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This paper reviews some aspects of our knowledge of the gravitational theory of fluctuations of density in homogeneous
and isotropic models of the universe. Irrotational fluid motions only are considered. All perturbations are assumed to be
small and a normal mode analysis is used. The nature and time dependence of the amplitude of the various modes in
expanding and contracting modelsof the universe are considered within the framework of Newtonianand general relativity
theories. The origin of celestial structure requires that a uniform universe is unstable against arbitrarily small perturba-
tions. However, the rate of growth of the allowed modes, particularly in an expanding universe, is sufficiently slow to

cast doubt on the instability of the models.
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1. INTRODUCTION

Cosmology seeks to account mainly for the global
nature of the universe. Instead of a complex and di-
verse physical universe it deals with a featureless,
idealized universe that is everywhere isotropic and
homogeneous and contains a uniform fluid of simple
properties.? Out of such sweeping generalizations
emerge a variety of elementary models, and one’s
choice for what it is worth is still largely an act of
faith. In spite of its antiquity cosmology is in an im-
mature state; it is hoped that the present idealizations
will ultimately be replaced with more realistic repre-
sentations of the physical universe.

* Written in 1965-6 while the author was at the Laboratory
for Theoretical Studies, Goddard Space Flight Center, Greenbelt,
Maryland, as a National Academy of Sciences-National Research
Council Research Associate.

1H. P. Robertson, Rev. Mod. Phys. 5, 62 (1933).

2H. Bondi, Cosmology (Cambridge University Press, Cam-
bridge, England, 1960).

Nobody believes that the universe originated in its
present form, complete in all its array of macroscopic
detail. Yet if the inchoate universe is featureless, then
we must show how differentiation and structure con-
trive to evolve. The physics of stellar and galactic
structure is the concern of astrophysics; but the nature
and development of an environment favorable to the
formation of astrophysical objects is the concern of
cosmology.

The study of the vibrations of the universe is a
fascinating subject, apart from any. secondary con-
siderations. However, in an attempt to account for the
actual universe, as distinct from the uniform models,
we might hope to expect that the universe is vibra-
tionally unstable. Thus appropriate modes will grow
relatively rapidly and, in a time short compared with
the age of the universe, provide the foundations of as-
trophysical structure. It turns out, as many authors
have discovered, that in an expanding universe the
growth rates of the various modes of oscillation are
generally too small to account for any appreciable ir-
regularity.

In the following treatment all disturbances are as-
sumed to have small amplitude, and the motions are
also assumed to be irrotational; long range electro-
magnetic fields are neglected and only gravitational
theory is used. The behavior of the disturbances is
studied with both Newtonian and general relativity
theory.

2. ORIGIN OF STRUCTURE IN THE UNIVERSE

2.1. Initial Conditions

The provision of both background and initial condi-
tions for the origin and formation of structure is a cos-
mological problem. The subsequent evolution of struc-
ture into its detailed manifestations lies in the provinces
of cosmogony, astrophysics, and every other science.
At present there are two main hypotheses concerning
the initial conditions®; these are: the imitial structure
hypothesis and the instability hypothesis.

In the initial structure hypothesis it is taken for

3 L. R. Harrison, Mem. Soc. Roy. Sci. Liege 15, 15 (1967).
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granted that structural differentiation in a primitive
form originates with the universe and is an indis-
pensable part of its design. The structure is. modified
and enhanced in the .course of time and evolves ac-
cording ‘to the laws of physics. This hypothesis is as
old as cosmology, and elsewhere?® it is suggested that it
should  be ‘updated -and reconsidered in the light of
modern knowledge. If the universe in its earliest stages
consists of matter at very high density, then we must
inquire whether structural configurations with rotation
are a natural state of affairs under these extreme con-
ditions. If by some quirk in the properties of matter,*
or by some modification of the laws of physics,®® the
singular state can be avoided, it is possible that the
universe contracts to and then expands from a state of
finite density. It is also possible but by no means certain
that some irregularity might survive passage through
the “bounce”

which subsequent structure evolves. Although the

initial structure hypothesis is interesting and ex~

citing,® there is a complete lack of any generally ac-

ceptable work in this field, and therefore it will not be

considered further in this discussion.

The instability hypothesis on the other hand does
not assume any special initial conditions. This hy-
pothesis is as young as the theory of gravitation, and
asserts that the universe is unstable against small
random perturbations. Jeans’ points out that in some
correspondence Newton remarks: “But if the matter
were evenly disposed throughout an infinite space, ‘it
could never convene into one mass; but some of it
would convene into one mass and some into another, so

as to make an infinite number of great masses, scat-;
tered great distances from one another throughout all,

that infinite space. And thus might the sun and fixed
stars be formed, supposing that matter were of a lucid
nature.” In his own work on gravitational instability
Jeans writes®: “We have found that, as Newton first
conjectured, a chaotic mass of gas of approximately
uniform density and of very great extent would be
dynamically unstable: nuclei would tend to form in it,
around which the whole of the matter would ultimately
condense.” These comments were made with the idea in
mind of a static universe. If we consider a universe
already fragmented into widely separated “islands,”
each having a density large compared with the average
density, such that the contents of each island do not
partake in the expansion between the islands, then
Jeans’ comments are acceptable for condensations oc-
curring in the islands. But these are the initial condi-

4 E. R. Harrison, Nature 215, 151 (1967).

5 F. Hoyle, W. A. Fowler, G. R. Burbidge, and E. M. Burbidge,
Astrophys ] 139, 909 (1964)

6 F. Hoyle and J. V. Narlikar, Proc. Roy. Soc. (London) A278,
464 (1964).

7J. H. Jeans, Astronomy and Cosmogony (Cambrldge Uni-
versity Press, Cambridge, England, 1929), p. 352.

8 Reference 7, p. 415.

and thus act as the foundation out of.
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tions of cosmogony: the problem for cosmology is to
explain how it is possible in the first place for islands to
form.

" In view of our limited knowledge in cosmology the
principal ‘advantage of the instability hypothesis is
that structure is not predetermined but grows naturally
from small random disturbances according to the laws
of physics. The smallness of such disturbances allows
us at least initially to work within the framework of a
linearized theory. In the initial structure hypothesis it is
doubtful whether a linear theory is valid at any evolu-
tionary stage.

We use conventional gravitation theory and therefore
the steady state model is only briefly mentioned. The
growth of perturbations in the steady state universe
has been considered elsewhere.®—4 .

2.2. Linear Stability Theory

From the simplest of all possible points of view the
diversity of the universe consists of variations in the
density and motion of matter. Given a cosmological
model-that is a valid description of the universe in the
large, it should be possible to show, with refinements
of the cosmic fluid when necessary, that perturbations
are capable of evolving in time into configurations of
density and motion which resemble the grosser features
of the physical world. The first step therefore is to
inject some realism into the cosmological models by
perturbing their‘fluid density and motion.

We suppose that all disturbances are small and con-
sist of a superposition of normal modes of a complete
set. Within a co-moving system of coordinates the un-
perturbed uniform fluid of the cosmological models is

"in a hydrodynamic stationary state. A system in a

stationary state is unstable when a small disturbance
grows in time and leads to a changed configuration of
the system. Thus if one or more modes is time-growing,
and the characteristic growth time is short compared
with the lifetime of the system, the system is unstable.’®

Planets, stars, stellar associations and clusters,
galaxies, clusters of galaxies, ..., form a hierarchy of
structures in which the density amplitude diminishes as
the spatial extent increases. In other words, if p is the
mean density of the universe and p-+6p is the mean den-
sity of a system, then for relatively small systems
dp/p>>1, and as the size of the system increases dp/p

9D. W. Sciama, Monthly Notices Roy. Astron. Soc. 115, 3
(1955).

1o W. B. Bonnor, Monthly Notices Roy. Astron. Soc. 117, 104
(1957).

1L M. Harwitt, Monthly Notices Roy. Astron. Soc. 122, 47
(1961).

12 M. Harwitt, Monthly Notices Roy. Astron. Soc. 123, 257
(1961).

13D, W. Sciama, Quart. J. Roy. Astron. Soc. 5, 196 (1964).

¥ W. Roxburgh and P. G. Saffman, Monthly Notlces Roy:
Astron. Soc. 129, 181 (1965). .

15 S, Chandrasekhar, Daedalus 86, 323 (1957).
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diminishes and eventually 6p/p<1 for systems of large
dimensions. Furthermore, as we go back in time the
hierarchy of celestial structures progressively dis-
solves and is submerged in the increasing mean density
of the universe. Thus the amplitude of all perturbations
relative to the mean density diminishes, that is, dp/p
progressively becomes less for any system as we go
backward in time. The expression

w=3ap/p (1)

is referred to as the contrast density. It follows there-
fore that a linear stability theory is essentially cos-
mological in the sense that it is limited to small con-
trast densities, either remote in time or extending over
cosmic distances. As the universe ages our treatment
is therefore restricted to lower and lower modes of
vibration of the universe. As the contrast density rises
the predictions of the linear theory become less trust-
worthy, and when y~1, must be viewed with suspicion.
To carry through the computation into u>1 demands
more refined and comprehensive techniques.

The success of the instability hypothesis depends on
the fulfillment of two conditions.® The first condition is
morphological: structure must ultimately emerge out
of amorphous initial conditions and possess a mor-
phology corresponding with that observed. The second
condition is that the rate of growth of the appropriate
modes must be adequate. This latter condition is
considered briefly in Sec. 6. The question of morphology
leads us to two contending points of view: the frag-
mentation hypothesis and the clustering hypothesis.

In a normal mode analysis all possible wavelengths
must not grow at the same rate in order to lay down the
foundations of celestial structure. If the universe is
initially unstable only for relatively long wavelength
perturbations, we might conjecture with Jeans that
there is a process of fragmentation'® of “nebulae out of
chaos, of stars out nebulae...” and so on. Thus,
protogalaxies or larger masses first form and create an
environment of enhanced density in which matter no
longer expands with the universe, and which favors
the formation of smaller condensations. Inhomogeneity,
anisotropy, and complex properties of the fluid develop,
and we are free to invoke all the cosmogonic para-
phenalia of turbulence, magnetic fields, radiation, dust,
and so forth, necessary for star formation.'"2

16 Reference 7, p. 416.

7 J. M. Burgers and H. C. van de Hulst, Gas Dynamics of
Cosmic Clouds (North-Holland Publ. Co., Amsterdam, 1955).

18 T.A.U. Symposium No. 8, Rev. Mod. Phys. 30, 905 (1958).

¥ G. R. Burbidge, F. D. Kahn, R. Ebert, S. von Hoerner, and
S. Temesevary, Die Enstehung von Sternen durch Kondensation
diffuses Materie (Springer-Verlag, Berlin, 1960).

20 L. Woltjer, Interstellar Matter in Galaxies (W. A. Benjamin,
Inc., New York, 1962).

21 L. Spitzer, Jr., “Dynamics of Interstellar Matter and the
Formation of Stars,” in Stars and Stellar Systems, G. P. Kuiper
and B. M. Middlehurst, Eds. (University of Chicago Press,
Chicago, Ill., to be published), Vol. VII, Chap. 9.

Alternatively, if the universe is initially unstable for
relatively short wavelengths then we might conjecture
that there is a process of clustering?2% whereby small
scale condensations first form and subsequently inter-
act to create larger and larger gravitationally bound
systems. The arguments in favor of this process have
not progressed very far nor have they gained wide
acceptance.

All this, however, is speculation, and we must wait
for cosmology to give a clear account of the origin of a
differentiated universe.

From the cosmological point of view the concepts of
fragmentation and clustering are by no means mutually
exclusive. The universe could be unstable for a large
class of modes, or a wide spectrum of wavelengths,
and the rates of growth of the different wavelengths
determine whether elementary structure evolves by
fragmentation or clustering, or by both processes acting
simultaneously. Conceivably, very early type stars
evolve out of inhomogeneities laid down either prior
to or at the same time as those leading to galactic
structure.?

3. NEWTONIAN COSMOLOGY

3.1. Newtonian Models

In 1934 McCrea and Milne??” used Newtonian theory
to derive the equations of a universe obeying the cosmo-
logical principle.228:2% Tt is assumed, as in general rela-
tivity, that in the unperturbed state there is every-
where a perfect fluid of uniform mass density p and
isotropic pressure p. The equations are identical with
those derived using general relativity theory, provided
the pressure is negligible in comparison with the energy
density pc? (¢ is the speed of light). Several authors®—%
have discussed the validity and limitations of New-
tonian cosmology.

As we shall show, the equations of Newtonian and
general relativity theory for the perturbed state are

22 G, Gamow and E. Teller, Phys. Rev. 55, 654 (1939).

23 D. Layzer, Astron. J. 59, 170 (1954).

2 D, Layzer, Astrophys. J. 137, 351 (1963).

% D. Layzer, Ann. Rev. Astron. Astrophys. 2, 341 (1964).

26 E. A. Milne, Quart. J. Math. 5, 64 (1934).

27 W. H. McCrea and E. A. Milne, Quart. J. Math. 5, 73 (1934).

B8 E. A. Milne, Relativity, Gravitation and World Structure
(Clarendon Press, Oxford, England, 1935), p. 40.

2 J, D. North, The Measure of the Universe (Clarendon Press,
Oxford, England, 1965).

% D, Layzer, Astron. J. 59, 268 (1954).

3 W, H. McCrea, Astron. J. 60, 271 (1955).

32 Q. Heckmann and E. Shiicking, Z. Astrophys. 38, 95 (1955).

3 G. C. McVittie, General Relativity and Cosmology (Chapman
and Hall, London, 1956), Chap. 7, and p. 192.

% Q. Heckmann and E. Schiicking, in Handbuch der Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1959), Vol. 53,

489

p.“ C. Callan, R. H. Dicke, and P. J. E. Peebles, Am. J. Phys.
33, 105 (1965).
3 E. R. Harrison, Ann. Phys. (N. Y.) 35, 437 (1965).
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also identical when the pressure is negligible in com-
parison with pc?. The great advantage of the New-
tonian treatment is its simplicity; furthermore, it
provides physical insight which helps to reduce the
general relativity equations to their simplest form.
Before proceeding to the Newtonian equations of a
universe in a perturbed state, the treatment for the
unperturbed state is presented briefly.

Let r be the position at time # of any element of
fluid. At time ¢, let the position of the same fluid element
be (R/Ry)r, where R(Z) is a universal function of time
and Ry=R(f). This condition ensures that the fluid
density p remains uniform and is a function only of
time. Thus r is a comoving position vector and 7, 9, ¢
are comoving spherical coordinates. The velocity and
acceleration of a fluid element are

u=(R/Ro)r, (2)
du/di=(R/Ry)1, (3)

where dots denote time differentiation. Furthermore,
within the comoving coordinate system the ordinary
gradient operator V’ transforms to (Ry/R) V.

In a perfect fluid the pressure is a scalar, and the
equations of motion, continuity, and Poisson’s equa-
tion are

(R/Ro) (du/dt) = —V*—p'Vp, 4)
(R/Ro) (3p/0) =—V (pu1), ()
(Ro/ R)*VH* =4nGp—A, (6)

where p is the pressure, G the gravitational constant,
Y* the gravitational potential and A the cosmological
term. In a uniform universe the Vp term in (4)
vanishes. Using (3), and taking the divergence of (4),
it follows that

3R+ (4xGp—A) R=0. (7)
From the equation of continuity (5),
pRé¥=const, (8)

and hence (7) can be integrated and becomes
R=1(87Gp+A) Re—k. (9)

A universal constant of integration C’ is absorbed by the
transformation R—R|C’ |2, and R has now the
dimension of time and « is dimensionless and has the
value of 1, 0, or —1.

Equations (8) and (9) are the Newtonian equations
of an isotropic and homogeneous universe, and are
identical with those usually derived with general
relativity when the pressure is small compared with
the energy density pc?. (First derived by Friedmann®3

% A. Friedmann, Z. Physik 10, 377 (1922).
# A. Friedmann, Z. Physik 21, 326 (1924).

for k=x1, A=0, and Einstein and de Sitter® for
k=0, A=0).
Using the constant

C=8nGpR?%/3, (10)
the solutions of (9), when A=0, are
R=Cx?
k=0 (11)
t=3Cx
R=Csin’x,
k=1 (12)
t=C(x—sin x cos x),
R=C sinh? x,
k=—1 (13)
t=C(sinh x cosh x—x),
where ¢(x) is found by integrating
dt=2Rdx. (14)

General solutions of (9) are available® in terms of
elliptic functions and various specific solutions have
been given elsewhere.2:41:42

The total energy E is

E=Y+T, (15)

where ¥ is the gravitational energy and T is the kinetic
energy of the fluid. In a sphere of arbitrary radius 7:

oV 16<R>5
= — ———_d —_— [ — 2 245
G/ " |4 5 \z m2Gp¥®,  (16)
2 R2R®
= 102 = - 5
T /2p'udV SR wor’, an

where dV =4x(R3/R®)r%dr is an element of volume.
From (9) and E=¥+4T, we find

E=(GAR—k) T/R2. (18)

When A=0, E=—«T/R?, and the energy is positive
for k=—1, zero for k=0, and negative for k=1.

The advantage of the Newtonian equations is the
ease with which they can be physically interpreted.
Thus, assuming A=0 when x=0, E=0, the fluid
elements have velocities equal to their escape velocity
and their trajectories are of the parabolic class; and
for k=1(k=—1), E<0(E>0), the fluid elements have
velocities less (more) than their escape velocity and
their trajectories are of the elliptical (hyperbolic)

3 A, Einstein and W. de Sitter, Proc. Natl. Acad. Sci. (U. S.)
18, 213 (1932).

% G. Lemaitre, Ann. Soc. Sci. Bruxelles 47A, 49 (1927).
( “3(1}5 Lemaitre, Monthly Notices Roy. Astron. Soc. 91, 483
1931).

2 G, C. McVittie, General Relativity and Cosmology (Uni-
versity of Illinois Press, Urbana, Ill., 1965).
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class. These interpretations are less obvious when (9)
is derived from general relativity. In that case « is the
curvature constant and space is flat (k=0), spherical
or elliptical (k=1), and hyperbolic (k=—1).

3.2. Perturbed Newtonian Models

Various authors!®#—% have used Newtonian gravi-
tational theory to study the time dependence of density
fluctuations in a uniform fluid of finite or infinite ex-
tension. From the cosmological point of view a New-
tonian treatment is scarcely adequate; not only is it
limited to low density, but also the long wavelength
modes of Euclidean space are inapplicable in curved
space. Fluctuations at high density and large-scale
fluctuations at low density are the conditions for which
the linear theory is most valid but the Newtonian
approach is least valid. Nevertheless, the simplicity of
the Newtonian approach serves as a valuable guide in
the subsequent treatment.

For a collisionless fluid, such as a supergas of stars or
galaxies, the formal approach is by way of the Vlasov
equations,® as in plasma physics. This has been used
by Gilbert,* and by Sweet™ for counterstreaming fluids.
Particles traveling an appreciable fraction of a wave-
length in an oscillation period cause Landau damping.
Since we are concerned with an initially structureless
fluid we use the fluid approximation; this tends to over-
estimate the rate of growth of perturbations. In this
discussion the velocity components are everywhere
single-valued.

Let the disturbed velocity, density, pressure, and
gravitational potential be

u—u-+v, p—p+0p,
p—pt+op, PP,

where the small quantities are functions of r and ¢
In the usual coordinates (¢, rR/Ry) the linearized equa-
tions of motion and continuity are

[(8/81) +u- V' W +v' Vut-v'y+(1/p) v/6p=0,
[(8/8) +u-V'+ V' -ulop+pV'-v' =0,

(19)
(20)

4 J. H. Jeans, Phil. Trans. A199, 49 (1902) ; also Ref. 7, p. 345.

“ G. Gamow, Phys. Rev. 74, 505 (1948).

% F. Hoyle, Astrophys. J. 118, 513 (1953).

% R. Ebert, Z. Astrophys. 37, 217 (1955).

# G. B. van Albada, Bull. Astron. Inst. Netherlands 15, 165
(1960).

48 R. Simon, Bull. Acad. Roy. Belg. 47, 731 (1961).

49 G. V. van Albada, Astron. J. 66, 590 (1961).

% C. Hunter, Astrophys. J. 136, 594 (1962).

5. M. P. Savedoff and S. Vila, Astrophys. J. 136, 609 (1962).

52 D. Layzer, Astrophys. J. 137, 351 (1963).

% R. Simon, Ann. Astrophys. 27, 191 (1964).

# 1. R. Gilbert, Astrophys. J. 144, 233 (1966).

5% T. T. Arny, Astrophys. J. 145, 572 (1966).

% See, for example, I. B. Bernstein, S. K. Trehan, and M. P. H.
Weenik, Nucl. Fusion 4, 61 (1964).

% P. A. Sweet, Monthly Notices Roy. Astron. Soc. 125, 285
(1963).

and terms quadratic in small quantities are neglected.
The perturbation of Poisson’s equation is

- Vi =4rGap. (21)

- The transformations to co-moving coordinates are
V'—(R/Ry)V, (22)
9/9t+u-v'—d/dt, (23)

where uv’=7(R/R)d/0r, and the time derivative now
follows the unperturbed motion of the fluid. In ordinary
coordinates 9/9¢ commutes with V', whereas in co-
moving coordinates

(d/dt) V=V (d/dt). (24)

We also express the perturbed velocity in co-moving
coordinates:

V'=(R/Ry)t=(R/Ro)v, (25)

[i.e, dRr/Rydt=(Rr/R,)+(Ri/R;) and u=Rr/R,,
v=t].

Thus, in terms of co-moving coordinates, (19)—-(21)
become

(d/d)[(R*/R#)V]+Vy+p1Vep=0,  (26)
(d/d1) (8p/p) +V - v=0, (27)
(Re*/ R?) VY =4xGdp, (28)

where V-u=3R/R, v-Vu=vE/R, and pR3=const.
Taking the curl of (26), we have
(d/dt) (R*) =0, (29)

in which VAv={ is the vorticity in co-moving co-
ordinates. Thus R*{ is a conserved quantity. Equation
(29) is identical with the Helmholtz equation®

(d/dt) (/p) —(&/p) - Vu=0,

since {-Vu=¢R/R. In the unperturbed state both
v and { are zero; the vorticity is therefore permanently
zero and the motion is irrotational. Hence, we can write

(30)

Taking the divergence of (26), and using (27) and
(28), we find

d _R\d b RZp_ 8p
— 42— )= —dxGp} — = —— V2 —,
{(dt+ R)dt B p}p Rp ' p
The variables can be separated, and for any scalar
quantity ¢ =y¢/()II(7, 6, ¢) :
VAT A1 =0,

2=Ve.

(31)

(32)

where %2 is the separation constant.
Adiabatic fluctuations. For the determination of the
four unknowns 8p, 6p, ¥, and ¢ there are the three

% L. Milne-Thompson, Teoretical Hydrodynamics (MacMillan
and Co. Ltd., London, 1962), p. 83.
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equations (27), (28), and (31), and an equation of
state 8p(p, 8p) is therefore necessary. We consider
briefly some possibilities, including = thermal insta-
bility.?%3 Let L(p, ) be the energy lost by the fluid
per unit volume per unit time. Thus if 6Q is the energy
gained per unit mass, then

p(dQ/dt) = — L,
and therefore from 6Q=dU+pdV,
Sal)
— (=) +L=0. 33
y—1dt \p” T (33)
The first-order perturbation of (33) is
1 d <5p 51;) (L)
—— |- —y—) +d|—-) =0. 34
y=1di\p ' p ? (3

In the simplest case of all the fluctuations are adia-
batic and L=¢§L=0:

8p/dp="(p/p) =c5, (35)

where ¢, is the speed of sound. Thus our three equations,
(31), (27), and (28), become

i+2(R/R) p+[vk(p/p) (R?/ R?) —4xGpu=0,  (36)
="k, (37)
drGpu= — (R*/ R k¥, (38)

and p=0p/p. These equations determine the adiabatic
fluctuations of density, velocity, and gravitational
potential for an inviscid, irrotational fluid. Equation
(36) was first derived by Bonnor® for the radial modes
p(r, 2).

Isothermal fluctuations. We consider next a thermally
conducting fluid in which

L=—V'"KV'T=—(R/R)V-KVT
8L=—(R?/R)KV%T = (R R) KT, (39)

where K(p, p) is the thermal conductivity. With the
expressions

p=pkT/m,
8T/T=(8p/p) — (80/p),

(in which m is the mean molecular weight) (34) takes

the form
op d ) dp
( +a) ; ( = +a) 2,

- a=(y—1)mkK R/ R? kp.

# E. N. Parker, Astrophys. J. 117, 431 (1953).

% H. Zanstra in Gas Dynamics of Cosmzc Clouds, J. M. Burgers
and H. C. van de Hulst, Eds. (North-Holland Publ. Co., Amster-
dam, 1955), Chap. 13.

61 H. Zanstra in Vistas in Astronomy 1, A. Beer, Ed. (Pergamon
Press, New York, 1955), p. 256.

62 R. Weymann, Astrophys. J. 132, 452 (1960).

% G. B. Field, Astrophys. J. 142, 531 (1965).

(40)

(41)
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Equations (31) and (40) combine to give a third- ordu
differential equation in 8p/p:

[+ sl +2 D)5
e . +a) [u=0. @2

In spite of its appearance this equation is not greatly
different from the previous equation (36). For thermal
conductivity to play an active role heat must be trans-
ported a distance A~%~!in a time short compared with
the characteristic growth time 7 of the disturbance
8p/p. In other words, ép is influenced mainly by heat
conductivity in a time sufficiently short to regard
8p/p as constant, and therefore, from (40)

§£_<§£) ~<i13_%) (i
4 P to—_ P P toexp[ t tO)]

Hence, for t—ty=7>a™, §L=0, and the fluctuations
are isothermal:

47er}

(43)

op/p=250/p.

If, for example, the characteristic growth time is
7= (4rGp)~72, it follows

>p,  ¥=1,
(4nGp) 2 (y—1) k2K T (44)
<p, Y=,
where
3p/dp=7(p/p) =cs. (45)

For the unperturbed quantities we have the adiabatic
relation

p=const p?= (po/pa") p7,

where po, po refer conveniently to time #, when R=R,.
In many instances (42) simplifies therefore to

i+2(R/R) p+L7k(p/p) (R¥/ R?) —4nGplu=0, (46)

either by using (31) and (45) or by noting that in
(42) we obtain (46) when o>>d/dt with ¥=1, and when
ad/dt with ¥=4. In effect, short wavelength fluctua-
tionsare isothermal and longwavelength fluctuations are
adiabatic.

Radiative cooling. The inclusion of radiation is of
particular importance, as first shown by Parker®®
and Weymann.! We consider the case where €(p, p) is
the net energy radiated per unit volume per unit time
expressed in the form

e=const p"p™ (47)

and neglect all dependence on the energy spectrum.®
Generally #>0, but m may be positive or negative;
for bound—free transitions =%, m= —1, and for free-
free transitions =3, m=1. The effect of radiation on

# R. Weymann, Astrophys. J. 145, 560 (1965).
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the formation of galaxies was first considered by
Gamow,%:% and has been considered more recently by
Peebles” following the discovery of blackbody radiation
of 3°K by Penzias and Wilson.®® In a Newtonian treat-
ment of the universe we must assume that the radiation
density is low in order that p<Kpc?, and furthermore we
propose to ignore the radiative drag on the fluid.

Thermal instability is generally discussed in con-
nection with the formation of stars and other such
isolated systems from which radiation can escape.
From (47) we have ex pt»T™ and hence

de/e= (n+m) (8p/p) +m(3T/T). (48)
Originally Parker® considered a static configuration
of 6p=0, and clearly when m <0 we have a system which
is cooled by radiation, and the more it cools the more it
radiates. This runaway state of affairs, possible with
bound-bound and bound-free transitions, is referred

to as thermal instability.
Retaining the heat conductivity, we have

L op 6p RS
po (;) =en ;‘ —|—e(m—-1) "p— -+ R-z RKST,

and hence (34) can be written as
d 3p ( d )6,3
— — — =|y—=4a—nB)—, (49
{dt +a+(m 1)5} » 7 +a—nB P (49)

B=(v—1)e/p. (50)
As before, from (31), it is found

d R
Hd_t tet(m—1)8 } PR?

d R\ d
X Ka +2 E) p7 ““GP]

d
+k? (7 % +a—nﬁ>] p=0. (51)

By itself, this equation is inadequate; in a general
treatment we should retain the derivatives de/dp,
d¢/dp and use the radiative transport equations. So
far, such a general treatment has not been published.
However, in many instances (51) can be simplified.
Radiative cooling is effective when ép/p changes ap-
preciably in a time short compared with the charac-
teristic time 7 for a change in 8p/p. Therefore, inte-
grating (49)

ﬁ_(ﬁ_”) N(a_l”_~@>
p ’YP to— p ,YP to

X exp { —[a+(m—1)B](t—t)}, (52)

7= (a—nB)/[a+(m—1)8], (583)

% G. Gamow, Rev. Mod. Phys. 21, 367 (1949).

% G. Gamow in Vistas in Astronomy, A. Beer, Ed. (Pergamon
Press, London, 1956), Vol. 2, p. 1726.

& P. J. E. Peebles, Astrophys. J. 142, 1317 (1965).

% A. A. Penzias and R. Wilson, Astrophys. J. 142, 419 (1965).

and in time r=¢—{, radiative cooling is effective if
t—to>[a+ (m—1)5T1. When m>1, the exponential
term is small and there is thermal stability®; the fluid
does not increase its radiative output as it cools. The
temperature distribution adjusts itself such that
8(L/p)=~0, and therefore p/8p=~7p/p. The regions of
enhanced density are cooled more rapidly and an equilib-
rium condition is thus established in which the radia-
tion loss is uniform. Although such a situation is
thermally stable, it is not necessarily dynamically
stable. Thus, for wavelengths long enough to neglect
thermal conduction (8>>a), we have y=—n/(m—1),
and for m>1 the speed of sound is imaginary and pres-
sure gradients favor the formation of condensations.
Presumably this form of thermodynamic instability
requires A2&3cr\,, where A, is a photon mean free path,
in order that radiation diffuses out of a region of en-
hanced density in a time short compared with r.

When m<1, then clearly the exponential term in
(52) can be large for certain modes and there now exists
thermal instability. The value of 8p/p is positive and
increases primarily because the fluid is more or less
uniformly cooled by radiation. Thermal instability is
of undoubted importance in such subjects as star forma-
tion in which a finite isolated region is cooled while in
the process of collapse, whereas in cosmology a mech-
anism of cooling the cosmic fluid has only slight effect
while p<pc?, and merely reduces the pressure gradients
without necessarily creating pressure gradients which
favor the formation of condensations. In fact, thermal
instability, unchecked by other considerations, leads
to a condition of zero fluid pressure (¢,=0).

When radiative cooling is effective in the case of
thermodynamic instability, then 8L=0 for an inter-
mediate range of wavelengths of KT/e<A2<3cr\,. If
the emission and absorption processes balance, and
e=ap"p™—bp=0, then se=0 gives y=—(n—1)/m for
the intermediate wavelengths. In any event we assume
that (46) with arbitrary values of ¥ and ¥ covers many
cases of interest. Such a simple single-fluid equation
ignores the ubiquitous blackbody radiation, and a
completely general multifluid treatment is not yet
available. During the time when the radiation density
is appreciable® % the situation is more complex and
Saslaw® has shown that instabilities occur during the
helium forming phase and when matter later decouples
from the radiation.

3.3. Normal Modes of Vibration

An aribitrary disturbance in a scalar quantity con-
sists of a superposition of normal modes given by (32).
These modes can be constructed from plane waves

I« exp (ik-r). (54)

( L \7’V C. Saslaw, Monthly Notices Roy. Astron. Soc. 136, 39
1967).
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The modes in spherical coordinates are given for com-
parison with those derived later for curved space.

Let I=Y(r)0(0) (o) ; by separating the variables,
Eq. (32) in flat space becomes

(d2®/d¢?) +m*®=0, (35)
1 d ?
1d/_dv n(n+1)\
Ld (,2 37) n (kﬁ_ _ﬁ—) w=0. (57)

The tesseral harmonics of #th degree and mth order are
02="Y,"(0, ¢) = (@ume™~+bpme— ") P,m(cos 6),

for integral values of # and m, and the spherical surface
harmonics of degree # are

Ya(6,¢) = 2 Yu"(6, ).
m=0
The solutions for the radial function ¥(r), for =
integral, are the spherical Bessel functions
W, (/) 2kr) 2 T yapo(br),  W_p=(w/2kr)"2J;_1j0. (58)

There are no boundary or periodic conditions to satisfy,
and the only condition is that ¥ must be finite every-
where. For kr—0,

U, (kr)»/[1:3+5+++ (2n+1) ],
- V_,—[1:3:5-++ (2n—1)]/ (kr)™H,
and kr— oo,
¥,— (kr)~! cos [kr—3(n+1) 7],
V_,— (kr)~tsin [kr—3% (n+1) 7],

and hence ¥_, in (58) is rejected since it diverges as
kr—0. The radial functions form a continuous set having
all eigenvalues of 2> 0 for each value of #. In particular,
for =1, 2, and 3:

Wo=(kr)—18,
¥y = (kr) [ (kr)~'8—€],
Wo=(kr)I[{3(kr)2—1}8—3(kr)1C], (59)

8§=sin kr, €=cos kr. The spatial disturbances are rep-
resented by summations and integrations over the
complete set of wave functions

I=Y,(kr) Y,™(6, ¢). (60)
4. GRAVITATIONAL INSTABILITY
4.1. General Criteria
Let
an=Rmdp < dp/p™3. (61)
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The existence of time-growing modes of an arbitrary
quantity such as a, does not necessarily imply insta-
bility in a nonstatic universe. For example, if ag=20p
grows, an expanding universe is unstable, but a con-
tracting universe is stable if p increases more rapidly
than 8p. The only time-growing quantity that denotes
unambiguously a changing configuration is the con-
trast density as=u. Suppose that a, grows in time;
then in an expanding (contracting) universe m=3 is
necessary and m<3(m>3) is sufficient for instability.
Thus the growth of the gravitational potential  « o is
sufficient for instability only in an expanding universe.

When the growth time of a mode is greater than the
age of the universe it cannot contribute to a significant
change in configuration. For instability we require

i/w>| R/R|, (62)

or, if px RE™ (m for R>0, —m for R<0), then m
should be large compared with unity. Even then a
clear case of instability requires an adequate amplitude
of the initial disturbance.

The Newtonian equations of the unperturbed cosmo-
logical models and the linearized Newtonian equations
of the perturbed models are identical with the cor-
responding general relativity equations for small pres-
sure. The Newtonian equations, however, are limited
to flat space and cannot be used to determine the
behavior of modes in curved space. This is not a severe
limitation if the wavelengths are not immoderately
large.

From (46), (7)-(9), the general equation for o, is

G (8—2m) it

2 R R2 —_
+ {Q +(6=m) 3 +(4—m) 3—m) 2 -—A} am=0,
(63)
Q*=7k*pRs*/pR?, (64)

and Q=c:kRy/R. We assume that p«p”, and v, ¥ are
arbitrary. For m=2, as<y¢ from (28), and therefore

P+4(B/R)Y+[0—2(x/R) +AW=0.  (65)
For the contrast density, as e« u, and therefore for m=3:
i+2(R/R) i+ (Q*—4xGp) p=0. (66)

This equation, first derived by Bonnor!® and van
Albada¥ for radial type perturbations, is discussed more
generally by Savedoff and Vila® Since v=dér/dt,
(27) can be integrated to give

8p/p=—V+6r=—ik-ér, " (67)

using (54). Introducing the Langrangian displacement
&= Rér/R,, it follows asx £, where { is the component
of the displacement parallel to k. From (28), with
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TaBre I. Time dependence of ap.®
m<4 m=4 m>4
{R>0 ~,® ~ (1) ~7,(D)
v<H.
_4{R>0 2, (?) T, (M (1)
e 1, 1, ()
(R>0 2 (~1) Ty (~) Ty(~1)
~/>%1.

a The symbols denote: 2 >0, expansion; K <0, contraction; T, growth;
1, decay; ~, oscillating; without brackets, R >Ro; with brackets, R <Ra.
For example: (~ |) means decaying oscillation for R <Ro. At R=Ro,
X = (3co2/8mGpo) /2, where co is the speed of sound.

m=4, the equation for the displacement is

E+(Q*—§nGp—3A)£=0. (68)
This last equation shows that when
02> §(8Gp+A) = (B*+r) R, (69)

£ is oscillatory. This is therefore the condition that
an(t) is an oscillating function for all values of m.
Now, from (64), Q?=c¢?*R¢?/R?, and also the velocity
of expansion (contraction) is #=Rr/Ry, and therefore
from (69) the condition that e, is an oscillatory func-
tion is

c2k2r> w2+ (kr?/ R?) =1+« (7'2/ R?), (70)

where 7’ =7R/R, is the distance from the origin. Thus
disturbances are more likely to be periodic in time when
when «k=-1. Suppose that x=0; then a mode cor-
responding to kr=1 is periodic in time when

2> ul.

(711)

In other words, out to a distance where the expansion
(contraction) velocity is equal to the velocity of sound,
all modes are oscillatory. The oscillation may of course
be time-growing (overstability™) or time-decaying,
depending on whether the universe is expanding or
contracting, and also on the particular variable in the
an sequence under consideration.

The equation (68) for oy is particularly useful for
discussing the behavior of all a;,. We have

Q*=0Q¢(Ro/R)*, (72)
Q2 =Fkpo/ po=co?k?, (73)

where ¢, is the speed of sound at R=R,. Thus (68)
becomes

as+{Q*(Ro/R)**—(C/Rs) } (Ro/ R)*es=0, (74)

where C is given by (10). Unless stated otherwise we

" A. S. Eddington, The Internal Constitution of the Stars (Cam-
bridge University Press, Cambridge, England, 1926), p. 201.

assume that the cosmological term A is zero. So far Ry
is arbitrary. For ¢?>0, let us choose R=R, at that
instant when a,=0, and there is marginal stability for
a given mode. Or,

Qo = 602k2 = 81er0/ 3 y
and (74) is now

a4+[(R0/R) 37—4-——1](C/R3)a4=0. (76)

From this equation we can deduce the results shown in
Table I, and it follows that in an expanding (contract-
ing) universe a, is a growing function of time for
m>4(m<4) for all values of yv. More precise conditions
are given later with specific solutions of (63). When
¥<0, a4 and hence all o, are nonperiodic functions of
time.

(75)

4.2. Jeans’ Criterion

Jeans treatment of gravitational instability resembles
Lord Rayleigh’s formulation of the problem of oscilla-
tions in a fluid of positive and negative charges.”
Jeans assumes that the uniform and unperturbed
gravitating fluid is in a stationary state (which is
possible for a neutral plasma) and therefore R=0.
Hence, from (63), for any au, and in particular ay=dp,

ao+ (c2k2—4nGp) ay=0, (77)

with R=Ry. For as=exp (iwf) this equation gives the
dispersion relation

w?=c2kw,’. (78)

A similar relation holds for electrostatic oscillations
in a plasma, and w,=(4wne?/m)"? is the plasma fre-
quency for electrons of number density # and charge to
mass ratio e¢/m. In Jeans’ dispersion relation the
“gravitational frequency” is imaginary: w,= (—4xrGp)'2.
There is thus a marginal state

ky=(4xGp/c?) P, (79)

and for >k, w is real and the disturbance oscillates at
constant amplitude;and for k< ks, wisimaginaryand the
disturbance grows exponentially in time. Jeans’ stability
criterion is therefore k>ky, or A<XA;, where A=Fk"1,
As=k;71. The Debye length Ap=c,/w, plays a similar
role in plasma physics and disturbances of A <Xpin many
cases tend to be stable. In a Jeans’ sphere (as compared
with a Debye sphere) of radius A; the sum of the
thermal and potential energies is of the order ¢,2oX /2 —
4rGp*A;*=0. In a sphere of radius A<A,, the thermal
energy predominates and collective interactions are of
little consequence.

Jeans’ analysis suffers from the defect that in general
there is no initial stationary state in a uniform non-
rotating fluid. When AKX, then wZ>R2/R? and the

7 Lord Rayleigh, Phil. Mag. 11, 117 (1906).
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dispersion relation (78) is an acceptable approximation.
But as X increases, the oscillation period also increases
and is infinite at A=2%,; and when A> A, the e-folding
time iw,™! of a disturbance is comparable with the
collapse time 7(2/3)Y%w, ™! of the system. Thus, in the
range of interest A=A, the dispersion relation (79)
fails and we must fall back on solving (63). It is seen
that Jeans’ instability criterion A>>A; is necessary for
expansion (R>0) and is sufficient for contraction
(R<0), but in neither case is it both necessary and
sufficient.

A marginal state for any value of m is obtained by
using

g= f (R/ Ro)*™%dt (80)

as the independent variable in (63):

d*om 2 R R2 o
i + {Q +(6—m) 7 + (m—4) (m—3) RZ} Gan=0.
(81)
For m=3, we obtain van Albada’s¥ equation
(das/dg*) 4 (Q*—4mGp) (Ro/ R)*§es=0,  (82)

and therefore Jeans’ criterion of marginal stability
0?=4wGp holds for a3(q). However, ¢ is not a linear
function of time for m>%4, and this marginal state does
not give an unequivocal stability criterion.

and as Bonnor®® has shown, Jeans’ dispersion relation
(79) holds true without modification in Einstein’s
static universe. The cosmological term neutralizes the
gravitational field and there is similarity with the neu-
tral plasma state. From (84), we have

apx exp =1 (c2k?—A) V2. (85)

If the Einstein universe were static for an indefinite
period of time then all wavelengths greater than Jeans’
length (c2/47Gp)'? would grow exponentially. It is
well known,”2~™ however, that the Einstein universe is
unstable against perturbations in R. Perturbing (7)
and using the equilibrium conditions (83), we find,
to a first order,

SR=A0R, (86)
and therefore

R exp == (AY%). (87)

Comparing (85) and (87), we see that the departure
from the Einstein equilibrium state grows more rapidly
than the condensations, except when ¢;=0, and the
growths are then equal. Thus, contrary to what has
been said, the Eddington-Lemaitre model” appears to
offer little advantage over other nonstatic models.

4.3. General Equations

To solve (63) we use the relations (11)—(14) and
take x as the independent variable. For k=0 (zero
energy)

In Einstein’s static universe (which has its analogy  @2q,,  (14—4m) dom
in Newtonian theory? provided p<<pc?) R=0, R=0 at T~ dx
R=R,, and according to (5) and (7) this is possible X X X
for k=1 and (m__z) (m__g/z)
A= Ri?=4xGpo. (83) +4 [L(x) + T E— ] o =0,
Equation (63) now becomes L(x) =Q¢C? /x5, (88)
ot (c2k?—A) ap=0, (84) k=1 (negative energy):
Py, dou, . —2 —9/2
* +(14—4m) cot x o +4 [L(sm x) —(m—4) (m—3)+ M———Q] an=0,
dx? dx sin® x
L(sinh x) =Q¢*C2(sin xo) 2/ (sin x) &9, (89)
and for k= —1 (positive energy),
&> d -2 —9/2
O 4 (14—4m) coth x —= +4 [L(sinh x) + (m—4) (m—3)+ £’”_>(’”_L] am=0,
dx? dx sinh? x
L(sinh x) =Q¢*C?(sinh x,) %2/ (sinh x) 5, (90)

where Qo=cok, C=8mGpoRs*/3, A=0. Of these equations
only (88) has a general solution

3c2k? [ R,)31—4\1/2
o< Rm—18/4 = : o1
« 2 (27er0 {R } ) (
p=5(4—3y). (92)

These above equations are now used to consider the

time dependence of modes in (i) ‘a cold universe, (ii)
an isothermal universe of y=1, (iii) y=4%, (iv) arbi-
trary v and finally (v) when y<1.

72 A. S. Eddington, Monthly Notices Roy. Astron. Soc. 90, 668
(1930). : . )

%% G, Lemaitre, L'hypothese de UVatome primitif (Griffon,
Neufschatel, 1946).

7 E. R. Harrison, Monthly Notices Roy. Astron. Soc. (to be
published).



872 REVIEWS OF MODERN Puysics - OcTOBER 1967

10 T T
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K=-|
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k=0
107 .
K=-|
x=|
1 1
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F1c. 1. Curves increasing from left to right show the growth in
amplitude of 8p/p for k=0, %1 in an expanding cold universe.
Curves increasing from right to left show the corresponding growth
in amplitude in a contracting cold universe. The amplitudes are
plotted against x2. For k=0, dp/p=constx? in an expanding
universe, and dp/p=constx™3 in a contracting universe. The con-
stants are set equal to unity.

4.4. Cold Universe

A cold universe in which the pressure is zero is par-
ticularly interesting because condensation can form
unimpeded by random motions. In the cold models
Qo is zero in (88)-(90). We consider in turn x=0,
+1, —1.

For k=0 the solution of (88) is

am=Aex*" "+ Box® ™, (93)

and A, and B, are constants. Hence, during expansion
oy is either constant or decays, and during contraction
ayg is either constant or decays. Retaining only the
growing term:
Expansion:
poc Roc pm1h3, (94)
Contraction:
po R-312c pll2) (95)

for all wavelengths.
In the x=1, or oscillatory model, the solution of
(89) is

am=(sin x) 27 A; Py} (i cot x) +BiQs' (i cot x) ], (96)

where 0< x <, 41, By are constants, and P,*, Q,* are
the associated Legendre functions. Since Po'(—ix) =

— Pyl (ix), Qt(—1ix) =Qq'(ix), we need consider only
the range 0<x<3w. Using the relations™
Pyl (ix) = —3(1+4a2) V2x,
Qdl (1x) =3 (1422 V[ 3x cot™! x— (3x2+2) /(142x2) ],
(96) becomes
o =8 4,C+B,(38—8—3xC) ], (97)

8§=sin x, €=cos x.
In the k= —1 model the solution of (90) is

an = (sinh x)2" " A_; Ps!(coth x) +B_1Qs' (coth x) ],
(98)

where A_;, B_; are constants and 0<x< . From the
expressions (x>1)

Pol(x) =3(x2—1) 2,

Qt(x) = (a2 —1)112 B xIn i——_*-__—jli - \19:2_——12] )
it is found
o =S""[A4_1C+B_1(35+$*—3xC)], (99)
S=sinh x, C=cosh x. When x>>1,
am~A R™*4BR"3, (100)

(4, B now different constants), and in an expanding
(contracting) universe a, grows for m>3 (m<4).

The solutions of (93), (97), and (99) are shown in
Fig. 1 with A0=A1=A_1=1, B0=0.4B1=0.4B_1=1.
In an expanding universe the growth is least as one
would expect in the case of positive energy (xk=—1),
and greatest in the case of negative energy («=1) but
is limited because the universe oscillates.”

4.5. Isothermal Universe

In a limited range of density it is possible under
certain circumstances for a fluid to expand and con-
tract isothermally.® We therefore consider y=1, and
the L’s in (88)—(90) are constant:

L=c?kRg. (101)

Using the Jeans’ length Ag= (co®/4wGpo) ' at R=R,,
we find from (91) for k=0,

ap= Rm—1314 4 J5/2(x) —|—BJ_5/2(x) s
w=Rok(6R/Ro) V2 =642 /X (102)

where A=R/kR,, A;=(ci?/4wGp)2, and the constants
A, B from now on are not necessarily the same in

%'W. R. Smythe, Static and Dynamic Electricity (McGraw-
Hill Book Co., Inc., New York, 1950), p. 149.

7 It was previously thought? that the growths could be com-
pared by setting Bo=B;=B_;=1. By letting x—0 it can be seen
that this assumption was wrong.
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different equations. Hence,
AZ>6R;2: am=AR" 24+ BR"2 (103)
RNKLOR2:  an=R""[Asinx+Bcosx]. (104)
Wavelengths which are long compared with 6Y2\;

behave as in a cold universe, whereas for the short
wavelengths az/. oscillates.

For k=1,
am= (sin x) L4 Py (cos x) +BQx*"*(cos x) ],
(105)
and k=—1,
am= (sinh x)2"~1/2[ 4 Py*2(cosh x) +BQx*"* (cosh x) ],
(106)

where A= —14 (14+4kc?k2Re?) 2. These equations are
similar to those of the cold model when 2¢kRy< 1, and
for large x (106) becomes

< Rm—12EN2,
4.6. y=%

An isotropic photon, neutrino, or relativistic gas has a
ratio of specific heats of 4. When their pressure is
dominant but their density is small compared with the
total density of the fluid, the fluid as a whole has y=4%
and can be treated with the Newtonian approximation.

For k=0,

O Rm:};e—l3l4’

(107)
where
e=[33— (3c®k?/8xGpo) 112 =[5 —3 (R,2/A2) J2,

and ¢ is the speed of sound at density po. If X>
(24/25)12x;, then s, behaves as in the cold universe,
but when

A< (24/25)12,, (108)
then oy, oscillates:
an* R Bl4exp (38 In R), (109)
where 18 =e.
When k=41,
am= R 2[4 P,}(1 cot kx) +BQs (¢ cot kx) ], (110)

and
o= —3-+[Z—6(x,2/x0) 2

and Pyl, Q' are nonperiodic when the wavelength % is
large compared with X;.

4.7. Arbitrary v

Apparently there are no general solutions for arbi-
trary v when k==1. In particular, there are no solu-

tions in terms of simple functions for the important
case of y=3%. Savedoff and Vila® have discussed the
problem using hypergeometric functions and have also
given the general solution (91) for k=0. Equation (91)
can be written in the form

e R34 1 (6L R/ RiJ=71),

where A=A, or

(111)

7\2=k"2=602/41l'Gpo, (112)

at R=Ry. This method is convenient for it immediately
shows the following:

<%, RKLRy

ap=AR" 24+ BR™2 (113)
>4, R>R,
v<%, R>R,

o= Rm"18/4( 4 sin x+ B cos x),
v>4%, RKLR,y

(114)

where n=1—3v/4, x=6(R/Ro)2~*2, Thus for a wave-
length which is marginally stable (A=2Xg) initially,
when R=R,, a, becomes nonperiodic and grows with
time in an expanding (contracting) universe for
m>2, yv>4(m<%, v<%), and becomes periodic and
decays with time in an expanding (contracting) uni-
verse for m<n+i2, y<gF(m>n+E, v>%). These
results can be partly obtained by physical arguments:
at a distance A the velocity of recession is AR/R=u,
and from (9) with A=«=0,

w/ct=3(N/A). (115)

Since AxR, Ap2=%X2(R/Ry)*3, we have u?/cli~
(R/Ry)**, and in an expanding universe this ratio
increases for y>4 and the thermal motions are of
diminishing importance.

4.8. 7<1

We consider now the important case when ¢2<0
for a range of wavelengths, because of radiative trans-
fer. For convenience the discussion is confined to x=0.
The argument of J,, in (91) is now imaginary, and
when large

3y—4 1/2

Q& R0t exp 4 (__ 3co?k? { %} )

116
21I'Gp0 ( )

Thus, if ¥ =%, then the exponentially growing solution is
p=po exp [ — (3cok*)"2/2rGpoJ[1— (RM?/R"™) ], (117)

where po is the initial contrast density. The exponent
has a maximum value of 2X¢c?/ MG, where A=k, and
M =4xpR3/3 is approximately the mass of the eventual
condensation.
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5. RELATIVISTIC COSMOLOGY
5.1. Unperturbed Models

In its unperturbed state we assume that the universe
is homogeneous and isotropic, and the metric is given
by the Robertson-Walker line element

ds=dp—[ R/ (14-+xr) 2] (dr4r2d2),  (118)

where dQ?=d0%+sin? ©d¢?, 7, O, ¢ are co-moving co-
ordinates, R(#) has the dimensions of time, and k=0,
=+1 is the curvature constant. The energy-momentum
tensor of a perfect fluid is

= (p+p) geutui—55°p, (119)

in which pc? is the energy density, #* the four-velocity,
and p is the isotropic pressure. For a fluid that is
stationary in the co-moving system, #°=1, u'=#?=
#3=0, and the components of the energy-momentum
tensor are

T'= pC2,

T =T2=T#=—p. (120)

All that now remains is to determine R(f) in (118)
with the Einstein equation

Rji—%ajiRll_*"ajiA: - (81!'0/62) Tji. (121)

In this equation, R;* is the contracted Riemann-
Christoffel or Ricci tensor (its further contraction R;?
is shown explicitly to avoid confusion with R(#), and
the cosmological term A is included as in the Newtonian
treatment.

Equation (121) is readily solved using the line-
element (118) and the components (120) of the energy-
momentum tensor.!"” The following method however is
particularly simple. Transforming to the coordinates:

x=7 sin O cos ¢,
y=rsin O sin ¢,
g=r cos O,

r2=x244?+2% the line element (118) in the immediate
neighborhood of =0 becomes

dst=dP— R[1— k(24 y*+2) | (da*+dy+-d2).

(122)

For these coordinates the Christoffel symbols

0gps | Ofgs agpq)
T r—Llgrs {277 o5 . o7F 123
wr=ter (G4 e %) 12g)
are™ .

To#*=c2R?T,,°=6,*(K/R), (124)
Tgg= —Pgaﬁ= —-I‘aa"‘=%1€x“. (125)

77 L. D. Landau and E. M. Lifshitz, Classical Theory of Fields
(Pergamon Press, Oxford, England, 1962), Chap. 12.

8 The convention adopted is that Latin indices assume all
values 0, 1, 2, 3; Greek indices N\, u, » assume only the values
1, 2, 3, and «, B, v are used when there is no summation and
aFEBFy.

As r—0, the only surviving Christoffel symbols are
To.® and T,?, and the spatial derivatives of (125) are

(8/8x%) Tgg™ = — (3/0x*) T

=—(9/02%) T'ua®=1%x. (126)
Since
Rij=(9/02%) Tii! — (0/0%") T+ Tuy" T jm? — T T'im™,
(127)
we find from R;?=g#*R;; that
R=3R/R, (128)
R,*=(RR+2R24-2k) /R, (129)

and all other components vanish. From (121) we now
obtain the well-known equations

R2=1(8rGp+A) R*—x,
(d/dt) (R¥p) +(p/c*) (dR?/dt) =0.

Every observer can adjust the origin of his co-moving
coordinate system to give r=0, and therefore (130)
and (131) apply to all co-moving observers. Equations
(130) and (131) are identical with the Newtonian
equations (8) and (9) when p/c? is negligibly small
compared with p. Alternative expressions of (130) and
(131) which will be useful are

(130)
(131)

(87Gp+A) R2=3(R*+«), (132)
(A—87Gp/c?) R*=2RR+ R+, (133)

and therefore
R=—3(4nG)[p+3(p/c) IR+3AR.  (134)

5.2. Equation of State

We have two equations (130) and (131), or (132)
and (133), for the determination of R, p, and p, and
therefore require an equation of state. We use
Zel’dovich’s equation of state™

p=0=1)pc, (135)

and in many cases of physical interest in which the
pressure is appreciable » has a constant value. Thus, if
v is constant, then (130) becomes

R*=C,R=%+3IAR —x, (136)
C,=8rGpR>/3, (137)
and from (131) C,=const. Equation (134) is now
R=1(2—3y)C,R-3+41AR, (138)

and therefore

2RR—(2—3y) (R?+«) —vAR?=0. (139)

7 Ya. B. Zel’dovich, Zh. Eksperim. i Teor. Fiz. 41, 1609 (1962)
[English transl.: Soviet. Phys.—JETP 14, 1143 (1962)].
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In an isotropic photon or neutrino gas, or in iso-
tropic fluids in which particles and their fields have
energies large compared with their rest masses, »
attains a maximum value® of 4. (Zel’dovich® has
proposed increasing the upper limit to 2, but it is pos-
sible that this is unrealistic.!) The generally accepted
physically meaningful values of » lie in the range
1<v<%. McCrea® has suggested a value of »=0, or
p=const, as a method of giving sensible meaning to a
steady-state universe. As the universe expands stress
energy is converted into matter. Whittaker®® has also
proposed a value of =% for a model in which pR=const.
The various possible models for different values of the
stress constant » have been classified.” In the following
treatment we leave the stress constant unspecified
except in certain particular instances. McCrea pro-
poses that the pressure in (135) for »<<1 (and pre-
sumably also for »>%) can be regarded as a uniform
cosmic stress that is not manifest in local and detailed
phenomena. Spatial variations in density and pressure
are related therefore by a distinctly different equation
of state.

For small spatial variations we use

5p=(5—1) 6pc2. (140)
Since dp/dp=cs, we have
i=1+4c2/c, (141)

and 7 is close to unity when ¢<<c, and # =14 for ¢,=c¢/V3.
Although # has an upper limit of 4, and is unity in a
fluid consisting of particles with no interactions (other
than gravitation), it has in principle no lower limit.
That is, 7<%, and it is possible that #<1 for certain
mechanisms of transfer. Suppose dp/dp is a constant;
also po, po, and py, p1 are the initial and final values of
the density and pressure for an interval of time at a
given location. Then

5=14c2(p1—po) / (pr— o) -

The smallest possible value of p, is zero and the maxi-
mum possible value of pg is $poc?; in this case

7= (p1—%p0)/ (pr—p0),

and as py—pg, »—>— 0. At least in principle we have
$2>v>—®. The transfer processes themselves, how-
ever, will impose physical limitations on this range.

For the Friedmann type models of k=0, &1, and
A=0, it is found

k=0,  R=(Cpx?)!V®2, (142)
k=1,  R=(C,sin? x) Ve, (143)
k=—1, R=(C,sinh?x)V®=2,  (144)

8 B. K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler,
Gravitation Theory and Gravitational Collapse (Chicago Uni-
versity Press, Chicago, Ill., 1965).

81 E. R. Harrison, Astrophys. J. 142, 1643 (1965). .

82 W. H. McCrea, Proc. Roy. Soc. (London) A206, 562 (1951).

8 J. M. Whittaker, Nature 209, 491 (1966).
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where
dt/dx=[2/(3v—2)]R. (145)

These equations reduce to the original Friedmann and
Einstein-de Sitter solutions (11)-(13) when »=1.
~ If pmat and praq are the present densities of matter and
radiation in the universe, then, neglecting mutual
interaction, pma;< R73, praqax R™%. The two densities
are equal when

(146)

Thus if pmar~107* g cm™ and praa~10"% g cm=3 cor-
responding to thermal radiation of 3.5°K, the densities
are equal when p,~1072L. Thus previously, at higher
densities, the radiation density was dominant, at least
for a period of time, and according to the conventional
view » had a value close to 4. When the mean photon
energy is k721 MeV, pair production populates the
accessible particle and antiparticle states, and when
kET>1 GeV it is reasonable to suppose as a first ap-
proximation® that the Fermi energy level of the fer-
mions is comparable with the mean energy 27" of the
bosons, and the number density of each kind is of the
order (kT /hc)3.

For reference the solutions for »=4% are given:

Pc= Pmat‘i"Prud = Zplnat4prad—3-

k=0, R=C"2y5x, (147)
k=1, R=C";sin x, (148)
k=—1, R=C"%5sinh ¥, (149)

dt= Rdx. (150)

Equation (148) is Tolman’s®® model of a universe con-
taining radiation. Observations are at least consistent
with a present value of xo~1, and therefore i~ R, and
at the density p, of (146)

X~ (Ro/ Ro) 2~ (po/pc) 1.

From the present density of pg~10=% g cm=3 it follows
that x.~1/30. At x<x. the models (147)—(149) have
negligible difference and for simplicity we can assume
xk=0. This would be true for the high density stage of
all models of £>2.

5.3. Linearized Equations of Perturbed Models

We consider small departures from the metric (118)
as the result of displacements of the fluid. A perturba-
tion treatment of the cosmological models, as distinct
from a static and flat metric,%%" encounters the slight
complication of nonvanishing Christoffel symbols. A

8 H. Y. Chiu, Ann. Phys. (N. Y.) 26, 364 (1964).

8 R. C. Tolman, Relativity Thermodynamics and Cosmology
(Clarendon Press, Oxford, England, 1934).

8 L. D. Landau and E. M. Lifshitz, Classical Theory of Fields
(Pergamon Press, Oxford, England, 1962), p. 349.

8 J. Weber, General Relativity and Gravitational Waves (Inter-
science Publishers, Inc., New York, 1961).
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general treatment was first given by Lifshitz,® and more
recently contributions have been made by Lifshitz
and Khalatnikov,® Irvine® Hawking, Silk Sachs
and Wolfe.”® In general, these solutions include rota-
tional motions and gravitational waves. Simple ir-
rotational motion, which in the elementary Newtonian
treatment is of most interest, is often difficult to dis-
entangle owing to conditions imposed on the metric.
The following is a simple approach and is analogous
to the Newtonian treatment.

Small variations in the metric tensor are expressed
as gix+0gix, where gj; is given by (118) and

(151)

We assume % and its derivatives are everywhere small,
and that quadratic and higher-order terms in small
quantities are negligible. Thus the unperturbed tensors
gir, g™ are used for lowering and raising the indices of
h*, hi: hii=g%hy=gnh™, and in effect 4, is a tensor
field in the unperturbed g;: space. Since gg*=46, to
a first order

dgin="hj.

3(gng™) =hi+gndg*=0,
and therefore

dgit = — ik, (152)

It is more convenient to use Einstein’s equation
(121) in the alternative form

ii=—(8xG/c*) (T/#—38;T)+58;4,  (153)
and its perturbation is
ORj=—(8xG/c?) 6(T;—%6,T). (154)

The perturbation &R, is evaluated in terms of %;*
as follows. From (127),

R =[(8/0x%) 8T%i? — T 0T 1™ — T'18 T seml + T il 0 Tt™ ]
—[(8/9%%)8T 41— Tifm8T jut — T ;8 Tt T ™3 T3],

thus giving the Palatini equation®
OR = 0Tri% j—0T% iy, (155)

where a semicolon denotes covariant differentiation.
Also, to a first order,

OR;¢=0(g™*Rs) = g*oRu— IR}, (156)
and with (155), we obtain
g"’”(&l"kz’;j—aI‘,,,-’;z) =5Rji+hkiR,‘k. (157)

8 E. M. Lifshitz, J. Phys. USSR 10, 116 (1946).

8 E. M. Lifshitz and I. M. Khalatnicov, Advan. Phys. 12,
185 (1963).

% W. M. Irvine, Ann. Phys. (N. Y.) 32, 322 (1965).

91 S. W. Hawking, Astrophys. J. 145, 544 (1966).

92 J. Silk, Astrophys. J. 143, 689 (1966).

% R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967).

% C. Mgller, The Theory of Relativity (Clarendon Press, Oxford,
England, 1952), p. 334.

The perturbed Christoffel symbols are
8T =8(8"greT*) = 870 (grol'ks*) —T'ni*hs'

ahk, ahjr E)hkj)
— L y TP —T%hd, 158
: (axf dxF  dxr k (158)
thus giving Lifshitz’s® equation
0T kst =38 (Pars s+ hjrite— Pikr) - (159)

In particular, 6w =3k;, where % is the trace A

From (157) and (159) we have a linearized differen-
tial equation in %;:
g* (b= ik ji—hit ) +8 Rt =2(0R7 4R ) .

(160)

The gj and R;* are known, and 6R;? is given by (154)
in terms of the perturbed energy-momentum tensor.
A similar equation to (160) was first derived by
Lanczos.%

The trace of T;%is T=pc2—3p, and therefore

5T=c2p—35p.

Furthermore, giju*u/=1, and from &(gs2*u?) =0,

(161)

g7+ g 0t ui+- g jutou =0,
where #°=1, #*=0, and therefore
Fo® 200600 =0.
Also, grjubut=258,%6,, and
5 (grittu®) = 80'h 0406 Puodui 4 gr j6uFdo*ul.
We therefore find, from (119)
8T;#=0(pc*+p) gesubui+(pc*+p) 6 (rjé*u?) —8,°6p
=0803,°0 (pc*+p) —8,%0p
+ (pc2+p) (8678 Puoduwi+-gijukduud) . (163)

From (162) and (163) it follows that the components
of 6T;* are

(162)

8T =c26p,

8Ta" = (pc?+p) (ha'+gaadu®) ,

STx=—08p,

5T52=0, (164)

where a, 8=1, 2, or 3, a7, and no summation. From
(154) and (164) we now have

RO = —4xGo(p+3p/c?),
3RO = —87G (p+ /%) (ha+Laad),

Ro2=47G5(p—p/ ), (165)

% K. Lanczos, Z. Physik 31, 112 (1925).
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and 6Rg*=0. In addition, the components of R;* are
Re’= —4xG(p+3p/c?) +A4,
Re2=47G(p—p/c?) +A. (166)

Collecting together the equations (160), (165),
and (166), we have, for 1=45=0,

00— 2k, 0+ 8" B, 1m
=—87G(h'+0) (p+3p/c*) +2h’A; (167)
for 1=0, j=a, (a=1, 2, or 3; no summation over a);
00— hot;ar—hat 01+ 8 ha0 1
— —8r G (p+30/6%) +2(p+ /) guabu]+2hA;

(168)
for i=a, j=a:
8 (Maa—2hot a1) +8™ha®; m
=8 F (ha*+8) (p—p/c*) +2haA;  (169)
and for i=qa, =8, (ap8):
g2 (Riap—haligi—hghar) +87hs% m=0.  (170)

Altogether, (167)—(170) provide ten equations for
the determination of the ten unknowns: 4; (four com-
ponents can be discarded by coordinate transforma-
tions), éu (since du’= —1h), and dp (8p is given by

an equation of state).

5.4. Irrotational Motion

For irrotational motion it can be shown that (167)-
(170) reduce to three equations determining ¥, ¢, dp,
as in the Newtonian treatment. A sufficient condition
for irrotational motion is that all nondiagonal com-
ponents of %;* are zero, and k"= —hk,°.

The simplest procedure is to use local coordinates in
which the Christoffel symbols are given by (124) and
(125). We also adopt a system of coordinates in which

Ttoa=0, (171)
hat0—36ah,0=10, (172)
and the perturbed velocity is
dur=09¢p/dx=. (173)
Then (168) becomes
3(9k/0t) — (1/R?) (3/9¢t) (R*hs") —6
=167G(o+p/c*) R, (174)

and since 6 can be absorbed into ¢, we assume §=0,
and therefore

hd=—h'= —he*=—hd=20/c". (175)

The 2¢72 is included so that ¢ is equivalent to the
gravitational potential of Newtonian theory. We are

thus left with six equations: (167), (168), (174), and
the three equations (170), for the determination of the
six quantities %g®, 8p, ¥ and ¢. However, the kg ac-
cording to (170) are propagated independently of the
fluid disturbance and therefore we can set them equal
to zero. For small irrotational fluid disturbances the
line element is therefore

2(1 — 2
ds?= (1+2 !) ar— M
c (14-3x2)?
McVittie® has used a similar line element for an Ein-
stein universe containing discrete condensations.
A transformation of the coordinates xi—x'*=xi+¢,
where €' are small quantities, leads to g+, where

(drr+r2dQ2).  (176)

¥ik= hik— €j;x— €x; 5.

The line element (176) is unchanged with the Killing
equation®”

€jkter;=0.
From

dx'i dx'*

(gak+'YJk) ds d =1,

it is found deo/ds=de°/dt=0. Also, for éu* to remain
unchanged, de?/dt=0. Clearly, these conditions are
not limited to infinitesimal transformations, and any
x'—z'* leading to Y(xf)—y/ (2'%) is admissible.

dx? dx
(gint :k) —-

5.5. Equations of Irrotational Motion

With the line element (176) the only surviving equa-
tions of (167)—(170) are

4+12RRY—[%=47G(2Y+¢8) (p+3p/c2) — YA,

: .. . (177)
ARRY+4(RR+2R2R*) Y+ 1%

=4rG(2—c) (p—p/c") + 204, (178)

(d/di) (RY) = —4nG(p+p/") Rec*.  (179)

These equations are obtained either by working through
the covariant differentiations, or more simply using
local coordinates. The results have been checked with
Dingle’s®® formulas for an orthogonal line element.

With
R k2
) v,

EW/=< +3 ‘Kj'é;"i-

Vi=—k%,

(177) and (178) become
4nGesp= —3RRW— (FB+3R2—3x) R, (180)
4#G5P=¢+4RR*1¢+ (2RR+R2— k) Ry, (181)
(Wittie, Monthly Notices Roy. Astron. Soc. 92, 274
9 L. P. Eisenhart, Riemannian Geomeiry (Princeton Uni-

versity Press, Prmceton N. J., 1949), p. 233.
% H. Dingle, Proc. Natl. Acad. Sci. (U S.) 19, 559 (1933).
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The fluid motions are therefore parallel to the pressure
and density gradients.

Let p=(v—1)pc?, 6p= (5—1)dpc?, then using (136),
(139), the above set of equations (179)—-(181) become

¥+ (1+35) RRY

+{ (5—1) P+FAR+87Gp(i—v) R*— (65— 4) k}
X R2=0, (182)
(d/dt) (RY) +4nGrpc®Rép=0, (183)
i+3G—) (R/R)u—3(v/)—kwp=0, (184)

where p=0p/p. The last two equations can also be ob-
tained from 6Ty,;*=0 and &T,;;=0. Equations (182)-
(184) are the general equations with arbitrary », 7 for
the determination of ¢, ¢, u
At low pressure we have p<pc? and » is close to
unity; also #=1+4c¢?2/c? with ¢2<<c?; therefore (182)
becomes
Y+4RRY+{ (c.k/c)*4+AR— 2k} R-%=0. (185)
This is identical with the Newtonian result (65) if %
is replaced with 2R (k is now dimensionless), or if R
is replaced with R/ Ryc. Similarly, (184) is identical
with (37); and since ¢>— o, (183) becomes (38)
For small scale 1rregular1tles of N&Re, \NR/R<c, in
which the fluid velocity is small compared with the
velocity of light, an approximate form of (160) is
(Ph= —8xGd(p+3p/c?). (186)
which is Irvine’s® equation. In this approximation
8p/p, 0p/p, need not be small quantities. The results
are equivalent to the Newtonian results for small
scale irregularities and p<<pc?. Lifshitz’s basic equations
are similar to (167)-(170). Coordinate transformations
are possible which allow four of the ;¢ to be zero;
which of the %;¢ are made zero determines to some
extent the simplicity of the equations for a given
physical problem. Lifshitz makes the choice 2°=0
and derives solutions in terms of scalar, vector, and
tensorial harmonics.%

5.6. Normal Modes of Vibration in Curved Space
Using 7, 8, ¢ coordinates in
VA +kY =0,

and separating the variables y=y()¥ () ¥,,»(6, ¢), we
find that only the radial function ¥(r) is dlfferent in
the three cases k=0, 1.

9 The author is indebted to R. K. Sachs for pointing out that
Lifshitz’s solutions do not exclude irrotational motions.

For spherical harmonics of ‘degree » the radial equa-
tion is

1 d/  dw\ ..
¢ dr (qlw Er_) + [‘k2

where ¢= (143w2)~2 We consider briefly the wave

y
functlons and eigenvalues in a space of negative and
positive curvature.5-100-102

”("‘Ll)}qf 0, (187)
gr

For k=1 let
sin a=7/(14%?);
hence,
da=dr/(1+21r), (188)
and.(187) becomes
d av 1
(sin? o)) ~1 — (sin2a~> + [k2 nint )] =0.
da do sin? « '
(189)

With ¥=1I sin'/? @, this equation is

(sin @)~ % (sin « Z—H) [m+1) _ nt3) 2] =0,

sin? &
(190)
and A(A+1) =k24-3.
For k=—1 let
sinh a=7r/(1—1%);
hence,
da=dr/(1—%r?), (191)
and ¥=1II sinh~%2 «; then (187) becomes
d dll
(sinh @)t — = (smh a E)
[m+1) - (”J}: 2) ] =0, (192)

and )\(X+1) =k>—3.
Let £=«'2, then both (190) and (192) can be ex-
pressed in the one equation

(sin £)~ Li(smgdj) [)\(A—I—l)—%—{j)f]ﬂ=0,

dk n? ¢
(193)
where now N\(A+1) = «k?+3, or
M 2= — 3 (1xk?) 12, (194)

The solutions of (193) are the associated Legendre
functions P,*(cos £), Q)*(cos £), and u=3+n, v=A.

Positive curvature (x=1). In this case it is more con-
venient to set

k=y(y+2). (195)

100V, Fock, Z. Physik 98, 148 (1935).

1R, Schrodmger Phy51ca 6, 899 (1939).

2 F. Schrodinger, Exptmdmg Universes (Cambridge Uni-
versity Press, Cambridge, England, 1957).
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Since P#= P_, 4*, or Py /= P)*, we use v=\;. Because
wu=v is an integer, but u is not an integer, we can use
Pp and P, as linearly independent solutions.!®
These are

W,»= (7/2 sin &) Y2 Pyjay 1 /*t(cos o) ,

W, = (/2 sin &) V2 P1jo1, > (cos o).

(196)
(197)
From the definition
(cot o) E/ztn
r(F(3+n))

X P (=, $+; 15 (1) ; sin? Ja), - (198)
it is seen that as @—0 (or »—0)

(cot o) £W/ztm)
(sin )T (1F (3+n))’

and as » is a positive integer, only ¥, is regular at
the origin. Therefore

Pyjg A (cos ) =

' ,Y:t"——)N

T=V,"=(7/2 sin ) V2 Pygyy 2 (cos &). (199)

We have assumed that v is integral; it can be shown
that this is necessary in order that ¥ is periodic or
single-valued:

W, (—cos a) =cos (y—n)n¥,™(cos e). (200)

Thus the wave function is symmetric (antisymmetric)
about a=31r, or =2, when y—# is an even (odd)
integer. This has interesting consequences for elliptical
space 0<7<2 and spherical space 0<r< . The
transformation 7—4/r leaves the metric (118) un-
changed. It is therefore said® that elliptical and spheri-
cal space are indistinguishable because 2<r< « is
merely a remapping of elliptical space. In a perturbed
universe, however, elliptical space is not a mirror image
of 2<r< o for the antisymmetric wave functions, and
therefore it would seem to be an inadequate model of
the universe.
For n=0,1, -, v,

_,_ sin"ad*[cos (1+vy)a]

v

M, d(cos o)™t
Mp=(1+v)’L(A+y)*—1]---[(A+7)*=n*].  (201)
It follows, for =0,
V. 0=sin (14+v)a/(14+7) sin a, (202)
and for n=v,
V.= (sin @)?/(1.3.5¢ <+ 2v+1). (203)

108 W, Magnus and F. Oberhettinger, Functions of Mathematical
Physics (Chelsea Publ. Co., New York, 1943).

10¢ A, S. Eddington, Mathematical Theory of Relativity (Cam-
bridge University Press, Cambridge, England, 1950), p. 157.
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Also
Wy Y=cos a¥, 7, (204)
Voo 7= (1— ;Zi: sin? a) . (205)
Hence, the radial functions of the lowest modes are
Ul=cosa, Yil=%isine, (206)
VI=1—%sin’a, Yi;l—%sinacosa,
V2= 5 sin? o, (207)

V5 1=1 sin a(1—¢ sin’ a),
(208)
(209)

V= cos a(1—2 sin? @),

- ) a1
Ws2=+% cos a sin? a, V3= 1%5 sin® a.

In a space of uniform positive curvature the eigen-
values are

k= (v+2),

and m<n<w. The fundamental mode has an eigenvalue
of k2=3.

Negative curvature (x=—1). For the eigenvalues in
this case we use

7=1,2,3, 1,

F=y1, (210)
and from (194), \y o= — 3=4y. P,~* and Q,* are linearly
dependent because u= 13 is half-integral, and for the
linearly independent solutions P,* and P, are again
chosen. Since Py*= P\, we chose »=N\;, and therefore

= (/2 sinh @) 2P_yppi 7 (cosh ), (211)

V= (r/2 sinh @) V2P_yj0ysy > "(cosh @) . (212)
The hypergeometric expression
(coth o) £/z+m
2 (cosh @) =~
Poamyin™(c0%h &)= T0% 3
X F(—iv, 3+iy; 1F (3+n) ; —sinh? 3a)  (213)

is real, and as a—0,
(coth 3ar) £/2+m)
(sinh @) 2T (1F (3+n))’

and therefore only ¥, is regular at the origin. Thus,

(214)

\Ilyii:”-—éN

V=V, "= (7/2 sinh &) V2P_y/0;.sy Y*"(cosh ),

and because space is open, there are no periodic con-
ditions to satisfy, and y can have any real value.
For integral values of #,

_ sinh® & d**1(cos yar)
Y 7 N, d(cosha)™’

Na=—72(7*+1) - ("),

(215)
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and for =0,
¥.0=sin ya/y sinh «, (216)
n=1,

¥, 1= (y241)"1(y cot ya—coth o) ¥,0, (217)

and so forth.
We have found that the eigenvalue spectra for

k=0,1,and —1 are

K= O: k= 72; 722 0;
K= 1: k2=7(7+2)7 'Y=1: 2)3""
K=—1: k2=72+1’ 7220; (218)

and the lowest eigenvalues are £*=0, 3, and 1, re-
spectively. The eigenvalues form continuous spectra
for zero and negative curvatures, and a discrete spec-
trum for positive curvature.

5.7. Time Dependence of Modes in a Static Universe

In the static models B=R=0 and therefore, from
(132) and (133),

A=47(3v—2)Gp= (3»—2) k/vR2. (219)
Equations (182)—-(184) now become
J+[G—1)k— (35—2)]R-y=0,  (220)
Y—4nGrpc? Rep=0, (221)
kpt (/) (K*—3k) =0. (222)
It follows that
Y dpx expa=i{ (5—1) k2— (35—2) k}2R~1t.  (223)

With » arbitrary there are an infinite number of
both unstable and stable static models. Let R—R-}4R,
then from (130), (134), to a first order

S K—yASR=0, (224)
or
SR = exp={(3v—2) «}12R14. (225)

It can be shown’ that unstable models occur when
k=1, »>%, and when k=—1, »<0; and stable models
occur when x=—1, »<0.

Consider first k=1. Then, from (223)
bpec expaiif (7— 1)y (v42) — (35—2) } R,

where k?=+(y+2). For v=5=4%, which is of particular
interest,

(226)

dp o expa=i{y (v+2) —6}1/%/312R, (227)
and all modes v>2 are oscillatory. The fundamental
model y=1 grows as exp (#/R), whereas the universe
departs from its equilibrium state as exp 2Y%/R,
from (225). The mode v=2 varies A{+Bt. The case

of »=1 has been previously considered in (4.2); when
#<1, all modes tend to be unstable.
In the case of k=—1, k2=+2+1

dpxexpi{ (7—1) (v*+1) — (3—2) }'2R~Y,  (228)

with ¥?>0, and a given mode grows exponentially
when 7< (y*—1)/(v2—2).

It was hoped® that the formation of condensations
in an unstable static universe would increase the volume
to V446V, thus launching the universe on a career of
expansion rather than contraction. Using the line
element (176), it can be seen

0V=3R? f sin? « sin 0Y(«, 8, ) dadfde, (229)
v

and in the linear approximation, §V=0, as was sub-
sequently discovered.!® It is interesting to notice that
the solution of Lapace’s equation in spherical space is

(230)

where ¢ is a constant, as shown by Whittaker!®® and
Copson.'” The transformation a—wr—a or r—4/r
reverses the sign of ¥¢°. Thus, if the universe consists
of a large number of condensations, then by taking
conjugate pairs at («, 6, ¢), (r—a, 7—6, ¢+=) the net
gravitational potential vanishes, as it must, since the
effect of gravity is already included in the assumed
curvature.

Spherical space—not necessarily static—has the
intriguing property of providing a form of “CPT”
invariance. If k=1 and 7°= 22-+42+2% in the line element
(118), then

W'=gq cot a=gq(r1—1%r),

x=2 tan 4 sin 6 cos ¢,
y=2 tan 3« sin 6 sin ¢,
(231)

The operation O(r—4/r) maps <2 onto 7>2 with
reversed parity: ¥——x, y——1y, z——z. Similarly, if ¢
is an electric charge, then ¢——g. Thus if the charge
conjugation operator C is limited to electric charge,
then O conserves CP. If now we consider a perturbed
spherical space, it can easily be shown from the geodesic
equations that CP invariance is violated whereas
CPT is conserved, where T is the time (or momenta)
reversal operator.

z=2 tan 3« cos 6.

5.8. Time Dependence of Modes in Nonstatic Models

We assume that A=0, and take first the conventional
view that 1<y <%.The case of p<<pc? has been previously
considered and we therefore consider the extremely

105 W. H. McCrea and G. C. McVittie, Monthly Notices Roy.
Astron. Soc. 92, 7 (1931).

06 J. M. Whittaker, Proc. Cambridge Phil. Soc. 24, 414 (1928).

w7 E. T. Copson, Proc. Roy. Soc. (London) A118, 184 (1928).
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interesting case of v=4%. In the range 107 <p<10™2
g cm™3, where the upper limit corresponds to a photon
energy of the order of 1 MeV, radiation is the dominant
constituent in the universe and both » and # have
values close to %. At higher density the composition
of the cosmic fluid becomes progressively more com-
plex; nevertheless, it seems likely that » retains a value
close to %.
Defining 3,, as

=Y R™, (232)
we have from (182) with A=0, y=7=1%,
Bsjat (3k2—2L2rGpR — 1) R=B52=0.  (233)

Thus Bs/2, and therefore all 3,,, are periodic in time when
A< (c¥/107Gp) 112, (234)

where A=cRk™!, and the curvature term is negligible
compared with £

Because x is generally a small quantity at high den-
sity (182) transforms to (for k=0, #=1)

VAV + (R —4x) =0, (235)

using (147), where primes denote differentiation with
respect to x. Either from (180) or (184), the contrast
density is

su=—x¢'— (Fk*+1)¢. (236)
The solution of (235) is
Yo x 32 T pa2(ax)
a= (3k2—4x) 12, (237)

For the low-order modes ax<<1, and therefore ucxy
and

p=A+BR, (238)

where xo« R /2, Thus &p/p is either constant or
diminishes in an expanding universe. For the high-
order modes of ex>>1, we have p«x%/, and therefore

w=A sin ex-+B cos ax. (239)

The condition ax>>1 is simply A< (¢*/8nGp)'. We
can summarize by saying that the contrast density
oscillates at constant amplitude at a frequency of
2¢/312\ for short wavelengths, and is either constant
or decays in an expanding universe for long wave-
lengths.

The possibilities occurring when »<1 are not par-
ticularly interesting, except perhaps when »=0, as in
the steady-state model. Let #=14-¢>2/¢? «=0, then for
¢:2<Lc* (182) becomes

6 ¢ [ 2 )2(@2,‘ 3)
LA Z kb (1—9) ) g=0.
Ria <3V_z B (1) ) y=0

¥+

(240)
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For »=0, and maximum growth of ¢;=0, we find
dpxyR?=AR3+BR™, (241)

and in the steady-state theory condensations cannot
form as a result of perturbations in the average density,
as shown by Bonnor.?

6. DISCUSSION

The vibrations of the universe are moderately well
behaved and show no signs of a catastrophic growth
in amplitude. This conclusion has been reached by
several authors in various ways. Within the limitations
of simple linearized theory the expanding universe is
reasonably stable when subject only to gravitational
interactions. This is illustrated in an approximate
manner by Jeans’ theory. The gravitational frequency
is of the order i(pG)?, and the age of the universe is
of the order (pG)~'2, and hence perturbations cannot
grow significantly in the time available.

In an expanding cold universe of zero curvature we
have

u=po(po/p) ', (242)

where uo, po denote initial conditions. If the disturbances
originate from thermal fluctuations, the mean-square
fluctuation in N particles is

< (AN)2>=kT(61V/ap,)T'V, (243)

where u is the chemical potential. The right-hand side
of this equation is equal to N for a Maxwellian distri-
bution, and is of the same order for a relativistic gas
of bosons, and for fermions in which the Fermi energy
is equal to £7. Therefore

“ONN —i )

and V=M /m, where m is the mass of the constituent
particles and M is the eventual mass of the condensa-
tion. Hence, (242) becomes

ur~ (m/ M) 2 (po/p) 13,

where p is the mean density of the universe when the
condensation has formed, and py~M/\? is the initial
mean density where )\ is the characteristic size. Now u
cannot be made as large as we please by increasing
po, for then the assumption of a cold universe breaks
down and (239) replaces (242). There is thus a limited
range of po/p which is not large enough to compensate
for the extreme smallness of m/M.

A redeeming feature of gravitational theory is that
the universe in the large tends to remain homogeneous
and isotropic. 1f gravitational theory alone adequately
accounted for the growth of irregularity, then the low-
order modes would also develop large amplitudes and
the universe would possess pronounced macroscopic
anisotropy. What is required is that the universe is

(244)
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unstable for an intermediate range of wavelengths at
some stage in the expansion, and the density in various
regions thereafter ceases to diminish with time. Such a
concept demands that the gravitational potential of
the disturbance increases with time and attains a value
of | |[~GM/\. But in the cold universe, and in the
radiation universe, ¢ is not an increasing function of
time.

A linearized theory limited to irrotational motions
and gravitational interactions is open to several criti-
cisms. The neglect of all forms of rotation is a gross
simplification, since angular momentum is a common
and indispensible feature of galactic and stellar systems.
It seems plausible that at subnuclear density, at least,
a treatment based on rotational motions will lead to
even slower rates of growth owing to the presence of
inertial forces. Gamow!®:1% has proposed a primordial
turbulent state of large amplitude fluctuations for the
initial conditions. Similarly, Weizsficker®® assumes an
initial state of turbulent gas clouds. Bonnor'!! points
out, however, that turbulence is more likely to be the
result rather than the cause of condensations. Further-
more, initial conditions of this nature add to the mystery
rather than clarifying it, and their postulation falls
within the province of the initial structure hypothesis.

18 G, Gamow, Phys. Rev. 86, 251 (1952).

19 G, Gamow, Kgl. Danske Videnskab. Selskab Mat. Fys.
Medd. 27, No. 10 (1953).

0 C, F. von Weizsicker, Astrophys. J. 14, 165 (1951).

1 W, B. Bonnor, Z. Astrophys. 39, 143 (1956).

Tolman,"'? Bonnor,"*! and Peebles'® have used nonlinear
theory to study the growth of single condensations, and
Bonnor has shown that the formation of the nebulae is
an improbable occurrence if pg~N—'2, where N is the
number of atoms.

The assumption that initial disturbances are small
demands that rapid growth is possible at some stage
in the expansion of the universe. This would appear to
be impossible unless we abandon the rudimentary
fluid prescription. More complex fluids with mechanisms
of radiative transfer are an attractive possibility.
However, the difficulty is that radiation is the dominant
constituent of the universe over an extremely wide
range of density. In this period the motion of matter is
impeded by radiative drag,” and thereafter py/p in
(244) increases approximately by only three orders of
magnitude for galaxies. Either condensations evolve in
spite of radiative drag or they must evolve rapidly
after the radiation deluge has subsided.'*

A study of the modes of vibrations of the universe
shows that the origin of basic structure is an intriguing
and challenging problem.

12 R, C. Tolman, Proc. Natl. Acad. Sci. (U. S.) 20, 169 (1934).

up, J. E. Peebles, Astrophys. J. 147, 859 (1967

14 Note added in proof. It has since been proposed [E. R.
Harrison, Phys. Rev. Letters 18, 1011 (1967)] that the early
rudimentary structure of the universe consists of compositional
fluctuations in a fluid of uniform density, rather than density
fluctuations in a fluid of uniform composition. Thus fluctuations
in the & argon number are amplified and an expanded universe is
left in a fragmented state consisting of separate regions of matter
and antimatter.



