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The moderately long-range interaction energies of degenerate atoms for nonresonant cases have been studied through-
out the moderately long-range region. Extensive tabulation of necessary parameters and atomic properties for the cal-
culation of the first-order quadrupole-quadrupole interaction energies has been made. Higher multipole interactions also
have been considered and it has been shown that the 1/ R series of the first-order Coulombic interaction energies converges
very fast throughout the long-range region for atoms in the ground configuration. The effects of atomic spin—orbit splitting
have been considered explicitly. It has been shown that (A, S) coupling and intermediate coupling may be important
for the interactions between B, C, O, Al, Si, and Sc atoms in the relatively short internuclear separation range. For other
atoms, the (J,, Ji) coupling scheme will give satisfactory results throughout the long-range region. The experimental
determination of the moderately long-range interatomic forces from predissociation data also has been discussed.

The estimated van der Waals dispersion energies for the first-row atoms are shown to be of almost the same size as the
quadrupole-quadrupole interaction energies at the separation of twice the sum of the atomic radii. It has been also shown
that the leading term [0 (a2?/R3)] of the magnetic interaction energy of two degenerate atoms is 10~209, of the quad-
rupole—quadrupole interaction energy at R=30a, through the third-row atoms.
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I. INTRODUCTION

The calculation of interaction energies between atoms
in ground and excited states has become of considerable
interest. For the purpose of discussion, it is convenient
to divide interatomic and intermolecular forces into
short-, intermediate-, moderately long-, and long-range
forces. The short-range forces are invariably repulsive
and rise sharply with decreasing internuclear separation
R. The forces in the intermediate range may be either
attractive or repulsive; this is the region in which the
exchange forces predominate. The moderately long-
range forces take over at sufficiently large R where the
charge distributions of the two interacting molecules
do not overlap and yet not large enough to involve

* Work supported by the National Aeronautics and Space
Administration Grant NsG-275-62.

t Present address: Department of Chemistry, Harvard Uni-
versity, Cambridge, Mass.

strong retardation effects, R<A. Here A= (ade)™ is
the reduced wavelength characteristic of allowed tran-
sitions in the interacting molecules (a=e?/fic~1%7 is
the fine structure constant and Ae is the corresponding
excitation energy). This region is usually associated
with the dispersion forces arising from a second-order
perturbation calculation. In some instances, as for
example in the interaction of noble gas atoms, the
moderately long-range forces are made up essentially
of dispersion forces. However, when excited states are
involved or neither one of two interacting atoms are in
an S-state, the first-order perturbations, such as dipole-
dipole and quadrupole—quadrupole interactions, may
not vanish. These interactions may be the dominant
forces. At sufficiently large R, the relativistic or mag-
netic intermolecular forces may play an important role.
For R~X or R>X, retardation effects are involved,
and quantum electrodynamics often must be used to
calculate accurate interaction energies.

All the macroscopic measurements involving second-
virial coefficients, Joule-Thomson coefficients, viscosity,
and index of refraction give only qualitative infor-
mation around the van der Waals minimum, a region
where the charge distributions already overlap ap-
preciably, and where the exchange forces make a con-
siderable contribution to the interaction energy. The
recent advances in molecular beam techniques make it
possible to determine the energy curves over a large
range of internuclear separations. So far, however, pre-
cise experimental data are only available through the
intermediate range. One reason for the scarcity of data
at large internuclear separations is the need for an
extremely small aperture and high resolution of de-
tecting apparatus to test the long-range behavior of
the energy curves. From the theoretical point of view,
the intermediate range is very difficult to investigate,
and the approximation methods needed to perform a
reasonable calculation very often obscure the basic

- concepts. The interaction energies at large separations,
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on the other hand, can be calculated exactly by applying
the perturbation theory.

Since potential energy curves play such an important
role in the solution of many physical and chemical
problems! it is essential to have available realistic po-
tential energy functions. This is true particularly when
dealing with degenerate ground states and excited states
where the conventional semi-empirical formulas, such as
the Lennard-Jones or Buckingham potentials, cannot be
employed.

The present investigation is concerned with moder-
ately long-range interactions between atoms with non-
vanishing angular momenta. The first-order pertur-
bation interaction between atoms in the ground con-
figurations is investigated in detail. Special attention is
paid to the investigation of the validity of various
approximations, the validity and convergence of 1/R-

_series expansions, the effect of atomic spin—orbit split-

ting, and the effects of higher multipole interactions.
The second-order perturbation interactions and mag-
netic interactions of two atoms in degenerate states are
also considered and will be compared with the first-
order Coulombic interaction energy.

For the calculation of interatomic energy at large
separation, it is convenient to consider three cases
separately : the atomic spin-orbit splittings are (a) very
large [ (Ja, J5) coupling], (b) negligible [ (A, S) coup-
ling], and (c) of the same order of magnitude (inter-
mediate coupling) compared to the interaction energy.
The quadrupole-quadrupole interaction energy, which
is the leading term of the first-order Coulombic inter-
action for nonresonant cases, has been studied pre-
viously for atoms in the ground terms (case b) and in
the ground levels? (case a) by Knipp® (1938). However,
the intermediate case (case c) and other effects to the
lead term described above had not been considered,
and the atomic wave functions employed for the evalu-
ation of necessary atomic properties were crude.

A complete set of potential energy curves arising
from the interaction of two excited hydrogen atoms,
with 2s and 2p electrons, has been given for inter-
mediate to large separations by Linder and Hirsch-
felder They have obtained the accurate first-order
perturbation energies, but the effects of atomic spin—
orbit splittings at large separations have not been

1 See, for example, J. O. Hirschfelder, C. F. Curtiss, and R. B.
Bird, The Molecular Theory of Gases and Liquids (John Wiley &
Sons, Inc., New York, 1964).

2 Note that the energy levels of an atom may be thought of as
arising from the various electron configurations. The electrostatic
interactions split the configurations into ferms, denoted by their
L and S values, with different energies. The spin-orbit interac-
tion splits each term into 2L41 or 2541 energy levels, dis-
tinguished by their J values, which run from | L+S | to| L— S |.
Each of these energy levels is still degenerate, having 2741
eigengunctions corresponding to M values which run from J
to —J.

3 J. K. Knipp, Phys. Rev. 53, 734 (1938).

( ‘B.) Linder and J. O. Hirschfelder, J. Chem. Phys. 28, 197
1958).

considered. Fontana® has studied interactions between
hydrogen-like atoms (alkali atoms) in ground and
excited states. He has considered cases (a), (b), and
(c). Recently the relativistic or magnetic effects for
the moderately long-range intermolecular forces has
been studied systematically in the Breit-Pauli approxi-
mations by Meath and Hirschfelder.b> However, for the
interactions of many-electron atoms in degenerate
states, the potential energy curves at moderately long
and long range have not been fully studied in detail.

Since we are concerned with degenerate systems, the
application of degenerate perturbation theory to the
calculation of moderately long-range interatomic forces
(Coulombic and magnetic interactions) is described in
Sec. II. The 1/R-series expansion of the interaction
energy of degenerate atoms is considered in detail.

Throughout the present work we assume that the
Russell-Saunders coupling scheme holds in the states
of the atoms of interest. For the evaluation of necessary
atomic properties, we employ the Hartree-Fock atomic
wave functions.

In Sec. III, the first-order electrostatic interaction
of two atoms are considered. The symmetry-adapted
molecular wave functions at large R are constructed
for three different cases: (a) (Ja, J») coupling case
(atomic spin-orbit splitting is very large compared to
the interaction energy), (b) (A, S) coupling case
(atomic spin-orbit splitting is small), and (c) (J,, Ls)
coupling case (atomic spin-orbit splitting is large in
atom e and small in atom 4). The construction of these
wave functions has been considered previously by
Knipp® for atoms in the ground term or ground levels.
Here we will consider all possible cases. The evaluation
of energy matrix elements is considered in detail for
atomic orbital wave functions.

The secular equations are solved to obtain the first-
order interaction energies and the correct zeroth-order
wave functions for various cases. First, we consider the
quadrupole-quadrupole interaction energy for three
extreme cases [ (Jo, J3), (A, S), and (Ja, Ls) coupling
cases]. Next we consider the interactions of atoms with
(nd)* and (mf)* configurations. It is noted that for
this case higher multipole interaction terms in addition
to the quadrupole-quadrupole term appear. The con-
vergence of the 1/R-series expansion of the first-order
Coulombic interaction energies is studied.

Finally, we consider intermediate coupling cases
where the atomic spin-orbit splitting becomes of the
same order of magnitude as the interaction energies.
To see which coupling scheme is applicable to the vari-
ous ranges of R for different systems, we consider some
potential energy curves of the systems B-B and C-O

in detail as examples.

8 (a) P. R. Fontana, Phys. Rev. 123, 1871 (1961); (b) Phys.
Rev. 125, 1597 (1962).

6 (a) W. J. Meath and J. O. Hirschfelder, J. Chem. Phys. 44,
3197 (1966) ; (b) W. J. Meath, J. Chem. Phys. 45, 4519 (1966).
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In Sec. ITID, we consider the experimental determi-
nation of the moderately long-range interatomic forces
from the predissociation data. In particular, the pre-
dissociation data of the b 3=+ state of CO is analyzed in
detail and compared with theoretical results.

In Sec. IV, the estimates of the van der Waals dis-
persion energies are made for the interactions of the
first-row atoms and are compared with the quadrupole—
quadrupole interaction energies of the corresponding
systems. The magnetic interaction energies are also
considered, and the range of R for which magnetic
interaction energies become important is considered.
In Sec. V, the new features of this work are summarized
and the significance of the results is discussed.

Throughout the present work atomic units are used:
energy~e?/a,, length~ay, where e is electronic charge
and @, is the Bohr radius.

II. GENERAL THEORY

The perturbations due to the (moderately) long-
range intermolecular forces are truly small compared
to the total energies of the isolated molecules so that
the quantum-mechanical perturbation theory? is appli-
cable and converges rapidly.

In this section we consider the Coulombic energy of
interaction and the magnetic interaction energy be-
tween two atoms. The Coulombic energy of interaction
may include all types of electrostatic, inductive, dis-
persive, and resonance force which do not involve the
effects of electron exchange between the colliding atoms.
By the magnetic interaction energy we mean the mag-
netic (or relativistic) interaction energy in the Breit—
Pauli approximation.®

In our discussion, we neglect retardation effects® and
thus we assume R<X. Here X is the reduced wavelength
characteristic of allowed transitions in the interacting
atoms. The adiabatic coupling® between electronic and
nuclear motion also will not be considered here.

Xat =a (Sala) P5(Sols) »

la=1,2, .-, g(s,,),

A. Coulombic Interaction of Two Atoms

In the long-range interaction of two atoms,!® ¢ and b,
the zeroth-order Hamiltonian H; will be

Hy=H(a)+H(0), (2.1)

where H(a) and H(b) are the Hamiltonian operators
for the isolated molecules @ and b, respectively. The
usual nonrelativistic Hamiltonian H(e) for atom @
with the nuclear charge Z, can be written in the form

Ba

na Za
H(a)=—% 2 V2=2 =42 i,

=1 i=1%aj i>;

(2.2)

where #, is the number of electrons, 7,; is the distance
between nucleus ¢ and electron 7, and 7;; is the distance
between electrons ¢ and j. For the cases where the
atomic spin-orbit splittings are larger than the inter-
action energies of two atoms, our atomic Hamiltonian
may include the spin-orbit Hamiltonian H;.,(¢) :

H'(a) =H(a)+Hi.(a). (2.3)

The Hamiltonians H(d) and H'(d) for atom & are
defined similarly.

The perturbation V acting between two atoms will
be, in the present approximation, the sum of the
Coulombic interactions between the electrons and nuclei
associated with the different atoms. This can be written
in the form

Na Z ny Z‘z na Np
LYY Dt

=1%aj k=1 j=1

ZZy

V=— =

(2.4)

k=1 Tvk

where R is the internuclear separation.

Let the functions ¢o(Sata), la=1, 2, « -, g(s,), belong
to the g(s.)-fold degenerate eigenvalue e(ss) of H(a)
and similarly for the eigenvalue e(s,) of H(b). We have
the functions ¢s(sels), =1, 2, +++, g(sp). Then our
initial set for the g(s,)g(ss)-fold degenerate eigenvalue
€(s) =e(sq) +€(sp) of Hy may be the functions

fy=1,2, <+, g(s). (2.5)

For a complete treatment of interatomic forces it would be necessary to consider the more general wave functions
which are antisymmetric with respect to the exchange of any two electrons. However, at large internuclear sepa-
ration the exchange terms which result from interchanging electrons between the colliding atoms becomes negli-
gibly small, and hence we will use the simple product functions (2.5) as the initial starting set. The proper zeroth-

7 For recent reviews of the perturbation theory, see (a) A.
Dalgarno, in Quantum Theory, D. R. Bates, Ed. (Academic
Press Inc., New York, 1961), Vol. 1, Chap. 5; (b) J. O. Hirsch-
felder, W. Byers Brown, and S. T. Epstein, Advan. Quantum
Chem. 1, 255 (1964).

8 See, for example, (a) H. B. G. Casimir and D. Polder, Phys.
Rev. 73, 360 (1948); (b) C. Mavroyannis and M. J. Stephen,
Mol. Phys. 5, 629 (1962); (c) M. J. Stephen, J. Chem. Phys.
40, 669 (1964); (d) R. R. McLone and E. A. Power, Proc. Roy.
Soc. (London) 286, 573 (1965); (e) M. R. Philpott, Proc. Phys.
Soc. (London) 87, 619 (1966).

9 For nice discussions, see (a) T. Y. Wu and A. B. Bhatia, J.
Chem. Phys. 24, 48 (1956); T. Y. Wu, <bid. 24, 444 (1956);
(b) A. Dalgarno and R. McCarroll, Proc. Roy. Soc. (London)
A237, 383 (1956); A239, 413 (1957); (c) D. W. Jepsen and

J. O. Hirschfelder, J. Chem. Phys. 32, 1323 (1960); (d) A. Fré-
man, J. Chem. Phys. 36, 1490 (1962); (e) W. R. Thorson, J.
Chem. Phys. 37, 433 (1962); (f) R. T. Pack, University of Wis-
consin Theoretical Chemistry Institute Report WIS-TCI-197,
November 1966.

10 The generalization to the interactions of two molecules or
more than two molecules will be straightforward. See, for the
discussion of the Coulombic interactions of two or three mole-
cules, J. S. Dahler and J. O. Hirschfelder, J. Chem. Phys. 25,
986 (1956).

11 For nice discussions and detailed calculations of spin-orbit
coupling in atoms, see (a) M. Blume and R. E. Watson, Proc.
Roy. Soc. (London) A270, 127 (1962); (b) Proc. Roy. Soc.
(London) A271, 565 (1963); (c) M. Blume, A. J. Freeman, and
R. E. Watson, Phys. Rev. 134, A320 (1964).
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order wave functions ¢,,@, =1, 2, --
The perturbed energy can be written in the form

E,¢=e(s) +Est(1)+Est(2)+ %

where

Est(l) = <\l/at(o) I V I ‘pst“”)

-, g(s)=g(s.)g(sy), can be obtained by solving the secular equation.

(2.6)

=2 D {Sa(Sala)do(ssts)| V | da(Sata’) o (sos”) Yba(Sata’) b5 (566") | Wet® ) (Wet® | a(Sale) do(ssto) ) (2.7)

ta,tb ta’, o/

is the first-order electrostatic and resonance energies. E,® is usually written as a sum of the dispersion and in-

duction energies,

Fo® = E, @ (dis) + Eo® (ind), (28)
where
Z { Z <¢st(o) , ¢‘a(sata)¢b(sbtb) ><¢a(sata)¢b(sbtb)l 14 l ¢a(uava) ¢b(ubvb) >12
@ (i) — va,vb_ ta,th

E.®(dis) ua#aa%b#sb Le(sa) —e(ua) JH-[e(se) —e(us) ] @9

and
Z ’ Z <¢st(0) l ¢a (satu) ¢b(sbtb) >(¢G (Sat“) ¢b(sblb)[ 4 l ¢“(u“v") ¢b(sb7)b) >]2
@ (3 — va,vb  ta,tb
E.(ind) = 3 [e(s) —e() ]
Z l Z (‘Pst(o) | ¢a(sata) d’b(sbtb) ><¢a(sata) ¢b(sbtb){ 14 l d’a(suvﬂ.)d’b(ubvb) >[2
+ Z va,vb ta,th (2.10)

ub78b

The interaction energy E,;(ab) is given by
Ey(ab) =E;;—[e(sa) +e(sp) ] (2.11)

It is well known that an expansion of the interaction
energy in a series of inverse powers of the interatomic
separation R is very convenient for long-range cases.
The advantage of the R~ expansion is that most of the
individual energy terms involve the properties of the
isolated atoms such as polarizability, net charge, dipole
moment, quadrupole moment, etc. However, some of
the interaction terms do require a knowledge of less
familiar atomic properties.

Let us assume that R> (R,+R;). Here R, is the
“radius” of atom @, such that most of the charge
distribution of atom @ lies within a sphere of radius

Le(so) —e(m) ]

R, about its center. Similarly R, is the ‘“radius” of
molecule 5. Then the interaction potential V [Eq.
(2.4)7] can be expanded!? in powers of R™1:

V= YL" (2.12)

m=1 Rm
The expansion coefficients V., represent the interaction
of the various electrostatic multipoles of atom ¢ with
those of molecule . For example, V; represents the
charge-charge interaction, V, the charge-dipole inter-
action, V3 the dipole-dipole and charge—quadrupole
interactions, etc. For the interaction of neutral atoms
V1 and V, are zero and the expansion for V simplifies
considerably, with the result

foe) Vm
v=> —, (2.13)
m=3
ng np m—2 le
Vin= 2o 20 Gy m) Yo (0, ¢) Voo™ (65 69), (2.14)
k=1 j=1 l1=1 mi=—I¢
where < is the lesser of /; and m—I;—1, and the coefficient G is given by
A (—1)2(l+1) Inbr;te
G(h, my) = m(—1) *lt-h) tn (2.15)

[2h+1) (284-1) (h—m) 1 (lm1) 1 (To—m) V(lotmq) VJH2°

2 (a) M. E. Rose, J. Math. Phys. 37, 215 (1958); (b) B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil. Soc. 46, 626
(1950) ; (c) R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628 (1951); 85, 149 (1952).
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Considering Eq. (2.13), the nth-order wave function
and the nth-order energy may be written in the forms

=) (n,m)
Yor= ‘5‘—,”— (2.16)
m=3n
and
o IE8 t(n m)
E, ™= (2.17)
m=3n Rm

It will be shown first that the first-order energy E;,®
and the zeroth-order wave functions ¥,® may be an
infinite series in R~! for the interactions of atoms in
degenerate states. The matrix elements v,,; in Eq. (A1)
can be written in the form by use of Eq. (2.13)

Ul = Z "——vm;:) .

It can be seen, from the discussion in the Appendix,

(2.18)

[Hy—e(s) Jw.t<1>+[(g+%+--.)~(—ﬁg—+

that if more than one term of #,,; in Eq. (2.18) do not
vanish, E,® and ¢, are infinite series in R~ From
the symmetry consideration, it can be shown that the
first-order energy E,® will be an odd power series in R
and the zeroth-order wave function ¢, will be an even
power series in R™! (see Sec. IIIC2). Thus E,:® and
¥ in general can be written in the forms

E”(I.S) ' E”(l.ﬁ) | Eu(lﬂ)
LB I

E,®= = T = feee, (2.19)
and
©,2) 510D
wo=pon e T T 2.0)

Now to consider the first-order wave function and the
second-order energy we introduce Egs. (2.13), (2.19),
and (2.20) into the first-order perturbation equation,
and we obtain

From Eq. (2.21), it is obvious that y,,® can be written as

Vs M=

and so on. The second-order energy is given by

E“(2\ =

where
B @9 = (1,00 | V5 | ¢, 49),

E,@® = (y,,00 l Vs l Yot 09 )+ (02 ] Vs ' Y1),

The terms in odd powers of R in E,;® vanish from
the symmetry. Similarly the higher-order energies and
wave functions can be investigated.

If we now assume, for the interaction energy E;;(ab)
and the total wavefunction ¥,;, the following forms,

E, 09 E 08 )
¢ %5 +.. ')](¢sz(°’°)+¢—;!7+ . ) =0. (2.21)
1.3) (1,4) (1,5)
4«,}{3 . ¢,,;a5 Foee (2.16a)
Substituting Eq. (2.16a) into Eq. (2.21) we obtain the following perturbation equations for various orders in R~1:
(Ho—e(s) Wai O+ (Vs—Epi9) "0 =0, (2.22)
(Ho—e(5) Wit O+ Viho @0 =0, (2.23)
(Ho—€(8) WsttD+ (Vs— Ee/ ) s 004 (Va— Egi &) 5,02 =0, (2.24)
E, @9 E,©® FE, @10
et e, (2.25)
Eoi®19 = (o, 00 | Vi | Yor ™)+ ai®? | Vi | Yas®O ) @@ | Vi | YD), (2.26)
The coefficients C,, and y,:(m) are given by

4

Cn=2 By, (2.29)
n=1

I

Kl’u(m) = Z 1/’si(”'m)7 (2-30)

Fui(ab) =3 /R (2.27)

and

Toi=S" Yu(m) /R, (2.28)
m=0

n=0

where 7 is an integer such that 3/<#<3(I/+1). It is
interesting to note that for the interaction of two
neutral atoms, we have

G=E.49;  C=0; Cy=E.9;
C6=Est(2'6); C7=E,¢(1'7); C8=E.g(2'3);

C9=Eua'9)+E.¢(a’9); Cu=E, ", (2°31)
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For the nonresonant interactions, C3 and E, @9 are
identically zero.

So far we have not considered the convergence of
series (2.27). This series, in fact, diverges for all R
and many attempts have been made to remove the
divergence. Brooks!® has pointed out that the divergence
arises from the integration over portions of configu-
ration space in which the expansion of the electrostatic
energy is not valid. Dalgarno and Lewis! have, however,
shown that the divergence is not due to the use of an
expansion of the perturbation potential in regions of
space where it is not valid, and it is a fundamental
property of such series.

In spite of these remarks the expansion of the inter-
atomic energy in a power series of R™! is a very con-
venient one, and the first few leading terms give very
good approximations to the correct one for many cases.
It will be shown, however, that for the interactions of
atoms in degenerate states the expansions such as
Eq. (2.27) cannot be obtained at some region of inter-
atomic separation (see Sec. ITIC3)—for example, the
case where the atomic spin-orbit splittings and the
quadrupole—quadrupole interaction energy are of the
same order of magnitude.

B. Magnetic Interaction of Two Atoms

The systematic study of relativistic or magnetic
intermolecular forces in the Breit-Pauli approximation
has been recently made by Meath and Hirschfelder.®
In the present brief discussions, particular attention
will be paid to the interactions of two atoms in the
degenerate states.

We start from the generalized Breit-Pauli Hamil-
tonian!':

H=H +aoH.., (2.32)

where « is the fine structure constant, a=e?/fic~t¥,
and the nonrelativistic Hamiltonian H, is given by

H,=H(a)+H()+V. (2.33)

H(a), H(b), and V are defined by Egs. (2.2) and
(2.4). The relativistic correction H,q includes terms
which allow for magnetic interactions between the
electrons in the system and has the form!

Hiq=Hi +Hss+Hsi+Hp+Hp.  (2.34)

Explicit expressions for the various terms in (2.34) are
given elsewhere!®* and they have the following sig-
nificance: Hy; corresponds to the interaction of the
orbital magnetic moments of the electrons in the system;
Hgg gives the interaction between the spin magnetic
moments of the electrons; Hgy, represents the interaction
between the spin magnetic moments and the orbital
magnetic moments of the electrons in the system; H,
is a relativistic correction due to the variation of
B F, C. Brooks, Phys. Rev. 86, 92 (1952).

14 A, Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London)
A69, 57 (1956).

electron mass with velocity; and Hp appears to have no
simple interpretation.

If ¥ and E, are the electronic nonrelativistic wave
function and energy

HY=EY, (2.35)

then the relativistic correction to E., correct through
0(a?), is
&0 =a2(V | Hye1 | T). (2.36)

For most practical purposes, this accuracy is sufficient.®

If the charge distributions of the interacting atoms
a and b do not overlap, then the relativistic Hamiltonian
H,,¢=LL,SS, SL, P, and D, can also be expanded®®:6
in powers of R71:

H,=> H,n/R*  H,o=H,s(a)+H, ). (2.37)
m=0

Here H,¢(a) and H,(b) are the Hamiltonians for the
isolated atoms @ and b, and

Hsra=Hgsy=Hgs2=0; Hpm=Hpm=0, m>0.

(2.38)

The expansion coefficients H, ., for m>0, represent the
interaction of various orbital and spin magnetic multi-
poles of atom ¢ with those of atom b.

When the perturbation a?Hye is much smaller than
the perturbation V, then the nonrelativistic problem
HY=EJ is first solved by use of Rayleigh-Schro-
dinger perturbation theory, as discussed in Sec. IIA.
If we now use the multipole expansion for the rela-
tivistic Hamiltonian [Eq. (2.37)] and Eq. (2.28), the
relativistic correction energy can be expanded in powers
of R1:

& D,,;
Eret®= (Tt | Hy | Vi) =D R’
=0

¢=LL, SS, SL, P, and D, (2.39)

where
D,,¢=§ gw.t(k)l Hoj|Yui—j—FE)). (2.40)

Tt should be noted®® that certain terms in D, ; are
identically zero, namely, Dsz,1=Dss1=Dgss,2=Dp,i>0=
Dp,~0=0, and D1, Dirs, Dsre, and Dgge are not
zero in general and may become the lead terms in
the R~! expansion of the interaction energy of two
neutral atoms. However, it has been shown by Meath®
that, for nonresonant interaction of atoms, Drz,1 and
D, are also zero and the interaction energy through
0(a?/R?) is identically equal to the semiclassical result.

* B For example, see G. G. Hall and A. T. Amos, “Molecular
Orbital Theory of the Spin Properties of Conjugated Molecules”
in Advances in Alomic and Molecular Physics, D. R. Bates and
L 1Esterm;nn, Eds. (Academic Press Inc., New York, 1965),
Vol. 1, p. 2.

P, R. Fontana and W. J. Meath, J. Math. Phys. (to be
published).
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Hence the lead term of magnetic interaction is O(a?/R?)
for degenerate neutral atoms, while the lead term is
0O(a?/R*) for nondegenerate neutral atoms.

As R becomes larger, the perturbations V and a?H:.1
may become the same order of magnitude. In this case,
we have to apply both perturbations V and o?H.q
simultaneously to the appropriate zeroth-order problem.
As already pointed out, the R™! expansion of the inter-
action energy may not be possible for this range of R.

At the sufficiently large R the relativistic interaction
energy can be much larger than the nonrelativistic
Coulombic interaction energy since there are non-
vanishing terms of lower orders of 1/R in the relativistic
interaction energy. In this case, the perturbation scheme
will be reversed: first apply the perturbation &?Hq to
the appropriate zeroth-order problem, and from the
resulting wave functions the Coulombic interaction
energy may be obtained.

III. FIRST-ORDER COULOMBIC INTERACTION
OF TWO ATOMS

In this section, the first-order Coulombic interaction
energy between two atoms in degenerate states is in-
vestigated in detail. We consider only nonresonant
cases. First, the construction of molecular wave func-
tions at large internuclear separation is considered in
detail. Then secular equations are solved to obtain
the first-order energy for various cases. The atomic
spin-orbit coupling effect, the effect of higher multipole
interaction, and the validity of the R™'-expansion of
interaction energies are considered in detail for actual
systems. Extensive tabulation of necessary parameters
and atomic properties for calculating the first-order
electrostatic interaction energies are also made.

A. Coulombic Interaction Operator

When two atoms are far enough apart that over-
lapping and consequent exchange effects are negligible,
the interaction can be considered as being composed of
mixed terms of different pole strength, as discussed
already. Since we consider nonresonant cases the first
nonvanishing first-order energies are the quadrupole-
quadrupole interaction energies. Nonvanishing first-
order dipole-dipole interaction energy is obtained only
if the atoms are like and are in states with different
parity (resonance forcesV). If the atoms have (np)#
configuration, the only nonvanishing first-order terms
will be the quadrupole-quadrupole interaction energies.
For atoms with (nd)» configurations, the quadrupole—2¢-
pole and 24-pole-2%-pole interaction energies also do not
vanish. It should be noted that if either atom has
spherical symmetry (S state), the first-order interaction
energy is identically zero in nonresonant cases.

The Coulombic interaction potential ¥ for the inter-
action of two neutral atoms has been given in a power
series of R7! at large separation [Eq. (2.13)7]. We

17 For example, see Ref. 1, p. 990 et seg.

017

consider only nonvanishing first-order interaction terms
in nonresonant cases explicitly here. This can be written
in the form

W W WA
Vet (B)
where
Wy= iz as(m)Qsn(a) Q™ (8), (32)
W= i2 ar(m) (1-+Pu) (@) 0 (),  (3.3)
Wem 3 as(m)Qin(a) Qim(b), (3.40)

ma=—~{

Wy=3 o (m) (1-+Pa) 0 (@) Qi (8), (3.4b)

m=2

Q™ ($), @ryr1(m), and Py being defined by
Qm(p) =[4x/(2141) ] ; 756’V ™ Ok, Dok)

= ; g (k), (3.5)

Qriria(Em)
= (I+k) |/L(I—m) 1(I+m) | (k—m) | (k+m) I]2, (3.6)
Puh(a, b) =h(b, a). (3.7

The functions Q/(p), m=—I, —I+1, «--, I, have the
property that they form the 214-1 dimensional irre-
ducible representation of the three-dimensional rotation
group, and hence are an irreducible spherical tensor
operator of rank I. This property is very helpful in
evaluating matrix elements.

B. Zeroth-Order Wave Functions and Energy Matrix
Elements

We construct here the symmetry-adapted initial
starting functions x; which factorize the secular determi-
nant significantly. The symmetries of the system of two
interacting atoms are those of rotations around the
internuclear line, reflections in planes through this line,
and, in the case of like nuclei of inversion, that is
reflections in the midpoint between the nuclei, holding
the nuclei fixed. The possible molecular states and their
relation to the states of the atoms when widely sepa-
rated have been considered in detail by Wigner and
Witmer.1®

1. Spin-Orbit Splitting Large

We assume that the Russell-Saunders coupling
scheme holds in the states of the atoms of interest.

18 (3) E. Wigner and E. E. Witmer, Z. Physik. 51, 859 (1928);
also see (b) F. Hund, Z. Physik. 63, 723 (1930); (c) R. S. Mul-
liken, Phys. Rev. 36, 1440 (1930); (d) Rev. Mod. Phys. 4, 1
(1932); (e) Ref. 3; (f) G. Herzberg, Spectra of Diatomic Mole-
cules (D. Van Nostrand Co., Inc., New York, 1950).
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When the spin-orbit splitting of the atomic term ener-
gies is large compared to the interaction energies, the
SLJM scheme is most suitable for the atomic states.®
The molecule (two interacting atoms) has a quantum
number @ for the absolute value of the total angular
momentum along the internuclear axis. This case may
be called (J., J») coupling [this is called (Jy, J2)
coupling in Herzberg®'], and will be considered in
more detail since the resulting functions are more widely
used in our work.

Since we are neglecting the electron exchange we can
use, as the zeroth-order wave functions for the inter-
acting atoms, simple products® of the atomic wave

X(]a/]bQMa) =‘P(JwaMa7 Q—M,J, d(—)QX(Jan) _Qa _Mﬂ)

functions. We define the functions

o (JoT oM My) =o(JaMa) b5 (JsMs), (3.8)

where ¢, and ¢ are the normalized wave functions for
atoms a and b, representing the states in specific energy
levels. Let
d=wwp(—) 7, (3.9)

where w, and w, are the parities of atoms e and b,
respectively.

Unlike atoms. In case of two unlike atoms the func-
tions for Q%0

(3.10)

are partners belonging to the two rows of the representation of the two-dimensional rotation-reflection group.

For a given Q, M, takes on the values (J,>Jp) :
Jat+ o2 Q2T =T +1
Jo—T:20>0

For Q=0 we introduce the two sets of functions

xaJo(£) M) =V2"o(JuJoMa, —M.) £do(T Ty, —Ma, Ma)]

Mo=Ja, Ja—1, o0, Q—T,
Mo=Q+4Ty, Q+To—1, -+ -, Q—Ts.

(3.11)

M,=Jy, Jo—1, «++, >0, (J>T), (3.12)

where x(+) represents Ot state and x(—) represents 0~ state. If J, and J, are integers, we have in addition

x(JuJ5(8)0) =¢(JoJ:00),
x(B) being positive (0*) if d=1 and negative (07) if d=

The matrix V' [cf. Eq. (3.1)] is diagonal in @, and plus and minus for 2=0. Let
{oUaTsM M) | Wi | o T Mo/ My') = (JuJo MMy | W, | T T’ M My'),

where W, are defined by Egs. (3.2)-(3.5), and so on. The matrices W, can be expressed in the forms

(X(]anQMa)I W, ! X,(Ja,]b,QMa,) >=<JanMar Q—M, I W, ]Ja’Jb,Mﬂ', Q—'Mﬂl):

<X(]a]b(:t)Ma)} W, lX’(Ja']bl(i)Mal)>=(Ja]me -M, ! W, ] jaI]bIMa': _Mal)

XUTo(B)0) W, | X' (U T (B) M) =V2{J T Mo, — M | W, | JoJ100),
(xUaTs(8)0)| Wi | X' (Ja'T6' (8)0)) = (JoJ100 | W, | Ju'75'00).

(3.13)

—1.
(3.142)
+d(JuTs, —Ma, My | W, | T/T/ MY, =M, (3.14b)
(3.14c)
(3.14d)

Like atoms. We consider first the case of like atoms in the same levels (atoms in states of the same configuration

and term and the same J values). Let

f= (=) wan,

(3.15)

where # is the number of electrons of an atom. For like atoms in the same levels (Jo=Jy=J), we define the func-

tiong8a-20

x (JT2QM ) =V2Z [ o(JTMa, Q—M.) fo(JT, Q— M., M.) ],

M,=J,J—1,++, >3Q.

(3.16)

1 E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press, New York, 1963), Chaps. 7 and 8.
20 Tt is, however, noted that actual molecular wave functions should be antisymmetrical in all the electrons. Therefore, we will assume
that, for the consideration of symmetry properties of molecular wave functions, the function ¢(a, b) defined by Egs. (3.8), (3.35),

(3.36), and (3.51) are antisymmetrical: That is,

¢ (a, b) = Qpadpn,

where ¢, and ¢, are the normalized atomic wave functions and

@ =[n,'mp!/ (na+np) 1T 14 (—)?Pas].
Here P,; interchanges electrons between atoms a and b, and p is the parity of Pu. Also, see the discussion in Ref. 3.
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If J is an integer and Q is even, or if J is a half-integer and @ is odd, we have in addition
x (JT6Q) =o(JT3Q5Q). (3.17)

x(g) represents gerade state and x(u) ungerade state. x(8) is gerade if f=1 and ungerade if f=—1. For =0
the g states are positive and # states are negative.
Next we consider like atoms which are not in the same levels. We define the functions for -0

X (JaJo2QM o) =V2Z o (JoJoMay @— M) £fo (T oy Q—Ma, Ma) . (3.18)
For a given value of ©, possible values of M, are given by Eq. (3.11). When @=0, we define the functions
X(Jw]b(:t)gMa) =%[(¢(Jw]bMa, —M,) if‘P(-’b-’a: —M,, M,) )id(ﬂa(-’ajh —M,, Ma) '—'tf?’(]b,aMa; "Ma) )]’

M.,=Jy, J3—1,-:->0. (3.19)
If J, and J, are integers we have in addition for 2=0

x a2 (8)70) =V2~'[¢(JaJ100) %o (J:J.00) ] (3.20)

where B is positive if d=1 and negative if d=—1.
The matrices W, are diagonal in Q, g, and #, and plus and minus for @=0. The elements of matrices W, can be
written in the forms

X (TToSQM) | W, | X (T Ty 20M") Y= (JoToMa, Q=M | W, | T T/ M, @— M)
+f(JJoMay Q=M | W, | /T, Q— M, MJ'), (3.21a)
UaTo(£)IMa)| W | X (JaT6 (£)IMS)) = (JoTsMa, —Mo | W, | T/ T M, — M)
Hf(JoTsMay —Mo | Wo | Jo' T, —Mo', Mo Yd[ (JoTsMa, —Ma | W | T TS, — M, M)
tf(JoJoMay =My | W | T/ M, —MJ')], (3.21b)
X (JTOM) | W, | x' (J Ty (EeM)) )
=VZ({JIMay — Mo | W, | T T My, =M Vf(TTMay — Mo | Wy | T/ Ts!, =M, MJ)), (3.21c)

(XTTIOM) | W, | X' (Jo'Ts (B)20))=2{JT M, —Ma| W, | J.'J500), (3.21d)

(x(JTOQAQ) | W, | X' (JTW50M,") Y =V2{JTLQRQ | W, | JJ/ T M, @—M.'), (3.21e)

(x(JT500) | W, | X' (Jo' T E2M)Y=2(TJ00 | W, | J/Ty' M., —M.'), (3.21f)

(x(JT300)| W, | x' (T T (8)20))=VZ(JTOO | W, | J.'T,/00), (3.21g)

(X TaTo(B)20)| W | 5 (T T () EM o)) =V2({JuTs00 | W, | Jo' Ty, Mo/, — M"Y {JoJo00 | W, | JTd, —Md', Md')).
(3.21h)

Evaluation of {(JoJuM.My| W, |JJs'MJ/M,y'). Using the expressions of W, given in Sec. IITA and applying
the Wigner-Eckart theorem? we obtain

TJo MMy | W, | T T M/ My Y=, a,(m) {1+h(K, L) Pas} { {TMa | Qx™(@) | Jo' M"Y TsMy | Qr™(b)| Jo'My')}
= a;(m) {(14+h(K, L) Pu} {C(JJ' KJa; Mo'mMa) (Ja || Qg || Ja')

XC(J'LTs; My, —m, My) (Jo || Q|| ')}, (3.22)
where 4(K, L) is defined as
h(K,L)y=0 ifK=L,

hK,L)=1 if K¥~L, (3.23)

C(J1JoJs; mumams) are the Clebsch—Gordan coefficients,”? and (J; || Q1 || J1') are the reduced matrix elements® of
the set of tensor operators Q;™. The Clebsch—Gordan coefficient C(JJ2/J3; mimams) vanishes unless Jy, Jo, and J3

? For example, see M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957), p. 85.
2 For example, see Ref. 21, p. 32 et seg. Also see Ref. 19, p. 73 et seq.
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satisfy a triangular condition and m3=m;-+m,. Hence we have the relations from Eq. (3.22)

m=M,—M,'; —m=M,— M/, (3.24)
and hence
M. +My=M,+ M . (3.25)

Therefore, all matrix elements vanish unless M,+ M, =M,+ M, and thus the total angular momentum J=J.+Js
is quantized along the internuclear axis with components M,+ M;. The secular determinent is factored into
subdeterminants which can be classified by the molecular quantum number Q, as already pointed out. Eq. (3.22)
can now be written in the form

TToM My | W | T/ T MMy Yy =8( Mo+ My, M/ +My")a.(M,— M) {1+h(K, L) Pa}
X{CUdKTa; Mo, Mu— M., M,)C(J5' LTs; My, My—My', M) JTa || O || T/ 11 QL | J6)},  (3.26)

where 6(M, M") is the Kronecker delta.
Now to evaluate the reduced matrix element we start from the Wigner-Eckart theorem

UM | Q® | J'MY=C(J'KJ; MOM) (J || Ox || J'). (3.27)

To obtain the explicit expression, we transform to the zeroth-order representation scheme!® characterized by
one-electron quantum numbers u=nlmm,. If U stands for the collection of such quantum numbers in a zeroth-
order state of the atom, we have

CU'RT; MOM) (J || Qx || )= 3° (ySLIM | UNU | Q0| U'Y(U" | +'S'L'T'M), (3.28)

U0’
where v designates quantum numbers other than .S, L, J, and M. Since Q™ is a sum of one-electron operators
g [cf. Eq. (3.5)], (U | Qx®| U’) vanishes if U’ differs from U by more than one individual electron quantum

number set. If all sets but =’ are the same, (U |Qx®| U')={(u| ¢z’ | '), and for U=U’, (U |Qk"| U)=
> u{u| g&° | u). Hence Eq. (3.28) becomes

C(J'KT; MOM) {J || Qx || J'>=§{ GSLIM | UXU | ¥'S'L'T'M) (u | g | )}
+U}:U,{ (YSLIM | UNU' | v'S'L'T'MYu | ¢ | ')}, (3.29)

where U’ has the same sets of individual electron quantum numbers but #>#'. The matrix elements (% | ¢:° | #')
can be easily evaluated by using the properties of spherical harmonics®:
(] gi° | u')= (nlmoms | ¢1° | n'V'mi'ms )
=[(2I'+1)/(214+1)]JC (¥’ LI; 000) C(V LL; my/Omy) {nl | % | #'l'), (3.30)
where

(nl | 7% | wly= / " dr PR () R (1),
0

R(nl) being the radial part of the wave function for an electron in an 7l state. Furthermore, it can be shown that

1
> CULL; mOm) =0,  L>0. (3.31)
m=1
To show this we use the following properties for the C coefficients?:

C(grjafs; mamams) = (—) ™[ (2454-1) / (2521) FRC( jigajo; m1, —ma,—ms), (3.32a)
C(7j0; m, —m, 0) = (—)#m(2j+1)71, (3.32b)
22 Cjags ma, m—m, m) C(fuaf’s s, m—ms, m) =855 (3.32)

mi

By use of Eq. (3.32a), the sum at the left-hand side in Eq. (3.31) can be written as

3 (=)L (2041) /(LA 1) TEC (UL 1, —m, 0),

2 For example, see Ref. 21, p. 62,
2 See Ref. 21, Chap. ITI.
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and using Egs. (3.32b) and (3.32c) we find

2141 !
(2L+1)12 m§z C(UL; m, —m, 0)C(l0; m, —m, 0) =3Lo. (3.31a)

This proves Eq. (3.31). Therefore, for the sum (% | ¢° | #) in Eq. (3.29), the part summed over the electrons
in complete shells gives zero, and contributions to the sum will come only from incomplete shells. The explicit
expression for (J || Qg || J') can be obtained from Egs. (3.29) and (3.30).

When the unprimed and primed states in {(J || Ox || J') represent atomic states in the levels which come from the
same term, the second sum in Eq. (3.29) vanishes, since if all but one of the m; are the same, they must all be the
same because of the condition Y, m;= Y m;=M for U and U’. Hence, for this case, the reduced matrix elements
can be written as the following form, assuming that there exists only one incomplete shell (#!) :

Q& || I)=Dx(JT") (%), (3.33)
where
C(IK1; 000)
C(J'KJ; MOM)

the sum over m; being made for the incomplete shell (#!), and (#X),; = (nl | #X | nl). From Eq. (3.31) and sym-
metry property

Dx(JJ') = S {SLIM | UNU | vSLI'M )Y, C(IKL; mOmy) }, (3.39)

C(j1ga2g3; mumams) = (=) 3+2=5C( j1 fa a5 —ma, —ma, —ms),
it can be shown that Dg(JJ’) for the shells, which is complete except for » missing electrons, have the opposite
sign of those for shells which have » electrons.
2. Spin-Orbit Splitting Negligible

When the atomic spin-orbit splitting is negligible compared to the interaction energy, the SLMsM scheme is
applicable to the atomic states.!® The system of two interacting atoms will have quantum numbers A and Z for
the absolute value of the total orbital angular momentum and the total spin along the axis and S for the total
spin. This is called (A, S) coupling. Let S be the total spin of the system, with the corresponding quantum number
S. Then possible values of S are S,+Sp, Sa+Se—1, «++, | Sa—Ss |. We define the functions®

oa(SEM 12 M b) = Z Ga(SaLaM sM 1) ¢ (Ss L, Z— M s, M 1?) C(SaSeS; Ms®, Z—Ms?, 2), (3.35)

Mo
o0a(SEM oM }) = Z &0 (SsLo, Z—M 5% M1?) ¢ (SaLaM s*M 1%) C(S65eS; 2—Ms®, Ms°Z), (3.36)
Mo
and
¢ =wqwp(—) LatLp, (3.37)

Here ¢, and ¢ are the normalized wave functions for atoms @ and b, representing the states in the corresponding
terms. The coefficients C in Egs. (3.35) and (3.36) are the Clebsch—-Gordan coefficients.
Unlike atoms. For two interacting unlike atoms, the functions for A0

x(SZAM L) =¢ap(SZM 1, A—M1), c(—)*x(SZ, —A, —M1) (3.38)

are partners belonging to the two rows of the Ath representation of the two-dimensional rotation-reflection group.
For given A, My, takes on the following values (L.> L) :

Lo+Ly> A> Lo— Ly+1 Mp=Lgy Lo—1, <+, A—Ly;
Li—L;>A>0, My=A+Ly A+Ly—1, +++, A—L,. (3.39)
For A=0 we have
x(SZ(E) ML) =V2 o (SEM 1, —M1) tcon(SZ, —Mp, M1)]  Mp=Ly, Ly—1,+-+>0
x(SZ(8)0) =¢u(S200). (3.40)

The functions x(-+) represent =+ states and x(—) represents 2~ states. x(8) represents Z* if ¢c=1 and =~ if
c=—1.

The matrices V’ are diagonal in S, 2, and A (also positive and negative for A=0). The diagonality in .S and
Z results from the fact that V' is independent of the spin coordinates.
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Like atoms. The case of like atoms in the states of the same configuration and term will be considered first. Let

e=(—)5. (3.41)
We define the functions!®®:2

X(SE-ZAML) =\/2_1[¢0b(SZML1 A—ML):beﬁaub(Sz; A_ML; ML)] ML=L4, Ly—1, .-, —12_A7 (342)
and in addition, if A is even,

x(SZ5ALA) =@u(STEALA). (3.43)

Here x(g) is gerade and x(#) is ungerade. x(9) is g if e=1 and » if e=—1. For A=0, negative states are g if S
is odd (e=—1), and # if S is even (e=1), while positive states are g if S is even and # if S is odd.
Next we consider like atoms which are not in the same terms. We define the functions for A0

x(SZIAM L) =V2 o (SEM L, A—Mp) foea(SZMp, A—=M1)],  f=(—=)"(—=)5H5Swum, (3.44)

where, for a given value of A, possible values of My are given by Eq. (3.39), and # is the number of electron in
an atom. For A=0, we define the functions

x(SZ(E£)IM L) =3 (e (SEM L, — ML) A=fora(SEM 1, —M 1) )E=c(oa(SZ, =My, M1) Ffera(SZ, =My, M1))]
Mir=Ly, [y—1,++->0 (L.>Ly), (3.45)
x (SZ(8)20) =V27' [0 (SZ00) == fpsa (SZ00) ]. (3.46)

Here 8 is positive (Zt) if ¢=1 and negative (27) if c=—1.
The matrices W, are diagonal in S, Z, A (also positive and negative for A=0), and g and %. The matrices W,
can be expressed in terms of the integral

<¢(SZML“MLI’) | W, I O (SEM MY >E (SZMLGMLb I W, [ SEM M), (3.47)

Because of the unitary characters of the Clebsch-Gordan coefficients in Eq. (3.35) and the fact that W, is inde-
pendent of the spin, the integral (3.47) can be written in the form

(SEM M} [ Ws| SEM“MY)
= a,(m) {14+h(K, L) P} {{LM® | Qx™ | L/ M1 ){(LsMy | Q™ | Ly’ M)}

=0(M M, M1 +MY)ao(Mr2—Mp*) {1+h(K, L) Pa}
X {C(L,-/KLG; Mz,a’, Mpr—M¥, M1*)C(Ly' LLy; MY, MLb—'MLb/, M)

X{La || O || L") Lo || Q|| L")}, (3.48)

The last step has been obtained by using the Wigner-Eckart theorem® and the properties of the Clebsch-Gordan
coefficients?? as for (JoJouM My | W, | J/Js' M.’ M) in Sec. IIIB1. The reduced matrix elements (L || Qx || L')
can be evaluated by the similar method, as used for {(J || Qx || J'). When we are considering only the states which
are from the same term and we assume that there exists only one incomplete shell (#l), (L || Qg || L) are found
to be:

(L] Qx || LY=Cx (LL) {r* }us, (3.49)
where
_ C(IKI;000) . -
Ce(LL) = 5o Tk M0 ;{l@s.LMsML | )| ; C(IKL; mOmy) }, (3.50)

the sum over m; being made for the incomplete shell (nl). Do(JJ) [Eq. (3.34)] and C3(LL) [Eq. (3.50)] for
the quadrupole-quadrupole interactions has already been derived by Knipp.?

3. Spin-Orbit Splitting Large in One Atom and Negligible in the Other

Knipp® has also considered, for the quadrupole-quadrupole interaction, the case of two different atoms in
one of which the atomic spin-orbit splitting is large and in the other it is negligible. This case may be called (Ja, Ls)
coupling. Introducing the new functions?®

O (JaSeM MM 1?) =¢a(JaMa) pu(M M 1Y), (3.51)
we can define the functions
X (JaSeM LT M) =@ (JoSsM M., T—M,) (3.52)
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for I's£0. Here I is a new quantum number for the present system. If J, is an integer, I' can in addition take zero,

for which value we define the functions

X (JaSoM 252 M ) =V2 Lo (T SeM M, —

X (JaSeM s880) = o (J 2 SsM s200) .

The matrices Wy, are diagonal in Ms® and T' (also @ and B8 for I'=0). The matrix elements

(P (TaSeM MM P) | Wi | @' (Jo' SsM M MY) Y= (JuMo M | Wi | Jo/ M M)

is found to be

UMM | W | T MM

=2 ax(m) {1-+h(K, L) Pa} {{TaMa | Qx™ | Jo/ MWLM 12 | Qi | L M1¥))

=0(Mo+Mb, MJ+MY)ar(M,— M) {14-h(K, L) Py}
X{CUdKJa; My, Mo—M,', Mo)C(Ly' LLy; MY, Mi?—M ¥, M;b)

The reduced matrix elements appearing in Eq. (3.55)
have been already considered.

C. Solution of Secular Equation

In this subsection, the first-order interatomic energies
are calculated. Our calculations will be restricted to the
cases of atoms with only one incomplete shells, in par-
ticular, atoms in the ground terms, since for these
cases quite general formulae can be obtained and accu-
rate atomic wave functions are applicable for most
atoms of interest.

1. Quadrupole-Quadrupole Interaction for Exireme Cases

For nonresonant cases, the first nonvanishing first-
order electrostatic interaction energies are the quad-
rupole-quadrupole interaction energies, and hence these
terms are the most important. By extreme cases we
mean: (a) atomic spin—orbit splittings are very large
in both atoms [hence strict (J,, J;) coupling is ap-
plicable], (b) it is negligible in both atoms [hence
strict (A, S) coupling is applicable], and (c) it is
negligible in one atom and very large in the other
[hence (J., Ls) coupling is applicable] compared to the
interaction energy. For these cases, the starting zeroth-
order wave functions x; have been already constructed
in Sec. IIIB, and the evaluation of the energy matrix
elements also has been discussed. For (J,, J») coupling
case, we may need to consider only x; arising from
atomic states in specific levels (see Sec. IIIB1) for
(A, S) coupling case x; arising from atomic states in
specific terms (see Sec. IIIB2) and for (Ja, Ls) coupling
case x; arising from atomic states, one of which isin a
specific level and the other in a specific term (see
Sec. ITIB3).

For the quadrupole-quadrupole interaction of two
unlike atoms in any state and like atoms in the same

a):Fﬂa(]aSbMSb, —M,, Ma)]: M,#0;
(3.53)
(3.54)
X{Ta |l Qx ([ J"NKLs || Q|| Le')}.  (3.55)

terms or the same levels, the elements of the matrix
W; [Eq. (3.2)] have as a common factor the product
of two reduced matrix elements. Dividing by this
factor, we obtain a dimensionless secular determinant.
In general let K,, K; be a pair of integer or half-integers
corresponding to Ju, Jo; La, Ls; or Ja, L. Let ¢ stand
for @, A, or T. The range of the remaining parameter
(M or M) is essentially the same in all three cases.
It can be shown that the dimensionless determinant
obtained by dividing out the products of reduced matrix
elements is the same for all three cases. Furthermore,
for unlike atoms with K,=K,, we can form linear
combinations x(g) and x(%) which are formally the
same as for like atoms. It can be shown that Wj has no
cross terms between these two groups and hence the
dimensionless determinant is the same as for like atoms.
Therefore, we have the simple result that the dimension-
less determinant depends only on the numerical values
of the pair of numbers K,, Ki. We designate the roots
of secular determinant by a(K,Ky{). Hence for three
extreme cases of two unlike atoms in any states and
like atoms in the same terms or the same levels, the
quadrupole-quadrupole interaction energy is given by
one of the expressions

a(JoJ6Q) Do(Jod o) De(JoTs) {ra2){rs?)/R5, (3.56a)
a(L.LyA) Co( LaLa) Ca( Ly Ly) {r.2){rs2)/R®, (3.56b)
a(JoLoT') Dy(JoJ o) Ca( LoLy) (ra2) (rs2)/R5.  (3.56¢)

Here D,(JJ) and Cy(LL) have been defined by Eqgs.
(3.34) and (3.50), and (r.2) and (n?) are the mean-
square radii of the incomplete shells of atoms a and 2,
respectively. a(K.Ky) for some values of K, and K,
Co(LL) for ground terms of atoms, and D.(JJ) for
ground levels have been calculated by Knipp.? We give
more extensive tables here. a(K.Ki) are given in
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TasBie I. a(K.Kyr) for integral K and integral 7. In (J,, J») coupling, ¢ means gerade and f means ungerade for like atoms in the
same level; ¢ means that the state is positive if d=wewp(—)Jet/b=1, negative if d=—1, while b means that the state is positive if
d=—1, negative if d=1. In (A, S) coupling, ¢ means that the state is positive if c=wqwy(—)LatLb =1, negative if c=—1, while b means
that the state is positive if ¢=—1, negative if ¢=1; for like atoms in the same term, ¢ means gerade (g) if the molecular spin (S) is

even, ungerade (#) if .S is odd, while f means g if .S is odd, « if S is even.

K,=1 2 2 3 3
T Ky=1 1 2 1 2
0 3.6ea 2.3235a 3.260%¢a 2.0963a 2.2881a
0.0¢ca —0.2951a 1.5085¢a —0.3816a 1.3105a
—0.4836¢a ~—0.9074a
0.0/b —1.0142p 2.7738fb —1.2247b 1.4169b
—1.0595/b -—-1.2099b
1 —2.4¢ 2.4529 1.1269¢ 2.0609 3.1386
0.0477 —1.4126¢ —0.1696 1.2765
—1.4864 —1.4014 0.9434
—1.0193
—1.4409
0.0f 1.2033f
—0.9166f
2 0.6e 0.3558 0.8571¢ 2.1980 1.0557
—2.8912 —1.8571e 0.2300 0.1412
—1.9381 —1.4873
—1.7798
—2.0f
3 1.0142 —2.5714e 0.6461 0.9888
—3.0956 —1.9539
—2.3472
0.8571f
4 1.7143¢ 1.2247 1.2502
—2.2853
5 2.0702
K,=3 4 4 4 4
T Ky=3 1 2 3 4
0 3.5471ea 2.0135a 2.0084¢ 2.5104a 3.8728¢a
1.7713ea —0.4180¢ 1.2489a 1.4801a 2.1160ea
1.2456¢a —1.1733a 1.0216a 1.4486¢a
—1.1641ea —1.3406a 0.5766¢a
—1.4452¢a
3.4602fb —1.3054b 0.9575b 2.1778b 3.86006fb
0.7780fb —1,3253b 0.4612b 1.5166/b
—1.2382fb —1.3363b 0.2742fb
~1.4202/b
1 1.8874e 1.9716 2.2842 3.6374 2.3036e
0.5249¢ —0.2890 1.2657 1.6848 1.3172¢
—1.3457¢ —1.3925 0.7933 1.3841 0.1852¢
—1.1216 0.8276 —1.4839¢
—1.5055 0.2848
1.4859f —1.3351 2.1276f
1.1490f —1.5095 1.4266f
—1.3016f 0.4349f
—1.5112f
2 1.2080¢ 1.9241 3.1472 1.3485 1.3869¢
0.2294¢ 0.0297 1.1697 1.2746 1.0815¢
—1.7040¢ —1.6636 0.3958 0.3274 —0.0030¢
—1.2783 —0.1083 —1.7018¢
—1.7182 —1.5079
—0.1667f —1.7883 0.6819f
—1.6667f —0.0729f

—1.6726f
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TasiE L. (Continued)

K,=3 4 4 4 4
r K,=3 1 2 3 4

3 —0.9472¢ 2.0891 1.0953 1.2631 —0.0772¢
—2.0528¢ 0.4284 —0.2949 —0.4924 —0.4609¢
—2.2275 —1.6632 —0.5679 —1.9631e

—1.9158 —1.8639
1.1583f —2.0497 1.3647f
—2.1583f —0.6224f
—1.9813f
4 1.2770e 0.8532 1.1788 1.3187 1.4008¢
—2.6103¢ —3.2223 —1.8456 —1.0616 —1.3091¢
—2.5613 —2.2381 —2.2423¢

—2.3220
—1.6667f —0.6323f
—2.2586f
5 —1.6667¢ 1.3538 1.5455 1.5304 —0.8887¢
—2.1176 —1.3746 —2.5476¢

—2.6033
—1.6667f 1.5328f
—2.2419f
6 2.5 2.2883 1.9778 1.8096¢
—1.2870 —2.3823¢
—0.9818f
7 2.7634 —0.7636¢
2.2900f
8 3.0545¢

Tables I-III. These tables will cover all interactions
of atoms [(np)* and (nd)*] in levels resulting from
ground terms. In Table IV, the values of Co(LL) and
Dy(JJ) for ground terms of given configurations are
given through atoms with (#d)* configurations. Mean-
square radii of incomplete p shells and d shells have
been calculated by use of Clementi’s® atomic wave
functions, and is given in Tables V and VI. For 4 shells,
mean-quadratic radii are also given in Table VI, which
will be used for the calculation of higher multipole
interactions.

For (J,, J») coupling case of like atoms in the same
configurations and same terms, but with different J
(different levels), the elements of matrix W; have a
common factor {#,2)2. The coefficients Dy(J:J;) Da(JxJ 1)
cannot be factored out any more. Dividing out the
factor (7.2)> we have again a dimensionless secular de-
terminant. If we denote the roots of determinants by
o/ (J.J»2), the quadrupole—quadrupole interaction ener-
gies for this case can be written in the form

o (JoJo2) (r2)?/ RS, (3.57)
The values of o/(J./3Q2) through configuration (zd)*
are given in Table VIL

E® =a(JoJ42) Do(JoJ o) Do(JuTb) (ra2)(rs?)/RE

+[B1D2(JoS o) Da(JoTv) {ra?) (st Y+-BeDa(J oT o) Da(JoTs) (rat ) (rs2) ]/ R+ /R« - -,

2. First-Order Coulombic Energies in General for
Extreme Cases

For the interactions between atoms with (np)*# con-
figurations, the one nonvanishing first-order term is the
quadrupole-quadrupole interaction which is propor-
tional to R~%. This case has been considered in detail
above. For the case of atoms with (x#d)* configurations,
the elements of matrix W’ have the following forms in
general: ~

Vii'=(W5s) ij/ R+ (W) i/ K"+ (Ws) /R°.  (3.58)

For atoms with (#f)* configurations, more terms of
higher order in R~ will appear. For these cases one can
obtain the first-order (electrostatic) energy by solving
secular equations for given R. However, it will be seen
that the expression of the interaction energy in a power
series of R~ is very useful for the present case. A simple
method ,of expanding the interaction energy in power
series of R~ has been given in the Appendix. Here we
consider only the (J4, J3) coupling case in which the
atomic spin-orbit splitting is very large compared to
the interaction energy.

For the interaction of two unlike atoms or like
atoms in the same levels, we can write the first-order
energy in the form

(3.59)

where the first term is the quadrupole~quadrupole interaction energy, and 8, and 8 depend only on J, and J.

28 E, Clementi, “Tables of Atomic Functions,” a supplement of “AB Initio Computations in Atoms and Molecules,” IBM J. Res.
Develop. 9, 2 (1965) ; J. Chem. Phys. 38, 996 (1962) ; 38, 1001 (1962); 41, 295 (1964) ; 41, 303 (1964).
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TaBLE IL o(JaJ:Q) for half-integral J and integral Q. For like atoms in the same level, ¢ means gerade and % means ungerade. ¢
means that the state is positive if d=1, negative if d=—1, while b means that the state is positive if d=—1, negative if d=1.

J,=1.5 2.5 2.5 3.5 3.5
Q Jp=1.5 1.5 2.5 1.5 2.5
0 3.2ua 2.12%aq 3.3883ua 1.8330a 2.4023a
—0.8ua —1.1673a 1.3791ua —1.3093a 0.8176a
—1.1674ua —1.2603a
2.4gb 1.5162b 3.1756gb 1.3797b 1.8774b
0.0gb —0.55400 1.3201gb —0.85608 1.25195
—0.8957gb —1.1698b
1 1.2u 2.7890 1.6078x 2.0368 3.4135
—0.8u 1.2582 1.1915«4 1.2766 1.4845
—0.6638 —1.1279 —0.8143 1.1728
—1.4592 —1.4516 0.5179
—1.6g 0.8655g —1.2131
—1.3369¢ —1.4564
2 —2.8u 0.8450 —0.2850u% 2.7210 1.2072
—1.4266 —1.7721u 1.0509 0.7810
—1.9841 —1.0342 —0.0653
0.4g 1.0584¢ —1.6902 —1.4696
—1.7441¢ —1.7831
3 1.2u 0.8139 1.0190% 0.9052 1.1425
—2.7382 —2.4333u —1.7080 —0.8957
—2.0777 —1.9270
—1.9286¢ —2.0990
4 1.6036 —2.14294 1.1268 1.2532
—2.6980 —1.7071
1.2857¢ —2.6255
5 2.1429u 1.8330 1.6386
—1.7785
6 2.4495
Js=3.5 4.5 4.5 4.5 4.5
Q Jp=3.5 1.5 2.5 3.5 4.5
0 3.7136ua 1.7016a 2.1003a 2.6207a 4.0179ua
1.9648ua —1.3713a 0.5080a 1.5597a 2.2241ua
0.444%ua —1.3725a 0.2758a 1.09%4ua
—1.3233ua —1.4290a 0.1723ua
—1.5137ua
3.6803gb 1.3445b 1.5157b 2.4347b 4.0135gb
1.4663gb —1.0142b 1.0787b 1.4469 1.7894gb
0.9853gb —1.3585b 0.5997b 1.4717gb
—1.3319gb —1.4541b 0.2562gb
—1.5308gb
1 2.1133u 1.7802 2.4833 3.8253 2.48074
1.4003% 1.2895 1.4294 1.8748 1.5969%
0.8058% —0.9592 1.0541 1.4319 1.4539%
—1.42424 —1.4499 0.3555 1.2976 0.1551u
—1.2772 0.4679 —1.5805%
—1.5735 0.1643
1.8052¢ —1.4361 2.3898¢
0.3035¢ —1.5713 0.9592¢
—1.4040¢ 0.1090g
—1.5641g
2 0.7475u 2.0776 3.4592 1.7192 1.3498x
—0.1090% 1.1530 1.2968 1.3810 0.5661%
—1.6481u% —0.9858 0.8512 0.7821 —0.0827x%
—1.5842 0.0239 0.1246 —1.7120%
—1.3636 —0.1419
1.3083g —1.7959 —1.5647 1.4497¢
0.1360g —1.7958 1.0204¢
—1.6920g —0.1390g

—1.7251¢
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Tasie II. (Continued)
J.=3.5 4.5 4.5 4.5 4.5
Q 7,=3.5 1.5 2.5 3.5 4.5

3 1.27424 2.6918 1.2309 1.3569 1.4376u
—0.71184 1.0217 0.4452 0.0911 0.2338x«
—2.0482% —1.2850 —0.4633 —0.3410 —0.5875%
—1.7680 —1.6305 —0.5574 —1.94754

—1.9657 —1.8251
—0.5714¢ —2.0399 0.0726g
—2.0g —0.4472¢
—1.9436¢
4 —1.0351 1.0457 1.2730 1.3906 —0.2977u
—2.3553u —1.8802 —1.1003 —0.6461 —0.9831x
—2.1381 —2.0120 —1.2428 —2.2040y

—2.2212 —2.1817
1.3333¢ —2.2212 1.4633g
—2.2857¢ —1.0571g
—2.1940g
5 1.5487u 1.3575 1.4727 1.5207 1.5523u%
—2.5582u —2.6787 —1.5096 —0.9193 —1.5876u
—2.6995 —2.2384 —2.3889%

—2.5434
—1.3333¢ —0.5425¢
—2.3960g
6 —1.2u 1.9817 1.9063 1.7952 —0.6643%
—1.5533 —1.0195 —2.6084u

—2.4334
2.0g 1.7359¢
—2.0995¢
7 2.8u 2.6482 2.2733 2.0519%
—0.8318 —2.1428u
—0.6364¢
8 3.0271 —0.3636u
2.5455¢
9 3.2727u

For the case of like atoms in the same levels (J), Eq. (3.59) reduces to
B =a(J79) D)2 R+BUIR) 1) () R4y (J70) (o Roct-+ (3.60)
where
BJQ) =p'(JIQ) D,(JT)Dy(JT); v (JJQ) =v'(JJQ) Di(JJ)?, (3.61)

B'(JJQ) and 4'(JJQ) being dependent only on J
values. It is interesting to note that the second term
in (3.59) and (3.60) is the only contribution to C;/R’
in Eq. (2.27), since the second-order energy is a even
power series in R7.. The contributions to Cy/R® in
Eq. (2.27) will come from the first-order energy [the
third term in Egs. (3.59) or (3.60)] and the leading
term of third-order energy.

The interactions of two Cu (3d%s?) atoms in the
level 2Dgjs and two Ni (3d*s?) atoms in the ground
level 3F; are considered as examples to see the effect
of higher multipole interactions explicitly. In Table
VIII, the quadrupole-quadrupole interaction energy,
first-order energy approximated by 3 terms in Egq.
(3.60), and correct first-order energy are tabulated for
Cu-Cu and Ni-Ni interactions. The results show that

the lead term [0(1/R®)] gives a good approximation
to the first-order Coulombic interaction energy for most
ranges of R of interest in the long-range calculation,
although the effects of higher multipole interactions are
not negligible at the relatively small values of R. The
three-term approximation [Eq. (3.60)] gives good
agreement with the correct first-order energy through
most ranges of R considered. It is, however, expected
that the effects of higher multipole interactions will be
much more important for the interactions of atoms in
excited configurations.*

Since the R~ expansions of the first-order Coulombic
interaction energies for atoms in ground configurations
converge well, it may be useful to expand the zeroth-
order wave functions in the power series of R—1. To see
how the correct zeroth-order wave functions can be



928 REVIEWS OF MODERN Puysics »+ OcTroBER 1967

TaBLE III. «(K,Kpr) for half-integral .

K,=1.5 2.0 2.5 2.5 3 3
T Ky=1 1.5 1 2 1.5 2.5
0.5 2.7459 2.8640 2.1688 3.1307 2.0364 3.3729
0.0 1.5505 —0.2634 1.5837 1.3796 1.9280
—1.0488 —0.3776 —1.2252 1.3039 —0.7137 1.2647
—1.1684 —0.7808 —1.3167 0.9531
—1.2126 —1.0826
—1.2515
1.5 0.1763 0.9158 2.2950 1.0850 2.7472 1.2627
—2.7219 —1.1952 0.1310 0.5024 1.1208 1.0101
—1.8720 —1.7457 —1.2908 —0.8702 0.2829
—1.6382 —1.6122 —1.3585
—1.5675
2.5 0.8485 0.6188 0.5130 0.9075 0.8559 1.0900
—2.7702 —3.0076 —2.0000 —1.5872 —0.6716
—2.1658 —2.0400 —1.8618
—1.9821
3.5 1.4343 1.1339 1.0674 0.9824 1.1367
~—2.4090 —2.7144 —1.8203
—2.5568
4.5 1.9166 1.7321 1.4746
—1.9375
5.5 2.3146
K,=3.5 3.5 3.5 4 4
T Ky=1 2 3 1.5 2.5
0.5 2.0336 2.2383 3.5860 1.7859 2.3980
—0.3590 1.2994 2.1518 1.3376 1.5621
—1.3043 1.0401 1.5243 —0.9247 1.1729
—1.0455 1.1381 —1.3782 0.5731
—1.3413 0.5422 —1.2399
—1.2688 —1.3961
—1.3237
1.5 1.9815 3.1438 1.5290 2.0545 3.4403
—0.0693 1.2004 1.3065 1.2032 1.3389
—1.5419 0.6326 0.6898 —0.9019 1.0198
—1.1681 0.1504 —1.5354 0.2250
—1.6178 —1.4227 —1.2942
—1.5726 —1.6597
2.5 2.1338 1.0648 1.2270 2.7036 1.2088
0.3314 —0.1089 —0.2060 1.0224 0.5935
—2.0949 —1.6045 —0.4193 —1.1700 —0.2963
—1.8552 —1.7766 —1.7355 —1.5565
—1.9244 —1.9049
3.5 0.7582 1.0820 1.2368 0.9721 1.2051
—3.1653 —1.8978 —1.0417 —1.8030 —1.0281
—2.4706 —2.1840 —2.1092 —1.9735
—2.2443 —2.1690
4.5 1.2961 1.4084 1.4081 1.2507 1.3657
—2.1909 —1.5148 —2.6866 —1.6021
—2.6146 —2.6692
5.5 2.1909 1.8329 1.9145 1.7814
—1.4549 —1.6535

6.5 2.6458 2.5584
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Tasie IIL. (Continued)

K,=4 4.5 4.5 4.5 4.5
T K,=3.5 1 2 3 4

0.5 3.7724 1.9802 1.9745 2.5508 3.9349
2.3371 —0.4019 1.2453 1.7459 2.5066
1.7212 —1.3448 0.8084 1.4283 1.9542
1.4355 —1.2167 0.7991 1.4549
0.7427 —1.4298 0.3207 1.2573
0.3181 —1.3629 0.3789
—1.3806 —1.474 0.1990
—1.4262 —1.4765
—1.5144
1.5 1.8557 1.9155 2.3389 3.6735 2.1330
1.3804 —0.2057 1.2401 1.4747 1.4690
1.1573 —1.4763 0.6064 1.3386 1.4111
0.3999 —1.1824 0.5448 0.9072
0.0820 —1.6213 0.0653 0.1599
—1.4920 —1.3957 0.0314
—1.6077 —1.6966 —1.5624
—1.6510
2.5 1.3272 1.8831 3.1500 1.3177 1.4057
0.3555 0.1246 1.1631 1.1658 0.7356
—0.2062 —-1.7741 0.2046 0.0686 0.3194
—0.3264 —1.3657 —0.2742 —0.1867
—1.7507 —1.7703 —1.5847 —0.3518
—1.8912 —1.9328 —1.7575
—1.8772
3.5 1.3302 2.0567 1.1390 1.3084 1.4085
—0.6306 0.5185 —0.4389 —0.6264 —0.2489
—1.0249 —2.3416 —1.6773 —0.7352 —0.6648
—2.1105 —1.9836 —1.9400 —0.8618
—2.1598 —2.1067 —2.0419
—2.1268
4.5 1.4284 0.9342 1.2743 1.4012 1.4723
—0.9852 —3.2697 —1.8010 —1.0449 —0.6038
—2.2751 —2.6315 —2.2407 —1.4791
—2.4653 —2.4062 —2.3045
—2.3357
5.5 1.6772 1.4013 1.6647 1.6442 1.6319
—1.1677 —2.0595 —1.2495 —0.7891
—2.4940 —2.5876 —2.1809
—2.5953
6.5 2.1455 2.3686 2.1051 1.9301
—0.9966 —1.1516 —0.8162
—2.2807
7.5 2.9245 2.8604 2.4185
—0.5741
8.5 3.1618

written in a power series of R, a calculation has been If the perturbation V' is approximated by
made for O,* states of Cu-Cu system in which both
Cu atoms are in the configuration 3d%4s? and level 2Dg)s. V'=W;/R5, (3.63)
Let
x(M)=x(JJgoM). (3.62) the zeroth-order wave functions are

Y100 =0.8521x(5/2) +0.4905x (3/2) +0.1828x (1/2),
$a00 = —0.1932x(5/2) +0.0299x(3/2) +0.9807x(1/2),
300 =0.4865x (5/2) —0.8709x(3/2) +0.0693x(1/2). (3.64)

When we take the correct perturbation V' for this system,
V' =Ws/R+Wq/R'+Wo/R°, (3.65)
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we can obtain the zeroth-order wave functions in power series of R~ by the method discussed in the Appendix,

and they are found to be

(f4 ) (r2 )

YOO L 10.62350,004-0.19904500 ] L2

,‘(,1(0)

4 >/<2>

@04 L 0.62359,0.9 —0.9617¢4500]

'pz(ﬂ)

((f“>/ )*
Rt

¢ )/(2>

Y5O+ L 0.19909, 9 +0.9617¢,00]

Y@ =

(f‘>/< )?

3. Intermediate Coupling Cases

When the atomic spin—-orbit splitting is of the same
order of magnitude of the interaction energy, a tran-
sition region between (J,, J») and (A, S) couplings
may exist. At this region, the (A, S) coupling scheme
is poor since the perturbation H;.,(p), p=a, b, which is
the same order of magnitude of V, is neglected. In the
(Ja, Jb) coupling scheme, potential energy curves with
the same symmetry may cross each other. Therefore,
one way to consider the transition region is to apply the
almost degenerate perturbation theory.™

TasiLe IV. Coefficients Co(LL) and D,(JJ) for ground terms.
For the shells which are complete except for e missing electrons,
C:(LL) and D,(JJ) have the opposite sign of those for shells
which have e electrons.

Configuration Level C.(LL) D,(JJ)
np 2P1/s —0.63246 0.0
2Pyyz —0.44721
np? 3P, 0.63246 0.0
3P —0.31623
3P, 0.37417
nd 2D —0.53452 —0.44721
2Dss2 —0.47809
nd? 3F, —0.22131 —0.18326
3F —0.16599
3F, —0.20022
nd3 4Fy0 0.22131 0.15333
4Fsp 0.11269
4Fp 0.13941
4Fop 0.19343
ndt 5Dq 0.53452 0.0
5Dy —0.31623
5D, —0.11454
5D, 0.11066
5Dy 0.40044

(¢ >/ (f"’))2

L [0.6206, 0.9 +0.183850.0 —0.4822y500 ]+ - -

[—0.2141y,©044.163y, 00 —0.4136y3O0 ]+ - - -

AL [ 5,086,090 —0.65685@0+0.44000500 ]+« + «,

(3.66)

In this approach, we take the zeroth-order Hamil-

tonian H, as
Hy=H'(a)+H'(b), - (3.67)

where H'(p) is defined by Eq. (2.3). We take as the
approximate atomic wave functions the ¢(SL/M) in
the SLJM scheme. If we now assume the Lande interval
rule, the atomic energy interval between levels differing
by unity in their J values is®

eg—er1=J¢(vSL), (3.68)

where {(ySL) is the spin-orbit parameter. The pa-
rameter has been calculated by Blume, Watson, and
Freeman' for some atoms of interest. Experimental
values of atomic energy level intervals are given in the
table of Moore.” Thus we can obtain the relative zeroth-
order energy of the system of two interacting atoms.
If we now apply the almost-degenerate perturbation
theory for the set of all functions x(J.JQ2M,) arising
from all atomic states in given terms, the secular
equation will have the following form in general’:

EO+Vy/—E, Vi,

le, E2(0)+ sz'—E, e =O, (369)

where E/® are the relative zeroth-order energies and
Vi will have the form in general

Vi =(Ws) ij/ R4 (W) i/ R'+ (Ws) i/ RT -+ - -.

Since E;® are of the same order of magnitude of V',
fast converging power series of E in R~ are no more
possible here. The secular equation should be solved
for values of R.

(3.70)

2 Reference 19, pp. 194-195.

7C. E. Moore, Atomic Energy Levels [National Bureau of
Standards, Washington, C., Circular 467, Vol. I (1949),
Vol. IT (1958) Vol. I1I (1958)]
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It should be noticed here that this problem can be
solved by a different approach. We take the zeroth-
order Hamiltonian defined by Eq. (2.1) and apply a
new perturbation

H =V'+Hy.(a)+Hiy(0). (3.71)

Here we can apply a straightforward degenerate pertur-
bation theory to the degenerate system which is de-
scribed by x(SZAM.?) defined in Sec. I1IB2. If we
now transform® the set x(SZAM %) into the set
x(JoJ QM) defined in Sec. I1IB1, the matrix [H,.,(a)+
H..,(b)] is diagonal in the transformed representation
and the matrix V' will be the same as the matrix V’
in Eq. (3.69). Thus we obtain essentially equivalent
secular determinants in both methods considered. In
fact, the latter method has been used by Fontana

TaBLe V. Mean-square radii of incomplete p shells of the
first- and second-row atoms. Clementi’s?® wave function are used.
Quantities are in atomic units.

Element Term () (ao?)
B (2p) 2P 6.1418
C(2p% 3p 3.7483

1D 4.0448
N(2p% 2D - 2.7060
2p 2.8230
0(2p%) 3p 1.9741
1D 2.0289
F(245) 2p 1.5438
Al(3p) P 13.9552
Si(3p?) 3p 8.9811
1D 9.5526
P(35%) 2D 6.6961
2P 6.9221
S(3p%) p 5.0661
D 5.1676
C1(35%) 2p 4.0602

for the interaction of two alkali atoms in the excited
states. We will call this the inlermediate coupling.

To see which coupling scheme is applicable to the
various ranges of R for different systems, we have
calculated some potential energy curves of the systems,
B-B and C-O. All atoms are assumed to be in the
ground terms. In Fig. 1 we have plotted the energy
curve of I, and 31, states of B, in the (A, S) coupling,
and the corresponding energy curves of 0,7, 1,, 0.%,
1,, and 2, states in the intermediate and (J,, J3)
couplings. It is seen that the curves in the intermediate
coupling merge into {II,, *II,} curve at small R, and
they approach asymptotically the curves in the (Ja, J3)
coupling at large R. In Fig. 2, we have plotted the

28 Note that the set of degenerate state functions can be re-
arranged in any desired order and combination without changing
the resulting eigenvalues. Such a regrouping of the state functions
corresponds to a similarity transformation which factorizes the
secular determinant in some way.

TaBre VI. Mean-square and mean-quadratic radii of incom-
plete shells of the third-row atoms. Clementi’s® wave functions
are used. All quantities are in atomic units.

Element Term Orbital  (2) (ae?)  (r*) (ac®)
Sc(3d4s?) :D 3d 3.6562 34.1613
Ti(3d%4s?) 3F 3d 2.7436 18.5903
V(3d34s?) ‘P 3d 2.2553 12.6906
Cr(3d*4s?) D 3d 1.9224 9.4338
Mn (3d%4s?) N 3d 1.6470 6.8570
Fe(3d%s?) 5D 3d 1.4948 5.7932
Co(3d4s?) ‘F 3d 1.3450 4.7408
Ni(3d84s?) 3F 3d 1.2198 3.9967
Cu(3d%4s?) 2D 3d 1.1058 3.2853
Ga(4pY) p 4p 13.8348
Ge(4p?) P 4p 9.6466
As(45%) N 4p 7.3699
Se(4p%) 3P 4p 6.1821
Br(4%) 2p 4p 5.2216

TaBLE VIL o' (J.JxQ) for like atoms in the same configurations
and same term, but with different J.

(np), (np)%;2P (np)? (np)t; P (nd), (nd)*;?D

J.=1.5 Ja=2. 2. J.=2.5

J, 0.5 Jy=0. 1. J,=1.5
0.+ 0.96 0.48 0.72 0.5916
—0.0985
0, 0.0 0.0499 0.3435
—0.7699  —0.2619
0 0.0 0.5299 0.3537
—0.2899  —0.0239
0.+ —0.96 —0.48  —0.48 0.3220
—0.4036
1, 0.0 —0.32 0.0742 0.5852
—0.64 —0.1942 0.2516
—0.48 —0.0582
—0.4325
1. 0.64 0.32 0.6801 0.6087
0.00 0.0696 0.3176
—0.3897  —0.1439
—0.3056
2, 0.16 0.08 0.84 0.2681
0.12 —0.3186
—0.4034
2, —0.16 —0.08 0.12 0.1117
—0.48 —0.2203
—0.5347
3, —0.36 0.0748
—0.6952
3 0.12 0.2884
—0.4908
4, 0.4408
4, 0.2449
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Tasie VIIL Interaction energy of the 0,* states of like atoms in the ground levels of given configuration. (a) Cu-Cu interaction.
(b) Ni-Ni interaction. All quantities are in atomic units.

(a) Cu(3d*45%)2Ds2

R E E, Es
6a 1.141X10™ 6.744X1078 —3.219X107®
b 1.041X107¢ 5.699x10-8 —2.936X1078
c 1.043X10™¢ 5.687X107® —2.939X10°%
102 8.875X10¢ 3.689X107¢ —2.503X107¢
b 8.569X1078 3.942X107¢ —2.426X107¢
c 8.569X 1078 3.942X10-¢ —2.426X107¢
14a 1.650X10-8 6.860X 1077 —4.654X107
b 1.620X10-¢ 7.096X 107 —4.582X1077
c 1.620X10-8 7.096X1077 —4.582X107"
18a 4.697X1077 1.952X1077 —1.325X1077
b 4.645X1077 1.993X 1077 —1.312X1077
c 4.645X1077 1.993X10°7 —1.312X1077
22a 1.722X1077 7.159X1078 —4.857X1078
b 1.709X1077 7.257X1078 —4.827X1078
c 1.709X10~7 7.257X1078 —4.827X1078
26a 7.470X1078 3.105X10-8 —2.107X1078
b 7.430X1078 3.136X1078 —2.097X108
c 7.430X1078 3.136X1078 —2.097X1078
30a 3.652X1078 1.518X 108 —1.030X10"8
b 3.638X10"8 1.529X10-8 —1.027X1078
c 3.638X10"8 1.529X10-8 —1.027X108

(b) Ni(3d%4.5%)3F,

R E, E; Es E, Es
6a 2.971X1075 1.623X1078 1.111X10°8 4.423X10°¢ —1.109X 105
b 5.467X1075 7.305X107¢ 5.932X10- 2.192X10°¢ —1.267X1078
c 5.305X10-5 9.256X107¢ 5.803X10-¢ 2.572X10°¢ —1.326X107
10a 2.310X 1078 1.262X107¢ 8.641X10~7 3.439X10°7 —8.620X10°7
b 2.834X10-¢ 9.617X1077 6.734X1077 2.400X1077 —8.650X10~7
c 2.821X107¢ 9.739%10°7 6.734X107 2.411X107 —8.666X10°7
14a 4.295X10°7 2.347X1077 1.607X 1077 6.395X1078 —1.603X1077
b 4.745X1077 2.048X1077 1.414X1077 5.301X10°8 —1.595X10"7
c 4.741X1077 2.053X 107 1.414X1077 5.303X10°8 —1.595X1077
18a 1.222X1077 6.679X10"8 4.573X10-8 1.820X 1078 —4.562X107¢
b 1.297X10°7 6.156X1078 4.232X10-8 1.624X1078 —4.541X1078
c 1.296X10-7 6.159X1078 4.232X10-8 1.624X10°8 —4.541X1078
22a, 4.482X1078 2.449X10°8 1.677X10-8 6.674X10-° —1.673X1078
b 4.660X1078 2.319X10°8 1.592X 1078 6.183X107* —1.666X1078
c 4.660Xx1078 2.320X10°8 1.592x10-8 6.183X107® —1.666X1078
26a 1.944X1078 1.062X10-8 7.272X107° 2.895X10™® —7.255X107®
1.999X10-8 1.022X10°8 7.008X10-? 2.741X10™ —7.234X10®
c 1.999X 108 1.022X10°8 7.008X10* 2.741X107° —7.234X107?
30a 9.506X1079 5.194X107° 3.556X107° 1.415X107° —3.547X107®
b 9.705X107? 5.045X10 3.458X107° 1.358X107° —3.539X10™
c 9.705X 107 5.045X10° 3.458X10™* 1.358X10~° —3.539X10~°

# Quadrupole-quadrupole interaction energy. b 3.term approximation [Eq. (3.60)]. ¢ Exact first-order energy.

energy curve of I+ 33+ 53+ states of CO in the the ground 2P) a probable correlation® diagram of the
(A, S) coupling and the coiresponding energy curves of  states in (J,, J5) coupling at larger R and the states in
0+, 2, 1, 0F, 1, and O~ states in the intermediate and (A, .S) coupling at smaller R. It should be noticed here
(Jay Jb) couplings. From Fig. 2, we can see a similar  that correlations for some higher states are not uniquely
trend as the case of By, but the range of R, where the determined. It is also noted that at large R the lowest

(1}’ S) coup!mg is applicable, is quite shortened. I.n 29 For the correlation of atomic J values and molecular quantum
Fig. 3, there is shown for the case B; (both B atoms in  pumbers, see R. S. Mulliken, Phys. Rev. 36, 1440 (1930).
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F1c. 1. Some energy curves of B; in the first-order approxima-
tion. Both of the separated B atoms are in the ground 2P term.
The 0.%, 2., and 1, curves have the spin-orbit energy of the two
atoms (with {=4.438X1075¢2/ao)® included. represents
the curvesin (A, S) coupling, those in intermediate coupling,
and — —— - those in (Ja, J3) coupling.

states are {!II,, *IL,}, while the ground state near the
equilibrium distance R, is 3Z;~. In Fig. 4, the corre-
lations of some lower states of CO is shown.

Also, to see in what range of R strict (J4,J5) coupling
is applicable, we have plotted the energy curves in

20

F16. 2. Some energy curves of CO in the first-order approxima-
tion. Both of the separated atoms C and O are in the ground 3P
terms. The energy curves of the states arising from C(3P;)+
O(3P;) have the spin-orbit energy? of atoms included. —-—«
represents the curves in (A, S) coupling, —— those in inter-
mediate coupling, and ~—-— those in (Ja, Jp) coupling.
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F1c. 3. A probable correlation diagram for transition from

(J,., Js) to (A, S) coupling for the molecular states arising from
B(2P)+-B(?P) in the first-order approximation at large R.

e,

(AS) —0;

(Ja, J») and intermediate couplings for the states 0,
of B, in Fig. 5(a), and for the states 0t of CO in Fig.
5(b). It is seen from Fig. 5 that (J,, J3) coupling is
applicable at R 164, for B, and at R>10a, for CO.
From the consideration of the order of magnitude of
the atomic spin-orbit splittings"+? and interaction ener-
gies, we may conclude that, when atoms are in the
ground terms, (A, S) coupling and intermediate coup-
ling may have important role for the interaction be-
tween B, C, O, Al, Si, and Sc atoms. For other cases,
(Jay Jb) coupling scheme will give satisfactory results
for most range of R of interest in long-range interaction.

_ Ot

(AS)

Fic. 4. Transition from (J,, J3) to (A, S) coupling for some
lower molecular states arising from C(3P)+O(3P) in the first-
order approximation at large R.
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Fic. 5. (a) O.* states of B, arising from B (2P)+B (2P).
—— represents the energy curves in intermediate coupling and

———— those in (J,, Jp) coupling. (b) O states of CO arising
from C(3P)+0(*P).

D. Interatomic Forces from Predissociation Data

With a recent renewal of interest in the experimental
determination of long-range interatomic forces and their
comparison with theory, the most direct route has been
via absolute cross sections for elastic scattering of

atomic beams at thermal energies.® Another substantial
source of relevent information is existing predissociation
data.®

For any potential U(R) with an attractive well, the
effective potential U;(R) is given by

Ui(R) =U(R)+F[R,j(j+1)]

FLR, j(j+1)1=5(j+1)/2uR" (3.73)

Here p is the reduced mass and j is the rotational
quantum number of a diatomic molecule of interest.
In Hund’s case (b) j is replaced by K which gives the
total angular momentum apart from spin.®? If R; is
the value of R at the effective potential maximum for
the value of 7, we have

(3.72)

where

{{0U(R) /dR]+- (8F/3R) }p-r;=0.  (3.74)
Let us consider now the differential dU;
aU; aU;
y=—% d +a————[ ( +1)]d[1(1+1):|
oU(R)  oF ' dF o
T e vy L
(3.75)

From Egs. (3.74) and (3.75), we obtain
aU;/d[ j(j+1)1={0F /o[ j(j+1) 1}rr, (3.76)
and by use of Eq. (3.73) we get®
aU;/d[ j(j+1)]=(2pR?) (3.77)

A curve between the energy of the effective potential
maximum and j( j41) is the limiting curve of dissoci-
ation (LCD) developed by Schmid and Gers.® Ex-
trapolating the breaking-off data to j(j+1)=0, we
obtain dissociation energy Di,.

By use of Egs. (3.72), (3.73), and (3.77) we obtain

U(R) =U,—[j(j+1)/2uR*]
—{dU/d[j(7+D]}.  (3.78)

Hence if we know LCD, then we can obtain information
about long-range interatomic force since R; is usually
larger than the equilibrium distance R,.

Recently the explicit relationships needed to make
use of LCD for the determination of long-range intei-
atomic forces has been developed by Bernstein.® For a
potential whose long-range behavior can be expressed

by U(R)~—CyR™, the effective potential may be

% See, e.g., R. B. Bernstein in Atomic Collision Processes,
M.R. C. McDowell, Ed. (North-Holland Publ. Co., Amsterdam,
1964), p. 895; H. Pau]y and J. P. Toennies, in Advances in
Atomi: and Molecular Plrysics, D. R. Bates and L. Esterman,
Eds. (Academic Press Inc., New York, 1965), Vol. 1, p. 201;
E. Vg) Rothe and R. H. Neynaber, J. Chem. Phys. 43, 4177
(196.

3t R. B. Bernstein, Phys. Rev. Letters 16, 385 (1966).

3 See Ref. 18f, p. 221.

% R, Schmid and L. Gerd, Z. Physik 104, 724 (1937).
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approximated, for the case where R;2>1.5R,, by

Uj(R)=—Ca'R+[j(j+1)/2uR*], (3.79)
so that from Eq. (3.74) we obtain
Ri=[muCy' /7 (j+1) =2, (3.80)

Using Egs. (3.79), and (3.80), we now obtain an ex-
plicit expression for the LCD; i.e., for Ercp in atomic
units:

Evco=Evt+U;(R;)

=Eet-SaL 7+ D TV, (3.81)

where

Sn=(n—2)[1/(nu)"C,2 >, (3.82)

and E, is the term corresponding to the dissociation
limit, For the case of #=6 for which Ercp is linear in
[7(j41)7", the LCD data of the x 2=+ state of HgH
and HgD, and the C 311, state of N, have been used®
successfully for the determination of Cy'.

Another example® is the predissociation of the b 3=+
state of CO3% (which has been also considered by
Bernstein,® but not fully); this state dissociates to C
(®P) and O (*P). We make use of the following break-
ing-off data: for »=0, K(K+1) =3173 at 90142 cm™!
(see Ref. 34a) and for v=1, K(K+1) =1930 at 89820
cm™ (see Ref. 34b). Here » is the vibrational quantum
number. If we assume U(R)=—Cs'R~5%, Ercp is linear
in [7(j4+1)J3, and we obtain S;=8.3X10~* cm,
Cs'=1.5X107% erg-cm®=8.0 ¢®-a¢!, R==7ay at j=43,
and Dy=89570 cm™'. If we now assume U(R)=
—C¢'R™%, we obtain Sg=3.4X103 cm™, Cs'=3.7X
107% erg-cm®=39 e?-a’, and D;=89530 cm™. The
recommended value of dissociation energy® D, is
89620420 cm™, which is closer to the case of n=35.
Hence we might conclude that —Cs'R® is a better
approximation to U(R) for the state b 3Z+ of CO.

If we neglect atomic spin-orbit splittings [ (4, .S)
coupling]], we have the following states of CO arising
from C(®P)+4O(®P) in the first-order long-range ap-
proximation: the lowest level has the states 1Z+, 33+,
52+ with Cy'=1.927X107% erg-cm®=10.65 e2-a¢*; the
next has the states A, 3A, 5A with C5'=1.775 €2 a4t; the
states 12—, 33—, 52—, 12+, 33+ 53+ UI I, 51 have
Cs'=0; and the states I, I, 31 are repulsive with
Cs'=—7.100 e?-a¢*. If the second-order perturbation
does not reverse the order of energy levels for two 3=+
states at large R (this is unlikely since the second-order
perturbation energy is expected to be almost the same
for both 32+ states; see Sec. IVA), we have to correlate
the lower o’ 32+ state to the lower 32+ state at large R

3a Note added in proof. The predissociation data of Se, has
been used to determine Ci' for Se; by Byrne, Richards, and
Horsley [Mol. Phys. 12, 273 (1967) ]. Also see T. Y. Chang, Mol.
Phys. (to be published).

% (a) L. Ger6, Z. Physik 95, 747 (1935); (b) R. Schmid and
L. Ger6, Z. Physik 96, 198 (1935); (c) L. Gerd, Z. Physik 101,
311 (1936) ; (d) R. Schmid, Physik. Z. 37, 55 (1936).

* A. G. Gaydon, Dissociation Energies and Spectra of Diatomic
Molecules (Dover Publications, Inc., New York, 1950).
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and b 32+ to the upper ®Z+* state® at large R. This
follows from the noncrossing rule.®® Hence in (4, S)
coupling the b 32+ state has no quadrupole-quadrupole
interaction energy. However, if we include the effect
of atomic spin-orbit splittings (intermediate coupling),
b 3Z* state splits to the states 0-, 1 and there appear
nonvanishing first-order energies [ cf. Figs. 2 and 5(b).].
This may support the above result of the analysis of
the predissociation data for the & 3=+ state of CO. It is,
however, noted that it is not possible to find fast-
converging R~ series of the interaction energy in some
range of R in the intermediate coupling. It is also
noted that the second-order dispersion energy may not
be negligible compared to the first-order energy at
R=7g, which is in the range of R of interest (see
Sec. IVA).

1V. SECOND-ORDER COULOMBIC INTERACTION
AND MAGNETIC INTERACTION OF
TWO ATOMS

A. Second-Order Coulombic Interaction of Two
Atoms

In this section we consider the leading term
[0(1/R%)] of the second-order Coulombic interaction
energy between two atoms in degenerate states. This
dispersion energy will be compared with the first-order
quadrupole-quadrupole interaction energy. Since the
dispersion energy may be more important in the rela-
tively shorter internuclear separation for the system
with nonvanishing first-order interaction energy, we
assume (A, S) coupling for the system of two inter-
acting atoms.

For the calculation of dispersion energies, some accu-
rate methods are available, which have been applied
successfully for the interaction between atoms in non-
degenerate states. One method is that, by making use of
the identity®

2 [= ab
-1 __ —_—
(at0) 1r/; (@®+w?) (b*+w?) do,
it is possible to reduce the original many-center problem
to a number of single-center problems. A formal expres-
sion has been derived by Mavroyannis and Stephen®®
and by McLachlan® which relates the leading term of
the dispersion energy of two atoms to the electric
dipole atomic polarizabilities, evaluated at imaginary
frequencies.®*® This method has been applied for the

(4.1)

3 Note that Bernstein® correlated 532+ state to the lower
3zt state at long range R and he used only one breaking-off
data*b (y=1) for the determination of Cy’.

¥ L. D. Landau and E. M. Lifshitz, Statistical Physics (Per-
gamon Press, Inc., New York, 1958), Chap. XII; Flectrody-
namics of Continuous Media (Pergamon Press, Inc., New York,
1960), Chap. IX.

( %A, D. McLachlan, Proc. Roy. Soc. (London) A271, 387

1962).

3 For the calculation of frequency-dependent polarizabilities,
see (a) M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 2997
(1963); (b) Y. M. Chan and A. Dalgarno, Proc. Phys. Soc.
(London) 85, 1455 (1965).
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interactions of nondegenerate atoms.” The other
method is to apply variational method by choosing
appropriate perturbed wave functions.” Although these
methods could be generalized to degenerate atoms, it
will be much more complicated for these cases. Since
we are interested in the order of magnitude of dispersion
energies in the present work, we adopt a simple approxi-
mate method.

We want to calculate Cs in Eq. (2.27). In the case of

degenerate atoms, the zeroth-order wave functions can
be written in the form

Y@ =22 C(Mr)x(My), (42)
My

where x(Mp)=x(SZAM.) or x(SZTAIM.) has been

defined in Sec. IIIB2. Since x(#.) is a linear combi-

nation of the products of atomic wave functions, the

Cs coefficient can be written in the form [cf. Egs. (2.9)

(A, S) coupling for the system of two interacting and (2.26)]

| D0 (Ba(kadda) s (RoMb)| Vi | a(ba’ M) (ks My') )b (kM) s (o) | i@ )2

~ Ma,Mp
Co= kalska, ke ks Mal My! Aea(ka') +Aes (k') > (43)
where

Afa(ka,) =fa(ka,) _'eu(ka) 3

Aey (k') =€ (By') —en(kp), (4.4)
and

Vs=r(a) - 1(b) —3Z(a)Z(b)
=X(a)X()+Y(a)Y(b) —2Z(a)Z(b). (4.5)

—r(a) is the electric dipole moment operator of atom @. The state of an isolated atom a has been characterized
by the magnetic quantum number M, and the symbolic quantum number %, for the set of remaining quantum
numbers, and similarly for atom . It is obvious, from Eq. (4.3), that C; is different for different molecular states
which arise from the same configuration and term of isolated molecules. Since we are interested in the order of
magnitude of Cs, the expression for Cs will be averaged over the magnetic quantum numbers of both atoms to
derive an approximate formula. Then we obtain the following expression:

Co=(2LAD QLA 3 2 20 X{ga(ko)| X | dulkd M) (s ()| X | ok’ M) )P

ka!ka,kv/#ky Mo/, My Ma,Mp

F{a(kala) | ¥ | pa(ka Ma") ) [$bu (ke | ¥ | (ko' M) )P 44 [(ba(kalda) | Z | Ga(ka’M) )2

X[{go(kolv) | Z | o (k' M) )2}/ { Aea(ka') +Des(Re') }.  (4.6)
Here, the fact that the cross terms such as
(ba(kalda)| X | ¢a(ka'Ma") )9a(kalda) | ¥ | Gu(ka' M) )
vanish has been used. If we now define the average quantum-mechanical oscillator strength#
Fk, B) = 2Le+1) MZ];W M, E'M), (4.7)
where |
JEM, E'M') = —3Ae(k') [{p (kM) | 1 | $(R'M") )P, (4.8)
and 2L;+1 is the degeneracy of the kth level of an atom, one can show that®
T (&, B') =F® (k, k') =J© (k, &) =53] (%, ¥'). (4.9)

Here f@ (k, k') is defined by Egs. (4.7) and (4.8) if we replace r by X, and similarly for f® (k, &’) and f@ (%, ).
Using Eqs. (4.7), (4.8), and (4.9), we obtain

Jalka, k') Jo(ks, k')
kot doptsiy Dea(ka’) Dey (') [Aea(ka') + A6y (k') ]

4 For examples, see (a) M. Karplus and H. J. Kolker, J. Chem. Phys. 41, 3955 (1964); (b) Y. M. Chan and A. Dalgarno, Mol.
Phys. 9, 349 (1965).

4a For’ nice discussions, see (a) R. A. Buckingham, Proc. Roy. Soc. (London) A160, 113 (1937); (b) K. S. Pitzer, Advan. Chem.
Phys. 2, 59 (1959).

42 See Ref. 1, p. 890.

4 H. Margenau, Rev. Mod. Phys. 11, 1 (1939).

(75=—

()

(4.10)
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TasrLe IX. Estimates for Cs. Cs are estimated by Eq. (4.10) with Aé=1 and polarizabilities estimated by Eq. (4.11). R* is the distance
of twice the sum of the atomic radii which is taken from Slater’s® table. All quantities are in atomic units.

R* I a —~Cs —Cs C_B/(CE.R*) States

He-He 0.9033 1.248 1.055

(1.384)s (1.456)b
Ne-Ne 0.7923 2.451 3.570

(2.663)= (6.31)r
B, 6.44  0.3049  24.79 140.5 36.22 0.602 1], 311,
C, 5.28 0.4140 12.21 46.29 13.49 0.650 1, 3, *10,
0: 4.52  0.5003 4.84 8.790 3.741 0.520 11, 311, 511,
Co 4.90 20.08 10.65 0.385 13+, 3z+, 53+

2 A. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London) A259, 424 (1960). b See Ref. 49.

It follows, from Egs. (4.3) and (4.10), that, for the interactions of two atoms in the ground configuration and
term, Cs is negative and hence the London dispersion force is attractive.
If we now apply Uns6ld’s approximation* to Eq. (4.10) and introduce the average dipole polarizability* for

atoms, _
a= D {J(k ¥)/[Ae(F) T}, (4.11)
Kk
we obtain London’s® formula for C:
Co=—3[At,A8/(Ae+AG) Ja.a. (4.12)

Here A&, and Ag are appropriate average excitation energies for atoms @ and d. It is often found that choosing
the’average excitation energies A equal to the first ionization potentials® I of the interacting atoms gives good
estimates for Cs. For the estimation of the atomic polarizabilities, we will employ the Buckingham’s? formula

n

a=$%2.( 2

fua]

(4.13)

where

(7= (ui | 7* | wi)— %;1{(%' Lo | )i b o0 | i)+ Coar | 3 | ws)Cosi | 3 | wr )+ | 2 | i) | 2 | )}, (4.14)

in which #%; are atomic spin orbitals and » is the number
of electrons in an atom. The necessary atomic properties
(i | 7 | m;) and {u; |7 | uy) for the evaluation of the
polarizabilities are calculated by use of Clementi’s wave
function.? Values for Cs obtained from Eq. (4.12) with
Ag; =1, and Ag=1I, are given in Table IX for the
interactions of the first-row atoms. The ratio of the
van der Waals energy to the quadrupole-quadrupole
interaction energy, Cs/(CsR*) at distance R* of twice
the sum of the atomic radii which are taken from
Slater’s®® table, is also given in Table IX. Estimated
values for (s for He-He and Ne-Ne interactions are
smaller than accurate values® in magnitude (see Table
IX), and hence this may be true for other systems.
Hence the van der Waals dispersion energies may be of
almost the same size as the quadrupole-quadrupole
interaction energies at the separation R*, although
estimated values of the ratio Cs/(CsR*) are about 0.6.

“ A, Unséld, Z. Physik 43, 563 (1927).

(See Table IX). Since the quadrupole-quadrupole inter-
action energies are proportional to O(R™?), it is, how-
ever, expected that, when the quadrupole-quadrupole
interaction energies do not vanish, the first-order
Coulombic interaction energy is dominant compared to
higher-order Coulombic interaction energies throughout
most range of R of interest in long-range interactions.

B. Magnetic Interaction of Two Atoms

The purpose of this subsection is to consider magnetic
interaction energy of two atoms. The general treatment
of magnetic (or relativistic) long-range interaction
energies through 0(a?) has been considered briefly in
Section IIB. Here we will consider only the leading
term [ ©(a2/R3) ] of magnetic interaction of two neutral
atoms in degenerate states to see in what range of R
magnetic interaction energies are appreciable. We also
assume (J,, Jp) coupling for the system of the two

4% (a) F. London, Z. Physik. Chemie B11, 222 (1930); (b) Trans. Faraday Soc. 33, 8 (1937).

4 The experimental jonization potentials are listed by Moore.??

4 R. A. Buckingham, Proc. Roy. Soc. (London) A160, 94 (1937).

8 J. C. Slater, J. Chem. Phys. 41, 3199 (1964).
4 A. E. Kingston, Phys. Rev. A135, 1018_(1964).
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interacting atoms since magnetic interactions are im-
portant in the relatively longer internuclear separation.
It has been shown by Meath® that the interaction
energy through O(o?/R?®) is identically equal to the
semiclassical result for nonresonant cases. From semi-
classical consideration one would expect that two atoms
a and b with magnetic dipoles M(a) =—3%a[L(a)+
2S(a)] and M(d) = —3a[ L()+2S(d)], respectively,

H, 2= (o?/R%)[Tr135+ Tss.s+Tsesl,

where

Trrs= i Brrs(m) L™ (a) L™ (d) ;

m=—1

Tssam 3 Bssalm) Sm(a) Sm(b);

m=—1

Tsuam 3 Bsra(m) (1P} {Lm(a) S() )5

m=—1

Here, for a tensor operator of rank 1, A, the irreducible
spherical components, are defined in terms of the ordi-
nary Cartesian components by

Att=—V2"1(A4,+1i4,)
A10= Az
A =VIL(4,—id,). (4.18)

The expansion coefficients T, 3 for ¢=LL, SS, SL in
Eq. (4.16) represent, respectively, the magnetic orbit-
orbit, spin-spin, and spin-orbit dipole interactions be-
tween atoms ¢ and 4. In the multipole expansion of the
generalized Breit-Pauli Hamiltonian®® the terms of
0(a*/R) and 0(a?/R?) and further correction terms of
0(a?/R?) in addition to the terms in Eq. (4.16) appear.
However, those terms do not give any contribution to
the relativistic or magnetic interaction energies through
0(a?/R?). This has been shown by Meath® by use of
the explicit expression of multipole expansion of the
generalized Breit~Pauli Hamiltonian and some commu-
tation relations for tensorial operators.

(ﬁo(Ja»]bMaMb) | ra.3 I ?I(Ja,]b,Male,) = <]a]bMaMb l I‘c',3 I Ja’Jb,Ma’Mb’>;

would have a magnetic dipole-dipole interaction Hamil-
tonian

H,.m%=(1/R*)[M(a) -M(b) —3M,(a) M.(b) ].
(4.15)

This semiclassical Hamiltonian can be written alter-
natively in the form®

(4.16)
Brra(0)=—%,  Brrs(xl)=-1,
Bsss(0)=—2,  Bssa(xl)=-—1,
BsL3(0)=—1,  Bsra(xl)=—3 (4.17)

In our calculation of magnetic interaction energy of
0(a?/R?), we assume that magnetic interaction energies
are small compared to Coulombic interaction energies,
and hence we can first diagonalize the Coulombic inter-
action operator V. The resulting eigenfunctions will
have the following forms in general (cf. Secs. ITA and
II1C2):

U=, "9+ 0(1/R?),

w0 =3 C(M)x(M), (4.19)

where x (M) =x(JJoQM) or x(JJ2QM) has been de-
fined in Sec. ITIB. The magnetic interaction energy
through 0(a?/R?) in our approximation is given by

Ekmag= (l!,k(o,O) l Hs'oimag [ \[,k(o,ﬂ)>
=2 C(M)C(M") (x(M)| Hyomo2 | x(M")).
(4.20)

Since x(M) are linear combinations of functions
o (JoToM o My) = o (Tl o) ¢ (JoMs), and H, ™28 is given
by Eq. (4.16), we have to evaluate integral

o=LL, SS, SL.

Using the Wigner-Eckart theorem® and properties of the Clebsch~Gordan coefficients,? the integral for o =LL

can be written as

1
(JoTsMoMy | Trps | T T/ MMy Y= 37 Brra(m) (JuM, | L™ | T/ M YWTWMy | L | Ty My')
1

m=—

1
= > Brra(m)C(J/ Ty My, —m, M) (o || L || Ja')

m=—1

XC(Jb’].]b; Mb”me> <]b H L1 ” Jb'>

=5<Ma+Mb, Mal+Mb/).3LL,3(Ma_Ma,)C(Jallja; Ma,, Ma'_Mal, Ma)

XC(Jo'1Ts; My, My—My', M) (Ja || Ly || T/ YT || Lo || T0').

(2.21)
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To evaluate the reduced matrix elements (Jp' || L, || J#') we apply the projection theorem for first-rank tensors,
which gives

IeMp | J | JpMp'){Jp || J-L || Jr)

L | Jp'Mp'Y=06(Jp, Jp' 4.22
(JpMp | Ly | Jp'Mp'y=6(Jp, Jp') T Urt D) (4.22)
Since
J-L=(L+S)-L=L*+S-L,
S-L=1(J2—L*—8?), (4.23)
we have
J-L=1(J24L*—SY) (4.24)
and hence
Vel J-L||Jp)=(JpMp | J-L | JpMp)
=3[Jp(Jp+1)+Lp(Lp+1) —Sp(Sp+1)]. (4.25)
Furthermore we have?
(]PMP l Jim l JPMP/>=[JP(JP+1)]UZC(JPIJP; Mp'mMp). (4.26)
Substituting Egs. (4.25) and (4.26) into Eq. (4.22), we obtain
<JPMP l le l JP,MP,>=5(JP, Jp )C(]Pljp; Mp mMP)[]P(]p+1)+LP(Lp+1) —SP(SP+1)] (427)

2l7p(Jpt1) 2
On the other hand, the Wigner-Eckart theorem gives

(JpMp | Lym | Jp'Mp'y=C(Jp'1Jp; Mp'mMp) (Jp || L, || J&')- (4.28)
Thus we obtain from Eqgs. (4.27) and (4.28)
L(Jp(Jp+1)+Lp(Lp+1) —Sp(Sp+1)]

Up || Ly || Ty =6(J¢", J) 2[Tp(Jp+1) 2

(4.29)

Similarly we have for =SS and SL
JoTsMoMy | Tsgs | Jo' T/ Mo’ My ) =8( MMy, Mo/ 4My)Bss s(Mo— M) C(JJ 1oy M, Mo— M./, M,)
XC(fb,ljb; Mb’, Mb--'Mb’, Mb) (Ja H Sl H ],,I><]b H S1 “ ]b,>, (4.30)

Jp(Jp+1)+Sp(Sp+-1) —Lp(Lp+1)
2[Jp(Jp+1) Ju2

el Sill Jp")y=8(Jp, J&") (4.31)

and
(Ja]bMaMbl PSL.3 I Ja,]b’Ma’Mb,> =5(Ma+Mb, Ma’+Mb,)6SL,3(Ma"‘Ma,) { 1+Pab} {C(Ja,]-]a; Ma,, Ma_'Ma,, Ma)
XC(Jbllfb; Mb’, Mb——ﬂ/lb’, Mb) <Ja H L1 H Ja,><fb H S1 ” Jb/>}. (432)
To see the effect of magnetic interaction energy to interatomic force, we consider some particular systems.
0,

The 0g* states of O; which arise from two separated oxygen atoms in the ground 3P, level are considered. The
proper zeroth-order wavefunctions which diagonalize W [see Eq. (3.2)] are

$1© =0.7360x (2) +0.5828x (1) +0.3445x (0)
@ = —0.2918x(2) —0.1861x (1) +0.9382x (0),
¥5© =0.5109x (2) —0.7910x (1) +0.0331x(0), (4.33)

where x(M)=x(J.JogQM) are defined in Sec. ITIB1. The resulting magnetic interaction energies obtained
The corresponding quadrupole-quadrupole interaction from Eq. (4.20) are

energies are Emee=474302/R?,
Ea-=1.779/R",
) / Eymos=—0.28002/ RS,
Q= 5
Ey1-4-=0.8230/R5, Egme=1.171002/R3. (4.35)

Egta-=—0.2639/R5. (4.34) " See Ref. 27, p. 94.
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Tasie X. Values of E;mae/FE;a-a- a5 a function of R for the
0,* states of Oz and Cu,. Two separated O atoms are assumed to
be in the ground 3P, level and Cu atoms in the configuration
(3d)°(45)? and 2D, level. All quantities are in atomic units.

0,% states of Oy 0,* states of Cus

R =1 2 3 i=1 2 3

20 0.057 —0.008 0.095 0.106 —0.075 —0.059

30 0.128 —0.017 0.213 0.238 —0.168 —0.128

40 0.227 —0.030 0.378 0.423 —0.298 -—0.227

50 0.355 —0.047 0.591 0.661 —0.466 —0.355

60 0.511 —0.067 0.851 0.951 —0.671 —0.512
Cuz

The 0,* states of Cus; which arise from two separated
Cu atoms in the configuration (3d)°(4s)? and level
2Dsj» are considered. The proper zeroth-order wave
functions which diagonalize W; are given by Eq. (3.64).
The corresponding quadrupole-quadrupole interaction
energies are

Eyaa-=0.8876/R",

Ex29-=0.3690/R?,

Eg9-=—0.2503/R5. (4.36)
The resulting magnetic interaction energies are
Emo2=4.40302/R?,
Eymee=—1.291a%/R3,
Egm22=0,6678a%/R5. (4.47)

The ratio of magnetic interaction energy E™*¢ to the
quadrupole-quadrupole interaction energy E; 29 has
been tabulated in Table X. It is shown that magnetic
interaction energy is 10~209%, of the quadrupole-
quadrupole interaction energy at R=230a, and 30~509%,
at R=>50q, for the systems considered here.

The magnetic interaction energies of ©(a?/R?) dis-
cussed here may be of importance in atomic scattering
experiments.® If the quadrupole-quadrupole interaction
energy vanishes and magnetic interaction energy of

8 See the discussion in W. J. Meath and J. O. Hirschfelder,
J. Chem. Phys. 44, 3210 (1966).

0(a?/R?) does not, then the leading term of the Cou-
lombic interaction energy is O(1/R®), and hence the
magneticinteraction energy will be of more importance.®®
They are also important because they appear not to be
retarded® at large intermolecular separations and there-
fore will sometimes be the lead term in the 1/R expan-
sion of the very long-range interaction energy.

V. SUMMARY AND DISCUSSION

The most important feature of this work is the de-
tailed analysis of the moderately long-range interaction
energies of degenerate atoms for nonresonant cases.

We have constructed the symmetry-adapted mo-
lecular wave functions at large internuclear separation
R in the general case. The quadrupole—quadrupole
interaction energy, which has been considered pre-
viously by Knipp,® has been reconsidered, and much
more extensive tabulation of necessary parameters and
atomic properties has been made. For the third-row
atoms with (3d)*(4s)? configurations, we have con-
sidered higher multipole interactions in addition to the
quadrupole-quadrupole interaction, and have shown
that the 1/R series of the first-order Coulombic inter-
action energies converges very fast throughout the
long-range region at least for atoms in the ground
configuration.’

For intermediate coupling cases where the atomic
spin—orbit splitting becomes of the same order of
magnitude as the interaction energies, we considered
two methods to calculate the interaction energies. If we
keep (Ja, J») coupling through the transion region of R,
we have to apply almost-degenerate perturbation
theory. If we now assume (4, S) coupling through
the transion region of R, we have to apply the gener-
alized perturbation given by Eq. (3.71). As examples,
we have considered the interactions of two boron atoms,
and carbon and oxygen atoms. For B, it is shown that
(A, S) coupling is applicable for R $10aq, and (Jo, J3)
coupling applicable for R >16a,. For CO, (J., J»)
coupling is applicable for R >10a,; however, the (4, S)
coupling scheme is not accurate enough even at R=7a,.
From the consideration of the order of magnitude of the
atomic spin—-orbit splittings'’'* and interaction energies,
we conclude that, when atoms are in the ground con-
figuration, (A, S) coupling and intermediate coupling
may be important for the interactions between B, C, O,
Al Si, and Sc atoms. For other cases, a (J4,J5) coupling
scheme will give satisfactory results throughout the
moderately long-range region.

The experimental determination of the moderately

2 E. A. Power, W. J. Meath, and J. O. Hirschfelder, Phys.
Rev. Letters 17, 799 (1966).

8t is, however, noted that for the interaction of two hydrogen
atoms in 2s or 2p state the series converges for R>20a, for some
states. See Ref. 4, in particular, Table VI. Also see H. Kim and
J. O. Hirschfelder, J. Chem. Phys. 46, 4553 (1967).
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long-range interatomic forces from the predissociation
data has been considered. In particular, the predissoci-
ation data® of the 532+ state of C-O has been analyzed
in detail. The results seems to support the importance
of the effects of atomic spin-orbit splitting at R=7a,.

The van der Waals dispersion energy averaged over
the magnetic quantum numbers of both atoms has been
estimated by the use of London’s* formula for the
interactions of first-row atoms. It has been shown that
the dispersion energy is of almost the same size as the
quadrupole-quadrupole interaction energy at the sepa-
ration of twice the sum of the atomic radii. It is, how-
ever, expected that, when the quadrupole-quadrupole
interaction energy does not vanish, the first-order inter-
action energy is the most important throughout the
long-range region. We have also considered the leading
term O(a?/R?®) of the magnetic interaction of two de-
generate atoms and have shown that the magnetic
interaction energy is 10~209, of the quadrupole-
quadrupole interaction energy at R=230a,, and 30~509%,
at R=>50a,, through the third-row atoms.

It should be pointed out that the first-order Cou-
lombic interaction energies are zero when averaged over
the original zeroth-order degenerate states.®® There-
fore, the equation of state and equilibrium properties
of a gas do not depend in an important way on the
long-range first-order interactions. However, the long-
range first-order interactions may lead to anomalously
large values for the viscosity and other transport prop-
erties. This is due to the fact that the transport prop-
erties depend upon the cosine of the angle of deflection
for a molecular collision, and hence only the absolute
value of the interaction energy is of consequence.

For two rotating molecules the first-order quadrupole-
quadrupole interaction energy does not vanish in general.
This fact has been noted by London?2 and reconsidered
by Margenau.®® It can be easily shown that for the
interaction of two rigid linear dipoles the first-order
energy vanishes, but the quadrupole-quadrupole inter-
action energy does not vanish for two linear quadru-
poles. The diagonal terms of the energy of interaction
of two rotating neutral molecules have in fact their
dependence on orientation given by

(R%)HTo(Jat-1) —3M 2} (T (Jo+-1) —3M32},

where Jo, M,; Jy, My are the angular momentum and
magnetic quantum numbers describing the rotational
states of two molecules. Nondiagonal terms also appear,
and hence the secular equations should be solved
explicitly for an accurate treatment of the problem.
Margenau,® however, concludes by a simple argument
that the quadrupole-quadrupole interaction energies
of actual simple molecules are negligible compared to
the dispersion energies in the moderately long-range
region. However, this may not be true for some cases
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such as radicals and excited molecules, and hence this
first-order energy may effect the transport properties.

The first-order interactions discussed in this work
may be important in determining the physical prop-
erties of substances containing large numbers of free
atoms and excited molecules, such as hot gases or sys-
tems in which chemical reactions are taking place
rapidly. These forces may also play a large role in the
interaction and recombination of free atoms and free
radicals.
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APPENDIX

Let the secular determinant in the first-order de-
generate perturbation theory have the form

—ED g cee

Vo1 e—E® oo | =0.

(A1)

When the matrix element ;; in the secular determinant,
Eq. (A1), can be expressed in the form
V35 =yt biutcop’+ APt - -, (A2)
where p is a parameter, we may desire to express
eigenvalues (first-order energies) and eigenfunctions
(zeroth-order wave functions) in power series of u.
For the calculation of long-range intermolecular forces,
p will be 1/R, where R is the intermolecular separation.
The expressions in power series of u can be obtained by
applying the usual perturbation theory.
Let U be a unitary matrix such that a=U%aU is
diagonal and put
b=TU+bU;

C=U+CU; d=U+dU;-... (A3)

If we now assume that for eigenvalues E,®
E® =a;+-pBitpiyitpdoit- -, (A4)

we obtain from the Rayleigh-Schrédinger perturbation
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theory
o=z
B'zl;i'i;

5{*5 bt
Yi= s +c-ii)

kOO
zkckz 5ik519151¢

0=22) 2 2 s

;— Qg k (ai_ak) (ai*al)

_Z/( ll\bl'l n C-l,”:’

AS
ai—ak)2 (AS)
where a’s are assumed to be nondegenerate and the
primed sigmas indicate the sum over % or / but omitting
k=1 or I=1. It should be noticed that the convergence
of series (A4) depends on the separation between a;’s
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and the convergence of matrix elements v,; themselves.
It certain]y diverges when o’s are almost degenerate.

If we now assume that for the zeroth-order wave
functions

¢1.(0) =|/,i(0.0)+M¢i(0,l)+”2¢z.(ﬂ.2)+ see, (Aé)

we have

Y00 = Z xeUki,

k

YO0 =3 b/ (=) Wi,
k

pion =5

>

(bkl Bklbu)bll | G ] ‘p 0,0

(i—an) (as—on) oo

zlbh

1[, (0, 0) (A'])

Sy

where xi’s are the original orthonormal basis set.
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Page 53, first column, line 22 should read “2.7 parts in 10® and 5 parts in 10%, respectively” and
line 27 should read “‘to about 3 parts in 10° and 5 parts in 10% respectively.”
Page 55, first column, lines 2 to 4 should read “g-factor anomaly of the free point electron is con-

firmed to an accuracy of about 1 percent.??”



