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The Goldstone expansion is rederived by elementary time-independent methods, starting from Brillouin-Wigner
(BW) perturbation theory. Interaction energy terms AE are expanded out of the BW energy denominators, and the
series is then rearranged to obtain the linked-cluster result. Similar algebraic methods lead to the linked expansions for
the total wave function (Hugenholtz) and the expectation value of a general operator (Thouless). Starting again with a
degenerate version of BW perturbation theory, these methods are used to obtain the Bloch—Horowitz energy expansion,
as well as the corresponding wave function, expectation-value, and transition-amplitude expansions. A "reduced" form
of the Block-Horowitz expansion is described, and also a "completely linked" version. The latter is suggested as a tool
for investigating superfiuid phenomena in nuclear matter, and for establishing contact with the Landau theory of Fermi
liquids. The physical interpretation of these expansions is carefully studied, especially with regard to nuclear applications,
to determine how they handle such "physical" features as antisymmetry, self-energy effects, wave-function renormaliza-
tions, and the distinction between "true" and "model" single-particle occupation probabilities. The problem of a correct
theoretical definition for the shell-model potential is carefully examined, and a specific theory is presented. These expansions
are seen to form a convenient and very powerful set of tools for studying the structure of actual nuclei.
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I. INTRODUCTION

The Brueckner-Bethe-Goldstone theory of nuclear
matter is now reaching the stage where it can be use-
fully applied in studies of actual nuclei. ' "To apply

' References 2 to 14 deal with the formal theory of the nuclear
ground state, including the

effective

two- .~ody interaction.
References 15 to 18 discuss the eGective two-body interaction
to be used in shell-model calculations. References 19 to 23 cover
related topics and more phenomenological methods. For the
theory of infinite nuclear matter, see Refs. 9, 11, 26, 47, 48, and
also K. A. Brueckner and J. L. Gammel, Phys. Rev. 108, 1029
(1958). See also two review articles: J. S. Bell and E. J. Squires,
Advances in Physics (Phil. Mag. Suppl. ) 10, 211 (1961);A. G.
Petschek, Ann. Rev. Nucl. Sci. 14, 29 (1964). A very extensive
review has also been given by K. Kumar, Perturbation Theory
and the nuclear Many Body Problem (North-Holland Publ. Co.,
Amsterdam, 1962).

2 K. A. Brueckner, J.L. Gammel, and H. Weitzner, Phys. Rev.
110,431 (1958).

3K. A. Brueckner and D. T. Goldman, Phys. Rev. 110, 424
(1959).
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K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961};K. S. Masterson, Jr., and A. M. Lockett,
Phys. Rev. 129, 776 (1963); K. S. Masterson, Jr., in Methods
of ComPutafiona/ Physics, B. Alder, S. Fernbach, and M. Roten-
berg, Eds. (Academic Press Inc. , New York, 1966}, Vol. 6.

~ R. J. Eden and V. J. Emery, Proc. Roy. Soc. (London) A248,
266 (1958); R. J. Eden, V. J. Emery, and S. Sampanthar, ibid.
A253, 177 and 186 (1959).

6 W. Brenig, Nucl. Phys. 4, 363 (1957); H. J. Mang and W.
Wild, Z. Physik 154, 182 (1959);H. J. Mang, W. Wild, and F.
Beck, Nuclear Forces and the Few-Nucleol ProbLem, T. C. GriKth
and E. A. Power, Eds. (Pergamon Press, London, 1960), Vol.
II, p. 403; R. Folk and E. Bonnem, Nucl. Phys. 03, 513 (1965).

H. S. Kohler, Nucl. Phys. 32, 661 (1962); H. S. Kohler,
Phys. Rev. 13'7, B1145;and 138, B831 (1965); H. S. Kohler and
R. J. McCarthy, Nucl. Phys. 86, 611 (1966);H. S. Kohler, ibid.
A91, 593 (1967).

8 B. H. Brandow, Phys. Letters 4, 8 and 152 (1963); B. H.
Brandow, Comptes Rendus du Congres International de Physique
Xnclegire, P. Gugenberger, Ed. (Paris, 1964), Vol. II, p. 295;
also Ph. D. thesis, Cornell University (1964) (unpublished). See
also Ref. 24.

s B. H. Brandow, Phys. Rev. 152, 863 (1966)."B.D. Day, Phys. Rev. 136, B1594 (1964).
~'H. A. Bethe, Comptes Rendus du Congres International de

Physique Nucleaire, P. Gugenberger, Ed. (Paris, 1964), Vol. I,
p. 101;H. A. Bethe, Phys. Rev. 138,jB804 (1965);H. A. Bethe,
Phys. Rev. 158, 941 (1967). See also', the preceding article by R.
Rajaraman and H. A. Bethe, Rev. Mod, Phys. 39, 745 (1967}.

'2 C. W. Wong, Ph.D. thesis, Harvard University, 1965 (un-
published); C. W. Wong, Nucl. Phys. A91, 399 (1967); C. W.
Wong, Nucl. Phys. (to be published).

~3A. D. MacKellar, Ph. D. thesis, Texas ABzM University
(1966); R. L. Becker and A. D. MacKellar, Phys. Letters 21,
201 (1966).'» A. Kallio and B. Day, Phys. Letters 25B, 72 (1967).

~4R. K. Bhaduri and E. L. Tomusiak, Nucl. Phys. 88, 353
(1966);T. H. R. Skyrme, ibid 9, 615 (195.9); S. J. Krieger, M.
Baranger, and K. T. R. Davies, Phys. Letters 22, 607 (1966).

'~M. Bauer and M. Moshinsky, Nucl. Phys. 4, 615 (1957);
B. P. ¹igam, Phys. Rev. 133, B1381 (1964}.I M. K. Banerjee and B. Dutta Roy, Ann. Phys. (N. Y.) /,
484 (1959);B. Bremond, Nucl. Phys. 22, 434 {1961).

'~ J. F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys.
(N. Y.) 18, 339 (1962); J. F. Dawson and J. D. Waiecka, ibid

22, 133 (1963).
'8 A. Kallio and K. Kolltveit, Nucl. Phys. 53, 87 (1964); A. M.

Green, A. Kallio, and K, Kolltveit, Phys. Letters 14, 142 (1965);
A. Kallio, ibid. 18, 51 (1965); A. M. Green and A. Kallio, Nucl.
Phys. 84, 161 (1966); T. T. S. Kuo and G. E. Brown, ibid. 85,
40 (1966);and A92, 481 (1967); G. E. Brown, IIniged Theory of
Nuclea~ Models (North-Holland Publ. Co., Amsterdam, 1966),
2nd ed.

~~ Thomas-Fermi statistical mode/: L. Wilets, Rev. Mod. Phys.
30, 542 (1958);Y. Hara, Progr. Theoret. Phys. (Kyoto) 24, 1179
(1960); K. Kumar, K. J. LeCouteur, and M. K. Roy, Nucl.
Phys. 42, 529 (1963); R. G. Seyler and C. H. Blanchard, Phys.
Rev. 131,355 (1963};H. A. Bethe, Proceedings of the International
Conference of unclear Physics, GatIinburg, 1966 (to be published);
H. A. Bethe, Phys. Rev. (to be published).

2 Semi-theoretk al correlation factors: T. Tagami, Progr. Theoret.
Phys. (Kyoto) 21, 533 (1959); N. Austern and P. Iano, Nucl.
Phys. 18, 672 (1960); P. H. Wackman and N. Austern, ibid.
30, 529 (1962); F. Villars, Proceedings of the International School
of Physics "Enrico Fermi, " Course Z3 (Varenna, 1961), V. F.
Weisskopf, Ed. (Academic Press Inc. , New York, 1963};J. S.
Bell, Lectures on the Many-Body Problem (Bergen, 1961), C.
Fronsdal, Ed. (W. A. Benjamin, Inc. , New York, 1962); J.
DaProvidencia and C. M. Shakin, Ann. Phys. (N. Y.} 30, 95
(1964); C. M. Shakin, J. P. Svenne, and Y. R. Waghmare, Phys.
Letters 21, 209 (1966); D. M. Brink and M. E. Grypeos, Nucl.
Phys. A9'7, 81 (1967).

s' Empirical evidence for hard core effects in-nncfear specfros
copy: S. P. Pandya, Nucl. Phys. 43, 636 {1963};S. P. Pandya
and I. M. Green, ibid. 57', 658 (1964).

"Soft core effeciioe -interactions: (This general approach has
been criticized in Ref. 14.) P. Goldhammer, Phys. Rev. 116,
676 (1959);N. Ullah and R. K. Nesbet, ibid. 134, B308 (1964);
Y. R. Waghmare, ibid. 136, 31261 (1964); A. B. Volkov, Nucl.
Phys. V4, 33 (1965);A. K. Kerman, J. P. Svenne, and F. Villars,

this theory, one shouM have a clear and thorough
understanding of the basic mathematical tools, the
linked-cluster expansions for the total energy, the
total wave function, and the expectation value of a
general operator. Unfortunately, these expansions
have been surrounded by a certain aura of mystery,
due to the fact that they were derived by methods
rather foreign to studies of nuclear structure. The
large body of linked-cluster literature has not suffi-
ciently clarified their relation to the comparatively
elementary quantum methods which are the standard
tools for most nuclear structure studies. The main
purpose of this paper is to show that essentially
all of the basic time and temperature-independent
linked-cluster results, including some which have not
appeared previously, can be obtained by rather ele-
mentary algebraic methods. '4 This may not be the
simplest or the most elegant approach, but it is a
surprisingly powerful one, and it serves to emphasize
the physical meaning of the results. It establishes an
immediate contact with shell-model concepts, and it
should therefore be fruitful in suggesting how these
concepts are modified by nuclear-matter theory.

The present algebraic methods are closely related
to those used in Brueckner's original investigation, ""
in which he explicitly demonstrated the cancellation
of unlinked terms in the erst few orders of Raleigh—
Schrodinger (RS) perturbation theory. He observed
that this cancellation depends on various algebraic
identities among the energy-denominator products.
There are two basic differences in the present approach
which permit all orders to be treated at once. First,
the starting point is the Brillouin —Wigner (BW)
perturbation theory, whose formal structure is much
simpler than that of the RS expansion. Secondly, we
use a "factorization theorem", " which expresses the
required energy-denominator identities in a simple
and general form.

For completeness, we mention other derivations
which have appeared since the original studies of

Phys. Rev. 147, 710 (1966};K. T. R. Davies, S. J. Krieger, and
M. Baranger, Nucl. Phys. 84, 545 (1966); D. M. Brink and E.
Boekker, ibid. A91, 1 and 27 (1967);

"Jastrow method: J. Dabrowski, Proc. Roy. Soc. (London)
A'7l, 658 (1958);and A/2, 499 (1958);R. D. Amado, Phys. Rev.
111, 548 (1958);J. S. Bell and J. M. Super, Nuel. Phys. 13, 167
(1959);J. W. Clark, Ann. Phys. (N. Y.) 11, 483 (1960); H. A.
Ali and G. E. Tauber, Nucl. Phys. 55, 481 (1964). For an ex-
tensive review and further theoretical development of the Jastrow
method, see J. W. Clark and P. Westhaus, Phys. Rev. 141, 833
(1966). Inherent limitations of this approach are discussed in the
Bell and Squires review article cited in Ref. 1. Tagami (Ref. 20)
has proposed that the exclusion principle be invoked to resolve
some of these difhculties, This is one way to resolve the am-
biguity discussed by V. J. Emery, Nucl. Phys. 5, 585 (1958).

24 For a brief description of the present methods and results,
see B. H. Brandow, Proceedings of the International School of
Physics "Enrico Fermi, " Course 36 (Varenna, 1965), C. Bloch,
Ed. (Academic Press Inc. , New York, 1966)."K.A. Brueckner, Phys. Rev. 100, 36 (1955)."K. A. Brueckner, The Many-J3ody Problem (Les Houches,
1958), C. DeWitt, Ed. (Dunod Cie, , Paris, 1959).

2~ L. M. Frantz and R. L. Mills, Nucl. Phys. 15, 16 (1960};
see also Ref. 29.
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Brueckner"" and Goldstone' Most of these have
extended the basic linked-cluster result in directions
with which we are not concerned. Hugenholtz" and
Bloch" have obtained the energy and wave-function
expansions by studying the poles of the resolvent
operator, (z—H) '. Coester" has used an algebraic
method based on commutator brackets and the Heisen-
berg equation of motion in interaction representation.
He proves the elimination of unlinked terms, but gives
no further details. Coester and Kiimmel" then obtained
the same result using commutator brackets alone,
without recourse to perturbation theory. Hubbard"
has used an adiabatic method with Feynman propa-
gators; i.e., with unrestricted time-ordering in the
multiple-time integrals. His treatment of the time-
dependent polarizability of an electron gas is very
similar to quantum electrodynamics. (Incidentally,
the elimination of unlinked terms, or "vacuum Quctua-
tions, " was first discussed by Feynman" in his study
of quantum electrodynamics. ) Klein and Prange"
obtained the Goldstone expansion using Green's func-
tion methods. Matsubara, "Montroll and Ward, '~ and
Bloch and De Dominicis" have exploited the analogy
between the Bloch equation of quantum statistics and
the time-dependent Schrodinger equation, to express the
partition function in a form very similar to the Gold-
stone expansion. The latter is then recovered by ex-
trapolating to zero temperature. " Brout"" has ac-
complished the same thing by a very novel method
employing the "semi-invariants" of mathematical
probability theory. Thouless" discusses both the energy
and partition-function expansions, using the methods
of Ref. 30 in a particularly clear and simple form.
References 38 and 40—42 also discuss the finite-tem-
perature classical limit, the original linked-cluster ex-
pansion of Ursell, avon, and Mayer.

The wave-function and expectation-value expansions
(due, respectively, to Hugenholtz" and Thouless4'4')

'8 J. Goldstone, Proc. Phys. Soc. (London) A239, 267 (1957).
's N. M. Hugenholtz, Physica 23, 481 (1957).
"C.Bloch, Nucl. Phys. '7, 451 {1958)."F. Coester, Nucl. Phys. 7, 421 (1958).
'H. Kummel, Lectures on the Many-Body Problem (Naples,

1962), E. R. Caianiello, Ed. (Academic Press Inc. , New York,
1962)."J.Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957).

r4 R. P. Feynman, Phys. Rev. 76, 749 (1949).
r6 A. Klein and R. Prange, Phys. Rev. 112, 994 (1958). See

also the lectures by these authors in Ref. 32."T.Matsubara, Progr. Theoret. Phys. 14, 351 (1955).
Ir E. W. Montroll and J. C. Ward, Phys. Fluids 1, 55 (1958).
~ C. Bloch and C. DeDominicis, Nucl. Phys. 7, 459 (1958);

and 10, 181 (1959); C. Bloch, Studies in Statistical Mechanics,
J. DeBoer and G. E. Uhlenbeck, Eds. (North-Holland Publ. Co, ,
Amsterdam, 1965), Vol. III.

"There are difIIculties connected with this extrapolation. For
a clear and simple discussion of the problems, see A. Katz, Nucl.
Phys. 43, 128 (1963).

40 R. Brout, Phys. Rev. 115, 824 (1959).
4'R. Brout and P. Carruthers, Lectures on the Many-E/ectron

ProMem (Interscience Publishers, Inc. , New York, 1963),
& D. J. Thouless, The Quantum Mechanics

'

of Many-Body
Systems (Academic Press Inc. , New York, 1961).

"D.J. Thouless, Ph.D. thesis, Cornell University (1958), and
Phys. Rev. 112, 906 (1958).

have been known for some years now, but they have
received very little attention. We emphasize the con-
nections between these different linked-duster ex-
pansions, as well as their relations with the E.S and
BW expansions. In searching for physical interpreta-
tions, we have found it helpful to consider all of the
basic linked-cluster expansions (for energy, wave func-
tion, and general expectation value) on an equal
footing. This clarifies the way they handle such "physi-
cal" features as antisymmetry, self-energy eGects,
wavefunction renormalization, and the relation between
"true" and "model" single-particle occupation prob-
abilities. We shall also consider the relative merits of
linked-cluster and BW methods for few-body systems
such as light nuclei. (Some of the early linked-cluster
literature contained errors or ambiguities of order X '.
It will be clear from our derivations that the modern
results are correct for all S, even down to /=1. )

One of the most important problems for nuclear
applications is the treatment of degeneracy. Bloch and
Horowitz44 have found a very elegant solution, by a
method related to the highly abstract resolvent-kernel
formalism of Hugenholtz and Van Hove." The same
result (and essentially the same derivation) was dis-
covered independently by Day."Their expansion has
many interesting and useful features. In fact, its general
structure immediately suggests the nuclear shell model.
Their result is rederived here, as well as the corres-
ponding wave function, expectation value, and transi-
tion-amplitude expansions, by the algebratic methods
mentioned above. This provides a simple interpretation
for their very important result. It also sheds some
light on the practical problems of convergence. This
expansion can be used to extend the Hartree-Fock
theory to the degenerate case, as well as to the case of
singular interactions. In lowest order, it agrees with
the old arguments"' ' that the effective two-body
interaction for shell-model calculations is given by
Brueckner's reaction matrix. In higher orders, it pro-
vides a systematic method for improving this approxi-
mation.

It was hoped that our elementary algebraic approach
might reveal further possibilities for useful rearrange-
ments and partial summations. The technique of putting
certain insertions "on the energy shell"4s (generalized
time ordering) is examined more closely. (See also
Ref. 9.) We have also found a "reduced" form of the
Bloch—Horowitz expansion, and this is shown to be a
useful simplification. Morita4' has proposed a more
drastic simplification, in the form of a "completely
linked" version of the Bloch—Horowitz expansion.

~ C. Bloch and J.Horowitz, Nucl. Phys. 8, 91 (1958)."B. D. Day, Ph.D. thesis, Cornell University, 1964 (un-
published) .

4' K. A. Brueckner, R. J. Eden, and N. C. Francis, Phys. Rev.
99, 76 (1955).

47 H. A. Bethe, Phys. Rev. 103, 1353 (1956).
48H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys.

Rev. 129, 225 (1963).This paper is referred to as BBP.
's T. Morita, Progr. Theoret. Phys. (Kyoto) 29, 351 (1963).
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(Bloch and Horowitz treat the particles beyond closed
shells by a form of BW perturbation theory, and this
leads to some unlinked-cluster terms. ) This interesting
possibility has been confirmed, and we describe the
results in detail. '4 This is the true degenerate analog
of Goldstone's expansion. It is useful whenever there
are many valence particles to consider. As an extreme
example, it appears to be well suited for studies of the
superfluidity of nuclear matter. This problem can be
regarded as a limiting case where the number of valence
particles is infinite. This expansion should also be
useful for attempts to calculate the parameters of the
Landau theory of liquid He' from "first principles. '"0

Much insight into many-body systems has come from
the use of Green's function techniques. These methods
appear, at first sight, to be radically different from the
perturbation methods discussed here. However, a num-
ber of useful relations between these two approaches
can be established by means of the Bloch—Horowitz
expansion and its "reduced" and "completely linked"
versions. These expansions have the important property
of separating the effects of the isolated closed-shell
system from all of the charges due to the physical
addition of valence particles (or valence holes). This
separation is valid to all orders of perturbation theory.
In contrast to Green's function methods, however,
one deals from the outset with the eigenstates of the
complete, fully interacting system. The valence par-
ticles enter directly as fully dressed quasi-particles, and
renormalization effects appear in the formalism in a
straightforward way.

It should be quite feasible to combine both ap-
proaches for a more general "two-stage" theory of
Fermi-liquid systems having singular interactions. The
first step is to use Brueckner and Bloch—Horowitz
methods to handle the problems of singular potentials.
The results of this stage can be expressed in the form
of a "reduced Hamiltonian. " In various contexts, this
can correspond to the shell-model Hamiltonian, or to
the reduced Hamiltonian of superconductivity theory,
or to the phenomenological Hamiltonian which is
assumed in the Landau theory. This reduced Hamil-
tonian refers only to the system's valence-particle
degrees of freedom, and these could just as well be
called the "quasi-particle" degrees of freedom. The
problem of diagonalizing this Hamiltonian can then
be tackled by whichever many-body technique is most
appropriate for the particular case. This is the point
at which Green's function methods might be convenient.

This approach leads to a concrete definition for what
is meant by a Landau quasi-particle. It casts the Landau
theory of liquid He' into the same mathematical frame-
work as a conventional shell-model problem. (The

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
(1958) t Errata: Phys. Rev. 121, 1863 (1961)j; K. A. Breuckner,
T. Soda, P, W. Anderson, and P. Morel, Phys. Rev. 118, 1442
(1960); K. A. Brueckner, in Many-Body Theory (Tokyo, 1965),
R. Kubo, Ed. (Syokabo and W. A. Benjamin, Inc. , New York,
1966). See also Ref. 102.

logical similarities between these different physical
problems have been emphasized especially by Migdal. ")
It is important to distinguish between the problems of
the low-lying excitations, which are observed experi-
mentally, and the problems of the very high virtual
excitations arising from a singular interaction. The
degenerate perturbation expansions offer a systematic
means for separating these problems, which are, after
all, physically quite distinct. There are a number of
objective reasons for believing that the high virtual
excitations (or equivalently, the short-range correla-
tions) can be handled most reliably by Brueckner-
theoretic methods, at least for the nuclear many-body
problem. It remains to be seen whether these methods
can be made quantitatively reliable for liquid Hel.

The presence of a strong short-range repulsion in the
basic two-nucleon interaction requires that any pertur-
bation expansion be carried to infinite order. This is
equally true for the degenerate case of an open-shell
nucleus. Thus we begin, in Sec. II, by discussing a form
of degenerate perturbation theory which is easily ex-
panded to infinite order. This is a generalization of the
BW perturbation theory, and it retains much of the
formal simplicity of that theory. This forms our starting
point for the Bloch—Horowitz expansion, and it also
provides some hints concerning a reasonable choice of
"degenerate" states in any particular application.
Section III contains a derivation of the Goldstone ex-
pansion for a particularly simple system —a single
particle moving in an external potential. This serves to
introduce the factorization theorem. It also illustrates
some important relations between the BW, RS, and
Goldstone expansions. Sections IV and V then deal
with the nondegenerate (Goldstone) and degenerate
(Bloch—Horowitz) energy expansions, including a
"reduced" form of the latter. Section VI deals with
wave functions, expectation values, and transition
amplitudes. Section VII confirms Morita's arguments
for a completely linked version of the Bloch—Horowitz
expansion, and brings his program to completion.
Possible applications of this formalism are discussed
in Sec. VIII. Physical interpretations are examined in
Sec. IX. Section X discusses the problem of a correct
theoretical definition for the shell-model potential.
Finally, we draw attention to an appendix on the
diagram rules, since these have not always been spelled
out in an unambiguous form. These are expressed here
in a form convenient for nuclear applications —a com-
bination of the rules given by Goldstone and Hugen-
holtz.

Section VII and parts of Sections V and VIII are
considerably more dificult than the others. For a first
reading, we suggest that one study Secs. II—IV care-
fully, skim over Secs. V and VI paying special attention
to the discussions of (5.13) and (5.16), and then

5' A. 3. Migdal, Proceedzngs of the International School of
Physics "Enrico Fermi, " Course 36 (Varenna, 1965), C. Bloch,
Ed. (Academic Press Inc. , New York, 1966).
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proceed to Secs. IX and X. Reference 24 is also recom-
mended as an easy introduction.

D. DEGENERATE PERTURBATION THEORY

secular equation,

)HO+'U (E)—EI)A =0. (2. 14)

Consider a very general quantum system, to be
described by

H= Ho+ V. (2.1)

This need not be a "many-body" system. We begin as
usual with

(2.2)4= ga, C;,

(H E)+=0—, (2 3)

(Ho —E,) C"=0,

from which one immediately obtains

(E—E;)a;= (C, I
V

I e).

(2.4)

(2.5)

and a Green's function

(2 7)

so that (2.2) and (2.5) can be combined in the form

(2.8)

It is now convenient to define a wave operator 0 by

4=QCD. (2 9)

This corresponds to the nuclear model operator of
Eden and Francis'' Similarly, we introduce a reaction
matrix or "effective interaction, "

(2.10)

Substitution in (2.8) gives

and
Q=i+gVQ,

'U = V+VB"U.

(2.11)

(2. 12)

Now (2.5) can be rewritten as

(E E;)a,= (C, I
VQ I—+n)

= Z (C' I V I
C )a (2»)

This is true for all states C;, whether in D or not. In
pa,rticular it holds for the a s in D, and these d equa-
tions can be grouped together to form a d-dimensional

'~ R. J. Eden and N. C. Francis, Phys. Rev. H, 1366 (1955).
See also Refs. 46, 47, and 17.

We then select a certa, in number d of the 4 s to span a
"quasi-degenerate" subspace (model subspace) D.
(Exact degeneracy is not required. ) With this choice
of D we associate a degenerate projection (model wave
function)

4'n=ga, C;=~,

This is the desired result. " Iteration of (2.12) gives a
formal solution for 'U in terms of a perturbation series.
Note that this reduces to familiar forms in several
limiting cases: (a) to ordinary degenerate perturbation
theory when V is weak; (b) to Brillouin —Wigner per-
turbation theory when D contains only one state,
say C o, and. (c) to the usual matrix form of Schrodinger's
equation when D is the entire Hilbert space.

This looks like the usual form of degenerate perturba-
tion theory, except that it is now exact. All the "non-
degenerate" states are concealed within 'U. This effec-
tive interaction is generally well-behaved, even for a
singular V. The true wave function vanishes wherever
V is singular, and this is reQected in the behavior of Q.

(Of course one then needs a nonperturbative way to
calculate "U.) This formalism can, at least in principle,
provide a rigorous justi6cation for the use of a "reduced
Hamiltonian" Xo=HO+'U —in problems as diverse as
nuclear structure, superconductivity, and the Landau
theory of Fermi liquids. (We shall return to these prob-
lems in Secs. VIII and IX.) This also shows the full

generality of a phenomenon frequently observed in
nuclear structure —the main effect of high-lying con-
figurations is simply to "renormalize" the effects of
the low configurations.

The convenience of having all "nondegener ate"
states concealed in 'U is partly offset by the fact that
this 'U depends on E, through (2.7) . Sloch and Horo-
witz~ have studied the analytic properties of the d&d
matrix, I Ho+'U(s) sI], for com—plex s. Their most
important result is that the eigenvalues Lthe E's of
(2.14)$ are all real. (A simple discussion of these
analytic properties is given here in Appendix A.) The
eigenvectors A are generally rot orthogonal, because
'U(E) is Hermitian only when E is held fixed. Only when
certain of the E's are identical, or when the A's (in
other words, the %ii's) differ in some conserved quan-
tum number, can one assert that the A's are orthogonal.
Of course the total 4's must be orthogonal, but their
degenerate projections need not be. In practice one
must use an iteration procedure: asume E, calculate
'U, obtain a new estimate for the desired eigenvalue E,
etc." It could well be that the spread between the
desired eigenvalues is so small, compared to a typical
energy denominator in "U, that the E in 'U (E) might be

~' This simple and convenient form of degenerate perturbation
theory has received surprisingly little attention. The most ex-
tensive discussion is that of P.-O. Lowdin, J. Math. Phys. 3,
969 (1962), where a number of earlier references are given, See
also Refs. 44, 54, and 55. Note that our present derivation makes
no assumption that V is "weak. " The only expansion used has
been that of Eq. (2.2).

5' C. Bloch, Nucl, Phys. 6, 329 (1958).
55 J. Des Cloizeaux, Nucl. Phys. 20, 321 (1960).
56 Lowdin has shown (Ref. 53) that this simple iteration

scheme does not always converge. In nuclear applications this
problem can be avoided by using the methods of Sec. VII.
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considered constant. In this approximation, then, the
corresponding A's (the model wave functions) would be
orthogonal. This orthogonality problem is discussed
further in Appendix D.

Presumably, D can be chosen such that this pro-
cedure converges reasonably well for that subset of the
d eigenstates which one is particularly interested in.
In nuclear physics one is usually content with just a
few of the lowest E's for a given D. An example is a
"pairing" calculation, where d could be very large.
The choice of D should take account of all available
insights, such as whether the states of interest are
"collective" or not. This is just the familiar problem of
choosing the right configurations.

For a weak V it would be reasonable to calculate 'U by
iterating (2.12) . A satisfactory D might then be found
simply by requiring that the denominators (E—E;)
be much larger than the elements V;;, for all i)D.
This criterion should also apply to more strongly inter-
acting systems, provided that (a) the single elements
V;; are replaced by suitable partial summations, and
(b) that "self-energy" effects are properly identified
and included in IIO. When V is singular, one is forced
to deal directly with the integral equation (2. 12).
This amounts to treating an infinite number of the
4 s simultaneously. The amplitudes for most of these
4 s will be very small, however, so it should sufhce to
treat them only in some "average" manner. "But re-
gardless of whether V is strong or weak, one must expect
poor convergence or even diverging approximations for
'U unless all of the "large" a s are included in the column
vector A. For large or strongly interacting systems it
often turns out that

~
(C, ~%')

~
&&1 for all i (assuming

(4 ~%)=1), so the formal statement of this criterion
for D must be

this expansion are represented by closed-loop or
"vacuum" diagrams,

X
X« - .O-x + g +

)
-x + —-

o
X X

(3.2)

This can be expressed in operator language,

e~g ' eris '+em———'( hE) eag-
and also graphically:

(3.4)

r- (-hE)
1)

IP —(-&E)
o J (~gE) + o

o —(-aE)

(3.5)

The (—dE) insertions belong not only to the down-
going line, but to the entire intermediate state. It will
be more convenient to represent these by horizontal
bars cutting across the entire diagram at the appropriate
levels. The expansion for AE can therefore be ex-
pressed as

aE ~ Q--X

+ + + ~ ~ ~

where the heavy downgoing line indicates the presence
of the perturbed energy E in the BW denominators.
Note that the "hole" lines in these SW diagrams have
only a single segment. There are no interactions
attached to the middle of these lines.

The first step in obtaining the usual RS perturbation
series is to iterate the identity connecting the BW and.
RS denominators,

(E—E )
—i

=(Ep—E) '+(E —E) '(—AE)(E—E;) '. (3.3)

( (C; [Q) )((maximum of
) (C, [4) j, i)D. (2. 1&)

This is discussed further in Sec. IX.

III. ONE-BODY SYSTEM, FACTORIZATION
THEOREM

+ 0:",

+ g-"*

+ g:".

+ g:".

+ o-x

+ ~ ~ ~

+ ~ ~ ~

+ ~ ~ ~

We shall first derive the Goldstone expansion for the
particularly simple case of a system containing only
one particle. This illustrates a number of relations
between the Brillouin —Wigner (BW), Raleigh—
Schrodinger (RS), and Goldstone expansions, and it
also serves to introduce the factorization theorem. We
begin with the BW expansion,

d E= E—Ep (Cp i
V [
Cp)——

= (C'o
i V+VQV+VgVQV+ ) C'o), (3 1)

which follows from (2. 14) when the "degenerate"
space D contains only the single state Co. The terms of

~' This idea is implicit in all attempts to calculate the Brueckner
reaction matrix in 6nite nuclei. See especially Refs. 2, 8, 10, 12,
and-24.

—X

+ + ~ ~ ~

X
(3.6)

The plain hole line now indicates the use of RS denomi-
nators, and each horizontal bar stands for an insertion
of ( hE). —

We now have an expansion for AE in terms of AE,
so one can iterate this by inserting the expansion
back into itself. For example,

+g" $ + "+(-: |I + ".(3.r)
--X —X, —X

Each horizontal bar accompanied by a bracket indi-
cates that (minus) a term of the series (3.6) is to be
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inserted in place of ( A—E) at the level of that bar.
These diagrams can be drawn more compactly by
"exchanging" the hole lines of the original diagram
and the inserted diagram to form a "single-loop"
diagram. Thus (3.7) is replaced by

+ „"g

(b) (c) (3 9)

One must also be careful to associate the correct RS
denominators with these diagrams. For the levels
withe an insertion, one must use the RS denominators
appropriate for the inserted part alone. In other words,
the insertions are to be evaluated "on the energy shell. "

One can repeat this procedure and insert the ex-
pansion back. into itself any number of times. The RS
expansion, up to any desired order, is generated by
repeating this process until ( AE) 's no long—er appear
in diagrams up to that order. There is an ambiguity,
however, in the placement of insertions in second and
higher "generations" of graphs. For example, one won-
ders which of the forms (b), (c) of (3.10) to use to
indicate the sequence of insertions shown in (a) . These
two forms are equivalent, according to the discussion
so far.

i".is, '„) tI
(0) (b) (c) (3.10)

Later developments will be simpli6ed if we choose form
(b), or in general if we always place Nth generation in-
sertions in the hole lines connected to the bottoms
of the (ss—1) th generation insertions. Then there is
no such diagram as (c) of (3.10) in the RS perturbation
series.

We now observe that the single-loop graphs, such as
(b) of (3.10), resemble certain of the Goldstone dia-

-—X

+ + e ~ e + X- + (3 8)—-X X- -—X

One can keep track of the minus signs )originating from
the (—AE)'s] by including a factor of (—1)'+"+,
where / is the number of closed loops, 0 the number of
hole-line segments (counted without regard to any
remaining horizontal bars), and h is the number of
brackets remaining (in cases where the hole —line ex-
changes have not been carried out everywhere). In
this form, the rule applies to both (3.7) and (3.8).
In both cases a horizontal bar mithogt a bracket still
stands for ( AE). A—ll interactions within the in-
sertion part of a (3.8)-type diagram must be kept
within the vertical limits de6ned by the original RS
denominator in which this insertion is placed. Thus
(a) of (3.9) is allowed, while (b) and (c) are not.

-X
-—X

grams for a single particle in an external field. Let us
write the Hamiltonian in "second-quantized" form,

a= gE;&;t&,+PV;,&,&&„, (3.11)

and draw all the diagrams which occur when this is
used in a Goldstone expansion. One 6nds all the dia-
grams of RS form, as described above, and many more,
including such terms as (b) and (c) of (3.9) and (c)
of (3.10) . But there is also a difference in the defsnition
of the energy denominators. The Goldstone denomina-
tors are given by the sum of at) downgoing line energies
minus the sum of al/ upgoing line energies. In other
words, the insertions are now evaluated "o6 the energy
shell. "

These expansions for AE must be equivalent. The
connection is established by showing that the Goldstone
graphs may be arranged in groups such that each group
is equivalent to an RS graph. To see which Goldstone
graphs correspond to a given RS graph, take the RS
graph and relax the "time" restrictions )discussed in
connection with (3.9)) placed on the interactions of
the inserted parts with respect to the remaissder of the

diagram, subject to the following condition. The top
interaction of each inserted part, i.e., the top of each
series of upgoing line segments, is to be kept in its
original position with respect to the part of the diagram
ie mhicA' it +as ori gimally inserted. In other words, the
top of an eth generation insertion is to be held 6xed
with respect to the (n 1) th generatio—n insertion in
which it was placed. The remaining interactions in
this insertion (and in "higher generation" insertions
within this, subject ot the same condition) can be
freely displaced in the downward direction. The equiva-
lent Goldstone graphs are all those which are generated
by this procedure. One can also apply this rule in
reverse, to uniquely associate each Goldstone graph
with a certain RS graph, and thus with a de6nite se-
quence of insertions from the iteration of (3.6).
This is the point where it is useful to have chosen
form (b) over form (c) in (3.10). Thus, (c) of (3.10)
now corresponds to two "6rst-generation insertions.

This equivalence follows from an algebraic identity
between the products of the energy denominators.
This is the same identity which permits unlinked
diagrams to be factored in Goldstone's time-dependent
formalism, and also in the analogous "temperature-
dependent" methods of quantum statistics. In these
examples, the factorization comes about when the time
(temperature) ordering of the interactions is generalized
by the mathematical device of redefining some of the
limits of integration in the multiple time (temperature)
integrals. It is not so widely recognized that this
identity also applies, in certain cases, to various parts
of a single link. ed diagram. This has been emphasized
especially by Bethe, Brandow, and Petschek. ~ A purely
algebraic proof of this "factorization theorem" has
been given by Frantz and Mills. '~ But the algebraic
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proof is rather cumbersome, especially when there are
several linked parts (or insertions) to be factored (or
placed on the energy shell) simultaneously. The result
is much easier to visualize when some sort of a multiple
integral is used. BSP~ based their discussion on the
adiabatic time integrals used by Goldstone, although
temperature integrals would have served just as well.
For the present it is simplest, since we need not attribute
any physical significance to the variables of integration,
to represent the energy denominator products by inte-
grals of the form

p ~f4 7@2 7L

(—1)" dr„dr„j ~ ~ ~ dr~ exp I gr, 5E;I.
—CO —CO —CO j=l

(3.12)

Each 6E; is the chuege in the intermediate state energy
caused by the jth interaction. To obtain the energy
factor for a particular Goldstone diagram, or for the
complete set of these which is equivalent to an RS
diagram, the rule is to arrange the limits of integration
so that the order of the 7. s is restricted in just the same
way as the order of the interactions they represent. The
integrals are easily evaluated, and the theorem follows
immediately. (An example is worked out in detail in
BBP.)

This factorization theorem is the only feature of our
linked-cluster derivation (apart from the use of second
quantization, " and diagrams) which might be con-
sidered nonelementary. This is the general form of the
identity which Brueckner used in his original study
of linked clusters, ""and it occurs in one form or
another in most of the derivations which have appeared
since then. For example, it seems quite natural that
Hugenholtz" used convolution integrals to unlink his
diagrams, since his derivation is essentially the Fourier
transform of Goldstone's multiple-integral method.

IV. THE GOLDSTONE EXPANSION

Much of the preceding discussion also applies to a
nondegenerate E-body system, since ugly perturbation
problem is, through (3.11), formally equivalent to
the problem of a single particle in an external field.
Thus one can identify each "one-body" state 4;
with an Ã-body Slater determinant. Each of the "one-
body" BW graphs of (3.2) can be directly translated

into a set of S-body graphs. For example,

0—-0

(4.1)

plus exchange diagrams, plus diagrams with "mo-
mentum-nonconserving" terms which change a particle
into a hole (or vice versa), plus diagrams containing
the negative of any one-body "model" potential which
may have been included in Hp.

If one thinks of Slater determinants, some of the
summations over particle and hole states must be
restricted to avoid "exclusion-violating" terms. It
is much simpler to use the machinery of second quanti-
zation" (which is guaranteed to preserve antisym-
metry), for then one need never mention exclusion
except to distinguish between "particle" and "hole"
states. This treatment, based on

Ho T+V sM Q——E,rt;tr——l;

(4.2)

(where Vsm is a "shell-model" potential, not necessarily
self-consistent), shows that it is quite proper to sum
each particle or hole line over ull such states, regardless
of exclusion. From this viewpoint, the exclusion prin-
ciple is simply a statement concerning the pairwise
cancellation of certain terms belonging to different
diagrams. The algebra of the Fermion operators then
leads to the diagram rules, as discussed for example in
Appendix B.

Diagram Analysis

In general, each diagram consists of a number of
linked parts which are not connected to each other in
any way, as in the last of the diagrams shown above.
These linked parts must all overlap in such a way that
gaps representing the initial or "vacuum" state Cp
do not appear anywhere between the top and bottom
of the entire diagram. Since these are Brillouin —Wigner
diagrams, their energy denominators are given by

eBW E HO Eo+~E Ho ~ (4.3)
5' The formalism of second quantization is, of course, completely

equivalent to the use of 'Slater determinants. For a very thorough
discussion, see S. Schweber, 2n Intr odlction to Relativistic
Quotum Field Theory (Harper and Row, New York, 1961).
For a straightforward and elementary derivation of this formalism,
starting from Slater determinants, see F. Villars, Ref. 20. A
very clear and elegant derivation of. this type has been given by
G. Wick (unpublished lecture notes). A condensed form of the
latter is available in the book by G. E. Brown, Ref. 18,

&Rs ~p Hp) (4.4)

and with a number of horizontal bars indicating ( AE)—
We now expand out hE just once, as in (3.3) to

(3.6). The most general diagram now consists of a
group of overlapping linked parts, with RS denomi-
nators
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(b) (4.5)

The bottom of the lowest time block. may occur above
the bottom of the principal part, as in (a), or, if this
is an overlapping group (in contrast to a d Z insertion),
its bottom interaction may also occur below the princi-
pal part, as in (b). The analysis of a typical diagram
is shown in (4.6) .

(4.6)

Consider a diagram with e&1 time blocks (counted
as if the principal part had been removed), where the
lowest of these is a ( AE) insertion. Ex—pand out this
insertion in terms of a series of inserted diagrams,
as indicated in (3.7). These inserted parts are all "on
the energy shell" at this stage, meaning that their
RS energy denomin@tols are unaffected by the original

insertions. Note that if we translate the first "one-body"
graph appearing on the right side of (3.7) into an X-
body graph, we obtain an unlinked graph which, except
for a minus sign, is just the same as the last diagram
shown in (4.1) . In other words, the unlinked diagram
is cancelled by a term from the expansion of the ( hE—)
insertion. This sort of cancellation was confirmed by
Brueckner"" up to at least sixth order. We shall now
demonstrate that it occurs to all orders.

The first step is to introduce some de6nitions:

(i) The principal part of a diagram is that linked
part which contains the topmost interaction of the
entire diagram. It does Not include any ( AE)—in-
sertions.

(ii) An oiierluppieg group consists of a group of
e&1 link. ed parts which overlap each other, such that
the whole group contains no gaps representing the
"vacuum" state Co as an intermediate state. All

(—hZ) insertions occurring within the "time limits"
(i.e., between the bottommost and the topmost inter-
actions) of the group are to be included.

(iii) A time Nock can consist either of an overlapping
group (which may contain hZ insertions) or of an
isolated (—hE) insertion.

According to these definitions, removal of the princi-
pal part from an arbitrary diagram (think of simply
erasing this part of the diagram) will leave a number
(&0) of time blocks. The latter will be separated ver-
tically by gaps corresponding to the vacuum state.
This structure is shown schematically in (4.5), where
the long vertical bar represents the principal part, and
the rectangles indicate time blocks.

diagram in which they were inserted. Now the factori-
zation theorem can be used to show that each of these
(3.7) -type diagrams is equivalent to a set of diagrams
with Goldstone energy denominators, i.e., denominators
determined by both the inserted and original parts.
Each inserted part (itself an overlapping group) is
allowed to take on all relative positions with respect
to the original part (the principal part), except for one
restriction. The topmost interaction of the inserted
part must always occur at the same level of the original
diagram as the (—hE) which it arose from.

Except for a minus sign from (—hE), this procedure
generates all of the diagrams whose principal part and
topmost (e—1) time blocks coincide with the original
diagram, and which contain an overlapping group ex-
tending downwards from the level where the (—AE)
was. This result is shown schematically as

-- (-~E)

(b) (4.7)

where the shaded rectangle represents all possible over-
lapping groups extending downwards from the (—AE)
level. Finally, we note that every X-body diagram of
type (4.5) is either just a principal part, or else it
fits into one of the categories (a), (b) of (4.7). (Re-
rnember that the unshaded blocks can represent (—hZ)
insertions, as well as overlapping groups. ) This shows
that all diagrams cancel, and may therefore be ignored,
except for the principal parts. This is just Goldstone's
result.

Note that this argument focusses directly on the
elimination of unlinked terms, bypassing most of the
diagram rules. It remains valid when a one-body inter-
action, —V&M, is included. It would also apply equally
well to systems with e-body interactions, e)2.

Rates of Convergence, Generalized Time Ordering

It is obvious, physically, that DE~X for a large
saturating system. If one could ignore the eGect of the
large shifts AE in the energy denominators, each linked
part of a general diagram would contribute a factor
proportional to ¹ (This is demonstrated in Appendix
C.) A general eth-order BW graph, with I—1 energy
denominators and L linked parts, is therefore pro-
portional to E~' ".But e& 1.+1, except for the lowest-
order (+=1, 1.=1) diagram, so the (AE/X) contribu-
tions from all except the first of the BW diagrams are
of order E ' or less. Brueckner 5 ' has drawn attention
to this "fictitious convergence" of the BW expansion,
as well as the "fictitious divergence" of the RS series
due to unlinked terms of order E~. But, as Brueck. ner
first observed, in each order of the RS expansion the
unlinked terms must all cancel. This leaves a "linked
RS expansion" in which each term is clearly of order E.
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(o) (b) (4.8)

Another important class involves two "almost separate"
parts joined by a single interaction (potential or reac-

One might now ask whether such a "linked RS ex-
pansion, "as discussed by Brueckner, is identical to the
Goldstone expansion. The answer depends on the
treatment of the so-called "exclusion-violating" (e.v.)
terms. The distinction emerges most clearly when one
begins by consistently omitting all e.v. terms. (It is
consistent, in the original BW expansion, to either in-
clude or omit all the e.v. terms. Omission means that
each BW intermediate state corresponds to an actual
Slater determinant. ) The expansion (3.7) of ( AE)—
then generates both e.v. and non-e. v. terms. To cancel
the unlinked terms of the original BW expansion, as in
(4.7), one need only apply the factorization theorem
to the non-e. v. terms. The e.v. terms, which remain un-
linked and "on the energy shell, " can then be con-
verted into linked diagrams by "exchanging" a pair
of lines as in (3.8). The resulting linked RS expansion
is not quite the same as the Goldstone expansion. In
fact, this expansion should converge somewhat faster
than Goldstone's. The latter is obtained by using the
factorization theorem to take these e.v. insertions off
the energy shell, and this necessarily increases the
number of terms in the expansion.

This brings us to the important point that many
Goldstone diagrams contain both e.v. and non-e. v.
terms in their summations over single-particle states.
LConsider diagram (4.8a) for a finite system lacking
momentum conservation. 7 These non-e. v. terms can
also be put on the energy shell, since the applicability
of the factorization theorem depends only on the dia-
gram's topology. It turns out that there are also other
parts of linked diagrams which can be similarly con-
verted into on-energy shell insertions. The basic cri-
terion4' is that the topological structure must permit the
"time order" of one subset of interactions to be general-
ized with respect to the remaining interactions, in an
unrestricted manner in one direction (either downwards
or upwards), without altering any of the single-particle
state labels. When the factorization theorem is used
this way, to partially sum certain classes of Goldstone
diagrams, we shall call this the g.t.o. (generalized time
order) treatment, and the resulting diagrams g.t.o.
diagrams. This treatment has been shown to greatly
improve the practica/ rate of convergence of the series. s

Two classes of diagrams deserve special mention as
candidates for this g.t.o. treatment. (Their practical
importance is discussed in Sec. IX.) One consists of all
diagrams arising from the e.v. terms discussed above.
These always consist of two "almost separate" parts
joined together by two crossed lines (or four, or any
even number), as indicated in (4.8a) .

tion matrix), as shown in (4.8b) . Note that this g.t.o.
treatment allows reaction matrices to be evaluated on
the energy shell, if and only if this treatment applies
sepctrately to each of the v-interaction ladders con-
tained in the reaction-matrix elements.

The present derivation puts the problem of strict
mathematical convergence in a particularly bad light.
The initial step, expanding hE out of the BW energy
denominators, cannot be rigorously justified unless the
smallest unperturbed energy diBerence (Ei—Ee),
which is of order E 'I' in large nondegenerate systems,
is larger than hE. This suggests a radius of convergence
of order X~I'. The actual radius could conceivably be
much larger than this, thanks to having eliminated
the large number of unlinked terms. For example,
Baker" has given a physical argument that this radius
should scale only as X &, with —', &y&1. But this is not
much consolation —the expansion must still be an
asymptotic one. (The g.t.o. treatment cannot alter
this situation, which is due only to the large number of
particles. ) Katz" and Baker" have shown, however,
that in certain cases the linked-cluster expansion repre-
sents a satisfactory analytic continuation. We return
to this discussion in Sec. IX.

V. THE BLOCH —HOROWITZ EXPANSION

The degenerate formalism of Sec. II, i.e. (2.14), is
quite general. All it requires is that E be removed from
all "nondegenerate" E s by a 6nite amount, so. that
the operators are all well-defined. It can therefore be
used when Hp is a shell-model Hamiltonian and the
C s are E-body Slater determinants. What Bloch and
Horowitz44, and Day" have done is to obtain a linked-
cluster expansion for the matrix elements of 'U, in
terms of the "true" two-body interaction e. This can
be partially summed to give an expansion in two-
body reaction matrices, just as in the Goldstone case.

These authors begin with an Hp for which the single-
particle energies are assumed to exhibit some sort of
discrete shell structure, at least for the low-lying states.
They divide the single-particle states into three cate-
gories, which we shall call core, valence, and inter-
mediate states, and which we denote, respectively, by
l, m, e, etc. ; X, p, , v, etc. ; and a, b, c, etc. The quasi-
degenerate subspace D (the model subspace) consists
of all (E+n)-body determinants defined as follows.
E is the number of core states, and these are always
occupied by the E core particles. The remaining e
valence particles must then be distributed among the
available valence states. The valence-state energies E„
need not be strictly degenerate, and collective phe-
nomena'can be studied by including more than one
shell in the definition of these states.

» G. A. Baker, Phys. Rev. 131, 1869 {1963).
60A. Katz, Nucl. Phys. 20, 663 (1960); also in Lectures on

the Many Body Problera (Bergen-, 1961), C. Fronsdal, Ed. (W.
A. Benjamin, Inc., Near York, 1962).
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Let us left-multiply (2.14) by At, and express the
result as

where
3E=E—Ep=At'UA,

Ep=A'HA= Epo+Epv,

(5.1)

(5 2)

Epo=AtHpoA= gE„„ (5.3)

Epr ——A HprA= QE„P„&'&, (5.4)

N

Hpo=+E g 'rt, (5 5)

Hpv (5.6)

(We assume that AtA—= (@i& ~ +i&)= 1.) The model

probability of state p being occupied is

E„&P&= (@s& ) rt„'rt„) +D)= g [ a; )', (5.7)
i(Is)

where j(p) includes all determinants C;,j g D, in which
state ti is occupied. Note that (5.1) is formally very
similar to (3.1), except that 'U and Hp are now d&&d

matrices.

These "one-body" BW diagrams can now be trans-
lated into "(N+1)-body" diagrams in which the N
core particles are described by the familiar Goldstone
convention, the'. 'E-body "vacuum" representing the
fuBy occupied core. The e valence particles may, for
the present, be indicated simply by a single heavy
line. The "vacuum state" for these valence particles
indicates that they are distributed as in the shell-

model state A . An upgoing valence hne segment must
carry labels indicating the single-particle states oc-
cupied by each of these n particles. (With this con-
vention, interactions among these valence particles
must be illustrated as interactions with a fictitious
external potential. It would be more explicit to replace
each valence line by e separate lines, but this is not
essential for the present task of eliminating unlinked
diagrams. ) Note that each downgoing valence line con-
sists of only a single segment, just as in the diagrams of
(3.2) . The "core-valence exchange" terms, which
occur when a valence particle and a core particle both
happen to be in the same single-particle state, can be
illustrated as in the following examples.

Diagonal Transformation (b) (5.9)

General properties of the solution can be used to
simplify the '0 matrix. This matrix is Hermitian when
the E appearing in the Green's function (2.7) is
taken to be a 6xed parameter. In principle, therefore,
one can determine 'U(E ), where E is the desired
eigenvalue, and solve

LHp+V(E ) —Ee& &I)Ap& &=0 (5.8)

to obtain d orthogonal Ae&~&'s. (Generally speaking, only
A &~& =A and E & &= E will be physically significant. )
These Ap( 's will now be used to dehne a new basis
for the degenerate subspace. In the case of exact de-

generacy (all E„'s equal to E&, Epr &nE„, Hp~EpI),
Hp will remain diagonal under this transf ormation,
therefore 'U itself will be diagonalized. This is very
convenient, so we shaB assume strict degeneracy for
now. This restriction will be removed later on.

Diagram Analysis, Core and Valence Energies

The analogy between (5.1) and (3.1) is much
clearer in this new representation, because (5.1) now
involves only the single matrix element 'U . This ele-
ment can be obtained, formally, by iterating (2.12).
The various terms in the expansion of (5.1) can thus
be represented by means of "one-body" BW diagrams
which look exactly like those in (3.2). The heavy
downgoing line now refers to the desired "shell-model"
state A ('=A, with energy E, and the states de-
scribed. by the upgoing line segments are all of the
C s for i)D. The Ae& &'s are all excluded by the pro-
jection operator Q in (2.7).

The most general BW diagram is of unlinked form
at this stage, consisting of a number of separate linked

parts which all overlap vertically such that the vacuum
or shell-model state A does not appear anywhere as an
intermediate state. The linked parts fall into two
categories. The core parts are those in which there are
no interactions involving any of the particles which

originally come from valence states. )Note, however,
that this definition allows core particles to scatter into
valence states. Any resulting terms which violate ex-
clusion are compensated by "core—valence exchange"
terms like those of (5.9) . The core parts are exactly the
same as the linked parts for the closed-shell nucleus
that one would obtain by physically rerno&&ing the
valence particles. f All other linked parts, including
exchange terms such as (5.9), are called &&alence parts.
These may involve core particles as weB as valence
particles.

Now imagine a typical unlinked BW diagram from
which all the linked core parts have been temporarily
removed. The remaining diagram will generally con-
sist of a number of overlapping groups, each of which
contains one or more linked valence parts. These
overlapping &&alence groups are separated vertically by
gaps which, in the absence of the core parts, correspond
to the vacuum state A . Overlapping core groups are
de6ned similarly, by temporarily removing the linked
valence parts. An unlinked BW diagram may thus be
analyzed into several overlapping groups of each
variety, the groups of one variety covering the gaps
between those of the other variety. An example of this
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overlapping group structure is shown schematically in
(5.1o).

c

AE= AEc+AEy. (5.11)

The BW denominators can therefore be expressed as
4'aw= Eo+&Ec+~Ey Ho. We —remove AEc from every
denominator, using the expansion technique of (3.3)
to (3.6). The AEy's are similarly removed, but only
from those denominators which do not involve any
valence parts, e.g., from the denominators which belong
to gaps between the valence parts. "Time blocks" are
now introduced as follows. A core block can be either an
overlapping core group, including any (—t4 Ec) in-
sertions within its vertical limits, or it can be a single
( BEc) in—sertion which only cuts through valence
parts. A valence block can be either a valence group, not
including any ( AEc) ins—ertions, or it can be a single
( AEy) ins—ertion. The core interaction energy AEc
can now be de6ned. This is taken to be the sum of all
diagrams consisting of only a single core block. Note
that (5.11) then specifies AEy. The time-block struc-
ture of a complete diagram follows the same general
pattern as its overlapping group structure, except that
AEq and AE~ insertions will often make the number of
time blocks larger than the number of overlapping
groups. This time-block structure can also be repre-
sented by diagrams like (5.10) .

Consider a diagram whose lowest two time blocks con-
sist of a valence group and a ( EEc) insertio—n within
this. As in the Goldstone expansion, this cancels all
diagrams which are identical except for this lowest
( AEc) being r—eplaced by some other kind of core
block whose topmost interaction occurs at the same
level where this ( AEc) was. Let—us now assume the
answer we wish to obtain, namely, that AE~ is given by
the sum of all diagrams consisting of just a single
valence group. A similar phenomenon then occurs when
the lowest two time blocks are a core group and a
( AEy) insertion. —This argument demonstrates that
aO diagrams zenith more than one time block may be ignored.
The sum of all single-core-block diagrams is DER, by
definition, and we have already seen (Sec. IV) that
this is equal to just the sum of all linked core parts.
This is simply the Goldstone prescription for the inter-
action energy of the closed-shell nucleus obtained by
physically renioving all the valence particles. The sum of
the remaining diagrams must, according to (5.11),
be AEy. But these are just the diagrams assumed
above. This confirms that the assumed form of hEy is
indeed a consistent solution.

(5.10)

Core and valence interaction energies, AEg and
AE~, are defined below such that

ItHoy+'Uy (Ey) EyIj—A =0. (5.13)

All "core" quantities have been eliminated from this
expression. The valence Hamiltonian, HpI is just the
projection Lsee (5.6)) of Ho onto the valence states t4,

and the total valence energy, Ey=EDy+EEy is the
total energy E minus the total core energy, Ec= Eoc+
DEc. (This Ec represents the total energy of the closed-
shell nucleus obtained by physically removing the
valence particles. 4') We note, finally, that the de-
nominators in the expansion of 'U~ are given by

&y= &sw t4 Ec=Ey+E—oc Ho, —(5.14)

so 'Uy depends on the total valence energy Ey. (The
Epy part of this Ez dependence is nontrivial, in the
quasi-degenerate case, since Ep~ then depends on the
model state A .)

Spurious Terms

An important part of this derivation has not been
mentioned yet. Consider the upgoing valence line in
(a) of (5.15).

(0) {b) v
Pa (5.15)

This line can describe a situation where all the valence
particles remain in valence states, but with a di8erent
arrangement than in the model state A ~ &. This pos-
sibility is not excluded by the Q operator in (2.7),
thanks to the core excitation occurring at the same
level, so this term must be included" in the expansion.
But a truly degenerate intermediate'state Ap& ' would
occur, if this valence-particle arrangement were per-
mitted in diagram (b). This poses a problem, because
the cancellation argument requires that the set of
allowed states within an overlapping group be inde-
pendent of the rest of the diagram.

One can get around this dilemma by the following
device. " We shall always allow the upgoing valence
lines to describe all possible arrangements of these
particles, except for the initial A & & arrangement,

'«This argument has also been used by Dawson, Talmi, and
Walecka, Ref. 17.

Shell-Model Secular Equation

The DER part of the calculation is clearly quite inde-
pendent of A and hE~. That is, AEg must be the
same for all of the degenerate eigenstates A . This
implies that the 'U matrix must have the form

(5.12)

where 'U& is given by the sum of all valence groups.
This result is very convenient, because (5.2) to (5.6)
can then be used to reduce the original secular equation,
(2.14), to the much simpler "shell-model" form
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{b) {c) {4) (5.16)

Diagram (a) demonstrates that the leading term in the
effective two-body interaction is the Brueckner reaction
matrix, as has been known for many years. ' ' "
Diagram (b) is the corresponding "Hartree-Fock"
contribution' "to the shell-model potential acting on
the valence particles. Diagram (c) is a correction to
(a) arising from core polarization. It can be regarded.
as the exchange of a virtual core phonon. This illustrates
the fact that the reduced. secular equation (5.13) has

regardless of whether core excitations are present or
not. This amounts to treating the states Ae& &, P/n, as
valid intermediate states. This device treats diagram
(a) correctly, but it includes some spurious terms in

(b). (The denominators contain B,Er, so these terms
remain well-defined. These spurious terms will not
appear in the final result, therefore they should not
affect its convergence. ) Let us now group a spurious
term from diagram (b) together with alt other spurious
terms obtained by replacing the bottom interaction
by all possible sequences of interactions leading to the
same spurious state Ap& ). We observe that the sum of
all such terms is equivalent to diagram (c), where the
spurious state P is created from the vacuum state n by
the matrix element 'Ue (E ) . But this element must be
zero, since it is oB-diagonal in a representation chosen to
diagonalize'U. LActually, the 'Ue element in (c) should
be replaced by an infinite "geometric" series,

'U~-+i& (f"lev) U78.+L'U(~'ler) U(&'!er) U71-+",
E' being the projection operator onto all of the Ap( "s
except A & &, but this does not affect the result. ) Thus
one finds that all spurious terms cancel, so no harm is
done by including them. After demonstrating the
cancellation of all diagrams with more than one group,
one may then remove these spurious terms by the same
argument.

Our derivation of the Bloch—Horowitz expansion is
now essentially complete. All that remains is to return
from the Ap~ ) representation to the C; representation
(where the valence-state occupation numbers are all
1 or 0), and to express the i, j elements of 'U& in terms
of diagrams with e upgoing external lines. Each group
of external lines, at the top and bottom of a BH dia-

gram, must be labelled with n dissect valence states.
Further details of these diagrams are discussed in

Appendix B. Finally, upgoing "ladders" of two-body
interactions can be grouped together to form an ex-

pansion in two-body reaction matrices, just as in the
Goldstone case.

Some simple valence diagrams are shown in (5.16),
for the case +=3.

only eliminated the static features of the core. All
dynamical core e6ects are included in the valence
interaction 'Uy.

Diagram (d) represents a charge in the core inter-
action energy due to the "blocking" (exclusion) effect
of the valence particles. This is one of the core-valence
exchange diagrams that were first encountered in (5.9) .
It is convenient to absorb this term into the definition
of the valence particle VsM, in addition to term (b).
We emphasize again that 'U~ contains all effects due
to the physical addition of the valence particles, both
the "new" processes discussed above, an.d all of the
chmges in the "old" core-correlation processes.

Quasi-Degeneracy

The assumption of exact degeneracy was needed to
ensure that 'U(E ) be diagonal in the At&~~& representa-
tion defined by Ho+'U(E ). Suppose now that a one-

body "potential" with the simple form

is added to V. (E„ is the degenerate valence state
energy. ) A simple inspection of the BH diagrams shows
that the result of using V+V&'-', in (5.13) is exactly the
same as if one had included. V&;in IIO (instead of in V)
without regard to the niceties of the derivation. Thus
exact degeneracy is not necessary in practice.

Reduced BH Expansion

The present derivation suggests a way to simplify
the BH expansion. It was shown above that 'U~ is
given by the sum of all valence groups, meaning that a
typical diagram may contain several overlapping
valence parts. (We refer again to the Ae& & representa-
tion and the "valence vacuum" convention. ) Each
valence part may have several sections of valence
particle excitations, separated vertically by sections
with nothing but core excitations. An example is the
right-hand valence part in (5.20a), which is our sche-
matic representation of (5.21a). As illustrated in this
example, there may also be projectir&g core excitatior&s,

which extend vertically beyond the topmost or the
bottommost valence interaction of that part. (Valence
interactions are interactions involving any of the original
valence particles, regardless of whether these happen
to be in valence states at the time of interaction. )
Reference to the original BW expansion of 'U shows that
a valence excitation (or a passive valence interaction)
can be overlapped owly by one or more core excitations
(which may or may not be "projecting") . Valence exci-
tations in separate valence parts cannot overlap each
other, or overlap passive valence interactions, because
at any given level there can be no more than one down-

going and one upgoing (e-body) valence line.
It frequently happens that a valence group has the

form of several separate valence groups which overlap
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only because of a projecting core excitation extending
downwards below the lowest valence interaction in the
topmost group. All of these valence groups, except the
topmost one, may be discarded if we simultaneously
remove dE~ from the denominators in the projecting
core excitation. This cancellation is shown schematically
in (5.18), where the unshaded lower rectangles repre-
sent valence blocks (valence groups or d,E~ insertions),
and the shaded rectangle indicates the sum of all valence
groups extending downwards from the hE~ level.

+
( hE„)

(5 18)

Core excitations projecting above a valence group can
be treated similarly, because the factorization theorem
(a purely algebraic identity) works "upwards" as well
as "downwards. " Finally, one is left with only the
"irreducible" valence groups, provided that core-type
denominators (5.22) are. used within all projecting
core excitations. Irreducible eatelce groups are those
which contain no valence parts that overlap orIly by
virtue of projecting core excitations.

A little more care is needed to complete this argu-
ment. Consider the diagram (5.19a).

c
' eC

(a) (5.20)

In (a), the middle valence excitation is "trapped"
between the other valence excitations. This prevents the
factorization theorem from being applied, either up-
wards or downwards, to place the left-hand valence
excitation on the energy shell. The factorization theorem
cm be used, however, to put all the projecting core
excitations on the energy shell. The locations of these
on-energy-shell core denominators ez are shown in the
figure.

Coming back. to the C; representation and to dia-
grams with n external lines, we 6nd that the above de6-
nition of irreducible diagrams is still easy to apply.
Examples of diagrams like (5.20) are shown in (5.21),

We now give some examples to illustrate this result.
The two valence parts shown in (5.20) (a) form an
irreducible valence group, while those in (b) are
obviously reducible.

Ic)e
V

c

(o)

C
V

c

(b)

U

L
I

(5.19)
(5.21)

Examine all the dowemard projecting core excitations
(p.c.e.'s), and identify the level "L"below which these
p.c.e.'s become "properly projecting, " meaning that
the valence parts below this level (if any) are joined
to the rest of the diagram owly by virtue of their being
overlapped by these p.c.e.'s. Now expand DER out of
all denominators below this level L, and apply (5.18).
Similarly, identify the level "U" above which all the
upward p.c.e.'s become "proper", and apply the can-
cellation argument above this level. There remains the
problem of diagrams, like that in (5.19b), which
overlap "both ways. " At this stage the dommvards

p.c.e.'s can all be completely factorized by means of
(3.12), by associating an additional excitation energy
3E~ with the 8E; of the valence interaction at level L.
One may therefore "erase" all the downwards p.c.e.'s,
and replace them by numerical factors multiplying
the appropriate valence parts. The upwards p.c.e.'s
then become proper at the new level U', and the reduc-
tion is easily completed.

where the upgoing arrows indicate valence particles
excited to intermediate states. For these "external-
line" graphs, however, one is tempted to use another
de6nition of reducibility: If it is possible to obtain two
valence diagrams from one, simply by cutting a/l e
of the valence lines at some level and then separating
the top and bottom parts, the original diagram is
reducible. The heavy line in (5.21b) indicates where
this diagram may be cut in two. Unfortunately, this
"field-theoretic" de6nition is too general, since it also
includes cases where overlaps result from "projecting
valence excitations" whose structure resembles (5.16d) .
These cases require a separate treatment, which we
shall not discuss here. )See, however, the discussion
below (8.24) .j

This reducibility argument has assumed exact de-
generacy among the valence states, but again this re-
striction is easily removed by means of (5.17) .

Let us summarize the results for energy denominators:
For core diagrams, and for the projecting core excita-
tions of reduced valence diagrams, the "core" de-
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nominators are simply

& = ZE-— Z (E., E),
holes particles

(5.22)

exactly as in the Goldstone expansion. External valence
particle lines must be ignored when evaluating eg
for reduced valence diagrams, although terms in which
core particles scatter into valence states must be in-
cluded. In the general case of quasi-degeneracy, the
"valence" denominators are

&v= Eov+&Ev

+g (all downgoing line energies)

—g (all upgoing line energies),

where Eov is given by (5.4) .

"Valence Hole" Formulation

(5.23)

We have assumed that there are n valence particles
beyond the closed shells, but for almost-filled shells
it is more convenient to reformulate everything in
terms of "holes. "Thus one can begin by considering an
E-particle core containing e' holes, the total number
of particles being E m'. (A "—mixed" description is
also possible, with n particles and io' holes. ) There are
three differences from the "valence particle" formula-
tion: (a) The term Eov of (5.4) and (5.23) now has the
opposite sign, being the negative of the valence-state
energies E„weighted by the hole probabilities (1—F„&'i) .
(b) The rule for determining the sign of a particular
diagram is slightly different. This is discussed in
Appendix B. (c) The precise statement of which states
each line is to be summed over is different, but the
guiding principle remains the sam" the core diagrams
must be the same as for the Ã-body problem, all others
being considered valence diagrams.

VI. WAVE FUNCTIONS, EXPECTATION VALUES
AND TRANSITION AMPLITUDES

Nondegenerate Case

The same techniques can be used to obtain a simple
description of the wave functions, starting from 0 =
0+3 and the expansion for 0 obtained by iterating
(2.11). We first consider the nondegenerate case,
+~——4&. A general diagram in the BW expansion for%'
again consists of several overlapping linked parts. Some
of these parts are "open", meaning that they have
permanently created one or more particle —hole pairs.
These pairs appear as external lines leaving and entering
the top of the diagram. The remaining linked parts
have the same "closed" form as those encountered
in the energy expansion. In the present context these
can be considered "vacuum fluctuations. " The energy
denominators are then converted from BW to RS form,
by expanding out AE, and the diagram analysis then
proceeds just as in the energy expansion. The only

change is that the primci pal part now consists of att the
open parts. After cancellation, one is again left with
just the principal parts, all evaluated with RS energy
denominators.

The most general diagram now consists of a number of
open parts of each possible variety. These parts can be
made independent of each other (put on the energy
shell) by generalizing their relative "time" order and
using the factorization theorem. I.et e„be the number
of open parts W„having topological form r. Then the
factored diagram becomes

(6.1)

[The symbol W is suggested by the form of a typical
open core diagram, as seen for example in (6.13).j
The (I„!) ' factors arise because, after summing over
all single-particle indices, each possible relative time
ordering (for each set of indices) is counted n„. times
during the factorization process. Thus the sum of all
diagrams is simply'

4'=exp 1+W,11 Co), (6.2)

X~.tarot" ~.t&„" ~.». (6.3)

The algebraic steps leading to (6.1) and (6.2) are
permissible because the W„operators all commute
with each other. The exponential expression (6.2)
is convenient for formal purposes, and especially when
T is large. For small E, it is useful to note that there
is much cancellation in higher orders due to "exchange"
terms. Thanks to these terms, one need not consider
any diagrams of the form (6.1) which create more than
E particle —hole pairs.

Assuming (Co I
I'o)= 1, it is easily verified that

(+ I+&= (Co 1 [-p ZW. '3[e~ ZW j l
C )

where

=exp [—Fr,'(Eo) j,

co ( n

F.(E)=(~.l ~El ~ l 1~.&.~ Eo—&o

(6 4)

(6.5)

is just Goldstone's linked-cluster energy expression.
The prime on Fz'(Eo) indicates differentiation with
respect to Eo. Note that this derivative is negative,
therefore Fz')0. [To obtain—(6.4), go back to the
stage where 0 and %t each consists of open parts,

where each variety of open part appears just once in
the exponent. It should be emphasized that the open
parts W„are actually operators. An open part which
creates p particle-hole pairs has the general form

w, (p) = gg. "gw, (~r, f m, ",.~)
al bm cn
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W„and W,t, which have not yet been factored. Connect
up these open parts in all possible ways, and then apply
the factorization theorem twice, to the W„'s and
W, t's separately. The symmetry factors (n, !) ' will
now refer to the numbers m„of closed parts with the
same topological form. ) This result was obtained 6rst
by Hugenholtz" and then by Bloch.' It is clear that
hE~ X for a large saturating system, thus (6.4)
demonstrates that the probability of finding the system
in its "model state" C0 is ~e—~. This is to be expected
on physical grounds, ' " as discussed in Sec. IX.

The complete wave function of a many-body system
is extremely complicated, but expectation values for-
tunately tak.e on a much simpler form. Consider a
general m-body operator

8( )=( ')-'ZZ". Z8(V, '~',

&&q;tq;, t ~ q;„tq;„.~ ~;,~;, (6.6)

where the indices i, j range over all single-particle
states, including both "particle" and "hole" states.
(The n! divisor compensates for the unrestricted sum-
mations, so that each distinct term is included only
once. ) The procedure leading to (6.2) will also give
8@ if the last (topmost) interaction is always taken
to be 8. Each diagram will have just one open (or
possibly closed) part (8W), containing 8, therefore

8'0= g(8W)„Lexp gW j I
C'p). (6.7)

I The (8W)„part might consist of several W parts
joined together by 8.$ Note that 8 is able to create or
absorb up to n particle —hole pairs, but that (8W)„
can, by definition, only create pairs. Thus (8W),
commutes with the W, 's. The exponential occurs in
(6.7) because symmetry factors (n, !) ' still arise for
those parts Vf, which are not attached to 8. By similar
arguments one easily finds6'

(e I
8 I e)= (e, I I exp QW, t)g(Wt8W),

&&Lexp QW, j I
C, )

= (@ I@)(C» I
g(W'8W)„

I Cs), (6.8)

and therefore

(»=—8 I 8
I +&/(+ I+&= (co I

Z(w'8w) I
c'

&

(6.9)

This factorization is possible because of two circum-
stances: (1) each term (Wt8W), is "closed, "by defini-
tion, meaning that it refills exactly the same set of
hole states (m states) that it has previously emptied.

"There is a slight ambiguity in our notation. The set of %'s
and %~'s in PÃteW) should be thought of as including the unit
operator, although this does not appear in the exponent of {6.2).

E(X)—E(X=0)(8)= lim
X-+0

(6.11)

(This is essentially the Feynman theorem. ") The argu-
ment is concluded by observing that since X can be
arbitrarily small, it is only necessary to consider the
"energy" diagrams in which 8 appears just once. This
also shows that the rules for the (8) diagrams are es-
sentially the same as those for hE (see Appendix B).

We have already mentioned that one can neglect all
terms in (6.1) which contain more particle-hole pairs
than the total number of particles in the system.
More generally, one can consistently neglect all terms
in the unlinked expansion (6.1) in which the external
lines violate exclusion. But of course this is rot allowed
in the linked expansions for t3.E, &+ I+&, and (8),
where the exclusion violating terms must be retained.
Their physical signifi. cance is discussed in Sec. IX.

Degenerate Case

We shall begin by assuming strict degeneracy,
although, by the argument of (5.17), the results must
also apply to the quasi-degenerate case. Working in
the Ap( ' representation, one finds that the BW dia-
grams in 0 =~& may each contain an overlapping
valence group which is open at the top. Each diagram
may also contain an arbitrary number of open core
parts, W„, which are identical to those considered above.

'13A. E. Glassgold, %. Heckrotte, and K. M. Katson, Phys.
Rev. 115, 1374 (1959).

~ J. DaProvidencia, Nucl. Phys. 40, 401 (1963).
~ E. Daniel and S. H. Vosko, Phys. Rev. 120, 2041 (1960).
~ R. P. Feynmsn, Phys. Rev. 56, 340 (1939).

Factorization would follow from this alone, were it not
for the exclusion principle. (2) For each term in (6.8)
where an Q diagram and a normalization diagram both
empty the same m state, or both fill the same b state
(particle state), there is a corresponding exchange term
among the set of 8 diagrams whose contribution is
exactly equal and opposite. Thus owe mist coesistentty
neglect exclusion. The exPectation value (8) is therefore

given by the sum of all linked diagrams in which 8 appears
just once. This simple result is due to Thouless, 4'4'

and was also obtained by Glassgold, Heckrotte, and
Watson. " Da Providencia" has found a very similar
expression for a general antisymmetric 0, a variational
wave function for example, without relying on per-
turbation-theoretic arguments.

One can also argue"'~ that this simple result is a
direct consequence of the energy expansion. Let the
perturbation V be replaced by V+X8. By comparing
the Schrodinger equations for X=0 and ) &0, one finds
immediately that

&(+~=s
I
8

I +~)

= LE(X) —E(X=0) g (4)~ I 4), ), (6.10)

and therefore
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Just as in the energy expansion, the removal of AEc
and AEv (where appropriate) from the energy de-
nominators eliminates all diagrams containing "vacuum
Quctuations", i.e., closed core parts or closed valence
groups. The factorization theorem then gives

+= QY„[exp QW.7 I +n). (6.12)

The Y„'s are the open valence groups, examples of
which appear in (6.13) and (6.14). Their sum must
include the [(N+e)-body7 unit operator, Yo=I. T—he
bottom parts of many of these valence groups can be
simplified, or "reduced, " through the cancellation
shown in (5.18). The open core parts W, are defined
as in (6.3) . They may excite core particles into valence
states p as well as into the intermediate states b.
Exclusion-violating terms occur whenever a core particle
(from W) and a valence particle (from Y) are in the
same single-particle state (p, or b), or when W and Y
terms both empty the same m state. These terms should
be included, since they are compensated by "c-v
exchange" terms which appear among the other Y„'s.
As an example, the last term in (6.13) is cancelled
by (6.14).

(6.13)

(6.14)

We have met similar terms before, in (5.9). Thanks
to these c-v exchange terms, one can safely assume that
the W, 's and Y,'s all commute. [This is essentially
the same argument used to justify the factorization
in (6.8).7

We express the separation of hE into core and
valence terms as follows:

AE= &eg& I
'U

I eD )c+&eg) I
'U

I eD &v

= Fcl.(Eoc) +Fv(Eov+~Ev)

(6.15)

This Fci, (Eoc) is identical, of course, to (6.5). The
normalization can then be put in the form

&+ I+)= &+ I+).&+ I+&v

= f exp [ Fcz, '(Eoc) 7 }[1 F—v'(Eov+&Ev) 7,—
(6.16)

(assuming &+~ I +n) =1), following the logic of (6.8),
(6.13), and (6.14). If "reduced" valence groups are
used, the argument (Eov+AEv) in the Fv and Fv'

terms must be replaced by E«at the levels of pro-
jecting core excitations, i.e., the "valence" denominators
(5.23) are replaced by "core" denominators (5.22) .

It is useful to indicate the state dependence of various
quantities more explicitly:

%.=0.%D.=ga.;Q„,C;, (6.17)
jeD

0 =[exp QW, 7+Y„(Eov +AEv~), (6.18)

&+. I%.)=N =NcNv. , (6.19)

Nc ——exp [ Fcr, '(E—oc) 7, (6.20)

&en. I [1 Vv'(Eov. +aEv.) 7 I e~.&

=1—Fv'(Eov +~Ev ). (6.21)

Thus one can write

&+~ I
8

I +-&= &+ I+&.&+~ I
8 I +-).

+5 I'8
I +)c&+~ I +-&.

=N [&ep I
8 Ie ) +Is N (8) 7, (6.22)

by again separating the diagrams into two sets, those
in which 8 interacts with a valence group and those
in which it does not. Each set is then factored into
core and valence terms, as in (6.16). (No subscripts
are needed for the%"s appearing in the "core" factors,
since these consist entirely of core diagrams. ) From
this one obtains both the expectation values &n I 8

I a&,
and o6-diagonal "transition" matrix elements

&P I
8

I ~)= &e, I
8

I
e.&/(N, N.) i

= &~s I
8 I ~-&./(N. sN.-) ~+~s.(8&'

(6.23)

The most general term in &0's I
8

I
4 )v consists of a

single Y and several W's below the 8 interaction, and
above this a single Y~ with several Wt's, all connected
together to form a single linked diagram. The W's
and Wt's can all be factorized and put on the energy
shell. This involves the trick, mentioned below (5.19),
of associating an additional excitation energy of
AEv (or DER) with the 5E; corresponding to the
lowest (highest) valence interaction in Y(Yt). The
denominators of the Y's and Yt's contain (Eov+AEv)
(Eov+AEv)p, respectively, except where these have
been reduced. The last term, &8)c, is just the expecta-
tion value of 8 for the closed-shell nucleus obtained by
physically removing the valence particles. [It might
appear that (6.22) and (6.23) are both wrong by a
factor of 2 when 6 is the unit operator. This little
paradox is resolved by noting that the "unit operator"
must in this case be an (N+m)-body operator, in the
sense of (6.6), so that (8)c is now zero. $ The unsym-
metrical treatment of core and valence particles causes
the valence normalization factors Ey, Syp to appear
explicitly in (6,23). These factors are nontrivial even
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in the apparently simple case where e= 1, because they
include effects of correlations between core and valence
particles. In the next section we present a "completely
linked" expansion for (P t

tl
~
n), in which these factors

do not occur explicitly.
A striking feature of these "degenerate" results is

that they all consist of terms describing the isolated
E-body system, plus other terms describing the changes
due to the physical additiom of the e valence particles.
These latter terms are closely related to n-body Green's
functions. More specifically, they resemble the Hugen-
holtz" propagators D rather than the causal Green's
functions. This is because, just as in the Hugenholtz
study, we have concentrated attention on the exact
eigenstates instead of on the time dependence of non-
stationary states. Nevertheless, we believe that most
of these results, such as (6.15) for DE~, will remain
valid for quasi-stationary states with a comparatively
long lifetime. In this case one should simply look for
solutions where the energy eigenvalues have small
imaginary parts. A better procedure is available for
states with a stronger and more complicated time de-
pendence. This is described in Sec. VIII.

VII. LINKED VALENCE EXPANSIONS

The valence terms of Secs. V and VI still retain
many features of the original starting point, the BW
expansions of Sec. II. The valence denominators (5.23)
still contain hEy, and the sets of diagrams include
many unlinked terms. These features may not be too ob-
jectionable for small e. When there are many valence
particles, however, they lead to the same kind of diQi-

culties one finds in applying the BW theory to a non-
degenerate many-body system. As an extreme example,
one can regard the superfIuid state of nuclear matter as
the limiting form of the pairing phenomenon in very
large nuclei. Bell" has already pointed out that the
Bloch—Horowitz expansion is not suitable for this
limiting case. In very large nuclei the ratio e/1V should
approach a small but 6nite limit (if we assume that
the actual nuclear-matter ground state is weakly
superfluid), thus B,E&~n~E can eventually become
arbitrarily large. It would be senseless to use energy
denominators containing, . such large energy shifts.
I"urtherrnore, the BH expansion contains unlinked
terms such as (7.1),

/s, v ca

p ( LID

(7 1)

which that formalism would have to describe as an
effective four-body interaction.

The arguments of Secs. IV and V lead us to expect a

I J. S. Bell, Ref. 20.

high degree of cancellation between these unlinked
diagrams and those obtained by expanding AE& out
of the energy denominators. This possibility was first
recognized by Morita, "who also sought to demonstrate
this cancellation. Unfortunately, his final result is
vague and misleading. We shall complete this program
using the methods of the preceding sections, with
rnodihcations suggested by Morita's work. The task is
considerably more difFicult than in the nondegenerate
case. It may be helpful to see, first of all, just where the
previous methods fail.

Let us review the steps we would follow to convert
the nondegenerate BW expansion, in terms of diagrams
with E external lines, into the Goldstone expansion.
(i) We wouM replace the external-line graphs by
"vacuum" diagrams similar to Goldstone's. (ii) The
exclusion principle must then be disregarded when
summing each particle (hole) line over all particle
(hole) states. This does no harm, as long as one is
consistent, because the resulting exclusion-violating
terms always occur in pairs (the members of which
will be found in separate diagrams) which exactly
cancel each other. This has the important advantage of
making each linked part identical, with regard to its
single-particle summations, to another complete dia-
gram in the hE expansion. (iii) Finally, the energy
shifts are expanded out of the BW denominators, and
the argument of Sec. IV is used to eliminate unlinked
terms.

The degenerate case is rendered much more difficult

by the fact that the state A, used as a "vacuum state"
to separate the core and valence terms, does not pro-
vide a useful "vacuum" description for the individual
('Ui);, elements. The above program fails already in

step (i) . Another symptom of this difliculty is that the
concept of "linked valence part, " as used here with
respect to the C, basis for D, is not quite the same as in
Secs. V and VI, where the linked parts were defined

by A . The situation is simple only when the number of
valence particles, e, is just equal to the number of
valence states. In this case d=1, so the system is
actually nondegenerate. The above steps (i), (ii),
and (iii) can then be used, with slight modifications,
to convert the n-external-line 'Uy diagrams into a set
of linked diagrams which are just the difference between
the Goldstone expansions for the X-body and the
(%+I)-body systems.

Another dHliculty arises in step (iii). In the non-
degenerate case one finds, after ignoring exclusion,
that each linked part resembles a complete diagram
in the AE expansion. But for d) 1 we find that AEy =
At'Ui A involves all d' different ('Ui );;matrix elements,
each of which has a weighting factor u;*a;/1. Starting
with a particular ('Ui), ; element and expanding out
AE~, we find all the other elements appearing. Worse
still, the problems of calculating 'Uy and A now seem to
be hopelessly intermixed.
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so that
V (")L—aE,)", (7.2)

'Uv(Ev. ) = Q&v(")L
—~Ev.&"

r=p

= Qgv r'$ —A (~)trav(Ev )A (a)]r (7 3)

The denominators in 'Uz~"& are basically of RS form,
Ep Hp, which in this case means

(ev) as= viE„+P (downgoing line energies)

—g (upgoing line energies) . (7.4)

The 'Uv(Ev ) 's in (7.3) are still given by the BH pre-
scription, with AEy remaining in their denominators.

Now, since 'Uv(Ev ) is diagonal in the A & & repre-
sentation Lsee (5.8) $, we see immediately that

&v(Ev )A & &= Q'Uv(")L —'Uv(Ev )$A &"& (7 5)
x=0

This suggests the introduction of a new matrix,

~1()x)=QUv $ Uv(Evt)) ] ~

r=p
(7.6)

We see from (7.5) that A & & is also an eigenvector of
'Ni(n), with the same eigenvalue AEv~. This will

allow us to use (7.6) in place of 'Uv in the secular equa-
tion (5.13). After this replacement, the new set of
eigenvectors and eigenvalues will include the desired

and Ey . Note, however, that

Wi(n)Ap( &= Q'Uv(')Ap( &t —Ap& )'Uv(Ev. )Ap"]'
r=p

Matrix Multiplication

The clue to the solution can be found in Morita's
work. "We shall start from quite a different viewpoint,
however, and establish contact with his method at a
later stage. Starting with the reduced Bloch—Horowitz
expansion for 'U~, let us expand hEy out of the de-
nominators as in (3.6). LAgain we assume exact de-
generacy, with all valence-state energies equal to
L&'„, and wait until the very end to remove this restric-
tion by the argument of (5.17) .jLet us collect together
all terms of 'U~ which contain exactly r insertions of

( AEv)—. We denote their sum by

Repetition of these arguments leads to a matrix with
"second-generation" insertions,

e,(~)—=gVv(") L
—W, (~))"

r=p

= Q'Uv" I
—

QWv "L—'Uv(Ev )j"I X ~ ~

, 81

X [—QVv(")[—Vv(Ev. )&"I. (7.8)
+r

It should be clear that the desired A and E~ can still be
obtained when this is used in the secular equation.
Suppose we repeat this process q times, using the BH
expansion for the "»th-generation" 'Uv(Ev ) 's to com-
plete the perturbation expansion for 'N, (&)&). One can
easily check [consider sequences of second-order in-
sertions such as (3.10)$ that AEv will not appear in
any term of order less than 2()&+1). In other words,
the first 2))+1 orders of VP„()x) form a degenerate ver-
sion of the RS perturbation series. The factorization
theorem then leads to a degenerate analogue of the
Goldstone expansion. V/e see that the problem of the
weighting factors a,*a; in EEv g;;a,*u;——('Uv);; has
been solved by combining the various elements of
'U& in. a simple way. Before we can demonstrate the
cancellation of unlinked terms, however, we must And

a suitable diagrammatic description for this "degenerate
Goldstone expansion" corresponding to%

First, let us remark that the desired eigenvalue
Ev or AEv still appears within (7.8) and all its
"higher-generation" analogues. In a weakly perturbed
system where everything converges, use of the complete
%', for any finite p will preserve the peculiar lack of
complete orthogonality among the true A eigenvectors.
The limiting form% will also give the A s correctly.
We presume that this remains true even for strongly
interacting systems such as nuclei. For a reasonable
choice of the subspace D, the usual analytic continua-
tion arguments should be as valid here as for the non-
degenerate problem of closed shells. This is discussed
further in Sec. IX. Thus it should be possible to obtain
reasonable approximations for VP, including its non-
orthogonal aspects, by considering valence diagrams
which are the natural analogues of those used for the
closed shells. The true nonorthogonality of the A 's

is probably very weak, however, in many applications,
and it might require a very careful treatment to
detect this. Formal aspects of this nonorthogonality
are discussed in Appendix D.

= g/v(r)L gEv()))pjrAp(~)

= &v(v&E, -&&-&Ev( )A)pp)( (7.7)

which shows that the matrices 'Uv(Ev ) and'Vt)'i(u) are
generally not identical. )See (5.8) for notation. $

Folded Diagrams

The perturbation expansion of V7 can best be repre-
sented by diagrams of a new type suggested by Gold-
stone's adiabatic approach. Morita was the 6rst to
observe this, and this is the appropriate place to
establish contact with his work. In the present deriva-
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tion we do not actually rely on adiabatic arguments
at any stage. Nevertheless, it is worthwhile to under-
stand the connections with this other approach.

It will suKce to consider how the adiabatic method
applies to the simple "one particle in an external 6eld"
model of Sec. III. One generates an adiabatic wave
function

part" (topmost block), with the single restriction that
the topmost interaction of the shaded rectangle be kept
in the same position as in (7.11). We now introduce
"folded vacuum lines" to indicate factors of (—1).
Using this convention, the first term in (7.12) can
also be factored:

e.'= U. (0, —~) c'o, (7 9)

by switching on the interaction at a very slow rate, e,
over the time interval —~ (t&0. The result can be
expressed as

e,'=e, (c, I
U, (o, — ) I

c,), (7.1o)

x ~l

x(Q)(M)

where%'& has a well-dered limit as e—+0. This limit is
just the desired wave function O'=QCO, normalized so
that (Co I%')=1. The unwanted factor (Co I

U,
I

C'0) (7.13)
consists of a normalization factor ((V~ IV~)) '' (since The last term in (7.13) cancels the second term in
U, is a unitary oPerator) whose form is similar to (7 12) so the final result
(6.4), as well as an unobservable phase factor whose
limit is undefined as e—&0. ! This result is obtained bp

expanding the products of the adiabatic energy de-
nominators (e+in'e) ' in powers of e, keeping both
the zero and first-order terms. j The phase factor is
exp Ig (AE&"&/in&) },where hE&"& is the sum of all
~zth order terms in AE. It corresponds physically to

exp [ i ts,—E(t)dt}.

Now the object is to perform this factorization,
(7.10), diagram by diagram. The first step is to relax
certain of the time-order restrictions, and then to
explicitly subtract the new terms which arise. This is
illustrated for a typical @,' diagram in (7.11).

LJ

(7.11)

Here the lines refer to the vacuum state Co, and the
boxes to "interaction blocks" within which Co does rot
appear as an intermediate state. Ke shall simplify
the notation a little, expressing the last two brackets
of (7.11) as

(7.12)

The shaded rectangle indicates all possible time-
orderings of that block with respect to the "principal

(o) ~ (7 14)

This argument indicates that the%', ' diagrams can all be
reduced to a sum of terms in which 4, diagrams are
multiplied by (C'0 I U,

I Co) diagrams.
The +, diagrams all consist of a principal part and a

number of insertions, all linked together by "folded
vacuum lines" such that the top of each insertion occurs
above the bottom of the preceding insertion. These dia-
grams remain well-de6ned in the limit e—+0, and they
can be used in our purely algebraic context without
reference to any adiabatic process. A similar "folded
string of beads" form can be used for the diagrams of
~E= (Co I

V I
4') = (C'0 I ~ I

C'o) Thusd~ag~am (a) of
(7.14) corresponds to two "first generation" insertions,
in other words to the r=2 term in (7.6), whereas
diagram (b) introduces a "second generation", as in
(3.10) and (7.8). These folded diagrams for hE are
completely equivalent to the closed-loop Goldstone
diagrams of Sec. III. The one-to-one correspondence
is established by noting that the folded diagrams are
obtained by cutting the downgoing "hole" line attached
to the topmost interaction of the closed-loop diagrams.
(This correspondence is worth studying carefully, to
see in detail how the various "generations" of insertions
are represented by the "folded" topology. Another
example of this topology is shown in Fig. 6 of Ref. 9.)

This folded form is exactly what we need for a
degenerate one-body system. Each "vacuum line"
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acquires a label referring to one of the degenerate C s,
and the matrix multiplication in (7.6) is performed by
simply summing the internal (folded) vacuum lines
over all indices i& D. The external lines are not summed.
They specify which element i, j of VP the diagram
belongs to.

I.et us return for a moment to the adiabatic method.
For a nondegenerate E-body system one begins, of
course, with the vacuum convention for representing
4'p, instead of the X-external line convention implied by
P.11). The addition and subtraction of terms which
(7.11) illustrates is then accomplished quite auto-
matically when one drops the exclusion restrictions
among hole lines. The folded diagrams correspond to
the exclusion-violating Goldstone diagrams with two or
more holes in the same normally occupied state m.
(When %= 1, of course, all diagrams with more than
one hole line fall into this category. This should
be clear from Sec. III.) We mention this because the
folded diagrams for the degenerate case cannot be
obtained in quite such a blindly mechanical fashion,
for lack of a suitable vacuum convention, and it becomes
important to understand their folded structure in
detail. With Morita's adiabatic approach, for example,
it is necessary to follow through the arguments (7.11)
to (7.14) explicitly.

X pa' v' ru'

o« «b

v e P.15)

Thanks to the factor of (—1)", this will cancel the un-
linked term similar to (7.1) . All other unlinked valence
diagrams are eliminated in the same way, as shown
below. But the exclusion principle might appear to
create difhculties here. The matrix multiplication re-
quires us to sum (7.15) over all degenerate states i'.
This implies that the indices v', au' should not coincide
with either X or p, whereas there is no such restriction
in (7.1).

Now consider the r= 1 term shown in (7.16) in
both unfolded and folded form.

V pa' v' Y CO

aii «b

p, v cy

(b) (7.16)

Linked Exyansion for 'U&

We come at last to the valence diagrams for a
degenerate many-body system. Each "one-body" folded

diagram is replaced by a set of e-external-line diagrams,
all of which have the same folded structure. Consider
the case of I=4. There is an r= 1 term of (7.6) which
can be drawn in urifolded form as

The i' summation in (a) implies, together with the
exclusion principle, that p should not coincide with
v', ro', or ). But we can drop this restriction if we also
include the corresponding exchange terms. For the
case where p=co=co', the required exchange term is

V p,
' v' to'

o&g «b a««b

v'

o««b
P 0'

Oj I ) l~b

V CU X p, v cu (7.18)

The p=v=v', a=~=co' term of (7.18) is also needed,
to cancel the X= v', p, =~' term in (7.1) .

These examples demonstrate that one should, quite
generally, ignore exclusion principle restrictions among
the folded valence lines. These lines should simply be
summed, independently, over all valence states p.
This is necessary to complete the elimination of un-
linked diagrams. It has the additional advantage of
making the noninteracting valence lines, such as the
co=~' lines in (7.16) and (7.18), entirely superfluous.
Thus, one need draw only those parts of diagrams which
are completeLy linked, and which have (n external
lines. The general validity of these statements follows
from the fact that the Wick algebra automatically
preserves antisymmetry at each intermediate-state
level where it is used consistently, regardless of whether
the level is degenerate or not. It is convenient to take
exclusion into account in labelling the external lines,
but to ignore this in all intermediate states of the
Nnfolded diagrams.

We shall now demonstrate that al/ of the unlinked
terms in 'N cancel each other. The proof is very similar
to the one given in Sec. IV for the Goldstone expansion.
Consider the Is&folded forms of the diagrams for VP .
If a particular diagram contains more than one U&
block (a diagram with one or more folds), the highest
of these blocks will contain one or more levels with
repeated energy denominators. The highest block is
therefore a term in 'Uvt") Lsee (7.2) $ with r) 1. Draw r
horizontal bars through this block to indicate the loca-
tions of the repeated energy denominators. The entire
diagram now corresponds to a diagram like (4.6)

(7.17)

Except for a permutation of the (Xpvru) labels, this is
just the p=cv' term which must be added to (7.15) to
cancel the corresponding term in (7.1). t One must
eventually consider all permutations of the indices
(Xpv~) and (X'pY~').$ The p=X and p=v' terms in
(7.16) happen, in this case, to be cancelled by other
terms with the same topological form as (7.16) .
Exclusion also requires that X/v' in (7.16), but this
can be cancelled by the p= v =- v' term in P. 18).
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containing r insertions of ( AE—v), except that each
of these insertions is now represented by a specific
term in its expansion, as in (3.7).

The next step is to identify the "principal part"
and the "overlapping groups" for this diagram. The
principal part is now the linked part of the topmost
'Uy block. which contains the topmost interaction of the
entire diagram. If the topmost 'Uz block contains any
other linked parts, these can be organized into over-
lapping groups, exactly as Sec. IV. Finally, these over-
lapping groups and the r horizontal bars can be or-
ganized into "time blocks". A%' diagram with exactly
the same structure as (4.6) is shown schematically in
(7.19) .

Each vertical line here may represent more than one
valence particle. The shaded blob represents all of the
other 'Ur blocks, in other words the insertions. (There
may be more than r of these blocks, since each of the r
insertions may itself contain insertions. )

The next step should be obvious. An example which
corresponds to (4.7) is shown in (7.20).

within the definition of the principal part. This com-
plication arises again and again, but any unlinked
diagram of finite order can be cancelled completely
by repeating this procedure a finite number of times.
This difhculty is a reQection of the fact that we began
here with a definition of the principal part which diBers
from the definition given in Sec. IV. In a closed diagram,
the principal part already includes an arbitrary number
(&0) of these folded-in insertions. /The closed principal
parts with folded insertions are all similar to (4.8a),
with one or more pairs of crossed hole lines carrying the
same index. Thus there may be two-body, three-
body, ~ ~, e-body insertions, i.e., insertions attached
by any number of crossed pairs of hole lines. )

The proof is completed by noting that the pro-
jecting core excitations all factorize automatically,
since we began here with the reduced form of the Sloch-
Horowitz expansion. The projecting core excitations
may therefore be ignored for the purposes of the
present argument. (They should be regarded simply
as numerical factors, with no vertical extension. ) The
"time" limits of each of the 'Uy pieces, i.e., the levels
at which the valence lines are folded, are determined
by the valence interactions alone. It should be clear
that this general folded structure overs much op-
portunity to simplify the remaining linked diagrams
by further factorizations.

Diagram Rules

The derivation is now complete except for a state-
ment of the diagram rules. ""To minimize confusion,
we shall make a fresh start instead of merely listing
the alterations of the Bloch—Horowitz rules given in
Appendix B. There are many details to keep track of,
and it will be useful to consider both the "folded"
and the "unfolded" form of each diagram,

(7.20)

The lowest overlapping group on the right-hand side is
cancelled by a similar diagram in which this group
now appears as the highest insertion. The "f"on the
left-hand side is to indicate the presence of an extra
fold. We have written Q because, after doing the
fold "f" explicitly, and factorizing the insertion, the
left-hand diagram is found to include some extra terms.
These have the form shown in (7.21).

To eliminate this term we must repeat all the preceding
steps, but with the cross-hatched part included now

1. ToPology

The most general diagram can be constructed as
follows: Draw an arbitrary number {f+1) of Bloch-
Horowitz-type "interaction blocks, "meaning diagrams
such as (5.16) and (7.1) with no unlinked core parts
and no many-body intermediate states C; falling within
the degenerate subspace. Arrange these blocks in a
vertical column, and connect up the external valence
lines between successive blocks to form an unfolded
diagram as in (7.15) . Now discard any diagrams which
are not completely connected, (7.15) for example, and
erase any completely noninteracting valence lines such
as those in (7.16) and (7.18) . Now draw a loop around
each set of valence lines passing between successive
blocks. The (f+1) blocks are thus connected by f
"bundles" of valence lines. LThese loops are to prevent
confusion between folded valence lines and downgoing

68I am indebted to Professor C. Sloch for suggesting some
clariacations of these rules.

69The statement of the rules in Ref. 24 is incorrect with re-
gard to the treatment of projecting core excitations.
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lines representing holes in the core. Note that a diagram
similar to the right-hand side of (7.18) appears also
in the expansion of 'Uy(", but in that case the down-
going lines both represent holes. The downgoing lines
in (7.18) are summed instead over the valence states,
and together they carry only a single factor of (—1) .)
Finally, fold each of these "bundles" to form diagrams
such as the right-hand sides of (7.16) and (7.18).

To make this last step very clear, think of drawing
the diagram of the previous step on a long vertical
strip of paper and then making a zig-zag fold between
each successive pair of blocks. Each fold should coincide
with the topmost and bottommost valence interactions
of the neighboring blocks. CUalence interactions are
those directly involving the valence particles, as con-
trasted to interactions in the "projecting core excita-
tions" discussed at the end of Sec. V. All projecting
core excitations factorize automatically, as explained
above. ]

The interactions of each block can have any relative
time order with respect to those in the other blocks,
subject to two restrictions: (i) The highest valence inter
action of each block must occur above the lowest valence
interacti on of the previous block. Neighboring blocks must
either overlap or completely overshoot each other.
(ii) The topmost valence interaction of the anal folded
diagram must be identical to the topmost valence inter
action of the original unfolded diagram. All diagrams
satisfying these criteria must be included.

The 6nal folded diagrams can be drawn most nearly
by (a) displacing successive blocks horizontally to
avoid any horizontal overlap, and (b) straightening
out each folded valence line. External valence lines
which pass through one or„. more blocks without inter-
acting can be removed from the bundles and allowed to
leave the diagram by the most direct route. A typical
example consisting of four blocks (f=3) is shown in
(7.22).

(7.22)

Z. 8'eighting Factors

From each "exchange group" of diagrams (diagrams
which transform into each other when direct matrix
elements of vs are replaced by exchange elements, or
vice versa), select just one member (the choice can be
quite arbitrary) and discard all the others. Con-
sidering all the v interactions to be "direct", replace
each element (ab

~
v

~
cd) by a "direct minus ex-

change" element (ab )
v

~
cd—dc). (This is now equiva-

lent to a "dot" diagram of Hugenholtz. Ke retain
the dashed-line representation. of v to avoid ambiguity
of the over-all sign factor. ) Now include a factor of (—,')

for each equivalent pair of lines. An equivalent pair
consists of two lines which (i) both start at the same
interaction, (ii) both end at the same interaction, and
(iii) both go in the same direction. This rule applies
to the folded valence lines between interaction blocks,
as well as to the lines within the blocks. (It does not
apply to the external lines. )

3. Over-2/l Sign Factor

It is necessary to have a consistent set of phases for
the shell-model determinants C;, i Q D. This is done by
choosing a standard order for the entire set of valence
orbitals. Now consider the unfolded diagram. Pull the
ends of the external valence lines across each other to
bring their labels into standard order. Do this at both
the top and the bottom of the diagram. Now imagine
placing this diagram on the front of a transparent hori-
zontal cylinder, a glass rod for example, wrapping the
external lines around the back of this cylinder, and
closing the diagram by joing the ends together. Stand-
ard ordering must be observed here; the "6rst" line
from the top must be joined to the "6rst" line from the
bottom, etc. The sign factor is now (—1) '+"+r, where l
is the total number of closed loops and h is the total
number of downgoing line segments. Closure lines
count as downgoing segments, as well as holes in the
core. The valence lines are all upgoing, since the dia-
gram is in its unfolded form.

Sometimes there is a subtle problem in applying this
rule. This is explained in the discussion of (85) in
Appendix B.

4. Energy Denominators

Take the folded diagram and "close" it as in the
previous step. The closure lines each carry two labels,
one from the top and one from the bottom of the original
diagram. Discard the labels which came from the top
of the open diagram, keeping only the bottom labels.
LThis step follows from the argument of (5.17).j The
energy denominators are now given by the Goldstone
prescription,

eo= g (downgoing line energies)

—g (upgoing line energies) . (7.23)

LNote that the folded valence line labelled p in (7.22)
is upgoing, while the other folded lines are downgoing.
The closure lines are also downgoing. )

5. Sums Over States

Within each block: Sum each upgoing line over all
valence orbitals and over all the higher-lying "inter-
mediate" orbitals. Sum each downgoing line over all
core orbitals. Between blocks: Sum each folded line over
all valence orbitals. Each summation must be done in-
dependently, i.e., without regard to exclusion, with one
restriction. The many-body intermediate states C;
within each bloch. must all be nondegenerate, thus in
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each case there must be at least one particle excited out
of a core orbital (thereby creating a hole) and/or at
least one particle excited into an intermediate orbital.
In case a degenerate state would result from two
particles of an equivalent pair both occupying valence
orbitals, the factor of (—', ) is to be retained if both of the
allowed combinations "valence plus intermediate" and
"intermediate plus valence" are included in the sum-
mations.

6. angles for Valence Holes

A similar expansion exists for systems containing
g, ' "valence holes" in the core, in addition to n valence
particles beyond the core; A =Ã+e—e'. The valence
holes are represented by e' do+cgoing external valence
lines whose labels are distributed among a subset of
the core orbitals called valence hole orbitals. The above
rules are modified as follows:

Topology: Completely noninteracting valence hole
lines may be ignored, otherwise no change. 8'eightieg
factors: No change. Ower all s-ign factor: The set of
valence hole orbitals must also be given a standard
order, and this must be observed when closing the
diagram. The recipe is still (—1) '+"+r, but the rule for h

is different. The number of downgoing line segments
must be counted before closing the diagram. (Example:
An external hole line which interacts just once will

contribute two segments. ) To this number must be
added the downgoing segments obtained by closing the
external particle lines. One should note how this applies
to the discussion of (BSc) in Appendix B. In that ex-

ample, a reversal of all the arrows still leads to "two
holes and one loop" for the double loop on the right-
hand side. Energy demom&zators: No change. Sums
out, r states: Within each block the downgoing lines are
summed over all valence hole orbitals as well as over the
remaining core orbitals. This rule is again qualified by
the requirement of no degenerate intermediate states.
Between blocks each folded valence hole line is summed

over all valence hole orbitals.

Qy+~ diagram consists of u/tt of its "open linked valence
parts. "

The folded diagrams which remain may still contain
several linked parts, but these are all "open" in the
sense that they represent excitations out of the sub-
space D. We denote these "folded, linked, open valence
parts" by Yl,„. They are quite analogous to the W, 's
of Sec. VI. To specify these YL„'s more precisely, we re-
call again that the "insertions" of 'U~&") are obtained
from the reduced BH expansion, and all projecting core
excitations in these insertions must be understood to be
completely factorized. The lover parts of the original
Y„'s should be similarly reduced before folding in these
insertions. Some further features of these Yl.„'s are
discussed at the end of Sec. X.

The factorization theorem can now be applied, since
the denominators no longer contain hE~, and one Ands
that a typical diagram in%' has the form

(7.24)

1Vr = 1 Fr'= 1+0. —(7.25)

The n„'s arise because we consider each YL,„ to include
summations over all its single-particle labels, as in
(6.3). The W's can of course be summed into the ex-
ponential form.

For a small number of valence particles, it is more
convenient to leave% in terms of diagrams where ex-
clusion is obeyed by the "incoming" valence lines, i.e.,
the lines entering the bottom of the set of Yl.„'s in each
(7.24)-type diagram. The YL,,'s can then be distin-
guished by their "incoming" labels, and all the e„'s
are reduced to unity. The valence normalization factor
)see (6.21)7 is then just (1—Fr'), as before, but the
diagrams will now have folded top and bottom "halves".
These "halves" are the sections of the diagrams repre-
senting +t and%', respectively. We introduce the symbol
8 to indicate the sum of all such diagrams in ( Fr'), —
thus

Wave Functions and Norms

We have already discussed the adiabatic develop-
ment of +=~& for the one-body case, as an example of
the use of folded diagrams. The same description for +
can of course be obtained by arguments paralleling

(7.2) et seq. , with Qr'"& replacing "Urt"&, Qr representing
the Q„Y„operator in (6.10). In the nondegenerate
many-body case it was found that all "vacuum Quctua-
tions" were eliminated by removing AE from the energy
denominators. A similar thing happens to the valence
terms in + when the hE~'s are removed from their
denominators. The valence analogs of the vacuum
fluctuations (closed core parts) are pieces which look
like linked parts from the BH diagrams for 'Uy. The
cancellation of these "closed linked valence parts"
follows from the argument of (7.19)—(7.21), with

only one modi6cation. The "principal part" of an

For a simple one-body system, these 0 diagrams have
the general structure shown in (7.26) .

(7.26)

Their insertions and folding lines are all restricted to
lie entirely above or entirely below the level (shown as a
horizontal line) where the "principal parts" of 4 and
0'~ are joined together.
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where
Xv= exp ( Fvr, '),—

Fvr, = (Nn ) 'Uvz, j4'g&)=AFv,

FvI' (+D I
d 0vL/ d~o I +D )'

(7.29)

(7.30)

(7.31)

Here F~J. and F~l, ' have no diagrams with more than
n external valence lines, although one is free to either
ignore or obey exclusion when labelling these lines.

We shall attempt to justify this exponential ex-
pression (7.29) by demonstrating its equivalence to
(7.25). Consider a degenerate one-body system. Differ-
entiation of term (a) in (7.32) will produce diagrams
such as (b).

(0) (c) (7.32)

These are typical contributions to Fyl, and —Fyl, ',
respectively. Note that (b) has two interaction blocks
at the level where the pieces of 0 and 0 ~ are joined.
This really involves two of the 8 diagrams illustrated
in (7.26); we represent this 8 structure by diagram (c) .
Using factorization and matrix-multiplication, term
(b) can be viewed as a part of —8'/2. Continuing in
this manner, we find that (minus) the Fo derivative of
the sum of the linked 'Uv diagrams, (7.31), leads to the
power series development of ln (1+8).The coefficient
of 8"is now (—1) '/r. The factor of (—1)~' obviously
arises from the folded lines between the 8's, as in
example (c) above, while the factor (1/r) comes from
removing a restriction originally imposed on the relative
time ordering of interactions within the different 0's
in 8".The topmost interaction of the 6 attached to the
upper external line was originally the topmost inter-
action of the entire diagram. The 0's can be factorized
by relaxing this time restriction and then dividing by r
t avoid overcounting. )Actually, it is more convincing

to '~work "backwards, " starting from (A t8A )'/r. g
This confirms the (approximate) equivalence of (7.31)

If there are many valence particles, the unlinked
terms which remain in (7.25) and (7.26) may be
troublesome. "Completely linked" expressions may be
obtained by ignoring all exclusion restrictions on the
incoming valence lines of (7.24) . Then

Qv ——exp (Q„YI.„), (7.27)
and

4'=exp (Q,Yr,„) exp (Q,W, ) (%n). (7.28)

$0ne need not include any individual Yr,.'s in Q.Yz;
which have more than m external valence lines, since
the total effect of such operators on +~ must be iden-
tically zero. The resulting diagrams would all be can-
celled by exchanges. j The corresponding linked valence
norm is then (approximately, as qualified below)

and (7.27) for the one-body case. The many-body case
has the same topology, and the result is obviously
linked.

There is another way to (approximately) verify
(7.29), which also sheds some light on relations between
the various kinds of diagrams. One can start with the
analogous nondegenerate expression (6.4), convert the
closed-loop diagrams into folded diagrams with (e
external lines, and then note that the combinatoric
arguments are essentially the same for both the non-
degenerate and degenerate cases.

Unfortunately, neither of these justi6cations of
(7.29) are rigorous, and the result itself is probably
inexact. The trouble is that the matrix multiplication,
which is necessary for a simple linked-cluster result,
is really not permissible unless e is diagonal in the
A~& & basis. In reality, 0 is diagonalized by a very
different orthogonal basis ) x;), as discussed in Appendix
D, but this does not appear to be useful here. Of course
(7.29) will be exact when the numbers of valence
particles and valence states are just equal, since this
implies that d= l. It should be a good approximation
whenever the complete set of A's is nearly orthogonal.
On the other hand, we shall obtain exact linked expan-
sions for the expectation values and transition ampli-
tudes. These are, after all, the quantities of most
direct interest.

(~. [ 8
) ~.)v=A.tSA..

Rewriting (7.25) in a similar fashion,

1Vv =1+A t8A,

(7.35)

(7.36)

Expectation Values, Transition Amplitudes

The object here is to express the valence contribu-
tions to the transition amplitudes (6.23) in the form

(~ (
6

) P)v= — „, =A.'~(&)Ap, (7.33)
(+- I 8 I +~).

va~vp

where OR(8) is a matrix consisting of linked diagrams
connecting the degenerate states C;. Diagrams for the
individual 5K;; elements must therefore have &e
external valence lines. (In labelling these lines, one is
free to either obey or disregard exclusion, provided the
decision is followed consistently. ) This makes it rather
dificult to generalize the factorization argument of
(6.8), so we shall proceed instead with the "non-
exponential" forms (7.24) and (7.25) .

We 6rst consider expectation values, i.e., the diagonal
terms

( I
&

I ).=(+- I & l+-).&.='. (7.34)

By using the folded but unlinked diagrams (7.24) for
+~ we obtain (+ ( 6

~
+)v in terms of valence diagrams

with the type of folded structure shown in (7.26).
The horizontal lines in these diagrams now indicate
the levels of their 8 interactions. We introduce the
symbol Q for the matrix in D which these diagrams
de6ne, thus
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where

(o. ) 8 ) o.)= QA tsA (—A toA )'
v=0

=A ted, (7.37)

m=gs( —e) . (7.38)

The "one-body" diagrams for (7.38) are

(7.39)

01'

we can expand (iVr ) ' in a geometric series. Matrix
multiplication then leads to

and (b) in the partially unfolded diagrams, O need
not be above all the 8's. In contrast to (7.38), condi-
tion (a) prevents the terms of this series from being
completely factorizable into "on energy shell" 8 and Q
parts. A more satisfactory exact expansion for 5K is
presented in Appendix D.

For transition amplitudes, we replace the geometric
series for (Ez,) ' by the product of the binomial ex-
pansions s for (Xr~) '" and (Ere) I' We then find
that (7.38) is replaced by

an= g( )( ~eoe,
where the binomial coeKcients for (1+x) '" are

(
1' =(')-'ll(-l- ) (7 42)r

The corresponding folded diagrams are

(7.40)

in "partially unfolded" form. Note that there are no
time-order restrictions between interactions belonging
to diferent members of the set of 8's and Q. The top-
most interaction in Q need not be the topmost of
the entire diagram, in (7.39).
, For more than one valence particle, both 8 and Q
will generally have unlinked diagrams. The "folding"
in (7.39) now eliminates all unlinked terms, by es-
sentially the same argument as in (7.19) to (7.21).
LThe blocks in those diagrams should now be inter-
preted as linked parts of 8 or Q. The "principal part",
drawn as the upper left-hand block, now corresponds
to the linked part of Q containing 8. Any other
linked parts within Q wiO all belong now to a single
overlapping group. $ Of course there must be no ex-
clusion restrictions on the folded valence lines between
the various 8's and Q.

This expansion is complicated by the need to identify
the 8 structure of each diagram, in addition to the
individual folds within each 8 and Q, to make sure that
Q appears at the top of the partially unfolded. diagrams
(7.40). Except for this, and the fact that f is the total
number of folds, the rules for the diagrams of BR are
the same as for the linked expansion of 'Uy. For total
expectation values, of course, one must not forget the
core term (8)o in (6.23).

%e have assumed again that 8 is diagonal in the
orthogonal Ap& & basis, which is not strictly true. An
expansion which is free of this defect, and which is
obviously linked, is obtained by applying the argument
of (6.10), (6.11) to the linked energy expression
b,Z& ——A tVP~ . The result is formally exact. It
differs from (7.38) in just two respects: (a) the topmost
interaction of a folded diagram (7.39) is now always
the same as the top of the completely unfolded diagram,

4

~ -- +a X

+(I-u) x
0

= 0

(7.44)

ExPansions of this tyPe have been used in other many-F odyformalisms. See J. W. Clark and P. Westhaus, Ref. 23, ancj alsoP. O. Lowdin, J. Chem. Phys. 18, 365 {1950).

(7.43)

There are now (t+1) different 0 orderings for the
diagrams with r+s=t The can.cellation argument of
(7.19)—(7.21) still applies, as can be shown by in-
duction: Assume that the sum of all diagrams with
r+s& t contains no unlinked terms except among
the diagrams with r+s= t. Now consider just the "new"
unlinked terms in 8 Q8, i.e., those which are not
cancelled by unlinked terms with r'+s'= r+s 1. —
These "new" terms can be cancelled equally well by8+ Q8, or by 8"Q8'+', or by any linear combination
of these with a total weight of unity. This statement is
illustrated schematically in (7.44), where n is an
arbitrary parameter.
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The phenomenon shown in (7.21) also occurs here,
and is to be handled in the same way.

We now observe that the total weight of all the t+1
different 8-orderings for r+s=t is the same (unity)
for all values of t. From this it follows that all the
"new" unlinked terms with r+s=t are cancelled by
terms with r'+s'=t+1. [Start with the "new" terms
from QB', and cancel these by adding a sufhcient
weight of BQ0' to the amount of Q B'+' which occurs in
(7.41). Then cancel the "new" terms in 808'-' by
taking the "left-over" weight of BOB', i.e., that frac-
tion of this term from (7.41) which has not already
been used up, and adding a suQicient weight of e Q e' ',
etc.]

The only difference between the rules for (7.38) and
(7.41), apart from the difFerent 8 ordering, is that the
factor (—1)~ is replaced by

(—1)' ' '
I „' ll ,

'
I, (7 45)

where (f r s) is —now—the number of "internal"
folds within Q and B's.

Our derivation of (7.41) is slightly incorrect, since
we have assumed again that the A 's are all orthogonal.
Nevertheless, we find in Appendix D that this result
becomes formally exact when the A t, Ap vectors in
(7.33) are replaced by some closely related vectors
A t, Ap. The latter are chosen to be precisely orthogonal.

VIII. APPLICATIONS OF THE LINKED VALENCE
FORMALISM

This completely linked formalism is needed whenever
there are many valence particles. In rare-earth nuclei,
for example, shell-model descriptions usually involve a
large number of valence particles. Regardless of
whether or not the AET s might be large enough to
cause diQiculties here, it would not be clear what to do
about the many unlinked terms of the Bloch—Horowitz
expansion. These difEculties can become serious in
modern studies of vibrational states, where one breaks
open several of the normally ulled shells and excites
an arbitrary number of particles out of these shells.
A much more extreme example is the problem of super-
fluidity in nuclear matter. We shall consider both of
these problems, and also some connections with
Landau's theory of Fermi liquids, and with the theory
of nuclear reactions.

Collective Vibrations

We begin with a rather extrenM exampl- -a "closed-
shell" nucleus where all E particles are allowed to par-
ticipate in collective vibrations, or in the corresponding
ground-state correlations of the random-phase theory''

"The ground-state correlations of 0'6 have been calculated
in this way by A. Kallio Lph. D. thesis, University of Helsinki,
1965 (unpublished)g and by G. E. Brown and C.W. Wong, Nucl.
Phys. A100, 241 (1967). See also G. E. Broom and G. Jacob,
Nucl. Phys. 42, 177 (1963);and E. Sanderson, Phys. Letters 19,
141 (1965).

The boundary between the "valence" and the "inter-
mediate" states, p, and b, must of course be chosen
several subshells above the highest normally-filled shells.
We shall see later in this section that this example is
actually of considerable practical importance.

In this case there can be no "core" at all—all Ã
particles must be regarded as valence particles. This
is because the number of upgoing lines (and/or down-
going lines) at the top of a diagram must be the same
as at the bottom of the diagram. (In the linked ex-
pansion this number depends on the individual dia-
grarn, but each diagram still "conserves" the number
of valence particles and/or valence holes. ) Thus to
treat transitions across the physical Fermi surface,
one must regard alt of the coupled valence states as
valence particle states, or alternatively as valence
hole states; a mixture of both will not suf6ce.

Choosing the "particle" description here, AEy be-
comes the eagre interaction energy with respect to
Hs T+VsM——. This is larger in magnitude than the
total binding energy. (In infinite nuclear matter, this
interaction energy amounts to around +35 or +40
MeV per particle. ) Thus DZv becomes very large, for
moderate values of E, even compared to the large
energy denominators (typically of order 500 MeV)
appearing within the 6 matrices. If the Bloch—Horowitz
expansion were used, this large energy shift would com-
pletely change the character of the 6-matrix inter-
actions. This makes it clear that the many unlinked
terms must have a large coherent effect to com-
pensate for this change.

The linked valence expansion demonstrates that the
effective two-body interaction I

the G matrix, plus the
core polarization correction of (5.16c)1, and the higher-
order corrections to this (presumably small) are reason-
ably insensitive to the number of particles being trea, ted
as valence particles. This is, of course, an empirical fact,
but the linked formalism is needed to prove this
theoretically. One also expects that the effective inter-
action has some dependence on the choice of the model
subspace. Kith the present formalism, this dependence
can be studied in detail. "

This "no core" approach will have only a small
effect on the shell-model potential acting on the
normally occupied states, as compared to the simple
closed-shell description with E core particles and no
valence particles. The same self-energy processes (see
Ref. 9) may be absorbed into the definition of the model
potential VsM, on the assumption that the valence
particles are all in the simple closed-shell configuration,
and all corrections to this may then be absorbed into
the effective interaction 'U~. (Some refinements are
suggested below. ) A very important feature of this
approach is that the Vsm acting on the "unoccupied"
valence states is now essentially the same as for the
normally occupied states. The discontinuity in the

"See Refs. 12, 71, and also T. T. S. Kuo and G. E. Brown,
Ref. 18.
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definition of Vsm (Ref. 9) now comes at the boundary
between the "valence" and the "intermediate" orbitals.
For the normally occupied states, the only change from
the simple closed-shell description is that the inter-
mediate-state summations must all correspond to
many-body states outside the model subspace. In
calculating the usual 6 matrix, for example, both
intermediate states must be above the "ordinary"
Fermi surface (due to exclusion effects from the other
valence particles), and at least one of them must be
outside the band of valence orbitals.

This valence particle approach is rather Qexible. It
also allows for the possibility of including some eGects
of the ground-state correlations within the definition of
Vsm. (See (8.10) and (9.16) below. j The idea of no
"core" particles may seem rather extreme, since one
rarely attempts to include al/ E particles in microscopic
studies of vibrations. Nevertheless, this overs a good
illustration of the way the present formalism must be
handled to obtain useful results. Once V~M and the
linked matrix elements of 'Uy have been determined
in this way, the task of diagonalizing '0& can be handled
(approximately) by the well-known "random phase"
method (RPA method). This appears to require the
assumption that only the one-body and two-body linked
parts of 'Uy are significant. In practice one can get
around this restriction, as shown in the discussion of
(8.1) below.

Quasi-ParticIe Diagrams, Fermi Liquid Theory

Another important possibility is to treat this "re-
duced Hamiltonian" problem, XD ——Hoi+'Ui, , by a
second application of linked-cluster perturbation theory.
For the closed-shell nucleus we have been discussing,
the diagrams can be represented most conveniently
by the usual "Co vacuum" convention, where all up-
going and downgoing lines refer to departures from the
normal closed-shell configuration Co. Note, however,
that this convention must not be introduced until
after the linked 'Ui diagrams have been calculated by
the above procedure.

These new diagrams have a very diferent meaning
from the ones used previously. They refer only to
configurations within the model subspace. Only the
system's valence particle degrees of freedom are
involved, and these, by analogy to the Landau theory
of Fermi liquids, " might equally well be called the

"L. D. Landau, Soviet Phys. —JETP 3) 920 (1957); 5, 101
(1957); and 8, 70 (1959); A. A. Abrikosov, L. P. Gorkov, and
I.E. Dzaloshinski, Methods of Quantum Infield Theory in Sta.istical
3fechaeics (Prentice-Hall, Inc. , Englewood CIHB, ¹ J., 1963);
R. Balian and C. DeDominicis, Nucl. Phys. 16, 502 (1960), also
in Physica 26, S94~ (1960), also in Lectures oe the Many-Body
Problem (Naples, 1962), E. R. Caianiello, Ed. (Academic Press
Inc. , New York, 1962), see also Ref. 119; A. Klein, Phys. Rev.
121, 957 (1961),also in Ref. 92; P. Nozieres and J. M. Luttinger,
Phys. Rev. 127, 1423 and 1431 (1962); L. P. Kadano8 and G.
Baym, Quantum Statistical Mechonics (%. A. Benjamin, Inc. ,
New York, 1963); R. A. Craig, Ann. Phys. (N.Y.) 40, 416, 434
(1966). The only formalisms, other than the present one, which
appear capable of producing quantitative results from "first
principles" are those of F. Y. Wu and E. Feenberg, Phys. Rev.
128, 943 (1962);W. E. Massey, Phys, Rev. 151, 153 (1966), and
of E.R. Tuttle and F.Mohling, Ann. Phys. (¹Y.) 38, 510 (1966).

quasi-particle degrees of freedom. These new diagrams
are therefore "quasi-particle diagrams. "

A very important reason for doing nuclear calcula-
tions in two stages, as outlined above, is that this allows
for a careful treatment of the shell structure details of
the low-lying intermediate-state orbitals. This is
essentially impossible in a "one-stage" treatment,
since the 6-matrix elements must necessarily be eval-
uated by using some sort of continuum approxima-
tion which smears out all the shell structure of the
intermediate states. Furthermore, the weak inter-
mediate-state potentials recommended in Refs. 9 or 11
will have already eliminated most of this shell struc-
ture anyway. Another important consideration is that
the expansion may converge poorly unless the low
intermediate states are handled in this way. (This is
discussed below. )

So far, we have considered only the nondegenerate
case of a "closed-shell" nucleus. Open-shell problems
may be treated similarly, by now applying degenerate
perturbation methods within the original subspace D
(the prinsary subspace) . Thus it is useful to make a
second partition of the configuration space, to dis-
tinguish between "low, " "medium, " and "high" con-
figurations. The first partition takes care of the very
high configurations arising from the singular part of e.
There is a natural small parameter here, and this part
of the calculation should converge rapidly. The inter-
mediate orbitals here are essentially plane waves. The
remaining orbitals will experience a strongly attractive
potentia1, and these will have the familiar shell struc-
ture (For .sensible choices of D, the highest of these
orbitals will be unbound and will show a resonance
behavior instead. ) The second partition (now a parti-
tion of the primary subspace) is to separate out the
"low" configurations, namely those associated with a
"simple shell-model" description. This secondary sub-
space corresponds, therefore, to the usual model sub-
space. Its model interaction will now include renormali-
zation eGects from the "medium" configurations, with
the latter treated by shell-model techniques.

This "double partitioning" method has been applied
to 0" and several other nuclei by Kuo and Brown. '8

In their 0" calculation, for example, they used a
primary subspace of all shells up to and including the
f shell. The higher configurations were then used to
renormalize their 'U& for a very conventional model
subspace of two neutrons in the 2s&f2—id@2 subshells.
They found a significant renormalization eGect from
the core polarization process shown in (5.16c), and
this considerably improved the agreement with experi-
ment. ~4 The detailed shell structure of the medium
configurations was essential for this result.

This program also agrees with the currently accepted
picture of the effective interaction for nuclear pairing
calculations. It is well established that this interaction
depends sensitively on the size of the model subspace,

"For a related study of renormalization effects, see ¹ De
Takecsy, Nucl. Phys. A95, 505 (1966).
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being strongly renormalized by the "far" pairing con-
figurations, whereas final results are rather insensitive
to the model subspace. ~s One might also attempt a
similar treatment of the far configurations of the RPA
coupling scheme, including them within the effective
particle —hole interaction by perturbation methods, for
cases where these configurations are known to have a
significant effect.~'

These methods should also work for an infinite
system such as nuclear matter or liquid He'. This should
allow one to derive and calculate effective quasi-particle
energies and interactions within a band of valence
orbitals near the Fermi surface. This amounts to another
formal justification for the Landau theory. In contrast
to the previous formal derivations, " however, this
approach offers the prospect of qgantitatiee calcula-
tions' for the basic parameters. Admittedly, this
approach to liquid He' faces severe obstacles because
of the high-density nature of the system. But these
problems deserve to be re-examined in the light of
recent advances concerning the convergence of the
Brueckner theory.

To emphasize the connections between the Fermi-
liquid theory and the nuclear methods just discussed,
one might say that the 6nal valence particles (those
of the secondary subsp ace) are the "real" quasi-
particles, and the medium configurations are composed
of "virtual" quasi-particles. One can also be more
specific.~ The effective two-body interaction within
the primary subspace corresponds to Landau's I'o&

vertex function. This should include "apparent" two-
body interactions arising from primary three-body in-
teractions, etc. , as described below. The I'" function
(equivalent to the f function) corresponds to a two-
body interaction within the secondary subspace, this
being a narrow band of orbitals near the Fermi surface.
One obtains I'" from F(" by an integral equation which
generates ladder diagrams. Thus F" is quite similar to
the Brueckner reaction matrix, except that: (i) the
"bare" two-body interaction v is replaced by F&'~;

(ii) the two-body intermediate configurations must lie
outside the secondary subspace but must remain within
the primary subspace; (iii) "folded" ladders are now
included. The pair of lines between successive inter-
actions may go downwards as well as upwards; this
"doubling back" is permitted as long as both members
of the pair go in the same direction. To this result
should be added the apparent two-body interaction
terms (for the secondary subspace) arising from the
three-body terms (8.1) which are generated by I'&'&

interactions acting within the primary subspace but

"See for example V. GiHet, B. Giraud, and M. Rho, Nucl.
Phys. (to be pubHshed)."A related proposal has been made by N. De Takecsy, Phys.
Letters 23, 260 (1966). A case where the "far" configurations are
important has been studied by V. Gillet, A. M. Green, and E. A.
Sanderson, Nucl. Phys. 88, 321 (1966).

'7 Identifications of the following type were first suggested by
V. J. Emery (unpublished), and are mentioned in the second
paper by Kuo and Brown, Ref. 18.I am indebted to these authors,
and to G. V. Chester and J.V/. Kane for useful discussions. .

beyond the secondary subspace. Finally, the F~ func-
tion, which determines the transport properties, cor-
responds to the effective particle —particle interaction
used by Kuo and Brown' for O'. This includes all
of the I'" processes, ptls all exchanges of virtual
particle —hole excitations, the simplest example of the
latter being (5.16c). For these latter processes ("core
polarizations") the effective particle —hole interaction
is F". Note that, in contrast to Green's function
methods, the present approach provides a well-defined
cutoff for the intermediate-state summations in the
integral equations for F" and F~. This is because all
intermediate configurations must be within the primary
subspace; it has nothing to do with the damping of
"real" quasi-particles.

%e should emphasize another of the important ideas
of the Landau theory. Consider the linked three-body
terms in 'Ui, as shown in (8.1) .

(8.1)

It would be very difficult to include all the effects of
these processes in a shell-model calculation, but we
need not go to the other extreme of completely ig-
noring them. Instead, we may take advantage of the
fact that the quasi-particle occupation numbers /the
E„t'&'s of (5. t) j are almost unity (zero) for the states
below (above) the Fermi surface. Thus it is very
reasonable to sum one of the external lines over all of
the normally occupied states, with weight unity (all
combinations of one lower line and one upper line
should be considered here), and to regard the result
as a renormalisaHon of the effective two-body inter-
action. The true three-body nature of this term will
then show up only through the deviations of the I'„& &

distribution, for the "third" particle, from the simple
step-function form appropriate to a noninteracting
system. (In case of double partitioning, these E~oi's

should be the ones referring to the secondary subspace. )
Actually, we must use exactly the same type of

argument to introduce the apparent one-body inter-
action VSM in the "no core" formulation. In this case,
V» arises mainly from the linked two-body cluster
terms in 'U~, but VgM also has important contributions
from linked three-body terms (the Us term of Ref. 9),
and from combinations of several two-body interactions
(the U2e term), etc. Returning to the "fundamental"
three-body cluster term (8.1),we see that it contributes
to the "zero-body" term (the binding energy for the
simple closed-shell configuration 4'n~C'0), t.o the one-
body interaction (VsM), and to the apparent two-
body interaction. It also gives rise to an apparent
three-body interaction, but this latter effect should be
quite weak. The weakness here is because this effect
now involves the third power of the difference between
the interacting and noninteracting quasi-particle dis-
tributions I'„I&. This weakness of the apparent three-
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body effects is the essential content of the statement
that a Fermi liquid may be viewed as a low-density
gas of weakly interacting quasi-particles.

Time-Dependent Problems

We mentioned at the end of Sec. VI that problems
with a strong time dependence (nuclear reactions,
for example) might be handled by the techniques of
this section. In all of the developments so far (except
for remarks about the Landau theory) we have been
dealing with the exact eigenstates of the total system.
This is not the case for time-dependent problems. The
eigenvalue or "frequency" dependence of the effective
interaction 'Uz may now become very important„since
one is now dealing with a mixture of eigenstates. We
believe that the most practical way to approach nuclear
reaction problems, such as the calculation of the optical
potential, is again to handle the job in two stages.

The first step is to calculate the interaction 'Uy for a
model subspace large enough to include all of the usua1
"strong coupling" degrees of freedom. Intuitively, one
expects that if the model subspace is made large enough,
the denominators appearing within 'Uv Lsee equations
(2.7), (2.12)$ will all be so large that its energy
dependence can, in some sense, be neglected. This
comes out rather nicely in the linked formalism. Much
of the energy dependence is contained already in the
one-body and two-body effective interaction terms.
This part can be treated essentially exactly, by (a)
using self-consistent single-particle energies, and (b)
by partially summing all diagrams like (7.18) which
contain folded two-body insertions. The remaining
energy dependence will be negligible, to the same degree
of approximation as the neglect of the ttpparertt many-
body effective interactions. For example, a three-body
effective interaction term which really arises from two-
body effects is shown in (8.2) .

(8.2)

This shows a two-body contribution (right-hand side)
to the "frequency" dependence of the basic two-body
interaction (left-hand side). Much of the effect of
this term can still be treated exactly, according to the
discussion of (8.1), and there are excellent reasons for
neglecting the remaining "apparent" three-body eGects.

For the second step, one might use a time-dependent
formalism to study the evolution of the model wave
function +ts(t) under the influence of Xts=Hstr+'Usr.
Fourier transformation would then lead to a "quasi-
particle Green's function" description. In this language,

'

the interesting frequency or energy dependence of the
mass operator now arises eetirely from the "near" con-
figurations within the model subspace. Another practical
advantage of this approach is that the B'Oy eigenvalues

(for the "noninter acting quasi-particles" ) are all
real. But there is also a difhculty. Many of the "model"
orbitals will be unbound, and must therefore lie in the
continuum. A number of investigators are studying
this problem in the "many-body" or "continuum
shell-model" theory of nuclear reactions. ~' That theory
fits very well into the present framework.

We have suggested a "quasi-particle Green's func-
tion" formalism for two reasons. The first and most
obvious one is that degeneracy or strong configuration
mixing may rule out perturbation treatments. This is
certainly the case when pairing correlations are present.
The second reason is that a true Green's function treat-
ment is much too cumbersome. The true spectral weight
function must have a very long and relatively large
tail at high energies, due to eRects of the hard core."
Serious approximations have had to be introduced
in all true Green's function calculations to date, " and
we do not believe that the short-range multi-particle
correlations can be treated as adequately or as easily
as by Brueckner-theoretic methods. The restrictio~
to configurations within the model subspace, and
especially the use of a non-singular interaction (from
'Uv), should eliminate this large tail from the quasi-
particle spectral weight function. In the approximation
of neglecting pairing and collective mode eRects, this
treatment of the optical potential problem would
become very similar to the perturbation-theoretic
method of Hugenholtz, " as mentioned at the end of
Sec. VI. The difference lies mainly in our specific choice

"See, for example, U. I ano, Phys. Rev. 124, 1866 (1961);
W. H. MacDonald, Nucl. Phys. 56, 636 (1964); C. Bloch, Pro
ceedings of the Internationat School of Physics "Enrico Fermi, "
Course 36 (Varenna, 1965), C. Bloch, Ed. (Academic Press Inc. ,
New York, 1966); V. V. Balashov et ul. , Soviet J. Nucl. Phys.
2, 461 (1966);W. Glockle, J. Hufner, and H, A. Weidenmuller,
Nucl. Phys. A90, 481 (1967); M. Bauer and I', Prats, ibid. 89,
230 (1966); B. Buck and A. D. Hill, ibid. A9S, 276 (1967); J.
Hiifner, C. Mahauz, and H. A. Weidenmuller, Nucl. Phys. (to
be published).

'9This follows from physical considerations: If a particle is
suddenly added to an interacting system, mthout any dynamical
correlations between the added particle and the original system, a
singular interaction will produce violent transient effects. These
correspond to a rapid generation of short-range correlations be-
tween the added particle and the rest of the system. {This is the
physical content, in the present case, of the process of "clothing"
the bare particle. ) Fourier transformation then shows that there
must be strong high-frequency components in the spectral weight
function. The existence of a significant high-frequency "back-
ground" (non-Lorentzian term) can also be inferred from the sum
rule for the spectral weight function. It is noteworthy that none
of the true Green's function calculations of nuclear matter {Ref.
80) have taken proper account of this important feature. This
neglects a large fraction of the true kinetic energy, as discussed in
Ref. 9, and it also leads to a serious violation of particle conserva-
tion. It should be possible to reine the approximations to remedy
these serious defects, but we believe that the result would then be
far more cumbersome than the use of Brueckner-theoretic
methods.

8' R. D. PuR, Ann. Phys. {N.Y.) 13, 317 (1961);D. S. Falk and
L. Wilets, Phys. Rev. 124, 1887 (1961); D. S. Koltun and L.
Wilets, ibid. 129, 880. (1963};J. C. Reynolds and R. D. Puffs
ibid. 130, 1877 {1963);J. C. Reynolds, ibid. 130, 1891 (1963);
A. S. Reiner, ibid. 133, B1105 (1964); C. B. Duke, ibid. 136, B59
(1964); R. D. PuG, A. S. Reiner, and L Wilets, ibid. 149, 778
(1966);D. E.Beck and A. M. Sessler, Phys. Rev. 146, 161 (1966).
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of partial summations, and especially our single-
particle energies (see below) .

SuyerQuidity

Ke shall now argue that the present linked ex-
pansion provides a rigorous and completely non-
singular method for studying superQuidity in infinite
nuclear matter. This is a rather academic problem,
but it has long been considered a serious stumbling
block for nuclear matter theory. The program consists
of three quite independent steps: (i) The elimination
of unlinked terms by means of the present expansion,
followed by upgoing ladder summations to express
this in terms of G-matrices. (ii) A study of the higher-
order diagrams, to determine the validity of the
usual assumption that the only important terms in
'U& are the effective two-body interactions. (iii)
Approximate diagonalization of the reduced Hamil-
tonian. The methods of superconductivity theory,
including the Bogolubov —Valatin transformation, need
not be introduced. until this last step. In contrast to
other formalisms that have been suggested for this
problem, ' this one distinguishes quite clearly between
these basically different types of difficulties. It also
permits the approximations in (ii) and (iii) to be
refined separately.

In applying the present formalism here, the main
problem is to organize the partial summations to make
sure that the treatment is completely free of singu-
larities. We shall base this discussion on a "large core"
formulation which divers somewhat from the previous
"no core" approach. This new approach is not abso-
lutely essential here, but it seems more natural for
the present problem.

The "normal core" can be made free of singularities
by (a) starting out with a "large" core, that is, by
choosing the boundary between the core and the inter-
mediate states to lie above the normal Fermi surface, at
the top of the band of strongly coupled valence states,
and (b) by using the "on-energy-shell" self-energies of
Ref. 9. This leads to an artificial gap in the spectrum
of urlpertlrbed single-particle energies. This gap occurs
at the "large" Fermi surface, and it completely elimi-
nates the problem of small energy denominators for
the "core" part of the calculation. . (The magnitude of
this gap is quite large. It can be reduced somewhat,
with some improvement in the rate of convergence, by
using the intermediate-state potentials advocated by
Bethe. See Fig. 1 below. For a realistic calculation,
it would probably be necessary to use a "double
partitioning" treatment to deal adequately with the

"A general review of methods for treating superQuid eGects
in nuclear matter has been given by J. S. Bell, Ref. 20. See also
V. J. Emery, Nucl. Phys. 12, 69 (1959); and 19, 154 (1960); A.
Katz, ibid. 18, 177 (1960); E. M. Henley and L. Wilets, Phys.
Rev. 133, B1118 (1964);R. Kennedy, L. filets, and E. M. Hen-
ley, ibid. 133, B1131 (1964) . For a good physical discussion with
a minimum of mathematics, see E. Jakeman and S. A. Mosz-
kowski, Phys. Rev. 141, 933 (1966).

low intermediate states. %e ignore this complication
here. )

The strongly coupled states must now be treated as
valence hole states, since the core has been chosen to be
too large. After the matrix elements of 'U~ have been
calculated by this procedure, one may then re-express
the results in the more conventional language of
particles and holes near the normal Fermi surface. The
width of the valence band, energy wise, must of course
be chosen to be somewhat greater than the resulting
BCS gap parameter.

In evaluating the self-energy in'. rtions, better over-
all convergence will be obtained by summing the in-
ternal downgoing lines (those within the insertions)
only over the states in the corneal Fermi sea. Then, as
far as the "normal core" is concerned, there are only
two slight diGerences from the treatment of normal
(nonsuperfluid) nuclear matter. (1) Transitions from
states below the normal k& to states just above this k&

are now forbidden by the "large core" exclusion opera-
tor. These processes are included instead within the
effective interaction 'Ur. (2) As shown below, the single-
particle energies of the"„states within the valence band
must be somewhat different from those of the other
core states. These changes are important mainly for 'U&.

Thanks to the large gap in the single-particle energies,
neither of these changes can have much effect on the
"core" part of the calculation.

IL V

(o) (c) (8.3)

jn (a), we see two external holes dropping down into
core states below the valence band. Suppose the single-
particle energy spectrum were continuous at the bottom
of the valence band. Then for two external holes just
at the bottom of the valence band, the energy denomi-
nators could become arbitrarily small. This couM easily
give rise to the type of ladder-sum divergence familiar
in previous versions of nuclear matter theory. Worse
still, there are also cases where only one of the states
m, n (let us say m) is below the valence band. This
would not be a problem if the valence states were
strictly degenerate. But for the more interesting case of
quasi-degeneracy, there is now the possibility that the
hole e may have a higher energy than the original ex-
ternal valence hole. This could easily lead to vanishing
energy denominators. An example of this possibility,
which is consistent with momentum conservation,
is shown in (b). This is a diagram in momentum

Elimination of 'Uy Singularities

There still remains the problem of guaranteeing that
the prescription for Uy is free of singularities. Situa-
tions which are apt to cause trouble are shown in (8.3) .
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spac"- the concentric circles represent the boundaries
of the band of valence states. A similar problem can
arise in cases where a few particles (say only one)
are excited from near the top of the valence band to a
low-lying intermediate state b, at the same time that
many valence particles drop from the top to the bottom
of the valence band. An example is shown in (c), where
b is a low-lying intermediate state, and "h" and "l"
indicate states "high" and "low" in the valence band.
The gap in the single-particle spectrum will prevent
vanishing energy denominators unless a large number
of valence particles (or holes) act coherently, as they
do in (c) . Fortunately, case (c) can never be important
in practice because of the large magnitude of the gap.

These embarrassing singularities are the result of
two circumstances. In the 6rst place, the present
formalism was derived under the assumption of exact
degeneracy, and then "analytically continued" to the
case of quasi-degeneracy. From the latter standpoint,
the choice of the subspace D has only the virtue of
descriptive convenience. It unfortunately does not guar-
antee that the "nondegenerate" many-body states C;
will all have higher energies than the "quasi-degenerate"
C,'s. Secondly, we have removed the valence inter-
action, energy hE& from the energy denominators.
This was necessary for the elimination of unlinked
terms, and also because AEy is proportional to the
size of the system (in the superfiuidity problem).
But the situation is not all bad, since D presumably
contains a/l of the low con6gurations which are strongly
coupled in the ground and low-lying states. It should
not matter much if the highest con6gurations in D lie
above some of the lowest "intermediate" con6gurations,
if D has been chosen sensibly in the 6rst place.

To eliminate these (presumably weak) singularities,
we note that the folded-in insertions can be used to
re-introduce a "linked part" of hEy back into the
energy denominators. Let DER denote the part of the
valence interaction energy arising from all linked folded
x-body diagrams which share the same conserved"
quantum numbers (total momentum, for example).
(This x indicates the number of exterea/ lines. ) Then
the sum of all linked x-body skeletons 'U& ~", together
with all folded-in insertions of the same form, can be
combined to give an equation analogous to (5.13),

EHov+Uv*(Ev~) —Ev,I,jA, =O, (8.4)

by reversing the argument (7.2) —(7.8). Here I, and
A, refer only to the x-body subspace of the "folded
bundles" of valence lines. For @=2, this procedure
sums up diagrams like those in (8.5) .

(8.5)

The eigenvalue

Ev*=&.'(R v+Uv*) A*

=Eovl+~Er (8.6)

now enters all of the valence energy denominators in
the same manner as in (5.23). Generally speaking, the
auxiliary eigenvectors A, will have no physical sig-
ni6cance. The object is simply to obtain a matrix
'Uv (Ev,) whose elements are all nonsingular. These
matrix elements may then be used in the "real" secular
equation.

Will this really eliminate the singularitiesP Consider
a case with just one "dangerous" intermediate con-
6guration whose energy E& is only slightly greater than
the energy Eo of the highest configuration in D. (We
refer only to linked x-body con6gurations sharing the
same conserved quantum numbers. ) Then the skeleton
diagrams with just one "dangerous" denominator,
such as the first term in (8.5), will give a large Negative

contribution to hE. Inserting this hE in the denomina-
tors will then stabilize the situation, and the 6nal hE
will be well-behaved. This situation corresponds to the
two-level model of (9.6). From this, we observe that
the ground-state solution remains well-behaved even
for the case E~&EO, which is pathological from the
perturbation standpoint. Now consider a more realistic
model having four states, with Co, C~, and C2 in D,
and with Eo(E&&Es(Es. For relatively weak inter-
actions V, the eigenvalues should lie close to the un-
perturbed energies. Then, for the lowest Neo eigenvalues,
E Eo and E Eg 'U (E) will be well-behaved and the
inversion E3(E2 will cause no trouble. But 'U (E) will
behave "pathologically" for the remaining eigenvalues
E~E3 and E~E2. We conclude that this procedure
should work well for these eigenstates for which D
is sensible, that is, when D contains all of the low and
strongly coupled con6gurations.

Of course there will always be other eigenstates
(generally of higher energy) for which this condition
breaks down. A concrete example of this situation is
seen in the effective particle —particle interaction, F,
of the Fermi-liquid theory. (See discussion above. )
This contains instabilities of the type just mentioned,
arising from the excitation of particle —hole correlations
("collective modes") . The difficulty arises because of a
D which includes only valence particles. It can be
cured by enlarging D to include "real" particle —hole
pairs, as in our discussion of the RPA method below.

In practice, we believe that one should always use
the 'Uv, (L&v,) corresponding to the lowest eigenvalue of
(8.4). LHigher states of (8.4) probably relate to total
eigenstates for which the D is inappropriate, as in the
examples above. ) We regard this procedure mainly as
an existence proof, that the singularities cue be avoided.
It should usually be sufficient to approximate (8.4)
rather crudely, or even to simply estimate the lowest
Ez, to be somewhat below the energy of the lowest
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"dangerous" x-body conGguration. After all, these
singularities are associated only with the highest con-
Ggurations in D, and these, presumably, are not of
crucial importance for low eigenstates of the total
system.

Single-Particle Energies

We now consider the choice of self-energy insertions
most likely to produce a convenient and rapidly con-
verging approximation scheme. For states below the
valence band, it is most useful to define the self-
energies in terms of the "on-energy-shell mass operator"
M', as discussed in Ref. 9. For the states within this
band, however, it will be much more convenient to
use the complete mass operator (with certain qualifica-
tions given below) .

This makes good sense physically, since one is ac-
customed to using "experimental" single-particle ener-
gies in shell-model calculations, as well as in the Landau
theory. Ordinarily, the complete mass operator would
lead to complex eigenvalues. This does not happen here
because of the restriction to "nondegenerate" inter-
mediate states, and also because of the gap between
the valence and intermediate single-particle energies.
Thus the energy-conserving processes (all of them,
hopefully, and surely all of the physically important
ones) are confined within the model subspace. (Singu-
larities can always be cured by the method above. )
This agrees with the standard shell-model philosophy,
where one deals as far as possible with reel single-
particle energies.

The most important "extra" term which should be
included in the valence-state energies is shown in (8.7) .

(8.7)

The internal downgoing lines here should be summed
over all normally occupied states. The potential energy
contribution of this diagram is real and repulsive,
of order several MeV. (Previous numerical results"
for this diagram do not apply here, because of our
different choice of intermediate-state energies. )

An important eQ'ect of including this term will be
to introduce a second gap in the single-particle spec-
trum, at the bottom of the valence band. The resulting
potential energy spectrum is shown in Fig. 1. This gap
alone should eliminate the type of singularities shown
in (a) and (b) of (8.3), if the width (ks —kr) of the
valence band is small enough. The magnitude of the
gap b,j is of the order of several MeV, which should be
quite sufhcient for a nonsingular treatment of super-
Quidity. For other applications, however, the general
method (8.4) may be necessary.

Another effect of (8.7) will be to alter the "effective

» K. A. Brueckner, J. L. Gammel, and J.T. Kubis, Phys. Rev.
118, 1438 (1960); H. S. Kohler, Phys. Rev. 137, B1145 (1965).

FIG. 1. Potential energy spectrum in the "large core" formula-
tion. The limits of the valence band are at k~ and k2, while kN indi-
cates the "normal" Fermi surface. The magnitude of the gap
6& has been greatly exaggerated. Note the di6'erent e6ective
masses above and below k~. Curve B shows the Bethe intermediate-
state spectrum, Ref. 11, Curve C is the spectrum of Ref. 9.

mass" for the valence particles. In nuclear matter, the
(unobservable) effective mass for the core states is
well-known to be only of order -'„ i.e., M*/M -', . On
the other hand, the experimental effective mass for
valence particles, as deduced from stripping and
pickup reactions for example, is close to unity, and
perhaps even greater than unity. "

As shown in Ref. 9, the "complete" or "Geld-theo-
retic" mass operator 3f can be uniquely decomposed
into on- and off-energy-shell parts,

MFT Mon+Moff
7 (8.8)

in the context of the nondegenerate Goldstone ex-
pansion. In the present case we are using a slightly
different decomposition,

MFT Mon, o+Moff, o+MD (8.9)

8' G. E. Brown, J. H. Gunn, and P. Gould, Nucl. Phys. 46, 598
(1963);B.L. Cohen, Phys. Rev. 130, 227 (1963).

84 K. A. Brueckner, Phys. Rev. 97, 1353 (1955);N. M. Hugen-
holtz and L. Van Hove, Physica 24, 363 (1958);D. J. Thouless,
Phys. Rev. 112, 906 (1959);P. Mittelstaedt, Nucl. Phys. 17, 499
(1960); K. A.PBrueckner and D. T. Goldman, Phys. Rev. 117,
207 (1960); K. A. Brneckner, J. L. Gammel, and J. T. Knbis,
ibid. 118, 1438 (1960).

where all the intermediate configurations within M'"
and M'" & are required (by the projection operator Q)
to lie outside the model subspace D. This has only a
minor effect on M'", thus M'" @~~'".But ~ "@is
now quite different from M'", since it no longer
contains energy-conserving processes. The latter are
(hopefully) all confined within MD. This guarantees
that the present valence-state energies, based on

M, , =M =M'" +M"'
will all be real. Stated somewhat differently, we now
have a Hermitian Ho& for the "noninteracting quasi-
particles. "The symbol 3f represents all contributions
to the experimental single-particle energy arising from
processes within the model subspace.

The digerefsces between the unperturbed single-
particle energies (E or E„) and the experimental
removal energies are termed the rearrangement ener-
gies.~ These rearrangement energies are generally
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complex (or worse, in the sense that they should really
be represented by spectral weight functions). The
definition of a rearrangement energy is inherently
ambiguous, or model dependent, since it refers to
the definition of the unperturbed energy. In our present
scheme, the core-state rearrangement energies are
given by

M ~" =Mo" @+MD (8.11)

whereas the valence-state rearrangement energies are
given by

Rear. Jrd D (8.12)

For the simple nondegenerate treatment of Ref. 9,
the definition would instead be

~Resr. ~o f f (8.13)

(These expressions are only symbolic, since they define a
complicated self-consistency problem. The energy
shifts resulting from the M'" terms will also have a
weak. influence on the numerical values of the 3f'
terms. ) Thus (8.7) may or may not be a true rearrange-
ment energy term, depending on the context. The
expression "rearrangement energy" has been used in
the literature to indicate a number of diferent things.
We would rather avoid this expression as far as possible,
since it tends to cause confusion.

The main conclusion to be drawn here is that our va-
lence state energies (8.10) are still somewhat different
from the experimental energies, due to interactions with
the other valence particles, although this difference
may well be small. The "effective mass" may also be
different. To pursue this matter further, one must also
take account of the method of analyzing the experi-
mental data to obtain real numbers for the single-
particle energies. To some extent, the "experimental"
single-particle energies are also model-dependent. "
A very clear example of this is seen in the problem
of nuclear pairing. ~'

Closed-Shell Systems

We return to the first problem discussed in this
section, the ground-state correlations in a closed-shell

system. In a finite nucleus (0") it was found by ex-
plicit calculation" that individual "ring" diagrams were
uncomfortably large, and their sum did not appear
to be converging rapidly. This led Brown and Wong~'
to evaluate al/ of the ring diagrams in closed form,
using an RPA technique. This treatment was found
to increase the 0' binding energy by roughly 1 MeV
per particle, as compared to a "simple closed-shell"
treatment (Ref. 9) in which all the intermediate
states are regarded as being essentially plane wave

» J. Blomquist and S. Wablborn, Arkiv Fysik 16, 545 (1960);
B.L. Cohen and R. E. Price, Phys. Rev. 121, 1441 (1961);L. S.
Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 853 (1963).

states. LThey are not pure plane waves because the
latter are not orthogonal to the occupied orbitals. f
This result is especially significant in view of the low
binding energies found in recent calculations of finite
nuclei, ' ""and also for infinite nuclear matter.

Brown and Wong argued that ring correlations are
quantitatively more important than Brueckner ladder
correlations, for the low intermediate states, at least
in finite nuclei. There, there is clear experimental
evidence for the importance of rings, namely collective
oscillations with enhanced transition amplitudes. They
remarked, however, that the first- and second-order
terms are identical in both types of summations. Thus
the "rings" restore the second-order terms excluded
from the G matrices by the enlarged exclusion operator
(1—Q) for the primary subspace.

The question arises as to whether the difference in
binding. energy is simply a matter of "rings versus
ladders. " We think not. The main point, we believe,
is that their low intermediate orbitals were defined in
an attractive potential well. This greatly reduced the
energy denominators for transitions into these orbitals.
Much of the gain in binding energy should therefore
be attributed to a "spectral correction" effect, in the
language of BBP. This "spectral" effect is quito' sig-
nificant, mainly because of the tensor force which
induces strong transitions into these low orbitals. As
for the "ring" and "ladder" terms beyond second order,
it seems likely that they are both significant, and that
one really ought to include both types of terms. This
refinement might well be significant for the total binding
energy.

There is further evidence that this is so. We have
shown previously that the "compact cluster" arrange-
ment of the Goldstone series, which leads to negligibly
small intermediate-state potentials, is the optimum way
to handle the high intermediate states. On the other
hand, it was clear that this procedure is unrealistic
for the low intermediate states. For these, Rajaraman"
has demonstrated the importance of repeated "bubble"
insertions. (Repeated insertions are more important
for low intermediate states because of the generally
smaller energy denominators within the "skeletons". )

The linked valence expansion can provide (or at
least suggest) more systematic ways to satisfy these
convicting requirements. Thus one can first define a
primary subspace to distinguish between "low" and
"high" intermediate states. All configurations beyond
this subspace are to be treated by the compact-cluster
scheme. One then applies the Goldstone expansion
milks the primary subspace. The two-body interactions
for this expansion are G matrices defined by the en-
larged exclusion operator. LThis allows one of the two
intermediate states to be "low", but not both of them. j
Then the usual G-matrix term is represented by the

"R.Rajaraman, Phys. Rev. 155) 1105 (1967}.
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following "quasi-particle" diagrams,

(8.14'I

the sawtooth lines representing 6's with the new ex-
clusion operator. . Breaking open a hole line in each of
these terms, we obtain the self-energies appropriate
for the hole states. These are seen to be identical,
even with regard to internal-line summations, to the
M'" insertions of Ref. 9. For particle states, however,
we 6nd the old off-energy-shell problem reappearing,
thus

~ INQ + +
(8.15)

It appears that this effect must be treated in some
average manner, as in the older treatments, ' ' in order
to obtain "potential energies" for these state.

The net result is a potential energy spectrum very
similar to that of the Brueckner —Gammel calculation';
zero for large k's, attractive for low intermediate k's,
and with a small jump at k&. The diagrams of (8.14)
can be calculated all at once, simply by solving the
usual Bethe —Goldstone equation with this new spec-
trum. LNote that the third-order term in (8.14) may
be significant. It should not be overlooked if the at-
tractive part of the spectrum is treated by the reference-
spectrum perturbation method. A geometric series ap-
proximation should work well, however. ) To calculate
the ring diagrams, the method of Gell-Mann and
Brueckner might be useful, since this allows one to
explicitly remove the first- and second-order terms Lin-
cluded already in (8.14)) before the final integration.

This whole procedure contains a "free parameter, "
namely the cutoff momentum k* which defines the
subspace D. One may well ask if the binding energy
could be increased arbitrarily, simply by increasing this
k*. The answer is no, because an increase of k* also
enhances the off-energy-shell effects within D. Further
examination leads to the conclusion, perhaps already
obvious, that the explicit use of Bloch—Horowitz tech-
niques is really unnecessary here. The same results
can always be obtained by selective summations of
the original Goldstone expansion, as demonstrated in
(8.14) .

Thus there are really two essential questions. The
first is just the perennial problem of finding a proper
choice for the intermediate-state potentials. Secondly,
it is important to know whether the higher-order ring
terms (or any other diagram sequences which depart
from the compact-cluster scheme) are significant
enough, for the states near the Fermi surface, to

deserve a special treatment. Brown has suggested, l for
example, that rings might be quite significant in liquid
He', because of the large spin-wave fluctuations. (Super-
Auid correlations are another example, but their effect
on the total binding energy is quite negligible. )

These questions cannot be decided by purely formal
arguments. One's strategy here must be based on a
detailed knowledge of the relative magnitudes of the
various contributions, and more exploratory calcula-
tions may be necessary. In any event, we believe that
the following considerations are and will remain valid.
(1) An expansion in powers of z is appropriate for the
short-range part of the interaction e. (2) This ordering
of the expansion is rot appropriate for the long-range
part of the potential, as Bethe has suspected and as
Rajaraman has now clearly demonstrated. (3) For
correlations near the Fermi surface, one expects and
would like to have a potential function which is con-
tinuous (or nearly continuous, at least) near k~. This
i.s necessary for a realistic treatment of any "special"
correlations (rings, for example) near the Fermi surface.
(This is clearly essential also for a study of excited
states. But there is no a priori reason that the "best."
scheme for calculating the ground-state energy should
agree with the "best" scheme for excitations. ) (4) The
derivative of the G matrix with respect to changes in
the single-particle potentials is essentially ~. Indeed,
this is the way z was defined in Ref. 9. The complete
expansion remains well-defined for any reasonable po-
tential spectrum, and all of the "spectral corrections"
can be ordered in powers of ~.

Putting this all together, we suggest that one should
define the potentials for the low intermediate states
(k&2k&, say) using the same insertions as are used
for the occupied states, with the off-energy-shell effects
included in some average manner. (Some of Bethe's
core-suppression effect might also be included here. )
The details of this averaging must depend on the rela-
tive magnitudes of the various types of correlations,
since the off-energy-shell effect varies from term to
term. A general requirement, however, is that the
intermediate spectrum should be continuous (or nearly
so) at ki. The high intermediate states are best left
with zero potential. Such a spectrum is necessarily a
compromise. Nevertheless, it has the virtue of including
the long-range parts of e to all orders, for the low inter-
mediate states, in agreement with Rajaraman's pro-
posal. Finally, we note that all remaining corrections
to this "averaged" treatment of the oR-energy-shell
problem may then be expanded in powers of ~, in
parallel with the compact-cluster expansion for the
high-momentum components.

What about Rajaraman's previous suggestionl of
regarding the third-order ring diagram as a statistical-

"G. E. Brown (private communication).
I' R. Rajaraman, Phys. Rev. 129, 265 (1963).
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weight correction to the third-order "bubble" diagram?
This is a convenient trick, and it should probably be
used for the high intermediate states within the three-
body clusters. But this is undesirable for the low inter-
mediate states, because (a) it would produce an un-

physical discontinuity in the potential spectrum at kp,
and (b) because if the ring is really significant for the
low intermediate states, it should be grouped together
with the higher-order rings.

One can argue intuitively that a particle "feels"
the long-range attraction of many other particles,
whereas the short-range repulsion can only be com-
municated by a few particles. On this basis Rajaraman
suggested that the interaction v should be "separated"
in coordinate space, as in the Moszkowski —Scott
method. For the higher-order diagrams this leads to
uncontrollable approximations. One can accomplish es-

sentially the same thing by performing a separation in
momentum space. The linked valence expansion demon-
strates that this can be done in a fully systematic way.

These comments are far from being a "solution"
of the problem. But we hope that they shed some
light on the diversity of proposals that have been made
recently. An attractive intermediate-state potential will

surely increase the binding energy, and this appears
desirable at the present time. Nevertheless, one should
not minimize the possible importance of relativistic
eRects, special mesonic eRects, etc. Ke are only trying
to clarify the nature of the remaining uncertainties in
the "ordinary" many-body problem.

Random-Phase Ayyroximation

It may be of interest to see how the random phase
approximation emerges from the present formalism.
We consider a closed-shell nucleus, and we assume that
a "real" particle —hole pair has somehow been created.
A secondary subspace is then de6ned to contain all
one-particle —one-hole configurations within certain
shells near the Fermi surface. The object now is to
find the interaction energy, be bE z, of this "real"——
particle —hole pair. As usual, this pair is coupled to
the virtual particle —hole pairs which exist already
within the true ground, state.

We begin with the Bloch—Horowitz expansion, a
typical diagram of which is shown in (8.16).

(8.16)

The wiggly lines here now represent the e6'ective two-
body interactions appropriate for the present problem
(the I'" terms discussed above). We now identify the
highest interaction in (8.16); this is indicated by the
horizontal line. Expanding hEy out of the denomina-

tors, we find that (8.16) is cancelled by a siniilar folded
diagram. In general, the folded expansion will have no
diagrams with interactions connected between the
highest interaction and the bottom pair of external lines.
The interactions removed by "folding" are encircled
in (8.16).

We note, now, that the remaining diagrams all have
the structure of a set of skeleton processes together with
repeated insertions, including "higher-generation" in-
sertions, etc. The surviving portion of (8.16) is re-
drawn in (8.17), with the boundaries between the
various irreducible parts indicated by horizontal bars.

(8.17)

The general form of these irreducible parts is:

(8.18)

Except for the first-order term, these all consist of a
single "backward going" string of bubbles. We shall
follow Thouless' notation,

(8.19)

to express this result algebraically. The renormalized
interaction for the one-particle —one-hole subspace is
therefore

'Ui, i, (bEi,g) =A+BE 2Ei,b' —bEi,bl 'Bt

+BL—2E,g' —bEpbj '

XAig —2Epi,'—bEpi,j 'B + ~

=A —BL2E i,0+bE g+At) 'Bt, (8.20)

where
E 0 EO EO

is the unperturbed energy of the pairs (calculated
within the primary subspace) . Introducing

(8.21)
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the model secular equation now becomes

PIph'+A —B(H~h'+At+fee) 'Bt fu—ojX=0, (8.22)

where we have identified the one-particle —one-hole state
vector Aph with the "X"vector of nuclear RPA cal-
culations. LWe have assumed exact degeneracy of H~z'
and then used (5.17) .J Then by introducing

Consider the "bare" particle —hole interaction A of
(8.19). In addition to this, the BH expansion for V,h

is found to contain the terms shown in (8.25).

Y=—(Hpg'+At+Su)) 'BtX, (8.23)
(b) (c) (8.25)

we recover the familiar result

((Hp h+A)
! -B

) (X) (P
(Huh'+At) ) (Yi EY)

(8.24)

Vertex Renormalization

One of the interesting features of the microscopic
theory of Fermi liquids, as deduced from the Green's
function formalism, is the renormalization of the ex-
ternal lines of the "vertex function. " In the RPA
example just discussed, the vertex function for "real"
particle —hole interactions (in the subspace of a single
particle —hole pair) consists of the skeleton diagrams of
(8.18). For a particle —particle subspace, as in the 0"
calculation of Kuo and Brown, the vertex function
consists mainly of the terms (a) and (c) of (5.16).
In other words, the vertex function amounts to the
linked 'Uy pieces for the secondary subspace. The
"irreducible" vertex function then corresponds to the
two-body effective interactions of the primary sub-

space, such as the A's and B's in (8.19). Green's func-
tion methods have produced the result that each of
the four external lines of the irreducible vertex func-
tion should be multiplied by a renormalization factor
of Z"2, where Z (or a, in the Russian literature) is the
strength of the quasi-particle pole for the one-body
Green's function. By construction, a similar result ob-
tains for the "complete" or "reducible" vertex func-
tion. We shall obtain very similar results by sunning
diagrams. The results are not identical, however, and
we believe that the difference is physically significant.

There is an interesting technical point in this develop-
ment, namely, the unexpected sign change for the Amph

term in the energy denominators. The original valence
denominators (5.23) contain +BE q. However, the
BH diagrams (8.16) are seen to consist of a single
skeleton part with heo strings of insertions, one string
being attached to each end of the skeleton. Each of
these strings is found to contribute AE h to the-
skeleton energy denominators, leaving a net result of

AEph A similar sign change is found in studying the
contribution of on-energy-shell insertions, M'", to the
self-energy of a single valence particle. LCompare this
with the discussion below (5.21) .j

These are all f=0 terms, in the language of Sec. VII.
It is easily seen that term (a) is eliminated from the
folded expansion, by an f=1 term of similar form.
Terms (b) and (c) remain in the folded expansion.
Term (b) represents the original vertex multiplied by
3f', the derivative of the M'" self-energy operator of
Ref. 9. Term (c) contains two of these 3II' factors.
These are the leading terms in the expansion of
(1—3II') '. The latter expression was shown in. Ref. 9
to have a very simple physical interpretation Lsee
also (9.9) below]. For a normally occupied state this
factor gives the occupation probability I', and for
a normally occupied state it gives the "emptiness
probability" (1—P&). These I"s refer to the occupa-
tion probabilities for the true interacting ground state,
before the creation of the "real" particle —hole pair. The
essential features are illustrated in Fig. 2 below.

Of course there are also diagrams in which bo/h of
the lower external lines carry an arbitrary number of
these M' insertions. (All such insertions in the upper
external lines are removed by "folding". ) Thus both
of the lower lines are renormalized in this manner, the
hole (particle) line according to the true occupation
(emptiness) probability of the orbital, as calculated
for the interacting ground state in the absence of the
valence particles. A similar result applies for the "bare"
particle —particle vertex (5.16a), where the lower par-
ticle lines both acquire "emptiness' factors.

These results are very intuitive —just what one
would expect for the exclusion effect of correlations
within the closed-shell core. They agree also with the
propagator renorrnalization scheme of Ref. 9. It was
mentioned there that every internat, line of a BH dia-
gram can be "dressed" with M' insertions to produce
weighting factors of P or (1 I'q). The sam—e applies
for the folded diagrams. One would arrive at the same
result by taking renormalized "irreducible vertices"
and connecting them together to form a complete
diagram for 'Uz. But this last argument is only a con-
sistency check. The correct procedure is to deal directly
with the folded expansion, dressing the internal and
louver external lines by straightforward summations of
M' insertions.

Three points deserve further comment. First, one
will note that the result is not Hermitian because of
the obvious lack of symmetry; only the lower external
lines have been renormalized. This is an inherent
property of the whole Bloch—Horowitz formalism; it
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originates in the "model description" t see (2.9),
(2.10), and (9.20)g, whereby one calculates the pro-

jections of the complete wave functions on the model
subspace. These projections need not be orthogonal.
(One knows, for example, that the "X"vectors of the
RPA method are not orthogonal. )

For some purposes, however, one might want a
Hermitian interaction operator. This is provided, as
explained in Appendix D, by the natural transforma-
tion" (D35). We need simply remark that the linked
one-body parts of the (1+8) operator will include the
entire geometric series (1—M') '. It follows that all
external lines of the linked iriany-body parts of the
symrnetrized interaction X& will carry renormalization
factors I' "or (1—Eb) '".A remarkably similar result
has been obtained independently by Howe. s' We should
remark, as he does, that similar factors appear on the
external lines of the transition amplitude diagrams.
(See (7.41) and (D34).7

Second, we should perhaps have distinguished be-
tween the "true" and model" occupation probabilities
I'; and I','). We have presumed that the M' summa-
tions are defined and carried out within the primary
subspace, hence the immediate result involves the
model probabilities P;&'& )see (5.7)g of the primary
subspace. But a careful inspection of higher-order
diagrams (especially the "many-body vertices" of the
primary subspace) reveals terms which convert these
into true probabilities. This is expected on physical
gl ounds.

Finally, this should be compared with the Green's
function result. There one obtains factors of Z'~' instead
of E "or (1—P~)'" where Z=E„Eq is the d—is-
coetieuity in the distribution I'; at the Fermi surface.
One sees from Fig. 2 that P )Z((1—Es), for states
m and b near the Fermi surface, thus we believe that
the Green's function theory renormalizes too strongly.
The reason, we believe, is that the one-body Green's
function is a rather ineKcient tool for generating and
propagating quasi-particles. It leads to the correct
quasi-particle energies, but some amplitude gets lost
in the process. This loss is associated with the "back-
ground" or "continuum" part of the Green's function,
which is often ignored or discarded in Green's function
treatments. This awkward feature arises from the
necessity of clothing the bare particle to form a quasi-
pa, rticle (see footnote 79), or in other words from the
"unphysical" boundary condition at t=0. There is no
such difhculty in our time-independent approach, be-
cause we deal from the outset with the true eigen-
states (or with quasi-stationary states) of the total
system. There is no dynamical dressing process, and
therefore no loss of probability.

Another aspect of the diRerence between Our view-
point and that of Green's function methodology is

"D.Rowe, Rev. Mod. Phys. (to be published).

illustrated in (8.26).

(o) (8.26)

Term (a) may be regarded as two "irreducible" vertices
and a propagator renormalization factor. Term (b) also
contains a one-body insertion. The latter is off the
the energy shell, however, and its effect is not just a
simple numerical factor. In a Green's function treat-
ment this would probably be regarded as a propagator
correction, in spite of the fact that it does not factorize
completely. Instead, we would regard the entire term
(b) as a single "irreducible vertex. "But this is partly
a matter of semantics.

Summary

We shall summarize the main results of this section.

(1) For open-shell nuclei, this formalism demon-
strates that the G-matrix elements are rather insensi-
tive to the number of valence particles. This is an im-
portant consideration when the number of valence par-
ticles is large.

(2) For nuclear spectroscopy it is important that
the lowest unfilled orbitals should exhibit a shell struc-
ture of the usual form, instead of behaving like plane
waves. This requires the use of a double-partitioning
procedure, to distinguish between the "low" con-
6gurations of the model subspace, the "mediun~" con-
Ggurations which renormalize the model interaction,
and the "high" conhgurations associated with the
singular part of the basic interaction v.

(3) For a reasonable partitioning of the full con-
figuration space, any singularities in the formalism can
be removed by summing certain sequences of higher-
order diagrams. These are diagrams which might other-
wise be neglected, so this procedure appears as a
natural and useful way of improving the convergence
of the series.

(4) These methods allow for a nonsingular and
reasonably straightforward treatment of superQuid
eGects in nuclear matter.

(5) The formalism can be adopted to handle time-
dependent situations such as nuclear reactions and the
optical potential problem. This fits in very well with
the "sheB-model continuum" approach to nuclear re-
actions.

(6) Although originally developed for the problem
of open shells, this formalism is useful also for closed-
shell systems. Thus for the closed-shell ground state
it suggests new ways of selectively summing the Gold-
stone series to improve the practical convergence of
binding energy calculations. This should help to unify
the diversity of recent proposals for the binding-energy
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problem, in a way that preserves the best features of
the diGerent schemes.

(7) Kxcitations of closed-shell systems can also be
treated, as demonstrated in our discussion of the RPA
method.

(8) This formalism provides a fairly complete justifi-
cation for the Landau theory of Fermi liquids. It
provides relations very similar to those established by
Green's function methods, the main difI'erences being:
(a) cutoffs in the intermediate state integrations are
now well-de6ned. These cutouts are not associated
with the 6nite lifetimes of "real" quasi-particles be-
cause, for a sensible partitioning scheme, the inter-
mediate states are all "virtual". (b) The propagator
renormalization eGects diG'er in detail.

The similarities are not at all surprising, because the
phenomenological Fermi-liquid theory is essentially
just a shell-model description of large systems. The
phenomenological theory is based on a set of inde-
pendent-particle energies e&, and an eGective two-body
interaction fj,p. The definition pp= (bEp,p, i)/bnp is in
complete agreement with the way shell-model workers
obtain the "real" particle energies (via stripping and
pickup reactions) to be used in spectroscopy calcula-
tions. Thus the symbol 8np corresponds to the physical
addition or physical removal of a particle. The Bloch-
Horowitz formalism is very well suited for describing
such physical processes. Green's function methods, on
the other hand, are based on the unphysical processes
of adding or removing "bare" particles. This leads
to some awkward and unrealistic features.

The most remarkable coincidence, in our opinion,
is that the physically interesting phenomena (single-
particle excitations, particle —hole correlations, deforma-
tions of the Fermi surface, and superQuid correlations)
are so similar in all "Fermi-liquid" systems. As a
consequence, any formalism which is well adopted for a
"first-principles" treatment of nuclei shouM also apply,
at least formally, to liquid He'. The essential question
is whether these methods can converge rapidly enough
to be of practical use.

IX. PHYSICAL 1NTERPRETATIONS, DISCUSSION

Cellular Model

The present derivation also provides a rather straight-
forward interpretation for these linked-cluster results.
This is closely related to the argument, familiar in
statistical mechanics, that a large system can be sub-
divided into many comparatively small subsystems
which are still large enough, individually, to be con-
sidered approximately independent of each other. This
analogy was pointed out by Hugenholtz. "To make the
discussion more rigorous, we begin by considering a
fictitious "cellular" system, where the subsystems are

separated from each other by physical barriers. This
guarantees complete independence for the various sub-
systems, or "cells," thus the interaction energy is
obviously the sum of the subsystem interaction ener-
gies,

(9.&)

and the wave function is the product of the subsystem
wave functions,

(9.2)

In this simple model, the motivations for the various
formal manipulations become quite obvious.

To the extent that a large physical system is de-
scribed by such a model, one immediately concludes
that E~E, and that

i.e., the probability of finding the system in its "model
state" Co is exponentially small. Alternatively, if 4 is
normalized such that (Cp I4')=1, then (+ I+)
This is the argument of Hugenholtz. "Bethe" had pre-
viously obtained this result by a more detailed physical
argument.

For a cellular system, this enormous wave function
renormalization (the fact that + and Cp are almost
orthogonal) is obviously nothing to be concerned about.
The energy, and also all other expectation values,
can be calculated "cell by cell", treating each sub-
system separately. Even if one insists on treating the
composite system as a single quantum entity, the
"other" cells will merely contribute normalization fac-
tors which cancel identically in the evaluation of
(4 I

8 I%')/(4
I 4), leading one right back to the pic-

ture of many separate systems. This aspect of many-
body systems has been emphasized by Brueckner. "
Certainly we should not be surprised at the existence
of linked-cluster expansions for% and (8).Convergence
need not be a problem either, even for a very large
system, since it is only necessary that the perturbation
method converges for each of the separate cells. (We
may suppose that the overlap (Cp, I @,) is fairly large
for an individual cell.)

But there must be other ingredients in the interpre-
tation of Goldstone's energy expansion, since this
does not take direct advantage of (9.2) . This ex-
pansion is based on the Nonsymmetrical expression E=
(C'p I

H
I 4 )/(Cp I

4'), where the normalization problem
is avoided (in the present derivation, although not in
Goldstolle s) by setting (Cp I

N)= 1. Starting from the
Brillouin-Wigner expansion, as we have done, one
feels that it must be possible to eliminate the large
energy shifts dE~X appearing within the energy
denominators. This is because the total energy is also
given by the sum of the 3% expansions for the separate
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subsystems, and in these the denominators include
only the small terms AE, . This suggests that we -try to
relate these "macroscopic" and "microscopic" treat-
ments by expanding the large hE's out of the macro-
system denominators. This purely formal step looks
suspicious, but it is actually quite justifiable here.
The microscopic" treatment is the physical one,
whereas the macroscopic approach, treating non-
interacting subsystems as if they were interacting,
is obviously artificial. (We assume that the small abso-
lute radius of convergence for a realistic many-body
system is connected with the possibility of phase
transitions. ""The latter are very strongly inhibited
by the physical barriers between the cells of our
model. )

Now consider a typical macro-diagram, whose top-
most interaction (which represents the V in (Co ( V ~%'))
refers to subsystem s. Since the macro and micro ex-
pansions must be formally equivalent, it is now clear
that all unlinked parts of this diagram coming from
sybsystems s'&s arose from the need to compensate
for the spurious terms hE, in the denominators of the
original expansion. Since these AE, 's now appear
within the (—AE) insertions, instead of in the de-
nominators, they clearly must cancel against these
unlink. ed diagrams. The argument of Sec. IV makes
this explicit.

The story is not yet complete, however. In removing
AE from the denominators, we have also removed that
small part hE, which belongs to the particular sub-
system s labelled by the diagram's topmost inter-
action. The expansion and cancellation procedure
therefore produces some "left-over" diagrams with

( hE, ) insert—ions. An argument in Sec. III Lsee
especially (3.7) and (3.8)) indicates that these terms
must correspond to certain of the exclusion-violating
(e.v.) terms in the Goldstone expansion for this cellular
system. Here we must distinguish between essential
and inessential e.v. terms. Consider the exchange dia-
gram obtained by crossing (or uncrossing) a pair of
lines with the same label. If the resulting diagram is
also linked, then both of these e.v. terms are inessential.
Since these exchange terms cancel identically, they
could just as well have been omitted in the first place.
Their only purpose is to simplify the diagram rules,

permitting independent summations over all the single-
particle labels. On the other hand, if the resulting
exchange diagram is unlinked (and therefore not in the
Goldstone expansion), the original e.v. diagram is
essential. The left-over RS diagrams mentioned above,
linked but with ( d,E,) insertions, corresp—ond to the
essential e.v. diagrams where exclusion is violated by
two or more holes in the same normally occupied state es.
(The essential e.v. terms involving particle states b

are discussed at the end of this subsection. )
Now consider the Thouless expansion (6.9) for a

general expects, tion value, (8), for the same cellular

system. There are now two types of essential e.v. terms
to consider. First, there are those where the "unlinked
parts, " which would be obtained by uncrossing the
identical lines, do not overlap the level of the 8 inter-
action. These are similar to those already discussed —the
terms with crossed hole lines represent the removal of
hE, from the energy denominators. (Crossed particle
lines are discussed below. ) Secondly, there are essential
e.v. terms where the "unlinked parts" overlap the
level of the 8 operator. Such terms, with crossed hole
lines, represent a perturbation expansion of the normali-
zation denominator in (4; ) 8 ~%', )/(+, ~@,). This is
illustrated in (9.4), for the case of a "cell" containing
only one particle.

(9.4)

Here the dots represent a one-body operator, kinetic
energy for example. Horizontal lines are used in the
normalization diagrams to indicate the level where the
wave function parts W and W~ are joined. This type of
expansion was used explicitly in Sec. VII.

We shall now try to complete the relation of this
cellular model to actual many-body systems. One
obviously cannot identify the "independent sub-
systems" with definite regions of space, when the physi-
cal barriers of the model are not actually present, since
the single-particle orbitals now extend over the entire
volume. Nevertheless, each linked-cluster term behaves
very much like an independent subsystem. The essential
point is that the interactions between different clusters
are strictly negligible, by definition. Such events are
described by other terms in the expansion, namely
the linked clusters which involve all the particles of
the original two clusters. The clusters can interact in
two ways. First, there are the dynansica/ interactions,
those involving the perturbation V. But the clusters
can also interact statistically, since they must all share
the same set of intermediate states b. This is our inter-
pretation for the essential e.v. terms with crossed
particle lines.

Partial Summations

This cellular model can also be helpful in visualizing
the meaning of various partial summations. The above
picture of a many-body system should be reasonably
correct for a weak enough perturbation V. In almost all
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practical applications, however, (with the possible
exception of atomic structure") the expansion in
powers of V will not converge, and one must resort to
partial summations and analytic continuation argu-
ments. ""Another important reason for these sum-
mations is that they provide closed mathematical ex-
pressions for prominent physical features of the system.
In terms of the preceding discussion, each partial
summa, tion amounts to grouping an infinite number of
linked cluster terms together into a single "cell,"
which is then treated by nonperturbative methods. The
role of the original expansion in V, then, is simply to
provide a framework for splitting the system up into
smaller units which can be treated mathematically as
independent subsystems. " In other words, the original
expansion is to be regarded simply as a bookkeeping
device. One usually thinks of doing these summations
when V is weak or otherwise well-behaved, and then
analytically continuing the result for each separate
"cell". The best known of these summations a.re:
(a) "upgoing ladders" of two-body 0 interactions, ""
forming the reaction matrices which various authors
denote by t, E, or G; (b) self-energy insertions, leading
to effective single-particle potentials" '0; and (c) the
ring diagrams of the so-called random phase approxi-
mation. " '""Less familiar, but also useful in the
nuclear many-body problem are: (d) "generalized time
ordering" (Sec. IV and Refs. 9, 48), putting certain
parts of a diagram on the energy shell; (e) Bethe's
summation of three-body cluster terms"; (f) summa-
tions describing wave function renormalization [see
(9.4) $ and true single-particle occupation probabilities
(subsection below); and (g) enlargement of the quasi-
degenerate subspace D.

In enlarging D, for example by converting some of the
lowest intermediate states (or highest normally oc-
cupied states) into valence states, one is, in eRect,
grouping together all cluster terms whose smallest
energy denominators are less than some specified
minimum. This "cell" is then treated by solving the
valence or shell model secular equation (5.13). (This
cell itself can often be subdivided by the methods of
Sec. VII.) Although it may be stretching a point to
consider this a "partial summation", it is interesting
to see what types of summations this corresponds to.
Consider a grossly oversimplihed problem, a non-
degenerate one-body system with only two unperturbed
states, Co and C». All terms beyond second order in the
Brillouin —Wigner expansion will consist of a number of
self-energy insertions, V», in the upgoing line of the

"H. P. Kelly, Phys. Rev. 136, B896 (1964); H. P. Kelly, in
Advances in Theoretical Physics, K. A. Brueckner, Ed. (Academic
Press Inc. , New York, 1966), Vol. 2.

'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 100, 364
(1957)."T. D. Schultz, Qgantlm Field Theory and the Many-Body
Problem (Gordon and Breach Science Publishers, New York,
1964) .

second-order diagram. The whole series is therefore

1 f 1E= Eo+Voo+Vol Q I Vu Vlo, (9.5)

or
E (Eo+Voo) = Vol)E—(El+ Vll) g

—
'Vlo, (9.6)

which is clearly just the condition for the vanishing of
the 2&(2 secular determinant. Now consider a similar
system with three unperturbed. states, Co, C», and C».
The first step is to sum out the first-order insertions
V~I and V~2, as before. The intermediate states of the
remaining diagrams must then alternate between C»

and C2. Repeated alternations, 121212 etc., can be
eliminated, by summing out the second-order insertions
V~~V2~ and V2~V~2, the final result being

E= Eo+ Voo

+ I Vol+ V02/E (E2+V22) $ V21I (E 'gl) Vlo

+'I V02+V01LE (El+Vll) 3 V12I (E g2) V20

(9.7)

81=El+Vll+V12/E (E2+V22) ) V21& (9.8)

which is equivalent to the 3&(3 secular equation. A
systematic extension of this argument would lead to the
Feenberg —Feshbach"" form of perturbation theory,
but of course we are more interested in expressing the
result in the equivalent secular matrix form. "

After employing the above techniques to organize the
system into a convenient set of "cells," it would seem
advantageous to replace the Goldstone energy de-
nominators by the BW-type denominators appropriate
for each cell, in eGect reversing the arguments of Sec.
III. This would surely improve the practical rate of
convergence. It is usually not feasible to carry this out
completely, but a wise choice of single-particle po-
tentials for the normally occupied states generally
represents an important step in this direction. The
familiar hole-bubble insertions of nuclear matter
theory ' and the diagonal hole —hole ladder which
Kelly'0 has summed both have precisely this character.
It was shown in Sec. VIII that partial summations
of this type (now representing the cell's contribution
to AE0-) are useful for eliminating the problem of
vanishing energy denominators in the expansion of 'U&.

"E. Feenberg, Phys. Rev. 74, 206 (1948); R. I. Richards,
ibid. 74, 835 (L) (1948);H. Feshbach, ibid. 74, 1548 (L) (1948);
E. Feenberg (unpublished lecture notes) ."P. M. Morse and H. Feshbach, 3fethods of Theoretical Physics
(McGraw-Hill Book Co., Inc. , New York, 1953),Vol. II, p. 1010.

'~ For an infinite-dimensional subspace D, this procedure would
require an infinite number of partial summations. This is probably
the reason why no one has yet succeeded in obtaining the BCS
theory by partially summing Goldstone diagrams. Nevertheless,
something rather similar to the BCS theory has been obtained by
summing the diagrams of statistical mechanics: A. Katz, Nucl.
Phys. 42, 394 and 416 (1963).
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FIG. 2. Momentum distribution of a normal system. The
leading diagrams in the Thouless expansions for P„and I'q
are shorvn.

Small Systems

It seems appropriate, at this point, to inquire how
large a system must be before linked-cluster methods
become preferable to a Brillouin —signer expansion
(unlinked), for example, or even a direct variational
calculation. The BW expansion is clearly the best
(most rapidly converging) for the one-body problem
of Sec. III. The cellular model answers this question
quite directly. I.inked-cluster methods should be prefer-
able whenever the system is divisible into cells or
clusters (by "cluster" we mean here one or more dia-
grams with a particular set of normally occupied states),
such that (a) more than one cell makes a significant
contribution to the interaction energy and (b) the
largest number of particles for any clusters which con-
tribute significantly must be less than the total number
of particles. If (b) is not satisfied it might be better to
calculate the entire system directly, by means of a
variational wave function for example.

For the nuclear problem it appears at present that
three-body clusters must be calculated rather care-
fully, " even though their net effect is probably small,
but that four-body clusters should be quite negligible.
(We are referring to the very-short-range correlations
induced by the repulsive core. These have little or
nothing to do with the special problem of alpha-particle
clustering in the nuclear surface. "There is evidence"
that the latter can be treated by conventional shell-
model methods, presumably by some extension of the
usual treatment of nuclear pairing. ) Thus it appears
that nuclear matter methods should be appropriate
even for He'. These methods have been applied to He4

by Mang, Wild, and Beck' and by Wong. " In such a
light nucleus it is very important to take account of
the spurious center-of-mass motion. '

Even if the four-body cluster term in He4 should turn
out to be not quite negligible, it is surely so small that a
comparatively crude calculation should suQice. The
virtue of the linked-cluster approach is that it dis-
tinguishes clearly between "large" and "small" con-
tributions.

9' G. Igo, L. F. Hansen, and T. J. Gooding, Phys. Rev. 131,
337 {1.963};H. Dubost, M. Lefort, P. Peter, and X. Tarrago,
Phys. Rev. 136, 31618 {jt.964).

~' K. Harada, ",Progr. Theoret. Phys. (Kyoto) 26, 667 (1961);
ancl 27, 430 (1962).

Single-Particle Occuyation Probabilities

One of the most important features of a many-body
system is its distribution of single-particle occupation
probabilities, or true occupation numbers, I';=
(z,tr);).ss For an infinite system this is commonly called
the momentum distribution. Consider the ground state
of normal nuclear matter. (We shall assume, for the
moment, that nuclear matter is normal. ) Nondegenerate
methods are appropriate here, so the distribution is
given by Thouless's linked expansions for the number
operators gl, ~gI, . The leading diagrams of these ex-
pansions are shown in Fig. 2; their interpretation should
be quite clear.

Note that diagrams (b) and (c) are the same except
for the location of their number operators. One finds
therefore, after summing over all indices, that their
contributions to P P and to PsPs are equal and

opposite. LNote the sign difference due to the extra
hole line segment in (b).j This same phenomenon oc-
curs in all diagrams. ' Consider a particular inter-
mediate level of a particular Goldstone energy diagram.
If one inserts number operators successively into each
of the single-particle lines at this level, the sum of all
these terms will always be zero. The total number of
particles, E= Q~P; is therefore conserved, separately,
by each of these sets of diagrams.

For normal nuclear matter, the diagrams in Fig. 2

shouM provide a fairly good approximation to the
true momentum distribution. But there are many
other terms to consider, even if we restrict the discus-
sion to two-body correlation eGects. There is a whole

geometric series of two-body correlation terms, quite
analogous to the situation in (9.4) . For k (kp, we find

mC) (= Il + mlgl~l +

——
Im~ n

But there are also terms of the form

(9.10)

"This quantity is usually denoted by n;, although some
authors use this symbol for the model {or quasi-particle) occupa-
tion numbers {5.7). We have already used n in several diR'erent
ways, hence the symbols I'; for true and P;(') for model occupation
probabilities may reduce confusion."A. Klein, Lectures orl, the 3IIaey-J3ody I'roMem {Naples,
1962), E. R. Caianiello, Ed. {Academic Press Inc. , New York,
j.962),
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whose net eRect is to replace (9.9) by

P-=L1+&-'Z{f-
I
t=-l.-)P-j-' (9 «)

Then

P-i =-', (1+(1+4.)»sj,

P= 1—x+2»' 51r'+—~ ~

(9.12)

(9.13)

(9.14)

(9.15)

In nuclear matter, 'o' ~~0.15—0.18. One can iterate
(9.11), replacing P„by P etc., to get some idea of
how I' depends on m. By the same token, diagram
(c) of Fig. 2 should be multiplied by P P„before
summing over the hole lines. This discussion can ob-
viously be extended to include the effects of 3, 4,
~ ~ ~ m-body correlations.

A careful treatment of I', along the lines indicated
here, is necessary for an accurate determination of the
shell-model potential. ' This should also be quite im-
portant in any applications of the theory to liquid He',
since the parameter ~ is surely much larger there than
in nuclear systems 'o2

Generalized Time Ordering

To carry out the summations in (9.9) and (9.11),
we have had to use the generalized time ordering
(g.t.o.) treatment discussed. in Sec. IV. In other words
we have used the factorization theorem, summing
together all possible relative time orderings of the v-

interaction ladders belonging to the diferent two-body
correlation parts in W(Wt), denoted by

~ l )((f' ~),
which lie entirely below (above) the level of the number
operators q tg . This should be obvious from the
analogy with (9.4) .

The true occupation probabilities I' play an im-
portant role in the theory of 6nite nuclei. The shell-
model potential which a normally occupied state ns

feels is due mainly to the lowest-order insertion. This
is formally the same as the Hartree —Fock potential,
except that the "bare" interaction v is replaced by an
effective two-body interaction, the Brueckner reaction
matrix. We see now that the effect of many of the
higher-order insertions is simply to renormalize this

'00 For discussions of the two-body distortion wave function f,
see Refs. 48 and 101.

is' G. Dahil, E. Pstgaard, and B. Brandow, NucL Phys. (to
be published) .

"'Recent. calcu1ations by E. Pstgaard (private communica-
tion) indicate that «=0.25 for liquid He'. Thanks to statistical
weighting factors, this is not as large as one might have feared.
This is quite encouraging for future calculations of liquid He'.

For an orientation, we shall average over all indices
and replace'oo

~'ZC-
I l--f-)

so-caBed Hartree-Pock term'- 4 in VSM. This takes
account of the 6nite probability that state e is un-

occupied due to correlations within the sea of "back-
ground" particles. 4' Thus

)N rn n

P;-0 + +
m

+Q-(tn'n
)

G ) nsn —nns)P (ns'
) Vnr

~

tn)P (9 16)

The correction (P 1) V—rrs is closely related" s to the
"rearrangement potential" introduced by Brueckner
and Goldman. '

The reaction matrix in the VHp term can also be put
entirely on the energy shell by the g.t.o. treatment.
It should be clear now that the g.t.o. treatment of
selected classes of Goldstone diagrams has the following
benefits: (i) The partially summed. series is more
rapidly convergent. (ii) The g.t.o. diagrams are easier
to evaluate, thanks to the elimination of some (and
sometimes all) of the off-energy-shell eRects. (iii) This
treatment often leads to expressions with a simple
physical interpretation, as in (9.11) and (9.16) .
But some caution is necessary. In each g.t.o. application
it is important to check. that there is still a one-to-one
correspondence between the terms of the old and new

expansions. The problems of "double counting" are
discussed in Refs. 9 and 48.

Insertions similar to (9.16) also exist for the valence
particles (or valence holes) of open-shell nuclei, and

again they will make the largest contribution to the
VSM acting on these particles. But here we observe that
the factorization theorem does not apply to valence
diagrams of the original Bloch—Horowitz expansion,
due to the unfortunate presence of AE~ in all the valence
denominators The ".reduced" BH expansion (Sec. V),
however, does allow a g.t.o. treatment of all diagrams
of the type (9.9) to (9.11) which appear in (9.16).
Thus the reduced BH expansion allows for the simple
I' renormalization of the VHI insertion. This is im-

portant from the standpoint of physical interpretation.
The reaction matrix in VHp is still oG the energy shell

by the amount AE&, however, and this may be trouble-
some if there are many valence particles. This difli-

culty is avoided by the expansion in Sec. UII. Note
that the diagrams discussed here are all examples of
the topological structures shown in (a) and (b)
of (4.8).

Existence of Fermi Surface, Phase Transitions

The most striking feature of Fig. 2 is that the Fermi
surface still exists. (This is by assumption, of course,
since this is the definition of a normal system. ) The
discontinuity at kg persists in spite of the strong inter-
actions. In terms of the expansion% =g;a,C, of Sec.
II, where the C s are E-body Slater determinants,
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this indicates that the unperturbed state Cp is still the
dominant one. Of course its amplitude is extremely
small,

~
as P e '~, where a~—', ~ )to lowest order in Ir,

see (9.12)j, but this state dominates in the sense that
the ratios

~
a;/+ )' are also extremely small for all i/0

This is easily seen for nuclear matter, where a typical
C, has around 15% of the particles excited out of the
Fermi sea. It is easily seen that the number of ways of
choosing —,'&0.15E pairs af particles out of E particles
increases far more rapidly (factorially so) than
exp (-', &&0.15Ã) . Let the former number be K. Then

GQ
) Q )

8 '
(

K ( 8 /QQ [A exp (-,' X0.151V) (9.17)

implies that j 8'/ap ~A„ is extremely small. Consideration
of the large number of intermediate orbitals a, b which
each pair m, e can scatter into can only strengthen this
conclusion.

This argument assumes that there is no coherence
between digerelt correlated pairs. Any coherence
between excited pairs would be described by four, six,
eight-body clusters, etc., which should be negligible.
LThe coherence included within the I' of (9.11) is only
of the most trivial sort, namely that a particle can in-
teract pairwise with only one other particle at any
instant. $ But there is a coherence between the parts of
the various C s referring to the majority (roughly 85%%uo)

of the particles remaining unexcited. This coherence is
responsible for the discontinuity at k&.

It may seem strange, at first, that an exponentially
small part of N can still have a dominating inhuence.
But for normal nuclear matter, where only the two-
body correlations are strong, the explanation is really
obvious. This small part, Cp, contains all the long-range
order.

It is interesting to compare this situation with other
many-Fermion systems, for example the high-density
electron gas. Here the momentum distribution" is
very similar to that in Fig. 2, except that the important
correlations now come from the "ring" diagrams. The
higher-order ring diagrams involve arbitrarily large
numbers of particles, thus the possibility arises that
these correlations could extend out to very long range.
Indeed, the formulation of Sawada'" and %entzel"'
shows that these diagrams are closely related to the
collective vibration modes (plasmons), where this
long-range correlation is actually realized. In the
ground state, however, these diagrams simply repre-
sent a screening of the long-range part of the Coulomb
interaction. """Each electron is surrounded by a
polarization charge whose density varies roughly as
e &'/r, where p ' is comparable to the interparticle
spacing. "' Each electron is, to some degree, avoiding
all its neighbors, and this clearly requires the co-

"' K. Sawada, Phys. Rev. 100, 372 (1957).
M' G. Wentzel, Phys. Rev. 108, 1593 (1957)."' For corrections to this simple picture, see J. S. Langer and

S. H. Vosko, J. Phys. Chem. Solids 12, 196 (1959); W. Kohn
and S. H. Vos)to, Phys. Rev. 119, 912 (1960).

operation of all the electrons. This is why high-order
rings occur even though the phenomenon is short range.
The success of the perturbation-partial-summation
treatment of Gell-Mann and Brueckner" would again
seem to be the result of having a long-range order which
is completely described by Cp.

The situation is very diGerent for systems with a BCS
ground state. Any perturbation-partial-summation
treatment is bound to fail, if the starting point is Cp,
because of the strong admixture of many low-lying
C s. But linked-cluster methods can still be used
(Sec.VIII) if one irst separates these low C s off into
a quasi-degenerate subspace. The lesson seems to be
that one must choose this subspace D to include all the
long-range order within the projection or "model"
wave function, ~I ~= PC'.

It is also instructive to consider the differences
between these last two examples, high-density electron
gas and superQuid system, in terms of the secular
matrix. The reason why Cp provides a suitable starting
point in. only the former of these examples is demon-
strated by a simple schematic model where the eBective
interaction matrix 'U is finite-dimensional, with all of
its elements equal to a constant vp. It is well known' '
that this model has one "collective eigenstate" con-
sisting of a strong admixture of all the unperturbed
C s. The other eigenstates are each dominated by
some particular C;, with comparatively weak admix-
tures of the other unperturbed states. (In this simple
model, the "purity" of the noncollective states in-
creases with the dimension of the secular matrix. ) The
high-density electron gas corresponds to vp&0. The
collective modes (plasmons) therefore occur at high
energy, while the ground state remains dominated by
C'p. Thus it is not too surprising that the ground-state
correlations are weak enough to be handled as perturba-
tions. A superQuid system corresponds to ep(0, so the
ground state is now the "collective" one. This is con-
spicuously lower in energy than any other state (the
BCS gap), and it contains many low-lying C s with
amplitudes comparable to C p, invalidating perturbation
treatments based on the latter.

These qualitative arguments strongly support the
idea that the breakdown of perturbation-partial-
summation methods is ultimately due to phase changes,
i.e., changes in the long-range order. This is consistent
with the uncertainty principle: Short-range order
involves high momentum components and therefore
high energies, while the components that determine
long-range order are nearly degenerate. Thus one
expects that phase changes are signalled by unavoidable
divergences somewhere in the formalism. The connec-
tion between a divergence of the Srueckner reaction
matrix and a BCS ground state, for example, has often

063. R. Mottelson, The j/luny-Body I'roMem (Les Houches,
1958), C. DeWitt, Ed. (Dunod Cie. , Paris, 1958);J.R. SchrieGer,
Theory of SNPerconductkity (W. A. Benjamin, Inc. , New York,
1964); G. E. Brown, Ref. 18.
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P' P'+j
C ( Z V.)~+( Z V.). (9.19)

The radius of convergence of an ordinary perturbation
expansion is usually determined by the nearest point
where a level crossing or accidental degeneracy occurs. '4

One therefore expects that such a sequence can always
be found, unless the system undergoes a sudden phase
change of some sort as the total perturbation reaches
a certain critical strength. (We are thinking here in
terms of finite systems. Of course this critical strength

'"C. T. DeDominicis, Ph.D. thesis, University of Birmingham,
1957 (unpublished); J. Gohistone, Ph.D. thesis, Cambridge,
1958 (unpublished); L. Van Hove, Physica 25, 849 (1959}.The
latter contains an extensive list of references. See also Refs.
42, 60, and 81."' D. J. Thouless, Ann. Phys. (N.Y.) 10, 553 (1960)."' J. M. Luttinger, Phys. Rev. 119, 1153 (1960); and 121, 942
(1961);P. Nozieres and J. M. Luttinger, Ref. 73.'" A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 32, 399 (1957)
LEnglish transl. :Soviet Phys. —JETP 5, 333 (1957)g."'These partial summations are the ones which give the self-
energy operator Z(k, ~). Except for the "causal" boundary
conditions brought in by the field-theoretic formalism, this
operator is essentially the same as the quantity Fv(Zov+AEr)
of {6.15), calculated for a single valence particle by means of
the reduced BH formalism. The latter is mathematically equivalent
to the one-body linked parts of Vp, for systems with an arbitrary
number of valence particles. (Note the comment below (8.24) .j

been discussed. '0 Thouless'0' has extended this dis-
cussion to hnite temperatures; in fact he was able to
obtain the BCS critical temperature expression from
this criterion.

Other well-known studies of this sort are those of
I uttinger and Nozieres. ' ' Following an observation by
Migdal, " they have shown in detail that the existence
of the Fermi surface, and all that this implies in terms
of low-temperature properties, follows from the as-
sumption that perturbation theory makes sense, i.e.,
that certain partial summations"' lead to reasonable
results. Prior to these studies, the existence of the Fermi
surface in metals had been considered a paradox, just
as the success of the nuclear shell model has seemed so
paradoxical.

We propose (a) that the conditions of Thouless,
Migdal, and Luttinger are equivalent to the condition
(2.15) for Cfn=CO, and (b) that (2.15) is the natural
generalization of this argument. It is very doubtful
whether these claims can ever be established with
mathematical rigor, but we would like to add one more
plausibility argument. In mathematics, the possibility
of continuing a function analytically depends on the
possibility of choosing a sequence of points, where each
point lies within the radius of convergence of the power
series expansion around the previous point. The
perturbation-theoretic equivalent is to break up the
total perturbation into a sum of much weaker ones

P
v= gv„, (9.18)

~a

such that convergent expansions exist for all members of
the sequence

We have seen that Goldstone's energy expansion is
based on the unsymmetrical expression

Z= &C,
~
H, +V ~~&/&C, ~e&, (9.20&

where 4 is the true wave function and Co is an eigen-
state of Ho. This has the great advantage of expressing
the total energy in terms of a model energy

and the expectation value of a mode/ interaction 'U = VQ

taken with respect to the mode/ wave function,

AE= (Ce i
"U

( Ce)—= (V) . (9.22)

The various Bloch—Horowitz expansions extend this
model description to degenerate systems. On the other
hand, the total energy is also expressible in terms of the
true expectation values, (Hs)& and (V)„which follow
from the symmetrical expression

E= (4 t
He+V )4)/(e [e&. (9.23)

Linked expansions are available (Secs. VI and VII) for
calculating (He), and (V)&.

These model" and "true" descriptions are related
by a simple mathematical transformation. One 6nds,
either from the argument (6.10), (6.11), or by direct
differentiation of (9.23), that"

dZ„/d) =(e„)V(e, )=() V&,/), (9.24)

where Hq ——He+Xv, assuming (0'x )Vx)=1 «r aQ X.
Integration then leads to"

' () V)(
(v) =Ex=t—R=o= (9.25)

%hat this means is that the mth order perturbation
terms in (V), are exactly the same as those in (V),
but multiplied by a factor of e. This is easily understood
diagrammatically. The Kick algebra leads to diagrams
of exactly the same topogloical form for both (V), and

(V) . But the former V" diagrams occur m times more
often, because the V which appears explicitly in (V),

'"This has been attributed to Pauli. See also T. Kinoshita
and Y. Nambu, Phys. Rev. 94, 598 (1954), and K. Sawada, Ref.
103.

may approach zero very rapidly with increasing size
of the system, as in the famous BCS example. ) We
argue that such a phase change corresponds mathe-
matically to the breakdown of condition (2.15) for
some particular D. Finally, it seems quite plausible
that if such a convergent sequence (9.19) exists, for
some choice of Ho and D, that it may then be possible,
for practical purposes, to replace this by a sequence of
partial summations. The latter are simply a more con-
venient way of doing the analytic continuation. For
further discussion along these lines, we refer to the
papers of Katz" and Baker.'

"Mpdel" and "True" Descriptions
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can now correspond to any of the ss interactions in the
diagrams. (The V in (V) always corresponds to the
topmost interaction of these diagrams. )

Note that (Ho) and (V) are both well-behaved and
easy to visualize, which is generally not true of (Ho),
and (V)&. These "true" quantities are generally con-
siderably larger, and with opposite signs. One must
therefore work considerably harder to obtain a specified
degree of accuracy for their sum, E, than with the
"model" description.

On the other hand, the familiar Raleigh —Ritz
variational method requires a symmetrical energy ex-
pression, as in the "true" description. One should there-
fore be very cautious about applying variational argu-
ments to approximations based on these linked ex-
pansions. At first sight, it appears that variational argu-
ments cannot have any formal validity here. Em-
pirically, however, they lead to a rather successful de-
scription of finite nuclei. ' '~'2 "This paradox can be
resolved by noting that the Taylor expansion for the
total energy, in powers of V, is unique. The "true" and
"model" expansions must therefore be formally equiva-
lent, when the entire expansions are considered. Differ-
ences can arise only from the way these series are
terminated. We shall show elsewhere that the types of
partial summations commonly employed in nuclear
matter theory can easily be arranged so that the re-
sulting energy expression possesses stationary properties
closely related to the Raleigh —Ritz principle. In fact,
it is possible to construct a whole hierarchy of these
"stationary approximations", whose limiting form is
precisely the Raleigh —Ritz principle. The evidence for
this is the mass operator variational principle discussed
in Ref. 9. The arguments behind these statements are
summarized in the next section.

The distinctions between the true and model descrip-
tions have been emphasized by Prange and Klein. '"
These distinctions are also very important for com-
parisons with the other formalisms developed for
nuclear matter. '"The Jastrow method" and the Green's
function method both employ the true description,
whereas Mohling's expansion'" corresponds to the
model description.

X. FORMAL DEFINITION OF THE SHELL-MODEL
POTENTIAL

A "fundamental" theory of nuclei requires that the
theory of nuclear matter be extended in three ways:
(i) A degenerate version of the Goldstone expansion is
required for open-shell nuclei. This has been fully
discussed above. (ii) Numerical methods must be
developed to handle the new problems arising from the

'"R. Prange and A. Klein, Phys. Rev. 112, 1008 (1958).
"4The other nuclear matter formalisms are evaluated in the

review articles of Petschek and of Sell and Squires, Ref. 1, and
also in Ref. 9. A number of other formalisms are discussed by
Kumar, Ref. l.'"F. Mohling, Phys. Rev. 122, 1043 and 1062 (1961); 124,
583 (1961);and 128, 1365 (1962).

finite geometry. The progress here is also quite en-
couraging. "6 (iii) A satisfactory formal definition of the
shell-model potential VBM is needed. The general
program is to use many-body perturbation theory,
starting from a one-body "model" Hamiltonian Ho=
T+VsM, and a perturbation V= w

—Vs M. One sees that
VsM is essentially a "free parameter" in the perturba-
tion formalism. 4' We shall now discuss the problem of
finding a suitable choice for this VsM.

Closed-Shell Nuclei

One expects the theory of closed-shell nuclei to look
rather similar to the familiar Hartree —Fock theory.
We shall therefore consider the possibilities for deter-
mining V&M by extending the concept of the Hartree-
Fock potential. The latter can be obtained in several
different ways: (a) The variational approach —min-
imizing (H) with respect to the class of all single-
determinant wave functions Co. (b) Choosing Co such
that the 6rst-order perturbation terms in (4—Co) shall
not include any terms where only a single particle is
excited out of the initial configuration (Brillouin's
theorem). 4' (c) In the linked-cluster language, VHF is
chosen to cancel all diagrams containing first-order
insertions '8

We first consider generalizations of the variational
argument (a) . The introduction of certain partial sum-
mations (and orthogonality requirements) followed by
a termination of the Goldstone expansion, can be
arranged to give a functional for the total energy,
E&,t( {g }),in which the normally occupied orbitals g
play the role of variational parameters. One can then
minimize this with respect to the p s just as in ordinary
Hartree —Fock theory. This leads to a very simple and
intuitively pleasing explanation for the shell model, '4
provided that one relies on the local density approxima-
tion of Brueckner, Gammel, and Weitzner. ' But this
approach is not at all simple if one tries to work com-

sistemtly within the finite geometry of the shell model. '
Given an orthonormal set {p },one must set up some
self-consistency conditions to complete the definition
of Ho, in other words to define the unoccupied orbitals
Pq as well as all the single-particle energies E, Eb.
One must then ensure, either directly or by means of
Lagrange multipliers, that the complete basis {P,qbb}

remains orthonormal during the variation of the d 's.
There are really two basic difhculties here. The first is

that variational arguments, by themselves, give no
indica'tion of how the self-consistency conditions should
be chosen to complete the definition of Ho. The second
difficulty is that the energy expansion must be termi-
nated in a way consistent with the "true" form of energy
expression (9.23), as required by the Raleigh-Ritz
principle. Thus the variational approach is incomplete.
It is unable, by itself, to provide a sound theory of the
shell model. Brueckner and collaborators' 4 have

"'See especially Refs. 2, 8, 10, 12, and 24.
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managed to avoid these problems by regarding their
local density approximation as an aesats. Taken in this
sense, the argument of Brueckner and Goldman' is
perfectly valid.

The other approaches, (b) and (c), are closely re-
lated, but we shall now argue that (c) is much more
general than (b) . Nesbet"7 and Lowdin'is have pointed
out that the Brillouin condition (b) can easily be
generalized. They propose that Co should be de6ned
such that, to all orders of perturbation theory, the
expansion O'=P;a;C, contains no determinants with
only a single particle excited out of the initial con-
figuration. This amounts to saying that VSM should be
defined by the sum of all diagrams (or single-particle
insertions) whose net effect is to produce a single
particle —hole pair. This is an important and useful
idea, but, like the variational approach, it is incomplete.
To obtain the actual orbitals g, qhp which diagonalize
Hp= T+VsM one also needs the matrix elements
(m'

) VsM ) m) and (b'
) VsM ) b). But these are not

determined by the Brillouin condition.
When the original Brillouin argument is examined

more carefully, 4' one finds that the Hartree —Fock
potential has, in effect, already been de6ned to be just
the insertions ("direct" and "exchange") of first order
in e. In this sense, the Brillouin condition is not really
a statement about VHp at all. It refers instead to the
properties of the basis {p, ppI which diagonalizes
Hp= T'+ VnF.

How, then, can this argument be extended to higher
orders in eP The most plausible procedure is to argue
that, since the generalized Brillouin condition is satis-
fied when the "particle —hole" matrix elements

(b
~

VSM
~
m) are defined by the sum of all the one-

particle insertions, the "hole-hole" and "particle-
particle" matrix elements should also be defined in
this way. But this prescription is really quite impracti-
ca1. The trouble is that the diagram rules often lead to
diferent energy denominators when the insertions
occur in different "corners" (m', m), (b, m), and
(b', b) of the Vsm matrix. Some of these insertions can
be put entirely on the energy shell by the g.t.o. factori-
zation, but many of them cannot. An o6-energy-shell
insertion is strongly dependent on the "local excitation
energy" within the skeleton at the level where it is
inserted. This means that it cannot be interpreted as a
potential in the usual sense.

The diagram cancellation argument, (c) above, in-

cludes (b) as a special case. It places all the matrix
elements of V&M on an equal footing, instead of focussing
special attention on the "particle —hole" elements. This
permits considerable flexibility because, according to
this view, Vsl is not subject to any a priori require-
ments beyond that of Hermiticity. It is a "free param-
eter, "which can be chosen to optimize the convergence
of the expansion. 4' The "optimum" choice might then

uv R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
ns P.-O. Lowdin, J. Math. Phys. S, 1171 (1962).

depend somewhat on which terms in the expansion one
is able (or willing) to calculate explicitly. This flexi-

bility can be used, for example, to include some im-

portant three-body cluster eQects in an approximate
manner, "along the lines 6rst proposed by Rajaraman. ~

It is interesting that Kelly' has also found this "free
parameter" viewpoint useful in his linked-cluster studies
of atomic structure.

Further study of this cancellation argument leads to
two important conclusions. ' First, the convergence of
the erIergy expansion is not the most useful criterion for
choosing the shell-model potential. There are serious
"overcounting problems" associated with the higher-
order terms in the energy expansion, and these can
lead to ambiguities in the choice of insertions to be
included in VSM. These overcounting problems dis-

appear if one considers instead the expansion for the
true expectation value (8) of some operator 8. This
argument leads one to the same choice of V» for any
operator 8. We thereby conclude that the choice of
VgM should optimize the rate of convergence for the
total wave flnctiom The se. cond conclusion is that the
best rate of convergence is obtained when the various
linked-cluster terms are arranged according to their
on- or oK-energy-shell properties. The result is that the
shell model potential should be defined by the sum of all

single-particle insertions which can be placed erItirely

on the energy shell by means of g.t.o. factorizations.
Quite fortunately, this choice of VsM includes all
of the insertions which connect occupied and unoc-

cupied states. The generalized Brillouin condition can
therefore be satisfied exactly. This is a very useful
simpli6cation. It also has a rather curious side effect.
The matrix elements (b'

~
VsM

~
b) are essentially zero,

and therefore the orbitals pz are essentially just plane
waves. But this cannot be completely true, because
plane waves are not orthogonal to the occupied orbitals

p . The "particle —hole" matrix elements (m ~
VsM

~ b)
are riot negligible, however, and these distort the @p's

in such a way as to preserve the orthogonality condition.
There is still, however, one formal difhculty. This

de6nition of V» is not yet completely Hermitian.
The single-particle energies are all real, but the orbi-
tals are not all mutually orthogonal. A Hermiticity
problem of this type was 6rst solved by Balian and
DeDominicis, '" in the context of their "quasi-particle"
formulation of quantum statistical mechanics. Another
approach, which appears more convenient for the
nuclear problem, is indicated here at the end of Ap-
pendix D. With this modi6cation, the diagram can-
cellation argument is seen to provide a quite satis-
factory de6nition for the shell-model potential.

Variational Principle

This de6nition of VSM is completely perturbation-
theoretic. It makes no reference to any variational

'"R. Bahan and C. DeDonnnicis, Physics W, 1927 (1964).
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Ho' T+Us M'+ V,„t,——

V= v—USM'. (10.2)

The external potential is a Hermitian one-body opera-
tor, presumably rather weak but otherwise quite
arbitrary. The term V&M' is not arbitrary. It is "self-
consistent" in the perturbation theoretic sense de-
scribed above. That is, it consists of all on-energy-shell
insertions. It has the virtue of satisfying the generalized
Brillouin condition iu the presence of V, , This is
useful because it justifies the neglect of any single-

principle. Nevertheless, one expects a nucleus to be
stable against deformations away from its ground-state
equilibrium configuration. Stability arguments have
played a very important role in theories of collective
motion, and a "fundamental" theory of nuclei ought to
establish contact with this work. This can best be done
by means of a variational principle.

There is another reason for desiring a variational
formulation of the theory. It is extremely tedious to
carry out fully self-consistent calculations of nuclei. '
On the other hand, harmonic oscillator orbitals are
quite convenient to work with, and it is well known that
these are a rather good approximation for the occupied
states of the lighter nuclei. One expects the use of
oscillator orbitals to cause very little error in the total
binding energy. Furthermore, one expects that the
optimum value for the oscillator well parameter can be
found by minimizing the total energy. A numb'er of
calculations have been based on these assump-
tions. ' '"" If this approach is to make sense, it is
obviously very important to demonstrate that the
expression used to calculate the total energy, for a
"trial" set of occupied orbitals, should go through a
minimum (or at least a stationary point) when these
orbitals coincide with those of a fully self-consis-
tent calculation. A stationary prescription for the
total energy should also clear up any ambiguities in the
choice of single-particle energies (which enter in the
G-ma, trix calculations), as well as the proper form for the
intermediate state orbitals. We have argued above that
the Raleigh —Ritz principle is not able, by itself, to
settle these questions. But it is not too much to ask that
the perturbation theory should be consistent with
the'Raleigh —Ritz principle.

The comptetc expansion must naturally give an
energy independent of the assumed form of Bo=
T+VsM. The real problem is therefore to demonstrate
that the linked expansion can be terminated in ways
which have the desired stationary property. The full
demonstration is rather long, and will be given else-
where. But the basic idea is simple enough, as we shall
now show.

Suppose that one performs a fully self-consistent
calculation in the presence of a fictitious external
potential, using

particle excitations which might otherwise arise from
the lack of true (V,„&—=0) self-consistency. LAny
deviations from true self-consistency may be attributed
to V, &. One can always estimate the lack of true
self-consistency by straightforward perturbation meth-
ods, but there is no point in doing this until after the
"best" variational wave function has been found. ]

This VsM' must depend on V, ~, but this is not
really a significant complication. The whole argument
is really a "gedanken" one. We merely assume that
this problem is well-defined, and that it can be solved in

principle. We then assume that the "inverse" problem
is also well-defined. Sy this, we mean that for any
"trial" set of occupied orbitals Ig I, which are ortho-
normal and reasonably close to the true ones, there
should exist some V,„~ for which this "trial" set emerges
as the self-consistent solution.

Now consider the total wave function +' which
emerges from this calculation. This can be used to
calculate a fictitious expectation value (H)' for the
(rue Hamiltonian H= T+v. Since the "wrong" wave
function is being used here, the Raleigh —Ritz principle
says that

The variational parameters here are the "free parame-
ters" within the Hermitian operator V,„~. For practical
purposes, we assume that the "trial" orbitals p can be
regarded instead as the independent parameters. (If
the P 's are varied independently, Lagrange multi-
pliers will be needed to preserve orthonormality. ) A
general variation of V, ~ also allows for independent
variations of the single-particle energies E, Eb. These
degrees of freedom are not useful here. It is best to
use the optimum values for these E's as given by the
stationary condition. This corresponds to the case
V, t, =0, showing that it is best to use just the usual
self-consistency definition (see Ref. 9) for these E's.

There are two parts to the proof that this variational
argument is really applicable to the perturbation theory
of nuclei outlined above. First, it must be shown that
the "trial" expectation value,

is equivalent to the type of energy expression one
actually uses in nuclear calculations. The latter is a
"model" type expression t see (9.20), (9.21)], in the
sense that E=L&'p+AE. But the infinite partial sum-
mations lead to overcounting problems. When this
overcounting is corrected for by appropriate sub-
tractions, one ends up with the "renormalized" energy
expression described in Ref. 9. It was found that this
new energy expression satisfies a very remarkable
"mass operator variational principle". The proof of the
present variational argument (to be given elsewhere)
amounts to demonstrating that our external potential
argument is really the correct physical interpretation
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for this rather mysterious looking variational prin-
ciple»o

The second task is to show that one can obtain similar
variational principles, or "stationary approximations"
for the total energy, when the complete expansion is
terminated. This is very easy. Similar mass operator
variational principles hold for any selection of skeleton
diagrams. It is only necessary that these skeletons be
used coesistemtly in. all parts of the formalism: in
the main energy term (the S .of Ref. 9), in the true
occupation probabilities P Lsee (9.11)$, and in the
"mass operator" insertions which define VsM. (Note
that V~M is needed to define the single-particle energies
E, even when the P 's are given. Any differences
between these P 's and a fully self-consistent basis
should be attributed to V,„~.) Any choice of skeletons
will lead to a "stationary approximation". Obvious
choices are to consider only two-body correlation terms
Las in (9.11)j, or only two- and three-body terms.
These approximations will be discussed elsewhere.

Open-She11 Nuclei

In the case of open-shell atoms, the Hartree —Fock
theory is not uniquely defined. Roothaan"' and Bre-
mond"' have both used the variational approach, (a)
above, to extend the Hartree —Fock theory to rather
special cases of degeneracy. The so-called Hartree-
Bogolubov method"' is another extension of the theory,
designed to include effects of pairing correlations.
But we have not seen any general discussion of the
open-shell problem.

The diagram cancellation argument, (c) above, is
especially useful-here because of its inherent flexibility.
There is no one "best" definition of VHM for a11 open-
shell nuclei. We shall mention three types of possi-
bilities: (I) If the ratio (e/Ã) of the numbers of
valence and core particles is small enough, one can put
all the particles in the self-consistent V~M obtained from
the nearest closed-shell nucleus. By treating all effects
of the valence particles as perturbations, one can take
full advantage of the formal separation between core
and valence effects achieved by Bloch and Horowitz.

If, on the other hand, the valence-induced core.
deformations are too large to handle as perturbations,
one should make some allowance in Vqm for both the
"field-producing" and "exclusion" effects of the valence
particles. (Examples of these effects are shown below. )
This will naturally tend to spoil the clean separation

'"This idea of using an auxiliary external potential has been
widely used in statistical mechanics. The subject is reviewed,
from the perturbation viewpoint, by C. Bloch in Ref. 38."' C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).

"2 B. Bremond, Nucl. Phys. 58, 687 (1964).
"3N. N. Bogoliubov, Soviet Phys. —Usp. 2, 236 (1959);J. G.

Valatin, . Phys. Rev. 122, 1012 (1961);M. Baranger, Phys. Rev.
122, 992 (1961); and 130, 1244 (1963); M. Baranger, in 1962
Cargese Lectures An Theoretica/' Physics, M. Levy, Ed. (%', A.
Benjamin, Inc. , New„7ork, 1963),

corresponding to

exp(AW),

(10.5)

(10.6)

where AW represents all the modifications of P„W„
brought about by the effects of the valence particles.
Their characteristic feature, which distinguishes them
from other YL,„correlations, is that the valence particles
remain within the band of valence orbitals after their
interactions with the core. The terms shown in (10.5)

"' I. Kelson and C. A. Levinson, Phys. Rev. 134, 8269 (1964);
%. H. Bassichis, C. A. Levinson, and I. Kelson, Phys. Rev.
136, B380 and B385 (1964); W. H. Bassichis, B. Giraud, and G.
Ripka, Phys. Rev. Letters 15, 980 (1965); M. IZ. Pal and A. P.
Stamp, Phys. Rev. 158, 924 (1967). A critique of this approach
has been given by H. G. Benson and J. M. Irvine, Proc. Phys.
Soc. (London) 89, 249 (1966).

of core and valence eGects, since the core terms will

now include, through VSM, part of the valence eGects.
LVery high-order iepetitions of one-body insertions
would remove these valence eGects from the core terms,
if only the core-particle contributions to these inser-
tions are considered. But, as shown below, the valence
diagrams include terms consisting of core skeleton
diagrams with insertions involving valence particles.
VSM can be chosen to cancel both the core and the
valence-particle contributions to these insertions. )
One way of treating these effects is to (II) define Vs M for
for some "average" nuclear ejgenstate, in effect averag-
ing over the multiplet structure of certain low-lying
ejgenstates ~' 4 The Njlsson model belongs jn thjs
category. Finally, one could (III) devise schemes
whereby VqM optimjzes the treatment of some par-
ticular eigenstate.

These problems lie in the domain of conventional
shell-model theory —nuclear matter theory really has
very little to add here. In this connection the linked
expansions should simply be regarded as a "bookkeeping
system, " without any implications as to whether the
core deformations should be treated by perturbation
methods or by "self-consistent" methods. Nevertheless,
the higher-order, correction terms will always remain
well-defined for any reasonable choice of V»&.

In any event, it may be helpful to see just how these
core deformation eGects appear'-'in the present for-
malism. We have seen that the total wave function can
be written in the exponential form

+=exp (Q„Yr.„) exp (g,W,) ~+D), (7.30)

where the "folded, linked, open valence parts" YI„„
were obtained by applying the reduction (5.18) to
the bottoms of the Y,'s of Sec. VI, and then "folding in"
the reduced 'U~'s of Sec. V. Among these YI„'s there
will be terms of the form

+M



820 REVIEWS OP MODERN PHYSICS ~ OCTOBER 1967

are all of the "field-producing" type. There will also
be some exclusion corrections with a very similar
form, as shown in (10.7). [This should be compared
with (5.16d) .$

There will also be "mixed" terms of the form

which correspond to

exp (Yr,') exp (hW),

(10.8)

where Yr,' represents the terms in the operator Q„Yr,,
which do not contain any of these core deformation
effects. Finally, there will be some "mixed" terms which
are not completely open, such as

XI. SUMMARY AND CONCLUSIONS

The time and temperature-independent link. ed-
cluster expansions (for energy, wave function, and
general expectation value, both for nondegenerate
and degenerate systems) have been discussed from a
uni6ed and elementary viewpoint. Starting with the
Brillouin-Wigner perturbation theory, the interaction
energy terms AE have been expanded out of the
energy denominators. The resulting series have then
been rearranged to demonstrate the cancellation of
unlinked terms.

This algebraic approach has the advantage of avoid-
ing artificial limiting processes (adiabatic or thermo-
dynamic) which are not essential for an understanding
of ground and low-lying nuclear states. For this reason,
and because one deals right from the beginning with
the desired quantities hE and 4', this method is very
convenient for settling questions of physical interpre-
tation. We have examined the way these expansions
express such "physical" features as antisymmetry,
self-energy effects, vrave-function renormalizations,

(10.10)

[In all of these diagrams we have simply shown the
principal parts. The "external" lines at the bottom may
also attach to some "folded in" insertions. Thus, the
lrst diagram in (10.10) is actually cancelled by a
similar folded diagram. ) These terms combine in ob-
vious ways to give the changes in 4E and (a

~

8
~ P)

resulting from the core deformations.

and the relations betvreen "true" and "model" single-
particle occupation numbers. The exclusion-violating
terms were seen to play several important roles. The
relative merits of linked-cluster and ordinary Brillouin-
Wigner methods, for few-body systems such as light
nuclei, have been considered. The problem of defining
the shell-model potential has also been carefully dis-
cussed.

These expansions are seen to form an extremely
powerful and Qexible set of tools. In principle, they are
capable of handling any bound-state problem in
nuclear structure where time-dependence and ele-
mentary-particle aspects do not enter explicitly. The
possibility of extending these methods to time-depen-
dent problems, such as nuclear reactions, was also
discussed. The close connections betvreen these ex-
pansions and modern shell-model concepts should
also be stressed. They express most results in terms of
the convenient "model" quantities: model energies,
model wave functions, and effective interactions.
Furthermore, the Bloch—Horovritz formalism reveals
the full generality of a phenomenon frequently ob-
served —the main effect of high-lying con6gurations is
to simply "renormalize" the effects of the lovr con-
figurations.

The analogies between these results and the Landau
theory of Fermi liquids have been emphasized and
exploited. It appears quite possible that these methods
may converge rapidly enough to be useful also for
liquid He' calculations.

In any application, of course, one must pay careful
attention to the delicate problems of convergence.
These are asymptotic expansions, and they are bound
to diverge in the strict mathematical sense. The
most obvious divergences can be traced to two sources:
(a) singularities in the interaction, and (b) quasi-
degeneracy, i.e., strong admixtures of certain low-

lying states. (These strong admixtures can be thought
of as "phase transitions. ") Against these difhculties
the formalism provides several vreapons, namely partial
summations and the great freedom of choice for IIO

and the quasi-degenerate subspace D (the "model
subspace"). After eliminating the obvious divergences,
we feel that one should not be unduly concerned
about the use of asymptotic expansions. Experience
shovrs that there are two dangers to guard against. One
is that the "phase transitions" may not be very obvious,
as in the famous BCS example, and also in the case of
nuclear deformations. The other is that further partial
summations may be required, " because of subsets of
individually finite terms which nevertheless form di-
vergent series.

Finally, vre should emphasize that it is not enough
to simply eliminate divergences, or even to obtain
"reasonable looking" expressions. It is important to
study the remaining higher-order terms, to determine as
well as possible whether these can cause significant
changes or "renormalizations" of the numerical results.



BAIRD H. BRANDOw EQcleer Linked-Cluster Expurlsiorls 82 j.

Analytic Properties of the Secular Matrix

Bloch and Horowitz44 have studied the analytic
properties of the secular matrix (2.14) for complex E.
This appendix discusses the more important properties
from a simple viewpoint. '" Let a and b be general non-
commuting matrices. The identity

(g b)
—1 g—1—g 1g(g b)

—1 g——1(g b) (g b)
—1

= g 'b(g —b)

may be iterated to give the well-known result

(Al)

(a—b)
—'= Q(g—'b) "a—'= g—'Q(ba —')". (A2)

n=p n=p

This can be used twice to obtain

(a—b—c)—'= (a—b)
—' Q Lc(a—b)

—')
m,=p

= Q(a 'b) 'a ' Q Lcg(g 'b) "a 'j"
lM

= Z(a- b) 'ZI a-'cg(a-'b) "j"a-'. (A3)

With the identifications

u= s—Hp, c= I"V,

12~ Thanks are due to Ben Day for suggesting the use of resolvent
kernels for this discussion.

This has been one of the main motivations for the
present study.
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APPENDIX A

P and Q being projection operators on and off the model
subspace, (A3) becomes

(s—H)-'=GAL(z —Hp)
—'PU(s) j"(z—IIO) '

where + and E are the exact eigenstates and eigen-
values. Here 4';(z) and X;(z) are (normalized) solu-
tions of the d-dimensional eigenvalue problem

PLH, +u(z) joe;(z) =Z;(z)e;(z). (As)

Given any%&, both sides of (A7) become ordinary
complex functions of s, thus both sid.es must share the
same analytic properties. In particular, the poles must
be the same, which shows that every solution of

s= li;(s), 1&j&d (A9)

must be real and equal to some exact eigenvalue E„.
The set of solutions to (A9) must, in fact, be identical
to the set of eigenvalues E .

The factors (1/a) in (A3) are all nonsingular and
well-defined matrices when s is nonreal. We therefore
regard this resolvent-kernel formalism as a useful
tool for analytically continuing 'U (s) beyond the radius
of convergence of its perturbation expansion. Having
thus delined 'U(s) for all z, we may now restrict the
discussion to s's on the real axis. For any axed and real
z, 'U(z) becomes a Hermitian matrix, so the set of
4;(z)'s can be considered orthonormal. (For nonreal z

the 4' s are not necessarily orthogonal; thus the nu-
merators on the right-hand side of (A7) must actually
involve bi-orthogonal vectors, as discussed in Appendix
D. This cannot affect the poles, since these are all
real and can be approached entirely through real
values of z.)

Let@~„be a multiple of the degenerate projection of
4, such that%'„and +~ are both normalized to unity.
The residue of the left-hand side of (A7) at s=E is
then the overlap I

(O'„ I@n„) I'. Only one term (call
this n) of the J summation will be large, when z~E,
thus the right-hand side approaches I z—X„(z)P' and
its residue must be

I
1—X '(E )j '. This shows that if

the norm of 4'„ is increased until (O'„ I4'n„)=1 (the
usual condition in BW perturbation theory), then

(A10)

We have identified the summation in (A2) with 0,
regarding this as the iterative solution of (2.11).
Multiplying on both sides by I' gives

P(z—H) —'P= PI z—Ho —2%(z)j—'P. (A6)

For any state vector +& lying entirely within the de-
generate subspace, we therefore find
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We now observe that for real s,

X (s) = (e ) a,+~ ) e;)+(e, )
u'

) e;)
+(e;)a+u)e )
= (@; )

du/ds
) @;)+X; (d/dz) (+; ) %;). (A11)

The last term vanishes because the 0 s are defined to
have unit norm for all e. Finally, we note that ('0')
is always negative, so that (A10) is always larger than
unity. It is interesting to compare this general BW
result with the "valence" normalization factors (6.21)
for the BH expansion.

Bloch and Horowitz have also pointed out that the
matrix elements of "U(s) have simple poles situated on
the real axis. ) These can generally be related to zeroes
on the left-hand side of (A7).$ From the general
structure of the 0 perturbation expansion Lsee espe-
cially (2.7) j, one would expect these poles to be lo-
cated near the unperturbed energies E; of the "non-
degenerate" states C;, provided that "self-energy"
terms in the expansion have been properly identified.
and included in Ho. This suggests a poor rate of con-
vergence for those eigenstates whose energies E„ lie
close to "nondegenerate" unperturbed energies E;.
The remedy obviously lies in the proper choice of
degenerate subspace.

APPENDIX 8

Diagram Rules

The following list expresses the Goldstone diagram
rules in an unambiguous form convenient for nuclear
applications.

(i) Draw just one diagrorn from the set of all those
obtained from each other when "direct" interactions
are replaced by "exchange" interactions, or vice versa.
Disregard all other members of this "exchange group. "
(It is usually convenient to choose a diagram with the
maximum possible number of closed loops. )

(ii) Include a factor of (2) for each "equivalent
pair" of lines. Two lines form an equivalent pair if
they (1) both begin at the same interaction, (2) both
end at the same interaction, and (3) both go in the
same direction.

(iii) Include an over-all sign factor of (—1)!+",
where l is the number of closed loops and h the number
of downgoing or "hole" line segments.

(iv) Replace each matrix element of v or G by a
"direct minus exchange" element (an element of the
form (ij) v

)
kt—tk)), where the original element is

to be considered "direct".
(v) Include the energy denominators, given by the

sum of all downgoing line energies minus the sum of
aQ upgoing line energies.

(vi) Sum each upgoing line independently over all
particle states (b states), and each downgoing line
independently over all hole states (es states). The

vLsr JILsr j)
JiSTJ

by a "direct minus exchange" interaction,

vD-s= 2 g vLsrzI Lsd,
allowed(LST J) s

(82)

where the I"s are projection operators. Since these E"s
must be introduced anyway for realistic nuclear forces,
it is no more diKcult to calculate all 2" numbers of an
nth order "exchange group", i.e., a Hugenholtz diagram
with e "dots," than to calculate a single member.

It is interesting to see how these rules apply to an

upgoing ladder of e interactions. Each intermediate
state involves an equivalent pair, and thus a factor of
(-,'). These cancel all but one of the factors of 2 from

(82), the net result being simply that each "direct"
G-matrix element is replaced by a "direct minus ex-
change" element. The diagram rules, as well as the
statement concerning (81) and (82), are therefore
all valid for the expansion in reaction matrices G. This
agrees with the intuitive argument that the G-matrix
and v-matrix expansions should. become indistinguish-
able in the limit of weak interaction.

exclusion-violating terms which arise from these inde-

pendent summations must all be included.

These rules represent a combination of those given by
Goldstone" and Hugenholtz. "The present formulation
has several advantages. In the 6rst place, Hugenholtz's
"equivalent pair" rule is much clearer than Goldstone's
original statement that one should sum over "all dis-
tinct possibilities. " This avoids much confusion in
higher-order terms. Secondly, we prefer Goldstone's
diagrams over those of Hugenholtz; thus interactions
are represented by lines, instead of by dots (even
though each hne now represents a "direct minus ex-
change" matrix element), because there is less chance
of confusion over minus signs. Nevertheless, it may be
helpful to think in terms of Hugenholtz's "dot" dia-
grams while assigning complicated GOMstone diagrams
to their respective exchange groups.

Finally, we should emphasize the advantages of
always working with "direct minus exchange" ele-
ments. One is forced, when dealing with realistic
nuclear forces, to expand all the elements in partial
waves. This is due both to the strong spin dependence
of the forces, and to the nature of available methods
for solving the Bethe —Goldstone equation. After ex-

panding the "direct" matrix elements in terms of

(L, S, T, J) eigenstates, the effect of including ex-

change terms is simply to double the weight of states
with "allowed" (S, T, parity) quantum numbers,
and to eliminate the "unallowed" states. This shows
that the main effect of antisymmetry (apart from the
distinction between "particle" and "hole" states) is,
to alt orders of perturbation theory, the same as simply
replacing the original interaction,



BAIRD H. SRmoow' Suclear LAsked-Clgster Expansions 823

Spin summations require some care, when dealing
with spin-dependent forces such as (B1), (B2). These
summations can always be carried out by means of a
trace formalism, in close analogy to the way spins are
treated in quantum electrodynamics. Individual single-
particle states are labelled (in nuclear matter) by
their spin projections (s3, l3), while the interactions
involve projection operators such as Fs=g g (3+de. 62) .
One can therefore always reduce spin sums to traces of
products of 2&2 Pauli matrices. '"

A complete derivation of the rules is quite tedious.
Many of the details are discussed in references 28, 29,
38, and 42. We shall simply offer some hints here for the
reader who wishes to work them out for himself. The
usual discussion of Wick's theorem leads to the state-
ment that one should sum over "all topologically
distinct graphs. "This is not concise enough to give the
rule about equivalent-pair factors of (2) . The reader is
encouraged to work out the first three orders,

(Co
i V, V', V'

i Co),

directly ill, terms of the Fermiol operators, starting with
(4.2) and

where
~
0) is the absolute vacuum. This should demon-

strate the convenience of collecting together all mem-
bers of an exchange. group and treating them all simul-
taneously. This should also clarify the (—1) '+" rule.

The next step is to verify the equivalent-pair rule for a
rather simple case, the eth-order "upgoing ladder"
diagram. '9 (This is the v" term in the lowest-order
diagram of the reaction-matrix expansion. ) The n
factors of (-', ), coming originally from (4.2), remain
intact after one notes that g~& ———,'P~ and that
(lm —ml

)
V ) ab —ba)=2(lm

)
V

~

ab —ba). (Itiseasiest
to think of distinct pairs of occupied states l, m, and to
convert to unrestricted summations —',g~ only in the
Anal step. ) Note also that there are e equivalent pairs
in this diagram. Now consider an (@+1)th-order
diagram obtained from the previous ladder by adding
a single (—VsM) insertion [see (4.2) j at some inter-
mediate level. This will necessarily be attached to
one member or-the other of a pair of lines (a, b or
l, m) that was previously "equivalent". These two
lines are distinct, before summing over a, b or 1, m, so
two distinct diagrams can be obtained by attaching
(—Vsm) to this pair. After the summation, however,
these diagrams become identical; therefore only one of
these -"topologically equivalent" diagrams need be
considered if the corresponding equivalent-pair factor
of (2~) is also dropped. This argument is easily extended
to a general diagram. Consider the effect of each suc-

"6T. Dahlblom, K.-G. Pogel, B. Qvist, and A. Tom, Nuel.
Phys. 56, 177 {1964).

"- I am indebted to R. Rajaraman for greatly clarifying this
argument.

cessive interaction, proceeding "timewise" from the
bottom to the top of the diagram. One loses a factor of
(-', ) every time an interaction destroys the equivalence
of a pair. .

Bloch—Horowitz Diagrams

Some additional rules are required for the valence
diagrams of the Bloch-Horowitz expansion. The main
problem is to obtain the correct over-all sign factors.
First of all, it is necessary to choose a "standard
order" for the set of valence states. (This determines
the phases of the model determinants C,.) Then a con-
venient prescription is:

(i') Pull the ends of the external lines across each
other to bring the valence-state labels into standard
order, both at the top and bottom of the diagram.

(ii') Wrap each diagram around a transparent
horizontal cylinder, and connect together the ends of
the external lines at the back of the cylinder. The
standard order must be observed in forming these
connections, i.e., the "first" line from the top must be
joined to the "first" line from the bottom, etc., even
though their actual labels may be diferent. These new
diagrams should now look like Goldstone diagrams.
The over-all sign is now given by the usual (—1) '+"

rule.
(iii') Apply the rules given above for the Goldstone

diagrams, with the following obvious modifications:
(a) the "external" valence lines (those which were
originally external) must not be summed over, (b)
the equivalent-pair rule must not be applied to these
lines, and (c) the energy denominators are now given
by (5.23), where the "upgoing" and "downgoing"
lines refer to the original external-line diagrams.

For the external lines of each diagram belonging to a
particular matrix element ('Uv);;, one must eventually
consider all permutations of the distinct valence states
belonging to 4; and 4;. As an example, consider the
e=2 diagram shown in (B3).

V s~--
b, b—

(B3)

(We have assumed here that p(v, p'(v'. ) The sum of
all diagrams in this "exchange group" is

—,'g(&V ). )
ob —bo)(Z, —(Z.+Zb) g-

(ab i
n

[ pv vp), (B—4)

where the factor (2~) is due to the single equivalent
pair 8) b.

, Two more qualifications are necessary. First, the
upgoing internal lines are to be summed over all p,

states as well as all b states, subject to one restriction.
The Q operator in (2.7), (2.12) forbids all many-body
intermediate states C; which lie within the degenerate
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subspace, thus at each intermediate level there must be
at least one particle in a b state, or at least one hole in
an m state. When this restriction involves an equivalent
pair, the factor (88) is to be retained only if one re-
stricts G.rst one member of the pair, and then the other,
to b states, summing the "other" member over the p
states in each case.

Secondly, there is a question of interpretation for
certain of the diagrams. Consider diagram (a) of
(BS), which includes the exchange correction for term
(b) of the original BW expansion. y =Q-'I'exp (zk; r),

(zg I
~

I
kl) ezaQ ib8&,.+

Q ~X=pQ,
j(kp

(C1)

(C2)

(C3)

APPENDIK C

Magnitudes of Linked Diagr~~s

We wish to demonstrate" that for large saturating
systems, the hE contribution of every Goldstone
diagram is proportional to E. Consider a system of
large volume 0, where one can assume momentum con-
servation. Neglect spins, and assume a two-body
interaction, e, characterized by depth eo and range u.
Then

(b) (c) and

1s

—Q(tz'nz I
s

I tzm —nztz).

(B6)

(B7)

(Note also the location of the labels tz and tz'. ) The
internal hole lines should be summed, independently,
over all m states, except for the restriction that there
must not be any quasi-degenerate states among the
many-body intermediate states of 'U&.

Rules for the linked expansion of 'Ur are given in
Sec. VII.

To find the required factor of (—1), we follow rule
(ii') above and obtain diagram (c). The familiar

(—1) '+" rule still applies, but one must now interpret
the (rn, Zz, tz') loop as "two holes and one loop. "

Finally, we consider the changes required by the
"valence-hole" description, where the degenerate states
C; are labelled by e' valence holes as well as e valence
particles. The 'Uy diagrams will now have n' downgoing
external lines, in addition to e upgoing external lines.
Two minor changes are required. First, the valence
hole states must also be given a"'"standard order",
and the ends of the external hole lines must be con-
nected according to this ordering. Secondly, the number
of hole line segments, including the external line seg-
ments, must be counted before wrapping the diagram
around the cylinder. The n holes which result from
joining the n external particle lines should then be
added to this number, to give the 6nal h for the sign
factor (—1) '+". In other words, the "wrapping" of
an external particle line must always increase h by
unity Lsee the discussion of diagram (c)gabovej,
whereas the wrapping of an external hole line creates
an upgoing line segment which does not contribute
to h. Remember that an external hole line which in-
teracts only once will have two segments, thus the
contribution of (B6)

g -Qa-'.
j&ky

(C4)

"'%'. B. Riesenfeld and K. M. Watson, Phys. Rev. 104, 492
(1956).

The last of these relations comes from the fact that
intermediate state momenta are typically of order a '
for an interaction of range a.

Now consider an arbitrary linked diagram with e
interactions and h holes. Note that:

(i) There are 2n lines altogether.
(ii) Momentum conservation imposes (n—1) con-

straints among the various momenta of these 2n lines.
(iii) There are 2n —lz —(n—1) =n+1—|'z momenta

to be summed independently over states above the
Fermi sea, giving a factor of order (Qa ') "+' ".

(iv) Summation over the lz hole states gives a factor
of Ã"= (pQ)".

(v) The n interactions contribute (vza'/Q) ".
(vi) The n 1energy denom—inators contribute

(1/e) "—'

The total contribution of a linked (n, lz) diagram is
therefore of order

(p&a8/Q) n(e—1) n—
1(pQ) 8(Q/a8) n+i—8

=X~,(v,/e) "-i(pa8) "-'. (CS)

In (iii) and (iv), however, we have ignored the fact
that momentum conservation sometimes restricts
hole summations instead of particle summations.
Each such restricted hole summation will remove a
factor of (pa').

The result is clearly proportional to E, since the
Goldstone energy denominators do not contain hE
and are independent of volume. Similar arguments
show that a diagram with I.linked parts is proportional
to le~. Note that the energy per particle is independent
of 0, which justifies the usual convention of ignoring
all volume factors.

These arguments are easily extended to linked dia-
grams with a number x of pairs of external lines. '9 One
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APPENDIX D

Exact Forms for the Linked Valence Expansions,
Hermiticity and Orthogonality

The linked-cluster results of Sec. VII are not all
formally exact, even if convergence is assumed. The
linked expansion for %' ='0&1,. and the "partially
linked" form of Ev given in (7.25) are quite correct,
but the exponential form of Ev, (7.29), and the expec-
tation-value and transition-amplitude expressions
(7.38) and (7.41) are somewhat incorrect. These con-
tain errors arising from the matrix multiplications
involving e. In effect, we have assumed the validity
of the approximations

(A (a)teA (a)) (A (a)teA (n))r )~Ae(n)erA (a)—

~I)ep (1Vva —1)"~

These relations are inexact because 6 is actually diag-
onal only in the nonorthogonal basis Ap=Ap(@&Ay( '.
Thus, if convergence or a valid analytic continuation
ls assumed'

A, teA. =8.,(E .—1) . (D2)

This situation has been carefully analyzed by Des
Cloizeaux. "His exact perturbation theory, when com-
bined with the graphical methods of Sec. VII, leads
to formally exact linked expansions for the physi-
cally interesting quantities. He replaces the non-
orthogonal basis A by a "natural" basis A which is
rigorously orthonormal. It turns out that the form of the
transition amplitude matrix,

5K= (?+8) '"0(I+8)—'",
as expanded in (7.41), is actually exact, provided that
the A t and Ae of (7.33) are replaced by A t, Ae.
The main problem is therefore to determine this natural
basis. The correct procedure is to replace the non-
Hermitian matrix 'N by a symrnetrized form of this

finds that their magnitudes scale as S' . For example,
self-energy terms (@=1) are independent of X.

Let us see how these considerations are modified for
the reaction-matrix expansion obtained by summing
upgoing ladders of v interactions, if we now assume
that v is a hard-core interaction of radius a. The factor
'vpa' in (C2) is replaced by the core volume a', times a
typical energy denominator e. The strength "vo" is
therefore replaced by e; thus (C5) becomes

E(A,'/Ma') (pa') " '. (C6)

This is independent of n, suggesting that the conver-
gence in terms of G matrices might be very poor. This
has led to a rearrangement of the expansion in which a
"small parameter" can be clearly seen."' Naturally
enough, this small parameter is essentially pa'.

matrix, denoted by X. The A 's are then the eigen-
vectors of this X. The actual form of this symmetriza-
tion is rather complicated, but it can be thought of as a
generalization of the simple expedient %~~i (%+%t) .
The information required for the construction of X
is contained, not too surprisingly, in the 0 matrix. As
an introduction to this method, we first discuss some
general properties of nonorthogonal vector systems.

At the end of this appendix we shall argue that a
similar method can be used to restore the Hermiticity
of the shell-model potential.

6 I ~&=Z IP&(PI ~&=I ~&

Consider an arbitrary vector
I l& in D. This can be

expressed uniquely as

I
~)=Z~-

I ~&, (D6)

where X is equal to (n I
I,&. We see immediately that

« I G
I ~&=Z Ili- I'» (D7)

Natural Basis for a Nonorthogonal Vector System

The following discussion is based very closely on
section 2 of Des Cloizeaux's paper 5' Suppose we are
given a set of (E linearly independent vectors,

I a&,
which are not mutually orthogonal and which may (for
the present) have arbitrary norms I = (u I n&. These
vectors define a d-dimensional space D. Within this
space we can always find a second set of d linearly in-
dependent (although not mutually orthogonal) vectors,
I u), such that

(P I-)= &- [P&=~-~ (D3)

These two sets,
I n& and

I
u), are said to form a bi

orthogonal vector system.
For example, let A and A be the representations of

I a), I u) with respect to an orthonormal basis C; for
D: A =column vector (a; ), A =column vector
(a*-), ~h~~~

I
~&= 2'a*-/I~C" » I

~&= Z'a'. I C'&. (The
bar in a,, does Not imply complex conjugation. ) Then
(D3), taken for all n's but with P f(xed, gives an in-
homogeneous set of d equations in d unknowns. These
can always be solved to give Ae and hence

I p). For
linearly independent

I
u&'s, the

I
a)'s are always unique.

This can. be seen geometrically: The d —1 equations
(D3) for ().NP require that

I P) lie in the orthogonal
complement of these d —1 vectors

I
n ). This orthogonal

complemen. t has just d—(d—1) =1 dimension, as is
quite obvious for two and three-dimensional spaces D.
Thus

I p) is constrained to lie along a definite axis. The
last equation, &p I

p)=1, then fixes its direction and
length.

We now introduce a Hermitian operator

G=—2 I ~&(~
I (D4)

which connects these two bases:



826 RKvIEws oF MoDERN PHYsIcs ' OcroaKR T967

We now introduce the "square-root" matrices,

G'"=Zilx'&s""8. I=Z IX;&«; I

= Z [ x & &x; I, (D1&)

Fio. 3. Illustration of relations[between the [n), [n), and
@ ) bases. The "stretching axes" [ xi) and [ xs) are also shown.
ln this example S~& 1, S2 & i.

which demonstrates that G is positive definite. One
consequence is that G has an inverse,

[ n) =—G"'
[ n) = G—'Is

[ n) (D19)

These permit us to define a "natural" set of basis
vectors,

which can be written as

& '=Z [n&&n I.

(Dg)
We see immediately that

(D20)

Now since G is Hermitian and positive definite, it
must possess d orthogonal eigenvectors,

(D10)

showing that this natural basis is orthonormal. The
new basis is, in a sense, just "halfway" between the
[n) and [n) bases. Even if there exist accidental de-
generacies among the S s, the

[
n)'s will be uniquely

defined by the original
[ n) basis. The "natural trans-

formation" matrices are conveniently expressed as
and its eigenvalues S; must be real and positive
definite. Geometrically speaking, G performs a simple
stretching operation. We shall normalize the [x;)'s
such that, together with the "parallel" set of vectors

.G'"= Z I & & [=Z I n) &n I

G '"=Zl &&n[=Z[n&(nl.

(D21)

(D22)

(D11)

we have another bi-orthogonal system:

&x' I x'&= (x' I x;&= 6;;.

This obviously requires that

(x [x.)=((x.[x ))-'=S;.

It is also convenient to introduce an orthonormal basis,

Apylications

These relations are easy to illustrate in two dimen-
sions. Figure 3 shows a nonorthogonal basis [n), [P&,
and the correspondingII[n& and [n) bases, as well as

(D12) the "stretching axes"~ [xi), [x,). In this example,
Si(1, Ss) 1. It is clear from (D20) that the norms
of the a)'s are independent of the choice of norms ti
of the n) vectors. Not so obvious, perhaps, is the fact
that the directions of the [n)'s do depend on these
norms. This is illustrated in Fig. 4.

Thus we can write

G=Z [x &s &x I=Z[x &«[ (»5)

In Sec. VII we obtained the linked-cluster expansion
of a non-Hermitian matrix 'N . This has real eigen-

A

X2~

When the eigenvalues S; are all nondegenerate the
[x;)'s will be uniquely defined, apart from trivial
phase factors which have no inhuence in the following
developments.

I'ig. 4. Similar' to Fig. 3, illustrating fact that the directions of
the [

n)'s depend on the norms of the [ n) vectors.
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values, but its eigenvectors are generally not orthogonal: The value of this "natural" basis becomes quite evi-
dent when we consider expectation values and transi-

(D23) tion amplitudes. Here we f nd a very simple result,

(Apart from the core interaction energy AEe, % is
equivalent to the 6, operator of Bloch'4 and the h

operator of Des Cloizeaux. ") The Hermitian conjugate
matrix VP t defines a second set of eigenvectors:

(D24)

Combining this with (D23) gives

(d Evp ~Eve—)AptAa = 0) (D25)

which shows that the A 's and A 's can be normalized
to form a bi-orthogonal system. Assuming such a
normalization, we find that

&~ I
6 I P&v= &+ I 6 I+p&v/(Nv Nvp)'

=(Nv ) 'I'A tSAp(Nvp) 't'

=A t(I+8)—'I'S (I+8)—'I'Ap.

The transition matrix 5K is indeed given by (7.41),
plovlded we use the natural basis vectors A, Ap instead
of A, Ap. We have already seen that (7.41) defines a
linked-cluster expansion.

Des Cloizeaux has pointed out that the A 's can be
calculated as the eigenvectors of a em effective inter-
action matrix

= PA.gEv A.t= g I ~&gEv„(~
I

(D26)

W„'= QA.AEv.A t= P I a&AEv. (a I. (D27)

= (I+8)'"Vv" (I+8)—'t'

=+A AEv A t. (D35)

These representations are valid for any choice of the
A norms, provided the A norms are adjusted to satisfy
(D3). (The corresponding natural basis vectors A,
however, do depend on the A norms. ) This freedom
will enable us to 6nd a simple expression for the natural
transformation matrix 6'~'

Consider the relations

(e Ie.&
=A t(I+8)A =8 pN, (D2g)

The last of these relations follows from (D21), (D22),
and (D26) and sllows tllat Xv js jndeed Hermjtjsn
The second of these demonstrates that X~ and
are nearly identical when 8 is nearly diagonal in some
Ap& ) representation, or in other words when the A 's
are nearly orthogonal. (The equivalence of these con-
ditions should be obvious from Figs. 3 and 4.)

A linked-cluster expansion is obtained by methods
analogous to (7.41), thus

where we assume from now on that A tA = 1. These
relations are equivalent to the matrix equation

I+8=+A Nv A t (D29)

In abstract notation,

I+8=Z I
-)&. I

(I+.8) I ) &- I, (D30)

xv=Z('*)( ')s~ e

where the (1+x)'"coefj cients are

(D36)

(D37)

I & I
'&=c.

I~&~l~'&=c 'I~&. (D31)

fly choosing C =(Nv) 'i', we obtain the desired
simple results:

I+8=K I
='&&=' I=G. (D32)

A.=a I'A. '= (I+8)"'A.(Nv )-'"
= (I+8)»'A tA t(I+8)A $ '". (D33)

it is clear that this representation is invariant under the
basis renormalization

The linked cluster property is shown by the argument
following (7.43), with one modification. For each value
of t, the total weight of all different 8-orderings with
r+s=t is now zero instead of unity. LNote that 'W
already consists of a single linked piece. There will also
be some "extra terms, " analogous to (7.21), which
provide the desired corrections to 'N .j

The Hermiticity of X~ implies that its set of dia-
grams should be topologically invariant under reQec-
tion about a horizontal axis. In low orders, this can be
checked term-by-term. This is rot true for the diagrams
of '% . The expansion (D36) for Xv corresponds to a
step-by-step symmetrization of %'; a very reasonable
procedure if the nonorthogonality of the eonzp/ete
set of A 's is weak. Furthermore, the rules for this
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expansion are quite clear (although not simple), and
one sees that a number of partial-summation techniques
can still be used to advantage. On the other hand, there
is much cancellation among the higher-order terms in
(D36), and. the general structure of the terms which
remain is not at all clear. It is certainly not evident that
the resulting set of diagrams is symmetric about a
horizontal axis, as required by Hermiticity. A more
concise characterization of the Xy diagrams would be
helpful.

Some progress in this direction has been made by
Des Cloizeaux, by way of a more compact notation.
Since the Xz diagrams are symmetric while the time-
ordering structure Lsee (7.14)) of the% diagrams is
not, we apply the factorization theorem to the terms
remaining after the elimination of unlinked parts.
Following Des Cloizeaux, we introduce brackets as
follows:

~X ~2 ~3

(rg)( g (rm)) ( gv(rs)). ..( gv(tn))~

where the V) (""s are the same as in (7.2). The sub-
scripts L are reminders that only the linked diagrams
need be considered. The expansions can now be written
quite compactly in terms of these brackets. To third
order in '0&, they are

= {0}z,+{1,0}z,+{2,0, 0}z,+{1,1, 0}z,+''',
(D39)

e={1},+{2,0},+{0,2},+{0,1, 2},+{2,1, 0},

+{3,0, 0}z+{0,3, 0}z+{0,0, 3}z+'. , (D40)

Xv ——{0}+-,'{1,0}z+-',{0,1}z,

+g'{1,1, 0}z,+-', {0,1, 1}z+—,'{1,0, 1}z,

+~2{2,0, 0}z+-;{0)0, 2}z+" . (D41)

Unfortunately, the general structure of this ex-
pansion for Xv is still not evident. The forms (D35),
(D36) seem more practical and more transparent,
even though they are not manifestly Hermitian. This
defect is easily remedied by writing

X,=-', L(1+e)»Pm„(1+8) '"+h.c.). (D42)

In this form, results will be Hermitian for approxima-
tions to any order in 8.

This discussion of X& is correct only for the case of
exact degeneracy. For quasi-degenerate cases one would
still like to have a secular equation of the form

Lapv+Xv)A =0. (D43)

This requires the addition of an extra term,
(1+8)»'a«(1+ 8)-'"—a«

;cpa« ——,'ea«e+-', a«e'+t)(ep). (D45)

This should often be negligible, since it vanishes to
erst order in O.

Hermiticity of the Shell-Model Potential

The theory of the shell-model potential, as presented
in Sec. 9 and Ref. 9, is not completely Hermitian. The
eigenvalues are all real, but the one-body orbitals are
not all mutually orthogonal. Formally, this problem
is quite similar to the one just discussed. It can be
solved in a similar way, by exploiting the corre-
spondence 'Uv(I'-'v )~M' (E,) and 8+-+(—M"~). An
interesting difference is that the "natural basis" (t;
is now the one which has the most "physical" signi-
ficance, in contrast to the nonorthogonal A basis
which represented projections of the complete wave
functions. As a practical matter it may be easier to
calculate the nonorthogonal P; basis, so we are now
interested in reversing the sense of the transformation.
The kinetic energy operator is far from being "de-
generate, " in the sense used above, and one will obtain
a correction like (D44). Unfortunately, this will mar
the simplicity of the "nonorthogonal" equations for the
P„'s. A number of the details deserve a careful dis-
cussion, and we shall reserve this for a future paper.
We hope of course that the corrections are very weak.
This problem deserves attention mainly for its in-
trinsic interest.

We should mention that a problem of this type was
solved previously by Balian and DeDominieis. "9 They
gave a prescription for their mass operator which is
manifestly Hermitian. This appears to be closely related
to the expansion (D41). That form is not convenient
for reaction-matrix calculations, which is why we prefer
the present approach.

={(1+8)'",ao )(1+e) "', (D44)

to the Nzpsymetetrized expression (D35) .This correction
follows from (5.17). The total Xz may then be sym-
metrized, as in (D42). Upon expanding, the sym-
metrized correction is found to be


