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E. R. HARRISON

Department of Physics and Astronomy, University of 3IIassachusetts, Amherst, iM'assachusetts

This paper reviews some aspects of our knowledge. of the gravitational theory of fluctuations of density in homogeneous
and isotropic models of the universe, Irrotational Quid motions only are considered. All perturbations are assumed to be
small and a normal mode analysis is used. The nature and time dependence of the amplitude of the various modes in
expanding and contracting models of the universe are considered within the framework of Newtonian and general relativity
theorjes. The origin of celestial. structure requires that a uniform universe is unstable against arbitrarily small perturba-
tions. However, the rate of growth of the allowed modes, particularly in an expanding universe, is su@ciently slow to
cast doubt on the instability of the models.
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1. INTRODUCTION

~ Written in 1965—6 while the author was at the Laboratory
for Theoretical Studies, Goddard Space Flight Center, Greenbelt,

aryland, as a National Academy of Sciences —National Research
Council Research Associate.

' H. P. Robertson, Rev. Mod. Phys. 5, 62 (1933).
2 H. Bondi, Cosmology (Cambridge University Press, Carn-

bridge, England, 1960).

Cosmology seeks to account mainly for the global
nature of the universe. Instead of a complex and di-
verse physical universe it deals with a featureless,
idealized universe that is everywhere isotropic and
homogeneous and contains a uniform Quid of simple
properties. ' ' Out of such sweeping generalizations
emerge a variety of elementary models, and one' s
choice for what it is worth is still largely an act of
faith. In spite of its antiquity cosmology is in an im-
mature state; it is hoped that the present idealizations
will ultimately be replaced with more realistic repre-
sentations of the physical universe.

Nobody believes that the universe originated in its
present form, complete in all its array of macroscopic
detail. Yet if the inchoate universe is featureless, then
we must show how diGerentiation and structure con-
trive to evolve. The physics of stellar and galactic
structure is the concern of astrophysics; but the nature
and development of an environment favorable to the
formation of astrophysical objects is the concern of
cosmology.

The study of the vibrations of the universe is a
fascinating subject, apart from any secondary con-
siderations. However, in an attempt to account for the
actual universe, as distinct from the uniform models,
we might hope to expect that the universe is vibra-
tionally unstable. Thus appropriate modes will grow
relatively rapidly and, in a time short compared with
the age of the universe, provide the foundations of as-
trophysical structure. It turns out, as many authors
have discovered, that in an expanding universe the
growth rates of the various modes of oscillation are
generally too small to account for any appreciable ir-
regularity.

In the following treatment all disturbances are as-
sumed to have small amplitude, and the motions are
also assumed to be irrotational; long range electro-
magnetic Q.elds are neglected and only gravitational
theory is used. The behavior of the disturbances is
studied with both Newtonian and general relativity
theory.

2. ORIGIN OF STRUCTURE IN THE UNIVERSE

Initial Conditions

The provision of both background and initial condi-
tions for the origin and formation of structure is a cos-
mological problem. The subsequent evolution of struc-
ture into its detailed manifestations lies in the provinces
of cosmogony, astrophysics, and every other science.
At present there are two main hypotheses concerning
the initial conditions'; these are: the initial structure
hypothesis and the instability hypothesis.

In the initial structure hypothesis it is taken for

' E. R. Harrison, Mern. Soc. Roy. Sci. Liege 15, 15 (1967).
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granted that structural differentiation in a primitive
form originates with the universe and is an indis-:

pensable part of its design. The structure. is modified
and enhanced in the course of time and evolves ac-
cording'to the laws of physics. This hypothesis is as
old as cosmology, arid elsewhere' it is suggested that it
should be updated and reconsidered in the light of
modern knowledge. If the universe in its earliest stages.
consists of matter at very high density, then we must
inquire whether structural configurations with rotation
are a natural state of affairs ader these extreme con-
ditions. If by some quirk in the properties of matter,
or by some modification of the laws of physics, "the
singular state can be avoided, it is possible that the
universe contracts to and then expands from a state of
finite density. It is also possible but by no means certain
that some irregularity inight survive passage through
the "bounce" and thus act as the foundation out of,

which subsequent structure evolves. Although the
initial structure hypothesis is interesting and ex-.

citing, '.there. is a complete lack of any generally ac-:
ceptable work in this field, and therefore it will not be
considered further in this discussion.

The instability hypothesis on the other hand does
not assume any special initial conditions. This hy-
pothesis is as young as the theory of gravitation, and
asserts that the universe is unstable against small
random perturbations. Jeans' points out that in some
correspondence Newton remarks: "But if the matter
were evenly disposed throughout an infinite space, it
could never convene into one mass; but some of it
would convene into one mass and some into another, so
as to make an infinite number of great masses, scat-, ,

tered great distances from one another throughout all
that infinite space. And thus might the. sun and fixed
stars be formed, supposing that matter were of a lucid
nature. " In his own work on gravitational instability
Jeans writes': "We have found that, as Newton 6rst
conjectured, a chaotic mass of gas of approximately
uniform density and of very great extent would be
dynamically unstable: nuclei would tend to form in it,
around which the whole of the matter would ultimately
condense. "These comments were made with the idea in
mind of a static universe. If we consider a universe
already fragmented into widely separated "islands, "
each having a density large compared with the average
density, such that the contents of each island do not
partake in the expansion between the islands, then
Jeans' corrunents are acceptable for condensations oc-
curring in the islands. But these are the initial condi-

4 E. R. Harrison, Nature 215, 151 (1967).
5 F. Hoyle, W. A. Fowler, G. R. Burbidge, and E. M. Burbidge,

Astrophys. J. 139, 909 (1964).' F.Hoyle and J. V. Narlikar, Proc. Roy. Soc. (London) A278,
464 (1964).

7 J. H. Jeans, Astronomy and Cosmogony (Cambridge Uni-
versity Press, Cambridge, England, 1929), p. 352.' Reference 7, p. 415.

tions of cosmogony: the problem for cosmology is to
explain how it is possible in the first place for islands to
form.

.In view of our limited knowledge in cosmology the
principal advantage of the instability hypothesis is
that structure is not predetermined but grows naturally
from small random disturbances according to the laws
of physics. The smallness of such disturbances allows
us at least initially to work within the framework of a
linearized theory. In the initial structure hypothesis it is
doubtful whether a linear theory is valid at any evolu-
tionary stage.

We use conventional gravitation theory and therefore
the steady state model is only brieRy mentioned. The
growth of perturbations in the steady state universe
has been considered elsewhere. ' "

2.2. Linear Stability Theory

From the simplest of all possible points of view the
diversity- of the universe consists of variations in the
density and motion of matter. Given a cosmological
model that is a valid description of the universe in the
large, it should be possible to show, with refinements
of the cosmic Quid when necessary, that perturbations
are capable of evolving in time into configurations of
density and motion which resemble the grosser features
of the physical world. The first step therefore is to
inject some realism into the cosmological models by
perturbing their Quid density and motion.

We suppose that all disturbances are small and con-
sist of a superposition of normal modes of a complete
set. Within a co-moving system of coordinates the un-

perturbed uniform Quid of the cosmological models is
in a hydrodynamic stationary state. A system in a
stationary state is unstable when a small disturbance
grows in time and leads to a changed configuration of
the system. Thus if one or more modes is time-growing,
and the characteristic growth time is short compared
with the lifetime of the system, the system is unstable. "

Planets, stars, stellar associations and clusters,
galaxies, clusters of galaxies, . . . , form a hierarchy of
structures in which the density amplitude diminishes as
the spatial extent increases. In other words, if p is the
mean density of the universe and p+8p is the mean den-

sity of a system, then for relatively small systems
8p/p))1, and as the size of the system increases 5p/p

9D. W. Sciama, Monthly Notices Roy. Astron. Soc. 115, 3
(1955).

"W. B. Bonnor, Monthly Notices Roy. Astron. Soc. 117, 104
(1957).

"M. Harwitt, Monthly Notices Roy. Astron. Soc. 122, 47
('1961).

~ M. Harwitt, Monthly Notices Roy. Astron. Soc. 123, 257
(1961).

'3 D. W. Sciama, Quart. J. Roy. Astron. Soc. 5, 196 (1964)."I.W. Roxburgh and P. G. SaGman, Monthly Notices Roy.
Asti ~n. Soc. 129, 181 (1965)."S. Chandrasekhar, Daedalus 80, 323 (1957).
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diminishes and eventually bp/p(1 for systems of large
dimensions. Furthermore, as we go back in time the
hierarchy of celestial structures progressively dis-
solves and is submerged in the increasing mean density
of the universe. Thus the amplitude of all perturbations
relative to the mean density diminishes, that is, 5p/p
progressively becomes less for any system as we go
backward in time. The expression

p =~pip

is referred to as the contrast density. It follows there-
fore that a linear stability theory is essentially cos-
mological in the sense that it is limited to small con-
trast densities, either remote in time or extending over
cosmic distances. As the universe ages our treatment
is therefore restricted to lower and lower modes of
vibration of the universe. As the contrast density rises
the predictions of the linear theory become less trust-
worthy, and when p, 1, must be viewed with suspicion.
To carry through the computation into p) 1 demands
more refined and comprehensive techniques.

The success of the instabihty hypothesis depends on
the fulfillment of two conditions. ' The first condition is
morphological: structure must ultimately emerge out
of amorphous initial conditions and possess a mor-
phology corresponding with that observed. The second
condition is that the rate of growth of the appropriate
modes must be adequate. This latter condition is
considered brieQy in Sec. 6. The question of morphology
leads us to two contending points of view: the frag-
mentation hypothesis and the clustering hypothesis.

In a normal mode analysis all possible wavelengths
must not grow at the same rate in order to lay down the
foundations of celestial structure. If the universe is
initially unstable only for relatively long wavelength
perturbations, we might conjecture with Jeans that
there is a process of fragmentation" of "nebulae out of
chaos, of stars out nebulae. . .," and so on. Thus,
protogalaxies or larger masses first form and create an
environment of enhanced density in which matter no
longer expands with the universe, and which favors
the formation of smaller condensations. Inhomogeneity,
anisotropy, and complex properties of the Quid develop,
and we are free to invoke all the cosmogonic para-
phenalia of turbulence, magnetic fields, radiation, dust,
and so forth, necessary for star formation. ' —"

~6 Reference 7, p. 416.
'7 J. M. Burgers and H. C. van de Hulst, Gas Dynumics of

Cosmic Clouds (North-Holland Publ. Co., Amsterdam, 1955).' I.A.U. Symposium No. 8, Rev. Mod. Phys. 30, 905 (1958).
'9 G. R. Burbidge, F. D. Kahn, R. Ebert, S. von Hoerner, and

S. Temesevary, Die Enstehung von Sternen durch Kondensation
diguses Materie (Springer-Verlag, Berlin, 1960).

'0 L. Woltjer, Interstellar Matter in Galaxies (W. A. Benjamin,
Inc. , New York, 1962).

~'L. Spitzer, Jr., "Dynamics of Interstellar Matter and the
Formation of Stars, " in Stars und Stellar Systems, G. P. Kuiper
and B. M. Middlehurst, Eds. (University of Chicago Press,
Chicago, Ill. , to be published), Vol. VII, Chap. 9.

Alternatively, if the universe is initially unstable for
relatively short wavelengths then we might conjecture
that there is a process of clustering" "whereby small
scale condensations erst form and subsequently inter-
act to create larger and larger gravitationally bound
systems. The arguments in favor of this process have
not progressed very far nor have they gained wide
acceptance.

All this, however, is speculation, and we must wait
for cosmology to give a clear account of the origin of a
differentiated universe.

From the cosmological point of view the concepts of
fragmentation and clustering are by no means mutually
exclusive. The universe could be unstable for a large
class of modes, or a wide spectrum of wavelengths,
and the rates of growth of the different wavelengths
determine whether elementary structure evolves by
fragmentation or clustering, or by both processes acting
simultaneously. Conceivably, very early type stars
evolve out of inhomogeneities laid down either prior
to or at the same time as those leading to galactic
structure. '

3. NEWTONIAN COSMOLOGY

3.1. Newtonian Models

In j.934 McCrea and Milne" '~ used Newtonian theory
to derive the equations of a universe obeying the cosmo-
logical principle. ' ""It is assumed, as in general rela-

tivity, that in the unperturbed state there is every-
where a perfect Quid of uniform mass density p and
isotropic pressure p. The equations are identical with
those derived using general relativity theory, provided
the pressure is negligible in comparison with the energy
density pc' (c is the speed of light) . Several authors'~ss

have discussed the validity and limitations of New-
tonian cosmology.

As we shall show, the equations of Newtonian and
general relativity theory for the perturbed state are

s2 G. Gamow and K. Teller, Phys. Rev. 55, 654 i1939i.
"D. Layzer, Astron. J. 59, 170 (1954).
24 D. Layzer, Astrophys. J. 137, 351 (1963).
25 D. Layzer, Ann. Rev. Astron. Astrophys. 2, 341 (1964).
~6 K. A. Milne, Quart. J. Math. 5, 64 (1934)."W. H. McCrea and E. A. Milne, Quart. J.Math. 5, 73 (1934)."E. A. Milne, Relativity, Gravitation and IVorld Structure

{Clarendon Press, Oxford, England, 1935), p. 40.
~' J. D. North, The Measure of the Universe (Clarendon Press,

Oxford, England, 1965).
3 D. Layzer, Astron. J. 59, 268 (1954).
» W. H. McCrea, Astron. J. 60, 271 (1.955).
32 O. Heckmann and E. Shiicking, Z. Astrophys. 38, 95 (1955).
"G.C. McVittie, General Relativity und Cosmology (Chapman

and Hall, London, 1956), Chap. 7, and p. 192.
340. Heckmann and E. Schucking, in Hundbuch der I'hysik,

edited by S. Flugge (Springer-Verlag, Berlin, 1959), Vol. 53,
p. 489.

3' C. Callan, R. H. Dicke, and P. J. E. Peebles, Am. J. Phys.
33, 105 (1965).

36 E. R. Harrison, Ann. Phys. (N. Y.) 35, 437 (1965).
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u= (R/Ro) r,

du/dt = (R/Re) r,

(2)

(3)

where dots denote time diGerentiation. Furthermore,
within the comovirig coordinate system the ordinary
gradient operator V' transforms to (Ro/R) V.

In a perfect Quid the pressure is a scalar, and the
equations of motion, continuity, and Poisson s equa-
tion are

also identical when the pressure is negligible in com-
parison with pc'. The great advantage of the New-
tonian treatment is its simplicity; furthermore, it
provides physical insight which helps to reduce the
general relativity equations to their simplest form.
Before proceeding to the Newtonian equations of a
universe in a perturbed state, the treatment for the
unperturbed state is presented brieQy.

Let r be the position at time tp of any element of
Quid. At time t, let the position of the same Quid element
be (R/Ro) r, where R(t) is a universal function of time
and Ro ——R(te). This condition ensures that the fluid

density p remains uniform and is a function only of
time. Thus r is a comoving position vector and r, e, P
are comoving spherical coordinates. The velocity and
acceleration of a Quid element are

for K=&1, A=O, and Einstein and de Sitter for
«=0, A. =O).

Using the constant

C=8srGpR'/3,

the solutions of (9), when A. =O, are

R= Cy',

(10)

t =-'C

K= 1

K= 1'

R=C sin'x,

t=C(7t —sin X cos x),

R=C sinh' x,

t = C(sinh x cosh 7t
—7r),

(12)

(13)

where t(7t) is found by integrating

dt =2Rdx. (14)

General solutions of (9) are available4' in terms of
elliptic functions and various specific solutions have
been given elsewhere. ' 4' 4'

The total energy E is

(R/Re) (du/dk) = —Vp*—p
—'Vp

(R/Ro) (8~/at) = —v(pu),

(Ro/R) 'V'P* =4srGp —A,

(4)

(5)

(6)

where%' is the gravitational energy and T is the kinetic
energy of the Quid. In a sphere of arbitrary radius r:

where p is the pressure, G the gravitational constant,
P* the gravitational potential and h. the cosmological
term. In a uniform universe the VP term in (4)
vanishes. Using (3), and taking the divergence of (4),
it follows that

p't/' 16 R+=—6 d V = ———x'Gp'r'
r 15 Rp

2 B2R3
T= -'pl'dV = —

m pr'
5 Rp'

(16)

3R+(4trGp —A) R=O.

From the equation of continuity (5),

pR' =const,

and hence (7) can be integrated and becomes

R'=-,' (8srGp+A) R' —a. (9)

s'A. Friedmann, Z. Physik 10, 377 (1922).
~ A. Friedmann, Z. Physik 21, 326 (1924).

A universal constant of integration C' is absorbed by the
transformation R~R

~

C' ~'t', and R has now the
dimension of time and If: is dimensionless and has the
value of 1, 0, or —1.

Equations (8) and (9) are the Newtonian equations
of an isotropic and homogeneous universe, and are
identical with those usually derived with general
relativity when the pressure is small compared with
the energy density pc'. (First derived by Friedmann'r"

where dV=4n. (R'/Res)r'dr is an element of volume.
From (9) and E=%+T, we Qnd

E= (-', AR' —tt) T/R'. (18)

When A=O, E= ttT/R', and th—e energy is positive
for ~= —1, zero for a=O, and negative for ~=1.

The advantage of the Newtonian equations is the
ease with which they can be physically interpreted.
Thus, assuming A=O when ~=0, E=O, the Quid

elements have velocities equal to their escape velocity
and their trajectories are of the parabolic class; and
for « =1(»= —1), E(0(E)0), the Quid elements have
velocities less (more) than their escape velocity and
their trajectories are of the elliptical (hyperbolic)

'9 A. Einstein and W. Qe Sitter, Proc. Natl. Acad. Sci. (U. S.)
18, 213 (1932).

'0 G. Lemaftre, Ann. Soc. Sci. Bruxelles 47A, 49 (1927).
'G. Lemaitre, Monthly Notices Roy. Astron. Soc. 91, 483

(1931).
4' G. C. McVittie, General Relativity and Cosmology (Uni-

versity of Illinois Press, Urbana, Ill. , 1965).
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class. These interpretations are less obvious when (9)
is derived from general relativity. In that case ~ is the
curvature constant and space is flat (~=0), spherical
or elliptical (~=1), and hyperbolic (~= —1).

3.2. Perturbed Newtonian Models

Various authors"" " have used Newtonian gravi-
tational theory to study the time dependence of density
Quctuations in a uniform Quid of finite or infinite ex-
tension. From the cosmological point of view a New-
tonian treatment is scarcely adequate; not only is it
limited to low density, but also the long wavelength
modes of Euclidean space are inapplicable in curved
space. Fluctuations at high density and large-scale
Quctuations at low density are the conditions for which
the linear theory is most valid but the Newtonian
approach is least valid. Nevertheless, the simplicity of
the Newtonian approach serves as a valuable guide in
the subsequent treatment.

For a collisionless Quid, such as a supergas of stars or
galaxies, the formal approach is by way of the Vlasov
equations, " as in plasma physics. This has been used
by Gilbert, "and by Sweet" for counterstreaming Quids.
Particles traveling an appreciable fraction of a wave-
length in an oscillation period cause Landau damping.
Since we are concerned with an initially structureless
Quid we use the fluid approximation; this tends to over-
estimate the rate of growth of perturbations. In this
discussion the velocity components are everywhere
single-valued.

Let the disturbed velocity, density, pressure, and
gravitational potential be

u—+u+v', p~p+bp,

4' J. H. Jeans, Phil. Trans. A199, 49 (1902); also Ref. 7, p. 345.
44 G. Gamow, Phys. Rev. 74, 505 (1948)."F.Hoyle, Astrophys. J. 118, 513 (1953).
46R. Ebert, Z. Astrophys. 37, 217 (1955).
47 G. B. van Albada, Bull. Astron. Inst. Netherlands 15, 165

(1960).
R. Simon, Bull. Acad. Roy. Belg. 4'7, 731 (1961).

9 G. V. van Albada, Astron. J. 66, 590 (1961).
~ C. Hunter, Astrophys. J. 136, 594 (1962).
"M. P. Savedo8 and S. Vila, Astrophys. J. 136, 609 (1962).

D. Layzer, Astrophys. J. 13'7, 351 (1963)."R.Simon, Ann. Astrophys. 27, 191 (1964).
'4 I. R. Gilbert, Astrophys. J. 144, 233 (1966).
55 T. T. Arny, Astrophys. J. 145, 572 (1966).
5 See, for example, I. B.Bernstein, S. K. Trehan, and M. P. H.

Weenik, Nucl. Fusion 4, 61 (1964)."P. A. Sweet, Monthly Notices Roy. Astron. Soc. 125, 285
(1963).

P~P+ bP 4'*~4'+4
where the small quantities are functions of r and t.
In the usual coordinates (t, rR/Ro) the linearized equa-
tions of motion and continuity are

L(8/ejt)+u V'iv'+v'V'u+V'|t+(1/p) V'bp=0, (19)

$(8/Bt)+u V'+V'. ujbp+pv' v'=0, (20)

and terms quadratic in small quantities are neglected.
The perturbation of Poisson's equation is

V"$=4mGbp. (21)
- The transformations to co-moving coordinates are

v'~( R/ R,) v, (22)

(23)8/Bt+u V'~d/dt,

where uV' = r (R/R) 8/Br, and the time derivative now
follows the unperturbed motion of the Quid. In ordinary
coordinates ej/Bt commutes with V', whereas in co-
moving coordinates

(d/d&) v = v(d/dI). (24)

We also express the perturbed velocity in co-moving
coordinates:

v' = (R/Ro) r'= (R/Ro) v, (25)

$i.e., dRr/Rodt=(Rr/Ro)+(Rr/Rp) and u=Rr/Ro,
v=r'j.

Thus, . in terms of co-moving coordinates, (19)—(21)
become

(d/dt) D R'/Ro') v)+ Vp+ p 'V bp =0

(d/dt) (bp/p)+v v=O,

(26)

(27)

28)(R(P/R2) V'P =4rG7h p, (

where V u=3R/R, v. Vu=vR/R, and pR'=const.
Taking the curl of (26), we have

(d/«) (R'() =0, (29)

(30)

Taking the divergence of (26), and using (27) and
(28), we find

d Jb d bp Ro'P bp—+2 ———4irGp —= P —. (31)
dt E. dt p R'p P

The variables can be separated, and for any scalar
quantity iP=iP(t) II(r, 8, y):

V211+O'll =0, (32)

where k' is the separation constant.
Adiabatic gueIuations. For the determination of the

four unknowns bp, bp, P, and q there are the three

~' L. Milne-Thompson, Theoretical Hydrodynamics (MacMillan
and Co. Ltd. , London, 1962), p. 83.

in which V&v=( is the vorticity in co-moving co-
ordinates. Thus R'( is a conserved quantity. Equation
(29) is identical with the Helmholtz equation"

(d/dt) ((/p) —((/p) Vii=0,

since (~ Vu=(R/R. In the unperturbed state both
v and ( are zero; the vorticity is therefore permanently
zero and the motion is irrotational. Hence, we can write
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equations (27), (28), and (31), and an equation of
state 8p(p, bp) is therefore necessary. We consider
brieQy some possibilities, including . thermal insta-
bility. " "Let L(p, p) be the energy lost by the Quid

per unit volume per unit time. Thus if 8Q is the energy
gained per unit mass, then

Equations (31) and (40) combine to give a third-order
differential equation in 8p/p'.

0, — 2 ———4xop

p(dQ/dt) = L, —
and therefore from 5Q=dU+pdV,

The first-order perturbation of (33) is

1 d Bp Spy (L——-v —I+~l- =o
y —1dt p pj kp

(33)

(34)

+k' y —+n p =0. (42)
dt

In spite of its appearance this equation is not greatly
different from the previous equation (36). For thermal
conductivity to play an active role heat must be trans-
ported a distance X lc ' in a time short compared with
the characteristic growth time v of the disturbance
5plp. In other words, bp is influenced mainly by heat
conductivity in a time sufficiently short to regard
bp/p as constant, and therefore, from (40)

In the simplest case of all the Quctuations are adia-
batic and L=bL=O:

Sp 8p 8p Sp
exp [ n(t —t2) j—

P P ~O P P ~2

(43)

8p/bp=v(p/p) =c,', (35)

where c, is the speed of sound. Thus our three equations,
(31), (27), and (28), become

'p+ 2 (R/R) p+ Ppk2(P/p) (Rp2/R2) —42rGpgp =0, (36)

p =k'y, (37)

u = (y —1)2Nk2ERp2/R2 kp. (41)

"E.N. Parker, Astrophys. J. 117, 431 (1953).
~ H. Zanstra in Gas Dynamics of Cosmic Clouds, J. M. Burgers

and H. C. van de Hulst, Eds. (North-Holland Publ. Co., Amster-
dam, 1955), Chap. 13."H. Zanstra in Vistas in Astronomy 1, A. Beer, Ed. (Pergamon
Press, New York, 1955), p. 256."R. Weymann, Astrophys. J. 132, 452 (1960).

~ G. S. Field, Astrophys. J. 142, 531 (1965).

42»Gpp, = —(R22/R2) k2$, (38)

and p, =bp/p. These equations determine the adiabatic
Quctuations of density, velocity, and gravitational
potential for an inviscid, irrotational fluid. Equation
(36) was first derived by Bonnor" for the radial modes

p(», ~).
Isothe»malglctlatio»is. We consider next a thermally

conducting fluid in which

I.= V' EV'T= ——(R22/R'2) V EV T

{R2/R2) EV2$7' —(R 2/R2) k2E$7 (39)

where E(p, p) is the thermal conductivity. With the
expressions

p =pkT/»»2,

~2'/T = (&p/p) (&p/p), —

(in which 222 is the mean molecular weight) (34) takes
the form

a=const p"p (47)

and neglect all dependence on the energy spectrum. '4

Generally e&0, but m may be positive or negative;
for bound —free transitions m=2, m= ——,', and for free—
free transitions m= 2, m= —,'. The effect of radiation on

6' R. Weymann, Astrophys. J. 145, 560 (1965).

Hence, for t—tp=7))0. ', 6L=O, and the fluctuations
are isothermal:

~p/p =~pip

If, for example, the characteristic growth time is
r = (4 G2»)p'I', it follows

))p,
(42rGp) '~2(y —1)k2ET

«p,
where

8p/sp=y(p/p) =c,'.
For the unperturbed quantities we have the adiabatic
relation

p =const p'= (po/po') p',

where p2, p2 refer conveniently to time t2 when R=R2.
In many instances (42) simplifies therefore to

p+2(R/R) p+$qk'(p/p) (R,'/R') 4Gpf&=0—, (46)

either by using (31) and (45) or by noting that in
(42) we obtain (46) when n»d/dt with y =1, and when
r2«d/dt with f=y. In effect, short wavelength fluctua-
tions are isothermal and long wavelength fluctuations are
adiabatic.

Radiative cooling. The inclusion of radiation is of
particular importance, as 6rst shown by Park. er'8

and Weymann. "We consider the case where e(p, p) is
the net energy radiated per unit volume per unit time
expressed in the form
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P=(V 1)e/P-
As before, from (31), it is found

pE.'—+rr+ (m —1)P
dt pRo'

(d If' d
X I

—+2 ———4s.Gp
&dt E dt

(50)

, (+k'
I y —+cr nP

I
ti=—O. (51)

dt i
By itself, this equation is inadequate; in a general
treatment we should retain the derivatives Be/Bp,
Be/Bp and use the radiative transport equations. So
far, such a general treatment has not been published.
However, in many instances (51) can be simplified.
Radiative cooling is effective when hp/p changes ap-
preciably in a time short compared with the charac-
teristic time r for a change in bp/p. Therefore, inte-
grating (49)

hP t' bp (bP bp)=I ——v —
I

P 4 p io EP ply 0

X exp I
—

I rr+(m —1)g(t—ts) I, (52)

f = (cr nP)/Pa+(m—-1)Pj, (53)
~ G. Gamow, Rev. Mod. Phys. 21, 367 (1949).
I' G. Gamow in Vistas in Astronomy, A. Beer, Ed. (Pergamon

Press, London, 1956), Vol. 2, p. 1726.
67 P. J. E. Peebles, Astrophys. J. 142, 1317 (1965).~ A. A. Penzias and R. Wilson, Astrophys. J. 142, 419 (1965) .

the formation of galaxies was 6rst considered by
Gamow ""and has been considered more recently by
Peebles" following the discovery of blackbody radiation
of 3'K by Penzias and Wilson. "In a Newtonian treat-
ment of the universe we must assume that the radiation
density is low in order that p«pc', and furthermore we
propose to ignore the radiative drag on the Quid.

Thermal instability is generally discussed in con-
nection with the formation of stars and other such
isolated systems from which radiation can escape.
From (47) we have e er p"+™T,and hence

be/e = (n+m) (bp/p) +m(b T/T) . (48)

Originally Parker" considered a static con6guration
of bp =0, and clearly when m(0 we have a system which
is cooled by radiation, and the more it cools the more it
radiates. This runaway state of afI'airs, possible with
bound —bound and bound —free transitions, is referred
to as thermal instability.

Retaining the heat conductivity, we have

I. 8p hp Rp'
pb — =cn —+e(m —1) —+, O'XbT,

P p p R'

and hence (34) can be written as

d bp ( d Sp—+~+(m —1)P —= I& —+~—nP —,(49)
dt p k dt p

3.3. Normal Modes of Vibration

An aribitrary disturbance in a scalar quantity con-
sists of a superposition of normal modes given by (32) .
These modes can be constructed from plane waves

11sor exp (tlr. r). (54)

69 W. C. Saslaw, Monthly Notices Roy. Astron. Soc. 136, 39
(1967).

and in time v=t —to radiative cooling is eGective if
t—ts»Lcr+(m —1)Pj '. %hen m)1, the exponential
term is small and there is thermal stability'4; the fluid
does not increase its radiative output as it cools. The
temperature distribution adjusts itself such that
b(J/P) ~0, and therefore bp/bp~yp/p. The regions of
enhanced density are cooled more rapidly and an equilib-
rium condition is thus established in which the radia-
tion loss is uniform. Although such a situation is
thermally stabl, it is not necessarily dynamically
stable. Thus, for wavelengths long enough to neglect
thermal conduction (P»n), we have f = —n/(m —1),
and for m& 1 the speed of sound is imaginary and pres-
sure gradients favor the formation of condensations.
Presumably this form of thermodynamic instability
requires V«3crh„, where 'A, is a photon mean free path,
in order that radiation diffuses out of a region of en-
hanced density in a time short compared with v-.

When m&1, then clearly the exponential term in
(52) can be large for certain modes and there now exists
thermal instability. The value of bp/p is positive and
increases primarily because the Quid is more or less
uniformly cooled by radiation. Thermal instability is
of undoubted importance in such subjects as star forma-
tion in which a finite isolated region is cooled while in
the process of collapse, whereas in cosmology a mech-
anism of cooling the cosmic Quid has only slight eBect
while p«pc', and merely reduces the pressure gradients
without necessarily creating pressure gradients which
favor the formation of condensations. In fact, thermal
instability, unchecked by other considerations, leads
to a condition of zero fluid pressure (c,=0) .

When radiative cooling is effective in the case of
thermodynamic instability, then bI.=O for an inter-
mediate range of wavelengths of ET/e&lts(3crh, . If
the emission and absorption processes balance, and
e=ap"p bp=O, then—be=0 gives f= —(n —1)/m for
the intermediate wavelengths. In any event we assume
that (46) with arbitrary values of p and y covers many
cases of interest. Such a simple single-Quid equation
ignores the ubiquitous blackbody radiation, and a
completely general multiQuid treatment is not yet
available. During the time when the radiation density
is appreciable'~67 the situation is more complex and
Saslaw" has shown that instabilities occur during the
helium forming phase and when matter later decouples
from the radiation.
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The modes in spherical coordinates are given for com-
parison with those derived later for curved space.

Let II=+(r) 8(8)I (P); by separating the variables,
Eq. (32) in flat space becomes

(d'C/(AP) +m'C =0, (55)

1 d (. d8i m2 l—l»n8 —I+ ~(~+1)— .»n8d8 5 sin' 8j

The tesseral harmonics of nth degree and mth order are

GC'= F "(8,P) = (a „e'e+b„e ' &) P "(cos8),

for integral values of n and m, and the spherical surface
harmonics of degree n are

The solutions for the radial function 4'(r), for tt
integral, are the spherical Bessel functions

4„(sr/2kr)' 'J„+catv(kr), 4 „=( sr/2 kr)' 'J„q(2 (58).

There are no boundary or periodic conditions to satisfy,
and the only condition is that%' must be finite every-
where. For kr~0,

%„—+(kr) "/[1 3 ~ 5 ~ ~ ~ (2m+1) ],
~[1 3 ~ 5 ~ ~ ~ (2N —1)j/(kr) "+',

0„~(kr)—' cos [kr ——',(st+1)srj,

4 „—&(kr)
—' sin [kr —-', (n+1)sr),

and hence + „ in (58) is rejected since it diverges as
kr~0. The radial functions form a continuous set having
all eigenvalues of k) 0 for each value of n. In particular,
for n=1, 2, and 3:

The existence of time-growing modes of an arbitrary
quantity such as 0. does not necessarily imply insta-
bility in a nonstatic universe. For example, if ao=bp
grows, an expanding universe is unstable, but a con-
tracting universe is stable if p increases more rapidly
than bp. The only time-growing quantity that denotes
unambiguously a changing configuration is the con-
trast density es=p. Suppose that n grows in time;
then in an expanding (contracting) universe m=3 is
necessary and m(3(m) 3) is suKcient for instability.
Thus the growth of the gravitational potential f~ n2 is
sufhcient for instability only in an expanding universe.

%hen the growth time of a mode is greater than the
age of the universe it cannot contribute to a significant
change in configuration. For instability we require

ts/ts))i R/R i, (62)

or, if ts~R+ (m for R)0, —m for R(0), then m
should be large compared with unity. Even then a
clear case of instability requires an adequate amplitude
of the initial disturbance.

The Newtonian equations of the unperturbed cosmo-
logical models and the linearized Newtonian equations
of the perturbed models are identical with the cor-
responding general relativity equations for small pres-
sure. The Newtonian equations, however, are limited
to Qat space and cannot be used to determine the
behavior of modes in curved space. This is not a severe
limitation if the wavelengths are not immoderately
large.

Prom (46), (7)—(9), the general equation for n is

B.
n +(8—2m) —n

R

LP+ Q'+(6 —m) —+(4—m)(3 —m) ——h n =0,E R2

(63)

Q'= fO'PRo'/pR', (64)

e,= (kr)-'S,

e,= (kr)-'[(kr)-'8 —e)
+v = (kr) [[3 (kr) —' —1}8—3(kr) —'toj (59)

and Q=c,kRe/R. We assume that per p&, and y, f are
arbitrary. For m=2, &~nf from (28), and therefore

/+4(R/R) $+[Q'—2(~/R') +Ajr=0 (65).
For the contrast density, n& ~ p, , and therefore for m=3:

II=A.(kr) I'„"(8,y).

4. GRAVITATIONAL INSTABILITY

(60)

@=sin kr, C=cos kr. The spatial disturbances are rep-
resented by summations and integrations over the
complete set of wave functions

ts+2(R/R) ts+(Q' 4rrGp) ts=0— (66)

This equation, first derived by Sonnor" and van
Albada4' for radial type perturbations, is discussed more
generally by Savedofi and Vila." Since v=dbr/dt,
(27) can be integrated to give

4.1. General Critexia
Bp/p= —V br= —ik 5r, (67)

I.et
Rrl&8p er 8p/pri~/e (61)

using (54) . Introducing the Langrangian displacement
(=Rex/Ra, it follows n4ee $, where g is the component
of the displacement parallel to k. From (28), with
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TABI.E I. Time dependence of n .~

B&0

B&0

(e)0

B&0y)-
8&0

-1, (t) —, (T) -T (T)
-T (T)

p (p)

T, (T)
~, (-T)

(T)
T (T)

T, (T)
T (-)

-l, (~)

T, (T)
', (t)

T (-T)
T (-T) T (-) ~, (-I)

0

tL The symbols denote: B&0, expansion; B&0, contraction; f, growth;
$, decay; —,oscillating „without brackets, R &Ro,'with brackets, R &Ro.
For example: {- j, ) means decaying oscillation for R &Ro. At R =Ro,
g = {3@0'js+Gpo)»', where co is the speed of sound.

m =4, the equation for the displacement is

5+ (Q' frnG—t

pent—

) 5 =o (68)

'p A. S. Eddington, The Internal Constitntion of the Stars (Catn-
bridge University Press, Cambridge, England, 1926), p. 201.

This last equation shows that when

Q') —', (82rGP+A. ) = (R2+tt) R-', (69)

$ is oscillatory. This is therefore the condition that
n (t) is an oscillating function for all values of ttt.
Now, from (64), Q'=c,'k'RP/R', and also the velocity
of expansion (contraction) is et=Br/Rp, and therefore
from (69) the condition that e2 is an oscillatory func-
tion is

2kpr2) N2+ (ttr2/R 2) —tt2+tt(r~2/R2) (70)

where r'=rR/Rp is the distance from the origin. Thus
disturbances are more likely to be periodic in time when
when ted=+1. Suppose that ted=0; then a mode cor-
responding to kr = 1 is periodic in time when

(71)

In other words, out to a distance where the expansion
(contraction) velocity is equal to the velocity of sound,
all modes are oscillatory. The oscillation may of course
be time-growing (overstability ') or time-decaying,
depending on whether the universe is expanding or
contracting, and also on the particular variable in the

sequence under consideration.
The equation (68) for a4 is particularly useful for

discussing the behavior of all o, . We have

Q'=Qo'(Ro/R)" ' (72)

Qpp =yk2Pp/pp ——Cppkp, (73)

where cp is the speed of sound at R=Rp. Tllus (68)
becomes

t24+ IQp (Rp/R) ~ —(C/Rp ) }(Rp/R) n4=0, (74)

where C is given by (10). Unless stated otherwise we

assume that the cosmological term A is zero. So far Eo
is arbitrary. For co'&0, let us choose E=RO at that
instant when c'i,4

——0, and there is marginal stability for
a given mode. Or,

and (74) is now

Qp' =cp'k' =82rGpp/3, (75)

4.2. Jeans' Criterion

Jeans treatment of gravitational instability resembles
Lord Rayleigh's formulation of the problem of oscilla-
tions in a Quid of positive and negative charges. "
Jeans assumes that the uniform and unperturbed
gravitating fluid is in a stationary state (which is
possible for a neutral plasma) and therefore B=O.
Hence, from (63), for any n, and in particular np=5p,

rip+ (c.pk2 —42rGp) e2p
——0, (77)

with R=Rp. For np~ exp (itot) this equation gives the
dispersion relation

top =c 2k2+to 2 (78)

A similar relation holds for electrostatic oscillations
in a plasma, and to„= (42rne2/ttt)" is the plasma fre-
quency for electrons of number density e and charge to
mass ratio e/ttt. In Jeans' dispersion relation the
"gravitational frequency" is imaginary: to„= (—42rGp)'t2.
There is thus a marginal state

kg = (42rGp/C ') "' (79)

and for k&k~, or is real and the disturbance oscillates at
constant amplitude; and for k& kJ,~isimaginaryand the
disturbance grows exponentially in time. Jeans' stability
criterion is therefore k&kJ-, or X(AJ-, where A, =k ',
Xg=ks '. The Debye length Kn ——c,/pp„plays a similar
role in plasma physics and disturbances of X(X~in many
cases tend to be stable. In a Jeans' sphere (as compared
with a Debye sphere) of radius Xs the sum of the
thermal and potential energies is of the order c,'pX~'—
4xGp9, ~' ——0. In a sphere of radius X&XJ, the thermal
energy predominates and collective interactions are of
little consequence.

Jeans' analysis suffers from the defect that in general
there is no initial stationary state in a uniform non-
rotating Quid. When K«Xs, then to2&)R'/R', and the

"Lord Rayleigh, Phil. Mag. 11, 117 (1906).

rip+(Rp/R) 2& 4 1](C—/R') ott 0. —— (76)

From this equation we can deduce the results shown in
Table I, and it follows that in an expanding (contract-
ing) universe t2 is a growing function of time for
nt&4(trt(4) for all values of y. More precise conditions
are given later with specific solutions of (63). When
y& 0, n4 and hence all n are nonperiodic functions of
time.
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dispersion relation (78) is an acceptable approximation.
But as A. increases, the oscillation period also increases
and is infinite at X=XJ, and when X& Xg, the e-folding
time m~ of a disturbance is comparable with the
collapse time i(2/3)"'a!~ ' of the system. Thus, in the
range of interest X)K~, the dispersion relation (79)
fails and we must fall back on solving (63) . It is seen
that Jeans instability criterion X) it& is necessary for
expansion (R)0) and is sufhcient for contraction
(8&0), but in neither case is it both necessary and
sufhcient.

A marginal state for any value of m is obtained by
using

and as Bonnorip has shown, Jeans' dispersion relation
(79) holds true without modification in Einstein's
static universe. The cosmological term neutralizes the
gravita'tional 6eld and there is similarity with the neu-
tral plasma state. From (84), we have

np ~ exp ai(c.'l'e' —A) '"t.

If the Einstein universe were static for an indehnite
period of time then all wavelengths greater than Jeans'
length (cP/4srGp)'I' would grow exponentially. It is
well known, ' "however, that the Einstein universe is
unstable against perturbations in R. Perturbing (7)
and using the equilibrium conditions (83), we find,
to a 6rst order,

(R/R ) 2m—Sdt (80)
and therefore

8R =A.SR, (86)

A=Rp ' ——4xGpp. (83)

as the independent variable in (63):
R R'

dg
+ Q'+ (6—srs) —+ (srs —4) (rl —3) —q'n =0.

R R'

(81)

For m=3, we obtain van Albada's4' equation

(d'np/dq') +(Q' 4mGp) (—Rp/.R) q ce =0, (82)

and therefore Jeans' criterion of marginal stability
Q'=4srGp holds for np(q). However, q is not a linear
function of time for m/4, and this marginal state does
not give an unequivocal stability criterion.

In Einstein's static universe (which has its analogy
in Newtonian theory' provided p((pc') R=0, R=O at
R =Rp, and according to (5) and (7) this is possible
foi @=1and

5R~ exp %(A'i't) .

Comparing (85) and (87), we see that the departure
fron1 the Einstein equilibrium state grows more rapidly
than the condensations, except when c,=0, and the
growths are then equal. Thus, contrary to what has
been said, the Eddington —Lemaitre modeP' appears to
offer little advantage over other nonstatic models.

4.3. General Equations

To solve (63) we use the relations (11)—(14) and
take x as the independent variable. For e=O (zero
energy)

d'n (14—4rN) dec

dX X dX

(srs —2) (rw —9/2)+4 L(7t)+, n =0,
X'

Equation (63) now becomes

6p+ (c.'O' —i1) np =0,

L(x) =Qp'C'xp' '/x" ',

(84) !s= 1 (negative energy):

(88)

d A'7' dn (rss —2) (srs —9/2)
, +(14—4srs) cot 7r +4 I.(sin 7t) —(mrs —4) (ass —. 3)+

dX dX sii1

L(sinh x) =Qp~C'(sin 7tp)
Pv '/(sin 7t)'& '

and for e = —1 (positive energy),

d2o. darb (res —2) (sss —9/2)
+(14—4srs) coth y +4 L(sinhx)+(srs —4) (sss —3)+

dX dX sinh' X

L(sinh X) =Qp'C'(sinh 7tp)'& '/(sinh x)'&—'

0, =0,

0. =0,

(89)

(90)

3cp'O' Rp ' —4 '/'
~ Rm—13/4 J

2+Gpp R

p =-'(4—3v)

(91'

(92)

These above equations are now used to consider the

where Qp=cpk, C=gsrGppRp'/3, A=O. Of these equations
only (88) has a general solution

time dependence of modes in (i) a cold universe, (ii)
an isothermal universe of y=1, (iii) y=~, (iv) arbi-
trary p and finally (v) when p(1.

7' A. S. Eddington, Monthly Notices Roy. Astron. Soc. 90, 668
(1930)."G. LeDIaItre, L'bypothese de l'atome pri miff (Griffon,
Neufschatel, 1946) .

'4E. R. Harrison, Monthly Notices Roy. Astron. Soc. (to be
published) .
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IO —Pg'(ix), Qg'( —ix) =Qg'(gx), we need consider only
the range 0&x&-',~. Using the relations"

Pg'(gx) = —3(1+x') 'I'x,

Q, '(g,x) =2(j,+x') '~2L3x cot—' x—(3x'+2)/(1+xg) j,
(96) becomes

42 =S2™-g(A26+Bg(38—8 —3y8) ),
S=sin x, C=cos X.

In the «= —1 model the solution of (90) is

(97)

42 . = (sinh X) 'm 't A &P2'(coth y) +B 2Q2'(coth X)],

&o' where A ~, 8 j are constants and 0~&g~& ~. From the
expressions (x)1)

Pg'(x) =3(x'—1) '~gx,

3 x+1 3x' —2
Qg'(x) = (x' —1)'" —x ln

2 x—1 g2 —1

lp p-I lp
it is found

42 =S' 'LA 2C+B 2(3S+Sg—3XC) j, (99)
FIG. 1. Curves increasing from left to right show the growth in

amplitude of bp/p for a=0, ~1 in an expanding cold universe.
Curves increasing from right to left show the corresponding growth
in amplitude in a contracting cold universe. The amplitudes are
plotted against x'. For ~=0, 6p/p=constx' in an expanding
universe, and bp/p= const' in a contracting universe. The con-
stants are set equal to unity.

A Xgm —9+BX2m-4 (93)

and Ap and Bp are constants. Hence, during expansion
0.2 is either constant or decays, and during contraction
F9~2 is either constant or decays. Retaining only the
growing term:

4.4. Cold Universe

A cold universe in which the pressure is zero is par-
ticularly interesting because condensation can form
unimpeded by random motions. In the cold models

Qp is zero in (88)—(90) . We consider in turn « =0,
+1, —1.

For «=0 the solution of (88) is
4.5. Isothermal Universe

In a limited range of density it is possible under
certain circumstances for a Quid to expand and con-
tract isothermally. 4' We therefore consider y=1, and
the L's in (88)—(90) are constant:

L=cp'O'Ep'. (101)

S=sinh x, C=cosh X. When g))1,
~A gm-4+Bum —2 (100)

(A, B now different constants), and in an expanding
(contracting) universe 42 grows for 222) 3 (224(4) .

The solutions of (93), (97), and (99) are shown in
Fig. 1 with Ap=Ay=A y=1 Bp=0.48y=0.48 y=1.
In an expanding universe the growth is least as one
wouM expect in the case of positive energy («= —1),
and greatest in the case of negative energy («=1) but
is limited because the universe oscillates. 7'

Expansion:
pOC gCXp (94)

Using the Jeans' length Kp= (cp'/42rGpp)'I' at X=ED,
we find from (91) for «=0,

Contraction:
„~g-3~2~ ~~f2, (95)

42m=X i A Egg(x) +BJ Dy(x),

*=l~p&(6~/&9) "'=6"'~z/~ (102)
for a11 wavelengths.

where X=X/kRD, Kg= (cp'/42rGp)'", and the constants
A, B from now on are not necessarily the same in

89' is

42 = (sin X)' pA&P2'(2 cot g) +B2Q2'(2 cot X)), (96)

where 0(g(gr, A2, B2 are constants, and P„&, Qp are
the associated Legendre functions. Since Pg'( —ix) =

7'%, R. Smythe, Static and Dynam& Electricity (McGraw-
Hill Book Co., Inc. , New York, 1950), p. 149.

76 It was previously thought' that the growths could be com-
pared by setting B0——B1——B 1 ——1. By letting g—+0 it can be seen
that this assumption was wrong.
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different equations. Hence,

X2&)6XJ'. a„=A R" "'+BR™-' (103)

g'«6yz'. a =Rm "[A sin x+B cos x). (104)

Wavelengths which are long compared with 6"9J
behave as in a cold universe, whereas for the short
wavelengths n7/2 oscillates.

For ~=1,

(sin x) 2m—13/2[A P~5/2 (cos x) +BQ55/2 (cos y) g

(105)

V=14 2=cp2/42rGpo, (112)

at R= Rp. This method is convenient for it immediately
shows the following:

tions in terms of simple functions for the important
case of y=~. SavedoG and Vila" have discussed the
problem using hypergeometric functions and have also
given the general solution (91) for x=0. Equation (91)
can be written in the form

~ Rm-13/4 J (6[R/R J2—3v/2)

where X=Xp, or

and I(:=—1,

a =(sinh. g)' "t'[AP15"(cosh x)+BQ15"(cosh x)),
(106)

where X= —2&(1+4ncppk'Rp')'" These equations are
similar to those of the cold model when 2cpkRp&1 and
for large x (106) becomes

~~ Rm-1/2+x/2

R&(Ro

R»Rp

R»Ro

R&(Rp

A Rm—9/2+BRm-2 (113)

(114)

~ a =R~" "t4(A sin x+B cos x),

4.0. y=~

tx Rm+e-13/4
m 7 (107)

(3c 2/2/gprGp ) jl/2 [ (/~2/$2)]I/2

and cp is the speed of sound at density pp. If
(24/25)It%, q, then a behaves as in the cold universe,
but when

An isotropic photon, neutrino, or relativistic gas has a
ratio of specific heats of ~. When their pressure is
dominant but their density is small compared with the
total density of the Quid, the Quid as a whole has p =~4

and can be treated with the Newtonian approximatiOn. .
For K=0)

where rt=1 —3y/4, x=6(R/Rp)' 3»2. Thus for a wave-
length which is marginally stable (X='Ap) initially,
when R=Rp, n becomes nonperiodic and grows with
time in an expanding (contracting) universe for
rtt&2, y&s(trt&~, y&~), and becomes periodic and
decays with time in an expanding (contracting) uni-
verse for rw&rt+'43, y&~4(ttt&N+~o, y&I41). These
results can be partly obtained by physical arguments:
at a distance X the velocity of recession is XR/R=g,
and from (9) with A = n =0,

I'/c '=I'1 (X'/Kg') (115)

Since Xa R, Pgp=Ã92(R/Rp)~3&, we have I'/c2~
(R/Rp)pv-4, and in an expanding universe this ratio
increases for y&~ and the thermal motions are of
diminishing importance.

then n oscillates:

K& (24/25) It%,s, (108)
4.8. y&1

a a Rm Ipt4 exp (&iP ln -R),

where iP =5.
When &=~1,

(109)
Ke consider now the important case when c,2&0

for a range of wavelengths, because of radiative trans-
fer. For convenience the discussion is confined to f~:=0.
The argument of J+„ in (91) is now imaginary, and
when large

am= Rm It [Ape (i cot zX)+BQe (i cot zX)), (110)
( 3cpsk2 Rp

a aR OI 3»t4exp~ I—--
2mGpp R

(116)

0= —2+LY—6(~~2/~2) Jtp

and Pes, Qes are nonperiodic when the wavelength K is
large compared with Xg.

4.7. Arbitrary y

Apparently there are no general solutions for arbi-
trary y when ~=&1. In particular, there are no solu-

Thus, if p =~, then the exponentially growing solution is

ts=tsp exp [—(3cp'P) 't2/22rGppj[1 —(R 't'/R't') J, (117)

where p, p is the initial contrast density. The exponent
has a maximum value of 2Kcp2/MG, where K=A ', and
M =42rpM/3 is approximately the ma, ss of the eventual
condensation.
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5. RELATIVISTIC COSMOLOGY

To =pc
y

Tr' ——Tss =Ts' ———P. (120)

All that now remains is to determine R(l) in (118)
with the Einstein equation

R' ——'8 'Ri'+8 'A= —(SsrG/c') T.' (121)

In this equation, R,' is the contracted Riemann-
Christoffel or Ricci tensor (its further contraction Ri'

is shown explicitly to avoid confusion with R(l), and
the cosmological term A is included as in the Newtonian
treatment.

Equation (121) is readily solved using the line-
element (118) and the components (120) of the energy-
momentum tensor. ' "The following method however is
particularly simple. Transforming to the coordinates:

x=r sin 9 cos Q,

y=r sin e sing,
s=r cos 8,

r'=x'+y'+s' the line element (118) in the immediate
neighborhood of r =0 becomes

ds2 d/2 R2L1 s
Ic (x2+y2+z2) $ (dxs+dys+dss)

(122)
For these coordinates the Christoffel symbols

. gps gq8 gypS ~ 8
~Pc Qg 8x~ Bx"

(123)

5.1. Unperturbed Models

In its unperturbed state we assume that the universe
is homogeneous and isotropic, and the metric is given
by the Robertson —Walker line element

ds'=dt' $R'/—(1+4icr')'j(dr'+r'dQ') (118)

where dQ'=de'+sin'Odf', r, 0, p are co-moving co-
ordinates, R(t) has the dimensions of time, and It=0,
~1 is the curvature constant. The energy-momentum
tensor of a perfect Quid is

T = (pc'+ p) gs ss"u' —5,'p (119)

in which pc' is the energy density, I' the four-velocity,
and p is the isotropic pressure. For a fluid that is
stationary in the co-moving system, u'=1, I'=I'=
I'=0, and the components of the energy-momentum
tensor are

= —(8/Bx ) F (126)
Since

R„=(a/axs) F„~ (—a/ax~) F„~+F„-F;„~ F—„~F,„-,
(127)

we find from R =g'"RI„ that

Rs' ——3R/R,

R~~ = (RR+2R'+2sc') /R'

(128)

(129)

and all other components vanish. From (121) we now
obtain the well-known equations

R'=-,'(SsrGp+A. ) R' —K

(d/«) (R'l ) +(p/c') (dR'/«) =0.
(130)

(131)

Every observer can adjust the origin of his co-moving
coordinate system to give r=0, and therefore (130)
and (131) apply to all co-moving observers. Equations
(130) and (131) are identical with the Newtonian
equations (8) and (9) when p/c' is negligibly small
compared with p. Alternative expressions of (130) and
(131) which will be useful are

(SsrGp+A) R'=3(R'+a),

(A —SsrGp/c') R'=2RR+R'+le

and therefore

R = ——,
' (4srG) $p+3 (p/c') jR+ ', AR. -

(132)

(133)

(134)

5.2. Equation of State

We have two equations (130) and (131), or (132)
and (133), for the determination of R, p, and p, and
therefore require an equation of state. We use
Zel'dovich's equation of state"

(135)

and in many cases of physical interest in which the
pressure is appreciable v has a constant value. Thus, if
v is constant, then (130) becomes

R'= C„R' s"+-,sAR' —a (136)

(137)C =SsrGpRs "/3

As r~0, the only surviving Christo6el symbols are
I's and F ', and the spatial derivatives of (125) are

(cl/clx ) Fpp ———(8/Bx ) Fp s

are"
Fo.v=c'R 'F o=g v(R/R), (124)

Fpp = —FpJ'= —F =-,'Icx . (125)
and therefore

R=-', (2—3v) C„R' s"+-,'AR, (138)

and from (131) C„=const. Equation (134) is now

"L.D. Landau and E. M. Lifshitz, Classical Theory of Fields
(Pergamon Press, Oxford, England, 1962), Chap. 12.

The convention adopted is that Latin indices assume all
values 0, 1, 2, 3; Greek indices X, p, y assume only the values
1, 2, 3, and u, P, y are used wvhen there is no summation and
a/P Ay.

2RR —(2 —3v) (8 +le) —vAR =0. (139)

79 Ya. B. Zel'dovich, Zh. Eksperim. i Teor. Fiz. 41, 1609 (1962)
LEnglish transi. : Soviet. Phys. —JETP 14, 1143 (1962)j.
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In an isotropic photon or neutrino gas, or in iso-
tropic Quids in which particles and their fields have
energies large compared with their rest masses,
attains a maximum value" of ~. (Zel'dovich" has
proposed, increasing the upper limit to 2, but it is pos-
sible that this is unrealistic. ") The generally accepted
physically meaningful values of. v lie in the range
1&v&~. McCrea" has suggested a value of v=O, or
p=const, as a method of giving sensible meaning to a
steady-state universe. As the universe expands stress
energy is converted into matter. Whittaker" has also
proposed a value of v =-,'for a model in which pR =const.
The various possible models for different values of the
stress constant v have been classified. 74 In the following
treatment we leave the stress constant unspecified
except in certain particular instances. McCrea pro-
poses that the pressure in (135) for v&1 (and pre-
sumably also for v) s) can be regarded as a uniform
cosmic stress that is not manifest in local and detailed
phenomena. Spatial variations in density and pressure
are related therefore by a distinctly di6erent equation
of state.

For small spatial variations we use

5P = (v —1)5pc'.

Since dP/dp=c, z, we have

v =1+c '/c'

(140)

(141)

K=O,

K= 1y

K= 1~

R (C ~s) 1/(sv —z)

R = (C„sin' y) ""~'&

R = (Cp sinh' y) "t'~"

(142)

(143)

(144)
"B.K. Harrison, K. S. Thorne, M. Wakano, and J. A. Wheeler,

Gravitation Theory and Gravitational Collapse (Chicago Uni-
versity Press, Chicago, Ill. , 1965).

8' E. R. Harrison, Astrophys. J. 142, 1643 (1965).
W. H. McCrea, Proc. Roy. Soc. (London) A206, 562 (1951)."J.M. Whittaker, Nature 209, 491 (1966).

and v is close to unity when c,((c, and v = ~4 for c,=c/W3.

Although v has an upper limit of ~, and is unity in a
fluid consisting of particles with no interactions (other
than gravitation), it has in principle no lower limit.
That is, v&~, and it is possible that v™&1for certain
mechanisms of transfer. Suppose dP/dp is a constant;
also po, po, and pt, pt are the initial and final values of
the density and pressure for an interval of time at a
given location. Then

v =1+c'(pt —po) /(Pi —Po) .

The smallest possible value of pi is zero and the maxi-
mum Possible value of Pe is apoc'; in this case

(pl spa) I (pt po)

and as popo, v~ —~. At least in principle we have
~&v& —~. The transfer processes themselves, how-
ever, will impose physical limitations on this range.

For the Friedmann type models of K=O, ~1, and
A=O, it is found

where
dt/dx =L2/(3v —2) ]R. (145)

4 —3p. =pmat vprad 2pmat prad (146)

Thus if p~,t~10 3
g cm—' and p,«~10—"

g cm—' cor-
responding to thermal radiation of 3.5'K, the densities
are equal when p,~10 ". Thus previously, at higher
densities, the radiation density was dominant, at least
for a period of time, and according to the conventional
view v had a value close to 3. When the mean photon
energy is k T& 1 MeV, pair production populates the
accessible particle. and antiparticle states, and when
kT&1 GeV it is reasonable to suppose as a first ap-
proximation'4 that the Fermi energy level of the fer-
mions is comparable with the mean energy kT of the
bosons, and the number density of each kind is of the
order (kT/Sc)'.

For reference the solutions for v=~ are given:

K=O,

K= 1)

R= C'I' (3y

R= C'~'4(3 sin y,

R = C'~'4~3 sinh g,

dt =Rdx.

(147)

(148)

(149)

(150)

Equation (148) is Tolman's" model of a universe con-
taining radiation. Observations are at least consistent
with a present value of xe 1, and therefore Pt~R, and
at the density p, of (146)

x. (R.IRo)"' (Po/P. )"'.
From the present density of po 10 "

g cm ' it follows
that x, 1/30. At x(x. the models (147)—(149) have
negligible difference and for simplicity we can assume
K=O. This would be true for the high density stage of
all models of $)—', .

5.3. Linearized Equations of Perturbed Models

Ke consider small departures from the metric (118)
as the result of displacements of the Quid. A perturba-
tion treatment of the cosmological models, as distinct
from a static and Rat metric, ' ~ encounters the slight
complication of nonvanishing Christoffel symbols. A

~H. Y. Chiu, Ann. Phys. (N. Y.) 26, 364 (1964)."R. C. .Tolman, Relativity Thermodynamics and Cosmology
(Clarendon Press, Oxford, England, 1934)."L.D. Landau and E. M. Lifshitz, Classical Theory of Fields
(Pergamon Press, Oxford, England, 1962), p. 349."J.Weber, General Relativity and Gravitationa/ Waves (Inter-
science Publishers, Inc. , New York, 1961).

These equations reduce to the original Friedmann and
Einstein —de Sitter solutions (11)—(13) when v = 1.

If p, t and p„d are the present densities of matter and
radiation in the universe, then, neglecting mutual
interaction, p, t~ R ', p,„d~ R . The two densities
are equal when
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general treatment was Grst given by Lifshitz, "and more
recently contributions have been made by Lifshitz
and Khalatnikov, " Irvine, " Hawking, " Silk, ' Sachs
and Wolfe." In general, these solutions include rota-
tional motions and gravitational waves. Simple ir-
rotational motion, which in the elementary Newtonian
treatment is of most interest, is often difBcult to dis-
entangle owing to conditions imposed on the metric.
The following is a simple approach and is analogous
to the Newtonian treatment.

Small variations in the metric tensor are expressed
as g;k+3g;k, where g;k is given by (118) and

The perturbed Christoffel symbols are

&T'k'=&(g'"g 1'k') =g'"&(g,,f'k') —T'k'& '

(Bhg„Bh;„Bhj,;=
o g'"

I

". + '" — ' —1'»'& ', (158)
(Bx&' Bx' Bx"

thus giving Lifshitz's' equation

&T'k~'= o g" (Iek', ;+&rr;k —Irk~;r) (159)

In particular, 81"~~'=-,'h;~, where h is the trace h~'.

From (157) and (159) we have a linearized differen-
tial equation in h

~g,v =h~a. (151) g"(& k
—Iek' i

—h'. k~)+g'"& ki=2(Nr'+&k'Rf')

We assume h;I, and its derivatives are everywhere small,
and that quadratic and higher-order terms in small
quantities are negligible. Thus the unperturbed tensors

g;~, g'~ are used for lowering and raising the indices of
h", h;I, . js,'=g"h;I, ——g;I,h'~, and in e8ect h;I, is a tensor
Geld in the unperturbed g;~ space. Since g;I,g'~=5, to
a 6rst order

(160)

The g;k and R are known, and N is given by (154)
in terms of the perturbed energy-momentum tensor.
A similar equation to (160) was first derived by
Lanczos. "

The trace of T is T=pc' —3p, and therefore

and therefore

3(g kg'") =&'+g keg'"=0

ggik fgi7c (152)

R '= —(SsG/c') (T'—-'h 'T)+3 'A

and its perturbation is

(153)

It is more convenient to use Einstein's equation
(121) in the alternative form

3T =c'3p —38p.

Furthermore, gk,mku'=1, and from 3(gk,ukN') =0,

hk&N I'+gkz» Q'+gk&Q 3Q'=0,

where I'=1, NI"=0, and therefore

hp'+2No»o=0.

Also, gI, m~g'=bp'8-P, and

(161)

(162)

N '= —(Ss.G/c') b(T '' —-'3 'T) . (154) 3(gk "l4 I') = 8p'h ' +3 Np»'+gk »8p'I'

3T;*=3(pc''+P) gk,mku'+ (pc'+P) 3( ~k')kg—3 8P
N, ,= [(a/ax ) 3r„&—r„&3r,:—r„-hark„~y r,„&grkP.]

—[(a/ax&) 3r„&—rkgsr;„~ —r,Psrk„+r,„-3r, g
thus giving the Palatini equation"

=
3pe5rob (pc'+P) —3 '3P

+(pc'+P) (3o'& o+3 olp»*'+gk»"3p're ) . (163)

From (162) and (163) it follows that the components
of 8T are

~R~v =&~I i';g —~~I g';i, (155)

The perturbation bR, ' is evaluated in terms of 7o,' We therefore fin, from (119)
as follows. From (127),

3R,'=3(gekR k) =gekN k
—hk'R'

and with (155), we obtain

(156)

where a semicolon denotes covariant diGerentiation.
Also, to a first order,

bTop =c'5p,

3T '= (pc'+P) (le P+g .» ),
3T = —8p,

bTp =0 (164)

g k(bl'k(' —beak '. () = bR '+hk'Rgk' (157) where a, /=1, 2, or 3, erWP, and no summation. From
(154) and (164) we now have

~ E. M. Lifshitz, J. Phys. USSR 10, 116 (1946).
89E. M. Lifshitz and I. M. Khalatnicov, Advan. Phys. 12,

185 (1963).
90 W. M. Irvine, Ann. Phys. (N. Y.) 32, 322 (1965).
9' S. W. Hawking, Astrophys. J. 145, 544 (1966).
»J. Silk, Astrophys. J. 143, 689 {1966).
ee R. K. Sachs and A. M. Wolfe, Astrophys. J. 147, 73 (1967l.
e' C. Mgller, The Theory of Relafeeefy (Clarendon Press, Oxford,

England, 1952), p. 334.

3Roo 4n.GB(p+3P/c')

3R»p = —SorG(p+ p/c') (h '+g 3N~)

N =4sG5(p —p/c'),

O' K. Lanczos, Z. Physik 31, 112 (1925).

(165)
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and SR' =0. In addition, the components of R are

Ro' ———42r G(p+3P/c') +A,

R o =42rG(p —P/C') +A. (166)

Collecting together the equations (160), (165),
and (166), we have, for i =j=0,

h;oo —2ho';or+g' ho';2

= —82rG(ho'+&) (p+3P/c') +2ho'A', (167)

for i =0, j=a, (u=1, 2, or 3; no summation over n);
h hl h 2 +gtmho

= —82rGLh (p+3P/c') +2(p+P/c') g .SN.5+2k.'A;

(168)

thus left with six equations: (167), (168), (174), and
the three equations (170), for the determination of the
six quantities he, bp, P and p. However, the hp ac-
cording to (170) are propagated independently of the
Quid disturbance and therefore we can set them equal
to zero. For small irrotational Quid disturbances the
line element is therefore

ds =
~
1+2 —

~
dt — (dr +r do ) (176)

R'(1—2fc 2)

c2j (1+g~ Ky2) 2

McVittie" has used a similar line element for an Ein-
stein universe containing discrete condensations.

A transformation of the coordinates x'~x"=x'+e',
where e' are small quantities, leads to g;&+y, &, where

for i=a, j=a..
gae(h 2h l ) +gtmh a

o;;(+ex;;=0
=SorP(h a+8) (p —p/c') +2h oA; (169) From

The line element (176) is unchanged with the Killing
equation"

and fOr i=ce, j=p, (ce&p):

g (h, p os', p2
—hp'2)—+g™,hp", 2m 0 ——(17.0)

Altogether, (167)—(170) provide ten equations for
the determination of the ten unknowns: h2; (four com-
ponents can be discarded by coordinate transforma-
tions), buo (since bio= —2ho'), and bp (bp is given by
an equation of state) .

5.4. Irrotational Notion

For irrotational motion it can be shown that (167)—
(170) reduce to three equations determining p, oo, Sp,
as in the Newtonian treatment. A suflicient condition
for irrotational motion is that all nondiagonal com-
ponents of h are zero, and hp

———h
The simplest procedure is to use local coordinates in

which the Christoffel symbols are given by (124) and
(125) . We also adopt a system of coordinates in which

dx& dx' dx'& dx"
(g,7,+h;o) — = (g 2+v, a)

dS dS dS dS

it is found do'/ds=de'/dt=O Also, fo. r 8N to remain
unchanged, de /dt=O Clearly. , these conditions are
not limited to infinitesimal transformations, and any
x'~x" leading to f(x')~'(x") is admissible.

5.5. Equations of Irrotational Motion

With the line element (176) the only surviving equa-
tions of (167)—(170) are

4j)+12RR 'P 2$= 42rG—(2$+c2b) (p+3P/c') 2$A—
(177)

4RR '/+4(RR '+2R'R 2)P+
= 42rG(2$ —C25) (p—P/C') +2/A, (178)

(d/dt) (RP) = 42rG(p+P/C2) —R'22C' (1'79)

hp =0,

h '.
p
—-'b 'h. p=e

and the perturbed velocity is

bu =By/Bx .
Then (168) becomes

,'(Bh/Bt) —(1/-R') (8/Bt) (R'hoo) —tt

(171)

(172)

(173)

These equations are obtained either by working through
the covariant differentiations, or more simply using
local coordinates. The results have been checked with
Dingle's" formulas for an orthogonal line element.
With

82 RB k2)g= —+3——+—
I P

BP R BI, R']
V'P= —k'2P,

= 162rG(p+P/c') Roy, (174)

and since 8 can be absorbed into y, we assume 0=0,
and therefore

hoo= —h2' ———h2' ———ho'= 2p/c2. (175)

The 2c ' is included so that P is equivalent to the
gravitational potential of Newtonian theory. We are

(177) and (178) become

4rGc2bp= 3RR 'P (k +3R——3K) R —P (180)

4rGpp=p+4RR 'p+(2RR+R' K)-R
—'p (181)—

96 G. C. McVittie, Monthly Notices Roy. Astron. Soc. 92, 274
(1931).

97 L. P. Eisenhart, Riemunniue Geometry (Princeton Uni-
versity Press, Princeton, N. J., 1949), p. 233.

~ H. Dingle, Proc. Natl. Acad. Sci. ( U. S.) 19, 559 (1933).
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+ I (v—1)k'+vAR'+8vGp(v —v) R' (6v——4) ~}

XR '/=0, (182)

The Quid motions are therefore parallel to the pressure
and density gradients.

Let P = (v —1)pc', 8P = (v—1) Ape-', then using (136),
(139), the above set of equations (179)—(181) become

f+(1+3v)RR 'P

For spherical har'rnonics of 'degree m the radial equa-
tion is

1 d d% I(m+1)q'"r' —+ k'— 0'= 0, (187)
q'~2r' dr dr qr'

where q= (1+~iar') '. We consider briefly the wave
functions and eigenvalues in a space of negative and
positive curvature. ' "~'"

For ~=1 let

(d/dt) (RP) +47rGvpc'R'q =0, (183)
hence,

sin Q. = r/(1+-,'r');

ted+3 (v —v) (R/R) ti —3 (v/c') P—k'vy= 0, (184)

where ti= lp/p. The last two equations can also be ob-
tained from bTO, =0 and 8T„., =0. Equations (182)—
(184) are the general equations with arbitrary v, v for
the determination of P, q, ti.

At low pressure we have p«pc' and v is close to
unity; also v=1+c,2/c', with cP«c', therefore (182)
becomes

and (187) becomes

dn =dr/ (1+-,'r'),

With@'=ll sin't"- n, this equation is

d . d4 m(m+1)
(sin'a) ' —sin'0, —+ k' — 4=0.

do. sin' n

(188)

(189)

P+4RR 'P+ I (c,k/c) '+AR' 2~ }R 'P—=0. (—185)
d . dill (e+-') '

(sin o.) ' —sin n —
~
+ X(X+1)— . II=0,

do. do. ] sin' 0.

This is identical with the Newtonian result (65) if k

is replaced with kRoc (k is now dimensionless), or if R
is replaced with R/Roc. Similarly, (184) is identical
with (37); and since c'~ ~, (183) becomes (38) .

For small scale irregularities of X«Rc, XR/R«c, in
which the Quid velocity is small compared with the
velocity of light, an approximate form of (160) is

and X(X+1)=k'+-,'.
For ~= —1 let

sinh n= r/(1 ——,'r');
hence,

dn =dr/( I 'r')——

(190)

(191)

'ko" = —8v-Gb (p+3P/c') . (186)

5.6. Normal Modes of Vibration in Curved Space

Using r, 0, @ coordinates in

|72/+k'P= 0,

and separating the variables P=P(t)+(r) I'„(0, p), we

find that only the radial function 4'(r) is different in

the three cases ~=0, &1.

9 The author is indebted to R. K. Sachs for pointing out that
I.ifshitz's solutions do not exclude irrotational motions.

which is Irvine's" equation. In this approximation
bp/p, bp/p, need not be small quantities. The results
are equivalent to the Newtonian results for small
scale irregularities and p«pc'. Lifshitz's basic equations
are similar to (167)—(170) . Coordinate transformations
are possible which allow four of the h,.' to be zero;
which of the h are made zero determines to some
extent the simplicity of the equations for a given
physical problem. Lifshitz makes the choice h,'=0
and derives solutions in terms of scalar, vector, and
tensorial harmonics. "

and +=II sinh 't' n ' then (187) becomes

d . dII
(sinh n) ' —sinh n-

do! dn

+ X(X+1)— . II=0, (192)
sinh' n

and X(X+1)=k'——'
Let )= g't'a, then both (190) and (192) can be ex-

pressed in the one equation

d . dII& (n+ ', )'-
(sin f) ' —sin $

—
~ + X(X+1)— . II=0,

d$ d$) sin' f
(193)

where now X(X+1)= ~k'+ —,', or

i~ (I+.„P)u2 (194)

k'=y(y+2). (195)

Ioo y. Pock, Z. Physik 98, 148 (1935).
~OI E. Schrodinger, Physica 6, 899 {1939)."' E. Schrodinger, ExpaNChng Uni verses {Cambridge Uni-

versity Press, Cambridge, England, 1957).

The solutions of (193) are the associated Legendre
functions P„&(cos &), Q,"(cos &), and ti= ,'+m, v =X.—

Positive curvature (~= 1). In this case it is more con-
venient to set
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~= COS A'kp ~)

27+4 . ,C.+2
—&= sin' a

27+3
' (205)

4 "= (v/2 sin a)'/'P '"+"(cos a), (196)

= (v./2 sin a)'/'Pry', " "(cos a) . (197)
Hence, the radial functions of the lowest modes are

(206)4&'——cos ~, %'q ~=3 Sinu)
From the definition

Since P„f"=P „~&, or P~,f"=Pq,I", we use u=X~. Because Also

p&v is an integer, but p is not an integer, we can use
and P„ I" as linearly independent solutions. ' 3

These are

(cot La) +o/2++)

Pt/2+, +o/'+"& (cos a) =
I'(1w (-,'+I) )

0'20= 1—~ sin' n, —
3 sin A cos A)

=T5 sin o.' ) (207)

&& F(2 v,——',+7; 1%(2+tv); sin'-', a), - (198)

it is seen that as a +0 —(or r—&0)

%'=cos a(1—2 sin' a), % '= te sin a (1—ee sin' a),
(208)

(cot 1a) k(1/2+o)
+S~~

(sin a) '/'I'(1~ (-,'+rt) ) '

and as e is a positive integer, only +~ " is regular at
the origin. Therefore

=Tq COS n Sln- n, 4'e '= r o e- sin' a. (209)

&'=v(7+2) 3 ~ ~ ~

In a space of uniform positive curvature the eigen-

values are

4=%7 "= (w/2 sin a)'/'Pt/~ —'/2 &(cos a). (199)

Ke have assumed that y is integral; it can be shown
that this is necessary in order that 0 is periodic or
single-valued:

4,—(—cos a) = cos (y —tt) ~%'~ (cos a). (200)

Thus the wave function is symmetric (antisymrnetric)
about a= ', rr, or-r=2, when y rt is —an even (odd)
integer. This has interesting consequences for elliptical
space 0(r(2 and spherical space 0(r( ~. The
transformation r~4/r leaves the metric (118) un-

changed. It is therefore said"' that elliptical and spheri-
cal space are indistinguishable because 2(r( ~ is
merely a remapping of elliptical space. In a perturbed
universe, however, elliptical space is not a mirror image
of 2(r( ~ for the antisymmetric wave functions, and
therefore it would seem to be an inadequate model of
the universe.

For m=0 1 ~ ~ ~

sin" a d"+'[cos (1+y)ag—yl—
M„d(cos a) "+'

M = (1+y) '[(1+y)'—1) ~ .[(1+y)'—rt2). (201)

It follows, for v=0,

and nz(e(y. The fundamental mode has an eigenvalue

of k'=3.
1Vegative curvature (a= —1). For the eigenvalues in

this case we use

/e'= y'+1, (210)

The hypergeometric expression

(coth -', a) +i'/'+"&

P ~
+~'~'+") ~cosh 0.~ =

XF(,' iy, a+-—iy; 1%(,'+rt); ——sinh' -',a) (213)

is real, and as o.—&0,

(coth -'a) +o"+"&

-/t-n~~
(sinh a) '/21'(1~ (-', +tv) )

'

and therefore only%'~ " is regular at the origin. Thus,

and from (194),)„a————',&iy. P„&and Q„" are lin—early

dependent because /tv= 4+tv is half-integral, and fo«he
linearly independent solutions P„& and P„ I" are again

chosen. Since I'q, l"= Pq, l", we chose v=X~, and therefore

@ ~= (~/2 sinh a)'/'P i/aI. '/'+"(cosh a), (211)

+ -"=(~/2 sinh a)'/ P t/t+; '/ "(cosh a). (212)

e,'= sin (1+p)a/(1+p) sin a, (202) 4'=4'~ "= (~/2 sinh a)'/'P t/2+~v
'/' "(cosh a), (214)

and for n=y,
7= (sin a) &/(1.3.5 ~ ~ ~ 2y+—1) . (203)

and because space is open, there are no periodic con-
ditions to satisfy, and p can have any real value.

For integral values of e,

'03 W. Magnus and F. Oberhettinger, Functions of JI/Iathematical
Physics (Chelsea Publ. Co., New York, 1943).'"A. S. Eddington, Mathematical Theory of Relativity (Cam-
bridge University Press, Cambridge, England, 1950), p. 157.

sinh" a d"+'(cos ya)+ —n—
1V d(cosh a) "+' '

& = —v'(v'+1)" (v'+ ')



880 REvIEw's oF MoDERN PHYsIcs ~ OcTQBER 1967

and for n= 0,
0'vo = sin yn/y sinh n,

of v=1 has been previously considered in (4.2); when
v&1, all modes tend to be unstable.

In the case of g= —1, k'=y'+1

K= 1i

k'=y(y+2), y=1, 2, 3 ~,
k'= y'+1, y'& 0, (218)

and the lowest eigenvalues are 42=0, 3, and 1, re-
spectively. The eigenvalues form continuous spectra
for zero and negative curvatures, and a discrete spec-
trum for positive curvature.

5.7'. Time Dependence of Modes in a Static Universe

In the static models B=E. 0 and therefore, from
(132) and. (133),

A= 4~(3v—2) Gp= (3v—2) ~/vR'.

Equations (182)—(184) now become

1t+t (v—1)lP —(3v—2) x)R '/=0,

4' Gv pc'E'(—p =0,

~p+(vf/c') (k' —3~) =0.
It follows that

(219)

(220)

(222)

P~ Bp~ exp&i {(v 1)k' —(—3v—2) g}'~'R 't. (223)

@ —'= (y'+1)-'(y cot yn coth n)4, ', (21/)

and so forth.
We have found that the eigenvalue spectra for

~=0, 1, and —1 are

~2& P

Bp~ expiI (r —1) (7'+1)—(3v—2) }'~'R 't, (228)

with y2&0, and a given mode grows exponentially
when v& (y' —1)/(y' —2).

It was hoped" that the formation of condensations
in an unstable static universe would increase the volume
to V+BV, thus launching the universe on a career of
expansion rather than. contraction, Using the line
element (176), it can be seen

BV=3R' sin' n sin &P(n e P) dndg~, (229)

and in the linear approximation, bV=O, as was sub-
sequently discovered. "' It is interesting to notice that
the solution of Lapace's equation in spherical space is

Too = g cot n = q (r '—-„'r),

where q is a constant, as shown by Whittaker"' and
Copson. ' The transformation n—+r—n or r +4/r-
reverses the sign of 00. Thus, if the universe consists
of a large number of condensations, then by taking
conjugate pairs at (n, 8, p), (m —n, ~—8, tt+m) the net
gravitational potential vanishes, as it must, since the
effect of gravity is already included in the assumed
curvature.

Spherical space—not necessarily static—has the
intriguing property of providing a form of "CI'T"
invariance. If ~= 1 and r'= x'+y'+s' in the line element
(118), then

Kith v arbitrary there are an inhnite number of
both unstable and stable static models. Let R~R+BE,
then from (130), (134), to a erst order

x= 2 tan -', n sin 8 cos p,

y = 2 tan 2n sin 8 sin Q,

~=2 tan —,'~ cos e. (231)

or
8A—vASR=0, (224)

Consider first ~=1. Then, from (223)

BE~ exp& I (3v—2) ~}'"R 't. (225)—

It can be shown" that unstable models occur when
g=1, v&3, and when A:= —1, v&0; and stable models
occur when I(:=—1, v(0.

The operation 0(r—+4//r) maps r&2 onto r)2 with
reversed parity: x—&—x, y—+—y, s—&—s. Similarly, if q
is an electric charge, then q

—+—q. Thus if the charge
conjugation operator C is limited to electric charge,
then 0 conserves CP. If now we consider a perturbed
spherical space, it can easily be shown from the geodesic
equations that CI' invariance is violated whereas
CI'T is conserved, where T is the time (or momenta)
reversal operator.

where P=~(y+2) . For v= v=-s, which is of particular
interest, We assume that A.=O, and take first the conventional

viewthat 1&v&s..The case of p&&pc' has been previously
(227) considered and we therefore consider the extremelyBp ~ expaiI7(y+2) 6}'~'t/3'12R, —

Bp xp~ f(" 1)7(7+2) (3 2) }' E t, (226)
5.8. Time Dependence of Modes in Nonstatic Models

and all modes p&2 are oscillatory. The fundamental
model 7=1 grows as exp (t/R), whereas the universe
departs from its equilibrium state as exp 2"2t/E,
from (225). The mode y= 2 varies At+Bt '. The case

' 6 W. H. McCrea and G. C. McVittie, Monthly Notices Roy.
Astron. Soc. 92, 7 (1931)."'J. M. Whittaker, Proc. Cambridge Phil. Soc. 24, 414 (j.928).

'N E. T. Copson, Proc. Roy. Soc. (London) A118, 184 (1928).



E. R. HARRTsoN lVormal 3/fodes of Vibrations of the Universe 881

interesting case of v=-~. In the range 70 '-"&p&10 '
g cm ', where the upper limit corresponds to a photon
energy of the order of 1 MeV, radiation is the dominant
constituent in the universe and both v and v have
values close to ~. At higher density the composition
of the cosmic Quid becomes progressively more com-
plex; nevertheless, it seems likely that v retains a value
close to ~.

Defining p„, as

p QRm

we have from (182) with i'd=0, v= v=@-,

p»2+ (-',k' —~irGpR g K) R "-p» ——
2 -0. (233)

Thus P», , and therefore all P„„are periodic in time when

~ & (c'/10~G&) ii-', (234)

where A. =cEk—', and the curvature term is negligible
compared with k'.

Because g is generally a snlall quantity at high den-
sity (182) transforms to (for ~=0, %1)

p"+4X '4'+ (3k'-' —4~)4=0, (235)

k~= —x4"—(k7"x'+1)4'.

using (147), where primes denote differentiation with.
respect to y. Either from (180) or (184), the contrast
density is

(236)

For v=o, and maximum growth of c,=o, we 6nd

6. MSCUSSION

The vibrations of the universe are moderately well
behaved and show no signs of a catastrophic growth
in amplitude. This conclusion has been reached by
several authors in various ways. Within the limitations
of simple linearized theory the expanding universe is
reasonably stable when subject only to gravitational
interactions. This is illustrated in an approximate
manner by Jeans' theory. The gravitational frequency
is of the order i(pG)"', and the age of the universe is
of the order (pG) "', and hence perturbations cannot
grow signi6. cantly in the time available.

In an expanding cold universe of zero curvature we
have

i = ~0(~0/~)'", (242)

where pp pp denote initial conditions. If the disturbances
originate from thermal fluctuations, the mean-square
fluctuation in X particles is

8p~ PR '= AR '+BR ',

and in the steady-state theory condensations cannot
form as a result of perturbations in the average density,
as shown by Bonnor ~o

The solution of (235) is ((~)')=AT(BCV/Bp) r,v, (243)

4 ~ X "'~+»2(aX),

a = (-,'k' —4~) '~'. (237)

For the low-order modes ax«1, a,nd therefore p~P
and

where p is the chemical potential. The right-hand side
of this equation is equal to X for a Maxwellian distri-
bution, and is of the same order for a relativistic gas
of bosons, and for fermions in which the Fermi energy
is equal to kT. Therefore

+ ~g—s/a

and iV=M/nz, where m is the mass of the constituent
where x~ R~ t' '. Thus 6p/p is either constant or particles and ~ is the eventual mass of the condensa-
diminishes in an expanding universe. For the high-
order modes ot ax»1, we have p, ~x'P, and therefore

i'd=A sin ax+B cos ay.
(~/3f) "'(~o/u) '", (244)

The condition ay»1 is simply P«&(c'-'/8mGp)'~". We
can summarize by saying that the contrast density
oscillates at constant amplitude at a frequency of
2c/3'i9. for short wavelengths, and is either constant
or decays in an expanding universe for long wave-
lengths.

The possibilities occurring when v&1 are not par-
ticularly interesting, except perhaps when v=o, as in
the steady-state model. Let v=-1+c.2/c', ~==0, then for
c '«c' (182) becomes

0"+ —-I-
( -) (

—'. li +(1—) —,) 4=0'.

(240)

where p is the mean density of the universe when the
condensation has formed, and pod&/Xo' is the initial
mean density where Xp is the characteristic size. Now p,

cannot be made as large as we please by increasing
pp, for then the assumption of a cold universe breaks
down and (239) replaces (242) . There is thus a limited
range of po/p which is not large enough to compensate
for the extreme smallness of m/M.

A redeeming feature of gravitational theory is that
the universe in the large tends to remain homogeneous
and isotropic. If gravitational theory alone adequately
accounted for the growth of irregularity, then the low-
order modes would also develop large amplitudes and
the universe would possess pronounced macroscopic
anisotropy. %~hat is required is that the universe is
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Ms G. Galnow, Phys. Rev. 86, 251 (1952).''G. Gamow, Kgl. Danske Videnskab. Selskab Mat.
Medd. 27, No. 10 (1953).

no C. F. von Weizsacker, Astrophys. J. 14, 165 (1951).'" W. B.Bonnor, Z. Astrophys. 39, 143 (1956).

Fys.

unstable for an intermediate range of wavelengths at
some stage in the expansion, and the density in various
regions thereafter ceases to diminish with time. Such a
concept demands that the gravitational potential of
the disturbance increases with time and attains a value
«

~ f ~
G3I/X. Hut in the cold universe, and in the

radlatlon lllllvelse, $ ls Ilot an lllcleaslllg fullctloll of
time.

A linearized theory limited to irrotational motions
and gravitational interactions is open to several criti-
cisms. The neglect of all forms of rotation is a gross
simplihcation, since angular momentum is a common
and indispensible feature of galactic and stellar systems.
It seems plausible that at subnuclear density, at least,
a treatment based on rotational motions will lead to
even slower rates of growth owing to the presence of
inertial forces. Gamow"' ' has proposed a primordial
turbulent state of large amplitude Quctuations for the
initial conditions. Similarly, Keizskcker" assumes an
initial state of turbulent gas clouds. Bonnor"' points
out, however, that turbulence is more likely to be the
result rather than the cause of condensations. Further-
more, initial conditions of this nature add to the mystery
rather than clarifying it, and their postulation falls
within the province of the initial structure hypothesis.

Tolman, '" Bonnor '" and I'eebles"' have used nonlinear
theory to study the growth of single condensations, and
Bonnor has shown that the formation of the nebulae is
an improbable occurrence if @0~A "', where E is the
number of atoms.

The assumption that initial disturbances are small
demands that rapid growth is possible at some stage
in the expansion of the universe. This would appear to
be impossible unless we abandon the rudimentary
Quid prescription. More complex Quids with mechanisms
of radiative transfer are an attractive possibility.
However, the difhculty is that radiation is the dominant
constituent of the universe over an extremely wide
range of density. In this period the motion of matter is
impeded by radiative drag, sr and thereafter ps/p in
(244) increases approximately by only three orders of
magnitude for galaxies. Either condensations evolve in
spite of radiative drag or they must evolve rapidly
after the radiation deluge has subsided. "

A study of the modes of vibrations of the universe
shows that the origin of basic structure is an intriguing
and challenging problem.

'"R. C. Tolman, Proc. Natl. Acad. Sci. (U. S.}20, 169 (1934).'"P. J. E. Peebles, Astrophys. J. 14'7, 859 (1967) .
"4 Note odded im proof It ha.s since been proposed (E. R.

Harrison, Phys. Rev. Letters 18, 1011 (1967)g that the early
rudimentary structure of the universe consists of compositional
Quctuations in a Quid of uniform density, rather than density
Quctuations in a Quid of uniform composition. Thus Quctuations
in the b argon number are amplified and an expanded universe is
left in a fragmented state consisting of separate regions of matter
and antimatter.


