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§1. INTRODUCTION

N THE present article we give an account of certain of the fundamental

ideas and assumptions underlying the general relativity theory and pro-
ceed to a discussion of various points that are not easily to be found in the
literature of the subject; such problems, for example, as how the gravita-
tional potentials are to be measured éxperimentally and what meaning, if
any, can be attached to such phrases as the velocity of light, rotation, relative
radial motion, and the like.

Questions of this nature are likely to be of interest to the general worker
and we shall therefore aim at keeping the discussion as free from mathemati-
cal symbolism as possible. A more technical article is being prepared for this
journal by H. P. Robertson; the present article is supplementary to such a
discussion since completeness is not our concern; we shall, for instance, have
practically nothing to say concerning field equations or cosmology and shall,
moreover, confine ourselves strictly to the general relativity theory; this lat-
ter implies two major omissions, namely of a consideration of quantum phe-
nomena and of electromagnetic phenomena, since the theory of these phe-
nomena does not form an intrinsic part of the general relativity scheme which
is essentially concerned with gravitational and inertial effects in their macro-
scopic aspect.

The classical, Maxwell-Lorentz, theory of electromagnetic phenomena
has, of course, been brought into conformity with the general relativity
scheme, but in such a way as to make no difference to the fundamental ideas
of the relativity theory. Numerous attempts have been made with varying
degrees of success to give a fundamental significance within the relativity
theory to the electromagnetic field; these attempts constitute the majority
of the so-called unified field theories and are not our concern in this article.

The omission of any consideration of quantum phenomena is more seri-
ous; it is not that we merely refrain from discussing the equations of the
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quantum theory—since we shall anyway not discuss field equations—but
that, in all that follows, we must definitely ignore the implications of the un-
certainty principle. The general relativity theory is based upon the assump-
tion that measurements can be refined to any desired degree of accuracy, the
effect of the operation of measurement upon the system under observation
being ignored. General relativity is in this sense classical and the appropri-
ate extension to embrace the ideas of the quantum theory is not yet known.
It remains nevertheless the best theory of gravitational phenomena and
avoids many of the difficulties of the Newtonian theory.

§2. SpaceE-TiME; COORDINATE SYSTEMS; GENERAL INVARIANCE

In the relativity theory we start out with the assumption that every
physical observation consists essentially of a succession of sets of four meas-
urements; that is we assume that the world can be thought of as four-dimen-
sional. So far we have said nothing startling; precisely this assumption lay
at the bottom of the whole of classical field physics; it was pointed out by
Laplace, for example, that particle dynamics is geometry of four dimensions
in which time is the fourth dimension.

Suppose we wish to specify the motion of an ideal particle; we must first
decide upon some technique of measurement that will provide us with sets
of four numbers representing the position of the particle at each instant. A
position at an instant is called an event and if we specify all the events that
constitute the motion, that is, if we specify the position of the particle at each
instant, we shall have specified the motion; it will be represented by a set of
relations between the sets of four numbers representing the events constitut-
ing the motion. As an example, if a typical set of four numbers be denoted by
(x, v, 2, t) we might find that the motion obeys the relations:

x=0
y=0
g = {.

We might be tempted to say that this particular motion is in a straight line
with unit velocity, but it is evident that no such conclusion can be drawn
from the above relations since we have made no statements regarding the
actual technique used in obtaining the numbers, (x, y, 2, ), that represent an
event. If we assert that the above motion is rectilinear with uniform velocity
we are making several assumptions; we are assuming, for example, that the
locus, x =0, y=0, is a straight line in space and that 2, or {, represents, say,
astronomical time. This may or may not make sense but at the moment we
are certainly not far enough along in our argument to attempt to decide.
Instead let us start out with as few prejudices as possible from the assumption
of a four-dimensional world in order to see to what a view of space and time
we are led by a consideration of some simple ideal experiments.

First of all, however, we wish to obtain a clearer idea of the methods by
which sets of four numbers are to be assigned to events. The direct way is to
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erect a scaffolding and to place a clock at each intersection; an arbitrary
numbering may be given to the beams in the scaffolding so that each inter-
section has three numbers attached to it. The four numbers to be assigned
to a given event are then the three numbers belonging to the nearest inter-
section and the reading of the clock at that intersection at the instant of the
event,! In practice of course so ideal a technique would never be used. We
have considered it here in order to bring out the point that there is a separate
clock for each intersection of the scaffolding. We have not mentioned the
question of synchronization of these clocks and furthermore it is usual in
actual practice to employ only one, or at most only a few clocks. These two
points are intimately related; for, let us consider a more practical technique
from the point of view of our ideal scaffolding with its clocks at each inter-
section. To avoid the actual erection of a scaffolding a method of triangula-
tion is employed and generally only one clock is used. The values of the four
numbers that specify an event are obtained by some mode of computation
from the readings of the surveying instruments and the clock, and in par-
ticular it would be quite in order from the relativisitic point of view merely
to take these readings themselves as the four numbers in question. If this be
done it is evident that the clocks of our hypothetical scaffolding are assumed
to be synchronized by light signals from? the master clock actually used in
making the observation. It is more customary, however, to make some cor-
rection for the time that is required for light to reach the master clock from
the event under observation. In this case an assumption must be made con-
cerning the manner in which light is propagated when expressed in terms of
the scheme of labelling events that we have been using, and this, since it
will be represented by a series of relationships between the readings of the
clocks at the various intersections of our scaffolding, is nothing more than
another system of synchronization—the system actually employed in our
hypothetical scaffolding in the present case. The way in which light propaga-
tion is expressed in terms of a given hypothetical scaffolding can only be de-
termined by experiment with this scaffolding; and the way in which light
propagation is expressed is as much a property of the scaffolding as it is of
light; and indeed, in general the result of any experiment contains informa-
tion not only about the object upon which the experiment was supposedly
performed but also about the hypothetical scaffolding and set of clocks in
terms of which the measurements were expressed.

The main function of one of our scaffoldings with its clocks at every
intersection is to provide a unique label to every event under consideration;
there are, however, certain properties that we require of any scaffolding
system—properties that are always possessed by the equivalent scaffolding
system of any scheme of measurement used by the experimenter. We require,
as we have already mentioned, that our given scaffolding system and its
clocks provide a label of four numbers for every event under consideration;

1 We have made no requirements as to rigidity or immobility of our scaffolding; the correct
picture is of a scaffolding, as it were, idly floating and flapping in the breeze!
2 Assuming that the forward and backward velocities of light are equal.
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two distinct events are to acquire distinct labels, and any single event not
more than one label. Again, we have stated that the numbering of the beams
in our scaffolding may be arbitrary; in order to avoid mathematical compli-
cations, such, for example, as the appearance of functions that are not con-
tinuous or that do not possess derivatives, we require to modify this state-
ment. The simplest way in which to express the modification is just tosay
that we shall deal only with scaffolding and clock systems in terms of which
all functions that we shall encounter are as far as possible analytic. From the
mathematical point of view this is of course a very serious restriction, but
physically it amounts to nothing more than an expression of intuitive limita-
tions ordinarily imposed by the experimenter. The beams of a scaffolding
form three distinct families; the above requirements prevent such happenings
as, for example, the intersecting of two beams belonging to the same family
or the sudden reversal of the direction of motion of the hands of any of our
clocks.

An event, then, is specified, in terms of a scaffolding system with clocks
at the intersections, by means of four numbers. With the customary ter-
minology we refer to these four numbers as the coordinates of the event. The
system of scaffolding and clocks in terms of which sets of four numbers are
assigned to events is thus equivalent to a system of coordinate lines in four
dimensions; but the system of scaffolding and clocks is itself no more than a
convenient way of talking about a complicated technique of measurement
and computation whose net result is to assign coordinate numbers to events;
it is therefore to this complicated technique that we shall always refer prima-
rily when we speak of a coordinate system—although we shall often find it
convenient to regard it as a system of scaffolding and clocks and also, es-
pecially in later sections, as equivalent to a four-dimensional network of
coordinate lines.

It should be noted that space and time are interrelated according to the
present scheme, since we deal always with the time indicated by that clock
of our scaffolding that is situated nearest to the event being observed; later
on we may or we may not find reason to separate space and time from each
other but at present we have no excuse for so doing, and in this respect we
depart from the Newtonian theory in which an assumption as to the separa-
bility of space and time is introduced at this point.

Now the mode of measuring and computing coordinates for events is not
unique; we may change it at will; for example, we could multiply every
number obtained by two, or could perform much more complicated feats with
them; for us to choose some definite scheme of assigning coordinates in prefer-
ence to all others, or some set of such schemes in preference to the rest, would
imply the existence of an objective standard; if we attempted to define such
a standard at the present juncture we should be arguing in a circle since we
have not yet made any use of objective experiments which alone could de-
termine the matter for us. So at the present stage we must treat all modes of
assigning coordinates to events—that is, all coordinate systems—within the
limitations imposed upon them, as on an equal footing. But it is evident that
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an alteration in the mode of describing objective phenomena makes no
difference to these phenomena; it follows that the phenomena of physics al-
though only expressible, by present methods, in terms of coordinate systems
are yet to be completely independent of them. We must therefore require
that the mathematical expression of physical phenomena be of such a nature
that, although it necessarily makes use of a coordinate system, what is ex-
pressed is not dependent upon the coordinate system that happens to have
been used. This is the general principle of relativity and holds in exactly the
same words for the Newtonian theory; the difference between the two theo-
ries lies in what is expressed and not in the mode of expression, as we shall see
in the course of the argument. Meanwhile we have seen that all physical
phenomena are to be expressible in terms that do not require a specification
of a definite coordinate system; such a requirement is not a difficult one to
fulfill; the ordinary vector calculus, for example, performs precisely this
function. In general relativity an extension of the vector calculus is employed
which makes use of entities called fensors which have components in a given
coordinate system and whose components change in a definite manner as the
coordinate system is changed. It is not our intention to develop here the
general invariantive theory of Ricci and his followers, and in what follows the
question of invariance will be treated dogmatically without any attempt at
proof.

We have discussed the mechanism of observation; our next step is to see
what can be learned from an application of our technique to certain simple
phenomena.

§3. DiscussioN oF AN EXPERIMENT

The most suitable phenomenon for our consideration happens to be the
explosion of a bomb; we are particularly interested in two aspects of the ex-
plosion; several particles will be projected from (approximately) the same
point at (approximately) the same instant, in various directions and with
various speeds and furthermore a pulse of light will spread out as a wave-
front from the place at which the explosion occurred. We shall idealise the
experiment in the usual manner by looking on the particles as mass-points,
by leaving out the “approximately’s” and so on.

Let us attempt to picture these two aspects of the explosion in terms of
the four-dimensional world of our observational technique; that is to say, let
us regard our technique of labelling events as providing a four-dimensional
coordinate network into which all the events that constitute that part of the
explosion in which our interest lies may be imbedded. This four-dimensional
world represents the actual world of physics insofar as physics deals with
observations of the type we are considering in the present article.

In order to be able to draw adequate pictures of what is happening in
the four-dimensional world we must neglect one of its dimensions and since
we cannot spare the time it is a space-like dimension that must be omitted.
We are now in a position to draw a picture of the explosion and the result
is shown in Fig. 1. The line, A B, denotes the bomb before the explosion; the
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conical surface, BCD, (remembering that we are really dealing with a conical
surface of three dimensions in a four-dimensional space) represents the
history, or at least the initial stages of the history, of the pulse of light sent
out from the position of the bomb at the time of the explosion, i.e., sent out
from the event, B. We know that this is a conical locus since we know light
has a definite speed in any given direction in terms of a given coordinate
system. The pencil of lines, BEF, denotes the histories of the various particles
into which the bomb was broken by the explosion; the speeds of the particles
are not determined when the direction is given as was the case with light and
therefore the trajectories representing the histories of the particles do not lie
on a (three-dimensional) conical surface through the event B but occupy a
four-dimensional region. The velocities of these particles are usually small

A

Fig. 1.

compared with that of light and this is represented by drawing BEF as a
pencil of small angle compared with that of the cone. We have not drawn any
of the lines to look straight since so far no meaning has been attached to the
term “straight” and even if some intuitive meaning were ascribed to it our
drawing would not necessarily have to be without distortion so long as the
coordinate network were compensatingly distorted, and this has not been
drawn in the figure; the situation is completely analogous to that which
arises when a country is mapped according to an unspecified projection.

There are two immediate remarks to be made concerning the explosion;
the first is the fact that light rays propagated from a definite point at a de-
finite instant in a definite direction always move so that their tips coin-
cide; in terms of the four-dimensional picture this means that the light-cone,
BCD, determines only two velocities for any spatial direction through the
position of B—the velocities in the positive and negative senses of the given
spatial direction. Hence the cone is one that has ovaloidal spatial cross-
sections.
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The second point is due to Galileo and is to the effect that once the direc-
tion and speed of projection from a given point at a given time are known
the complete motion of a particle is determined irrespective of the mass of the
varticle performing the motion.® In the Newtonian theory this fact is ex-
pressed by saying that gravitational and inertial mass are proportional; let
us see what it means in terms of our four-dimensional world. If we know the
coordinates of the event B and of an event, B’, that lies near B on a given
trajectory we have a knowledge of the initial direction and initial speed of
the projection of the particle under-consideration in terms of the coordinate
system used and we also have a knowledge of the initial position and initial
instant of the projection. Thus by Galileo’s principle we have sufficient data
to specify the whole motion completely. It follows, therefore, that all four-
dimensional trajectories of material particles (with the reservation of the
last foot-note) are curves that are determined when two events near to each
other belonging to the trajectory are given.

It is to be noted that we are not using the term “trajectory of a particle”
to denote the spatial locus of its motion — but to denote the four-dimensional
curve that gives a more complete characterization of the motion by in-
cluding a record of the instant at which each spatial position was occupied by
the particle.

§4. EQuaTioNs OoF THE LigHT-CONE AND OF TRAJECTORIES;
Ex1sTENCE OF g AND T FIELDS

Our next step is to consider the mathematical significance of the two points
brought out in the previous section.

The first shows that at every point of the four-dimensional world there is
determined a unique conical surface of three dimensions having ovaloidal
spatial cross-sections; the simplest surface of this nature is a quadratic cone of
three dimensions, and in the relativity theory it is assumed that it is a quad-
ratic cone that is determined at each point of space-time by the behaviour
of light.

Let the coordinates of an event be denoted by (x!, x2, x3, x*), or by (x%),
where a takes on the values 1, 2, 3 and 4. Let (x*+dx2) by the coordinates of
an event near (x2). Then the general equation of a quadratic cone through
(x) is

1,2,3,4
Z gaﬂdxadxﬁ = 0’
a.8

where g.s are sixteen functions of the coordinates, x*. We shall use the sum-
mation convention introduced by Einstein whereby the summation sign is

3 In general this is not true; to be more accurate we should state that it is necessary to
know in addition to the above data the value of the initial component of acceleration in some
direction. If we find that the trajectory is independent of this additional quantity, as assumed
in the text, we characterise the situation by saying that there is no electromagnetic field present
but only a gravitational field, or else that the particles carry no charge; we are omitting any
consideration of electromagnetic phenomena and are therefore justified in leaving the state-
ment in the text as it stands.
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omitted whenever summation over a repeated suffix is intended. Qur cone

thus becomes
gopdxdaf = 0 (4.1)

or, if we prefer to have a differential equation,

dx* dxb
ds ds

8ap =0, (4.2)

where s is some parameter, as yet not specified.

We have seen that all physical phenomena are to be expressible in terms
that do not depend upon the particular coordinate system being used. It can
be shown that this requires the sixteen functions g.s(x) to be the components
of a tensor. Further, it is only the symmetric part, ¥(g.s+gs«), Of gas that
enters into (4.1) so that we may look upon g.s as symmetrical without loss of
generality; in this case, since g.s =gs. by hypothesis, there are only ten in-
dependent functions, g.s.

Now (4.1), or (4.2), is unaltered if we multiply throughout by any quantity
whatsoever, other than zero; thus we can only infer that a tensor Xg.s is de-
termined at each point of space-time, where X is completely arbitrary and
may involve the quantities dx?, the distance between New York City and
Berlin, or any other quantity. Nevertheless in the reldtivity theory it is as-
sumed, as being the straightforward thing to do, that X involves only the x
and may. therefore be absorbed into the g, which are themselves functions
only of the x°.

So the first point has as a consequence the assumption that the four-di-
mensional world is the seat of a symmetric tensor field, g.s; we shall see later
how this is related to the theory of gravitational and inertial effects.

Let us proceed to a consideration of the mathematical expression of the
second point of the previous section, namely the principle of Galileo. It can
be shown that the differential equations to a trajectory fulfilling the conditions
required by the principle of Galileo must be of the form

d2xe . GxF dxv

2 T O #-3)

b

where the quantities I'g, satisfy I's, =I5, are functions of the x* and of the
dx*/ds, and are homogeneous of degree zero*in the dx*/ds. Furthermore, in
order that the equations (4.3) have a significance that is independent of the
particular coordinate system used the quantities I'g,, of which forty are in-
dependent of each other, must transform, under a transformation of coordi-
nates, according to a certain law; we characterise this by saying that the I'’s
transform like the components of an affine connection. Thus Galileo’s prin-
ciple leads to the assumption that there exists in space-time a field of I'’s that
transform like the components of an affine connection.

4 This comes from the additional assumption that the trajectory is unaltered if we sub-
stitute as+b for s where ¢ and b are constants.
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Space-time has thus been endowed with two definite characteristics as a
result of our study of the explosion of a bomb.

Before we proceed to a discussion of the assumption that is made in the
relativity theory regarding the relationship between the g and I fields and of
the method by which the g field can be determined experimentally we have
one important remark to make concerning the g's regarded as coefficients in
the equation of the light cone; for the light cone is a real locus and this im-
poses a restriction upon the g's. The left-hand side of (4.2) is a quadratic
form in the four variables dx~/ds; by a well-known theorem any quadratic
form involving real variables can be reduced by a real transformation to the
canonical form in which it becomes the sum or difference of the squares of the
new variables, and moreover the number of positive and the number of nega-
tive coefficients is independent of the mode of reduction. We may thus con-
sider (4.2) in its canonical form to be

dxl 2 dx2 2 de 2 dx4 2
L )+ () (o

ds ds ds ds
where a definite number of positive and a definite number of negative signs
are to be taken. Now we know from experience that three dimensions of the
four-dimensional world are of the same nature and hence must enter into our
equations in the same way; thus three of the signs must be the same. If the
fourth sign were the same as the other three the locus would be imaginary.
Hence we must take the sign of the fourth square to be opposite to that of
the other three, and this is essentially the restriction that the g’s must obey.
It is possible to state this restriction in general terms but nothing is gained by
so doing since the conditions are not expressible in a simple manner; it is suffi-
cient for our purposes to state that the g’s must be such that under a suitable
real transformation of coordinates the equation of the light cone can be re-
duced to the form

dxl 2 de 2 dx3 2 dx'l 2
——)-{—) - {— —) = 0. 4.4
(ds) (ds) <ds)+<ds> .4
This is a restriction upon the behaviour of the g's in the neighbourhood of a

given event, and nothing is implied as to the possibility of such a reduction
being possible over a large region of the four-dimensional world.

§6. EXPERIMENTAL DETERMINATION OF THE g AND I' FIELDS

Let us now consider the problem of determining the g's and the I''s ex-
perimentally. In the relativity theory a further assumption is made that
leads to an expression for the I'’s in terms of the g’s; at the moment we shall
not make use of this assumption but, for the sake of simplicity, we shall ten-
tatively assume that the I's are actually independent of the dx*/ds — this
being the simplest way of fulfilling the condition that they be homogeneous of
degree zero in the dx*/ds and being in keeping with the assumption we shall
introduce later.
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The I''s and the g's are functions of the coordinates in two senses, they in-
volve the x* in their mathematical expression and they also undergo some-
what complicated intermixing when the coordinate system is changed so that
their functional form becomes altered under a transformation of coordinates;
for example, in one coordinate system we might find that gy, is represented by
(#'42%%) and in another coordinate system by x%cos x'3. Our experiments
are designed to provide a knowledge of the functional form of the g’s and I'’s
so that it is necessary to keep to one definite coordinate system throughout
the experiment and the subsequent computations; the result will then be the
functional forms of the g's and I''s n terms of the coordinate system used.

We consider the determination of the I's first; the Egs. (4.3) may be re-
written in the following manner; let x* represent the time-like coordinate and
let us replace it for convenience by ¢; let us furthermore use Latin suffixes to
to take on only the values 1, 2 and 3. then we have

dx*  dx* dit

ds  di ds

and

d*x*  d%xe fdi\? dx* d%
st ar (EE) & dst
the Eqgs. (4.3) are therefore the same as

d?xe dxf dxv { a4 dt}dx“

ar P g ar ' \dse/ dsf at

= 0. 5.1

But we have written ¢ for x* so that, for « =4, we have
0+ 1t dxP dxv n {d% dt} 0
b1 4t dt st/ ds§

and, substituting in (5.1) for =1, 2, 3 and making use of our convention re-
garding Latin suffixes, we easily obtain the three equations

d2xe . dx* . 2%\ 2 . .
de2 + T, _“:i—[{ru - ZI‘M} - ( dt) {ZPM - raa}
(dsvc">3r4 g dx¥ - dx® dx¥’ 5.2)
dt) e ¥4 g Y44t dt ’
e dx® dx*’ et dx® dx® dx* 0
Y gt dt Ye'gt dt dt

where the primes denote that the suffix does not take on the value that ¢ has,
so that a primed Latin suffix takes on only two of the three values 1, 2, 3
depending on which particular value ¢ happens to have; and furthermore the
summation convention is suspended for unprimed indices that occur in .(5.2).
Let us now return to our explosion; this furnishes several trajectories emanat-
ing from a given event in various initial space-time directions. The act of ob-
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servation provides us with a table of values of the coordinates, x¢, of events
lying on these trajectories; from these tables we can compute, for a given tra-
jectory, the initial values of the quantities dx*/dt, d®x®/d?, d*x2/de, - - - , and
so on, and thus dx®/d¢ and d?x®/dt? can be expressed as Taylor series about the,
event at which the explosion occurred; if these values of dx*/dt and d%x*/d*
belonging to a given trajectory be substituted in (5.2) we obtain three equa-
tions involving the I''s as unknowns. Each trajectory provides three such
equations and by choosing a sufficiently violent explosion we can obtain
as many different trajectories as we please emanating from the same event.
The number of independent terms in (5.2) is thirty-six. Thus by observing
twelve trajectories, substituting for the various dx*/dt and d?x*/d#® in (5.2),
and solving the resulting algebraic equations we can obtain values of the
coefficients,

P:p {I‘:‘; - 21‘:4}’ {ZF:A - F:a}’ I‘:n’
re, i, re

b'4) T b'4? b’e! a'nd Pb"c”

as functions of the x%; that is to say, we can obtain functional expressions for
the quantities

Ty — 2T%s

. . (5.3)
Paa - 2Pa4

(where the summation convention is, of course, still suspended), and for every
T not entering the above expressions.

Now, starting once more from Eq. (4.3), we can change the independent
variable to, say, x® instead of to ¢=x*; by using the readings obtained from
our previous explosion® we can now compute the dx'/dx?, dx?/dx® and dx*/dx®
as functions of the x*. Proceeding as before we shall now be able to obtain ex-
pressions for

I’ — zr:}
I'% — 2T%

and every I not entering the above, where e takes on the values 1, 2 and 4,
and the summation convention is suspended. But now, for example we have

an expression for R .
Tss — 2I'1s

as a function of the x%, and we have already obtained a value for I'}; from
our previous work; we thus have information enough to determine I's;, and
in a similar manner I'};, I', and I'i; may be found, so that, knowing (5.3),
we are able to determine every I'g, as a function of the x=.

Let us now turn our attention to the problem of determining the g.s as
functions of the x*; we make use of our explosion once more, this time to ob-
serve the behaviour of the light pulse that is emitted. The Eq. (4.2) which ex-
presses the way in which light is propagated may be written as

8 It is important that we keep to one explosion all the while, since a second explosion would

give information of the state of the four-dimensional world at a different four-dimensional
point and would therefore be of no use to us at the moment.
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dx* daf 0
T T =
500 a ’
where t is written for x* as before; this is the same as

dx® dxb dx® 4
Zab dl dt + 2ga4 dl + 44 = 0) (Sv )
where we are once more using Latin suffixes to take on the values 1, 2 and 3,
but the summation convention is no longer suspended. To return now to our
experiment, we can obtain a table of coordinates of events on the light-cone
through the event of the explosion and from this we can compute for a given
initial direction the values of the initial velocity, initial acceleration, initial
rate of change of acceleration, - - - , and so on of light along a ray in that di-
rection in terms of the coordinate system used! Postulating for the moment
that an experiment of such accuracy could be devised we thus have the initial
values of dx¢/d¢, d*x2/dt?, d*x®/ds, - - - , and so on, and can therefore obtain
the quantities dx*/dt for a given initial direction as Taylor series about the
event of the explosion. Substituting these values in (5.4) and repeating the
process for the tips of eight other rays we obtain nine algebraic equations
from which the ratios of the ten g.s may be determined as functions of the
x's. We cannot discover more than this from (5.4) since only the ratios of the
g's enter into it.

However, it is quite impossible for us to measure even the acceleration of
light in a given direction and so the determination of the g's from experiments
on the propagation of light in conjunction with (5.4) is extremely inaccurate.
The method however furnishes an accurate means of determining the 2nitial
values of the ratios of the g’s at the event of the explosion and we shall see that
this will be of considerable use for the more accurate determination of the
g’s that we shall now discuss which is based upon the relationship that is
assumed to exist between the g and the I fields.

§6. AssumpTiON RELATING THE I' AND g FiELDS; More ACCURATE
EXPERIMENTAL DETERMINATION OF THE ¢ FIELD

The consideration of a bomb explosion has led us to postulate that space-
time is the seat of a tensor field, g.s, and of a field of I'’s which transform like
an affine connection. We have seen also that by a suitable choice of coordinate
system we can cause the light-cone to take the form (4.4), that is, the tensor
Zas to take the values

-1 0 0 O
0-1 0 O
0 0-1 O
0o 0 o0 1

in the neighborhood of a given event. The form (4.4) is reminiscent of the
special relativity theory and we are led to postulate that the quantity,
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— (da)? — (d22)? — (dx®)2 + (da%)?,

that enters (4.4) has a metrical significance similar to that which it has in the
special relativity theory; that is to say we regard the g field as possessing a
metrical significance and generalise the special relativity concept of the pro-
per time or proper length of a vector, V¢, to be the scalar (g.s V*V#)¥2 Thus
for two neighbouring points, (x%) and (x*+dx*), we have the invariant

(ds)? = gapdxdaf 6.1)

which represents the square of the interval between them. Light is therefore
propagated according to the law

(ds) = 0.

Furthermore, a ray of light, or more accurately the motion of the tip of a ray
of light, is completely characterized when an initial event and initial four-
dimensional direction® are given, and this is precisely the situation that
arises in the case of material trajectories in a gravitational field. We must
therefore conclude that there is a I field determined by the behaviour of light
in addition to the I' field determined by the behaviour of material particles;
it is tempting to assume that these two T fields are actually identical and if
we make this assumption we are at once led to look for a relationship be-
tween the I''s and the g’s since both are now theoretically determined by the
behaviour of light. Light propagation is characterised by having ds=0; the
question is, can we obtain a means of expressing the I'’s in terms of the g’s in
such a way that the only difference between the characterizations of the mo-
tion of a material particle and of the motion of the tip of a light ray shall be
that in the latter case ds =07 The answer is that we can attain this object if
we assume that each of these types of trajectory satisfies the condition that
it is that curve for which between any two events on it the integral

< dx dxf ”2d
fg""_dT dt) !

taken along it is stationary. This means that we assume that the trajectories
of moving particles and the trajectories of the tips of light rays are geodesics
with regard to the metrical field, g.s. The mathematical consequence of this
is that T is now replaced by {42}, where

a 1 ag ” ag,s., agg
{ } ——_-—-g"“’( x -+ — 7), (6‘2)
By 2 dxf axY dx°
g% being the normalized cofactor of g, in the determinant i gas |-
The assumption that
27
s = { } ~ 6.3)

By

¢ For light a three-dimensional direction automatically determines its four-dimensional
direction but this does not spoil the argument.
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cannot be satisfied by arbitrary I's, as is evident since the forty independent
I"s are here expressed in terms of only ten functions, g.s; the above identifi-
cation implies that the I'’s are independent of the dx*/ds, as we have already
tentatively assumed, and that they satisfy certain integrability conditions.
Assuming that the values of the I''s found from observations upon an explo-
sion are capable of satisfying (6.3), we have from (6.3) and (6.2),

0gas
axY

= Ts78ac + T'a3ges

or, multiplying by dx” and employing the summation convention,
@gap = (Tp3gac + Tayges)da

which must be integrable according to our assumptions. Now this equation
expresses the increment of g, that accompanies an increment dx” of the x7
in terms of the values of the g’s at the point (x7), the I''s being known from ex-
periment. It is thus evident that, subject to certain conditions of conver-
gence, single-valuedness, etc., which we have assumed to be satisfied, we can
obtain a Taylor expansion solution for the g's which will involve as arbitrary
constants their ten initial values at the event of the explosion. But these ini-
tial values are, except for an arbitrary multiplying constant, precisely what
can be accurately found from observations upon light propagation. Thus in
general relativity it is possible to measure experimentally the values of
the g.s to within a single arbitrary constant; that is to say, Yg.s can be de-
termined where v is an arbitrary constant depending on the scale used in our
measurements.

§7. STATEMENT OF THE RELATIVISTIC VIEW-POINT

In previous sections we have been led to postulate that the four-dimen-
sional world is the seat of a tensor field, g.s, and have discussed the way in
which this field may be experimentally determined. The general relativity
theory aims at the use of the g field, and of the g field only, for an explanation
of all macroscopic gravitational and inertial phenomena; the detailed dis-
cussion of field equations and the like does not belong to the present article
as we have already pointed out, but certain more general matters are of great
importance. Our problem may be stated in the following way; for various
reasons it has been found necessary or convenient to introduce certain terms
such as “inertial frame”, “acceleration”, “rotation”, “Doppler effect”, and so
on; the motive for the introduction of these terms must have been the exis-
tence of certain corresponding physical effects that have been noticed; very
often, however, our choice of a word and the implications we have come to
attribute to it have been greatly influenced by the Newtonian philosophy—
the term “simultaneity” is an excellent case in point. Although the concepts
denoted by the terms we ordinarily use may prove to have no unambiguous
meaning from the point of view of general relativity, nevertheless every such
term must actually refer to some physical phenomenon or assumption since
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otherwise it would not have been introduced; it is our purpose to attempt

to recognise the phenomenon that is referred to when a given term is em-

ployed, to examine whether the usual meaning attached to this term can be

justified from the new standpoint, and, if it cannot, to discover the true ex-

tent of its significance from the point of view of the general relativity theory.
The equations of motion of a material particle are

d?x " { a} dxf dxv 0 7.1)
ds? vy ds ds '

These express a fact that is independent of the particular coordinate system
used, namely that the trajectories of moving particles are assumed to be
geodesics in a space-time whose metrical properties are governed by the gus.
If the coordinate system be changed the functional forms of the g, are
changed and therefore the explicit form of the above equation is altered ; hence
the experiments designed to measure the g's are actually also experiments
for the determination of the idiosyncracies of the coordinate system used;
coordinate systems in terms of which the Egs. (7.1) take on particularly sim-
ple forms are evidently in some sense privileged systems and if the theory
is to stand we must be able to point to the way in which their recognition as
such is related to our experience.
The simplest form that (7.1) might take is undoubtedly

d2x>

ds?

=0, (7.2)

and this will hold for all trajectories only if a coordinate system can be found
in terms of which the g,s become constants. In general it is not possible to
reduce arbitrary g, to constants by a suitable choice of coordinate system
and the condition that this be possible is that the so-called curvature tensor,
or more accurately the Riemann-Christoffel tensor,

L al e ey

vanish. This gives us a means of determining whether the complexity of the
equations of motion is entirely due to an unwise choice of coordinate system
or whether it is impossible for us to effect a complete simplification to the
form (7.2).

Now for all motion to be expressible in the form (7.2) is the nearest ap-
proach in the relativity theory to the state in which motion is in a straight
line with constant speed, and therefore, using the Newtonian terminology,
under no forces; it actually corresponds to special relativity. By changing our
coordinate system we change the g’s and therefore, in general, the form of the
equations of motion; this will be interpreted as the introduction of a fictitious
force, as, for example, a centrifugal force; but if the curvature tensor do not
vanish we shall be unable to express all motions in the form (7.1) and shall
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therefore regard the situation as corresponding to the existence of a field of
force which cannot have been entirely due to our choice of coordinates; we
interpret it as the gravitational influence of other bodies. Now this influence is
not arbitrary but is spread out in a definite manner, as we know from obser-
vation as approximately embodied in Newton’s inverse square law; it follows
that the g’s must satisfy certain extra requirements, and we thus realise the
necessity for field equations to express the relativistic analogue of the New-
tonian law. We shall not pursue this matter further; we wish only to point out
that the sole difference between gravitational and inertial effects from the
point of view of general relativity is that the complexity of the latter can be
regarded as entirely our own fault whilst the former remain always to a cer-
tain extent outside the influence of our coordinate systems.

In general, then, on account of the curvature of space-time, there does
not exist a coordinate system in terms of which the g,s become constants.

§8. INERTIAL FRAMES; ACCELERATION AND ROTATION OF
COORDINATE SYSTEMS

Let us consider first of all what we mean by the term “inertial system”.
The Newtonian laws of motion hold in an inertial system and this is the only
definition of the term that can be given from the classical standpoint with-
out a circular argument. Insomuch as the Newtonian laws have to be modi-
fied even in the special relativity theory it seems that the term “inertial sys-
tem” is meaningless. It is nevertheless important that we discover the reason
for the existence of this term since an inertial system is characterised by the
facts that it does not “rotate” and does not undergo “acceleration”, and we
shall therefore find an indication as to the meaning of these terms when we
decide upon the significance of the term “inertial system”.

The Newtonian laws of motion under no forces may be expressed as

d?xe

ar

The nearest approach to these in the special relativity theory is
x>

ds?

In the general theory we have seen that it is usually impossible to find a co-
ordinate system in terms of which all trajectories take the above form; what
is the best we can do?

It can be shown that coordinate systems exist in terms of which all ira-
jectories™ through the origin take on the above form; they are called normal
coordinates, and for distinction we use y* for the coordinates of an event re-
ferred to such a system. In addition to the above they possess the following
characteristics:—

7 By the term “trajectory” we always refer to the trajectory of a particle acted upon by
nothing except the gravitational influence of other bodies; such bodies we refer to as free bodies.
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At the origin
agag

ay”

= 0; (81)

Corresponding to a given origin there is an infinite number of normal coor-
dinate systems;
These are related by general Lorentz transformations®
Not only all trajectories but all geodesics® through the origin take on the sim-
ple form
dZya
ds?

=0, (8.2)

and conversely.

We shall look upon the normal coordinate systems as the entities that the
term inertial system was intended to describe; let us see the consequences of
this. We have, immediately, the result that special relativity holds in the
neighbourhood of the origin of coordinates. Again, it is evident that the time-
like coordinate axis is a trajectory, since it satisfies (8.2), and moreover all
the coordinate axes are geodesics; the time-like axis is such that for events on
it the spatial coordinates remain zero; it therefore represents the trajectory
of a body permanently at the origin of the spatial part of the system.

Integrating the equations of motion of trajectories through the origin we

obtain
ye = ps (8.3)

where p2 are constants depending on the velocity of the particle and s is the
“proper time.” The time-like axis, in integrated form, is

y4=P4s }
=0

and it follows, therefore, that the indications of the clock used in the coor-
dinate system at the origin provide a “time that flows uniformly” for all tra-
jectories through the origin.

Inertial frames are looked upon as being unaccelerated and non-rotating;
that is to say the words “accelerated” and “rotating” are applied to a coor-
dinate system to describe properties whose symptoms are a failure of the
Newtonian laws of motion in that system; and furthermore there is consider-
ed to be an essential difference between a rotating system and one that is
merely linearly accelerated. When we go over to the relativity theory it seems
that we must regard the general term “accelerated”, when applied to a coor-
dinate system, as implying that it is not a normal coordinate system; but
not every coordinate system that does not happen to be a normal coordinate
system can be regarded as “accelerated” in any intuitive sense; for example,
let us take a normal coordinate system and substitute for its set of clocks a

8 We always refer to “orthogonal” normal coordinate systems, for which g,s=0 if a8 at
the origin.

® For a trajectory is merely a particular type of geodesic since it must lie within the light
cone.
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new set of clocks the indication of each of which is related to that of the clock
it displaced by, say,

/ — 41.003.
t_t003’

the resulting coordinate system will be such that trajectories through the
origin will no longer “look like” straight lines —i.e. will no longer have the
form

x* = pes

—with respect to it; it is nevertheless not an “accelerated” system, neither
does it rotate. We need not pause over the classification of this type of depar-
ture from normalcy since it evidently corresponds to the effect of using an ir-

Fig. 2.

regular watch in the Newtonian theory; and similar remarks hold for coor-
dinate systems that correspond to curvilinear coordinates in the Newtonian
case. Let us rather attack the problem of characterising a truly accelerated
coordinate system in the relativity theory; as a definition we can hardly ob-
ject to the following: “a coordinate system is not accelerated if its spatial ori-
gin moves with uniform velocity”, provided this really has meaning. We can
supply a meaning to it very simply; the motion of the spatial origin is easily
seen to be the curve denoted parametrically by the coordinates (o, o0, 0, t) of
points on it; for uniformity of velocity we have only one criterion, namely
the motion of a free particle. Hence we can at last define an accelerated coor-
dinate system as one whose time-axis is not a trajectory.

The case of rotation is a little different; let us try to find a type of coor-
dinate system that can be characterised as unaccelerated but rotating. It
must evidently be such that its time axis is a trajectory. Speaking classically,
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we recognise a coordinate system as rotating when all particles projected from
the origin trace out spatial loci that, instead of being straight lines, are, in
general, spirals described in the same sense about an axis—the axis of rota-
tion—the only exceptions being those particles that were projected along the
axis of rotation. This way of regarding the symptoms that betray the rotation
of a coordinate system may be taken over with very little change into the
relativity theory; in Fig. 2 let Ox, Oy and Of represent respectively two spa-
tial coordinate axes and the time axis, the third spatial dimension being, as
usual, omitted. Let OA be any trajectory through the origin; denoting its
initial direction by D; and that of the time axis (which is, by hypothesis, a
trajectory) by D. we can define a two-dimensional surface uniquely deter-
mined by O¢ and OA as the surface traced out by the geodesics through O
whose initial directions are given by

D = Dy + \D,

for different N's; we shall refer to this as the geodesic surface determined by
the intersecting geodesics Of and OA4. It will cut the three-dimensional space,
t=0, in a curve, OB say. In general OB will not be a geodesic but it is doubt-
ful if a satisfactory definition of rotation of a coordinate system can be ob-
tained except in the cases when OB is a geodesic for every O4 ; such an as-
sumption amounts to our taking Ox, Oy and Oz as geodesics and defining the
space ¢=0 as depending on Ox, Oy and Oz in precisely the same way as the
surface 104 depended on Ot and OA4 ; physically this is the nearest approach
to the concept of rectilinear spatial coordinates that can be made in the rela-
tivity theory; we shall therefore assume that OB is a geodesic; it is thus the
analogue of the initial spatial tangent radius vector of the motion, O4. The
equations representing OB will be of the form

fl(x) Y, Z) =0
fz(x, Y, Z) =0
t=0

in terms of our coordinate system. The subsequent behaviour of this line in
space will be represented by the two-dimensional surface

fl(x) y,Z) =0 }
f2(x) Y Z) =0

and this will therefore be the relativistic analogue of the motion of a direc-
tion marked on our coordinate system which originally coincided with the
initial spatial direction of the motion of our free particle. Hence if 04 lie
wholly in this surface we can consider the spatial direction, OB, to be non-ro-
tating; if, on the other hand, O4 should curl out of this surface, say, to the left
we regard the coordinate system as rotating in such a way that the spatial
direction, OB, rotates to the right. We have, therefore, a test as to whether
a coordinate system of the type to which we have restricted the discussion
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has a rotation or not. The point is more easily seen if we consider a trajectory,
04, which determines an OB that happens to be a coordinate axis, say Ox;
then our criterion for a rotation of which Ox is not the axis is that the geo-
desic plane, {Ox,—whose points have coordinates of the form (x, o, o0, t)—do
not contain O4. The above does not imply that the coordinate system rotates
as a whole; to verify this we must make our test for all possible spatial direc-
tions, OB, and even then we cannot, in general, obtain a satisfactory signif-
icance for the concept of rotation as a rigid body.

We have treated acceleration and rotation separately; whether they can
be recognised and distinguished without ambiguity in a coordinate system
that possesses both characteristics is a much more difficult question and one
which, to the best of the author’s knowledge, has not been investigated.

§9. ReraTive MotioN or Two Bobies; TaE VELOCITY OF LiGHT

In the previous section we were concerned with properties ascribable to
coordinate systems; we shall now consider what can be said regarding certain
phenomena irrespective of the coordinate system used in their description. We
shall begin with the relative motion of two bodies a finite distance apart, the
problem being to discover to what extent we are justified in saying that they
are moving towards or away from each other, or that they are rotating around
each other. Let the curves 4C and BD in Fig. 3 represent the motion of the

[ D

m

Fig. 3.

two bodies in terms of the four-dimensional world, and let us consider their
relative radial motion first. With 4 as origin we can erect a normal coordinate
system relative to which the particle 4 C is momentarily at rest—that is, we
erect a normal coordinate system whose time-axis at its origin, 4, is tangent
to AC.10

10 We have not stipulated that the two bodies be free bodies, acted upon only by gravita-
tional influences, so that we cannot assume that 4 Cand BD are trajectories and it follows there-
fore that the time-axis of a normal coordinate system will in general not coincide with 4 C over
a finite interval.
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Once a coordinate system has been decided upon we are able to talk about
simultaneity; let B be the event on BD simultaneous with A— that is, let B
be the event on BD whose ¢-coordinate in our coordinate system is zero. The
three-space, t=0, will be a geodesic three-space perpendicular to AC at 4;
it will contain the geodesic joining 4 to B and hence this geodesic is perpen-
dicular to ACat 4. Let E be an event on A C near to 4 and let F be the event
on BD simultaneous with it relative to our coordinate system; then there is
only one geodesic joining E and F. If the length of EF be greater than 4B we
may think of the particles as receding from each other, if it be less as ap-
proaching, and if the same as having no relative radial motion—but this cri-
terion is relative to a particular coordinate system associated with a particu-
lar event on a particular one of the particles! To what extent can we make
it more objective? It can be stated without reference to coordinate systems
essentially as follows; we choose an event, 4, on one trajectory, draw the
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m

Fig. 4.

geodesic through 4 and perpendicular to 4 C that intersects the other tra-
jectory and then look on the two particles as receding from each other, ap-
proaching each other, or having no relative radial motion, according as the
angle between the geodesic and the second trajectory is obtuse, acute, or a
right angle. We shall show that this criterion is a relative one in general; for
in Fig. 4 let 4 C and BD represent the motion as before; let 4 B be the geodesic
perpendicular to 4AC at 4 and let BE be the geodesic perpendicular to BD at
B. Then if we take 4 as our initial event we must regard B as simultaneous
with it, whilst if we look on B as the initial event we find that E is the event
on AC simultaneous with it. In general 4 and E do not coincide, for a
geodesic is uniquely determined by an event and a four-dimensional direc-
tion at that event, and it follows that A and E will coincide only if AB is
perpendicular to both 4 C and BD. Hence relative radial motion can be de-
fined only relatively to one of the particles; but in the special case in which
at the instant under consideration the two particles have no relative radial
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motion our criterion is independent of which trajectory is taken as the stan-
dard of synchronization.!

The case of the relative rotation of two bodies is closely parallel to the
above discussion; it is hardly necessary to repeat many of the ideas employed
in the case of relative radial motion and we shall therefore merely state the
results; in Fig. 5 let 4C and BD represent the motions of the two particles;
let 2 represent the geodesic three-space perpendicular to 4 C at 4 ; it will con-
tain the geodesic, 4 B, that we have discussed above, the radial motion of the
second particle relative to the first being decided by the angle ABD; the re-
lative rotation of the second particle around the first at the instant of the
event 4 is decided by the angle that BD makes with 2 in directions perpen-
dicular to A B. If BD be perpendicular to 2 the two particles have no relative
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Fig. 5.

motion, either radial or transverse, and in this case only is the criterion inde-
pendent of which particle is taken as stationary. In gen ral the motion of
particle BD relative to particle 4 C is not the same as the motion of particle
AC relative to BD.

[If we required that space-time be of such a sort that the relative motion
of two bodies have an absolute significance independent of everything except
the instant for which the motion is considered, so as to avoid, for instance,
the possibility that although particle 4 is rotating around particle B never-
theless particle B is not rotating around particle 4, we should find it neces-
sary to endow space-time with the property of so-called distant parallelism. ]

The results of the above discussion are in no way dependent upon the fact

1 Tt would be possible to take as initial event some quite arbitrary event and to erect an
arbitrary trajectory at that event to provide our synchronization; a definition of relative radial
velocity could easily be obtained in terms of this construction, but it would involve a great deal
of useless arbitrariness from our present point of view since our object here is to discover how
far concepts like the relative motion of two particles can be made independent of arbitrary
modes of observation.
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that we have chosen two particles moving in an arbitrary manner instead of
two free particles; in the special relativity theory there is a clear distinction
between the two cases as the reader may easily see for himself by drawing the
appropriate figures and remembering that the term free particle in special
relativity means a particle acted upon by no influences whatsoever whilst in
general relativity, where the gravitational field has been given a geometrical
significance, the term implies a particle acted upon by the gravitational effect
of other bodie but by nothing else.

The complications of the problem of the relative motion of two bodies in
general relativity arise from the fact that we have to deal with events that
do not lie infinitesimally close to one another; the situation is simpler if we
consider the relative motion of two bodies at an instant at which they hap-
pen to coincide since, of course, the definitions of the various relative motions
no longer require the specification of a particular particle as standard; it is

’

T T

Fig. 6..

easily seen, for example, that the relative radial velocity is represented by the

angent of the angle at which the two curves representing the particles’ mo-
tions intersect. Let us consider the velocity of light from this point of view;
our first notion is to consider the “velocity of light relative to” rather than
the velocity of light; in Fig. 6 let OT represent the motion of a body that we
shall consider as being our standard of rest and let OL represent the motion
of the tip of a light ray containing the event O. The velocity of light relative
to the body at the event O is represented by the tangent of the angle at
which the curves OT and OL intersect; this is an objective definition of the
relative velocity and is therefore independent of particular coordinate sys-
tems, nevertheless it is not this fact that gives to the velocity of light its
characteristic property, completely analogous to that which it possesses in
the special theory of relativity; for let us consider another body containing
the event O, whose motion may be represented by OT"”, say. If bodies OT and
OT’ have a relative motion at O their tangent geodesics will not coincide
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there; however the velocity of light relative to OT’ is the same as that rela-
tive to OT as is at once seen to be the case since OL is characterised by the
fact that its geodesic length is zero and hence tan?7oL= —1 = tan’foL;? it
thus follows that the velocity of light at an event O relative to any standard
body containing O is a constant, irrespective of the coordinate system and
irrespective of the particular standard of rest employed. The first point im-
plies that our definition of relative velocity is objective,!® the second that the
velocity of light is the same for all observers, just as in the special theory.

We have found that the velocity of light is (— 1)!/2; by a change of units we
can not only make this real but also give it any numerical value we choose; it
follows therefore, that the phrase “velocity of light” has significance in that
it is independent of the observer, but has no definite numerical value notwith-
standing; the conclusion to be drawn is that there is a natural relation be-
tween the units of length and time and that we do not employ it in the c.g.s.
system. And, furthermore, whether the velocity of light remains a constant
or not when expressed as cm/sec., say, is not the concern of the motion of
light but is a reflection of the fact that our efforts at spreading a holonomic
four-dimensional web of cm/sec. coordinate lines are unsuccessful in the
presence of matter. The motion of light is the standard in terms of which
everything else is expressed.

§10. Tuae DorrrLER EFrFECT

In this final section we discuss the term “Doppler effect”; our pres nta-
tion will be by the aid of diagrams, since not only does this method avoid the
use of mathematical symbolism but, once grasped, it provides a vivid com-
prehension of the relativity outlook and its points of difference from the New-
tonian system.

We commence with a diagrammatic account of the classical theory of the
Doppler effect. The Newtonian world is four-dimensional and we represent
two of these dimensions in Fig. 7, omitting two of the spatial dimensions for
the sake of simplicity. Let 4 C be the trajectory of a body at rest emitting
monochromatic radiation; we are interested in two aspects of this radiation,
its period and its velocity; the former we represent by dots evenly spaced on
AC, which may be looked upon as marking successive moments of similar
phase, and the latter we denote by the definite slope of the lines 44’, BB’,

12 Tt is more accurate to say that the notion of angle breaks down when one of the lines in
the definition is of zero length; the argument in the text is valid if we regard it as employing a
convenient means for talking about analytical processes, the relative velocity being defined as
the analytical expression which in ordinary cases represents the tangent of the angle between
the two curves representing the motions of the two bodies, this definition being retained in the
limiting case.

13 In previous sections, notably the third, we have been concerned with “coordinate
velocities” which may be defined as entities having as components the limiting values of
dx/8t, 8y/dt and éz/5¢ for an event on a trajectory; this entity is not independent of the co-
ordinate system and moreover no magnitude is defined for it; it is, however, not without signif-
icance since, in some cases, certain coordinate systems appear to be of importance as being
those used intuitively by the astronomer; see, for example, the next section.
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etc., that represent the propagation of the disturbance through space. By the
assumptions underlying the Newtonian theory, the three-dimensional spaces,
¢t = constant, are all Euclidean and independent of the value of ¢, matter being
considered as having no influence upon the structure of space or time; our
figure is in fact the sort of diagram that is used in the compilation of railway
time-tables, stationary bodies being represented by trajectories parallel to the
time-axis and therefore perpendicular to the space-axes. Let OT denote an
observer having no radial motion relative to the emitter, so that it is parallel
to A C; the disturbance originating at the event A reaches our observer at the
event, O, which is the intersection of 44’ and OT'; we may, without loss of
generality, take O as the origin of space and time coordinates; the distur-
bance of similar phase, originating at B, will reach the observer at the event,
P, which is on BB’ and OT; the time interval between these two events is

x

—
/‘
>

Fig. 7.

the distance PO, and this is the same as 4 B so that the frequency of the light
received is the same as that of the light emitted. Now consider an observer
approaching the emitter; he is represented by the trajectory, OT,, inclined
towards A C, the inclination depending on the velocity of approach;let A4’
and BB’ meet OT, in O and P, respectively; then the time interval between
the reception of the disturbances from the events A and B is the distance be-
tween P, and O parallel to the time-axis, i.e., it is the perpendicular distance,
P.X,, from P, to Ox; this is less than A B and therefore the frequency of the
light received is higher than that of the light emitted. For a receding observer
we have the trajectory OT, and we see that there is an apparent lowering of
the frequency. When the observer is fixed but the emitter moving the Doppler
shift, as is well known, is slightly different in its dependence on the relative
velocity of the emitter and observer from its value in the above cases; the
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construction of the appropriate figure is not difficult. To be accurate we
should point out that the measure of the alteration in frequency is performed
against a standard emitter in the laboratory of the observer; in the present
case on account of the Euclidean nature of our spaces, ¢ = constant, this point
has little significance, but we shall see later, especially in the general rela-
tivity case, that it is of great importance.

We take up now the special relativity theory of the Doppler effect; this
has sometimes caused a slight confusion for the following reason; it is known
that in special relativity the addition of any velocity to the velocity of light
has no effect, and yet the Doppler effect is often explained in the Newtonian
theory by talking of the increase or decrease in the velocity of light relative
to an observer due to his motion; the inference is that apparently a Doppler
effect due to relative radial motion cannot exist in the special relativity the-
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ory. The fallacy lies in the assumption that the Doppler effect depends upon
an alteration in the relative velocity of light; it depends actually upon the al-
teration in the number of wave-lengths passing an observer in a second caused
by the observer’s motion relative to the emitter. In Fig. 8 we give the special
relativity equivalent of Fig. 7. As before 4 C represents the emitter and 4A4’,
BB’ etc., the propagation of the light emitted at the events 4, B, etc., of simi-
lar phase. For the observer having no motion relative to the emitter the time
interval between the reception of the disturbances sent out from the events
A and B is PO and this is the same as 4 B so that there is no Doppler shift;
however let us consider the case in which a transverse relative velocity exists;
instead of having OT to represent our observer we must now take a trajectory
OT’ (Fig. 9) inclined to OT but lying in the plane through OT perpendicular
to Ox. The interval between the reception of the disturbances at 4 and B is
now P’O and in special relativity we have to compare the interval between

N

Fig. 8.
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P’ and O with the interval representing a cycle of an emitter at rest relative
to the observer; the assumption is made that the pulsations of any emitter
beat out intervals of local time, ds, defined by

(ds)* = c*(dh)* — (dw)* — (dy)* — (d2)?,

since this has absolute significance whilst df has not. There are two influences
at work; firstly OP’ is not the same length as OP in our diagram and secondly
the unit of local time along OT" looks larger on our figure than the unit along
OT, since the figure is drawn so that the coordinate system in which 4 C and
OT are at rest actually looks rectangular. The curve PQ in the figure repre-

T

Fig. 9.

sents the locus of events in the plane TOT” that lie at a constant interval,
OP, of local-time from O; it is, as is well known, the hyperbola

2 — y2 = o?,

where ¢ is the interval OP; it turns out that OQ is always larger than OP’,
that is, the interval OP’ is less than the corresponding interval, OQ, ticked
out by a local emitter similar to 4C, and hence there is a Doppler shift to
the violet due to the transverse motion; this effect is actually negligibly small
for ordinary velocities; the figure exaggerates its usual magnitude since we
have for the sake of clearness made the angle TOT' much larger than it should
be for a relative velocity of ordinary magnitude.

Let us return to Fig. 8 and consider the Doppler effect caused by relative
radial motion; for an approaching observer we take the trajectory OT .. The
disturbances originated at the events 4 and B reach him at the events O and
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P,; the curve Q.PQ, is part of the hyperbola of events in the plane T04 ly-
ing at a constant interval, OP, from O; let it cut OT, at Q,. We see that OP,
is less than OQ, and this indicates a shift towards the violet. Similarly for the
case of a receding observer, OT,, since OP, is greater than OQ, we find a Dop-
pler shift towards the red.

When the relative velocity has both transverse and radial components
the situation can be investigated by drawing a suitable figure showing two
space dimensions and the time dimension; we leave this for the amusement
of the reader.

A comparison of Figs. 7 and 8 shows, when it is remembered that the angle
between OT and OT, or OT, should be extremely small, that for ordinary
velocities there is practically no difference between the spectral shifts pre-
dicted, for a given relative velocity, by the Newtonian and the special rela-
tivity theories; such difference as there is between the two formulae has the
effect that whereas the Newtonian formula involves the “velocity of the
emitter in space” the relativistic formula depends only upon the relative
velocity of emitter and observer.

And finally, the Doppler effect in general relativity; the shift in spectral
lines need no longer be considered as wholly due to relative motion—the ex-
istence of gravitating bodies can cause an apparent change of frequency; and
anyway we have seen that the idea of relative velocity undergoes modifica-
tion in the general relativity theory. We propose to consider a special case—
the case of the most importance, as it happens; we shall consider the Doppler
effect in the gravitational field of a body possessing spherical symmetry in
space." Let us assume that this body is not radiating away energy at an ap-
preciable rate and that it is not changing at all rapidly in any other way;
what may we expect concerning the gravitational field that accompanies it?
Since the body, to a high degree of approximation, does not change we expect
that its field is likewise unchanging; expressing this mathematically we say
that the field must be such that it is possible to find a coordinate system in
terms of which all the three-spaces, ¢{=constant, are congruent—except for
the minute disturbances arising from the motions etc., of what we shall con-
sider as test-bodies. If such coordinate systems, then, are to be assumed to
exist, it is natural for us to deal entirely with them to the exclusion of all
others; a gravitational field capable of such coordinate systems is referred to
as a statical field. There is another attribute of our field—its spherical sym-
metry; this evidently means that each one of our congruent three-spaces—
they are of course non-Euclidean—possess spherical symmetry about the
position of the field-producing body. With these two conditions, that the
field be static and spherically symmetric, it was shown, by K. Schwarzschild,
that there is only one type of space-time allowed by the limitations imposed
by the field equations;® this space-time is such that, in terms of a suitable co-
ordinate system, the g, take on such a form that the invariant (ds)? becomes

14 The phrase actually has a meaning.

15 It happens that the condition of spherical symmetry in conjunction with the field equa-
tions implies that the field be static.
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(ds)?2 = ¢2(1 — K/r)(dt)? — -——-i—-—(dr)2 — r%(d8)? — r%sin?6(d¢)?, (10.1)
(1 - K/r)

where K is a constant proportional to the mass of the body producing
the field and c is a constant relating the units of ¢ and 7. The quantities
7, § and ¢ are the nearest analogue possible to spherical polar coordinates in
our non-Euclidean congruent three-spaces. The form (10.1) for (ds)? is re-
ferred to as the Schwarzschild line-element; it is for a space-time possessing
such a line-element that we shall consider the significance of a shift in spectral
lines. In Fig. 10 we attempt to picture certain features of such a space-time,
but it is evident that great success will not attend our efforts if we aim at any-
thing more than an indication of the state of affairs; we suppress two spatial
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Fig. 10.

dimensions and represent our curved three-spaces by straight lines perpen-
dicular to the time axis. Let Ot be the trajectory of the field-producing body;
it is also the time axis in the coordinate system of (10.1).}¢ Let the events 1,
2,3 - - - represent events on Ot occurring at equal intervals of coordinate time;
the spaces represented by the parallel lines through these events are thus
separated by equal intervals of coordinate time, and all events in a given such
space are simultaneous with regard to the coordinate system used. Let 4 and

16 Tt should be realized that this is #ot a normal coordinate system; it is owing to this fact
that light is “bent” by the field of the sun; it is assumed that when we deal with the sun’s field
experimentally we intuitively set up a statical coordinate system having pseudo-spherical-polar
spatial coordinates; relative to these the trajectory of the tip of a light ray does not take a form
such as, say,

7 cos 8 =const.
¢ =const.
0/t=const. ]/,

that is, it does not “look” straight, and it is only in this sense that we may talk of light being
bent by a gravitational field.
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B be two events on the emitter’s trajectory representing the beginning and
end of one cycle of the emitting mechanism; let the disturbances originating
at A and B be propagated along 4 C and BD, respectively, to arrive at the
trajectory, CD, of the observer at C and D respectively. On account of the
static nature of our space-time the propagation of light relative to our coor-
dinate system is independent of the particular instant at which it takes place;
this means that the curves BD and A C on our diagram are, except for the
end pieces, congruent and can be brought into coincidence by a bodily shift
of one of them parallel to the time axis; of the significance of this point we
shall have more to say in a moment; meanwhile we consider the general
Doppler effect; the events C and D mark the reception of the beginning and
end of a single wave-length of the light sent out by the emitter; we have to
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Fig. 11.

compare the interval of local-time separating the two events C and D with
the interval of local time separating the events of the beginning and end
of a cycle by an emitter local to the observer; let C and E be such events
(we do not draw the event E in the figure since we do not know yet whether
it ought to lie between C and D or beyond D); then if CD be greater than CE,
that is if E fall between C and D, it will follow that in a given amount of coor-
dinate time the local emitter provides more cycles at CD than does the dis-
tant emitter 4B, so that there is an apparent shift to the red in the light of
the emitter 4 B compared with that of the local emitter; if CD turn out to be
less than CE we shall obtain a shift towards the violet. There remains the
difficulty of computing where E should fall on our diagram; we make use of
the same assumption as we employed in the special relativity case; that is, we
assume that, since the atoms of the emitter 4B are of the same kind as those
of the local emitter, the interval, 4 B, of local-time beat out by it is the same
as the interval, CE, of local-time beat out by the standard emitter of the ob-
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server. The computation is straightforward and we shall not give the details;
but before we discuss the factors upon which the total Doppler shift depends
it is advisable that we consider a special case; this is illustrated in Fig. 11,
which differs from Fig. 10 in that the element 4 B is parallel to the time axis
asalsois theelement CD;this signifies that at the moments of emission from the
events 4 and B the emitter has no coordinate velocity and at the moments
of reception of the disturbances sent out from 4 and B the observer has no
coordinate velocity; with this simplification we are able to see more clearly
what is taking place in the mathematical theory. Since the curves of propaga-
tion AC and BD are congruent and are separated through a shift parallel to
the time-axis it follows that the coordinate time between 4 and B is the same
as the coordinate time between C and D; that is the value of df between 4 and
B is the same as its value between C and D. But by (10.1) we see that the cor-
responding value of ds for AB is given by

(ds)? = (1 — K/r1)(d)?,

where 7, is the coordinate distance from O to 4, since dr, d§, and d¢ are all zero
for AB; and for CD we find

(d82)2 = 62(1 - K/rg)(dt)2,

where 7; is the coordinate distance from 4 to C. Since 7, is greater than »; and
dt is the same for 4B and CD we see that ds; is smaller than ds.. But a local
emitter belonging to the observer will beat out intervals ds1, according to our
assumption, and therefore in a given amount of time the local emitter will
beat out more cycles than are received from the distant emitter, 4 B, that is,
there will be a shift to the red in the spectrum of the distant emitter when
compared with a similar emitter at CD. If the observer were nearer to the
time-axis, that is, nearer to the field-producing body, than the emitter the
shift would be towards the violet. The point to note is that the above repre-
sents the nearest approach that can occur to the case of no relative motion
between emitter and observer and yet a Doppler shift occurs; in the general
case of Fig. 10 instead of having dr, d0 and d¢ all vanish for AB and CD, and
dt the same for both, we now have two different sets of values for dt¢, dr, df
and d¢ and for these two sets the corresponding values of ds must be com-
puted from (10.1) and the results employed in the manner already explained.

The general Doppler effect for the statical spherically-symmetric field
thus depends on several causes such as a particular choice of coordinate sys-
tem, the positions of emitter and observer, and their respective velocities re-
lative to this coordinate system at the instants of emission and reception.
Nevertheless the Doppler effect is an objective phenomenon having nothing
to do with any particular choice of coordinate system since it is no more than
a comparison of the frequency of light received from a distant source with
that given out by a local emitter, and a statement that, for example, five
cycles are received from the distant emitter in the time taken for the local
emitter to give out six cycles is one that involves no mention whatsoever of
coordinate systems. We must therefore expect to be able to express the causes
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of the shift in objective terms without reference to a particular coordinate
system; now the curves AB, CD, AC, BD are objective, being trajectories of
particles and light and the only reference to the coordinate system of (10.1)
remains in the quantities »; and 7,; these quantities have objective signifi-
cance, for it can be shown that, although the coordinate system of (10.1) is
not a normal coordinate system, the radii vectores,

t = const.
0 = const. ,
¢ = const.

are actually geodesics, and the quantity # belonging to an event is related in
a definite, though quite complicated, manner to the geodesic distance, [ds,
along the radius vector from Ot to this event; moreover, since the radius vec-
tor is the geodesic through this event that cuts Of perpendicularly it is uni=
quely determined in an objective manner by the event.

Thus we see that the Doppler effect is an objective effect in the general
relativity theory, but its significance cannot be adequately described in terms
of ordinary concepts like relative velocity since such concepts lose their ob-
jective character in the general theory.

In the non-statical case the Doppler effect depends not only upon the posi-
tion and motion of the emitter and observer and of all matter exerting gravi-
tational influence but also upon the instant at which the observation is made,
and when we remember that the finiteness of the universe may be, in some
cases, a further large contributory cause it is evident that a complete disen-
tanglement of all the elements that have gone to the production of a given
Doppler shift would require far more mathematics than we have permitted
ourselves during this article.



