.) equal to the vapor pressure, and Ris the gas constant
We call K(T) [f~(T)]', the partition function of the crystal "per molecule

Proof: In order to use the lemma in proving the corollary, we must reduce
out partition function to a form corresponding to the same state of zero
energy as that defined in the lemma. We can accomplish this by multiply-
ing fz(T) by exp(zpp/'kT), fzz(T) by exp(epp/kT), etc. , so as to obtain new
functions f~'(T), fe'(T), etc. , where

f~ (T) = eg&o g~zp e
—A~olpr

a~p + axe ~ ~ +
with similar expressions for fzz'(T), etc. Then the expression {K(T) [fe'(T) ]'
[fe'(T)]p jz' denotes a partition function for the crystal corresponding
to the same state of zero energy as that used in the lemma, and we may set
the above expression equal to the H[V, T] in Eq. (3.31). We find then that

I K(T) [fg'(T)] [fe'(T)]P } r dT'
Pk log C„..z dT"

I K(o) [f~'(0) 1' [fe'(0) 1' }

very nearly, and the corollary follows at once if we remember that K(0) =1,
and note that f~'(0) =scop, fe (0) =scop, etc. , and that Pk =R.
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$3.4. The vapor pressure constant of hydrogen at ordinary temperatures

To obtain the vapor pressure constant of hydrogen at ordinary tempera-
tures, when (C„)0 is equal to 7R/2 and (C„)& is zero, we proceed as follows.
At ordinary temperatures rotations become significant in the gas, but vibra-
tions are still unimportant. At ordinary temperatures we may set, with suf-
ficient accuracy for small values of n,

and
j=024 ~ ~ ~

j=1,8, 5 ~ ~ ~

(2j + 1)s "~' '+ ' " = kT/(2&+)

3(2j + 1)s "'&'+'&'» = 3kT/(2&+) .
(3.40)

Substituting these values in (3.14) and (3.141) we find, if we replace $ by
1/ [4f(T)K(T) ] and $' by 3/ [4f'(T)K(T) ], that

kTs—(n—&&x/kT

Ã=G T
„=& 2eN'&2 [4f(T)K(T) j"

and
3P Z & (~—l)X f I T —

3
—

rs

Ã'=G(T) g
2&a & 4fl(T)K(T)

Using Eqs. 3.40 with n = 1 to evaluate f(T) and f'(T) we obtain

G(T) oo 1
—

~s xl&:T n—I
X+7' =

K(T) „»s'~' 2kTK(T),
(3.401)

At ordinary temperatures the sum is very nearly equal to unity. The de-
nominator K(T) is not yet the complete partition function per molecule for
the crys'talline phase for all kinds of energy. The required function is
K(T) [f(T)]"'[f'(T)]"', to which the corollary of the lemma of )3.3 applies.
Since to our approximation at these temperatures

[f(T)]'"[f'(T)]'"= 3'"kT/2f

we can write

3'"G(T) (kT/2e)x+x'=
K(T) [f(T)1'"[f'(T) ]'"' (3.41)

and apply the lemma. We therefore find that for hydrogen for ordinary tem-
peratures

i = log [(2Tm) ' k" 8&r I/k5] —zs log 3 —log 2

and so $3\ 72 0

Eucken's published value is i = —3.68+0.03, and this is in agreement with
our result.
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)3.5. The rotation of hydrogen molecules in crystalline hydrogen

We have assumed in the above discussion that the molecules of hydrogen
in the crystals possess the same rotational partition functions that they
have in the gas. Now they can have the same partition functions only if they
can rotate freely in the crystal, and also possess the same moment of inertia
that they have in the gas. It is by no means obvious a priori that molecules
in general are able to rotate in crystals. It appears from the theoretical inves-
tigations of L. Pauling" that in some crystals molecules cannot rotate at all,
and in some can rotate in an irregular fashion corresponding to wave func-
tions intermediate between those for pure rotation and for pure oscillation;
but that in hydrogen the molecules can really rotate quite freely, in all
probability. In fact, the reasonable nature of the results recorded here is
itself fairly good evidence for the ability of the molecules of hydrogen to
rotate quite freely in the crystal.

If there were a change in the energy levels of the molecules when they
condensed from the gaseous phase on to the crystal, we might expect the ratio
of the number of ortho-hydrogen to the number of para-hydrogen molecules
in the crystal to differ, when the system was in equilibrium, from the ratio of
3:1.This effect has been investigated mathematically, "assuming that the
difference in energy is caused by a change in the moment of inertia when the
molecules condense on to the crystal. But changes in the moment of inertia
are not the only ways in which the energy levels can come to be different in
the crystal. The presence of fields, even of small amounts, tending to give the
molecular axes preferred directions of orientation would cause changes of
energy to occur. The changes of energy could be measured if the Raman
spectrum of crystalline hydrogen were investigated. Unfortunately, this
has not been done. However, J. C. McLennan and J. H. McLeod state"
that in the case of liquid hydrogen Raman wave numbers 354 cm ' and 588
cm ' corresponding to the transitions (j=0)~(j=2), and (j=1)~(j=3),
respectively, were found to occur. These are to be compared with the wave
numbers 347 cm ' and 578 cm ', respectively, obtained from band spectra.
The change in the energy levels would thus seem to be small when hydrogen
molecules condense into the liqz&id phase.

CHAPTER Iv
THE SYMMETRIC SPHERICAL OSCILLATOR AND THE ROTATIONAL MOTION OF

MOLECULES IN CRYSTALS. THE PARTITION FUNCTIONS FOR FREE
MOLECULES

$4.1.Introduction

Before proceeding to investigate the vapor pressure constant of chlorine,
it would be perhaps advisable to investigate the nature of the quantum states
of molecules in crystals. Ke obtained a satisfactory theory of the vapor pres-
sure of hydrogen by supposing the molecules to be capable of rotation when

29 Pauling, Phys. Rev. 36, 430 (1930)."McLennan and McLeod, Nature 123, 160 (1929).
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in the crystalline phase. We shall find when investigating chlorine that in all
probability the molecules in crystalline chlorine are incapable of free rota-
tion, and possess wave functions corresponding to states of spherical oscilla-
tion about possible orientations of stable equilibrium. We could proceed to
consider chlorine by the use of Pauling's analysis of the motions of molecules
in crystals" if we wished, at this point. But Pauling derived his criteria for
distinguishing between the cases of "rotation" and "oscillation" by approxi-
mate methods. It has been found possible" to present a somewhat more ac-
curate account of the motions of molecules made up of two atoms of the same
sort, in axially symmetric fields of force. We present the results of this in-
vestigation here.

f4.2. The symmetric spherical oscillator

We imagine a molecule of type X2 free to rotate in a field of force of
axial symmetry. Symmetry considerations show that if a certain orientation
is one of equilibrium, then the orientation obtained by reversing the mole-
cule end for end will also be one of equilibrium; and we see also, if the orien-
tation of the molecule is specified by the coordinates 8, P (the axis of 8 being
the axis of symmetry), that the potential function V(8) of the homopolar
molecule must be symmetric about the equatorial circle O=qx. We suppose
that our molecule is free from axial spin. If V(8) can be expanded in a Fourier
series made up of cosines of even multiples of 8—as it can be of course if it can
be expanded in a Fourier series at all—then a good first approximation will
be obtained by taking only the first two terms of this series; higher terms can
be taken account of later, if desired, by a perturbation method. We therefore
consider, with Pauling, the potential function

V = Vo(1 —cos 28). (4.20)

We desire to find the eigenvalues of the energy and the corresponding
solutions of Schrodinger's equation for the rotational motion,

ps'+ (Sn.sI/h')(W —V)P = 0.

The solutions are to be in the form

P(8),m gi

(4.21)

(4.23)

and are subject to the conditions that P must be single-valued, and that ~P ~

must be bounded, over the surface of the 8, Q sphere. TV is the total energy of
the molecule as far as rotations about its center of mass are concerned.

We see at once that m must be an integer which can be positive, zero,
or negative in sign. Make the substitutions (4.20), (4.23), and

x = cosa

& = (W —2V,)8. I/I' .

k2 = 16ir2IVO/li'

~' Pauling, Phys. Rev. 36, 430 (1930).
3~ Sterne, Proc. Roy. Soc. A130, 551 (1931).

(4.233)
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in Eq. (4.21). We obtain

(1 —xs)F" —2xF'+ [p+ Xsxs —mm/(1 —x2)]F = 0. (4.24)

Solutions are desired which are finite within the interval —1 &x & i. This
equation has been considered by several writers, and by A. H. Wilson in

particular. "Corresponding to any value of X there exist certain eigenvalues of

p for which our conditions will be fulfilled. Make the substitution

F —(1 x2) jr/ly

10- 3)&2

iX s A

-5

-jo

-2S
0

0, 0
5 A, 6

Fig. i. The seven lowest energy levels of the symmetric spherical oscillator.
(Reproduced by kind permission of the Royal Society. )

where 3f= ~m ~. Then our desired solutions are of two different types. Wecan
represent y by a series of even powers of x, or by a series of odd powers of x.
The two types refer in general to different values of p. Values of p have been
calculated" for the first seven eigenstates of the symmetric spherical oscil-
lator, for integral values of X up to and including six. It was not practicable
to calculate values of p corresponding to large values of ) by that method.

~ A. H. Wilson, Proc. Roy. Soc. A118, 628 (1928).
+ Sterne, reference 32.
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In Fig. 1, which is taken from Sterne's paper, are shown the eigenvalues of y
corresponding to values of X up to six, for the lowest energy levels. The dotted
curve (3, + 2) is not accurate, and was drawn merely to complete the second
vibrational level. $f X is zero, it is obvious that our Eq. (4.21) is merely that
of the spatial rotator; and we find as we expect the corresponding values of
p. Accordingly, the curves may be numbered by the use of n and m, the quan-
tum numbers of the spatial rotator from which they originate at the left-
hand side of the diagram for small X. The symmetry properties of the eigen-
states will, of course, not alter when ) is increased, so that we may denote
by A and by S the states which are antisymmetrical and symmetrical,
respectively, in the reversal of the radius vector 8, P end for end. The
component of angular momentum about the axis 8=0 will not change as X

is increased, so that ns will remain a good quantum number. On the other
hand, n loses its significance for large values of X. We shall find that there
will always be a degeneracy associated with non-zero values of M, correspond-
ing to both positive and negative values of m; and for this reason we use M
rather than m as the quantum number for values of ) greater than zero.

As pointed out above, this analysis does not tell us much about the be-
havior of the solutions for large values of X. However, from Wilson's asymp-
totic expansion for y we find that, for large X,

very nearly, where

W = hvp(N + 1) (4.25)

and

Here r can be zero of any even positive integer. Thus when ) is large the
molecule behaves rather like a plane oscillator. We find that corresponding
to any value N„of N, in this case of large X, there are 2(N&+1) linearly
independent wave functions; of these N&+ j are symmetrical and N&+1 are
antisymmetrical in reversals of the radius vector end for end. The broken
curves in Fig. 1 represent the asymptotic solutions which hold for large
values of X. The diR'erence between the energies of those states corresponding
to the same N is trivial when ) is large.

II4.3. The spherical oscillatory motion of molecules of type Xp, in Z states, in
crystals

From here on our investigation is similar to Pauling's. He points out that
the molecules can be said to rotate if the difference between the energies of
the wave functions for a given N value is large compared with the difference
between the energies of consecutive N levels, since the probability of rever-
sals of the molecules end for end is then large; and that the molecule can be
said to oscillate about positions of equilibrium if the difference between the
energies of the wave functions for a given ¹issmall compared with the differ-
ence between the energies of consecutive N levels. The transition between
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the two cases seems from an inspection of Fig. 1 to occur roughly along the
axis p, =0; which corresponds to W=2VO. We might have anticipated this
from the form of the potential function. We can obtain exactly the same
criteria as Pauling s for distinguishing between the two cases, without dif-
ficulty; but it seems to us to be simpler to proceed as follows. For rotation
to occur, we are to have 8') 2 Vo, and regardless of the nature of the energy
levels of the molecules, the molecules will not be likely, statistically, to
possess this energy until the temperature T of the crystal becomes compa-
rable with 2V, /k, where k is Boltzmann's constant. ' Therefore, roughly,
rotation occurs if

2' ) 2Vp/k

and oscillation occurs if

2' ( 2Vp/k.

These criteria are exactly equivalent to Pauling's. Actually, the probability
that a molecule will rotate is given roughly by

p
—g

—2Vp)kT

In order to make use of this analysis we must be able to find Vo. A rough
value for this quantity" can be obtained from the observed heat capacity of
the solid. If the molecules oscillate about equilibrium orientations the
specific heat of the crystal per gram molecule would be given as a first approx-
imation by the sum of a Debye function of parameter Pv, corresponding to the
translational oscillations, and twice an Einstein function of parameter
Pvp=hvp/k, where vp is the characteristic frequency of equation (4.25). It is
found that such a curve does not give a very close fit with observed heat
capacities since the model is too greatly simplified; but the heat capacity
curves do show that Pv and Pvp are nearly the same for many substances.
Hence a rough value for Pv and Pvp can be obtained by taking three times the
temperature at which the heat capacity reaches 5 calories per gram molecule
per degree; that is, half the high-temperature value of the specific heat for
five degrees of freedom. p Vp is then given by Vp = I(vppr)p. It appears further"
that for many substances the total heat change accompanying transitions
and fusions is approximately equal to Vp/2.

If the field of force is not axially symmetrical, then probably the simplest
method of investigating the behavior of a homopolar molecule is to con-
sider the problem by a perturbation method, in which the unperturbed state
is that of a plane oscillator having the potential function

V = uX2+ by2

and the energy levels

IV = hv. (Xi + -', ) + hv p(hali'p + -,')
* This procedure is based on the fact that an Einstein function reaches half its maximum

value at the temperature 0.33Pe."Pauling, reference 31, Table I, columns 5 and 6.
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where Nj. and N2 can have any zero or positive integral values. But since, as
before in the case of fields of axial symmetry, the lowest quantum state of
the molecule would still be capable of representation by two wave functions,
one symmetrical and the other antisymmetrical, in reversals of the radius
vector end for end, the absence of axial symmetry in the orienting field will
not introduce anything new into our analyses of vapor pressures.

It is possible that in certain crystals made up of molecules of the type
which we are considering, there will be, not one axis of minimum potential
energy, but several for the molecule we happen to be considering. If there
are, for instance, three axes of minimum potential energy with all of the
minima equal, then the lowest quantum state of the molecule considered
would have for strong fields a statistical weight of 6; 3 of the linearly in-
dependent wave functions being symmetrical and 3 antisymmetrical in
reversals of the radius vector end for end. Perturbation methods would prob-
ably suffice for an investigation of the general case where there are several
axes of minimum potential energy for each molecule. The quantum mechan-
ics of molecules of type X2 in crystals deserves further consideration; but
what we have said will suffice for our purposes in this article, except possibly
for oxygen, which we shall consider separately. It should be borne in mind
that the statistical weights of this chapter have been thus far merely the
weights of the spherical oscillatory and rotational motions alone.

Il4.4. The rotational motion of diatomic molecules of type X'F in Z states in
crystals

In this case the wave equation similar to Eq. (4.21) does not seem ca-
pable of simple precise treatment; accordingly we consider the nature of the
quantum states of molecules like hydrogen chloride in the crystalline phase
by perturbation methods. The transitional cases between oscillation and
rotation are not likely to be met with in practic" -either the molecules will
be found to be capable of free rotation or else they will be found to oscillate
about orientations of equilibrium. For in a crystal, all the molecules will
experience nearly the same strength of fields (though not necessarily in the
same direction); and if the molecules in close proximity to a given molecule
are rotating, then it would seem from the properties of the wave functions
that they could not manage to contribute a significant field to the region
occupied by the given molecule, such as might cause it to oscillate. They
would either all rotate or else all oscillate; and it is possible that in some cases
at low temperatures they all would oscillate, and as the temperatures were
raised all start rotating rather suddenly, at a rather definite transition point
of the crystal.

If the molecules oscillate, then we can use a perturbation method to show
that for a molecule of type XY with only one orientation of minimum po-
tential energy (and, unlike molecules of type X2, with a potential minimum in
only one sense along this axis) the lowest quantum state will have a statistical
weight of unity. With N axes of equal minimum potential energy, the lowest
quantum state would have a statistical weight of ¹ but it is hard to see how
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there could be more than one orientation of minimum potential energy for a
molecule of this type, since the potential energy should be a minimum when
the axis of the molecule is pointing along the electric field which exists in the
region occupied by the molecule.

)4.5. The rotational motion of molecules in states other than 'Z in crystals

We have hitherto considered only those molecules which were without
axial spins. However, we shall later have to consider the behavior of nitric
oxide, whose ground state in the free state is II; i.e. , a state in which the
resultant electron spin is one half a quantum and in which there is a one
quantum component of orbital electronic angular momentum about the line
joining the nuclei. We shall therefore discuss this molecule briefly. The
coupling for an NO molecu1e in the gas is that known as "Hund's case a."The
total orbital angular momentum is not quantized, but that component in the
direction of the line of nuclei is quantized, and is denoted by a quantum
number A which is 1 for a II state. It may be directed in either sense along
the line of nuclei. The resultant electronic spin angular momentum has a
quantized component in the direction of the line of nuclei with the quantum
number —,

' in either sense. The resultant of these two components along the
line of nuclei is called 0, and forms with the angular momentum 0 a quan-
tized resultant J~ which is the total angular momentum of the molecule; the
s component of J* is quantized. 0 is the resultant of the nuclear rotational
angular momentum and the component normal to the line of nuclei of the
electronic orbital angular momentum. In the ground state of the free NO
molecule, a 'IIi~2 state, 0=J*=-,'. The lowest state of a free NO molecule has
a statistical weight of 4 therefore, since the s' component of 0 may be + ~ and
0 may be directed in either sense along the line of nuclei. In the crystal, if
the molecule oscillated the line of nuclei would be orientated, and the statisti-
cal weight of each molecule might be expected to be 2.

However, Johnston and Giauque" have measured calorimetrically the
difference between the entropy of gaseous nitric oxide at 121.36'K and the
entropy of nitric oxide in the crystalline phase at the absolute zero, and have
obtained the result 43.0 E.U. per gram molecule. The value which they ob-
tained from spectroscopic data for the entropy of the gas at 121.36'K,
referred to a state in which the gas could be represented by only one" inde-
pendent wave function, was 43.75 E.U. per gram molecule. The difference,
0.75 E.U. per gram molecule, is almost exactly —,'R log 2. The difference could
therefore be accounted for if, neglecting nuclear spins, each NO molecule has
a statistical weight 2'" in the crystal lattice at these lowest temperatures;
and this indicates that the molecules of NO are grouped in the crystal into
units N202 each of which has a statistical weight 2. It is known that groups
N202 exist in liquid nitric oxide, so that the result is reasonable. But the
discussion of the previous paragraph would not have predicted it; and this

"J.A.C.S. 51) 3194 {1929),
3~ If eve disregard, as me may, nuclear spins. The precise theoretical meaning of this state-

ment is made clear in Chapter IX.
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shows that we should be cautious in trying to predict the statistical weights of
molecules in crystals when their free ground states are not Z.

We find similar difficulties for Z states which are not 'Z. The only such
molecule which we shall consider is oxygen whose ground state is 'g. Here
the component of electronic orbital angular momentum in the direction of
the line of nuclei is zero; but the resultant electronic spin angular momentum
is quantized with the quantum number unity. It is dificult to predict
theoretically what the statistical weight of an 02 molecule should be in the
crystal lattice at the absolute zero; but Giauque and Johnston" have meas-
ured calorimetrically the difference between the entropy of gaseous oxygen
at 90.13'K and the entropy of oxygen in the crystalline phase at the absolute
zero, and have obtained the result 40.7 E.U. per gram molecule. This is in
excellent agreement with the value 40.68 E.U. per gram molecule, obtained
from spectroscopic data, for the entropy of the gas at 90.13'K, referred to a
state in which the gas can be represented by only one independent wave
function. We must therefore infer that at the absolute zero each molecule
02 in the crystalline phase has a statistical weight unity. These inferences
however for 02 and NO are inferences from the observed entropy changes,
practically equivalent to observed vapor pressures; we cannot yet deduce
these c priori and to this extent a complete theory is still lacking.

II4.0. The statistical weights of the lowest quantum states of oscillating mole-
cules in crystals

We are now in a position to tabulate the results of this chapter. We shal&

need them in subsequent chapters. In constructing this table we have
assumed for the reasons mentioned previously in this chapter, that only one
direction of minimum potential energy exists for each molecule; with two
possible senses for molecules of the type X& and but one sense for molecules
of type XF. For Z molecules of type X2 with similar nuclei, there will by
(I+1) (2n+1) linearly independent wave functions which are symmetrical

TABLE II. Weights, coo of the lowest states of oscillating molecules in crystals.

Txpe

3g
{o2)

2II
(NO)

Para-X2

n(2n+1)

n(2n+1)

Ortho-X2

(n+ 1)(2n+1)

(n+1)(2n+1)

Heteronuclear
Xg

2(2n1+1)
X (2n2+1)

2(n1+1)
X(2n, +1)

(2n +1)
X (2n, +1)

+2(2n1+1)
X (2ng+1)

in the nuclear spins alone, and n(2n+1) which are antisymmetrical; the
spin of the nuclei being n quanta of 8/2m. But there is one wave function for
spherical oscillations which is symmetrical in reversals of the radius vector

Giauque and Johnston, J.A.C.S.51, 2300 {1929).
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end for end, and one antisymmetrical; hence the total number of linearly
independent wave functions with the proper symmetry properties for the
molecule is (2n+1)'. (This is the same as the number one obtains at once by
regarding the lattice as composed of atoms which are free from degeneracy in
their lowest electronic states. )

The enumeration of these wave functions for an X2 molecule is simple.
Let thespin wave functions beg&& &, , P;& & and/&&'&, , P;&", (j=2n+1)
for the atomic nuclei a and b, respectively. Suppose we have a pair of spin
functions', & ', P,&'&. From these we can form one symmetrical combined func-
tion, f,& &g:,&'& only, and there are j such pairs. Suppose on the other hand that
we have a pair of spin functions lf „& &, p, &'&, (sA r). Let us combine with these
the pair &j„&~&, f,&~&. We can form from these one symmetrical and one anti-
symmetrical combination, P„& &P,&" +P,&'&P„&'& respectively, and there are
',j(j 1—) su—ch pairs. There are therefore ,'j(j 1—)+j—=(n+1)(2n+1) sym-
metrical spin combinations and —,j(j—1) =n(2n+1) antisymmetrical spin
combinations as stated.

For any molecule of type X2 with different nuclei we can and must neglect
all symmetry requirements for interchange of the nuclei. For if we inter-
change the nuclei we have not just interchanged electrons and protons since
one nucleus has more component primary systems than the other. In a crystal
therefore a heteronuclear molecule of type X2 and state 'Z has a statistical
weight 2(2n&+1)(2n2+1), being represented by that number of linearly
independent wave functions. Here ni and n2 are the spins of the two nuclei
which may be unequal, and the factors (2N&+1) and (2N2+1) come from the
possible independent orientations of each spin. The factor 2 comes from the
possibility of end for end reversal which for a heteronuclear molecule gives
new states. For molecules of type XF this factor 2 drops out since end for end
reversal does not in general lead to a position of equilibrium.

II4."/. The weights of the rotational states and the partition functions for free
diatomic molecules

The weights of the states of free diatomic molecules and their partition
functions are fairly familiar. We have already used the most important
special results for hydrogen in Chapter III, but for convenience we assemble
here the principal results required for other molecules.

In the first place the translatory motion of the center of gravity of the
molecule is strictly independent of its internal motion, so that any transla-
tional wave function can be combined with every wave function for the in-
ternal state. The partition function F(T) therefore separates into two factors

summed respectively over the translational and internal states. As we have
already said in Chapter II, Q(T) has the form

Q(T) = (2&rmkT)'"Vs *"r/&'-
The states arising from the different orientations of nuclear spins are in-
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eluded in M(T). Since nuclear spins are so lightly coupled to the rest of the
molecule they are associated only with insignihcant energy differences, small
compared with kT at any attainable temperature. They produce therefore
only an extra weight factor N for each internal state, obviously the same as
the factors depending on n in Table II. Nuclear vibrations and rotations are
however not strictly independent of each other though it is usually possible
so to treat them W.hen they cannot be so treated M(T) can and must be com-
puted from the actual energies of the states by numerical summation; but
we shall confine ourselves to the separable case. M(T) then breaks up into

NV(T)R(T).

Here we include any weight factors from the electronic state of the molecule
in R(T), and can then so define x in Q(T) that V(0) = 1. We shall be always
concerned with molecules for which the rotational specific heat has its con-
stant classical value, except for the case of hydrogen at very low tempera-
tures, while the vibrational specific heat is variable. Then just as in )3.3

T gg~ T'

log V(T) = Jf „ I (C„))dT".
0

It will not be necessary to consider further the nature of V(T).
The structure of R(T) will depend on the nature of the normal electronic

state of the molecule. For a rigid rotator without axial spin

R(T) = Z(»+
j=o

87r~I k 7
)

h2

1)s—i(i+)) 1PI(8x I)T)

kT &y

For all the molecules we shall discuss, except hydrogen, the last condition is
always fulfilled, and for every type of electronic state this value of R(T) ap-
pears as a permanent factor to which others are added. We shall therefore
write

M(T) = GSir'IkT V(T)/h2

and tabulate the values of G for various types of molecule.
For molecular states 'Z there is no angular momentum about the nu-

clear axis and no electron spin. The only contributions to G come therefore
from N and from symmetry requirements (if any). G has thus the values
(2n)+1) (2n&+1) for XY or heteronuclear Xm molecules, but i~n(2m+ I) and
-', (m+1) (2@+1) for para- and ortho-states of homonuclear Xm molecules,
since only half the terms of R(T) occur for each type.

For a normal state 'Z such as that of oxygen the coupling between the
electronic spin and the nuclear rotation is very weak and the rotational
energy levels are not seriously split by the spin. " The actual splitting is

39 Mulliken, Rev. Mod. Phys. 2, 106 (1930). The splitting is of the order of 2 pm-I; see
Mulliken, Phys. Rev. 32, 880 (1928).
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small compared with kT for all temperatures at which the vapor pressure
of oxygen is sensible, and one may neglect it. The only effect is then to insert
a factor 3 in G."

For a normal state'IIl/2 such as that of NO we must take intoaccount the
upper level 'II3/2, which is higher than the 'IIl/2 level by 124 wave numbers in
the free molecule. There is what is known as A-type doubling of the rotational
levels and the quantum number for the total angular momentum, j, takes
half odd integer values split into two groups. "The complete function M(T)
takes the form

M(T) = 2(2ez+ 1)(2ez + 1)V(T) g (2j + 1)e &'&&'+~&'I~r

j=1/2, 3/2 ~ ~ ~

3»—124 Ac/ kT+ e
j=3/2, 5/2, ~

(&&y &&; u

where s =&'/(8s'I). The factors (2ni+1)(2n+2q) are nuclear and the factor
2 comes from the two opposite senses relative to the nuclear rotation of the
component of the total orbital angular momentum along the nuclear axis.
It follows that when kT))e

so that
M(T) ~ 2(1'+ e ivofr)(2m~ + 1)(2es + 1)8ssIAT/hs

G = 2(1 + e '~ ~ )(2m' + 1)(2os + 1).

We can now prepare Table III.
TAal. E III. The factors 6 for various types of free diatomic molecules.

Type

O$6O16

211~ ly
(NO)

Para-X2

—,'n(2n+1)

kn(2n+1)

Ortho-X2 Heteronuclear X2

2 (2n1+1)(2n2+ 1)
g (1+e-120/ T)

—', (n+1) (2n+1) (2n1+1)(2n2+1} (2n1+1)(2n2+1)

~6(n+1)(2n+1) 3(2nl+1)(2n2+1) 3(2nI+1)(2n2+1)

CHAPTER V
THE VAPOR PRESSURE CONSTANT OF CHLORINE4

$5.1. Introduction. The isotopic constitution of chlorine

We consider chlorine at ordinary temperatures to consist of three sorts4'
of molecules —namely Cl»C1», Cl»CI3~ and C137Cl», which we shall denote

"R(T) for oxygen has been examined more closely in this connection by Giauque and
Johnston, J.A. C. S.51, 2300 (1929).

4' Mulliken, Rev. Mod. Phys. 2, 105, 111 (1930).
4~ "The Chemical Constant of Chlorine Vapor, and the Entropy of Crystalline Chlorine, "

T. E.Sterne, Proc. Roy. Soc. A131, 339 (1931)."There is probably an isotope of mass 39 present in smaller quantities (G. Hettner and
I. Bohme, Zeits. f. Physik '72, 95 (1931}),but this does not invalidate the principles and con-
clusions of this chapter, which was written before the appearance of the above paper.
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respectively by A, 8 and C. The work of Elliott44 on the absorption band
spectrum of chlorine makes it seem extremely likely that the Cl» nucleus has
a 5/2 quantum spin. Elliott was unable to determine the magnitude of the
nuclear spin of C13~. In any case, however, we expect chlorine A and C at
ordinary temperatures to consist of two sorts of chlorine; para-chlorine mole-
cules represented by wave functions with even rotational quantum numbers
and antisymmetrical in, the nuclear spins, and ortho-chlorine molecules with
wave functions with odd rotational quantum numbers and symmetrical in
the nuclear spins. The normal state of a chlorine molecule appears to be 'Z.
If the 5/2 quantum spin is correct, then at ordinary temperatures, we should
expect para- and ortho-chlorine to exist in chlorine gas in the ratio n: (n+1)
or 5:7.

One can determine by statistical mechanics~ the composition of chlorine
gas—the relative numbers of molecules of the different sorts present in the
ordinary gas. This has never been measured experimentally; from the atomic
weight of chlorine we can obtain directly merely the relative numbers of
atoms of the two isotopes. The results found by statistical mechanics differ only
trivially from the results obtained by the simple assumption that any a.tom
of chlorine is equally likely to combine with any other atom present to form
a molecule of chlorine. Further, it is found that the molecular composition of
chlorine gas is ind pendent of the magnitudes of the nuclear spins of CI3~ and
C137. Denoting by u, b and c numbers proportional to the numbers of mole-
cules of sorts A, 8 and C, respectively, with a+b+c=1, it is found that
a=0.5779, b=0.3650, c=0.0571.

In calculating the vapor pressure of chlorine crystals we shall carry
through the analysis in a general fashion applicable not only to chlorine but
also to other diatomic gases of type X2 which may consist of two or more
isotopes. We denote the maximum z component of nuclear angular momen-
tum of Cl&z by n&h/2n, and that of Cl&z by n&k/27r We sh. all find that the
vapor pressure is independent of the values of nI and n~, and we shall obtain
a value for the vapor pressure constant of chlorine in moderately good agree-
ment with experiment.

II5.2. The statistical mechanics of assemblies containing gaseous moiecules
of types para-XI X~, ortho-XI X~, X~X2, para-X2X2, and ortho-X2X2,
as well as mixed. crystals of these molecules

We denote the number of molecules of the r'th type in the crystal by
I'„and we suppose that the total number X„=I'„+N„ofmolecules of the
sort r in the assembly remains constant. We define a set of quantities D„by
the equations D„/X„=const. ; ZD, =1; r =1, 2, 5, 4, 5. We consider that the
molecules retain their identity in the crystal and form a molecular lattice,
as they certainly do for iodine and probably for chlorine. There will be the
usual Debye normal modes of oscillation of the crystal as a whole and in
addition the molecules themselves can be in various quantum states of
spherical oscillation or rotation. We may make our enumerations on the

~ E11iott, Proc. Roy. Soc. A127, 638 (1930}.
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basis that a complete wave function for the crystal is a linear combination,
symmetrical in all similar molecules, of functions of the form f P~ 4's Pc to
the first approximation; where II is a wave function representing a set of
normal modes; f~ is a wave function representing a set of rotational or
spherical oscillatory states of the molecules of sort A; and fs and Pz are
similar functions for molecules of sorts 8 and C respectively. " Then the
normal modes contribute to the total number of linearly independent wave
functions capable of representing the assembly a factor equal to the coeK-
cient of s& in [x(s)]~; if the total energyof these modes is Q. Here P=ZP, .
Let a partition function for a molecule of the r'th sort for rotations or spher-
ical oscillations in the crystal be f„(s) The. n these motions, if their total
energy for the whole crystal is S, contribute to the total number of wave
functions of the entire assembly a factor equal to the coefficient of z in

1

Thus the whole crystal, if its energy is U, contributes a factor equal to the
coefficient of s~ in

The gas phase, if its total energy is F, contributes a factor equal to the co-
efhcient of s II,x„~ in II~ II2 II3 II4 II5 where

II, = II,(I —x,s"~) '.
Hence the whole assembly, if its energy is E, and if there are X„molecules
of sort r in the vapor and P„=X„—N„ in the crystal phase, "can be repre-
sented by a number of linearly independent wave functions, symmetrical in
all the pairs of similar molecules, equal to

C(Eg, 1ll'2, 1V8, E4, Ill'g)

gE+I g Nr+1

1

. (5.20)

At ordinary temperatures and pressures we may replace'~ the product of the
II's in the numerator of the integrand of the above expression by

exp Qx„F„(s)

"See Appendix I."And if we allow all possible arrangements of the sets of molecules P„among the lattice
points. For an analysis of the legitimacy of this procedure, see Chapter VII. The sets of mole-
cules are not constrained to condense on definite sets of lattice points.

"Fowler, Statistical Mechanics, pp. 534-537. This approximation being valid for Hg at
20'K is a fortiori valid for greater temperatures and masses.
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where F„(s) is the gaseous partition function for a molecule of the r'th sort.
@le thus use the classical approximation to the Einstein-Bose statistics as
far as the molecules in the gas are concerned, but retain sufficient accuracy.
By the usual methods we find for the mean values

where

Ã„= ),F,(e) (5.21)

(5.22)

If nearly all of the molecules are in the crystal, then

I'i:I'~:I'3.'I'4:I'5 = Di:A:Da:D4:P~ (5.23)

very nearly, and it follows from this equation and the two preceding ones
that

Ã„= D„F(8) /[f, (8)~(8)]. (5.24)

Hence the average value of the total number of molecules in the vapor, N,
is given by

(5.25)

$5.3. The vapor pressure of chlorine

We have the relation pV =NkT, where P is the pressure. It follows that
the vapor pressure is given by

where

p„= F„(8)kT/[Vf, (8).~(8)],

(5.30)

(5.31)

which is not the partial pressure of the r'th species, but is the vapor pressure
of a crystal made up wholly of the r'th sort of rpolecules. We take as the zero
of energy the state when all of the molecules are condensed in the crystalline
phase at the absolute zero of temperature, when the lattice is subjected to
zero pressure. In this state of zero energy the molecules, further, are to be in
their lowest electronic and nuclear vibrational states, and are to have no
spherical oscillation or rotation (this may not be a possible stationary state,
but will suKce as a zero of energy). We suppose the partition functions
f,(8) to be of the form

where „co; is the number of linearly independent wave functions capable of
representing the j'th eigenstate of a molecule of the r'th species in the cry-
stal, and „e; is the energy of the state. We denote by C, the specific heat per
gram molecule at constant pressure of a crystal made up wholly of the r'th
sort of molecules. Then it follows from the corollary to the lemma of II3.3
that
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8P
J

C„/IT" = log K(T)f„(T) —log ~o +RT's J o kT
(5.32)

It follows from this last relation, (5.31) and )4.7, that"

X —r&0 8T
log P. = — + (&/2)»g T + [(C„') —C, ldT"

kT p ET
(2s/r/„) 8/2// i/2g~sf G

+ log + log— (5.33)
„eo

Here (C~"), is the vibrational specific heat of the vapor made up of molecules
of the r'th sort, and G, is the G which we studied in the last chapter, for the
r'th variety. The quantity y, which we have taken to be the same for all
five sorts of molecules (the differences are trivial) is the work which must be
done on a molecule in the crystal in the state of zero energy defined above, in
order to remove it to a state of rest at infinity, in its lowest quantum state
of electronic and nuclear vibrational motion, and with minimum energy of
rotation.

It now becomes necessary to consider the nature of the energy levels of
the molecules of chlorine in crystalline chlorine. We use the methods ex-
plained in the last chapter. The specific heat of crystalline chlorine becomes
equal to 5 calories per gram molecule at approxmately 34 K. By the fiirst
method mentioned in the last chapter we therefore find that Vo is equal
roughly to 5.2&&10 "ergs. Taking the heat of fusion49 (there are no transi-
tions below the melting point) to be 1615 calories per gram molecule, we
find by the second method mentioned in the last chapter that Vo is approxi
mately 2.2)&10 ' ergs. In either case, rotation ought not to occur at abso-
lute temperatures lower than about 3000'K. Thus we may be fairly confident
that chlorine molecules in crystalline chlorine, at temperatures at which the
latter can exist, are not rotating; but are vibrating instead about orientations
of equilibrium, with a set of energy levels much like those of a two-dimen-
sional harmonic oscillator, separated by energy intervals of the order of
100'K in temperature units. X-ray analysis of the structure of iodine cry-
stals" shows that the atoms are joined in pairs to form molecules by strong
shared-electron-pair bonds, and the molecules are grouped together in such
a way that the figure axis for each assumes a definite orientation, This is the
equilibrium orientation, with the polar angle 8=0, say. The symmetry of
the molecule requires that there is also another equilibrium orientation at
O=z."Unfortunately no x-ray analysis of the crystal structure of chlorine
has yet been made, but it is plausible to guess that chlorine, when its struc-
ture is finally investigated experimentally, will be found to be similar to
iodine in that each molecule is definitely orientated.

48 To have included the partition functions for nuclear vibrations in the analysis of the
complete partition function for the crystal would have complicated the demonstration without
introducing any features new in principle."Eucken and Karwat, Zeits. f. phys. Chem. 112,478 (1924).

~o P. M. Harris, E. Mack and F. C. Blake, J.A.C.S. SD, 1583 (1928).
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Assuming that the molecules of chlorine perform spherical oscillations,
we can make use of the results given in fft4. 6 and 4.7 to calculate the last
terms in the five expressions (5.33). We find that in all cases the last term
reduces to log-,'. This is the value we should expect from the elementary
argument that for molecules of type XI there are twice as many states. as
usual in the crystal owing to the end for end rotations. But it does not seem
possible to establish this rigorously without detailed examination.

A detailed examination of the terms in Eqs. (5.32) and (5.33) shows that
the different p„'s differ by only about one part in seven from each other at
the utmost. We can show therefore that

log p = log QD,p„= QD„ log p„ (5.34)

very nearly; with an error of less than 2 percent in P." Further, we can show

by using the complete crystalline partition function that if (C„).» is the
specific heat at constant pressure of the mixed crystal of chlorine, per gram
molecule, then

Since

(Cn)-i = ZDC'
(5.35)

we have, from (5.33), (5.34) and (5.35)

/I 7 dT
log p = — + —log T + I i [(C„)i—(C ).»]dT"+i, (5.36)

kT 2 Jo RT'~ Jo

where

2 =
5

D„i„;
1

or since D~+D2 =u, D3 =b, D4+D~ =c, i ~ =i2 and i4 =i~, we have

z = az~+ bz3+ cz4

where

i, = log Sir I„kr' (2irm, )"'/(2h').
(5.37)

We know the masses of the molecules from Aston's measurements and
from a knowledge of Avogadro's number; we know the moments of inertia
I of chlorine A and 8 from the work of Elliott" to be 114X10 " and 118
)(10 "CGS units, respectively. We take as the moment of inertia of chlorine
t."molecules the value 121)&10 "CGS units, obtained from the former value
by a simple calculation involving the masses, since the nuclear distances of

"Define a set of quantities A, small compared with unity such that p„=p{1+A„);
ZD„A „=0.Then ZD, log p„=log p +ED„ log {1+A,). If the logarithms in the last term are
expressed as power series the truth of {5.34) follows at once, since terms in A, disappear.
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the molecules A and C may be supposed to be equal, and also the distances
to the centers of mass. Hence, using atmospheres as units of pressure and
using common logarithms in the vapor pressure equation, we find for the
vapor pressure constant of chlorine at ordinary temperatures the value

i' = 1.35.

This is in fair agreement with Eucken's first published value" i'=1.51
+0.16, but in worse agreement with his revised value" i'=1.66+0.08. It
would however be well to await verification of these measurements of the
vapor pressure of chlorine before regarding the above discrepancies as serious.

Everything we have said here for C12 obviously applies with trivial change
to any molecule of the type X2, and we shall apply the formulae of this
chapter to such molecules without further discussion. It is clear that the
method extends at once to mixtures of any number of isotopes. We pass on
to a molecule of the type X I' in the next chapter.

CHAPTFR VI
THE VAPOR PRESSURE CONSTANT OF HYDROGEN CHLORIDE~

)6.1.The vapor pressure constant of hydrogen chloride

The normal state of the gaseous HCl molecule is 'Z. Further, the nuclear
vibrational energy levels higher than the ground level are so high (of the
order of 4000'K) that in a treatment of the vapor pressure of hydrogen
chloride at ordinary temperatures they may be neglected entirely. The pure
rotation absorption spectrum, in the extreme infrared, and the lowest rota-
tional-vibration spectrum in the infrared, have both been investigated re-
cently by Czerny, " so that our knowledge of the energy levels relevant to
the evaluation of the partition function for gaseous HCl molecules is quite
complete. More recently still, the two lowest absorption bands have been
investigated by Meyer and Levin" and the results have been analyzed by
Colby" who fitted them to the equations derived theoretically by Fues, s'

for the oscillating rotator. It appears that owing to Colby's somewhat unus-
ual though undoubtedly correct analysis it is simpler, in calculating the
rotational partition functions, to use the value for the "moment of inertia" of
the molecule of hydrogen chloride obtained by Czerny, namely 2.656)&10 "
CGS units, rather than to use the correct moment of inertia for the molecule
at rest obtained by Colby. For we should have to apply just those correc-
tions to the latter value, if we used it, which would give us Czerny's value.
When we make calculations for the moments of inertia of the HC135 and
HC137 molecules, we find that the difference between their moments of in-

'g Eucken, Phys. Zeits. 31,361 (1930)."Sterne, Proc. Roy. Soc. A133, 303 (1931).
64 Czerny, Zeits. f. Physik 44, 252 (1927).
~ Meyer and Levin, Phys. Rev. 34, 44 (1929)."Colby, Phys. Rev. 34, 53 (1929).
6' Fues, Ann, d. Physik 80, 367 (1926);81, 281 (1926).
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ertia is trivial, owing to the fact that the centers of mass are in both cases
very close to the Cl nuclei. These calculations are confirmed by the actual
values of the moments of inertia obtained by Colby in his analysis of the
experiments of Meyer and Levin. In calculating the gaseous partition func-
tions we may therefore neglect the differences in the moments of inertia. We
must, however, consider the di6erences in the masses when we calculate the
translational factors in the gaseous partition functions.

We may use the analysis developed for chlorine, with the greater sim-
plicity that now there are only two sorts of molecules HC13~ and HC1» which
we call A and 8 in this chapter, without any non-combining groups of terms
since there are no symmetry properties to be obeyed by the molecular wave
functions. But there is an even greater simplicity —for when we come to
evaluate the last term in (5.33) we find that it now makes no difference to our
results whether the HC1 molecule oscillates or rotates in its lowest quantum
state in the crystalline phas- in either case &ao is (2n~+1)(2n +s1), and
since G has the same value, the last term in (5.33) becomes simply zero. Hence
the vapor pressure constant of hydrogen chloride is

z = Dye + Dye

where
i„= log [(2am, )'"k'"8"I„/1'], r =A, B.

As we have indicated, both I's may be taken to be the same; we take for the
molecular weights of the molecules 36 and 38 with su%cient accuracy; D&
and D& are equal respectively to 0.760 and 0.240." We find for the vapor
pressure constant, therefore, the value

zl = —0.42. (6.1)

We may be quite confident of the correctness of this value. It does not depend
at all upon whether or not the molecules of HC1 rotate in the crystal; it
should be correct if the molecules perform either spherical oscillations or
rotations —provided only that if they oscillate, there is but one orientation
of minimum potential energy. That HCl forms a molecular lattice is rendered
almost certain by the persistence" in the crystalline phase, with but a small
change in wave-length, of the absorption band observed in gaseous absorp-
tion at about 3.46 microns. The existence of the transition point at 98'K
in the crystalline phase, in no way diminishes the validity of the investiga-
tions.

The value (6.1) is in excellent agreement with the most recent value
given by Eucken, "which is —0.40+0.03. It is in poor agreement with Euc-
ken's old value" of —0.26+ 0.04.

'8 Sterne, Proc. Roy. Soc. A131, 339 (1931).
'9 Unpublished work of the late Fraulein G. Laski at the Reichsanstalt. The writers are

indebted to F.I.G. Rawlins for this information,
Eucken, Zeits. f. Physik 29, 1 (1924).
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The discussion of this chapter for HCI applies mltatis mutandhs to any
other molecules of type XF and of normal electronic state 'Z.

CHAPTER VII
M&XED CRYSTALS

f'7.l. The statistical mechanics of assemblies containing mixed crystals made
up of constituents which can mix in a11 fashions

In Chapters V and UI we have had to consider assemblies containing
crystals made up of different sorts of nearly identical molecules —the differ-
ences being due to the presence of isotopes and in the former chapter to the
presence of non-combining groups of rotational terms as well. In f5.2 in

particular, we had to deal with three sorts of chlorine molecules A, 8 and C
of molecular weights 70, 72 and 74, respectively. We there supposed that all
distributions of the sets of molecules A, J3 and t."among the lattice points of
the crystal were possible distributions which had to be counted in enumer-
ating the total number of linearly independent wave functions capable of
representing the entire assembly. Since the only relevant difference between
molecules of different sorts was the comparatively small difference in their
masses, which might make a difference to the crystalline partition function
for the normal modes of oscillation, but which could hardly restrain the dif-
ferent sorts of molecules to condense on definite sets of lattice points, this
assumption seemed plausible. But other considerations may tend to make
one doubt the legitimacy of the assumption. Even if all distributions of the
different sorts of molecules among the lattice points are at the outset, before
the crystal is actually formed, equally likely, do we not know that, once the
crystal is formed, and after its volume has reached such a value when com-
pared with its surface that only a trivial proportion of its molecules can be
concerned in any processes of evaporation and condensation at the surfaces,
the interior of the crystal is then arranged fairly permanently in some de6-
nite arrangement which can change only very slowly with the time? For we
know as an experimental fact that processes of diffusion within a solid —of
rearrangements of different sorts of molecules —proceed usually with ex-
treme slowness, We may be ignorant of the precise way in which the different
sorts of molecules are distributed among the lattice points. They are never-
theless in fact distributed in some quite definite way in the interior of the
crystal —in a way which cannot change appreciably during the time of a
physical measurement. Ought we not to count as possible wave functions for
the crystal not all of those which we did count, but merely those, much fewer
in number, corresponding to rearrangements of only those molecules which
are very close to the surfaces& We desire to know the total number of linearly
independent wave functions capable of representing the entire assembly, and
hence the total number of linearly independent wave functions capable of
representing the mixed crystal. This latter seems to depend upon our know-
ledge of the crystal. How are we to think of it in statistical mechanics?

We must answer these questions which we have asked ourselves as fol-
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iows: It is no doubt often true that the interior of a crystal is in a state which
can change only very slowly. But we have considered assemblies which con-
tained definite total numbers X„ofmolecules of each sort r. For any sort we
supposed that if N„of them were in the gas, then P„of them, given by
X„—N„, were in the crystal; and quite apart from the different distributions
among the lattice points of the molecules of the different sorts in the crystal,
the method of enumerating the different possible wave functions allowed for
the occurrence of all values of P, from 0 to X„.Hence our calculations applied
to an assembly such that the X„molecules of a particular sort could be dis-
tributed between the gaseous and crystalline phases in all of these possible
ways, and could not be considered to apply to an assembly in which any
crystal could be known to be arranged internally in a definite way. For if
any of the molecules of a certain sort r were known to be arranged in definite
places in a crystal, they would be known not to form part of the set of X„
molecules which could be distributed between the two phases in all possible
ways. Our procedure in Chapters V and VI was therefore correct, and led to
correct values of the vapor pressure. If we wish to apply these methods to
an actual assembly in which for instance it is known that S„molecules of
sort r are in a crystal and that they occupy a definite set of lattice points, we
must ignore these molecules by considering them to be outside of the im-
agined assembly to which our calculations apply; and we can do this by
subtracting S„ from the total number of molecules of sort r in the real as-
sembly in order to get the number X„which we use in our calculations. In
this way we get the correct number of linearly independent wave functions
electively representing the assembly.

The Situation is similar to that covered by the lemma of fj2.11. Instead
of regarding the whole crystal as analyzable, into its constituent molecules
we regard the greater part of the crystal as a permanent system (and even
leave it out of the assembly!) and need not then make the wave functions
of the assembly symmetrical or antisymmetrical in the molecules which are
permanently in the permanent part of the crystal. %e now get a different
number of accessible states for what remains of the assembly, but this only
corresponds to the fact that our assembly is now a different one, and, no
physical result is altered.

In modern statistical mechanics the entropy of an assembly appears as
the sum of a constant, which may be arbitrarily chosen, and the product of
Boltzmann's constant and the natural logarithm of the total number of
linearly independent wave functions capable of representing the assembly.
The considerations of the preceding paragraphs show that in calculating the
entropy of a mixed crystal made up of constituent molecules or atoms which
can be arranged in all fashions, the correct procedure is to take into account
all the different distributions of the sets of molecules P„among the lattice
points, when we calculate the total number of wave functions. For the mixed
crystal must have been obtained either by condensation from a mixture of
the gaseous phases or of the liquid phases, or else by a process of diffusion in
the solid state.
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CI7.2. The statistical mechanics of assemblies containing mixed crystals made
uy of constituents which cannot mix in a11 fashions

If a crystal is made up of P& particles (molecules or atoms) of sort I, Pz
of sort 2, I'3 of sort 3, etc. , and if as we supposed in the last section they can
mix in all fashions, there will be for the crystal as thus specified

(p, +. p, +. p, +. . . ) i/(p, ip, ip 1. . . ) (7.20)

different possible arrangements. If the particles are sufficiently similar (as
for instance the different sorts of chlorine molecules were supposed to be in
Chapter V) then we see from Chapter V that the total vapor pressure p will
be given very nearly by

p= ZD.p.

where p„ is the vapor pressure which a crystal would have if it were made up
wholly of the r'th sort of particles, and D„ is the ratio which the number of
particles of sort r bears to the total number of particles. If in particular there
were but three sorts of molecules for which the p„'s were the same, then p
for the mixed crystal would have the same value as these p„'s.

This is only true if the constituent particles can mix in all fashions. For
the other extreme case, we suppose that the particles cannot mix at all; or
in other words that all the particles P„of each sort r in the crystal must
necessarily occupy a single definite set of lattice points, so that there will be
but one possible arrangement for the crystal instead of the number give in
(7.20). It is easy to show that in this case, if the particles are su%ciently sim-
ilar, the total vapor pressure p will be given by

This is entirely reasonable, since in the case where each sort of particle con-
densed on its own pure crystal the total vapor pressure would have to be
equal to the sum of the partial pressures, which latter are here just the p„'s.
If we had supposed in Chapter V that the three different sorts of chlorine
molecules could not mix at all in the crystal, we should thus have found three
times the vapor pressure" very nearly that we did find, and accordingly the
vapor pressure constant i' would have been greater than that which we did
find by logm3, and would therefore have been equal to 1.83. This last value
is considerably greater than even the greatest of the experimental values
given by Eucken; and we are provided with experimental evidence, therefore,
that the three sorts of chlorine molecules are not completely incapable of
mixing in the crystalline phase.

The intermediate cases, for which mixing is possible to intermediate ex-
tents, may be of interest. We must introduce a parameter or parameters spec-
ifying how "perfect" a mixing can occur. We consider for simplicity the case
where there are just two sorts of particles A and B. We denote as usual the

"Sterne, Proc. Roy. Soc. A131, 339 (1931).
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numbers in the crystal by P& and P&. Let us start from the one extreme case
in which the particles can be distributed in all ways among the lattice points
of the crystal. Then one simple way to limit the extent of mixing is to require
that the particles of sort A must be grouped together in groups of m each and
that those of sort 8 must be grouped together in groups of n each, which
groups can then mix perfectly. This is a possibility that may mell be realized
in real mixed crystals. The total number of possible arrangements is now

[(Pz/m) + (Ps/e) ]!/[(P~/m)!(Ps/I)! j.
We observe that this number of possible arrangements is the same as the
number of possible arrangements would be if a fraction 1/m of the Pg A-
particles in the crystal and a fraction 1/n of the Ps 8-particles in the crystal
could mix in all fashions while the remaining sets of particles of the two sorts
in the crystal were constrained to occupy definite sets of lattice points and
thus could not enter into the mixing process at all. It is therefore natural to
introduce two constants n~ and 0.~, such that 0~n~~1, O~a~~1, called
the "mixing coefficients" of the A-particles and B-particles, respectively,
which specify that the total number of possible different arrangements of
the P~ A-particles and the P~ 8-particles among the lattice points is

[(&A.PA) + (&BPB)] /[(&APA) (&BPB) (7.21)

We have arrived at the notion of mixing coefficients by considering only two
special ways in which the extent of mixing can be limited; but as we shall
indicate later these mixing coefficients should be su%cient adequately to
describe the extent of mixing no matter how it is limited, in all investigations
of vapor pressures.

Let us investigate the statistical mechanics of an assembly containing
atoms or molecules of two sorts, A and 8, in which the total numbers are
X~ and X~, and for which the mixing coe%cients are n~ and 0;~. We denote
the numbers of particles in the gas by N~ and N~ and for convenience
we assume that the particles are so similar that we may suppose the crys-
talline partition function for normal modes of oscillation to be of the form
[z(z) ] &+ s. Then the total number of linearly independent wave functions
capable of representing the crystal if its energy is U is the coefficient of s in

[(~~P~) + (~sPs) ] i

[z(z) ]'~" [f.(z) ]'~ [f.(z) 1's.
(~~P~)!(~sPs)!

Here f~(z) and fs(z) are the partition functions for the individual particles
in the crystal. We shall use the classical approximation to the correct quan-
tum statistics for the vapor, and the total number of linearly independent
wave functions which can represent the vapor if its energy is F is then the
coeS.cient of x~~& x~ & s~ in

exp [xgF~(z) + zsPs(z) ].
Hence the total number of linearly independent wave functions which can
represent the entire assembly if the total energy is Z, and if there are N,&
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and NB particles of the two sorts respectively in the vapor and I'A =XA —NA

and I'B=XB—NB particles of the two sorts respe"tively in the crystal, is

(~x&~ + ~a&a) ) &
'

t t' )
dxxdxadh

~NA, NB (-.P.)!(,P.)!(2.') J J J (..-"," .*-

X (()) " (f ())' (f ())' *P I,P.()+ .P ()1 ). () n)

Using Stirling's asymptotic expression for factorials, we find by the usual

methods that the mean values are

Jy~ = 4~~(&); &a = fa&a(&) )

where
A+A A 1

(x~&~ + (xa&a fp (fJ)(((e)

and
riBI'B ~a

O'A+A + NBIB B 8 K 8

If most of the particles are in the crystalline phase, then we have also, very
nearly,

~A XA

IB XB

and hence
~x(e)

SA ——

(!!)P (!!)( X + X )
&a(0) (xaXa a

EB =
«!!)y.(s)(,x, + .x.)

(7.23)

One sees that when the n's are both zero the total pressure is equal to the
sum of the vapor pressures of the two sorts of pure crystal, and that when

the n's are both unity the result (7.23) becomes simply the usual one for the
case of complete mixing. It is easy to extend these methods to the general
case where there may be more than two sorts of particles.

Since appreciable contributions to the sums

QCp(„,ppa, QJixC))(, ,))(a and glVaCa, ,p(a

come only from those terms for which NA and NB are very close to their equili-
brium values lVA and ÃB, respectively, it follows that so long as the expression
(7.21) gives the correct number of crystalline arrangements when the P's
have nearly their equilibrium values, it does not matter to our results whether
or not the mixing variables describe the mixing so accurately that this ex-

pression still represents the number of arrangements for values of PA and
I'& appreciably different from the equilibrium values I'A and E'B. Thus we
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see that our parameters 0.~ and 0.~ serve to specify the extent of the mixing
adequately for discussions of equilibria, provided only that they correctly
describe the mixing for values of I'~ and I'& very close to I'~ and P&, respec-
tively.

It is of course a tautology to say that the "entropy of mixing" of a mixed
crystal, referred to a state of zero entropy where the constituents are com-
pletely separated, is

(&A+A + r«BIB) ~5= klog
(&A+A) ~ (&B+B) ~

if the n's describe the mixing properly for the actual values of I'& and I'& in
question.

CHAPTER VIII
THE VAPQR PREssURE CoNsTANTs QF DIAToMIc VAPQRs

(8.1. The general theory of the vapor pressure constants of diatomic vapors

Hydrogen is probably unique among diatomic vapors in that measure-
ments of its vapor pressure can be made at temperatures so low that the
rotational specific heat R is not developed and for which, therefore, the con-
stant part of the specific heat of the vapor is 5R/2. That this is possible is
due to a combination of two circumstances; one of which is the very low
moment of inertia of the hydrogen molecule which causes its rotational
energy levels to be widely separated, and the other of which is the low boiling
point of the liquid which allows measurements to be made of its vapor pres-
sure at temperatures so low that the para- and ortho-hydrogen molecules are
all in their lowest rotational states. For all other diatomic vapors we may
consider (C„)e to be 7R/2. We may then at once generalize the results of
))5.2 and 5.3 of Chapter V. For any chemical compound having a diatomic
vapor, the vapor pressure is given by

p= ZD.p.

if the constituents of the mixed crystals can mix in all fashions, where

P„= F„(T)k T/ [Vf„(T)K(T) j

is the vapor pressure of a pure crystal of the r'th species. Here, in accordance
with the discussion of )4.7, F„(T) can be considered with sufficient accuracy
to be

87r2I„k T(27rm„k T)e's
G„V — V„(T)e «~'r—

where G„ is some number, and where V„(T) is the partition function for
nuclear vibrations in the gas molecules, given experimentally by the equation

T dZ'I T'

log V,(T) = (C„")~dT",
p

ET12
p
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in which (C,"), is the vibrational specific heat of the r'th species. The crystal-
line partition function [K(T)f„(T)] is definied by the equation

dT
C„dT" = log [IC(T)f„(T)] —log „coo+

p ET'2Q
p kT

and thus its form is immaterial, as long as [K(T)f„(T)]~" is the crystalline
partition function of a pure crystal of the r'th species containing P„diatomic
molecules.

'
Accordingly the vapor pressure constant of the vapor of a pure crystal of

the r'th species is

i, = »g [(2v")' 'u '8v'I I"']+ log [G„l'„",]. (8.1)

This equation is perfectly general ~ It can be used to find the vapor pres-
sure constant of the diatomic vapor of the pure r'th species even if the struc-
tural units in this crystalline phase are not the same molecules as those which
exist in the gas, but are groups of molecules, or separate atoms, or even atomic
ions and electrons. All that we need to do is always to interpret „Mp as being
equal to C'' ", where C is the number of linearly independent wave functions
which can represent the crystal of the r'th species, containing in all 2P„
atomic nuclei, at the absolute zero.

If now K(T)f„(T) really is the product of two functions K(T) and f„(T)
of which the first is the partition function per molecule for the normal modes
of vibration and is the same for all the difierent species (this assumption
amounts to neglecting the interaction terms between the thermal oscillations
of the crystal lattice and the internal motions of the particles situated at the
lattice points), then we have Eq. (5.35) for the mixed crystal

(C„)„g= +DC,

and in any case we have also for the vapor

(C„)g = QD, (C,")g.

(8.15)'.D„i„.

Now the notion of vapor pressure constant has a meaning only when it is

applied to a vapor for which the p„s, of those species present in significant
amounts, are nearly the same functions of the temperature —otherwise it
will be impossible to find any expression in the form of Eq. (1.1) of Chapter
I. But if the p„'s are the same or nearly the same, then we have the equation,
as in Chapter V,

With Eqs. (8.1) and (8.15) we can calculate the vapor pressure constants,
with (C„)o =7R/2, of all the diatomic vapors.

Ke notice from an inspection of Eqs. (8.1) and (8.15) that the values of
the nuclear spins are without effect upon the vapor pressure constants, for
we saw in Chapter IV how the same factors involving n (or u' and nq) oc-
curred in both G„and Mo.
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$8.2. The vapor pressure constants of some diatomic vapors

In order to apply the general theory of $8.1 to the calculation of the vapor
pressure constants of particular substances, it is necessary to know the value
of the last term in Eq. (8.1). G„ is found easily in all cases. To find „&so it
is necessary to know something about the nature of the crystalline phase, at
the absolute zero, of the substance whose diatomic vapor we are investigating.
To begin with, one must know whether or not the molecules exist in the crys-
talline phase. So far as we have ascertained none of the lattices of the crys-
talline phases of the substances mentioned in this chapter are likely to be
atomic. They are all molecular, and indeed it is possible that in some of them,
except crystalline hydrogen, the structural units are groups of several mole-
cules each. Secondly, Pauling's analysis, " when applied to the molecules
H2, N2, 02, NO, CO, HCl, HBr, HI, C12, Br2 and I~ which we consider in this
chapter, shows that the only molecule among them which is likely to rotate
at temperatures close to the absolute zero is H~. This is confirmed by the
specific heats of the crystals, for we should expect the separations of the ro-
tational levels in the crystals, if rotation occurred, to be of the same order of
magnitude as they are in the gaseous phase; and with the exception of hydro-
gen they would then retain their rotational specific heats R in the crystals
for temperatures extending downwards to within a few degrees of the abso-
lute zero. Since the observed specific heats do not show this behavior, we can
feel quite confident in assuming that the molecules mentioned above
oscillate and do not rotate, at the lowest temperatures in the crystal phase,
with the exception of H2 which rotates. Hydrogen has already been con-
sidered. For the other substances, whose molecules cannot rotate at very low
temperatures in the crystals, it does not matter whether the structural units
of the crystals are individual molecules or groups of molecules, with the two
exceptions of oxygen and nitric oxide. For the ground states of the other
molecules are all 'Z, and „xo could not be made any smaller than the values
given in Table II in Chapter IV even if the molecules were grouped to form
larger units; nor could it be made larger.

The ground state of NO however is a 'III~~ and we have shown reasons in
$4.6 to believe that, u, is electively +2(2n&+1)(2n, +1) so that combining
the results found in ))4.6 and 4.7

.&0

and is therefore a function of the temperature. " If we use its value for
T = i i0'K, the midpoint of Eucken's temperature range, we obtain the
first value for the vapor pressure constant i' given in Table IV, which agrees
fairly well with the value given by Eucken. Our vapor pressure constant

"The reason being that to obtain results on the same basis as Eucken's, we have had to
include ini what really should be taken account of in the integral term in Eq. (1.2). Eucken took
(C„)1to be 0, and by so doing he has made his experimental' liable to error in this case as
well as in others.
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calculated with the G„/„(do above is equal to the correct vapor pressure can-
stant defined in f1.2 plus a term

where (C„), is the contribution of the multiplicity of the II levels to the
total specific heat of the vapor, and our i' will only be a real constant at tem-
peratures above about 2400'K when it takes the limiting value 0.696. This
is the value which one ought to use in the next chapter in investigating high-
temperature chemical equilibria. The true constant i' defined by equation
(1.2), with (C„)0 equal to 7R/2, should be 0.395.

In Table IV are shown the values of i' calculated in accordance with the
theory of f8.1. One should not attach great importance to the few discrepan-
cies which remain, because the experimental values are still uncertain. The

TABLE lV. Some diatomic vapor pressure constants.

Ground I0&10"
state, gm cm'

Hg 'Z ') 0 463

02

Species
considered

Para- D=4
Ortho- D =g

2) Zr

Observed

—3.68+0.03

—0.16+0.03

0.55+0.02

Calculated

3 ~ 722

-0.177

0.530

NO 16.4 0.55+0.03
at 110'K

110' 0.479
2400'K 0.681

~'K 0.696

CO

HCl

&Z 4& 15.0

'Z 5' 2.656

HBr 'Z ') 3 32

HClgg, D =0.76
HC187, D =0.24

HBr79, D =0.54
HBr81, D =0.46

—0.07+0.05

—0.40+0.03

0.24+0.04

see text

0.160

—0.419

0.197

HI

Clg

Brg

'Z 6) 4 31

'Z 7& Cl C18, 114
C185C137 118
C187C137 121

8& 445.

&z » 820.

C185C135, D =0.58
C13,C187, D =0.36
C137C137 D =0.06

0.65+0.05

1.66+0.08

2.59+0.10

3.08+0.05

0.608

1.352

2.467

3.031
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CHAPTER IX
ENTROPIES AND CHEMICAL EQUILIBRIA

)9.1. Introduction

In order to find the difference between the entropies of a gram molecule
of a substance in two different states of temperature and volume, it is nec-
essary to use the relation

2

Sg —Si. = —dT
I T

(9.1)

where S2 is the entropy in state 2, S& the entropy in state 1, and C' is the
specific heat per gram molecule measured as the substance is brought from
state 1 to state 2 in some reversible fashion; being infinite in the proper
fashion at the transition points encountered, so that a transition point at T'
contributes A/T' to the integral. It is easy to refer the entropy of a gaseous
or liquid state in this way to the entropy of the substance at some temperature
T' when it is in the crystalline phase, and subjected merely to the pressure
of its own vapor. It is now possible to refer the entropy of this state in turn
to the entropy of a similar crystalline state at some lower temperature T";
the C in Eq. (9.1) is now simply the usual (C„)„i,and as before it is infinite
at transition points in the crystal, in the proper fashion. But if we try to find
the difference between the entropy of the crystalline substance at some tem-
perature T' and its entropy at the absolute zero itself by this equation, which
then becomes

r
' (C,)-i

Sz" —So =
~

dT (9.101)
0 T

we are faced with the difFiculty that experimental knowledge of (C~).,& does
not extend below a certain temperature To, which varies in practice from
substance to substance but which is never smaller than about -'K and which
is usually about 10'K or even higher. To can never be precisely the absolute
zero, because the surroundings always radiate heat, during specific heat
measurements. Thus we must necessarily always be ignorant of the specific
heat of the substance at temperatures within a neighborhood of the absolute
zero. The obvious procedure is to extrapolate the (C„).,i found at tempera-
tures above To to the absolute zero, and then evaluate the integral, using the
extrapolated value of (C„)„ibelow To. Now if the crystal were simply a
lattice of mass points, capable of oscillation, the specific heat at these low

"limits of error" in the table are not probable errors, and have proved in

practice to be practically meaningless, as a comparison of old with recent
values of i' obtained experimentally will show. On the whole the agreement
shown in the table is excellent; and we may hope that in the future better
experimental data will serve to verify even further the general correctness of
the theory of the vapor pressure constants of diatomic vapors. We may also
hope that future theoretical investigations will make it possible to account
satisfactorily for the vapor pressure constants of polyatomic vapors.
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temperatures would be that given by a Debye analysis of the normal modes;
C„would vary at sufficiently small temperatures as T', and C„—C, like n'T
where n is the coefficient of thermal expansion. The extrapolation would be
quite accurate and would furnish a definite accurate value for Sy Sp. But
a crystal cannot be so regarded. Even if it is made up of a pure chemical
element the existence of isotopes would cause certain distributions to have
less energy than others, and at sufficiently low temperatures (which can
safely be stated to be far below TD) processes of diffusion would produce a
contribution to the specific heat in addition to that due to the normal modes.
By extrapolating, these contributions are neglected; and we must consider
therefore that by extrapolating we are referring our entropy at T' to that of
an "ideal" state of the crystal in which its normal modes are in their lowest
quantum states, as in the case of the lattice of mass points at the absolute
zero; but in which the isotopes are still mixed at random instead of being
separated as one would expect them to be in the real crystal at the absolute
zero, after sufhcient lapse of time. If the crystal is made up of systems with
internal degrees of freedom, they will in general have their very low quantum
states still unresolved at To, in particular those depending on the orientation
of nuclear spins; and thus by extrapolating the specific heat below To we
shall overlook their contributions to the total specific heat. Now it happens
that in general the energies of the two lowest electronic states of atoms, and
of the two lowest spherical oscillatory or rotational levels of rnolecules, are
widely separated compared with kTo, and that within these levels the com-
ponent levels, coo in number, corresponding to different nuclear configurations,
and to spherical oscillatory wave functions with different symmetry prop-
erties in the case of oscillating molecules, have their energies very close
together compared with kTO. If the coo different components of the "lowest"
level have their energies sufficiently close together, then the specific heat of
the crystal above To can be shown to be the same, practically, as it would be
if these energies were precisely equal. Accordingly, when we use Eq. (9.101)
with an extrapolated (C„).,i, we are letting S, denote the entropy of an ideal
state in which the molecules or atoms of the crystal have the statistical
weights coo. Finally, since kTO will in general be large compared with the
differences in energy caused by different distributions of para- and ortho-
varieties among the lattice points of the crystal, if these varieties are present,

'

our ideal state is one in which these varieties can mix in all fashions.
To sum up this discussion, when in applying thermodynamics we use Eq.

(9.101) with experimental data in which (C„).,i is extrapolated for tempera-
tures lower than To, the So refers not to the real entropy of the crystal at
precisely the absolute zero, but to the entropy oF the crystal when it is in
an "ideal" state at the absolute zero; in which the normal modes are all in
their lowest quantum states, in which the mixing of the isotopes and of the
para- and ortho-varieties can occur in all fashions, and in which each molecule
or atom of sort r can be represented by „coo linearly independent wave func-
tions (or more rigorously, that all of the P, particles in a crystal of sort r could
be represented together by (,coo)~r wave functions).
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Before passing on to consider entropies further, we should observe that
the symbols (Ci,)«i in the integrals in the vapor pressure equations of pre-
vious chapters should be interpreted in accordance with the above discussion.

The conception of "ideal" states is a very useful one for calculating the
changes of entropy which occur during chemical reactions. For physical
chemists can evaluate the entropies of any states referred to the "ideal" states
at the absolute zero; and we can readily evaluate the entropies of these
"ideal" states at the absolute zero referred to a common standard, provided
that we have sufhcient knowledge of the way in which the crystals are con-
stituted.

)9.11.Entropy in statistical mechanics

The entropy of any assembly can only be logically defined as a function
S of the state of the assembly satisfying the differential form (dQ =)dZ+d W
= TdS, where de is the external work done in any small reversible variation
of the conditions of the assembly. The function 5 is naturally not unique, an
additive constant which can be arbitrarily chosen being left unassigned, but
this constant can always be so assigned" that

5= klogC (9.11)

where C is the total number of accessible states of the assembly for the given
value of its energy 8; that is, the total number of linearly independent wave
functions, having the proper symmetry, which can represent the assembly.
This function klogC has in fact all the necessary properties.

With the help of (9.11) we can explain what we meant in Chapter IV by
the calculated entropy of 02 and NO gas "referred to a state which can be
represented by only one independent wave function. " Such a state would be
one for which C=1, S=O as defined by (9.11). If in these particular cases,
neglecting nuclear spins, the "ideal solid state" at the absolute zero has C= 1

then the calculated S for the gas should agree with the measured diAerence
between the entropy of the gas, and the entropy of the solid extrapolated
to the ideal state at the absolute zero. But if there is disagreement beyond
the limits of experimental error then we must conclude, as we did for NO, that
for the "ideal solid state" C/1, even neglecting factors contributed to C by
the nuclear spins. In that case of course we must have C)1, but that is
just what we were led to conclude. The measured entropy corresponds to
k(logC —logCO) where Co is the number of accessible states of the "ideal
solid state" at the absolute zero.

If on the other hand the measured entropy could be so measured that,
for example, we have always a true equilibrium with transitions between
ortho- and para-states, and could be measured to such a low temperature
that the ideal state corresponds to the state of absolutely lowest energy no
matter how small the energy separations of the low group of states, then of
course the measured entropy must be compared with k(logC —logCD')

"Fooler, Statistical Mechanics, pp. 533, 534.
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where Co' is the number of accessible states corresponding to the absolutely
lowest value of the energy. It will often be true that Cp & Co, but whether
or no even in this case we have always Co' =1 is as yet entirely unknown: as
the measurements which would make Co' significant cannot conceivably be
carried out the value of Co' is not only unknow'n but unimportant.

In the same way if we wish to compare an observed entropy difference
between any state of an assembly (a gaseous state at given temperature and
pressure say) and the "ideal" solid state at the absolute zero, and it is thought
necessary to take into account the nuclear spins and isotopic mixtures for
computation of klogC in the gas phase, the contributions of these factors
must always be included in klogCO for the ideal state and the difference
compared with observation. This comparison will be studied in detail in

$9.7.

II9.2. The entropy of hydrogen at the absolute zero

Consider a gram molecule of crystalline hydrogen composed of 4'N mole-
cules of para-hydrogen and ~N molecules of ortho-hydrogen, in its "ideal"
state at the absolute zero. N is Avogadro's number. In accordance with
f3.1, the number of linearly independent wave functions which can represent
the crystal is

Co = 1""O'""X!/[(X/4)!(3X/4)!] (9.201)

since each molecule of para-hydrogen in the zero'th rotational level can be
represented by one wave function, while each molecule of ortho-hydrogen in

the first rotational level can be represented by 9 wave functions correspond-
ing to the 3 possible eigenvalues of the s component of nuclear rotational
angular momentum and to the 3 possible eigenvalues of the s component of
nuclear spin angular momentum. By the use of Stirling's asymptotic formula
for factorials we find, neglecting trivial terms, that

So = k log Co ——~R log 3 + R log 4. (9.202)

It is possible, and perhaps worth while, to verify this value by a slightly
different argument due to D. MacGillavry, '4 since it contains the terms

k log I 1V!/[(f!7/4)!(3Ã/4)!]j = R [—z' log z' —r' log -', ],

sometimes called the "paradox terms, " due to mixing by diffusion of the two
types of hydrogen. If one starts with hydrogen gas at a high temperature
T the value of the entropy at this temperature is independent of whether
ortho~~para transitions can occur or not. We shall prove this in $9.7. The
species exist at this temperature in any event in a true equilibrium ratio of 3
ortho-molecules to 1 para-molecule and the mixture must have a unique
entropy. Now suppose that the gas is cooled down to the absolute zero by two
different methods, and the entropy change observed on both routes; (a) as
ordinary hydrogen with no ortho+~para transitions, and (b) as ideal well-

catalyzed hydrogen with abundant ortho~~para transitions maintaining the

~ D. MacGillavry, Phys. Rev. 36, 1398 (1930).
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true equilibrium ratio. On route (a) one arrives at the ordinary ideal state
of hydrogen at the absolute zero for which S, should be given by (9.202) and
on route (b) at a pure para-hydrogen crystal for which Sp =0. This entropy
difference can be shown to correspond exactly to the difference of the entropy
changes on routes (a) and (b).

It is interesting that in this case of hydrogen, due no doubt to the fact
that the molecules rotate in the crystal, Simon, Mendelssohn and Ruhemann
have found" anomalies in the specific heat below 11'K which correspond
possibly to the separating out of the constituents of the mixed crystal, and
perhaps also to the resolution of the 3 nuclear rotational levels with j equal
to 1 in the case of ortho-hydrogen. Above 11'K the specific heat corresponds
closely to a Debye function with 0 equal to 91'K. Accordingly we must take
Tp to be 11'K in the case of hydrogen, and in using in Eq. (9.101) the value
of the entropy Sp of the ideal state at the absolute zero given by (9.202), we
must extrapolate (Cp),.& below 11'K by means of the Debye function with
0~ =91'K. We must extrapolate in this same fashion, also, in evaluating the
double integral in the vapor pressure equation for hydrogen on page 662.

Hydrogen may very well be unique in providing an instance of a diatomic
molecule for which it is convenient to ignore the actual specific heat of the
crystal, and start extrapolating, at temperatures higher than the lowest to
which specific heat measurements extend. For in the case of oscillating mole-
cules, the differences in energy corresponding to different nuclear configura-
tions in the lowest oscillatory levels, or to oscillatory levels of different sym-
metry, can be shown by rough calculations to be probably of lower order
than 0.01'K. We should not expect any separation of isotopes except at
temperatures very much lower than this. We call the entropy of a crystalline
substance in its "ideal" state at the absolute zero its "entropy at the absolute
zero, " for brevity.

f9.3. The general theory of entropies at the absolute zero, and of the changes
of entropy which occur during reactions between crystals at the absolute
zero

The generalization of the method of the last section is very simple. The
number of linearly independent wave functions which can represent a gram
molecule of crystal at the absolute zero, made up of different species r of the
same chemical substance is

Cp = I!I~II (vpn"~/II(D, N)!
r r

where D, is the mole fraction of the r'th species. Hence in accordance with
the previous discussions the entropy of this crystal at the absolute zero is
given, except for trivial terms, by

Sp = 0 log Cp = II QD„ log ( &op/D„). (9.3)

We can apply the result (9.3) at once to the calculation of the changes in
entropy which occur during chemical reactions between crystalline sub-

tls Simon, Mendelssohn and Ruhemann, Naturwiss. 18,34 (1930),
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stances in their ideal states at the absolute zero. Let the chemical equation
describing the reaction be in the form

gq, a, =0, (9.301)

where the symbols A & denote gram molecules of the pure chemical substances
which take part in the reaction, and the g~'s denote the number of gram mole-
cules of them which take part; being negative for those substances which
disappear when the reaction occurs. Then when this reaction occurs at the
absolute zero the change in entropy is

ASo = Qq~SO', (9.31)

where So' is the entropy of a gram molecule of the t'th chemical substance at
the absolute zero, calculated in accordance with the Eq. (9.3).

)9.4. The changes in entropy which occur during some simp1e reactions be-
tween crysta11ine substances at the absolute zero

All of the theory of the preceding sections of this chapter is general, and
applies to crystals made up of any sorts of particles at all. Let us apply it to
some of the substances considered in Chapter VIII, and let us start by con-
sidering the change of entropy in the reaction between crystals at the ab-
solute zero described after (9.301) by H2+C12 —2HCI =0. We have already
calculated So for hydrogen; to find So for chlorine we make use of Table II
of Chapter IV. The ground state of the free C12 molecule is a 'Z. %e consider
the five species of chlorine molecule considered in Chapter V, and we denote
the spins of the CI~~ and C13& nuclei by n& and n2, respectively. If we denote
the gram atomic fractions of the isotopes of chlorine by A and by 8 respec-
tively, we shall have very nearly D&+D& ——A'; D3=2AB; D4+D6, =8'. For
chlorine, therefore,

ega 2

Di =
2ei+ j.

(n, + 1)8'
2e2+1 '

(&i+ 1)&' eg8'
D2 = D3 = 2AB; D4=

2ni+ 1 2n2+ 1

i~o = 'si(2ez + 1); schmo
——(I& + 1)(2m' + 1);

s~o = 2(2ei+ 1)(2es+ 1); a~0 = n2(2s2+ 1);,~, = (Nz+ 1)(2ez+ 1).

Hence, if we use Eq. (9.3) we find after some reduction

So(C1g) = R{22 log [(2e& + 1)/2] + 28 log [(2N2 + 1)/8] I .

Similarly, we find for hydrogen chloride, since the spin of a hydrogen nucleus
1is 2&

S,(HC1) = R {A log [2(2n& + 1)/A] + 8 log [2(2n2 + 1)/8] j .
Hence, if we use the result for hydrogen given in Eq. (0.202), it follows from
Eq. (9.31) that when the reaction H, +CI,—2HC1=0 takes place at the
absolute zero between the crystalline phases, the increase of entropy is
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tiSo = So(Hs) + Sp(CIi) —2$o(HC1) = iR iog 3.

699

(9.4)

It will be observed that this result is independent of the values of the nuclear
spins of chlorine and of the ratio of the isotopes of chlorine, and in fact only
differs from zero because of the extra factor 3'nt' in (9.201) due to the ori-
entations of the molecular angular momentum of the ortho-hydrogen mole-
cules with j= i. This is in agreement with the observation made by Gibson
and Heitler" that in certain gas reactions the limiting contributions made by
nuclear spin to the entropy cancel in obtaining the entropy change which
occurs during the reaction.

If we perform similar calculations for any reactions between diatomic mole
cules all in 'Z states, in which all the molecules are oscillating about directions of
equilibrium in the lattice near the absolute zero, we find that in all such cases

~o= o.

Wherever on the contrary we have to deal with extra weight factors in the
lattice which do not arise from nuclear spins, but from electronic weight
factors as in NO or rotational weight factors as in H2 we are apt to find non-
zero values of ASO. Those so far identified are collected in Table V.

TABLE V. Non-zero chonges of entropy for some reections occurring between
crystalline phases ut the absolute zero.

Reaction

H2+C12 —2HCl =0
H..+Br2 —2HBr =0
H2+I2 —2HI =0

2NO —N2 —02 =0

So

—,'R log 3
gR log 3
-', Rlog 3
Rlog 2

If we know ~SO and wish to find the change in entropy when the reaction
proceeds at a higher temperature '1, not necessarily between crystalline
phases, we can find this change hS~ by the equation

t1Sr = t1Se+ Qqi t C,'dT/2'
0

where the C~"s are the specific heats of the reacting substances A g measured
along reversible paths, becoming infinite in the proper fashion at the transi-
tion points, and extrapolated below the lowest temperatures at which meas-
urements of specific heats (C„)»i are performed on the crystals in the fashion
usually followed by experimentalists; except for hydrogen, for which the
extrapolation must proceed to O'K from a temperature of 1j.'K or higher.

$9.5. The constant I in the etiuation for the etiuilibrium constant of a homo-
geneous gas reaction

Let us consider the homogeneous gas reaction Eggs~ ——0. If X„ is the
equilibrium constant in this reaction, then considerations of classical ther-
modynamics analogous to those used in Chapter I show that

~ Gibson and Heitler, Zeits. f. Physik. 49, 465 (1928).
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log K„= log II]pi«

(Q.)0 + —g(C ') log T
ET 'E t

T dTI T'

+ „qg C„' gdT" + I.
(9.51)

In this equation g& as before is the number of gram molecules of the t'th
chemical substance reacting, with a negative sign for those that disappear
when the reaction takes place, and P~ is the partial pressure of the t'th chem-
ical substance. (Q„)0 is the work which must be done to make the reaction
go in this sense at constant pressure at the absolute zero, and (C„')0 and
(C~')~ are the constant and variable parts respectively of the specific heat at
constant pressure of the t'th gaseous substance. I is a constant of integration
which is not to be confused in this chapter with the use of the symbol I in
previous chapters to denote moments of inertia.

One can show by taking the system through a Nernst cycle" that this
constant I is related to the vapor pressure constants i ~ of the vapors of the
separate reacting substances by the equation

I = (1/E)nS, + Qq, f, (9.52)
t

in which ASO is the change of entropy which occurs when the reaction pro-
ceeds between the crystalline phases at the absolute zero, as in )f9.3 and
9.4. It is usual to measure pressures in atmospheres, and to use common
logarithms, in Eq. (9.51);if the new constant is denoted by I', then we should
use instead of (9.52) the slightly diferent equation

1Il ~So+ gq~~~'.8 log10 t
(9.53)

Eq. (9.52) provides a method of calculating I theoretically from a knowl-

edge of the masses, moments of inertia and quantum states of the gaseous
molecules concerned. The values of I found will be independent of the values
which we have taken for the ~o's, and will be far more certain to be correct
therefore than either the calculated i's or the calculated So's. This inde-
pendence is of course obvious when we approach the theory of the equili-
brium constant from the statistical side, since then

kTE(T)z„= rr, (P,) = rf,
V

an equation which makes no reference to any solid phase. We shall not enter
into this statistical theory here. To show this independence for diatomic
gases with the material already at our disposal we observe that, if we use
Eqs. (8.1), (8.15) and (9.3), Eq. (9.52) can be written in the form

~' Fowler, reference 18, pp. 150, 151.



STA TISTICAL MECHANICS 70i

p tg t

I = Qq& QD, ' log
D t

In this equation D„ is the mole fraction of the r'th species of the t 'th reacting
substance, G„' is the G for this r'th species of the t'th substance (thus referring
only to the gaseous molecules), and I'„' is given by

Z' & —8s&g ty&l&(2s~ &)&I&/h&

where A„' is here the moment of inertia of the r'th species of molecules t, so
that F„t depends upon the constants of the gaseous particles only. Thus if we
calculate values of I' for homogeneous gas reactions involving diatomic gases
by Eq. (9.53), using the calculated i's given in Table IV and the calculated
ASO's given in Table V, our results will depend only upon the constants of the
gaseous molecules concerned, which are well known; and we shall in fact be
able to investigate the accuracy of experimental determinations of I' by com-
paring the experimental values with our calculated values, since the former
are more likely to be incorrect than the latter. Such a comparison can be
made by the use of the second and third columns of Table VI, in which we
have also considered two reactions involving monatomic vapors, reactions
for which the ASO's are obviously zero. Table VI contains also values of
&So/(& log 10)+Z~q~i, '=I" in which the i"s are the observed i"s taken
from Table IV.

TABr.E VI. The constants I' of some homogeneous gas reactions.

Reaction

Hg+Clg —2HC1 =0
Hg+Brg —2HBr =0
Hg+Ig —2Hl =0
2NO —Ng —Og =0
2Cl —Cl, =0
2Br—Bra =0

I/
Calculated

—1.174—1.291—1.549
1.310 High T

1.53
1.26

I/
Observed 8

—1.12+0.2—1.25+0.45-1.51+0.12
0.95+0.3 High T

1.40+0.15
1.41+0.05

III
(See Text)

—0.86—1.21—1.54
1.01 Low T

1.22
1.47

All the observed I"s in column 3 are in fairly good agreement with the
calculated I"s in column 2 except for the reaction 28r —Br~=0; but if we
consider that the "limit of error" of 0.05 is probably Battering to the experi-
ment then we must consider that the discrepancy could be still greater with-
out furnishing us with any real cause for anxiety. The apparent excellence
of the agreement of the number j..0l in the 4th column with the figure in the
3rd column for the reaction 2NO —Ng —0~=0 is illusory; since the former
refers to temperatures near to the boiling point of nitric oxide, for which
Eucken measured the vapor pressure constant of NO; while the latter refers
to temperatures in the neighborhood of 2400'K.

$9.6. Heterogeneous gas reactions

Eq. (9.51) is perfectly general, and applies to heterogeneous gas reactions
as well as to homogeneous ones if col the partial pressures are taken into ac-

~ Eucken, Phys. Zeits. 30, 818 (1929).



702 R. H. FOR'LER AND T. E. STERNE

count in the equilibrium constant. However, it is usual to form a new con-
stant X~ for a heterogeneous gas reaction by omitting from the equilibrium
constant X~ the partial pressures of those substances present, to any extent
at all, in a condensed phase. Suppose that the substances 1, 2, r are
present only as gases, but that condensed phases of the remaining substances
r+1, r+2. s are present (we must have r &1 if equilibrium is to be possi-
ble). Then we can at once combine Eqs. (1.1), (9.51) and (9.52) to obtain the
equation for the new equilibrium constant of this heterogeneous reaction

log E„' = log Pp, o~ =—
(Q.) o

— Qq«o'
r+1 1

+ —gq, (C„')o log T
RT R

AT 'dpi AT' - r s

+ I „~~l Qq (C„')g + Qq, (C,')„g dT" + L
ao RP'go r+1

where (C, ')..~ is the specific heat at constant pressure of the condensed phase
of the t'th species, per gram molecule, and

r
L= + gq, o, .

R

Thus to predict I the i's need only be known for those substances present
entirely as gases; but we must also know, just as in the case of homogeneous
gas reactions, the change in entropy 650 when the reaction takes place be-
tween the crystalline phases at the absolute zero. Since the writers have not
been able to find AS& for any heterogeneous reaction whose constant I has
been studied, they have not included any heterogeneous reaction in Table
VI.

$9.'T. The comparison of the observed and calculated entropies of gases

Suppose that we have a gram molecule of a pure gas at an absolute tem-
perature rand occupying a volume V. There will be N molecules, and if the
total energy of the gas is 8, then the number of linearly independent wave
functions capable of representing the gas will be given by

1 d xdzII t xz't
C=

2x i x~+'z~+'

where the product is taken over all the energy levels et of the molecules, with
as many factors for any level as there are linearly independent wave func-
tions to represent it. If the molecules obey the Einstein-Bose statistics, then
f(xz'&) =(1—xz'&) ', while if the molecules obey the Fermi-Dirac statistics,
then f(xz'&) =1+xz'&. Taking the entropy to be S=klogC, we find that

E
5 = k g log f($8'~) + ——8 log $, (9.71)

T

where $ and 8(=e '~"r) as usual are given by the vanishing of the partial
derivatives, with respect to x and z respectively, of the integrand of C. In
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accordance with the discussions of i)21.43 and 21.44 of Fowler's Statistical
Mechanics, we may replace Z& log f($8") by

(2snt)'12Vf(8)

h'(log 1/8) '"
where f(8) is the partition function for internal tnotions of a gas molecule,
with great accuracy for all gases at ordinary temperatures and concentra-
tions. Since we have N=PF(8) and E=c8(8/88)F(8) =NO(8/88)logt(8), we
6nd therefore from (9.71) that

=3 5 (2sntk)'~'
S = —R log T + R log V + —R —R log S + R log

2 2 h3

1 8'8
+ R log f(8) +

kT f(8)

If we set m = Mm' where M is the molecular weight of the gas and m' is the
mass of an atom of atomic weight 1, we find that if S is measured in calories
per 'C, then numerically

5 = k log C = (3/2)R log T + R log V + (3/2)R log M —11.06

+ R log f(8) +
1 Of'(8)

(9.72)
kT f(8)

The first four terms in the above expression for the entropy form merely the
Sackur expression for the entropy of the gas when it is supposed to be made
up of simple particles of molecular weight M without internal energy; the
last term R [ ] gives the contribution to the entropy furnished by the internal
energy of the particles. It may be written in the form

g~ &~e~e ~, l&rw

R log Qcv„e "I"r+
kT Q, (v„e "t"r

and can be evaluated either accurately from the spectroscopic energy levels,
or less accurately but more expeditiously by such methods as those devised
by Mulholland' and Sutherland" for diatomic molecules, or even by such
still less accurate methods as those used in this article for approximating
to the rotational partition functions of diatomic molecules. We do not need
to be concerned here with the manner in which as a practical matter the last
term of Eq. (9.72) is to be evaluated; the important thing is that it can be
evaluated, and that it can be evaluated from a knowledge merely about
those energy levels which are not large compared with kT. Before passing
on to consider the case of mixed gases, we note that the inclusion of any con-
stant factor g in all the terms of f(8) may be avoided by using in the last term
of Eq. (9.72) the f(8) without that factor, and by adding Rlog g to the right-

' Mulholland, Proc. Camb. Phil. Soc. 24, 280 (1928)."Sutherland, Proc. Camb. Phil. Soc.26, 401 (1930).
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hand member. In using Eq. (9.72) we must use the correct statistical weights
for the energy levels of the molecules, or we shall not be calculating klogC
correctly.

The occurrence of a pure gas in thermal experiments is perhaps rather
exceptional; there wi11 usually be present a mixture of isotopic varieties, or
of varieties corresponding to non-combining groups of terms. Let us consider
an assembly consisting of a gram molecule of mixed gases 1 and 2, with gram
molecular fractions D& and D2, respectively, molecular weights 3f& and 3I& re-
spectively, and partition functions for the internal energies of the molecules

f~(8) and f~(8), respectively. Corresponding to Eq. (9.71) we have now the
equation

S = k log C = k g log fq($8'&) + k P log fm(g8'~)

E
+ ——RD& log $ —RD2 log q

T

(9.73)

where the first and second sums refer to the molecules of the first and second
sorts, respectively, and where $ and g correspond to the values of the selector
variables x and y for the two sorts of molecules, respectively, for which the
integrand of the complex integral is a minimum. We find by methods similar
to those used m deriving Eq. (9.72) the equation

S = k log C = (3/2) R log T + R log V + (3/2) R(D~ log 3IIr + D~ log 3Eg)
—11.06

1 8fg'(8) ' 1 8fm'(8)
+ D~R log f~ (8) + — + D&R log f2(8) +

k T fg(8) k T fm(8)

—R(D, log Di + D~ log D~). (9.74)

This, it will be observed, is the sum of the entropies of the constituent gases,
each occupying a volume V, given by Eq. (9.72), plus a term, the last term
in Eq. (9.74), corresponding to the mixing of the gases. We may call the last
term the entropy of mixing. We could have derived the same expression for
the entropy of mixing by thermodynamical arguments instead of by statis-
tical mechanics.

The generalization of Eq. (9.74) to mixtures of any number of gases is
obvious; it is

S = k log C = (3/2)R log T + R log V + (3/2)R QD„ log M,

8f' (8)—11.06+ R QD„ log f„(8) +
k T f„(8)

—R QD„ log D„.

(9.75)

The varieties r may be different gases altogether, different isotopic varieties
of the same gas, or non-combining varieties of the same isotopic gas. A
simplification in Eq. (9.75) is possible in case some of the varieties, 1 and
2, say, are of the same isotopic nature and correspond merely to non-com-
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bining varieties, provided that the actual proportion D~/Do between the
gases is nearly the same as the long-time equilibrium proportion f~(8)/fo(8)
between the gases at the temperature T. These conditions are fulfilled for
hydrogen at temperatures of 298'K and higher, and for most other gases at
all temperatures above their boiling points. Since D&/Do=f~(8)/fo(8), we
may set D~+Do =D~o, and f&(8)+fo(8) =f~,,(8) and we have then at once that

3 1 8f,'(8)—R QD„ log 3/I„+ R gD, log f„(8) +
2 i o y, o kT f„(8)

—R QD„ log D,
1,2

=3 1 8f, '(8)= —RDq, o log M„,, + RDi, o log fi,o(8) + —RD&, o log Di, o.
2

' '

kT f, ,(8)

In using Eq. (9.75) to calculate entropies at ordinary temperatures we may
therefore disregard the non-combining varieties, and treat them as consti-
tuting together a gas in which transitions occur freely between the ortho- and
para-terms, provided that the actual proportions are nearly the long-time
equilibrium proportions for that temperature. The entropy is then the same
whether ortho~~para transitions occur or not. This might have been ex-
pected, since the entropy of a gas is a function merely of its statistical state.

Eq. (9.75) will allow us to calculate the entropy S=k log C of any gas if
we know the energies and the statistical weights of the levels which con-
tribute signi6cant terms to the sums; but to know the statistical weights of
the levels calls for a knowledge of the values of the nuclear spins of the sev-
eral nuclei. Further, as pointed out in i9.1, when we make exjerimental
determinations of the entropies of a substance it is simplest to refer entropies
to the ideal state of the crystalline phase at the absolute zero. Let us take the
ideal crystalline state at the absolute zero as the state of zero entropy; and
let us denote the entropy of our gas referred to this standard by S„,so that

S = klogC —So

where the So is the So of $9.3. Making use of Eqs. (9.3) and (9.75) we find
for the entropy of the gas referred to the ideal solid state at the absolute zero
the value

S„= k log C —R QD„ log
D,

= (3/2) R log T + R log V + (3/2) R QD„ log M„—11.06
r

f (8) 1 Of'(8)+ R D„ log +.ooo k T f„(8)

(9.76)

It will be seen at once by an examination of Eq. (9.76) that as long as we
know the gram molecular fractions D„of the constituents of our gas, and the
values of f,(8)/„~o, we can calculate the entropy of the gas referred to the
ideal solid state at the absolute zero. We do not need to know the values of



706 R. II. FOOLER AND T. E. STERNE

the nuclear spina to calculate RZ, D, [ ].Further, this calculation" yields a
value for the entropy in a form which we may compare at once with the re-
sults of experiments.

In the following table we compare the entropies calculated in accordance
with Eq. (9.76) with the thermally measured entropies S ', for gram mole-
cules of a number of gases at atmospheric pressure and at temperatures T. In
preparing this table we have made use of the measurements of Giauque and
his fellow workers, and also of their calculations; the latter were based in all
cases upon spectroscopically determined data for the internal energy levels
of the molecules, and the partition functions were calculated by calculating
the terms separately and adding them together. Small corrections should be
applied to the calculated entropies 5 to take account of the deviations of
the gases from the laws of ideal gases; these corrections calculated in accor-
dance with Berthelot's equation are denoted by ) in the table, and are taken
from the papers of Giauque and his co-workers. The values of ~0 used are
those given in Table II of Chapter IV. The comparison is thus between
S +X and S„'.The state of zero entropy for this table is the ideal solid state
at the absolute zero.

It will be seen that the numbers in the fifth and sixth columns agree
closely with each other, verifying our values of ~0 given in Table II.

TABLE VII. A comparison of the calculated and observed entropies of certain gases.

Substance

NO
H8
02
HC1
HBr
HI &e

121.36
298.1
90.13

188.07
206.38
237.75

43.06
29.59
40.68
41.45
44.92
47 ~ 8

—0.09—0.13—0.17—0.1—0.1—0.1

S„+X=S„'
Calculated

42.97
29.46
40.51
41.35
44.82
47.7

Srn'
Observed

42.94
29.61
40.57
41.2
44.9
47.8

AUTHORIT1ES
' Johnston and Giauque, J.A.C.S. 51, 3194 (1929).
8 Giauque, J.A.C.S. 52, 4826 (1930).' Giauque and Johnston, J.A.C.S. 51, 2300 (1929).' Giauque and Wiebe, J.A.C.S. 50, 101 (1928).
8 Giauque and Wiebe, J.A.C.S. 50, 2193 (1928).' Giauque and Wiebe, J.A.C.S. 51, 1441 (1929}.

$9.8. The Nernst Heat Theorem. General conclusions

We have nowhere in this article referred to the hypothesis commonly
known as "Nernst's Heat Theorem, " or the "Third Law of Thermody-
namics. " This hypothesis has of course played a great part in the develop-

'f' We are not following the procedure of Giauque and his co-workers exactly in comparing
the observed and calculated entropies, because the comparison of the observed entropies re-

ferred to the ideal solid state at the absolute zero, with the entropies calculated in accordance
with Eq. (9.76) is perhaps somewhat more consistent than the methods of comparison used by
Giauque. Giauque includes the factors arising from the nuclear spins in his calculations for

hydrogen, whilehedoesnot include them in thecase of NO, HCl, HBr, and HI. Although Eq.
(9.76) shows the neglecting of the spins to be justifiable, Giauque uses diferent states of zero

entropy in his different calculations.
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ment of the subject. It asserts that when reactions occur isothermally at
temperature T between different pure crystalline substances, with a change
of entropy AS, then

(This is its most restricted form, to which alone we need pay attention. Other
forms referring generally to condensed crystalline or amorphous or (ideally)
liquid phases are now generally agreed to be invalid. ) We have here examined
numerous cases of such reactions theoretically and are forced to conclude that
if we extrapolate to the absolute sero from ordinary measurements and therefore
refer to the ideal slate, though

lim M = b,Sp = 0
T-+0

is very commonly true, yet it is not true in general that

~p = 0

If on the other hand we could extrapolate to T =0 from measurements at
such low temperatures that kTp is small compared with the finest of the ener-
gy separations of the very low states of the solid, then Nernst's Heat Theorem
may or may not be tru"---=-we do not as yet know. But in no case will its truth
ever be able to be investigated by direct, thermal measurements in the fore-
seeable future, nor can it ever be used blindly in calculating changes of en-
tropy during reactions at higher temperatures. The necessary kTp for the
low limit of experimental measurement of specific heats lies far below the
reach of any experimental refinements yet conceivable.

We reach therefore the rather ruthless conclusion that Nernst's Heat
Theorem strictly applied may or may not be true, but is always irrelevant and
useless —applied to "ideal solid states" at the absolute sero which are Physically
useful concepts the theorem though often true is sometimes false, and failing in
generality must be rejected altogether. It is no disparagement to Nernst's great
idea that it proves ultimately to be of limited generality. The part that it
has played in stimulating a deeper understanding of all these constants, and
its reaction on the development of the quantum theory itself cannot be over-
rated. But its usefulness is past and it should now be eliminated.

As another aspect of the same failure it is no longer possible to assert that
the entropies of the ideal solid states of all substances can be assumed to be
zero, nor is it even usually any longer convenient to do so, at least in a
theoretical treatment. If we please we may of course assign the value zero
to the entropy of the ideal solid state of any or all true elements, or if we
prefer, of pure isotopes of pure elements. But even this will seldom be theore-
tically convenient. For the purpose of tabulating experimental results some
conventional zero must always be chosen and the choice of zero for the en-
tropy of the ideal solid state of any substance may then often be convenient.
But its conventional character will no longer be so likely to be overlooked
that any importance will be attached in future to the idea of absolute entroPy,
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an idea which has caused much confusion and been of very little assistance
in the development of the subject. The only natural choice of the entropy
constant entitled to any clai'm to the character of absoluteness is obviously
to define the entropy so that it is always klog C. But now we must include
nuclear spins and isotopic mixtures in evaluating C. Is it really certain that
even by so doing we enumerate C with absolute finality?

One further point in conclusion. A determination of a vapor pressure as
a function of temperature fixes the characteristics of the equilibrium of a two
phase assembly. Any such equilibrium is determined when the free energies
of the substance in its two phases are known, and these are known when the
energy and entropy differences have been fully determined by observation
of specific and latent heats. One may fairly assert therefore that it is a matter
of indifference whether one studies the vapor pressure equation of a substance
or the entropy difference of its two phases, both as a function of the tempera-
ture. It has become increasingly common of recent years, under the inspira-
tion of G. N. Lewis, to study and report the entropies of the phases usually
relative to an assumed zero value for the entropy of the ideal solid state at
T=0. We have adopted this method here in only one section, and have
followed on the whole the other method of vapor pressures mainly for his-
torical reasons but also because it is hardly possible to improve on the sim-

plicity of the theoretical vapor pressure equation and equation of dissocia-
tive equilibrium. But it should be clear that this does not imply any lack of
sympathy with the newer presentation, which has much to recommend it
practically, since the entropy is a far more generally useful quantity than
the vapor pressure. It may well be that the study of vapor pressures will soon
be almost entirely abandoned for a direct study of entropies. The questions
that have exercised us in this article will reappear, superficially altered it is
true, but in essential content the same.

)Al. l. Introduction

APPENDIX I

CRYSTALS IN QUANTUM MECHANICS

In several places in this article we have had to calculate the total number
of linearly independent wave functions capable of representing a crystal. In
Chapter II we considered a crystal made up of P atoms which could have
various states of internal energy besides taking part in the normal modes of
oscillation of the crystal as a whole. We made use of the partition function
[«(s)]' for the normal modes of the crystal. In Chapter III we considered a
crystal made up of two sorts of molecules having the same masses but differ-
ent states of internal energy, and we made use again of the function «(s). In
Chapter V we considered crystals of chlorine composed of molecules of five
sorts with three different but nearly equal masses. We made use again of the
function «(s) for the normal modes. And in all of these cases we considered
that a complete wave function for a crystal was a linear combination, with
the proper symmetry properties, of functions of the form P P; to a first
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approximation, where P was a wave function representing a set of normal
modes of the whole lattice, and P; was a wave function representing a set, of
internal energy states for the particles which made up the lattice. We are
not aware of the existence of any discussion of the wave functions of crystals
to which we can refer the reader, in order to justify our procedure; and we
accordingly shall proceed to discuss the wave functions of crystals in this
appendix. We start for simplicity with a discussion of a linear "crystal" made
up of three simple particles without internal energy.

)A1.2. A simple crystal

Let us consider a "crystal" made up of three particles of mass m, con-
strained to lie on a straight line AB, and whose potential energy function is

l' = s&[(» —~i —s)'+ (*3 —~~ —s)']

for small values of xn —xi —mand x3 —x2 —a. xi, x~ and x3 are the abscissae of
the particles, and we suppose that x&&x2&x3. The quantity e is the lattice
constant of our crystal. We have for the kinetic energy

T = —',m(~P + ~ '+ ~,').
Let us take the center of mass of the set of particles to be at rest at the origin,
so that x&+x2+x3 =0. We may do this because it amounts merely to neglect-
ing the factor in the complete wave function which describes the motion of
translation of the mass center; the problem is of course separable in the coor-
dinates of the mass center and in the coordinates of the particles referred to
the mass center. Then if we make the transformation to the normal coordi-
nates g& and g2 defined by

we shall have
T = -', (qp+ qss)

3b b
V =

~
—qP+ —q2' .
m m

Since the Hamiltonian thus splits up into two parts, the complete wave
function of the crystal will be

+ = 4(qi)4(qs),

where the wave function p(q~) of the normal mode q~ is a solution of the equa-
tion

3b h
k

—q~' — 4(qi) = &ui(qi),
m 4x' Bq&2

and the wave function p(q2) of the normal mode qa is a solution of the equation

b h' 8'
, 4(q2) = ~24(q2).

m 4Ã 8q2
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The total energy is 8=Ei+E2.
The solutions of these equations, which are those for two linear harmonic

oscillators, are well known. When the normal mode g& is in its n&'th quantum
state its energy E& is

and its wave function is, except possibly for a constant factor,

P(q&) = f„,(q&)e « '2«'

where
aP = b/[2x(3b/m)'~2]

and fo(x) =1, f&(x) =x, f2(x) =x' —aP/2, etc. Here n~ can have the values
0, 1, 2, 3, 4, 5 . etc. Similarly, when the normal mode g2 is in its n2'th quan-
tum state its energy is

E2 ——(en+ &)(b/2x)(b/m)'~'

and its wave function is, except for a constant factor,

where

an' = b/[2x(b/m)"']

If both modes are in the states n =0, then the crystal has a wave function
given, except for a constant factor, by

qi = exp [—(3m/4aq')(xq + xs)' —(m/4ap)(xq —xq + 2a)2]

and since this is only appreciably different from zero when the exponent
vanishes or is nearly zero, we must have x& = —a, x2 =0 and x3 =a very nearly
if the wave function is not to be extremely small. We observe that for this
lowest quantum state there is only one linearly independent wave function
for the "crystal". Suppose next, as another example, that n&= 1 and n& =0.
Then

3m m
0' = —',(6m)'"(xg + xs) exp — (xg + x,)' — (xg —xg + 2a)'

4aP 4a22

which will be appreciably diBerent from zero only when

xq —a + a~(1/6m)"; xl ~ —aq(2/3m)"; x3 ~ a + a&(1/6m)"

or when

xq ~ —a —aq(1 6/m) ~2 xq ~ aq(2/3m) ~i . x, a —ag(1/6m)'".

Considerations of this sort give us a fairly good mental picture of the nature
of a set of normal modes of a crystal, in quantum mechanics.
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)A1.3. A crystal composed of equivalent particles without internal motions.
Its partition function

Let us now consider the more general case of a crystal made up of a set of
similar massive particles, 1, 2, 3, .

¹ Let us take a set of orthogonal axes
OX, 07 and OZ in space. Let the coordinates of the particles referred to this
set of axes be (x, y, z)1, (x, y, z)2, . Due to the interactions of the particles
with each other, there exists a potential function V(x, y, z) for the set of par-
ticles, symmetrical in all of them because the particles are similar. Let us re-
strain particle 1 so that it lies at the origin, let us restrain particle 2 so that
it lies on the OX axis, and let us restrain particle 3 so that it lies in the plane
XOF. Then the potential function V(0, 0, 0; x2, 0, 0; x3 y3 0; x1, y4, z4, )
will have minima; and the set of values of the coordinates corresponding to
any of these minima will define the lattice points of a possible crystal of the
original set of particles. The number of possible lattices will in general be
finite if the set of particles is finite.

Let us fix our attention on one of these possible lattices; 0, 0, 0, q4,

0, 0, 313, gp, 0, g1p, gu, &12,
' (it is convenient to change the notation in this

fashion). By Taylor's theorem, for sufficiently small displacements $, =g, —g,
of the particles from their lattice points g, the potential function can be ex-
pressed in the form

2(~11$1 + 4252 + ' ' ' + 2f112t1$2 +

and also, of course,

+ 2f13N 1,3N $3—N 1$3N) —+ cul11c terms +

2' = 2433(t'1' + tp' + + 53N2) .

(Al. 3)

We neglect the cubic terms in Eq. (A1.3), which can be taken care of later,
if desired, by a perturbation method. It will always be possible to transform
the coordinates $, by linear transformations, into normal coordinates" Q,
linearly independent of each other, such that T and V will be in the forms

2 = !(e.' + e.' + + Q. ')

y =l("e'+.e:+ +. —.e. ')

where the p's are constants. The number of independent Q's is 3'' —6 instead
of 3N because of our requirement originally that g&

=
qm

= g3 =qg
=q6 = qo =0.

The Q's are of course linear functions Q [(x, y, z)1, (x, y, z)3, j of the origi-
nal spatial coordinates (x, y, z); of the particles.

Let 43„2=f3/(23rp, '13). When the mode r is in the n'th quantum state, its
energy is

E, = (I + —',)(13/23r)44„'12

where n can have the values 0, 1, 2, 3, 4, , and its wave function P„ is

given by
"See W'hittaker's Analytical Dynamics.
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Kx 3' s)& (* 3' s)2 ' ] = f-(g«)s

Here f„(Q„) is the Hermite polynomial of the n'th order, except for a constant
factor. The total energy of the crystal is B= Z„Z„and the total wave function
1s

@[(x,y, z)&, (x, y, s)«, ] = II„&„

where the sum and product are taken over all the modes r. This wave function
will not in general be symmetrical or antisymmetrical in the particles
1, 2, 3, because we have thus far neglected symmetry considerations.
The correct V function was symmetrical in all of the particles, but the ap-
proximate U function (A1.3) was not symmetrical. Actually, we can inter-
change any two particles in the crystal without obtaining a different crystal.
Accordingly the correct wave function for the entire crystal is

QP@[(x, y, s)&, (x, y, s)«, (x, y, s)N] (A1.35)

where the summation is taken over all permutations I' of the sets of coordi-
nates (x, y, s); within the function corresponding to all possible distributions
of the N particles among the lattice points, In making the permutations the
members of any set (x, y, s); must of course be kept together. If the particles
obey the Einstein-Bose statistics, then 4 must be symmetrical in all the
particles, and all of the terms P4 in Eq. (A1.35) must be given the same
sign. If the particles obey the Fermi-Dirac statistics, then 0' must be anti-
symmetrical in all of the particles and the permutations I'4' must be given one
sign when they are even and the opposite sign when they are odd. But in any
case, whether or not we take account of symmetry considerations, there is
one and only one linearly independent wave function corresponding to any
particular assignment of quantum numbers nj, n2, n3, n3~~ to the 3E—6
normal modes 1, 2, 3, 3X—6, respectively.

It is now possible to construct, at least theoretically, the partition func-
tion H(z) for this crystal, given by

H(s) =
fL1 jtt2 yN3

~En t, nil, n3, ...

where the sum is taken over all the possible choices of the set of n„'s. If the
total energy of the crystal is Z, then the number of linearly independent wave
functions capable of representing the crystal is the coefficient of ss in FI(s).
For the evaluation of this sum in a simple case, the reader is referred to Chap-
ter IV of Fowler's Statistica/ Mechanics. Whether or not, however, we are
able to calculate this partition function H(s) from purely theoretical con-
siderations, we know that this function exists. For the number of linearly
independent wave functions capable of representing the crystal when its en-

ergy is Z is given by

1
C = I dsH(s)/sE+'

2' j
(A1.36)
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and from the discussion in )21.41 of Fowler's Statistica/ Mechanics we find
that the entropy of the crystal, except perhaps for an additive constant which
may be arbitrarily chosen, is

5 = k log C = k log Z(8) + E/T. (A1.37)

The function H(z)/H(0) for positive real values of z, can therefore be found
from the thermal properties of the crystal which can be observed experi-
mentally. H(z) will in general depend upon the volume of the crystal if the
latter is isotropic and subject only to isotropic stress (hydrostatic pressure)
and upon the components of stress if the crystal is anisotropic, as well as
upon the temperature; but this need not concern us here. If the stresses
are maintained constant, and if the entropy of the crystal is really an ex-
tensive property, then it follows from Eq. (A1.37) that H(z) must be ex-
pressible in the form IK(z) tN, at least for large values of X, where z(z) is
independent of ¹

ftA1.4. A pure crystal composed of similar systems possessing internal de-
grees of freedom. Its yartition function

When we have actual physical systems making up the crystal, and not
massive particles, we must take account of internal motions. Suppose that
the systems composing the crystal are all the same. Then they can have dif-
ferent internal quantum states at the different lattice points. We denote the
lattice points, which of course do not take part in any permutability relations,
by Ai, A2, A3, A~. Then instead of the unpermuted 4 of the previous
section we shall have for a wave function for the entire crystal

(A1.40)

to the first approximation; where p; denotes the coordinates describing the
internal arrangement of the system i whose coordinates in space are (x, y, z);;
and P~„(p;) is the wave function for internal motions of the particle i at the
lattice point A ~. Accordingly, if we take account of the symmetry properties
which the complete wave function of the crystal must have, we find for the
complete wave function

K~I'4 (p&)6 (pm) ' ' ' A (p&)&.4" l(z, y, z)~, (z, y, z)z . . (z y z)NjI

(A1.41)

where the summation is over all the permutations I' of the particles 1, 2, 3,
N as in the last section, with the same rule as to signs. In this process

of permuting, the p s are of course to be permuted in the same manner for
any term in the sum as the (x, y, z) s are permuted in the same term. We
should notice that in Eqs. (A1.40) and (A1.41) we have neglected the inter-
actions between the normal modes of vibration of the crystal lattice and the
internal quantum states of the systems making up the lattice. The existence
of these interactions is of course necessary for the establishment of thermal
equilibrium in the crystal, but we need not concern ouselves explicitly with
them here, further than to notice that they exist.
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It is obvious from the discussion of the last paragraph that corresponding
ro any assignment of the quantum numbers n&, n2, of the normal modes of
vibration of the crystal lattice, there exists one and only one linearly inde-
pendent wave function capable of representing the entire crystal. It follows
also that if the partition function for one of the similar systems in the crystal
for internal motions is f(s), and if as before H(s) is the partition function for
the entire crystal for normal modes of vibration, then the partition function
for the entire energy of the crystal, taking account of the energy of the normal
modes as well as of the internal energy of the systems, is

&(s) lf(s) 1

and by the discussion of )A1.3 this is capable of being expressed in the form

K Z Z

In obtaining this form we have neglected as we have said the interactions
between the normal modes of vibration and the internal states of the sys-
tems; but it should be sufficiently accurate for our purposes when we make
use of it, as in Chapter II for calculating vapor pressures.

)A1.5. A mixed crystal composed of particles without internal motions. Its
partition function

Suppose that we have a crystal made up of N& particles of mass m& and
N~ particles of mass m2, arranged in some definite manner among the Ni+¹
lattice points of the crystal. Just as in the case of a crystal made up of par-
ticles of equal mass considered in )A1.3, there exists a set of normal modes of
vibration of the crystal lattice, and any state of the set may be specified by
the quantum numbers nI, n2, n3, There is as before only one linearly
independent wave function for the crystal in this state, and the complete
wave function will be a linear combination of terms obtained by permuting
the XI particles of sort 1 among themselves and the N2 particles of sort 2

among themselves, the signs of the terms being determined by the nature
of the particles in the obvious fashion. The existence of all these terms corre-
sponds to the fact that permutations of the sort specified above do not alter
the crystal in any physically significant way. However, we have supposed
that there was a definite set of lattice points in the crystal occupied by the
particles 1, and a definite set occupied by the particles 2. If we interchange
any of the particles 1 with particles 2, we shall obtain a different crystal. In
general, there will be a different set of transformations to normal coordinates,
the normal modes will be different functions of the coordinates of the par-
ticles, and the energy levels will be different, for each such crystal. The num-
ber of di!Ierent crystals possible is (¹+¹)!/(¹!¹!),if mixing can occur
in all ways. "There will in general be a different partition function for each
of these crystals, so that the partition function for a mixed crystal should in
general be dependent upon the internal arrangement.

"See Chapter VII.
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Let us denote the different arrangements by the numbers 2, 2, 3,
(N&+¹)!/(N&!Ãz!). Let us denote the partition function for the whole crys-
tal in the j'th arrangement by H;(z). If as we suppose all of the diferent ar-
rangements are possible, then if we know merely the total energy of the
crystal 8, say, the number of linearly independent wave functions which can
represent the crystal is the coefficient of s~ in

H*(z) = QH;(z)

where the summation is over all the (N&+Nz)!/(N'! Nz!) values of j.H*(z)
is therefore the partition function for the mixed crystal when all arrangements
are possible, and will depend in general not only upon Xj.+N~, but also upon.
the ratio of

¹
to¹.If only some arrangements are possible, then the parti-

tion function H*(z) in this case is obtained by summation over merely those
values of j which correspond to possible arrangements.

The interesting case as far as applications are concerned in this article is
that for which the masses of the particles are nearly the same, and for which
mixing can occur in all fashions. If the masses were exactly the same, then
all the H;(z)'s would be the same and we should have

H*(z) = (Ng+ Nz)!H(z)/(Ni! Nz!),

and hence

H*(z) = (iV&+ N,)![z(z) ]"i+"i/(N, !N,!) (A1.5)

from the considerations of )A1.3. Here z(z) is the same function as the z(s)
for a pure crystal of either sort. If the masses are not exactly equal, but are
only approximately equal, then we may expect Eq. (A1.5) to provide an
approximate value for the partition function of the crystal.

Analogous considerations are applicable to the case of crystals made up
of particles of more than two sorts.

)Al.6. A mixed crystal composed of systems with internal degrees of free-
dom. Its partition function

Suppose that we have a crystal made up of N~ systems of mass m~ and
N2 systems of mass m& arranged in some definite manner j among the lattice
points of the crystal. Then corresponding to a specification of the quantum
numbers nj, n2, n3, and to a specification of the wave function represent-
ing the system at each lattice point of the crystal, there corresponds one and
only one wave function 0'j' of the whole crystal with the appropriate sym-
metry properties:

+i Z'&'&I [f",(ni)f", (uz) . ][~A"[(z, y, z)i, (z, y, z)z, ]]}. (A1.60)
Pt, Pg

The permutations P& operate only on the coordinates of the systems of sort
1in the first and second bracketted expressions in Eq. (A1.60);while the per-
mutations P~ operate only on the coordinates of systems of sort 2, in the first
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and second bracketted expressions. For any particular term, the permutations
must of course operate on both bracketted expressions in the same manner.
The signs of the N~ t %mt terms are to be determined from the consideration
that whenever two particles of the same sort which obey the Einstein-Bose
statistics are interchanged, the sign of a term is unaltered; while whenever
two particles of the same sort which obey the Fermi-Dirac statistics are inter-
changed, the sign is changed.

If we neglect the interactions between the normal modes of vibration and
the internal quantum states of the systems, then the partition function for
the crystal when it is in the arrangement j is

»(s) [fi(s) P' f[i( s) P'

where the H;(s) is the same as the H, (s) of the last section, where fi(s) is the
partition function for the internal energy of a system of sort 1, and f~(s) is
the partition function for the internal energy of a system of sort 2. We are
neglecting here to take account of the fact that the energy levels of a system
of sort 1 may depend to some extent upon the types to which the neighboring
systems belong and upon their energy states; the above form for the crystal-
line partition function will be only approximately correct. To take account
of all the (Ni+Na)!/(Ni! ¹!)possible arrangements, we must sum the above
expression over all values of j; and we then find for the complete crystalline
partition function the value

H*(s) = [f,(s) P~[f,(s) P' QFI, (z) .

If mixing can occur in all ways then j takes on all the values from 1 to
(Ni+N&)!/(Ni! N&!); if the mixing can not occur in all ways then the sum
is taken over those values of j which are possible. As in the previous section,
if the masses of the systems are the same and if mixing can occur in all ways
then we must have the sum in the above expression equal to

[(Ni+ N~)!/(Ni'Ni')][~(s)] '+"'

where x(s) is the same function as the x(s) for a pure crystal of either sort,
considered in )A1.3. Hence the crystalline partition function will be

H*(s) = [(Ni+ N~)!/(Ni!N*')] lfi(s)]N'[fi(s) P*[~(s)1 '+"' (A1 61)

If the masses are only approximately equal then Eq. (A1.61) will be only
approximately correct. The generalization for more than two sorts of systems
is obvious.

An instance of the use of Eq. (A1.61) for two sets of systems with equal
masses is provided by the case of hydrogen, made up of two varieties, con-
sidered in Chapter III. In Chapter V we made use of an expression of the same
form as (A1.61), generalized to apply to the case where there were five sorts
of systems and three different masses, for the crystalline partition function
of chlorine.
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APPENDIX II

717

THE ENUMERATION OF THE LINEARLY INDEPENDENT %AVE FUNCTIONS

CAPABLE OF REPRESENTING ASSEMBLIES CONTAINING

CRYBTALs

m[A2. 1. Introduction

It remains to give the mathematical justi6cation of the steps by which we
calculated the total number of linearly independent wave functions capable
of representing our assemblies in Chapters II, III, V, and VII. A discussion
of the legitimacy of our procedure in those chapters ought to be included in
our article, because a rigorous treatment of assemblies containing crystals,
along the lines of the discussions in the text, is nowhere available in print
to our readers. We shall accordingly consider this matter in the remaining
pages, referring whenever possible to theorems which are proved in Fowler's
Statistical Mechanics.

ClA2. 2. The rigorous enumeration of the number of accessible states of as-
semblies containing crystals
In Il2.2 we obtained the expression

dxlzII; 1 —xz'& z z

J xN+1zS+1
(2.20)

for the number of linearly independent wave functions, symmetrical in all
the atoms, capable of representing an assembly consisting of N atoms in the
gas phase and I' atoms in the crystal phase, when the total energy of the as-
sembly is E. We wish to evaluate this integral by the method of steepest
descents. We start by noticing that the integrand

11;(1 —xs'~') ' [s(s) ]P

X~Z~

is in the form of the integrand C of Eq. (339) of Fowler's Statistica1 3Ach-
anics (except that ours is a double and not a triple summation). Therefore
the lemma of Il5.5 of Fowler's book applies: For real positive va1ues of x and
s the function C has an absolute minimum at $, e which is the unique sotution
of the equations

BC/Bx = 84/Bs = 0

in the domain of convergence of 4. If we write X = log x and r = log s, then we
have

82C 824

8~4 BX~ 8)BIt
& 0 and &0.

BX2 8'4 8'c
)

Qg() p ()p2
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Consider the factor II;(1-xz'~)—' in the numerator of the integrand C of
Eq. (2.20). It is shown in Chapter XXI of Fowler's book that for any gas its
logarithm Z;log(1 —xz'I) ' always contains the volume V of the gas as a
factor, whatever the values of x and z; provided only that Z; converges; and
it does converge for the values of x and z which interest us. We may therefore
set Z;= VZ where Z is independent of V. Hence we can rewrite the inte-
gral (2.20) in the form

exp V + Ploglf: z
1 '

t tdxdz

To determine $ and 8 we have the equations

and

(A2. 21)

(A2. 22)

We observe that $ and 8 areintensive parameters. Their values are unaltered
if V, N, E and P are made large in any fixed ratios. We are going to allow all
of these quantities to become large in fixed ratios, and to indicate the de-
pendence of P on V when we let V increase we may set P = VP' where P' is
a constant. We may assume that, when the circles of integration are made
to pass through $, 8, this point provides the unique relevant maximum value
of the modulus of the integrand on the contours of integration. To show that
its neighborhood contributes the dominant part of the whole integral we write

x = $e'~ z = Oe'I'

and

V Q + VI" loge(z) = Vg'(in, iP)

so that e is independent of V. Then for small values of n and p the integrand
takes the form

exp —~V a + 2o.8 + P

(A2. 23)

+ O(Vn') + O(V+4) +

in which the differential coeScients are to be evaluated at a =P =0. We have
seen that this quadratic form is essentially positive. If V is large it follows
by the arguments of $2.5 of Fowler's book that the variables n, p in the quad-
ratic terms may be supposed to range from —~ to + while all other terms
remain small. By a linear transformation the quadratic form can be reduced
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to its principal axes, and the value of this exponential, integrated in all vari-
ables from —00 to + 00, can be shown to be

z84 84

J~ Bin BiP (A2. 24)

The terms O(Vn') vanish on integration. The terms 0(Vn') leave sn error
term O(1/ V). We have already shown in the lemma that 7,)0. We therefore
find ultimately for Cz the asymptotic form

1 exp V% 0, 0
([JoI '"+o(1/V) 1

2m V P8~
(A2. 25)

V%' = xF(s) + P loge(s)

and so

BP(8)
$0

ae

B BP(8) B
8—$8 + P8 log ~(8)—

80 88 80 80

P'(8)
1

V2 BF(8)
$0

whence it follows that
1 dE

Jp = —&&&'
V dT

in which the error term involving the factor O(i/ V) becomes trivial as V-+ ~ .
This establishes the result given in Eq. (2.211) of Chapter II of this ar-

ticle. To show that Jp varies only slowly with N, we evaluate Jp for sim-

plicity for the case of small $ which corresponds to the case of all gases under
the conditions of temperature and pressure met with in practice, and for
which, as indicated in )f21.43 and 21.44 of Fowler's Statistical Mechanics,
Z; log (1—xs'~) '=xF(s) very nearly, where F(s) is the partition function
for a gas molecule. We then have

where dZ/dT is the rate at which Z increases as the temperature increases,
when N is maintained constant. If we repeat the calculations of )2.2 in which
we assumed that Jp was a constant, but now use the above value for Jp and
thus take account of the dependence of Jp upon N, we find that the changes
in the arguments thereby introduced are trivial.

The generalization of the above arguments to apply to the case of hydro-
gen considered in Chapter III is obvious. We obtain Eq. (3.102) of Chapter
II I, and we find if we use the usual approximations Z; log (1 —xs'~) ' =xF(s),
Zq log (1—x's'"') '=x'F'(s), that the Jacobian determinant J'o in this equa-
tion is given by Jo ——(1/V')llllll hT2(dF/dT) where the derivative is taken
for constant N and N'. Since Jp varies only slowly with N and N', the argu-
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ments of )3.1 are valid. This same procedure can be used for establishing the
results which we found in f7.2.

The generalization to cover the case of chlorine considered in Chapter V
is likewise obvious. By a further elaboration of our former arguments we
obtain in this case the expression

C(Ng, Ng, Na, N4, Nn)

E!ff,ll, lf,rr, ff,g [f,(e) ]P [.(0) ]~

!~ }-'"+ ~(—)
where

Jo = (1/V')NgN2N8N4N, ,kT'(dE/dT),

and hence the procedure in the text is correct in the case of chlorine also.
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