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The moderately long-range interaction energies of degenerate atoms for nonresonant cases have been studied through-
out the moderately long-range region. Extensive tabulation of necessary parameters and atomic properties for the cal-
culation of the first-order quadrupole-quadrupole interaction energies has been made. Higher multipole interactions also
have been considered and it has been shown that the 1/R series of the first-order Coulombic interaction energies converges
very fast throughout the long-range region for atoms in the ground configuration. The eGects of atomic spin —orbit splitting
have been considered explicitly. It has been shown that (A, 5) coupling and intermediate coupling may be important
for the interactions between B, C, 0, Al, Si, and Sc atoms in the relatively short internuclear separation range. For other
atoms, the (J„Jp) coupling scheme will give satisfactory results throughout the long-range region. The experimental
determination of the moderately long-range interatomic forces from predissociation data also has been discussed.

The estimated van der Waals dispersion energies for the first-row atoms are shown to be of almost the same size as the
quadrupole —quadrupole interaction energies at the separation of twice the sum of the atomic radii. It has been also shown
that the leading term [8(n'/R') j of the magnetic interaction energy of two degenerate atoms is 10 20% of the quad-
rupole —quadrupole interaction energy at R =30ao through the third-row atoms.
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I. INTRODUCTION

The calculation of interaction energies between atoms
in ground and excited states has become of considerable
interest. For the purpose of discussion, it is convenient
to divide interatomic and intermolecular forces into
short-, intermediate-, moderately long-, and long-range
forces. The short-range forces are invariably repulsive
and rise sharply with decreasing internuclear separation
R. The forces in the intermediate range may be either
attractive or repulsive; this is the region in which the
exchange forces predominate. The moderately long-
range forces take over at sufficiently large R where the
charge distributions of the two interacting molecules
do not overlap and yet not large enough to involve

*Work supported by the National Aeronautics and Space
Administration Grant ¹G-275-62.

f Present address: Department of Chemistry, Harvard lJni-
versity, Cambridge, Mass.

strong retardation eBects, R(K. Here X=(crL4) ' is
the reduced wavelength characteristic of allowed tran-
sitions in the interacting molecules (cr=e'/Sc rsr is
the fine structure constant and Ae is the corresponding
excitation energy). This region is usually associated
with the dispersion forces arising from a second-order
perturbation calculation, In some instances, as for
example in the interaction of noble gas atoms, the
moderately long-range forces are made up essentially
of dispersion forces. However, when excited states are
involved or neither one of two interacting atoms are in
an S-state, the first-order perturbations, such as dipole—
dipole and quadrupole —quadrupole interactions, may
not vanish. These interactions may be the dominant
forces. At sufficiently large R, the relativistic or mag-
netic intermolecular forces may play an important role.
For R A or R)A., retardation effects are involved,
and quantum electrodynamics often must be used to
calculate accurate interaction energies.

All the macroscopic measurements involving second-
virial coeflicients, Joule —Thomson coefficients, viscosity,
and index of refraction give only qualitative infor-
mation around the van der Waals minimum, a region
where the charge distributions already overlap ap-
preciably, and where the exchange forces make a con-
siderable contribution to the interaction energy. The
recent advances in molecular beam techniques make it
possible to determine the energy curves over a large
range of internuclear separations. So far, however, pre-
cise experimental data are only available through the
intermediate range. One reason for the scarcity of data
at large internuclear separations is the need for an
extremely small aperture and high resolution of de-
tecting apparatus to test the long-range behavior of
the energy curves. From the theoretical point of view,
the intermediate range is very diS.cult to investigate,
and the approximation methods needed to perform a
reasonable calculation very often obscure the basic
concepts. The interaction energies at large separations,
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considered. Fontanas has studied interactions between
hydrogen-like atoms (alkali atoms) in ground and
excited states. He has considered cases (a), (b), and
(c). Recently the relativistic or magnetic effects for
the moderately long-range intermolecular forces has
been studied systematically in the Hreit —Pauli approxi-
mations by Meath and Hirschfelder b' However, for the
interactions of many-electron atoms in degenerate
states, the potential energy curves at moderately long
and long range have not been fully studied in detail.

Since we are concerned with degenerate systems, the
application of degenerate perturbation theory to the
calculation of moderately long-range interatomic forces
(Coulombic and magnetic interactions) is described in
Sec. II. The 1/R-series expansion of the interaction
energy of degenerate atoms is considered in detail,

Throughout the present work we assume that the
Russell —Saunders coupling scheme holds in the states
of the atoms of interest. For the evaluation of necessary
atomic properties, we employ the Hartree —Fock atomic
wave functions.

In Sec. III, the first-order electrostatic interaction
of two atoms are considered. The symmetry-adapted
molecular wave functions at large R are constructed
for three different cases: (a) (J„Js) coupling case
(atomic spin —orbit splitting is very large compared to
the interaction energy), (b) (A, S) coupling case
(atomic spin —orbit splitting is small), and (c) (J„Ls)
coupling case (atomic spin —orbit splitting is large in
atom a and small in atom b). The construction of these
wave functions has been considered previously by
Knipp' for atoms in the ground term or ground levels.
Here we will consider all possible cases. The evaluation
of energy matrix elements is considered in detail for
atomic orbital wave functions.

The secular equations are solved to obtain the first-
order interaction energies and the correct zeroth-order
wave functions for various cases. First, we consider the
quadrupole —quadrupole interaction energy for three
extreme cases L(J„Js), (A, S), and (J„Ls) coupling
cases). Next we consider the interactions of atoms with
(nd)& and (tsf)& configurations. It is noted that for
this case higher multipole interaction terms in addition
to the quadrupole —quadrupole term appear. The con-
vergence of the 1/R-series expansion of the first-order
Coulombic interaction energies is studied.

Finally, we consider intermediate coupling cases
where the atomic spin —orbit splitting becomes of the
same order of magnitude as the interaction energies.
To see which coupling scheme is applicable to the vari-
ous ranges of R for diferent systems, we consider some
potential energy curves of the systems 8—8 and C—0
in detail as examples.

on the other hand, can be calculated exactly by applying
the perturbation theory.

Since potential energy curves play such an important
role in the solution of many physical and chemical
problems it is essential to have available realistic po-
tential energy functions. This is true particularly when
dealing with degenerate ground states and excited states
where the conventional semi-empirical formulas, such as
the I.ennard-Jones or Buckingham potentials, cannot be
employed.

The present investigation is concerned with moder-
ately long-range interactions between atoms with non-
vanishing angular momenta. The first-order pertur-
bation interaction between atoms in the ground con-
figurations is investigated in detail. Special attention is
paid to the investigation of the validity of various
approximations, the validity and convergence of 1/R-
series expansions, the eftect of atomic spin —orbit split-
ting, and the eGects of higher multipole interactions.
The second-order perturbation interactions and mag-
netic interactions of two atoms in degenerate states are
also considered and will be compared with the first-
order Coulombic interaction energy.

For the calculation of interatomic energy at large
separation, it is convenient to consider three cases
separately: the atomic spin —orbit splittings are (a) very
large P(J,, Js) couplingf, (b) negligible [(A, S) coup-
ling], and (c) of the same order of magnitude (inter-
mediate coupling) compared to the interaction energy.
The quadrupole —quadrupole interaction energy, which
is the leading term of the first-order Coulombic inter-
action for nonresonant cases, has been studied pre-
viously for atoms in the ground terms (case b) and in.

the ground levels' (case a) by Knipps (1938). However,
the intermediate case (case c) and other effects to the
lead term described above had not been considered,
and the atomic wave functions employed for the evalu-
ation of necessary atomic properties were crude.

A complete set of potential energy curves arising
from the interaction of two excited hydrogen atoms,
with 2s and 2p electrons, has been given for inter-
mediate to large separations by I.inder and Hirsch-
felder. 4 They have obtained the accurate erst-order
perturbation energies, but the effects of atomic spin—
orbit splittings at large separations have not been

5 (a) P. R. I'ontana, Phys. Rev. 123, 1871 (1961); (b) Phys.
Rev. 125, 1597 (1962).

6 (a) W. J. Meath and J. O. Hirschfelder, J. Chem. Phys. 44,
3197 (1966); (b) W. J. Meath, J. Chem. Phys. 45, 4519 (1966).

' See, for example, J. O. Hirschfelder, C. F. Curtiss, and R. B.
Bird, The Molecular Theory of Gases and Liquids (John Wiley R
Sons, inc. , New York, 1964).

2 Note that the energy levels of an atom may be thought of as
arising from the various electron corIfl, guratiorfs. The electrostatic
interactions split the configurations into terms, denoted by their
L and S values, with diferent energies. The spin-orbit interac-
tion splits each term into 2L+1 or 2S+1 energy levels, dis-
tinguished by their J values, which run from

~
I+S

~
to

~
I S(. —

Each of these energy levels is still degenerate, having 2J+1
eigenfunctions corresponding to M values which run from J
to —J.' I. K. Knipp, k'hys. Rev. 53, '734 (1938).

48. Linder and J. O. Hirschfelder, J. Chem. Phys. 28, 197
(1958}.
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In Sec. IIID, we consider the experimental determi-
nation of the moderately long-range interatomic forces
from the predissociation data. In particular, the pre-
dissociation data of the b 'Z+ state of CQ is analyzed in
detail and compared with theoretical results.

In Sec. IV, the estimates of the van der Waals dis-
persion energies are made for the interactions of the
erst-row atoms and are compared with the quadrupole-
quadrupole interaction energies of the corresponding
systems. The magnetic interaction energies are also
considered, and the range of R for which magnetic
interaction energies become important is considered.
In Sec. V, the new features of this work are summarized
and the signihcance of the results is discussed.

Throughout the present work atomic units are used:
energy~e'/ae, length~ap, where e is electronic charge
and ao is the Bohr radius.

II. GENERAL THEORY

The perturbations due to the (moderately) long-
range intermolecular forces are truly small compared
to the total energies of the isolated molecules so that
the quantum-mechanical perturbation theory~ is appli-
cable and converges rapidly.

In this section we consider the Coulombic energy of
interaction and the magnetic interaction energy be-
tween two atoms. The Coulombic energy of interaction
may include all types of electrostatic, inductive, dis-
persive, and resonance force which do not involve the
eGects of electron exchange between the colliding atoms.
By the magnetic interaction energy we mean the mag-
netic (or relativistic) interaction energy in the Breit-
Pauli approximation. '

In our discussion, we neglect retardation eGects and
thus we assume E(&X.Here X is the reduced wavelength
characteristic of allowed transitions in the interacting
atoms. The adiabatic coupling' between electronic and
nuclear motion also will not be considered here.

A. Coulombic Interaction of Two Atoms

In the long-range interaction of two atoms, "a and b,
the zeroth-order Hamiltonian Hq will be

Hs H(a——) +H(b), (2.1)

where H(a) and H(b) are the Hamiltonian operators
for the isolated molecules u and b, respectively. The
usual nonrelativistic Hamiltonian H(a) for atom a
with the nuclear charge Z, can be written in the form

(2.2)

where n, is the number of electrons, r, is the distance
between nucleus a and electron j, and r;, is the dista, nce
between electrons i and j. For the cases where the
atomic spin —orbit splittings are larger than the inter-
action energies of two atoms, our atomic Hamiltonian
may include the spin —orbit Hamiltonian" H&.,(u):

H'(~) =H(~)+H~'(~) (2 3)

The Hamiltonians H(b) and H'(b) for atom b are
deined similarly.

The perturbation V acting between two atoms will

be, in the present approximation, the sum of the
Coulombic interactions between the electrons and nuclei
associated with the diferent atoms. This can be v ritten
in the form

Zb Z Z Zb
I =-Z —'-Z —'+ZZ";-+ ' ', (24)

1 ~bk j=l ~aj k=1 j=1

where R is the internuclear separation.
Let the functions g, (s,t,), t, =1, 2, , g(s,), belong

to the g(s,)-fold degenerate eigenvalue e(s,) of H(a)
and similarly for the eigenvalue e(s&) of H(b) . We have
the functions gs(ssts), ts=1, 2, ~ ~, g(sb). Then our
initial set for the g(s, )g(ss)-fold degenerate eigenvalue
e(s) =«(s,)+e(ss) of Hs may be the functions

X,c ——d.(s.t.)4s(ssts), to=1, 2, ~ ~ ~, g(s.), ts I, 2, ~ —~—, g(ss). (2 5)

For a complete treatment of interatomic forces it would be necessary to consider the more general wave functions
which are antisymmetric with respect to the exchange of any two electrons. However, at large internuclear sepa-
ration the exchange terms which result from interchanging electrons between the colliding atoms becomes negli-
gibly small, and hence we will use the simple product functions (2.5) as the initial starting set. The proper zeroth-

7 For recent reviews of the perturbation theory, see (a) A.
Dalgarno, in Qgaatmm Theory, D. R. Bates, Ed. (Academic
Press Inc. , New York, 1961),Vol. 1, Chap. 5; (b) J. O. Hirsch-
felder, %. Byers Brown, and S. T. Epstein, Advan. Quantum
Chem. I, 255 (1964).' See, for example, (a) H. B. G. Casimir and D. Polder, Phys.
Rev. 73, 360 (1948); (b) C. Mavroyannis and M. J. Stephen,
Mol. Phys. 5, 629 (1962); (c) lVI. J. Stephen, J. Chem. Phys.
40, 669 (1964); (d) R. R. McLone and E. A. Power, Proc. Roy.
Soc. (London) 286, 573 (1965); (e) M. R. Philpott, Proc. Phys.
Soc. (London) 87, 619 {1966).

s For nice discussions, see (a) T. Y. Wu and A. B. Bhatia, J.
Chem. Phys. 24, 48 (1956); T. Y. Wu, ibid. 24, ~"" {1956);
(b) A. Dalgarno and R. McCarroll, Proc. Roy. Soc. (London)
A23'7, 383 (1956); A239, 413 (1957); (c) D. W. Jepsen and

J. O. Hirschfelder, J. Chem. Phys. 32, 1323 (1960); (d) A. Fro-
man, J. Chem. Phys. 36, 1490 (1962); {e) W. R. Thorson, J.
Chem. Phys. 37, 433 (1962); {f) R. T. Pack, University of Wis-
consin Theoretical Chemistry Institute Report WIS-TCI-197,
November 1966.

"The generalization to the interactions of two molecules or
more than two molecules will be straightforward. See, for the
discussion of the Coulombic interactions of two or three mole-
cules, J, S. Dahler and J. O. Hirschfelder, J. Chem. Phys. 25,
986 (1956).

"For nice discussions and detailed calculations of spin —orbit
coupling in atoms, see (a) M. Blume and R. E. Watson, Proc.
Roy. Soc. (London) A270, 127 (1962); (b) Proc. Roy. Soc.
(London) A271, 565 (1963); (c) M. Blume, A. J. Freeman, and
R. E. Watson, Phys. Rev. 134, A320 (1964).
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order wave functions tt!,t&o&, f=i, 2, ~ ~ ~, g(s) —=g(s )g(sb), can be obtained by solving the secular equation.
The perturbed energy can be written in the form

where
E„=e(s)+E„&'&+E„&s&+ ~, (2.6)

E &r& Q, &o&
I V I P ,&o& )

Z Z (4' (s f )A(sbfb), ! V I 0.(s.f.')A(sbfb') &Q.(s.f.')A(sbfb')
I At"')Q. t'"

I tt'. (s.f.)0b(sbfb) ) (2.&)
&a &5 &oI &b~

is the first-order electrostatic and resonance energies. E,&& & is usually written as a sum of the dispersion and in-
duction energies,

where

and

Q&b+8~, Q~8$

E t&'& =E,t&'&(dis)+E t&o&(ind)

Z I 2 (lt t'"
I &.(s-f.)~b(sbf»&(&. (s.f )&b(sbfb) I

V
I & (u.')»(u»b) &I'

a,be bta, tb

I:e(S.) —o(u.)3+I:e(»)—e(ub) j

(2.8)

(2.9)

Z I p Q„&o&
I 4.( fs.)A(sbfb) &Q.(s.f.)yb(;f,) I

V
I 4.(u.~.)A(s,;)&Is

&ol (
~

d) Q ba, bb 4, tb

I e(s,) —e(u, )j
2 I

Z(At&"
I @.(s.f.)A(»fb) &Q.(s.f.)A(sbfb) I V

I 4.(s.o.)A(u»b) &I'
'ffa, vb fe t ~b

I e(sb) —e(ub) J
(2.10)

The interaction energy E„(ab) is given by

E„(ab) =E„—$ (s.e)+ (sbe) j
It is well known that an expansion of the interaction
energy in a series of inverse powers of the interatomic
separation E is very convenient for long-range cases.
The advantage of the E. ' expansion is that most of the
individual energy terms involve the properties of the
isolated atoms such as polarizability, net charge, dipole
moment, quadrupole moment, etc. However, some of
the interaction terms do require a knowledge of less
familiar atomic properties.

Let us assume that R& (R,+Rb). Here R, is the
"radius" of atom c, such that most of the charge
distribution of atom a lies within a sphere of radius

R, about its center. Similarly Rb is the "radius" of
molecule b Then .the interaction potential V I Kq.
(2.4) j can be expanded" in, powers of R '.

(2.12)

The expansion coeKcients V represent the interaction
of the various electrostatic multipoles of atom u with
those of molecule b. For example, Vl represents the
charge —charge interaction, V2 the charge-dipole inter-
action, V3 the dipole —dipole and charge —quadrupole
interactions, etc. For the interaction of neutral atoms
Vl and V2 are zero and the expansion for V simplifies
considerably, with the result

V=~ R- (2.13)

n&s nfl m 2 l&

k=1 j=l ii=1 mi= —l&
(2.14)

where l& is the lesser of /I and m —ll —1, and the coefficient G is given by

4tr (—1)"(lb+ lb) !rb"r"
G(lr, mr) =

I (2lr+1) (2ls+1) (lr —mr)!(lb+mr)!(ls —mr)!(is+mr)!j' ' (2.15)

" (a) M. E. Rose, J. Math. Phys. N', 215 (1958); (b) B. C. Carlson and G. S. Rushbrooke, Proc. Cambridge Phil. Soc. 46, 626
(1950); (c) R. J. Buehler stbd J. O. Hirschfe!der, Phys. Rev. 83t 628 (1951);85, 149 (1952).
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and

ca P (n, m)

~n

(n)m)

alp=3 n

(2.16)

(2.17)

Considering Eq. (2.13), the nth-order wave function
and the nth-order energy may be written in the forms

that if more than one term of e„,i in Eq. (2.18) do not
vanish, E,1") and f,((" are infinite series in R '. From
the symmetry consideration, it can be shown that the
first-order energy E,t(') will be an odd power series in R '
and the zeroth-order wave function p, 1(0) will be an even
power series in R ' (see Sec. IIIC2). Thus E,4(') and
P, 4(0) in general can be written in the forms

P (1,3) g, (1,5) P,(1.7)

It will be shown first that the first-order energy E,t(')

and the zeroth-order wave functions P.,(0) may be an and
indnite series in R ' for the interactions of atoms in
degenerate states. The matrix elements 3&„1 in Eq. (A1)
can be written in the form by use of Eq. (2.13)

,I, (o,2),], ,(0.4)

(2.20)

2„,(S)
&mt= ~ R' (2.18)

It can be seen, from the discussion in the Appendix,

Now to consider the first-order wave function and the
second-order energy we introduce Eqs. (2.13), (2.19),
and (2.20) into the 61st-order perturbation equation,
and we obtain

t g (1,3) g (1,5) (0,2)

From Eq. (2.21), it is obvious that f,4(') can be written as
(1 3) 0 4) (1»)

(,) )&("4 fe(
R' R' R~

(2.21)

(2.16a)

Substituting Eq. (2.16a) into Eq. (2.21) we obtain the followin~ perturbation equations for various orders in R ':
(H0 5(g) )P 3(1,3)+ (P'3 E 4(1,3))P 3(0,0) —0

(H0 0(S) )P ""—+V P ""=0,

(H 3(5) )P (1,5)+(P' E (1,5))P (0,0)+(P3 E (1,3))P (0,2) —0

and so on. The second-order energy is given by
(2,6) P (2,8) jr~ (2,10)at ~at at

R, + R, + R,. +
vrhere

E .(2 0) —gr (0 0)
l y3 l y (1»))

( 3) —(f ( )
l

P'4lg 1,4)+(P (0,2)
l
P lP (1,3))

E ""'=9 ""iI'.l~ '")+8 ""II l~ "")+9 '"II.l~«'")

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

The terms in odd powers of R ' in E, &2) vanish from
the symmetry. Similarly the higher-order energies and
wave functions can be investigated.

If we now assume, for the interaction energy E, (ab4)
and the total wavefunction +,t,, the following forms,

The coefficients C and $,4(3N) are given by
T

(n, m)

I'

(m) P p (n, m)

n~o

(2.29)

(2.30)

E,4(ab) =Q C„/R" (2.27) where I is an integer such that 3I(&3&3(I+1).It is
interesting to note that for the interaction of two
neutral atoms, we have

(2.28)

C,—jV,(1,3)

g (2.6) .
7

C4=0;

g, (1,7) . Cs=& t,
&2'

C,—g,&1.~)

(1,0)+E (3,0). (2,10) (2.31)
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For the nonresonant interactions, C3 and E,&"'& are
identically zero.

So far we have not considered the convergence of
series (2.27). This series, in fact, diverges for all R
and many attempts have been made to remove the
divergence. Brooks" has pointed out that the divergence
arises from the integration over portions of configu-
ration space in which the expansion of the electrostatic
energy is not valid. Dalgarno and Lewis'4 have, however,
shown that the divergence is not due to the use of an
expansion of the perturbation potential in regions of
space ~here it is not valid, and it is a fundamental
property of such series.

In spite of these remarks the expansion of the inter-
atomic energy in a power series of R ' is a very con-
venient one„and the first few leading terms give very
good approximations to the correct one for many cases.
It will be shown, however, that for the interactions of
atoms in degenerate states the expansions such as
Eq. (2.27) cannot be obtained at some region of inter-
atomic separation (see Sec. IIIC3)—for example, the
case where the atomic spin —orbit splittings and the
quadrupole —quadrupole interaction energy are of the
same order of magnitude.

B. Magnetic Interaction of Two Atoms

The systematic study of relativistic or magnetic
intermolecular forces in the Breit—Pauli approximation
has been recently made by Meath and Hirschfelder. '
In the present brief discussions, particular attention
will be paid to the intera, ctions of two atoms in the
degenerate states.

We start from the generalized Breit—Pauli Hamil-
Conlan ':

electron ma.ss with velocity; and HD appears to have no
simple interpretation.

If 0 and E, are the electronic nonrelativistic wave
function and energy

H,%=E,%, (2.35)

H. =P H. ,„/R-;
m=0

H, ,o=H, ,o(a)+H, o(b). (2.37)

Here H. ,e(a) and H. ,e(b) are the Hamiltonians for the
isolated atoms u and b, and

HsL, x —Hss, j.=Hss, 2 =0& H„, =HD, ——0,

(2.38)

The expansion coeKcients H, , , for m&0, represent the
interaction of various orbital Rnd spin magnetic multi-

poles of atom u with those of atom b.
When the perturbation n2H„l is much smaller than

the perturbation V, then the nonrelativistic problem
H,%=8,%' is first solved by use of Rayleigh —Schro-
dinger perturbation theory, as discussed in Sec. IIA.
If we now use the multipole expansion for the rela-
tivistic Hamiltonian

l Eq. (2.37)j and Eq. (2.28), the
relativistic correction energy can be expanded in powers
of R-'

then the relativistic correction to E„correct through
0(n'), is

8"'= '8 IH- l~). (2.36)

For most practical purposes, this accuracy is suKcient. "
If the charge distributions of the interacting atoms

c and b do not overlap, then the relativistic Hamiltonian
H

p 0 LLp SSy SLp I p
Rnd Dp can Rlso be expanded'

inpowers of R ':

H =Hs+n Hreig (2.32)

where n is the fine structure constant, n=e'/hc
and the nonrelativistic Hamiltonian H, is given by

H.=H(a) +H(b) +V. (2.33) where

&, i"i =5"i I
H I + i) =Z

4—0

e =LL, SS, SL, I', and D, (2.39)

H(u), H(b), and V are defined by Eqs. (2.2) and
(2.4). The relativistic correction H,.t includes terms
which allow for magnetic interactions between the
electrons in the system a,nd has the form'

Hrei =Hrr+Hss+Hsj+H, +Ha. (2.34)

Explicit expressions for the vario. us terms in (2.34) are
given elsewhere' and they have the following sig-
nificance: HLL corresponds to the interaction of the
orbital magnetic moments of the electrons in the system;
Hss gives the interaction between the spin magnetic
moments of the electrons; HsL represents the interaction
between the spin magnetic moments and the orbital
magnetic moments of the electrons in the system; H„
is a relativistic correction due to the variation of

'3 F. C. Brooks, Phys. Rev. 86, 92 (1952).
'4A. Dalgarno and J. T. Lewis, Proc. Phys. Soc. (London)

A69, 57 (1956).

~ ~

D...=ZZ«. (»lH. , l~. ('-~-») (240)
j=p 1-0

It should be noted" that certain terms in D, ,; are
identically zero, namely, DsL, 1 =Dss, 1=Dss,2= DI, ~p ——

DD, &0 0 Rnd DLL, 1 DLL,2 DsL,2 Rnd Dss, 2 are not,

zero in general and may become the lead terms in
the R ' expansion of the interaction energy of two
neutral atoms. However, it has been shown by Meath'"
that, for nonresonant interaction of atoms, DLL,1 and
D, ,2 are also zero and the interaction energy through
8(n'/Rs) is identically equal to the semiclassical result.

'5 For example, see G. G. Hall and A. T. Amos, "Molecular
Orbital Theory of the Spin Properties of Conjugated Molecules"
in AChcnces in Atomic and 3folecular Physics, D. R. Bates and
I. Estermann, Eds. (Academic Press Inc. , New York, 1965),
Vol. 1, p. 2."P. R. Fontana and W. J. Meath, J. Math. Phys. (to be
published) .
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Hence the lead term of magnetic interaction is O(n'/R')
for degenerate neutral atoms, while the lead term is
O(a'/R') for nondegenerate neutral atoms.

As R becomes larger, the perturbations V and 0.'H„i
may become the same order of magnitude. In this case,
we have to apply both perturbations V and n'H, .,i

simultaneously to the appropriate zeroth-order problem.
As already pointed out, the R ' expansion of the inter-
action energy may not be possible for this range of R.

At the suKciently large R the relativistic interaction
energy can be much larger than the nonrelativistic
Coulombic interaction energy since there are non-
vanishing terms of lower orders of 1/R in the relativistic
interaction energy. In this case, the perturbation scheme
will be reversed: first apply the perturbation e'P„i to
the appropriate zeroth-order problem, and from the
resulting wave functions the Coulombic interaction
energy may be obtained.

We Wv We We'
(3 1)

where

W = g a (m)Q "(a)Q (b), (3.2)

W7= g a7(m)(1+P,e)Qz"(a)Q4 (b), (3.3)

W& ——g ae(m) Q4"(a) Q4 (b), (3.4a)

W&' ——g a,'(m) (1+P,&)Q. (a)Qe (b), (3.4b)

consider only nonvanishing first-order interaction terms
in nonresonant cases explicitly here. This can be written
in the form

III. FIRST-ORDER COULOMBIC INTERACTION
OF TVi70 ATOMS

In this section, the first-order Coulombic interaction
energy between two atoms in degenerate states is in-
vestigated in detail. Ke consider only nonresonant
cases. First, the construction of molecular wave func-
tions at large internuclear separation is considered in
detail. Then secular equations are solved to obtain
the first-order energy for various cases. The atomic
spin —orbit coupling effect, the effect of higher multipole
interaction, and the validity of the R '-expansion of
interaction energies are considered in detail for actual
systems. Extensive tabulation of necessary parameters
and atomic properties for calculating the first-order
electrostatic interaction energies are also made.

A. Coulombic Interaction Operator

When two atoms are far enough apart that over-
lapping and consequent exchange effects are negligible,
the interaction can be considered as being composed of
mixed terms of different pole strength, as discussed
already. Since we consider nonresonant cases the first
nonvanishing first-order energies are the quadrupole—
quadrupole interaction energies. Nonvanishing first-
order dipole —dipole interaction energy is obtained only
if the atoms are like and are in states with different
parity (resonance forces"). If the atoms have (np)o
configuration, the only nonvanishing first-order terms
will be the quadrupole —quadrupole interaction energies.
For atoms with (nd) & configurations, the quadrupole —2e-

pole and 24-pot. e—24-pole interaction energies also do not
vanish. It should be noted that if either atom has
spherical syrnrnetry (Sstate), the first-order interaction
energy is identically zero in nonresonant cases.

The Coulombic interaction potential V for the inter-
action of two neutral atoms has been given in a power
series of R ' at large separation LEq. (2.13)$. We
"For example, see Ref. 1, p. 990 et seg.

Qt"(p), at+&+&(m), and P.& being defined by

Qt" (p) =L4~/(2t+1) 7"2, r.~'~t (f)», e:)
=gqt-(u), (3.5)

at+&+i(am)

=(l+)e)!/L(l —m)!(1+m)!(b—m)!(te+m)!]'", (3.6)

P.ek(a, b) =h(b, a). (3.7)

The functions Qt"(p), m= t, —1+1—, ~ ", t, have the
property that they form the 21+1 dimensional irre-
ducible representation of the three-dimensional rotation
group, and hence are an irreducible spherical tensor
operator of rank l. This property is very helpful in
evaluating matrix elements.

B. Zeroth-Order Wave Functions and Energy Matrix
Elements

We construct here the symmetry-adapted initial
starting functions y; which factorize the secular determi-
nant significantly. The symmetries of the system of two
interacting atoms are those of rotations around the
internuclear line, reRections in planes through this line,
and, in the case of like nuclei of inversion, that is
reQections in the midpoint between the nuclei, holding
the nuclei fixed. The possible molecular states and their
relation to the states of the atoms when widely sepa-
rated have been considered in detail by signer and
Witmer 's

1. Spin Orbit Splitting Lar-ge

We assume that the Russell —Saunders coupling
scheme holds in the states of the atoms of interest.

~ {a) E. Wigner and K. E. Witmer, Z. Physik. 51, 859 (1928);
also see (b) F. Hund, Z. Physik. 63, 723 (1930); (c) R. S. Mul-
liken, Phys. Rev. 36, 1440 (1930); (d) Rev. Mod. Phys. 4, 1
(1932); (e) Ref. 3; (f) G. Herzberg, Spectra of Diatomec Mole
cules (D. Van Nostrand Co., Inc., Near York, 1950).
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When the spin-orbit splitting of the atomic term ener-
gies is large compared to the interaction energies, the
SLJM scheme is most suitable for the atomic states. "
The molecule (two interacting atoms) has a quantum
number 0 for the absolute value of the total angular
momentum along the internuclear axis. This case may
be called (J„, Ji,) coupling I

this is called (Ji, J2)
coupling in Herzberg'"j, and will be considered in
more detail since the resulting functions are more widely
used in our work.

Since we are neglecting the electron exchange we can
use, as the zeroth-order wave functions for the inter-
acting atoms, simple products'0 of the atomic wave

functions. We de6ne the functions

y(J&,M.Mi,) =y.(J.M.) yi, (JbMi,), (3.8)

d =co,cubi, ( —) ~ +~', (3.9)

where co and coq are the parities of atoms c and b,

respectively.
Unlike atoms. In case of two unlike atoms the func-

tions for 0/0

where P, and &i, are the normalized wave functions for
atoms a and b, representing the states in specihc energy
levels. Let

y(JDiQM. ) =y(J&iM, Q —M.), d( ) "x—(J&i„—Q, —M, ) (3.10)

are partners belonging to the two rows of the representation of the two-dimensional rotation-reRection group.
For a given Q, M takes on the values (J,&Ji):

J.+Ji,&Q&J.—Ji,+1 31 =J J —1 ~ ~ ~ 0—Jy

J —Jg)0)0 M. =Q+Ji„Q+Ji,—1, ~ ~ ~, Q —Ji,. (3.11)

For Q =0 we introduce the two sets of functions

x(JaA(&)M. ) =&2 Lp(JQiM. , M.) +—dy(J.Ji„—M, , M.)j M, =Ji) Jb 1 ' ' ' &'0, (Ju&Jb) ~ (3 12)

where }r(+) represents 0+ state and y( —) represents 0 state. If J, and Ji, are integers, we have in addition

x(J.Ji (P) o) =9 (J&~00),

x(P) being positive (0+) if d=1 and negative (0 ) if d= —1.
The matrix V'

I cf. Eq. (3.1)7 is diagonal in Q, and plus and minus for Q=o. Let

(„(J~,M.M, ) I
w, I ~(J.'J, 'M. 'M, ') = &J~,M.M—, I w,

I
J.'J,'M.'M, '&,

(3.13)

(3.15)= (—)"~.»
where e is the number of electrons of an atom. For like atoms in the same levels (J =Ji,—-J), we define the func-

lons~sa, ~o

y(JJ'QM. ) =%2 '[q(JJMo, Q M.) &fq(J—J, Q —M., M.)j,

where W, are defined by Eqs. (3.2)-(3.5), and so on. The matrices W, can be expressed in the forms

(x(J,Ji QM, ) I
W,. ! y'(J, 'Jb'QM, ') ) = (J,JiM., Q —M,

I
W, I J.'Ji, 'M. ', Q —M, '), (3.14a)

(y(Jd'i, (+)M.)I W, I x'(J, 'Ji, '(+)M, ')) = (J&bM., —M,
I

W, I J,'Ji, 'M ',.
—M.')

&d(J.Jb, —M., Mb I w.
I
J.'Ji, 'M ', —M '), (3.14b)

(x(J&~(&)o) I W. I
x'(J.'J~'(P) M.'))=v2(J.'J~'M. ', —M '

I
W

I
Je,OO), (3.14c)

(y(J.Ji,(P) 0) I W, I
y'(J, 'Ji, '(P) 0))= (Jjioo

I
W,

I
J.'J~'00). (3.14d)

Like atoms. We consider first the case of like atoms in the same levels (atoms in states of the same configuration
and term and the same J values). Let

M =J J—1 ~ ~ ~ )-'~- (3.16)

OE. U. Condon and G. H. Shortley, The Tlseo~y of Atonic Spectra (Cambridge University Press, New York, 1963), Chaps. 7 and 8.
0 It is, however, notec1 that actual molecular wave functions should be antisymmetrical in all the electrons. Therefore, we will assume

that, for the consideration of symmetry properties of molecular wave functions, the function @(a, b) defined by Eqs. (3.8), (3.35),
(3.36), and (3.51) are antisymmetrical: That is,

y(a, b) =ey.yf„

where p, and pf, are the normalized atomic wave functions and

8= fn, !ni,!/{e,+xi }!7"L!+{—) "P.i7.

Here P,f, interchanges electrons between atoms a and b, and p is the parity of P f,. Also, see the discussion in Ref. 3.
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If J is an integer and 0 is even, or if J is a half-integer and 0 is odd, we have in addition

x(JJ5Q-', Q) =q (JJ-',Q-,'Q). (3.17)

x(g) represents gerade state and x(N) ungerade state. x(b) is gerade if f=1 and ungerade if f= —1. For Q=o
the g states are positive and I states are negative.

Next we consider like atoms which are not in the same levels. We de6ne the functions for OAO

x(J+s:QM.) =42 ib (J-Q,M.
&

Q M.)—~fy(J+., Q M.—, M.)~. (3.18)

For a given value of Q, possible values of M, are given by Eq. (3.11). When Q =0, we define the functions

x (IJ's(a) „'M,)=-,'L(q (J&sM„—M.) +fp(JsJ„—M„M,) )+d(y (J&s, —M„M.) mfa(JsJ, M„M,—) )j,

If J, and Jb are integers we have in addition for Q=O

x(J.J~(P) 0) =~~ 'Lv (J&soo) +fv (JsJ.OO) j

M Js, Js—1, ~ ~ ~ )0. (3.19)

(3.20)

where P is positive if d= 1 and nega, tive if d = —1.
The matrices W, are diagonal in 0, g, and I, and plus and minus for 0=0. The elements of matrices W, can be

written in the forms

&x(J&s„QM.) I W.
I
x'(J.'J,'„"QM. ) )=&J.J,M., Q M. I W-.

I J.J, M. , Q-M.
&

+f(JQ/M. , Q —M, I W,
I
Js'J 'g Q —Mg'g M, '&y (3.21a)

«(»s(~):M.)l W.
I
X'(J.'Js'(~):M.') &= &J.JsM. , -M.

I
W,

I
J.J, M. , -M.

&

af&J~,M., —M. I w,
I
J,'J.', —M.', M.'&adg&J.J,M., M. I w, I

—J.'J,', —M.', M.'&

&f&J.J/M„—M, I W, I
Jg'J, 'M, ', —M, ')j, (3.21b)

&x(JJ„oM.)l w. I x (J.J, I+I„M. ) &

=&~(&JJMo —M I W.
I
I J»M. M&+—f&JJM —M, I W,

I
Js'I, ', —M, ', M, '&), (3.21c)

(x(JJ„'OM.) I
W, I

x'(J.'J,'(P)„'0))=2(JJM„—M, I W, I J.'Jt, '00),

&x(JJaQ-', Q)
I
w. I

x'(J.'J,'„'QM. ') )=vz&JJ-,'Q-,'Q
I w, I J.'J, 'M. ', Q M.'), —

oo)
I
w

I
x'(J.'»'('+IrM')& =2&JJOO

I
w

&x(JJ~OO) I
W

I
x'(I Js (0).'0)&=V2'&JJOO

I W. I
J Js'00),

(3.21d)

(3.21e)

(3.2ig)

&x(J&s(W:0)I W. I x'(J"Js'(~):M.') & =v2((Ja~oo I W, I J.'Js', M, ', —M ')~ &JQ~OO I
W. I

Js'J, ', —M, ', M, ')) .
(3.21h)

Evaluation of &J&tM,Mq I W, 'I J,'Jt, 'M, 'Mq'& Using the. expressions of W, given in Sec IIIA an. d applying
the Wigner-Eckart theorem" we obtain

&»M.M I w. I J'J'M'M'&=2'( ) I 1+h(~, L)~ I I &J-M. I
Q--( ) I J.'M'&&J.M

I Q.-(f) I J'M. '&I

=g a (~) I 1+h(&, L) I'~}itC(J'xJ.; M'~M. ) (J. II QE II Jo &

XC(Js'LJs, Ms', —rrs, Ms) &Js II Qr. II Js'&), (3.22)
where h(E, I.) is defined as

h(X, L) =0 if E=L,
h(IC, L) =1 if ICAL, (3.23)

C(JiJsJs, mirissms) are the Clebsch-Gordan coefficients, s' and (J, II Qq II Ji') are the reduced matrix elements" of
the set of tensor operators Qr~. The Clebsch —Gordan coefficient C(J,JsJs,. tg,asm, ) vanishes unless Ji, Js, and Js

"For example, see M. E. Rose, Eleramtary Theory of Aagatar Momeatara (John Wiley & Sons, Inc. , New York, 1957), p. 85.
:~ For example, see Ref. 21, p. 32 et st. Also see Ref. 19, p. 73 et seq.
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satisfy a triangular condition and m3 ——m&+mm. Hence we have the relations from Eq. (3.22)

~=a —m' ~

and hence
M,+Mb =M.'+Mb'

(3.24)

(3.25)

Therefore, all matrix elements vanish unless M,+Mb =M, '+Mb', and thus th«ot» angular momentum J=J.+Jb
is quantized along the internuclear axis with components M,+Mb. The secular determinent is factored into
subdeterminants which can be classified by the molecular quantum number 0, as already pointed out. Eq. (3.22)
can now be written in the form

(JDbMWb I W. !J 'Jb'M 'Mb') =8(M.+Mb, M '+Mb') e, (M.—M, ') I1+h(Z, L)Pu}

X Ic(J,'&J„M,', M, —M.', M,) C(Jb'LJb; Mb', Mb —Mb', Mb) (J. II Qz II J.'&(Jb II Qy, I! Jb'&}, (3.26)

where 8(M, M') is the Kronecker delta.
Now to evaluate the reduced matrix element we start from the signer-Eckart theorem

(JM I Qx'I J'M)=c(JxJ; MoM)(JII Q~II J'). (3.27)

To obtain the explicit expression, we transform to the zeroth-oider representation scheme' characterized by
one-electron quantum numbers I—=e/m&ns, . If U stands for the collection of such quantum numbers in a zeroth-
order state of the atom, we have

C(JXJ MoM) (J II Qx II J') = F.6 ~LJM I U)(U I Q~'
I

U')(U'
I
~'5"L'J'M» (3 2g)

where y designates quantum numbers other than S, L, J, and M. Since Qz~ is a sum of one-electron operators
q& ! cf. Eq. (3.5) j, (U I

Qxb
I

U') vanishes if U' differs from U by more than one individual electron quantum
number set. If all sets but INN' are the same, (U I

Qx'
I

U') =(I I qx I
I'), and for U=U', (U

I
Qlro I U) =

g~. (N I
qx'

I I).Hence Eq. (3.28) becomes

C(J'&J; MoM) (J II Qx i I
J') =Zt b~LJM! U&(U I

v'~'L'J'M &2(& I
qx'

I +&}

y P [ (ySLJM I
U)(U'

I
y'S'L'J'M)(N,

I
q~'

I
I')}, (3.29)

V, VJ

where U' has the same sets of individual electron quantum numbers but uNu'. The matrix elements (I I qz,
'

I
I')

can be easily evaluated by using the properties of spherical harmonics":

(! qz'
I
~') = («~,m. I q~'

I
~'7'~~'~. )

=L(Z'+1)/(2&+1) gc(&'Ll; 000) C(&'Ll; m~'Om~) (rbl I
rz

I
n'l'&, (3.30)

where

(nl I
rz

I
eV &

= dr r +'R(ml) R'(m'l'),

R(nl) being the radial part of the wave function for an electron in an rbt state. Furthermore, it can be shown that

g c(lLf,; ~o~n) =o, (3.31)

To show this we use the following properties for the C coeKcients":

C( jg2jb mgm2sl3) = (—) &' '! (2ja+1)/(2j.+1)j C(jj&j32 1Ãg s1$ 1ÃQ),

C(jjo;m, —m, o) =(—)r (2j+1) '"
P C(j&j2j; m&, m —m&, m)c(j&j»'; re&, m 5$], BI) —8;;.

By use of Eq. (3.32a), the sum at the left-hand side in Eq. (3.31) can be written as
l

P (—) '-"L(21+1)/(2L+1) ]'"C(ltL 5$ —sb, 0),

(3.32a)

(3.32b)

(3.32c)

"For example, see Ref. 2j., p. 62.
~' See Ref. 21, Chap. IG.
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and using Eqs. (3.32b) and (3.32c) we find

2l+1
„, g C(llL; m, —m, 0)C(l/0; m, —m, 0) =gz, a. (3.31a)

This proves Eq. (3.31) . Therefore, for the sum g„(N ~
qzo

~
I) in Eq. (3.29), the part summed over the electrons

in complete shells gives zero, and contributions to the sum will come only from incomplete shells. The explicit
expression for (J I

~
Q» ~I J') can be obtained from Eqs. (3.29) and (3.30) .

When the unprimed and primed states in (J ) ) Q» )
~
J ) represent atomic states in the levels which come from the

same term, the second sum in E . (3.29) vanishes, since if all but one of the mi are the same, they znust all be the
same because of the condition mi ——P mi' ——M for U and U'. Hence, for this case, the reduced matrix elements
can be written as the following form, assuming that there exists only one incomplete shell (ra/):

&J II Q» II J') =D»(JJ') (r»)-i (3.33)

D»(JJ') =, ' gI (ySLJM
~

U)(U
~
ySLJ'M)g C(/El; miOmi) I, (3.34)

C (lE/; 000)

C J'EJ; MOM p

the sum over m& being made for the incomplete shell (ra/), and (r»)„i——(e/
~

r»
) Nl). From Eq. (3.31) and sym-

metry property
C(giggga, mim&ma) =(—)»+»»C(gig2ga, —mi, —ma, ma)—,

it can be shown that D»(JJ ) for the shells, which is complete except for v missing electrons, have the opposite
sign of those for shells which have v electrons.

2. Spira Orbit S-plzttarag ltreg/igib/e

When the atomic spin —orbit splitting is negligible compared to the interaction energy, the SLJtlBMI, scheme is
applicable to the atomic states. "The system of two interacting atoms will have quantum numbers A. and Z for
the absolute value of the total orbital angular momentum and the total spin along the axis and S for the total
spin. This is called (A, S) coupling. Let S be the total spin of the system, with the corresponding quantum number
S. Then possible values of S are So+Sa, S,+Sa—1, ~,

~
S,—Sa ~. We define the functions"

&t&~(S&Mz'Mza) =g 4 (S LoMs'Mz') &/&a(SaLa& & Ms', Mza) C—(S SaS; Ms', Z —Ms'& Z) &

ps. (SZMz'Mza) =Q y. (SaLa, Z —Ms~, Mza) ya(S.L.Ms Mz ) C(SaS.S; Z —Ms, Ms'Z),
3fea

(3.35)

(3.36)

e=co.a&a( —) + b. (3.3'7)

Here g and g~ are the normalized wave functions for atoms e and b, representing the states in the corresponding
terms. The coeKcients C in Eqs. (3.35) and (3.36) aie the Clebsch —Gordan coeKcients.

Unhke atoms. For two interacting unlike atoms, the functions for A./0
x(SZAMz) =&t,a(SZMz, , A Mz), e( —) ax—(SZ, —A, Mz)— (3.38)

are partners belonging to the two rows of the 4th representation of the two-dimensional rotation-reQection group.
For given A, Mz, takes on the following values (L,& La):

L,+La& A& L, La+1—MI, =L L —1 ~ ~ ~ A.—Lg,.

For A. =O we have

L,—Lg& A&0, Mz ti.+La, 4+La —1, ~ ~ ~, A———La. (3.39)

x(SZ(a)Mz) =42 '(y~(SZMz, Mz) aey~(SZ, —Mz, M—z)] MJ.——Lg Lg —1 ~ - ~ &0

(3.40)

The functions y(+) represent Z+ states and y( —) represents Z states. X(P) represents Z+ if c=1 and Z if
C= —i.

The matrices V' are diagonal in S, Z, and A (also positive and negative for A. =O). The diagonality in S and
Z results from the fact that V' is independent of the spin coordinates.
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Like atoms. The case of like atoms in the states of the same configuration and term will be considered first. Let

We define the functions"' ~
e= ( —)'. (3.41)

X(SZ„'zl.Mz, ) =VZ '{—y.b(SZMz„A. —Mz, ) &ep~(SZ, A.—Mz, Mz) $

and in addition, if A is even,
X(SZbtt z2A) =q.b(SZ2A-', zl) .

ML —L L 1 ~ ~ ~ PA (3.42)

(3.43)

Here x(g) is gerade and x(N) is ungerade. x(b) is g if e=1 and n if e=. —1. For A=O, negative states are g if S
is odd (e= —1), and I if S is even (e = 1), while positive states are g if S is even and I if S is odd.

Next we consider like atoms which are not in the same terms. We define the functions for A/0

x(SZOAMz) =V2 'Lq.b(SZMz, tt Mz) a—f~, (SZMz, A —Mz) j, f= ( )"(—)s.—+sb see o)b (3 44)

where, for a given value of A, possible values of Mz are given by Eq. (3.39), and n is the number of electron in
an atom. For A=0, we define the functions

x(SZ(a) gMz) =z2L(p~(SZMz, —Mz) &flub. (SZMz, —Mz) )&c(q,b(SZ, —Mz, , Mz) &f(pb, (SZ, —Mz, Mz) )]
My=Lb, Lb —1, ~ ~ ~ )0 (L.)Lb), (3.45)

y(SZ(p) „'0)=42 '{y.b(SZOO) &fyt (SZOO) j. (3.46)

Here P is positive (Z+) if c= 1 and negative (Z ) if c= —1.
The matrices W, are diagonal in S, Z, h. (also positive and negative for A=O), and g and N. The matrices W,

can be expressed in terms of the integral

«(SZM;M, b)
~
W, i

&'(SZM M,.b') &—= (SZM,.M,b
( g, ) SZM..M,b

&. (3.47)

Because of the unitary characters of the Clebsch —Gordan coeKcients in Eq. (3.35) and the fact that W, is inde-
pendent of the spin, the integral (3.47) can be written in the form

(SZM;M, b
~
W.

~
SZM M,"&

aa(m) {1+h(E,L)I'.b} {(L~Mz
~

Qzr"
~
L~Mz )(LbMbt Qz

~
~j Lb M'zb )}

=b(Mz +Mz', Mz '+Mz,")a, (Mz' Mz") {1+h—(E, L)I'~}

)& {C(L.'EL„Mz", Mz' Mz", Mz, ')—C(Lb'L, Lb, Mz" Mz, ' Mz,",Mz,')—
&(L II Qx II L.')(Lb II Qz II Lb') } (3 48)

The last step has been obtained by using the Wigner —Eckart theorem" and the properties of the Clebsch —Gordan
coeKcients" as for (J&bM„Mb

~

W,
~
J 'Jb'M, 'Mb') in Sec. IIIB1. The reduced matrix elements (L ~~ Qzc ~)

L')
can be evaluated by the similar method, as used for (J ~~ Qz ~ ~

J').When we are considering only the states which
are from the same term and we assume that there exists only one incomplete shell (nl), (I ~( Qzr j) L) are found
to be:

where
(L II Qx II L& =C (LL) (rx&,

Czz(LL) = ' Q{~(ySLV,Mz,
~

U)~' Q C(/El; m)0m() },
C(LKl; 000)

p L L U' th)

(3.49)

(3.50)

the sum over m& being made for the incomplete shell (nl). D2(JJ) LEq. (3.34) $ and C2(LL) LEq. (3.50)j for
the quadrupole —quadrupole interactions has already been derived by Knipp. '

3. Spin-Orbit Splitting Large in One Atom and Xegligiblein the Other

Knipp' has also considered, for the quadrupole —quadrupole interaction, the case of two difI'erent atoms in
one of which the atomic spin —orbit splitting is large and in the other it is neghgible. This case may be called (J„Lb)
coupling. introducing the new functions'0

we can define the functions
(p( ,JSbMsbM. Mz)b=g, (J,M.)pb(MsbMzb),

x(J.S,M,brM. ) =&(J.S,M,bM. , r —M.)

(3.51)

(3.52)
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for FWO. Here I' is a new quantum number for the present system. If J, is an integer, F can in a,ddition take zero,
for which value we define the functions

x(JeSbMebe Ma) =~2 'fy(JsSbMsbMa, M—.) ~&p(JnSbMeb, —M, Me) I,

x(JoSbMsbPO) =cp(JoSbMsb00).

The matrices Wb are diagonal in Msb and I" (also n and p for I' =0) . The matrix elements

M /0;
(3.53)

is found to be

&&(J.SbM, M.M;) I
I/t;

I & (J.S~,M. M. ))=(J.M~, I W, I J.M. M, & (3.54)

&J~glar, b
I Wb I J,'M, 'Mr, "&

=Q ab(m) {I+h(E, L)P.bI {(J.M. I
Qx"

I J.'M. ')(LbMr, '
I Qr.

-"
I

Lb'Mr, ")j

=8(M,+Mrb, M, '+Mrb') ab(M, M, ') {1—+h(K, L)P,bI

X {C(J,'EJ„M,', M, MJ, M—) C(Lb'LLb, Mr,",Mrb Mr,",M—rb)

x(J. II Qx II J.'&(L' ll Q~ II Lb') $. (3 55)

The reduced matrix elements appearing in Eq. (3.55)
have been already considered.

C. Solution of Secular Equation

In this subsection, the first-order interatomic energies
are calculated. Our calculations will be restricted to the
cases of atoms with only one incomplete shells, in par-
ticular, atoms in the ground terms, since for these
cases quite general formulae can be obtained and accu-
rate atomic wave functions are applicable for most
atoms of interest.

1.QuadruPole Quadru-Pole Irbteractioe for Extreme Cases

For nonresonant cases, the first nonvanishing Grst-

order electrostatic interaction energies are the quad-
rupole —qua, drupole interaction energies, and hence these
terms are the most important. By extreme cases we
mean: (a) atomic spin —orbit splittings are very large
in both atoms Lhence strict (J, Jb) coupling is ap-
plicablej, (b) it is negligible in both atoms Lhence
strict (A, S) coupling is applicable], and (c) it is
negligible in one atom and very large in the other
Dience (J, Lb) coupling is applicable] compared to the
interaction energy. For these cases, the starting zeroth-
order wave functions x; have been already constructed
in Sec. IIIB, and the evaluation of the energy matrix
elements also has been discussed. For (J„Jb) coupling
case, me may need to consider only z,- arising from
atomic states in specific levels (see Sec. IIIB1) for

(A, S) coupling case x, arising from atomic states in
specific terms (see Sec. IIIB2) and for (J„Lb) coupling
case x, arising from atomic states, one of which is in a
specific level and the other in a specitic term (see
Sec. IIIB3).

For the quadrupole —quadrupole interaction of two
unlike atoms in any state and like atoms in the same

terms or the same levels, the elements of the matrix
Wb LEq. (3.2) ) have as a common factor the product
of two reduced matrix elements. Dividing by this
factor, we obtain a dimensionless secular determinant.
In general let E„Ebbe a pair of integer or half-integers
corresponding to J., Jb,' L„Lb, or J„I.b. Let f stand
for 0, A, or F. The range of the remaining parameter
(Mr, or M) is essentially the same in all three cases.
It can be shown that the dimensionless determinant
obtained by dividing out the products of reduced matrix
elements is the same for all three cases. Furthermore,
for unlike atoms with E =E~, we can form linear
combinations z(g) and z(u) which are formally the
same as for like atoms. It can be shown that Ws has no
cross terms between these two groups and hence the
dimensionless determinant is the same as for like atoms.
Therefore, we have the simple result that the dimension-
less determinant depends only on the numerical values
of the pair of numbers E„E~.We designate the roots
of secular determinant by n(E Ebf). Hence for three
extreme cases of two un', ike atoms in any states and
like atoms in the same terms or the same levels, the
quadrupole —qua, drupole interaction energy is given by
one of the expressions

ci (J~Jbfl) D2 (JoA) D2 (JbJb) (r.') &rb')/R', (3.56a)

~(L.LbA) C2(L,L,) C, (LbLb) &r.')&rb')/E', (3.56b)

o'(JoLbI')D2(JQ, ) C2(LbLb) (r,')(rp)/R'. (3.56c)

Here D~(JJ) and C&(LL) have been defined by Eqs.
(3 34) and (3.50), and (r.') and (rb') are the mean-
square radii of the incomplete shells of atoms c an
respectively. o.(E,Ebf) for some values of E, and Eb,
Cm(LL) for ground terms of atoms, and D, (JJ) for
ground levels have been calculated by Knipp. ' We give
more extensive tables here. a(EKbl) are given in
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TABI.E I. n(X,KgT) for integral E and integral r. In (J, J&) coupling, e means gerade and f means ungerade for like atoms in the
same level; a means that the state is positive if d—=co cot, (—) ~~+ ~=1, negative if d= —1, while b means that the state is positive if
d = —1, negative if d =1.In (A, S}coupling, a means that the state is positive if c=—co coq( —) ~~+~& =1,negative if c=—1, while b means
that the state is positive if c= —2, negative if c=1; for like atoms in the same term, e means gerade (g) if the molecular spin (S) is
even, ungerade (zz) if Sis odd, while f means g if S is odd, zz if S is even.

3.6ea
0.0eu

0 Ofb.

-2.4e

2.3235a—0.295ia

—1.0142b

2.4529
0.0477—1.4864

3.2609ea
1.5085ea—0.4836eu

2.7738fb—1.0595fb

1.1269e—1.4126e

2.0963a—0.3816a

2.0609—0.2696—1.4014

2.2881u
1.3105u—0.9074u

1.4269b—1.2099b

3.1386
1.2765
0.9434—1.0193—2.4409

0.

0.6e 0.3558—2.8912

2.0142

2.2033/—0.9166f

0.8571e—1.8571e

-2.0f

-2.5714e

0.8571f

1.7143e

2.1980
0.2300—1.9381

0.6461—3.0956

1.2247

j..0557
0.1412—1.4873—1.7798

0.9888—1.9539-2.3472

1.2502-2.2853

2.0702

X=3
Eg= 3

3.5471eu
1.7713ea
1.2456ea—1.1641ea

3 4602fb.
0.7780fb—1.2382fb

1.8874e
0.5249e—1.3457e

1 4859f.
1.1490f—1 3016f.

2.0235a—0.4i80a

—1.3054b

1.9716—0.2890—1.3925

2.0084a
1.2489a—1.1733a

0.9575b-1,3253b

2.2842
1.2657
0.7933—1.1216—1.5055

2.5204a
1.480iu
1.0226u-1.3406a

2. 1778b
0.4612b—1.3363b

3.6374
1.6848
1.3842
0.8276
0.2848—1.3351—1.5095

3.8728ea
2.1160ea
1.4486eu
0.5766ea—1.4452ea

3.8606fb
1.5166fb
0.2742fb
1.42023'b-
2.3036e
1.3172e
0.1852e-1.4839e

2. 1276f
1.4266f
0.4349j'—1.5112f

1.2080e
0.2294e-1.7040e

1.9241
0.0297-1.6636

0.1667f-
1.6667f-

3.1472
1.1697
0.3958—1.2783—1.7182

1.3485
1.2746
0.3274—0.1083—1.5079-1.7883

1.3869e
1.0825e-0.0030e—1.7018e

0.6819f—0.0729f—1 6726f.
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TmLz L (Contilled)

E =3
Eb 3

—0.9472e—2.0528e

1.1583f—2.1583/

1.2770e—2.6103e

—1.6667f

-1.6667e

1 6667—f.
2.5e

2.0891
0.4284—2.2275

0.8532—3.2223

1.3538

1.0953—0.2949—1.6632—1.9158

1.1788—1.8456—2.5613

1.5455—2.1176

2.2883

1.2631—0.4924—0.5679—1.8639—2.0497

1.3187—1.0616—2.2381—2.3220

1.5304—1.3746—2.6033

1.9778—1.2870

2.7634

—0.0772e—0.4609e—1.9631e

1 364.7f—0.6224f—1.9813f
1.4008e-1.3091e—2.2423e

—0.6323f—2.2586f
—0.8887e—2.5476e

1 5328f.—2.2419f
1 ' 8096e—2.3823e
0 98—18f.

—0.7636e
2.2909j'

3.0545e

a'(J,JsQ) (r ')'/R'. (3.57)

The values of n'(J+sQ) through configuration (nd)&
are given in Table VII.

Tables I-III. These tables will cover all interactions
of atoms L(np)& and (nd)") in levels resulting from
ground terms. In Table IV, the values of Cs(LL) and
D~(JJ) for ground terms of given configurations are
given through atoms with (nd) & configurations. Mean-
square radii of incomplete p shells and d shells have
been calculated by use of Clementi's" atomic wave
functions, and is given in Tables V and VI. For d shells,
mean-quadratic radii are also given in Table VI, which
will be used for the calculation of higher multipole
interactions.

For (J„Js) coupling case of like atoms in the same
configurations and same terms, but with diferent J
(different levels), the elements of matrix Ws have a
common factor (r,')'. The coefficients Ds(J;J„)Ds(JsJi)
cannot be factored out any more. Dividing out the
factor (r,')' we have again a dimensionless secular de-
terminant. If we denote the roots of determinants by
a'(JJ'&Q), the quadrupole —quadrupole interaction ener-
gies for this case can be written in the form

Z. First Order Collorn-bio Energies in General for
ExIreme Cases

For the interactions between atoms with (np) & con-
Ggurations, the one nonvanishing first-order term is the
quadrupole —quadrupole interaction which is propor-
tional to R '. This case has been considered in detail
above. For the case of atoms with (nd) & configurations,
the elements of matrix W' have the following forms in
general:

Vip'= (Ws);,/R'+ (Wi),;/R'+ (Ws) g;/R' (3.58.)
For atoms with (nf)& configurations, more terms of
higher order in E. ' will appear. For these cases one can
obtain the first-order (electrostatic) energy by solving
secular equations for given E.. However, it will be seen
that the expression of the interaction energy in a power
series of R ' is very useful for the present case. A simple
method, of expanding the interaction energy in power
series of E ' has been given in the Appendix. Here we
consider only the (J, Js) coupling case in which the
atomic spin —orbit splitting is very large compared to
the interaction energy.

For the interaction of two unlike atoms or like
atoms in the same levels, we can write the Grst-order
energy in the form

E&'& =n(J&sQ) Ds(JQ, )Ds(JsJb) (r,')(rss)/Rs

+PiDs(JQ, ) D4(JsJs) (r,') (rs')+PsD4(JQ, )Ds(JsJs) (r,') (rs2) j/R~+y/R'+ ~ ~, (3.59)

where the first term is the quadrupole-quadrupole interaction energy, and Pi and P& depend only on J', and J&.
» E, Clementi, "Tables of Atomic Functions, "a supplement of "AB Initio Computations in Atoms and Molecules, "IBM J. Res.

Develop. 9, 2 (1965);J. Chem. Phys. 38, 996 (1962);38, 1001 (1962); 41, 295 (1964);41, 303 (1964).
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y~gE Q. ~(J Jgo) for half-integral J and integral Q. For like atoms in the same level, g means gerade and u means ungerade. a
means that the state is positive if d = 1, negative if d = —1, while b means that the state is positive if d =—1, negative if d =1.

0

J =1.5
Ja=1.5

3.2ua—0.8ua

2.4gb
0.0gb

1.2u—0.8u

—1.6g

0.4g

1.2u

2.5
1.5

2. 1294a—1.1673a

1.5162b—0.5540b

2.7890
1.2582—0 ' 6638—1.4592

0.8450-1.4266—1.9841

0.8139—2.7382

1.6036

2.5
2.5

3.3883ua
1.379iua—1.1674ua

3.1756gb
1.320igb—0.8957gb

1.6078u
1.1915u—1.1279u

0.8655g—1.3369g

—0.2850u—1.7721u

1.0584g—1.7441g

1.0190u—2.4333u

—1.9286g

—2.1429u

1.2857g

2.1429u

3.5
1.5

1.8330a—1.3093a

1.3797b—0.8560b

2.0368
1.2766—0.8143—1.4516

2.7210
1.0509—1.0342—1.6902

0.9052—1.7080—2.0777

1.1268—2.6980

1.8330

3.5
2.5

2.4023a
0.8176a—1.2603a

1.8774b
1.2519b—1.1698b

3.4135
1.4845
1.1728
0.5179—1.2131—1.4564

1.2072
0.7810—0.0653—1.4696-1.7831

1.1425—0.8957—1.9270—2.0990

1.2532—1.7071—2.6255

1.6386—1.7785

2.4495

J,=3.5
Jg=3.5

3.7136ua
1.9648ua
0.4449ua—1.3233ua

3.6803gb
1.4663gb
0.9853gb—1.3319gb

2.1133u
1.4003u
0.8058u—1.4242u

1.8052g
0.3035g—1.4040g

0.7475u—0.1090u—i.648lu

1.3083g
0.1360g—1.6920g

4.5
1.5

1.7016a—1.3713a

1 ' 3445b—1.0142b

1.7802
1.2895—0.9592—1.4499

2.0776
1.1530—0.9858—1.5842

4.5
2.5

2.1003a
0.5080a—1.3725a

1.5157b
1.0787b-1.3585b

2.4833
1.4294
1.0541
0.3555—1.2772—1.5735

3.4592
1.2968
0.8512
0.0239—1.3636—1.7959

4.5
3.5

2.6207a
1.5597a
0.2758a—1.4290a

2.4347b
1.4469b
0.5997b—1.454ib

3.8253
1.8748
1.4319
1.2976
0.4679
0.1643—1.4361—1.5713

1.7192
1.3810
0.7821
0.1246—0.1419—1.5647—1.7958

4 ' 5
4.5

4.0179ua
2.2241ua
1.0994ua
0.1723ua—1.5137ua

4.0135gb
1.7894gb
1.4717gb
0.2562gb—1.5308gb

2.4807u
1.5969u
1.4539u
0.155iu—1.5805u

2.3898g
0.9592g
0.1090g—1.5641g

1.3498u
0.5661u—0.0827u—1.7120u

1.4497g
1.0204g—0.1390g—1.725ig



TAI YUP CHANG 3foderately Long-Range Interatomic Forces 927

TABLE II. ( Conten44ed)

J,=3.5
Jf,=3.5

4.5
1.5

4.5
2.5

4.5
3.5

4.5
4.5

1.27428—0.71188—2.0482u

—0.5714g—2.0g

—1.03518—2.35538

1 ' 3333g—2.2857g

1.5487N—2.55828

—1.3333g

—1.28

2.0g

2.6918
1.0217-1.2850—1.7680

1.0457—1.8802—2. 1381

1.3575—2.6787

1.9817

1.2309
0.4452—0.4633—1.6305—1.9657

1.2730—i.1003—2.0120—2.2212

1.4727-1.5096—2.6995

1.9063—1.5533

2.6482

1.3569
0.0911—0.3410—0.5574—1.8251—2.0399

1.3906—0.6461—1.2428—2. 1817—2.2212

1.5207—0.9193—2.2384—2.5434

1.7952—1.0195—2.4334

2.2733-0.8318

3.0271

1.4376g
0.2338u—0.5875g—1.9475u

0.0726g—0.4472g—1.9436g

—0.2977@—0.98318—2.2040g

1.4633g—1.0571g—2.1940g

1.5523u—1.5876u—2.3889u

—0.5425g-2.3969g

—0.66438—2.6084g

1.7359g—2.0995g

2.0519u-2.1428g

-0.6364g

—0.36368

2.5455g

3 ' 27278

For the case of like atoms in the same levels (J), Eq. (3.59) reduces to

where

g(r) &(JJQ)D (JJ)2(y 2)2/Re+P(JJQ) (y 2)(y 4)/Rr+y(J JQ) (y 4)'4//RQ+ ~ ~ ~

p(JJQ) =p'(JJQ)D (JJ)D (JJ); 7(JJQ) =y'(JJQ)D (JJ)',

(3.60)

(3.61)

p'(JJQ) and y'(JJQ) being dependent only on J
values. It is interesting to note that the second term
in (3.59) and (3.60) is the only contribution to C7/R'
in Eq. (2.27), since the second-order energy is a even
power series in R '. The contributions to Ce/R' in
Eq. (2.27) will come from the first-order energy [the
third term in Eqs. (3.59) or (3.60)$ and the leading
term of third-order energy.

The interactions of two Cu (3d'4s') atoms in the
level 'De~2 and two Ni (3de4s') atoms in the ground
level 'F4 are considered as examples to see the effect
of higher multipole interactions explicitly. In Table
VIII, the quadrupole-quadrupole interaction energy,
erst-order energy approximated by 3 terms in Eq.
(3.60), and correct first-order energy are tabulated for
Cu-Cu and ¹iNi interactions. The results show that

the lead term L8(1/R') j gives a good approximation
to the first-order Coulombic interaction energy for most
ranges of E of interest in the long-range calculation,
although the effects of higher multipole interactions are
not negligible at the relatively small values of E. The
three-term approximation LEq. (3.60) ) gives good
agreement with the correct first-order energy through
most ranges of R considered. It is, hov ever, expected
that the effects of higher multipole interactions will be
much more important for the interactions of atoms in
excited con6gx&rat. ions. 4

Since the E ' expansions of the first-order Coulombic
interaction energies for atoms in ground con6gurations
converge we'll, it may be useful to expand the zeroth-
order wave functions in the power series of R '. To see
how the correct zeroth-order wave functions can be
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TABLE III. 0!(E~&r) for half-integral T.

E,=1.5
Eg= 1

2.0
1.5

2.5
1

2.5
2

3
1.5

3
2.5

0.5 2.7459
0.0—1.0488

2.8640
1.5505—0.3776—1.1684

2. 1688-0.2634—1.2252

3.1307
1.5837
1.3039—0.7808—1.2126

2.0364
1.3796—0.7137—1.3167

8.3729
1.9280
1.2647
0.9531—1.0826—1.2515

1.5

2.5

0.1763—2.7219

0.8485

0.9158—1.1952—1.8720

0.6188-2.7702

2.2950
0.1310—1.7457

0.5130—3.0076

1.0850
0.5024—1.2908—1.6382

0.9075—2.0000—2.1658

2 ' 7472
1.1208—0.8702—1.6122

0.8559—1.5872—2.0400

1.2627
1.0101
0.2829—1 ' 3585—1.5675

1.0900—0.6716—1.8618—1.9821

3.5 1.4343 1.1339 1.0674—2.4090
0.9824—2.7144

1.1367—1.8203—2.5568

4.5 1.9166 1.7321 1.4746—1.9375

5.5 2.3146

E =3.5
E$—1

3.5
2

3.5
3 1.5 2.5

0.5 2.0336—0.3590—1.3043

2.2383
1.2994
1.0401—1.0455—1.3413

3.5860
2.1518
1.5243
1.1381
0.5422—1.2688—1.3237

1.7859
1.3376—0.9247—1.3782

2.3980
1.5621
1.1729
0.5731—1.2399—1.3961

1.5 1.9815—0.0693—1.5419

3.1438
1.2004
0.6326—1.1681—1.6178

1.5290
1.3065
0.6898
0.1504—1.4227—1.5726

2.0545
1.2032—0.9019—1.5354

3.4403
1.3389
1.0198
0.2250—1.2942—1.6597

3.5

4.5

5 ' 5

6.5

2.1338
0.3314—2.0949

0.7582—3.1653

1.2961

1.0648—0.1089—1.6045—1.8552

1.0820—1.8978-2.4706

1.4084—2.1909

2.1909

1.2270—0.2060—0.4193—T. 7766—1.9244

1.2368—1.0417—2.1840—2.2443

1.4081—1.5148—2.6146

1.8329—1.4549

2.6458

2.7036
1.0224—1.1700—1.7355

0.9721—1.8030—2.1092

1.2507—2.6866

1.9145

1.2088
0.5935—0.2963—1.5565—1.9049

1.2051—1.028i—1.9735—2.1690

1.3657—1.6021—2.6692

1.7814—1.6535

2.5584
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TAmz III. (Cowtjlled)

0.5

3.5

6.5

7.5

E =4
Kg=3.5

3.7724
2.3371
1.7212
1.4355
0.7427
0.3181—1.3806—1.4262

1.8557
1.3804
1.1573
0.3999
0.0820—1.4920—1.6077

1.3272
0.3555-0.2062—0.3264—1.7507—1.8912

1.3302—0.6306—1.0249—2.1105—2.1598

1.4284—0.9852—2.2751—2.4653

1.6772—1.1677—2.4940

2. 1455—0.9966

2.9245

4.5
1

1.9802—0.4019—1.3448

1.9155—0.2057—1.4763

1.8831
0.1246-1.7741

2.0567
0.5185—2.3416

0.9342—3.2697

1.4013

4.5
2

1.9745
1.2453
0.8084—1.2167—1.4298

2.3389
1.2401
0.6064—1.1824—1.6213

3.1500
1.163'f
0.2046—1.3657-1.7703

1.1390—0.4389—1.6773-1.9836

1.2743—1.8010—2.6315

1.6647—2.0595

2.3686

4.5
3

2.5508
1.7459
1.4283
0.7991
0.3207—1.3629-1.474

3.6735
1.4747
1.3386
0.5448
0.0653—1.3957—1.6966

1.3177
1.1658
0.0686—0.2742-1.5847—1.9328

1.3084-0.6264—0.7352—1.9400—2.1067

1.4012—1.0449—2.2407—2.4062

1.6442—1.2495—2.5876

2. 1051—1.1516

2.8604

4.5

3.9349
2.5066
1.9542
1.4549
1.2573
0.3789
0.1990—1.4765—1.5144

2.1330
1.4690
1.4111
0.9072
0.1599
0.0314—1.5624—1.6510

1.4057
0.7356
0.3194—0.1867—0.3518—1.7575—1.8772

1.4085—0.2489—0.6648—0.8618—2.0419-2.1268

1.4723—0.6038-1.4791—2.3045—2.3357

1.6319—0.7891—2.1809-2.5953

1.9301—0.8162-2.2807

2.4185—0.5741

3.1618

written in a power series of R ', a calculation has been If the perturbation V' is approximated by
made for 0,+ states of Cu—Cu system in which both
Cu atoms are in the configuration 3d'4s' and level 'Dt;~~. V'—Wg/R',
Let

(3.63)

x(M) =x(JJgQM). — (3.62) the zeroth-order wave functions are

f&& '& =0.8521x(5/2)+0.4905X(3/2)+0.1828X(1/2),

f2&"& = —0.1932x(5/2) +0.0299&t (3/2) +0.9807x (1/2),

$3&0 0& =0.4865X (5/2) —0.8709' (3/2) +0.0693X (1/2) .

When ere take the correct perturbation V' for this system,

V' =Wg/R'+ W7/R'+ W9/R',

(3.64)

(3,65)
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we can obtain the zeroth-order wave functions in power series of R ' by the method discussed in the Appendix,
and they are found to be

p4 y2 ~4 p2 2

|p,t'& =&p,N'&+ [0.6235$ to'&+0. 1990&pgt'o&]+ [—0.2141' t"&+4.163&p t"&—0.4136/vi' o&]+ ~ ~ ~

&Pot'& =Pot"&+ [—0.6235'&t' '& —0.9617tt gio o&g
&r')l &r')

R2

(&"&I&"))'
086$,to, o& 0 6568/ate, o&+0 440+viv, o&]+

R4

thoro& =iPoi' '&+ [—0.1990&P&i"&+0.9617$gi"&)
&6&/&')

R'

(&~)/&"&)'
[0.6206|p|i "+0.1838&pgt & —0.4822|pot &)+ ~ ~ ~ . (3.66)R'

TABLE IV. Coefficients C2{LL) and D2{JJ) for ground terms.
For the shells which are complete except for e missing electrons,
C2(LL) and D2{JJ) have the opposite sign of those for shells
which have ~ electrons.

Confilgu ration Level

Pl/2

'PS/2

C2(LL)

—0.63246

D (JJ)
0.0

—0.44721

3. Irttermedhafe CoNPh'rtg Cases

When the atomic spin —orbit splitting is of the same
order of magnitude of the interaction energy, a tran-
sition region between (J„Jo) and (A, S) couplings
may exist. At this region, the (A, S) couphng scheme
is poor since the perturbation Ht. ,(p), p =a. b, which is
the same order of magnitude of V, is neglected. In the
(J„Jo) coupling scheme, potential energy curves with
the same symmetry may cross each other. Therefore,
one way to consider the transition region is to apply the
almost degenerate perturbation theory. '

es eg &=J—f(ySL), (3.68)

where f'(ySL) is the spin —orbit parameter. The pa-
rameter has been calculated by Blume, Watson, and
Freeman" for some atoms of interest. Experimental
values of atomic energy level intervals are given in the
table of Moore. 2~ Thus we can obtain the relative zeroth-
order energy of the system of two interacting atoms.
If we now apply the almost-degenerate perturbation
theory for the set of all functions x(J,JoQM ) arising
from all atomic states in given terms, the secular
equation will have the following form in generap:

In this approach, we take the zeroth-order Hamil-
tonian Ho as

Ho ——H'(a) +B'(b), ', (3.67)

where P'(p) is defined by Eq. (2.3). We tate as the
approximate atomic wave functions the g(SLJM) in
the SLJM scheme. If we now assume the Lande interval
rule, the atomic energy interval between levels diQering
by unity in their J values is"

Sp
Q

SP2

'D5/2

SF2

SFS

SF4

FS/2

F6/2

Fv/2

4FQ/2

5D0

5D

5D2

5DS

5D4

0.63246

—0.53452

—0.22131

0.22131

0.53452

0.0
—0.31623

0.37417

—0.44721
—0.47809

—0.18326
—0.16599
—0.20022

0.15333
0.11269
0.13941
0.19343

0.0
—0.31623
—0.11454

0.11066
0.40044

@"&+Vrt' —&, Vrg',

&gto&+ Vgg' —E, ~ " =0, (3.69)

where E;~' are the relative zeroth-order energies and
V; will have the form in general

V,s = (Wo),s/R + (Wz),s/R + (Wg);s/R +' ' . (3.70)

Since E;&0) are of the same order of magnitude of V;,',
fast converging power series of E in R ' are no more
possible here. The secular equation should be solved
for values of R.

"Reference 19, pp. 194-195."C. E. Moore, Atomic Energy Levels LNationai Bureau of
Standards, Washington, D. C., Circular 467, Vol. I (1949},
VoL II (1958), VoL III (1958)j.
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It shouM be noticed here that this problem can be
solved by a different approach. Ke take the zeroth-
order Hamiltonian defined by Eq. (2.1) and apply a
new perturbation Element Term Orbital (r') (ass) (r') (ao4)

TABx.E VI. Mean-square and mean-quadratic radii of incom-
plete shells of the third-row atoms. Clementi's" wave functions
are used. All quantit, ies are in atomic units.

H'= V'+Hi. ,(a)+Hi. ,(b). (3.71)

TABLE V. Mean-square radii of incomplete p shells of the
6rst- and second-row atoms. Clementi's" wave function are used.
Quantities are in atomic units.

Here we can apply a straightforward degenerate pertur-
bation theory to the degenerate system which is de-
scribed by x(SEAM&, ') defined in Sec. IIIB2. If we
now transform' the set y(SEA.Mr, ) into the set
x(J.JsQM) defined in Sec. IIIB1, the matrix LH~. ,(c)+
H&.,(b) ) is diagonal in the transformed representation
and the matrix V' will be the same as the matrix V'
in Eq. (3.69). Thus we obtain essentially equivalent
secular determinants in both methods considered. In
fact, the latter method has been used by Fontana~

Sc(3d4s2}

Ti(3d'-4s')

V (Bd'4s2)

Cr (3d44s')

Mn (3d'4s')

Pe (3d'4s')

Co (3dr4ss)

Ni &3d'4s')

Cu (3d'4s')

Ga(4p')

Ge(4ps)

As(4ps)

Se(4&4)

Br(4P')

2D

sp

4F

SD

dg

SD

4F

SF

2P

SP

4S

SP

2P

3d

3d

3d

3d

3d

3d

3d

3d

3d

4p

4p

4p

4p

4p

3.6562

2.7436

2.2553

1.9224

1.6470

1.4948

1.3450

1.2198

1.1058

13.8348

9.6466

7.3699

6.1821

5.2216

34.1613

18.5903

12.6906

9.4338

6.8570

5.7932

4.7408

3.9967

3.2853

Element

a (2p)
C (2p')

N(2ps)

o(2P')

P (2p')
Al(3p)
Si(3p')

P(3ps)

S(3p4)

Cl(3ps)

Term

2P
SP
1D
2D

2P
SP
1D
2P
2P
Sp
1D

2P
SP
1D
2P

&rs) (a,')

6.1418
3.7483
4.0448
2.7060
2.8230
1.9741
2.0289
1.5438

13.9552
8.9811
9.5526
6.6961
6.9221
5.0661
5.1676
4.0602

& P), &ap)", & ( P)' &lP)', '2' («), (Nd) "&
J =1.5
Jg 0.5

2.
1.

J,=2.5
Jg= i.5

0+

0,

0

0 +

0.0

0.0

—0.96 —0.48

0.0499—0.7699

0.5299—0.2899

—0.48

0.5916—0.0985

0.3435—0.2619

0.3537—0.0239

0.3220—0.4036

TABLE VD. n'( J J&) for 4ke atoms in the same con6gurations
and same term, but with different J.

for the interaction of two alkali atoms in the excited
states. We will call this &hei,rslermedhrste cosspHng

To see which coupling scheme is applicable to the
various ranges of R for different systems, we have
calculated some potential energy curves of the systems,
8—8 and C—O. All atoms are assumed to be in the
ground terms. In Fig. 1. we have plotted the energy
curve of 'II, and 'II„states of Bs in the (A, 5) coupling,
and the corresponding energy curves of 0„, 1, 0„+,
1„and 2„states in the intermediate and (J„Jq)
couplings. It is seen that the curves in the intermediate
coupling merge into I'II„'II„I curve at small R, and
they approach asymptotically the curves in the (J„J&)
coupling at large R. In Fig. 2, we have plotted the

' Note that the set of degenerate state functions can be re-
arranged in any desired order and combination without changing
the resulting eigenvalues. Such a regrouping of the state functions
corresponds to a similarity transforma, tion which factorizes the
secular determinant in some way.

2'

3p

4,4

0.0—0.64

0.64
0.00

0.16

—0.16

-0.32

0.32

0.08

—0.08

0.0742—0.1942—0.48

0.6801
0.0696-0.3897

0.84
0.12

0.12—0.48

—0.36

0.12

0.5852
0.2516—0.0582—0.4325

0.6087
0.3176—0.1439—0.3056

0.2681-0.3186—0.4034

0.1117—0.2203—0.5347

0.0748—0.6952

0.2884—0.4908

0.4408

0.2449
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TABLE VIII. Interaction energy of the 0,+ states of like atoms in the ground levels of given con6guration. (a) Cu-Cu interaction.
(b} Ni —Ni interaction. Al] quantities are in atomic units.

(a) Cu(3d'4S')'Dgm

EI

6a
b
C

ioa
b
C

14a
b
C

18a
b
C

.22a
b
C

26a
b
C

3oa
b
C

1.141XIO 4

1.041X10 4

1.043X10 4

8.875X10 6

8.569X1M
8.569X10~
1.650X 10-s
1.620X10 s

1 ' 620X10 '
4.697X10 z

4.645X10-z
4.64SXip-z
1.722X10 z

1.709X10 z

1.709xio '
7.470X10 s

7.430X10 s

7.430X10 s

3.652X10 s

3.638X10 s

3.638Xio-s

6.744xio 5

5.699X10 s

5.687X10 ~

3.689X10 '
3.942X10 s

3.942X10 s

6.86OX 1O-z

/. 096X10 z

7.096X10-z

1 952X10 z

1.993Xip-z

1.993X10 z

7.159X10 '
7.25/X 10-s

7.257X10 s

3.105X10 s

3.136X10 s

3.136X10 s

1.518X1P-s
529X 10-s

1-529X10 '

—3.219X10 5

—2.936X10 5

—2.939X10 ~

—2.503X10 '
—2.426X 10-&

—2.426X1O
—4.6S4X10-'
—4.582X iO-z

—4.582X10 '
—1.32SX10-z
—1.312X10 '
—1.312X10 z

—4.857X10 s

—4.827X10 '
—4.827X 1o-'
—2.107X1P s

—2.097X10-s
—2.097X10 '
—1.030X10 s

—1.027X 10-s
—1.027X 10-s

E2

(b) Ni (3ds4S') '&4

6a
b
C

1Oa

b
C

14a
b
C

18a
b
C

22a
b
C

26a
b
C

3Oa

b
C

2.971X10 '
s.467x io-5
5.305XiO-5
2.310X10 s

2.834X10 s

2.821X10-s
4.295X10 z

4, 745xio-'
4.741X10 z

1.222X10 z

1.297X10 '
1.296X1O-z
4.482X10 s

4.660X10 s

4.660X10 s

1.944Xip-s
1.999X10-s
1.999X10-s
9.506X10 9

9.705X10 9

9.70sxio '

1.623X10-5
/. 30SX10 '
9.256X10 s

1.262X10 6

9.617X1P z

9.739X10 '
2.347X10 '
2.048X10 z

2-053X10 z

6.679X10 s

6.156X10 s

6.159X10 s

2.449X1.0 s

2.319X10 s

2.320X 10-s

1.062X10 s

1.022X 10 s

1.022X10 '
5.194X10~
5.045X10 9

S.O4SX 10~

1.111X10s

5.932X10-s
5.803xip-s
8.641X10 z

6.734X10 z

6.734X10-z
1.607xio '
1.414X10 z

1.414X10 z

4.573X10 '
4.232X10 s

4.232xio s

1.677X10 s

1.592X10 s

1.592X10-s
7.272X10 ~

7.008X10 9

7.008X10~
3.556X10 '
3.458X10 '
3.458X 10-9

4.423X10 s

2.192X10 s

2.572X10
3.439X10 '
2, 400X10 z

2.411X10 z

6.395X10 s

5.301X10 s

5.303X10 s

1.82OX10-s
1.624Xio-s
1.624X10 s

6.674X10 9

6.183X10 '
6.183X10 s

2.895X10~
2.741X10~
2.741X10~
1 415xip~
1.358X10~
1.358X10 9

—1.109X10 5

—1.267X10 5

—1.326X 10-5
—8.620X10 z

—8.650X10 z

—8.666X10 z

—1.603X10-z
—1.595X10 z

—1.595X10 z

—4.562X10 s

—4.541X10 s

—4.541X10 '
—1.673X10 s

—1.666X10 '
—1.666X10 s

—7.255X10~
—7.234X10
—7.234X10~
—3.547X10~
—3.539X10~
—3.539X10

~ Quadrupole-quadrupole interaction energy. 3-term approximation [Eq. (3.60)]. Exact first-order energy.

energy curve of 'Z+, 'Z+, SZ+ states of CO in the
(A, S) coupling and the corresponding energy curves of
0", 2, 1, 0+, 1, and 0 states in the intermediate and
(J„Jq) couplings. From Fig. 2, we can see a similar
trend as the case of B~, but the range of R, where the
(A, S) coupHng is applicable, is quite shortened. In
Fig. 3, there is shown for the case Bm (both 3 atoms in

the ground 'P) a probable correlation" diagram of the
states in (J„Jg) coupling at larger R and the states in

(g, S) couphng at smaller R. It should be noticed here
that correlations for some higher states are not uniquely
determined. It is also noted that at large E the lowest

"For the correlation of atomic Jvalues and molecular quantum
numbers, see R. S. Mulliken, Phys. Rev. 36, 1440 (1930).
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—2.

'r:( a
'Z' 0,

o -I0

-2-

0
UJ

-4

-7-

I
I
I
l
I
l
1

1

I

I

i +

'X„
0„

Og
0„
IU

2
s

O~

Z„~
gZ ~

-8 I

18 22

states are ~
I'II 'II„I while the ground state near the

equilibrium distance 2, is 'Z, . In Fig. , t e corre-
lations of some lower states of CO is shown.

Al to see in what range of R strict (J„Jb) couplingso, osee
is applicable, we have plotted the energy curves ln

P+ P

'P+ 'P

C+0

IO 14
R(o, )

Fzc. 1. Some energy curves of B2 in the 6rst-order approxima-
tion. Both of the separated B atoms are in the ground 2I' term.
The 0 + 2„, and 1, curves have the spin —orbit energy of the two
atoms (with t' 4.438=X10 ' e'/abl"" included. ———represents

(A S) upling those in intermediate coupling,
and ————those in (J, Jq) coupling.

2U
+ Il„

O'O
(A,s& M (J„J,)

. 3. A b bl correlation diagram for transition from
(J, J15,) to (A, S) coupling for the molecular states arising
B (2P) +B('P) in the erst-order approximation at large Z.

(J„Jb) and intermediate couplings for the states 0
of Bs in Fig. 5(a), and for the states 0+ of CO in Fig.
5(b). It is seen from Fig. 5 that (J„Jb) coup ing is
applicable at R& 16ao for B. and at R & 10co for CO.

From the consideration of the order of magnitu e o
the atomic spin —orbit splittings" "and interaction ener-
gies, we may conclude that, when atoms are in the
ground terms, (A., 5) coupling and intermediate coup-
ling may have important role for the interaction e-

3 C 0 Al Si, and Sc atoms. For other cases,tween
ults(J, Jb) coupling scheme will give satisfactory resu s

for most range of R of interest in long-range interaction.

U
O

& -2-
OI

& 3
0

-4-

2s+ ~o
2
2
0

I

I

0

Ip Ip

e5

-6- ~ P. +'P,~ c+02

20l6
I

4 8 . 12

R (oo)

F 2. Some energy curves of CO in the 6rst-ord ppIG.

The energy curves of the states arising fromterms. e
~ ~ " of atoms included. —.—.0('E ) have the spin —orbit energy o2

S) cou lin -- t ose in in er-represents the curves in (h., S) p
'

g,
mediate coupling, and ————those in (J„Jq) coup ing.

(z,J, }

(a,s)
~ . ransition from J, Jq) to (h., S) coupling for some

lower molecular states arising from
op

order approximation at large R.
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atomic beams at thermal energies. ' Another substantial
source of relevent information is existing predissociation
data. "

For any potential U(R) with an attractive well, the
effective potential U, (R) is given by

4-
where

U, (R) = U(R)+F/Rpj (j +1)j (3.'I2)

FI:R j(j+1)j=i( j+1)/2I R' (3 'I3)

O
2

QJ

O
x o
Ld

7
I

I
I

I
I

I
I
I

-2-

2O
U

/ 20„ lo
P~+ P,

B+B

[ttBU(R)/BRj+ (BF/BR) }g g,.
——0.

I et us consider now the diGerential dU;

8U; BU;
dU, = 'dR+ . .

'
dt j(j+1)jBR B j j+1

(3.74)

Here p is the reduced mass and j is the rotational
quantum number of a diatomic molecule of interest.
In Hund's case (b) j is replaced by E which gives the
total angular momentum apart from spin. '2 If E,- is
the value of R at the effective potential maximum for
the value of j, we have

l.2

08-

O
O

cv Q4

O
X

0

s

8
I

I2 l6
R (a.)
(a)

lO 0+

eO'
sO'
70+

I

24

P+ P,

Po + Po

'P, +'P,

P, + P,

P+ P,

'P, +'P,
sp~ $p

C+0

BU(R) BF BF
BR +BR "+BL-,( +1)gdLj(j+"'

(3.75)
From Eqs. (3.74) and (3.75), we obtain

dU~/dLj ( j+1)3=IBF/Bl j(j+1)3}&=& (3 76)

and by use of Eq. (3.I3) we get"

dU. /dry (i+1)l=(21 RJ') ' (3 77)

A curve between the energy of the effective potential
maximum and j(j+1) is the limiting curve oi dissoci-
ation (LCD) developed by Schmid and Gerome' Ex-
trapolating the breaking-o6 data to j(j+1)=0, we
obtain dissociation energy Do.

By use of Eqs. (3.72), (3.I3), and (3.77) we obtain

U (R,) = U, —Lj( j+1)/2pRP$

=U1 {dUJ/dry (i+1)3&'— (3.'Ig)

-0.4

IO. l4
R (o.)

(b)

IS

I'xG. 5. (a) 0+ states of B~ arising from B ('P)+B ('P).
represents the energy curves in intermediate coupling and--——those in (J„, Jq) coupling. (b) 0+ states of CO arising

from C('P) +0('P).

D. Interatomic Forces from Predissociation Data

With a recent renewal of interest in the experimental
determination of. long-range interatomic forces and their
comparison with theory, the most direct route ha, s been
via absolute cross sections for elastic scattering of

Hence if we know I CD, then we can obtain information
about long-range intera. tomic force since R, is usually
larger than the equilibrium distance E,.

Recently the explicit relationships needed to make
use of I CD for the determination of long-range inter-
atomic forces has been developed by Bernstein. "For a
potential whose long-range behavior can be expressed
by U(R)~ C„'R ", the eGec—tive potential may be

' See, e.g. , R. B. Bernstein in Atomic Collision Processes,
M. R. C. McDowell, Ed. (North-Holland Publ. Co. , Amsterdam,
1964}, p. 895; H. Pauly and J. P. Toennies, in Advances in
Atonsic and Molecular Plrysics, D. R. Bates and I. Esterman,
Eds. (Academic Press Inc. , New York, 1965), Vol. 1, p. 201;
E. W. Rothe and R. H. Neynaber, J. Chem. Phys. 43, 4177
(1965).

3' R. B. Bernstein, Phys. Rev. Letters 15, 385 (1966).
"See Ref. 18f, p. 221.

R. Schmid and l. Gero, Z. Physik 104, 724 (1937).
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approximated, for the case where R;&1.5R„by

U, (R)=—C„'R "+Lj( j+1)/2trR'), (3.79)

so that from Eq. (3.74) we obtain

R;=ttntsC„'/j (j+1))'«" '&. — (3.80)

Using Eqs. (3.79), and (3.80), we now obtain an ex-
plicit expression for the LCD; i.e., for EL~0 in atomic
units:

+LCD Re+ Ui (Ri )

(3.81)

S =(st—2) $1/(ttts) "C "J'&" '& (3.82)

and Eo is the term corresponding to the dissociation
limit, For the case of v=6 for which ZL~D is linear in
Lj(j+1))sts, the LCD data of the x 'Z+ state of HgH
and HgD, and the C 'II„state of N2 have been used"
successfully for the determination of Ce'.

Another example"' is the predissociation of the b 'Z+
state of Coss (which has been also considered by
Bernstein, s' but not fully); this state dissociates to C
('P) and 0 ('P). We make use of the following break-
ing-off data: for v=0, E(X+1)=3173 at 90142 cm '
(see Ref. 34a) and for o =1, E(K+1)=1930 at 89820
cm ' (see Ref. 34b). Here o is the vibrational quantum
number. If we assume U(R) =—Cs'R ', ELoD is linear
in $j(j+1)j'ts, and we obtain Ss ——8.3X10 4 cm '
Cs' ——1.5&(10 " erg cm'=8. 0 e 8(}, Rj 78{) at J 43)
and D, =89570 cm '. If we now assume U(R)=—C6'R 6, we obtain S6——3.4)(10 ' cm ', C~' ——3,7&
10 " erg cm'=39 e'ao', and DO=89530 cm '. The
recommended value of dissociation energy" Do is
89620&20 cm ', which is closer to the case of m=5.
Hence we might conclude that —C5'R' is a better
approximation to U(R) for the state b st+ of CO.

If we neglect atomic spin —orbit splittings L(A, S)
coupling), we have the following states of CO arising
from C('P)+0('P) in the first-order long-range ap-
proximation: the lowest level has the states 'Z+, 'Z+,
'Z+ with C5'=1.927X10 " erg cm'=10.65 e'ao', the
next has the states '6, 'b„sh with Cs'=1.775 e'ao', the
states 'Z, 'Z ~Z 'Z+ 'Z+, 'Z+, 'II, 'II, 'II have
C&' ——0; and the states 'II, 'II, 'II are repulsive with
C5' ———7.100 e'a04. If the second-order perturbation
does not reverse the order of energy levels for two 'Z+
states at large R (this is unlikely since the second-order
perturbation energy is expected to be almost the same
for both sZ+ states; see Sec. IVA), we have to correlate
the lower a' '2+ state to the lower 'Z+ state at large R

"'Note added in proof. The predissociation data of Se2 has
been used to determine C&' for Se.. by Byrne, Richards, and
Horsley LMol. Phys. 12, 275 (1967)g. Also see T. Y. Chang, Mol.
Phys. (to be published).

34 (a) L. Gero, Z. Physik 95, 747 (1935); (b) R. Schmid and
L. Gero, Z. Physik 95, 198 (1935); (c) L. Gero, Z. Physik 101,
311 (1936); (d) R. Schmid, Physik. Z. 3'7, 55 (1936}.

ss A. G. Gaydon, Dissociation Lnergies and Spectre of Diatomic
Molecules (Dover Publications, Inc., New York, 1950).

and b 'Z+ to the upper 'Z+ state" at large R. This
follows from the noncrossing rule. s' Hence in (A, S)
coupling the b 'Z+ state has no quadrupole —quadrupole
interaction energy. However, if we include the effect
of atomic spin —orbit splittings (intermediate coupling),
b 'Z+ state splits to the states 0, 1 and there appear
nonvanishing first-order energies fcf. Figs. 2 and 5(b).j.
This may support the above result of the analysis of
the predissociation data for the b 'Z+ state of CO. It is,
however, noted that it is not possible to find fast-
converging R ' series of the interaction energy in some
range of R in the intermediate coupling. It is also
noted that the second-order dispersion energy may not
be negligible compared to the first-order energy at
R—7ae which is in the range of R of interest (see
Sec. IVA).

IV. SECOND-ORDER COUI OMMC INTERACTION
AND MAGNETIC INTERACTION OF

TWO ATOMS

A. Second-Order Coulombic Interaction of Two
Atoms

In this section we consider the leading term
Le(1/Rs)] of the second-order Coulombic interaction
energy between two atoms in degenerate states. This
dispersion energy will be compared with the first-order
quadrupole —quadrupole interaction energy. Since the
dispersion energy may be more important in the rela-
tively shorter internuclear separation for the system
with nonvanishing first-order interaction energy, we
assume (A, S) coupling for the system of two inter-
acting atoms.

For the calculation of dispersion energies, some accu-
rate methods are available, which have been applied
successfully for the interaction between atoms in non-
degenerate states. One method is that, by making use of
the identity"

2 ~ ab('+') '=
sa + sceb'+to'

it is possible to reduce the original many-center problem
to a number of single-center problems. A formal expres-
sion has been derived by Mavroyaonis and Stephen'b
and by Mcl.achlan38 which relates the leading term of
the dispersion energy of two atoms to the electric
dipole atomic polarizabilities, evaluated at imaginary
frequencies. " This method has been applied for the

"Note that Bernstein" correlated b3Z+ state to the lower
3Z+ state at long range R and he used only one breaking-oB
data'"" {v=1) for the determination of C~'."L. D. Landau and E. M. Lifshitz, Statistical I'hysics (Per-
gamon Press, Inc. , New York, 1958), Chap. XII; Flectrod'y-
namics of Continuous Media (Pergamon Press, Inc. , New York,
1960), Chap, IX.

"A. D. McLachlan, Proc. Roy. Soc. (London) A271, 587
(1962).

» For the calculation of frequency-dependent polarizabilities,
see (a) M. Karplus and H. J. Kolker, J. Chem. Phys. 39, 2997
(1963); (b) Y. M. Chan and A. Dalgarno, Proc. Phys. Soc.
(London) 85, 1455 (1965).
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interactions of non degenerate atoms. ' The other
method is to apply variational method by choosing
appropriate perturbed wave functions. "Although these
methods could be generalized to degenerate atoms, it
vill be much more complicated for these cases. Since
we are interested in the order of magnitude of dispersion
energies in the present work, we adopt a simple approxi-
mate method.

We want to calculate Cs in Eq. (2.27). In the case of

(A, 5) coupling for the system of two interacting

k&"=Z C(Mi)x(Mi), (4.2)

where x(Mr) =—y(SZAMr) or x(SZA„'Mr) has been
defined in Sec. 11182. Since y(Mq) is a, linear combi-
nation of the products of atomic wave functions, the
Cs coeScient can be written in the form Lcf. Eqs. (2.9)
and (2.26)j

degenera, te atoms, the zeroth-order wave functions can
be written in the form

where

I Z Q.(k M )4s(ksMs) I
I's

I &t.(k.'M. ') d s(»'Ms') &Q.(k M ) d s(kbMb) I
4'"'&I'

2kfa, Mb

k&~&k+, I&;b~gkb M~~, Mb~ S..(k.')+ ae, (k,')

he, (k.') =e, (k,') —e.(k„),

mes(ks') =es(ks') —es(ks),

(4.3)

(4.4)

Vs ——r(a) ~ r(b) —3Z(u) Z(b)

=X(u)X(b) +F(u) F(b) —2Z(&r) Z(b). (4.5)

—r(&r) is the electric dipole moment operator of atom &r. The state of an isolated atom &r has been characterized
by the magnetic quantum number M, and the symbolic quantum number k, for the set of remaining quantum
numbers, and similarly for atom b. It is obvious, from Eq. (4.3), that Cs is different for different molecular states
which arise from the same con6guration and term of isolated molecules. Since we are interested in the order of
magnitude of C6, the expression for C6 will be averaged over the magnetic quantum numbers of both atoms to
derive an approximate formula. Then we obtain the following expression:

Cs=(2L.+1& '(2Le+1) ' 2 2 2 &&II(4.(k'M. ) I
X

I d. (k 'M. ')&I' l(&ts (»Ms) I
X

I
ds(ks'Ms') &I'

I&; ~+I&;N, kb~+kb M ~,Mb~ M, Mb

+l(d. (k M ) I
I'I 0-(k.'M. ') &I' l(ds(ksMs) I

I'
I @s(k 'Ms') &I'+4 I(&t.(k M ) I Z14.(k.'M. ') &I'

X', (&ts(kbMb) I
Z

I ds(ks'Ms) &I'}/fhe. (k.')+Deb(ks') I. (4.6)
Here, the fact that the cross terms such as

Q.(k.M.) I
X

I @.(k.'M. ') &Q.(k.M.) I
7

I d.(k.'M. ')
&

vanish has been used. If we now define the average quantum-mechanical oscillator strength4'

f(k, k') =(2Ls+1) ' Q f(kM k'M')
MrMI

where

f(kM, k'M') = —;~.(k') IQ (kM) I
r

I
@(k'M') &I

and 21.s+1 is the degeneracy of the kth level of an atom, one can show that4'

f& l(k, k') =f&"'(k, k') -f&*'(k, k') =sf(k, k').

(4.7)

(4.8)

(4.9)

Here f&'l (k, k') is defined by Eqs. (4.7) and (4.8) if we replace r by X, and similarly for f&» (k, k') and f&*'(k, k').
Using Eqs. (4.7), (4.8), and (4.9), we obtain

f.(k., k.')fs(kb, ks')

&~~Ms~, ks~/ks Aea(ka ) keb(kb ) PLea(k~ ) + bleb(kb )) (4.10)

's For examples, see (a) M. Karplus and H. J. Kolker, J. Chem. Phys. 41, 39SS (1964); (b) Y. M. Chan and A. Dalgarno, Mol.
Phys. 9, 349 (1965).

"For nice discussions, see (a) R. A. Buckingham, Proc. Roy. Soc. (London) A160, 113 (1937); (b) K. S. Pitzer, Advan. Chem.
Phys. 2, 59 (1959).

~ See Ref. 1, p. 890.
~ H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
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TAaLE IX. Estimates for C6. Ce are estimated by Kq. (4.10) with De=I and polarizabilities estimated by Eq. (4.11).R* is the distance
of twice the sum of the atomic radii which is taken from Slater's" table. All quantities are in atomic units.

Cs/ i CgR*) States

He-He

Ne-Ne

82
C2

02
Co

6.44
5.28
4.52
4.90

0.9033

0.7923

0.3049
0.4140
0.5003

1.248
(1 384)a
2.451

(2.663)~
24. 79
12.21
4.84

1.055
(1.456)b
3.570
(6.31)b

140.5
46.29
8.790

20.08

36.22
13.49
3.741

10.65

0.602
0.650
0.520
0.385

IIpy IIt4

+p)
'IIp~ 'Du, 'IIp
1y+ ey+ 5g+

a A. Dalgarno and A. E. Kingston, Froc. Roy. Soc. (London) A259, 424 (1960). b See Ref. 49.

It follows, from Eqs. (4.3) and (4.10), that, for the interactions of two atoms in the ground configuration and
term, C~ is negative and hence the London dispersion force is attractive.

If we now apply Unsold's approximation44 to Eq. (4.10) and introduce the average dipole polarizability ' for
atoms,

we obtain London's4' formula for Cs.

Cs = sf'—«,heb/(he, +des) ja,rrb (4.12)

Here A~. and A~~ are appropriate average excitation energies for atoms u and b. It is often found that choosing
the"average excitation energies A~ equal to the 6rst ionization potentials' I of the interacting atoms gives good
estimates for Cs. For the estimation of the atomic polarizabilities, we will employ the Buckingham s" formula

(4.13)

where

in which u; are atomic spin orbitals and n is the number
of electrons in an atom. The necessary atomic properties
(I, I

r'
I
u, ) and (n; I

r
I I;.) for the evaluation of the

polarizabilities are calculated by use of Clementi's wave
function. "Va1ues for Cs obtained from Eq. (4.12) with
de =I and h~~ ——I~ are given in Table IX for the
interactions of the 6rst-row atoms. The ratio of the
van der Waals energy to the quadrupole —quadrupole
interaction energy, Cs/(CsR*) at distance R* of twice
the sum of the atomic radii which are taken from
Slater's" table, is also given in Table IX. Estimated
values for C6 for He-He and Ne-Ne interactions are
smaller than accurate values" in magnitude (see Table
IX), and hence this may be true for other systems.
Hence the van der Waals dispersion energies may be of
almost the same size as the quadrupole-quadrupole
interaction energies at the separation R*, although
estirna, ted values of the ratio Cs/(CsR*) are about 0.6.

(See Table IX) .Since the quadrupole-quadrupole inter-
action energies are proportional to 6(R-'), it is, how-
ever, expected that, when the quadrupole-quadrupole
interaction energies do not vanish, the 6rst-order
Coulombic interaction energy is dominant compared to
higher-order Coulombic interaction energies throughout
most range of R of interest in long-range interactions.

B. Magnetic Interaction of Two Atoms

The purpose of this subsection is to consider magnetic
interaction energy of two atoms, The general treatment
of magnetic (or relativistic) long-range interaction
energies through 8(n') has been considered briefiy in
Section IIB. Here we will consider only the leading
term La(cr'/R') j of magnetic interaction of two neutral
atoms in degenerate states to see in what range of R
magnetic interaction energies are appreciable. We also
assume (J„Jb) coupling for the system of the two

'4 A. Unsold, Z. Physik 43, 563 (1927)." (a) F. London, Z. Physik. CheInie Bll, 222 (1930); (b) Trans. Faraday Soc. 33, 8 (193/).
~ The experimental ionization potentials are listed by Moore.""R.A. Buckingham, Proc. Roy. Soc. (London) Ale, 94 (1937).
~ J. C. Slater, J. Chem. Phys. 41, 3199 (1964).
"A. E. Kingston, Phys. Rev. A135, 1018 (1964).
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interacting atoms since magnetic interactions are im-
portant in the relatively longer internuclear separation.

It has been shown by Meath'b that the interaction
energy through 8(n'/Rs) is identically equal to the
semiclassical result for nonresonant ca,ses. From semi-
classical. consideration one would expect that two atoms
a and b with magnetic dipoles M(a) = —-', xgl L((b)+
28((x) j and M(b) = ——,'xxl L(b)+28(b)], respectively,

would have a magnetic dipole-dipole interaction Hamil-
tonian

P.., 'g=(1/R')LM((x) M(b) —3M, ((x)M, (b) j.

This semiclassical Hamiltonian can be written alter-
natively in the form'

+s.o. = (xx /R ) E~LL,3+ rSS,3+ rSL,3jl (4.16)

rLL,s= Q PLL,s(x)3) Lx ((3)J-x"(b); PLL,3(0) 3 y PLL,3(~1) = —5

r„,,= g p„,,(~)S;(~)S,-(b); Pss,s(0) = —2, Pss,s(~1) = —1,

r s, L=3g PsL, s(xxx) {1+J'bj {Lx ((3) Sx (b) l; Psr. ,s(0) =—1, PsL„,s(+1) =—s. (4.17)

Here, for a tensor operator of rank 1, A, the irreducible
spherical components, are de6ned in terms of the ordi-
nary Cartesian components by

Ax+'= —K2 x(A,+3A„)

2~0 ——A,

Ax ' ——V2 '(A, —iAg). (4.18)

The expansion coeKcients I',3 for r=LL, SS, SL in
Eq. (4.16) represent, respectively, the magnetic orbit—
orbit, spin —spin, and spin —orbit dipole interactions be-
tween atoms c and b. In the multipole expansion of the
generalized Breit-Pauli Hamiltonian'"" the terms of
8((x'/R) and 8((x'/R') and further correction terms of
8{u'/Rs) in addition to the terxns in Eq. (4.16) appear.
However, those terms do not give any contribution to
the relativistic or magnetic interaction energies through
8(xg'/Rs). This has been shown by Meath' by use of
the explicit expression of multipole expansion of the
generalized Breit—Pauli Hamiltonian and some commu-
tation relations for tensorial operators.

In our calculation of magnetic interaction energy of
8(xx'/Rs), we assume that magnetic interaction energies
are small compared to Coulombic interaction energies,
and hence we can Qrst diagonalize the Coulombic inter-
action operator V. The resulting eigenfunctions will
have the following forms in general (cf. Secs. IIA and
IIIC2):

4'3 Pb(0 0)+ 8 (1——/R'),

Pb(0 0) ——Q C(M) X(M), (4.19)

where X(M) —=g(J,JbQM) or )t(J&bgQM) has been de-
6ned in Sec. IIIB. The magnetic interaction energy
through 8 ( /xRs)i3n our approximation is given by

g„msg —Q,„(0,0)
I
Q mag

I y (0,0))

=g C(M) C(M') &)t(M) I
B,., 'g

I
x(M') ).

(4 20)

Since )((M) are linear combinations of functions
p(J JbM Mb) =xb, (J,M, )(txb(JbMb), and H, ., '3 is given
by Eq. (4.16), we have to evaluate integral

&( (J.JbM.Mb) I
r.,s I q '(J.'J,'M. 'Mb') = &J~bM.Mb

I
r. , I J.'Jb'M. 'Mb'&, r =LL, SS, SL.

Using the signer —Eckart theorem" and properties of the Clebsch —Gordan coefficients, " the integral for O. =LL
can be written as

&J»M~b
I

rLL 3 I
J-'Jb'M 'Mb'& = 2P».3(~) &J.M.

I
~x "

I
J.'M. '&&JbMb

I
Ix"

I
Jb'Mb')

m=—1

= g PLL,3(xxx)C(J '1J;M, —m, M ) &J II lx II J~'&
m —I

xc(Jb'1Jb, Mb'~Mb) &Jb II L,x
I I

Jb'&

=&(M +Mb, M, '+Mb') PLL„3(M,—M, ') C{J.'1J.; M.', M, -M, ', M,)

XC(Jb'1Jb' Mb', Mb Mb™b)&J II ~x II J '&&Jb II Lx II Jb'&. (2 21)
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To evaluate the reduced matrix elements (Jp'
I I Lq I I

Jp') we apply the projection theorem for first-rank tensors, bb

which gives

&JPMP I Jg I JPMP')&Jp II J'L II Jp)
JpMp LP Jp'Mp' =& Jp, Jp' (4.22)

Since

we have

and hence

Furthermore we have"

J L=(L+8) L=L'+8 L,

s L=2(J'-L'-S')

J.L=5(J'+L' —S')

&Jpl! J LII Jp&=&JpMp I J L!JpMp&

= g[JP (Jp+1) +LP(LP+1) SP(Sp+1)].

(4.23)

(4.24)

(4.25)

(JpMp I
J"

I
JpMp') =[Jp(JP+1)]"C(JP1Jp; Mp'~MP)

Substituting Eqs. (4.25) and (4.26) into Eq. (4.22), we obtain

h(Jp, Jp') C(JP1Jp, Mp'GAMP) [Jp(Jp+1)+Lp(Lp+1) —Sp(sp+1)]
2[JP(JP+1)y&2

On the other hand, the signer-Eckart theorem gives

&Jg Mp I
Lg"

I
Jp'Mp'& =C(Jp'1Jp,. Mp'mMp) &Jg ! I L, II Jp').

Thus we obtain from Eqs. (4.27) and (4.28)

[(Jp(Jp+1) +Lp(LP+1) —Sp(Sp+1)]
2[Jp(JP+1)f12

(4.26)

(4.27)

(4.28)

(4.29)

Similarly we have for 0 =SS and SL

&J&bM Mb I
I'ss, b I J,'Jb'M, 'Mb'& =8(M,+Mb, M '+Mb') pcs, b(M. —M.') C(J,'1J„M,', M —M, ', M,)

XC(Jb'1Jb Mb Mb=Mb') Mb)(J, II S, I! J, )&Jb II 5, II Jb'), (4.30)

, Jp(Jp+1)+ Sp(~p+1) Lp(Lp+1)—
2[JP(JP+1)]'"

and

&J+bM~b
I

I'Bzb
I J,'Jb'Mo'Mb'& =b(M,+Mb, M.'+Mb') pBL,b{M. M.') j 1+2.bI jC—(J '1J.; M.', M —M.', M.)

xc(Jb'1Jb' Mb' Me Mb', Mb) &—J II L& II J '&&Jb II s& II Jb'&I (4 32)

To see the effect of magnetic interaction energy to interatomic force, we consider some particular systems.

The 0,+ states of 02 which arise from two separated oxygen atoms in the ground 'P2 level are considered. The
proper zeroth-order wavefunctions which diagonalize Wb [see Eq. (3.2) ] are

fg&" =0.7360X (2) +0.5828'(1)+0.3445x (0),

$2"& = —0.2918' (2) —0.1861X (1)+0.9382' (0),

Egm'& =-4.743m'/R',
Ep ~ =1.779/P, .

Ep ~ =0.8230/Rb,

Ep &= —0.2639/Rb. .

E2 'I = —0.289a'/R',

Eb "=1.1710u'/Z' (4.35)
9' See Ref. 27, p. 94.

fb&'& =0.6109X (2) —0.7910' (1)+0.0331' (0), (4.33)

where X(M) =y(J&bgQM) are de6ned in Sec. III31. The resulting magnetic interaction energies obtained
The corresponding quadrupole —quadrupole interaction from Eq. (4.20) are
energies are
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0,+ states of Og

i=i 2

0,+ states of Cu2

TABLE X. Values of E; ~~/Ep ~ as a function of R for the
0,+ states of 02 and Cu2. Two separated 0 atoms are assumed to
be in the ground 'P2 level and Cu atoms in the con6guration
(Bd)'(4s) ' and 'D5I2 level. All quantities are in atomic units.

8(n'/Rs) does not, then the leading term of the Cou-
lombic interaction energy is 8(1/R'), and hence the
magnetic interaction energy will be of more importance. 'b

Thev are also important because they appear not to be
retarded" at large intermolecular separations and there-
fore will sometimes be the lead term in the 1/R expan-
sion of the very long-range interaction energy.

20 0.057 —0.008 0.095 0.106 —0.075 —0.059

30 0.128 —0.017 0.213 0.238 —0.168 —0.128

40 0.227 —0.030 0.378 0.423 —0.298 —0.227

50 0.355 —0.047 0.591 0.661 —0.466 —0.355

60 0.511 —0.067 0.851 0.951 —0.671 —0.512

The 0,+ states of Cu~ which arise from two separated
Cu atoms in the configuration (3d)'(4s)' and level
'D5~~. are considered. The proper zeroth-order wave
functions which diagonalize Ws are given by Eq. (3.64) .
The corresponding quadrupole —quadrupole interaction
energies are

Eiu & =0.8876/R',

E,u u =0.3690/Rs,

Esu u = —0.2503/Rs. (4.36)

The resulting magnetic interaction energies are

Eim" ——4.403n'/Rs,

E,~~a = —1.291m'/Rs,

Es 'a=0.6678n'/Rs (4.47)

"See the discussion in W. J. Meath and J. O. Hirschfelder,
J. Chem. Phys. 44, 3210 (1966).

The ratio of magnetic interaction energy E; I to the
quadrupole —quadrupole interaction energy Ep & has
been tabulated in Table X. It is shown that magnetic
interaction energy is 10 20% of the quadrupole-
quadrupole interaction energy at R =30as and 30 50'Po
at E=50a0 for the systems considered here.

The magnetic interaction energies of 8(n'/R') dis-
cussed here may be of importance in atomic scattering
experiments. "If the quadrupole —quadrupole interaction
energy vanishes and magnetic interaction energy of

V. SUMMARY AND DISCUSSION

The most important feature of this work is the de-
tailed analysis of the moderately long-range interaction
energies of degenerate atoms for nonresonant cases.

Ke have constructed the symmetry-adapted mo-
lecular wave functions at large internuclear separation
R in the general case. The quadrupole —quadrupole
interaction energy, which has been considered pre-
viously by Knipp, ' has been reconsidered, and much
more extensive tabulation of necessary parameters and
atomic properties has been made. For the third-row
atoms with (3d)&(4s)' configurations, we have con-
sidered higher multipole interactions in addition to the
quadrupole —quadrupole interaction, and have shown
that the 1/R series of the first-order Coulombic inter-
action energies converges very fast throughout the
long-range region at least for atoms in the ground
configuration. "

For intermediate coupling cases where the atomic
spin —orbit splitting becomes of the same order of
magnitude as the interaction energies, we considered
two methods to calculate the interaction energies. If we
keep (J„Js) coupling through the transion region of R,
we have to apply almost-degenerate perturbation
theory. If we now assume (A, S) coupling through
the transion region of E, we have to apply the gener-
alized perturbation given by Eq. (3.71). As examples,
we have considered the interactions of two boron atoms,
and carbon and oxygen atoms, For B~, it is shown that
(A, S) coupling is applicable for R &10as, and (J„Js)
coupling applicable for R&16as. For Co, (.T., J&)
coupling is applicable for R &10as, however, the (A, S)
coupling scheme is not accurate enough even at E=7ao.
From the consideration of the order of magnitude of the
atomic spin —orbit splittings" and interaction energies,
we conclude that, when atoms are in the ground con-
figuration, (A., S) coupling and intermediate coupling
may be important for the interactions between 8, C, 0,
Al, Si, and Sc atoms. For other cases, a (J', Js) coupling
scheme will give satisfactory results throughout the
moderately long-range region.

The experimental determination of the moderately

"E. A. Power, W, J. Meath, and J. O. Hirschfelder, Phys.
Rev. Letters 1'7, 799 (1966).

~ It is, however, noted that for the interaction of two hydrogen
atoms in 2s or 2p state the series converges for R&20a0 for some
states. See Ref. 4, in particular, Table VI. Also see H. Kim and
J. O. Hirschfelder, J. Chem. Phys. 46, 4553 (1967).
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long-range interatomic forces from the predissociation
data has been considered. In particular, the predissoci-
ation data'4 of the b 'Z+ state of C—0 has been analyzed
in detail. The results seems to support the importance
of the effects of atomic spin —orbit splitting at R—7ao.

The van der Waals dispersion energy averaged over
the magnetic quantum numbers of both atoms has been
estimated by the use of London's4' formula for the
interactions of 6rst-row atoms. It has been shown that
the dispersion energy is of almost the same size as the
quadrupole —quadrupole interaction energy at the sepa-
ration of twice the sum of the atomic radii. It is, how-
ever, expected that, when the quadrupole —quadrupole
interaction energy does not vanish, the first-order inter-
action energy is the most important throughout the
long-range region. We have also considered the leading
term 8(a'/R') of the magnetic interaction of two de-
generate atoms and have shown that the magnetic
interaction energy is 10 20% of the quadrupole-
quadrupole interaction energy at R=30ao and 30 50%
at E=50ao, through the third-row atoms.

It should be pointed out that the first-order Cou-
lombic interaction energies are zero when averaged over
the original zeroth-order degenerate states. ' 'b There-
fore, the equation of state and equilibrium properties
of a gas do not depend in an important way on the
long-range first-order interactions. However, the long-
range 6rst-order interactions may lead to anomalously
large values for the viscosity and other transport prop-
erties. This is due to the fact that the transport prop-
erties depend upon the cosine of the angle of deQection
for a molecular collision, and hence only the absolute
value of the interaction energy is of consequence.

For two rotating molecules the 6rst-order quadrupole—
quadrupole interaction energy does not vanish in general.
This fact has been noted by London4' and reconsidered
by Margenau. 4' It can be easily shown that for the
interaction of two rigid linear dipoles the 6rst-order
energy vanishes, but the quadrupole —quadrupole inter-
action energy does not vanish for two linear quadru-
poles. The diagonal terms of the energy of interaction
of two rotating neutral molecules have in fact their
dependence on orientation given by

(R') —'IJ.(J.+1)—3M.'I IJ,(Jg+1) —33IIg'I

where J, M; Jg, Mg are the angular momentum and
magnetic quantum numbers describing the rotational
states of two molecules. Nondiagonal terms also appear,
and hence the secular equations should be solved
explicitly for an accurate treatment of the problem.
Margenau, "however, concludes by a simple argument
that the quadrupole —quadrupole interaction energies
of actual simple molecules are negligible compared to
the dispersion energies in the moderately long-range
region. However, this may not be true for some cases

such as radicals and excited molecules, and hence this
6rst-order energy may eITect the transport properties.

The first-order interactions discussed in this work
may be important in determining the physical prop-
erties of substances containing large numbers of free
atoms and excited molecules, such as hot gases or sys-
tems in which chemical reactions are taking place
rapidly. These forces may also play a large role in the
interaction and recombination of free atoms and free
radicals.
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APPENDIX

Let the secular determinant in the first-order de-
generate perturbation theory have the form

vii-~"'

~ ~ ~ —0. (A1)

When the matrix element v;; in the secular determinant,
Eq. (A1), can be expressed in the form

&e'=+~j+~ijP+&~jII +dijon +' ' 'p (A2)

b =U+bU; C=U+CU; d=U+dU;" . (A3)

If we now assume that for eigenvalues E,&"

4"'=~'+~P+I'v+u'&+ " (A4)

we obtain from the Rayleigh-Schrodinger perturbation

where p is a parameter, we may desire to express
eigenvalues (erst-order energies) and eigenfunctions
(zeroth-order wave functions) in power series of p.
For the calculation of long-range intermolecular forces,
p will be 1/R, where R is the intermolecular separation.
The expressions in power series of y can be obtained by
applying the usual perturbation theory.

Let U be a unitary matrix such that a=U+aU is
diagonal and put
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theory

tXq =Cps

and the convergence of matrix elements e;; themselves.
It certainly diverges when a's are almost degenerate.

If we now assume that for the zeroth-order wave
functions

, bxt)~;
+c;;,

As —0!y

f)~kcki g& gl f)ikf)kkli
8,—2~

~,—~k k l ((k;—~k) (~,—~i)

g, .(p) —
)t ~(pp)+ pp, (p,n+)ipp, (p, &)q. ..

P(P"=Q)(k&k

P (P "=Q'L&k /(o. —~k)]A""

(A6)

'—',+d, ;, (AS)
As —Al(;

(bkl klbii) li, &ki
~ (pp)

~;—nI e;—~a ; —I,

where 0. s are assumed to be nondegenerate and the
primed sigmas indicate the sum over k or / bU t omitting
0 =i or /=i. It should be noticed that the convergence
of series (A4) depends on the separation between (k s

—l Z' ' ', O'"P) (A7)
(Xz—CX~

where XI„-'s are the original orthonormal basis set.
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Page 53, first column, line 22 should read "2.7 parts in 10 and 5 parts in 10', respectively" and
line 27 should read "to about 3 parts in 10' and 5 parts in 10', respectively. "

Page 55, first column, lines 2 to 4 should read "g-factor anomaly of the free point electron is con-
firmed to an accuracy of about 1 percent. ""


