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This work reviews some recent developments in the theory of nuclear matter. Assuming familiarity with the basic
Brueckner —Goldstone theory described in the preceding article by B.Day, it is Grst shown that the Brueckner-Goldstone
series does not converge in powers of the reaction matrix, and that the perturbation series for the binding energy has to
be rearranged in powers of the density p. Physical reasons and actual estimates are provided for expecting convergence
in powers of p.

A detailed theory is outlined for the evaluation of the three-body energy, which gives the p' term. Attention is paid to
both the momentum dependence of the reaction matrix and the tensor nature of nuclear forces. Finally, the last section
is devoted to the choice of the single-particle potential energies, suitably designed so as to absorb most of the four-body
and higher cluster terms.
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Nuclear rnatter is a uniform system of infinite identi-
cal nucleons, stripped of their Coulomb interactions.
A study of the properties of this system and in particular
the evaluation of its binding energy as a function of its
density is a valuable first step towards a theory of
realistic Gnite nuclei starting from 6rst principles. For
instance, the binding energy per particle of nuclear
matter should give the "volume term" in the well-
known semi-emperical mass formula for nuclei, which
is experimentally deduced to be about 16 MeV. Further,
the experience gained from the treatment of the energy
and density of this many-body system should be of
great help in evaluating the surface, Coulomb, and
other terms in the mass formula.

There are several mathematical formalisms developed
for studying nuclear matter. A comparison of these
and their relative merits is discussed by Brandow. '
The most successful, and in many ways the simplest,
theory is based on the Brueckner —Goldstone'' for-
rnalism. The Hamiltonian is split into

Hp = Q(T;+U;)

where T; are the kinetic energies of the nucleons, e,;;
are the internucleon potentials, and U; are single-particle
potentials to be chosen conveniently. It is assumed that
there are no intrinsic many-body forces. The ground
state of Bo ls )Ust that of a zero temperature Fermi gas
(it is nondegenerate) and the perturbed wave function
and energy are expanded in a perturbation series in
powers of H~. The potentials v;; are used in the form
of their reaction matrices, and the resulting series is
represented by a set of diagrams similar to the Feynman
diagrams. This formalism and the concept of the re-
action matrix are explained in the preceding article by
Ben Day.

Subsequent to the development of this welL-defined
formalism, considerable e&ort has gone into evaluating
the lower-order terms and treating higher-order terms
in a consistent way. It appears now that the theory is
approaching a satisfactory conclusion, both theoreti-
cally and in terms of agreement with experiment. One
of the significant steps in this process was the develop-
ment of the Reference Spectrum Method by Bethe,
Brandow, and Petschek4 which provided a relatively
simple and analytic method for evaluating the reaction
matrix. This also revealed several qualitative features
with which higher order diagrams could be studied.
Such a study resulted in another significant step,
namely the realization that the Brueckner —Goldstone
series does not converge in powers of the interaction or
the reaction matrix, and that it should be rearranged
in powers of the number of nucleons involved s' The
evaluation by Bethe of the three-body energy to all
orders in perturbation lends support to the idea that
the above re-arrangement in powers of the density
should converge for nuclear matter.

Complete calculations using realistic potentials with
tensor forces etc. have not yet been fully done. But the
work done so far reveals that the sum of the two- and

4H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys.
Rev. 129, 225 (1963), henceforth referred to as BBP.

~ R. Rajaraman, Phys. Rev. 131, 1244 (1963).
6 H. A. Bethe, Phys. Rev. 13S, B804 (1965).
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g=s —.(Q/e) g, (2.1)

where Q and e refer, respectively, to the Pauli exclusion
operator and the energy denominator in the Goldstone
diagram. This is essentially a two-body operator, and

~ Such potentials have been suggested by C. W. Wong, Nucl.
Phys. S6, 224 (1964); C. Bressel et al. , Bull. Am. Phys. Soc. 10,
584 (1965);R. V. Reid (private communication).

Calculations using such soft cores have been done by D. Sprung
and P. C. Bhargava, Nucl. Phys. (to be published).

9B. Day, Rev. Mod. Phys. 39, 719 (1967), preceding article.

three-body contributions gives a binding energy of
about 13 to 18 MeV per particle at the observed density
of kp = 1.36 F ' or p =0.178 F ', with the higher binding
corresponding to "soft-core" potentials. ~' There are
reasons to hope that the corrections to this, such as
four-body terms, etc., should not be more than a couple
of MeV, and methods have been suggested for absorbing
these. The experimental value for the binding energy
per particle is about 16 MeV. This is a fairly good
agreement for a theory beginning from first principles,
namely an evaluation of the energy of the many-body
system starting from the interparticle potential. In
estimating the agreement with experiment one must
remember that the theory really calculates the po-
tential energy, which is about —40 MeV for a typical
nucleon in the Fermi sea, and that the binding energy
is a difference between the large potential and kinetic
energies. It is hoped that the uncertainty (and possible
discrepancy) of about 3 MeV in a total of about 40
MeV will be reduced by the correction terms and by
more precise calculations with tensor forces, etc.

Since the Srueckner —Goldstone formalism and the
Reference Spectrum Method for evaluating the reaction
matrix have been described in detail in the preceding
article by Day, ' we will proceed from where Day has
left off. Thus Sec. 2 will briefly gather together some
features of the two-body wave function and the reaction
matrix needed for subsequent use. Section 3 will discuss
the convergence problems of the expansion and bring
out the need to rearrange terms in powers of the density.
Sections 4 and 5 will deal with a method for evaluating
the three-body energy which gives the p' term in the
new rearrangement. Section 6 involves the treatment
of tensor forces, and finally Sec,. 7 will be devoted to
the choice of the single-particle potential energies to
be used in the theory. It is strongly recommended to
the reader to familiarize himself with the ideas in the
preceding article before embarking on this one.

2. SOME PROPERTIES OF THE TWO-BODY
PROBLEM

The Reference Spectrum Method for evaluating the

g matrix, described in detail in the preceding article
(henceforth referred to as A) can be summarized very

briefly as follows:
The g matrix is defined in terms of the internucleon

potential e by

involves nontrivially the relative coordinate r, the
momenta of the two particles and a parameter which
depends on the other particles excited. Let us define
a two-body wave function P(r) and a defect function

t (r) corresponding to an initial plane wave state p(r)
by

4(r) =LI—(Q/e) gj&(r) (2 2)

f (r) =y(r) -1b(r),

= (Q/e) g (r) = (Q/e) g(r). (2.3)

The Reference Spectrum approximation, ' which uses a
quadratic form for the single-particle potential energies,
amounts to dropping the Q operator, and replacing the
energy denominator by (m*) '( —V'+p') in coordinate
space. These approximations and corrections to them
are explained in the original paper' and in A. Here m~

refers to the reduced mass in the Reference Spectrum
energy, p, a positive quantity, is the parameter in-
volving oG-energy-shell contributions from other ex-
cited particles, and the factor 5'/JjrI is suppressed. It
then follows from (2.3) that

(V' y') f(—r) = —m*e(r) L4 (r) —f'(r)] (2.4)

and the matrix element

The g matrix element can thus be obtained by solving
the differential equation (2.4) as exactly as possible
and using the solution for f(r) in (2.5). This has been
done quite accurately'" and the first order energy,
which is the g matrix itself, has been evaluated. How-
ever, for the purposes of studying higher-order dia-
grams, involving large numbers of g matrices, it is
useful to extract some qualitative features of the func-
tion f and the operator g. The great advantage of the
Reference Spectrum Method, as compared to directly
solving the integral equation (2.1) for g, is the ease
with which it lends itself to such qualitative under-
standing.

In this connection, it is useful to separate the po-
tential into a short-range part v, and a long-range
part e&, as originally suggested by Moszkowski and
Scott." The separation distance d was so chosen by
these workers that the defect function t' had zero slope
and value at r =d, i.e., the "wound" in the wave func-
tion 1b due to the repulsive core got "healed" at r=d
due to the attractive part in v, . This separation distance
is, of course, a function of the initial momenta kp Pp.

"(a) M. Razavy, Phys. Rev. 130, 1091 (1963); (b) K. A.
Brneckner and K. S. Masterson, ibid. 128, 2267 (1962)."S. A. Moszkowski and B. L. Scott, Ann. Phys. (N.Y.) 11,
65 (1960).
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But, for a standard hard core potential, with a core
radius c=0.4 F, the distance d is about 1 F for a wide
range of ko, Eo up to about 2 F '." Moszkowski and
Scott show that the reaction matrix g, corresponding
to this w, is zero for free nucleons. Although this is not
so for a general o8-energy-shell g, matrix in nuclear
matter, it is still useful to make such a separation,
since the two parts e, and e& have quite diAerent prop-
erties and have to be treated differently. e, contains
the strong repulsive core and is best treated in terms
of its reaction matrix g, to get finite matrix elements.
Further, because of its short range, g, has high Fourier
components, and, as we will see, a strong momentum
dependence. On the other hand, vg is the relatively weak
tail of the attractive part and consequently has a
rapidly convergent Born series. Further, although its
matrix elements depend strongly on the momentum

transfer, the diagonal element is relatively independent
of momentum. All these properties will be discussed
and used in detail at various places in later sections.
It should be noted, however, that although such a sepa-
ration is often useful, it is possible to evaluate the g
matrix for the full w(r), by solving the differential
equation (2.4) for g(r), and this is usually more con-
venient for accurate numerical work.

The function f', (r) corresponding to w, has some useful
features. Consider for instance its s-wave part, written
as usual in the form x,o(r)/r. Then from (2.4), x,o(r)
obeys

[(d'/dr ) —y']x, (r) =zl~v, (r) [x, (r) —rjo(kor)]. (2.6)

the decay of x,o(r) only faster. Thus, a graph of x,o(r)
has an approximate shape shown in Fig. 1. Inside the
core radius, the function x,o=rjo(kor) r for small ko.

Deviation from this arises only for large enough ko

so that koc i. Further, outside the core, x,' does not
vary much with ko, especially for large p. The largest
ko dependence outside the core arises from the core
boundary value x,'(c) =cjo(koc). Therefore the outer
function, when suitably normalized at the core radius,
i.e., either yp (r)/cjoy(kor) or x,o(r)/cj0(kpc) should be
relatively independent of t|'0.

Further, since x, is roughly triangular with a peak
at r =c, its Fourier transform should be peaked around
kc=zr/2 i.e., k 4 F '. Thus, when the g, matrix acts
on the filled Fermi sea, it tends to excite intermediate
states of momenta typically around 4 F '. All these
features of the defect function will be useful in subse-
quent discussion.

We can also make similar estimates for the reaction
matrix g, . We have

(k ) g,/e ( ko) = (k [
f', ),

=0 ' exp ( —zk. r)f, (r) dzr, (2.7)

where 0 is the volume of integration. Consider the
diagonal case

~
k) =

~
ko). The integral in (2.7) can be

split into two parts, inside and outside the core radius,
respectively. Inside the core, f, (r) =p(r) =exp (zko r),
so that

Inside the hard core, P(r) =0 and hence x,o(r) =
rjo(kor), the free S-wave function. Outside the core,
x,' falls off to zero slope and value at r =d, by definition
of d. If there had been no attraction outside the core,
then x,'(r) =e~" for r) c. The attractive part makes

exp ( —zoo. r)t, (r) dzr=

the core volume. (2.8)

OS

C

Outside the core, the contribution is not so trivial,
but the shape of y,' in Fig. 1 shows that the result
should be of the same order as the core contribution.
An estimate of about 2V, to 3V, is reasonable. Thus,

I.O (k, )(g./. ) ) k, ) =a-3V.. (2.9)

As an application, consider the first-order direct diagram
in g, . Its contribution, using an average value ko, is
approximately

m, n(k p

c 0.5
rinF

l.O

FrG. 1. S-wave part of the two-body defect function for low rela-
tive momentum.

N'

2

gs
0 k

e

(k 2+~2)

"The dependence of d on k0 and P0, along with several other
features of the two- and three-body problems is discussed by
M. Kirson, Ph.D. thesis, Cornell University, 1966.

where N is the number of particles

~—',p. 3V, (ko'+yz)/zzz* per particle. (2.i0)
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(0)

FIG. 2. First-order diagrams,

For purposes of estimation, we can use

p =0.170 F-3=-,' F-3,

V,=0.27 F',

for kg=1.36F ',

for c=0.4,

per particle.

This is, of course, only an estimate, and is given only
to illustrate the essential simplicity of the BBP method.
The exact results can always be obtained by solving
(2.4) and evaluating (2.5). The estimate in Eq. (2.9)
for (ko I g./e I ko) is very valuable in studying higher
order diagrams, as we will see in the next section.

It should be noted here that the first-order contri-
bution of g, is positive. However, the long-range part
e~ makes a large negative contribution (about —59
MeV)" through its first Born approximation, so that
the full g matrix g~g, +@~ is negative for small ko.

This gives, then, a positive contribution to the binding
energy from the first-order direct diagram.

We further note that since f, is largelyko-independent,
the diagonal g, matrix element

and k02+y'=1. 5 kp' (see preceding article). This gives
the 6rst-order g, contribution from the "direct" dia-

gram,

L",o' =—', (0.170) (0.81) (1.5k'') ~0.10k~'~8 MeV

general, the expansion will contain diagrams involving
the single-particle potential energy U (see A). Obvi-
ously, their contribution will depend on the choice of
U, which in turn depends on what pure g matrix dia-
grams one is trying to cancel out by these "U dia-
grams. "Therefore let us 6rst concentrate on diagrams
that do not involve U.

The first-order diagrams are shown in Fig. 2. Here,
Fig. 2(b) is the "exchange" of 2(a). In the previous
section, we made a crude estimate of the direct diagram
2(a) as

—',p Q(g, +vi) +8—59 MeU= —51 MeV.

The exchange diagram can be similarly evaluated.
However, one can see that the exchange diagram is
"almost" diagonal, inasmuch as the momentum transfer
m —n is quite small, so that for a given m and n, it
should not be very diGerent from the direct term.
But, for a spin —isospin-independent potential, the states
m and n must have the same spin —isospin values in
the exchange diagram. Consequently, the exchange
diagram contribution is multiplied by an additional
factor of —4, the minus sign arising from the Goldstone
rule mentioned in A. As a result, the total 6rst-order
contribution should be about 4 the direct term, i.e.,
about —39 MeV. Ke wish to emphasize again, that
whereas the ease with which such estimates can be
made is the great advantage of the BBP method, it is
always possible to get more exact answers by solving
the differential equation for f(r). A recent such calcu-
lation by Kirson" gives a value of —38.35 MeV for the
first-order energy, using the standard hard-core po-
tential, in very close agreement with our estimate.

There are no second-order diagrams in the Brueckner-
Goldstone expansion. The third-order direct diagrams
are only a handful, as shown in Fig. 3. The remaining

has a strong quadratic dependence on ko. Ke will see
in Sec. 5 that this proves to be a troublesome feature
in evaluating the three-body energy, and a full section
will be devoted to incorporate this momentum de-

pendence of g, .
We have described above some selected properties of

the two-body wave function and reaction matrix which
are needed for the study of higher orders that follows.
The reader is referred to the preceding article for fuller
details of the two-body problem.

3. THE CONVERGENCE OF THE
BRUECKNER —GOLDSTONE SERIES

We will study in this section the convergence of the
Brueckner —Goldstone expansion order by order. In

'" R, Rajaraman, Phys. Rev. 155, 1105 (1967).

~A
I

I'IG. 3. Third-order direct diagrams.

Ib
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third-order diagrams can be obtained by simply "ex-
changing" one or more of the g matrices in Fig. 3. Of
the third-order diagrams, Fig. 3(a) and Fig. 3(c)
caught early attention, inasmuch as they seemed to
represent self-energy effects. The "bubble interaction"
(bm

~ g ~
be) in Fig. 3(a), for example, when summed

over the state e, may be considered as part of the
single-particle energy of the state b, and might therefore
be counteracted by a suitable U(b) . A similar statement
would be valid for Fig. 3(c), where the "bubble inter-
action" {me

~ g ~
mN) may be included as part of the

hole energy U(m) . This method, which corresponds to
the Hartree method in atomic physics, is explained in
Goldstone's paper, ' and forms the basis of the BBP
choice of their single-particle energies. The BBP choice,
which will be discussed in Sec. 7, absorbs, on the
average, diagrams 3(a), 3(c) and their exchanges, as
part of the single-particle energies.

Concurrently, it was shown by Rajaraman" that the
remaining third-order diagrams are comparable in size
to the bubble diagrams, and should be taken into
account to make a consistent approximation. However,
he also showed that even though these are not obviously
self-energy type diagrams, more than 90% of their
contribution could still be absorbed into the single-
particle energies. These additional diagrams were then
included by BBP in determining their reference spec-
trum parameters. The spirit of the eGorts at that time
was still based on the hope that the Brueckner-Gold-
stone series converges as you go to higher order dia-
grams in g, and that if you have accounted for all
third-order diagrams in the above manner, this should
leave only small errors from fourth- and higher-order
terms.

However, when calculations were performed by
Razavy" for the first-order energy with such a single-
particle spectrum, the resulting binding energy was
only about 8 MeV per particle. Razavy used the
Hamada —Johnston potential. 's A similar result was ob-
tained by Brueckner and Masterson'o" using the {very
similar) Breit potential. However, Brown, Schappert,
and Wong" showed that both the Razavy result and
the Brueckner —Masterson (Br-M) result needed cor-
rections, which coincidentally reduced both values down
to about 4 MeV or so. In particular, the Br—M calcu-
lations did not include the off-energy-shell effects on
the single-particle energies. More recently Coon and
Dabrowski' have incorporated the off-energy-shell cor-
rections into the Br—M energies. It should be noted in
this connection that use of both the Coon —Dabrowski
and the Brown et al. corrections to the Br—M calcu-
lations is wrong since these corrections duplicate one

FIG. 4. Two fourth-order diagrams. Diagram (a) contains one
extra independent hole line as compared to I'ig. 3(b), while
diagram (b) has an extra particle line.

another. It should also be remembered that Coon-
Dabrowski inclusion of oG-energy-shell effects into the
single-particle energies had already been achieved earlier
by the BBP spectrum.

A number of further calculations have been carried
out by the Japanese school, taking properly into ac-
count the oK-energy-shell effects using the BBPmethod.
In these calculations, many different potentials are
compared, including Hamada —Johnston, an old
Gammel —Thaler potential, and some new potentials'
with small or soft repulsive cores. The softer potentials
gave generally greater binding energy, as expected, but
none gave the full 16 MeV.

These remarks are a digression from our main point
that the sum of the first- and third-order energies after
these corrections give only about 4 MeV of binding per
particle as compared to the experimental value of 16
MeV.

This can be improved upon by using a "soft-core"
repulsion, such as the exponential core of Kong, ~ in-
stead of the infinite "hard core." This would clearly
decrease the repulsion, and was estimated by Kong
to add about 4—5 MeV to the binding energy. This still
leaves a discrepancy of over 7 MeV, the cause of which
turned out to be connected with the underlying hope
that the Brueckner —Goldstone series converged order
by order.

This hope turned out to be quite false, as a closer
inspection of higher order diagrams revealed. It was
shown by Rajaraman' that there exist, in the expansion,
subsets of diagrams characterized by the number of
hole lines in them, where higher and higher order
terms in each subset do not become smaller, so that
evaluating the series order by order is not the proper
procedure. It was also suggested that each of these
subsets should be summed in coordinate space and that
the resulting sequence, corresponding to an increasing
number of hole lines, will converge. We will now outline
these arguments.

Consider the two fourth order diagrams in Fig. 4.
Compare both of these to the third-order diagram in
Fig. 3(b). Figure 4(a) has one more factor g/e (the

' R. Rajaraman, Phys. Rev. 129, 265 (1963).
~ T. Hamada and I. D. Johnston, Nucl. Phys. 34, 383 (1962).
'G. K. Brown, G. T. Schappert, and C. W. Wong, Nucl.

Phys. 56, 191 (1964)."S.Coon and J. Dabrowski, Phys. Rev. 140, 8287 (1965).

'8 Y. Akaishi, K. Takada, and S. Takagi, Progr. Theoret. Phys.
(Kyoto) 36, 1135 (1966); Harada, Tamagaki, and Tanaka,
ibid. 36, 1003 (1966); K. Takada, S. Takagi, and W. Watari,
ibid. (to be published). These papers also give references to
Japanese work on nuclear potentials with small or soft cores.
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Q (bn
I g/e I

bn)
n&kg

=p(ko
I g/e I ko&

with a typical b 4 F-',

with kp ———', (b —n) . (3.1)

This is where our estimates for (kp I g/e I kp) at the end
of the last section are very useful. There we showed
that

( o I g/e I ko) = &kp I i &

gives a core contribution of V„and something of the
sa,me order (2V, to 3V,) from outside the core. Thus,

diagram 4(a) 3.5p V.=3.5 (c/rp) '
diagram 3(b)

(3 2)

where 2ro=interparticle distance =2.24 F. Consider, on

"bubble" interaction) and has to be integrated over
one more independent state, namely n, as compared to
Fig. 3(b). Of course, the contribution of a diagram
involves integrals over all the intermediate state mo-
rnenta, and although the integrand ge 'ge 'ge 'g factors
into contributions of the individual g matrices, the
integrated result will not. Nevertheless, for purposes of

making estimates, we can write

diagram 4(a)
diagram 3 (b)

diagram 4(b)
diagram 3 (b)

(3.3)

On detailed consideration, this factor turns out to be
an overestimate inasmuch as g/e is smaller than 3.5 V,
for high momenta, and the typical momentum p is
somewhat smaller than zr/2c. However, this ratio is at
least of the order of unity, as compared to the ratio
of —', th in Eq. (3.2). A better way of estimating this
ratio is given by Day. Ke have

the other hand, the diagram 4(b) . Here again we have
an additional factor of g/e as compared to Fig. 3(b),
but the additional independent momentum to be inte-
grated over, whether it be p or q, is above the Fermi
sea. Thus,

diagram 4(b)
diagram 3 (b)

As we showed in the last section, the typical particle
momentum p excited by the g matrix is about zr/2c 4
F . This we justi6ed by considering the Fourier trans-
form of f'(r), and the large value of the momentum was
seen to arise because of the hard core. Thus, even
though the matrix element g/e is of the same order as
before, the phase space over which this is integrated
is much larger than the Fermi sea, and we would get a
result

diagram 4(b)
3 b

—-2( IQg/eIko)=2 Q. Icp&, where
I
k)=I Qq&=exp (zk r),

=g (y, at =0)(%If;), since pq(0) =1,

Once again we see that this ratio arises because
i'(r=0) =gp(r=0), which in turn is because of the
hard core. The argument used here in going from third
to fourth order, is clearly valid at all orders. We con-
clude then, that in going to a diagram of next higher
order, if the extra independent intermediate state intro-
duced is a particle, the higher-order diagram remains
of the same size, whereas if the intermediate state is a
hole, then there is a reduction by about a seventh.

The above convergence behavior becomes more trans-
parent when summarized in direct physical terms thus:

With an infinite hard core in the potential, we must,
of course, anticipate convergence problems in powers
of the potential. In fact, if we use the potential as it is,
even the matrix elements diverge. The situation is im-
proved by the use of the reaction matrix g, which is at
least Gnite. This renders every diagram in powers of g
Rnite. However, this does not imply that such a se-

quence of finite diagrams will converge order by order.
Now, if a diagram contains e hole lines, it corresponds
to an interaction between e particles, since it is easy to
note that every hole line corresponds to one particle
being excited out of the Fermi sea. Since it is the hard
core which leads to convergence problems, and since
the probability of a large number of particles being
within each other's core radius is small (pc'&1), we

would expect a diagram to get smaller as the number
of hole lines increases. But if the number of hole lines
is kept constant and the number of g matrices is
increased by adding particle lines only, then there is
not likely to be good convergence. Our semiquantitative
arguments earlier simply corroborate this conjecture.
This possibility of convergence in powers of the density
had been suggested as early as 1957 by Hugenholtz. "

"N. M. Hugenholz, Phypica 23, 533 (1957).
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At this juncture, it is again helpful to separate the
potential into v, and e&. An arbitrary diagram would
then consist of an arbitrary sequence of v, and e& inter-
actions, and if uninterrupted two-body ladders of e,
are summed into g, as usual, then we have diagrams
with arbitrary combinations of g, and e&. These may
be separated into three classes. (a) Diagrams involving
v& alone. These will be very small inasmuch as the
second Born term in vi is seen to be 2'~/o of the first. ""
The reason" behind this large dimunition will be clear
in Sec. 7. (b) Diagrams mixed in ri and g, . We will
show in Sec. 7 that these can be absorbed into the
single-particle energies. (c) Diagrams involving g, alone.
It is these diagrams which, owing to the hard core,
lead to a nonconvergent sequence for a fixed number
of hole lines, for the reasons outlined.

Nevertheless, if you consider one such sequence, say,
of all diagrams with three hole lines, i.e., the three-body
clusters, then the contributions of successive orders
alternate in sign. That is, a seventh order diagram as
compared to a sixth order one, would contain an extra
factor LQ/(Ep —Hp) )g —g / —e which is negative since

g,, is positive. Thus, it is possible that the sequence
may have a finite sum.

This was in fact shown to be the case. We will use
now a convention for drawing diagrams introduced by
Rajaraman for handling e-body cluster diagrams. Every
nucleon is represented by a vertical line, with inter-
actions represented by horizontal lines or wiggles as
before. "Particle" and "hole" states are distinguished
only by arrows. A Goldstone diagram and its represen-
tation in the new convention are shown in Fig. 5. The
disadvantage of the new convention is that it does not
distinguish between particle and hole states very clearly.
On the other hand, it brings out the unity of all e-body
diagrams of all orders. Thus, all three-body diagrams
are "ladders" with these vertical lines. This already
suggests that all these three-body ladders may be
summed in a manner similar to Brueckner's summation
of all two-body e-ladders into a g matrix. It was shown'
that the sum of such three-body ladders, called the
T matrix, is finite and can be evaluated in a manner
similar to the reference spectrum method for the two-

i(b

body g matrix. A three-body wave function analogous
to f '""""can be defined, which obeys a three-body
Schrodinger type diGerential equation. If this equation
can be solved, then the T matrix, or the three-body
energy, can be easily obtained. The same procedure
can be adopted for four-body and higher cluster dia-
grams. Whereas the corresponding e-body Schrodinger-
type equations would be harder and harder to solve
as e increases, the solution nevertheless exists and
leads to finite energies for the contribution of all the
e-body diagrams. Furthermore, in view of the short-
range nature of g„ these contributions should converge
as e increases.

Although Rajaraman's work suggested the above
possibilities, it did not attempt the actual solution of
the three-body differential equation to get the three-
body energy. This was done a year later by Bethe, ' who,
with the help of Faddeyev's technique, " obtained a
satisfactory solution to the three-body wave function
and energy. This work also revealed in greater detail
the above convergence difhculties, and the effect of
going from third order to all three-body terms. We will
describe this work in detail in the next section. We
only need to mention here that Bethe's work, subse-
quently further improved by Day" and Kirson, " leads
to a three-body energy of about —5 MeV, which,
compared to the —38.3 MeV for the two-body energy,
indicates a good rate of convergence in the cluster
expansion, thus giving us hope that the four-body
energy would be less than 1 MeV.

4. THE THREE-BODY ENERGY

We will now discuss a method for determining the
three-body wave function and energy in nuclear matter,
developed by Bethe in 1964.' The wave function and
energy correspond to the sum of all Goldstone diagrams
with three hole lines. We will use the convention'
mentioned in the last section for drawing cluster dia-
grams, whereby all three-hole-line diagrams will consist
of three upgoing lines. The interactions g are wiggly
horizontal lines as before, and energy denominators are
just the energies of the intermediate states shown
minus the starting energies, as can be verified by com-
paring the two diagrams in Fig. 5. Subject to a handful
of exceptions, the set of all allowed three-hole-line
Goldstone diagrams is just the set of all possible three-
body ladders one can draw, in the new convention.
The exceptions arise because there are some "three-
hole" Goldstone diagrams, such as the "hole—bubble"
diagram in Fig. 3(c), which cannot be represented as
part of the ladder sequence, and conversely there are
a few ladder diagrams that have no Goldstone ana-

Fxo. 5. A fourth-order term represented in (a) the Goldstone
convention, and (b) the Rajaraman convention.

"L.D. Faddeyev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960);
Dokl. Akad. Nairk SSSR 138, 565 (1961) PEriglish traiisls. :
Soviet Phys. —JETP 12, 1014 (1961); Soviet Phys. —Dokl. 6,
384 (1962), respectively:

2' B.E. Day, Phys. Rev. 151, 826 (1966).
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FIG. 6. A typical three-body
cluster term belonging to
(lmn

~
T [ lme).

logs and should be subtracted away. These anomalies
will be taken into account later on, but let us for the
moment consider the sum of all three-body ladder
diagrams.

I et us denote by T, the matrix denoting the sum of
all three-body ladders, analogous to the g matrix for the
two-body ladders. In other words, (lnm

~

T
~
lmn) is

the sum of all three-body diagrams that begin and end
on states l, m, and e, respectively. Since binding energy
diagrams are "vacuum to vacuum" in the second
quantized language, the states I, I, and n are below
the sea. We will start by evaluating only direct dia-

grams, i.e., where the three particles are restored to the
same respective state in which they started. Exchange
diagrams, belonging for instance to (ntln

~
T

~
lmn) are

related in a fairly simple way to the direct diagrams,
as in the two-body case, and will be dealt with later.
Needless to say, except for the initial and final states
I, m, n, all other states in the ladders should be above
the Fermi sea, and no two successive g matrices should
refer to the same pair of intermediate states. These
rules are directly carried over from Goldstone diagrams.
Figure 6 shows a typical diagram belonging to
(lmn

~

T
~
lmn). Clearly this set of diagrams can be

divided into three distinct groups depending on which
pair of particles is involved in the last g interaction.
Let us dehne T&'&, T~2&, and T&3~ to be the sum of the
group of diagrams in whose last interaction the particle
1, 2, and 3, respectively, is a spectator. Clearly,

T=T(t)+T(s)+T(s) (4.1)

Such a separation was suggested by Faddeyev'0 in con-
nection with the three-body scattering matrix. Now, a
diagram belonging to T"~, such as the one in Fig. 6,
must have g» as its last interaction. The next lower
interaction must therefore be either g~3 or g23. Thus, the
part of the diagram below the g» itself corresponds to
a term in either To~ or T").The only exception to this
is if there is no interaction at all below g», i.e., if the
entire diagram corresponds only to g». Thus,

T(') =g» —g»e '{T"'+T"&I and cyclic permutations.

(4 2)

The 6rst term on the right-hand side, g», which corre-
sponds to the third particle not interacting at all, is

really part of the two-body energy and is an example
of the unwanted exceptions we spoke of earlier. We will

eventually subtract away its eRect from T~3~.

Equation (4.2) and its two cyclic permutations
form a set of three, coupled, integral equations for
T&", T&@, and T~3&. As in the case of the two-body g
matrix, these integral equations are best solved by
transforming the problem into coordinate space and
solving for suitably de6ned wave functions. It should
be noted that in Eq. (4.2) we have dropped the ex-
clusion operator Q which would ensure that the inter-
mediate states of particles 1 and 2 remain above the
sea. This approximation is similar to the one made in A
for the two-body g matrix and is justihed by the same
arguments. The single-particle energies that go into the
denominator e are given by the same reference spectrum
as in the two-body case.

I,et us now define three-body wave functions%'&" by

T('&C =g»W'), and cyclic permutations, (4.3)

where C is the unperturbed plane wave three-particle
state. It follows from Eq. (4.2) that

@(s)—{ I &
—t{T(t)+T(s)I7@,

=C —e '{gss+(')+g»O") I, and cyclic permutations.

(4.4)

The wave functions +(" and the above equation (4.4)
are the three-body analogues of @(r) and its equation
(2.2) for the two-body case. As in the two-body case,
if we convert e 'g,, into diRerential operators in the
variables r;;, then (4.4) would give a set of coupled
diRerential equations for 0'&@.

The operator e, deceptive in its abbreviated form, is
more complicated than in the two-body case. In every
three-body diagram, the 6rst and last energy de-

nominators correspond to two nucleons being excited
and the third below the sea. Thus, in Fig. 6, at the
level C, nucleons 1 and 2 are in excited states a and p
whereas 3 has returned to the state n below the sea.
Every energy denominator except the Grst and the last,
such as at level D in Fig. 6, corresponds to all three
nucleons in excited states. Using the reference spec-
trum" (see A) both types of energy denominators can
be expressed in the form (tts*) '( —V@'+y'), but the
value of p, using typical values for all the mornenta
involved, is higher when all three nucleons are excited.
To be more explicit, at level D,

e=E(a)+E(b)+E(d) .
—E(l) —Z(ns) —E(ts),

= (2ns*) '{a'+b'+d' —P—its' —ts'+66k) s7,

= (tN*) '{k ss+I' st+ '(d' P t-ts' t—s')+—35k—'7
"This is the BBP spectrum described in A. Briefly, we will use

it in the form E(b) =(vs~) ~(b2)+22 for b&k~ and B(N) =.
(m*) 'g'+A~ for e&kp with h de6ned by Aq —Aq=b, kg'.
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But P,&,
——

~~(a+b) =
2 (1+m+n —d) by momentum con-

servation.

P zm=-'(P+m'+I'+d') averaging over angles,

e —(m+) —
1I k 2+x(3d2) z (lz+yg2+~2) +3+421

= (m~) 'I —V»2+-'(3d') +(3l,—0 45) k&,"]. (4 5)

923

0'

gi3

Using (P)= (m') = (zz') =0.6k& ', thus

with
e = (m*)-'( —V»z+yzz),

yzz = -'(3d') + (3a—0.45) k&". (4 6)

The value of the particle momentum d can be typically
taken as z&/2c from the arguments in Sec. 2 for the
most probable momenta excited.

On the other hand, at the level C in Fig. 6, where
only two particles are excited, the energy denominator
is on the energy shell, i.e.,

where

e =E(&z) +E(p) —E(l) —E(m),

= (m*)—'I k. '—k&~'+25k&,"],

= (m*)-'(-~ '+V'),

y~' ——2akp' —k)~'

(4 l)

= (2a—0.3)k,'«~P (4 g)

Therefore, even using average values for the momenta
involved, there are two distinct energy denominators,
similar in form, but with diferent y s. In either case,
we know from Sec. 2 how e 'g;; operates on the two-body
plane wave state. It eGects only the relative coordinate
r;, and gives

e g,, {exp Li(k r;,+2P R;;))I

=i&, p(r;, ) exp (2iP R,,), (4.9)

e-'g;, C =g(r;;). (4.10)

Here we have used the limit of zero momenta for all
hole states, so that C =1.This approximation, reason-
able inasmuch as the average hole momentum is

where l&, ,p(r;, ) can be obtained from (2.4) and its
general features such as "healing" etc. were discussed.
Clearly f depends on the value of y; let us use the
symbol » to denote this function when y=y2 and t
itself when y=y~. To incorporate the distinction be-
tween z&(r;;) and t'(r,;), the former occurring when
two particles are excited and the latter when all three
are, we split the %&o in Eq. (4.4) into (0'&'& —C) and C.
When e 'g;; acts on C, clearly only the ith and jth
particle are excited. Hence

(0.3)"'kg~1/3c, will be used in all subsequent dis-
cussion. Thus, Eq. (4.4) becomes

C' —4&'& =e 'g»C+e-'g»C —e—'g»(C —4&n)

or
—e-'g»(C —@&'&)

Z&'&=&&(r»)+z&(r») —e 'gzzZ&'& —e 'g»Z&'& (4.11)

where Z(') =C —0'&@. We thus have to solve the three
coupled differential equations implied in (4.11),for the
Z&@. Since each Z("=C —4&') represents an excited
wave function with no initial state in it, the operation
of e 'g;, on it will involve only the function i (r,;), and
not z&(r &).

However, the Z&') are functions of all three coordi-
nates. Therefore, to 6nd the result of operating e 'g»
on Z&" (rz, rz, rz), one must first Fourier-analyse Z&'&,

replace exp (zk. r») by f , &(pr)»in each Fourier com-
ponent, and then perform the inverse Fourier trans-
formation. The resulting function is of course not
related in any simple way to Z&'&(rz, rz, rz) and the
coupled equations (4.11) are not easy to solve. Conse-
quently, two approximations, a simpler one due to
Bethe and an improved version due to Day, have been
suggested for obtaining the Z~'). We will present both
of them here. Once the Z&') are known, the three-body
energy is easily obtained in terms of these functions.
Thus (lmzz

I

T&'&
I

lmzz) is just the sum of all diagrams
of the type in Fig. 6, which end with g~2 and have all
possible combinations of g;; underneath with one ex-
ception. The diagrams shown in Fig. 7 have no analogs
in the Goldstone series since they do not conserve
momentum. Noting that the state at the level D in
Fig. 6 is% 0&, whereas it is C at level D in Fig. 7, we get,
on removing the term of Fig. 7,

(lmzz I
2' z~

I lmzz) = (C'
I g» (—e)

—'
I
g»+"'+ g»e"')

—(C'
I g»( —e)-'(g»+g») I

C )
= (C I

g»~z
I

g»Z«&+ g,@&»)

1
~(r») f g(r») Z "(rzrzrz)0'

+g(r18)Z (rlr2rz) I dT1 d72 dTS (4 12)

where 0 is the volume of integration,

I 2 3 2

Fxo. 7. Two "three-body ladder" diagrams which have no Gold-
stone analog.
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n

(b)

FIG. 8. Two Goldstone diagrams in third order, which are not
contained in (inse

~
T

~
L))sn ).

Some comments are due concerning equation (4.12) .
In deriving it, we have explicitly written out two
powers of g, i.e., the top two "rungs" of the three-body
ladder, and left the rest in the wave functions Z"& and
Z"'. To be more precise, we have written

«mrs I
2'&s&

I
lmrz&= (C

I g„e—'
I

g„Z&'&+g„Z&'&) (4.13)

instead of the original definition

«mrs I
2'&s&

I
lmrz& = (C'

I g» I
+"'& (4 14)

There are many reasons for this. First of all, this
explicitly brings out the last energy denominator which
corresponds to two excited particles, and leads to
(C' g»e '=(s&» I. Secondly, the pure two-body term
(C' gis I

(I) present in (4.13) has been removed in
(4.14). Thirdly, of course, the unwanted diagrams in
Fig. 7 have also been removed by the use of Z('~ and
Z(@ instead of 0«'& and 0'(@.

It should also be noted that the g matrix is not a
function of the coordinates alone, as assumed in the
last line of (4.12). Whereas at large distances g(r)~
t)(r), at short distances g is highly momentum-de-
pendent. As shown in Sec. 2 and in Day's preceding
article, one may write

e 'gC =f,
where, inside the core, t =C Hence, . inside the core

g=e= (m*) '(As+ps) in the reference approximation,
where k is the momentum corresponding to the relative
coordinate r in g(r). Incorporating this momentum
dependence is complicated by the fact that the integral
(4.12) involves g(rss), which depends on Ass, along with
functions»(r») and Z&'&(rir, r,), which involve other
coordinates. This problem will be discussed in Sec. 5.
For the time being let us consider the g(rss) and the
g(ris) in (4.12) to be independent of momentum, but
evaluated at a suitable average value of the relevant
momentum. Finally, as mentioned at the beginning of
this section, there are some Goldstone diagrams which
are not present in such "ladder" sequences. For the
three-body case, the sum T&'&+2'&s&+2'&s& defined above
does not include the "hole—bubble" diagram and the
"hole—hole" diagram shown in Fig. 8(a) and 8(b),
respectively. However, Fig. 8(a) is a component of
the standard expression for the potential energy of hole
states (see also Sec. 7) . Diagram 8(b) can be explicitly

calculated by integrating the product of the three g
matrices over the independent momenta. This diagram
has been shown by Rajaraman" to be smaller by a
factor of about s-'—, compared with 8(a); it could prob-
ably be absorbed into U(m) and U(rz).

Subject to these remarks, T('~ and similarly T&" and
T&s& can be evaluated from Eq. (4.12), once the func-

tions Z'&(rirsrs) are known. I.et us now proceed to
evaluate these functions from the coupled equations
(4.11).

Three-Body Wave Function

It is useful to change the coordinates in (4.11) from

ri, rs, rs to ris ——ri —rs, ps= —,'(ri+r, ) —rs. We then
have,

e 'gisZ ' (ris, gs, rs) =Z ' (r», ((&s, rs),

=8(2 )~f O'Pf d kt~p('r ), „
X exp (z2P ys)Zr&s&(P, k, r,), (4.15)

where Zz &'& (P, k, rs) is the Fourier transform of Z given

by

Zr&s&(P, k, rs) = dsps' d'ris' exp ( z2P —ys')

X exp ( —zk ris')Z"&(r»', (os', rs). (4.16)

The coordinate r3 is unaffected, and this corresponds to
keeping the particle 3 fixed instead of the center-of-
mass. It should be noted that t),p( its) actually depends
also on the momentum of the third particle through the
factor y, I

see Eq. (4.6)), but, as can be seen from Fig. 1,
the function t does not vary much with p for large pt,
so that an average value may be used. Subject to this,
Eq. (4.15) is still an exact representation of the operator
e 'g~2. Now, for r&2&c, we have

f'gp( r») = exp (zk ris),
so that

Z,&'&(r», ys, rs) =Z&'&(r», ys, rs) for r»(c. (4.17)

For r~2&c, both the Day and Bethe approximations
involve pulling the function f(ris) outside the integra, l

in Eq. (4.15), in some average sense. To justify this,
we first note that in the reference approximation, the
strongest dependence of i'), ,p(r») on the angles of P,
k, and ris is contained in Pl, (k r»), so that upon inte-
gration over d'k, only the 8-wave part t'

, (srp») sur-

vives. Of course, the integrand also contains the Z
function which depends on k as well. However, Kirson
has shown that the conclusion, viz. , that only the
5-wave part of t matters, is nevertheless justified.
One reason for this is that the components f~ for LAO
are relatively small because the core does not have a
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strong effect. There is only a very small dependence
on the angle between P and k due to Pauli corrections
etc. Further, as shown in Sec. 2 for r~2)c, the S-wave
function i&,&'(r») is nearly independent of k and I'.
The dependence on I' arises through y~, to which

f&,I (r») is not very sensitive, and the largest de-
pendence on k arises because of matching the function
at the core radius c, with the interior solution j$(kr).
Thus it is reasonable to treat f$,I (r»)/j$(kc) =f (r»)
as essentially independent of k, and I', as long as
these momenta are not large compared to c '. Hence
we may write

Zd) "( „,p.. .)

Z's in terms of the g's and f's, which we know by solving
the reference equation (2.4) . We get

(3)
'9232123+'91$N1$ '912(N13+2323 N13N23) d )

N23N13+N13N12+2$12N23 2112123N1$

where

and

We can insert these Z&'& into the integral (4.12) for
the three-body energy.

Take, for instance, diagrams of the type shown in
Fig. 6. These diagrams, summed over 1, m, e, give

8 de d3l3f), ,p(r„) exp (2iP p3)Zr&$)(P, k, r$) ~ 2 . . , ,Z(1),
27r ' W=p' qjr~2jgjrp3)Z (fgI213) drj dv.2 per particle,

8
P(r„) d'P f d% exp (zlzz c)

(22.)3

X exp (2iP p$) Zr &3) (P, k, r3)

t (r») Z"' (c, y3, r3) . (4.18)

This is the Day approximation. The vector c is directed
along r», and f (r»)& which is normalized to unity at
the core radius, has to be evaluated for values of k and
P at which the Fourier transform Zp~3& is peaked.
Kirson, " who explains the above approximation with
greater care, shows that Zz&3) is peaked around k I'~
0.6/c. This will be elaborated on later.

The Bethe approximation treats f'3 z'(r»)/j$(&r12) =
p(r») as independent of k, I' rather than iD(r12).
In this approximation,

Z, &3) ( r,2, y3, r,) $8/(2') 'j| (r12) de d3k

X exp ($k r12) exp (2iP p$)Zr&3)(P, ir, r3)

=P(r»)Z"'(r», 9$, r3). (4.19)

This is the Bethe approximation, which replaces e 'g~2

simply by a multiplicative factor f'o(r») . We will first
use the Bethe approximation which, because of the
above simplicity, leads to an algebraic solution to the
coupled equations (4.11) and reveals transparently
some of the features of the three-body problem involved.
%e will then use the more accurate but more compli-
cated Day approximation and discuss its merits over
the Bethe approximation.

In the approximation of Eq. (4.19), the coupled
equations (4.11) become

Z "=I) ( r ) + ())r„)—t' ( r, )Z ' —f' ( r,)Z "
and cyclic permutations. (4.20)

Equations (4.20) can be solved algebraically for the

(4.22)

and
Z")~»+I)» (4.23)

II ~II III p 'Q(r») g(r23) II)(r») +I) (r») I drl dr2.

(4.24)

It is easy to see that Eq. (4.24) is just the sum of the
third-order direct diagrams in Fig. 3(a) and 3(b).
Kohler" had obtained a similar form for the diagram
3(b). The fact that W becomes just the third-order

» H. S. Kohlcr, Ann. Phys. (N.Y.) 12, 444 (1961).

where particle 3, instead of the center of mass, is kept
fixed. Note that one of the 0's in Kq. (4.12) is cancelled

by integration over the coordinate of the fixed particle 3.
The result (4.22) is proportional to p', as expected on
physical grounds for three-body clusters.

Whereas we can evaluate Zo) from Eq. (4.21) and
integrate (4.22) for W, it is useful, as shown by Bethe,
to study the solution in certain limiting cases using
simplifying approximations to gain some insight into
what is going on. Let us, as before, replace C =

~

lrlr$) by
unity since the hole state momenta are small. Let us
also take 3)(r@) and f's(r, ;) to depend only on the
magnitude of r@.This is reasonable, as explained before,
since we are using averages over the momenta anyway
and the angular averaging will pick out only the 5-wave
parts. (BBP show, $ for instance, that 3) and f for
I./0 can be represented by a function of the type
e I"/r outside the core with a somewhat larger value
of 7 than the true value. ) In this approximation and
in uniform nuclear matter, the functions g, g, and Z&@

all depend only on the relative separation distances r;;,
since no directions have been picked out in space.

Now take the case when all three particles are far
apart, i.e., r;,—+~.Then t' (r@)-+0and N(r@)-+1.Thus,
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energy for large r;j is reasonable since at these distances
the potential is weak enough to give a good convergence
order by order and the third order clearly dominates
the three-body energy. To see the behavior for smaller
values if r,;, let us look at the case

~12 ~23

Then N12 ——N18
——123——I=1—t and 3)» ——

3)28 ——g» ——3). Thus,

converge. (See, for instance, Sprung and Bhargava's
work8 using the Bressel potentiaP with only a finite
core of about 650 MeV. )

Thus we see many of the anticipated features of the
three-body problem in this simplified discussion. More
exact results can, of course, be obtained from Eqs.
(4.21) and (4.22). We note at this point that Eq.
(4.24) may be written as24

Z(') =23)/(3 —2N) =23)(1+2''). (4.25) ~111=P' g(r28) ~.(r23) dr23,

If the distances r;; are very small (within the core
radii), then /=i and

where

Z(1) —23)/3 (4.26) (r23) '9 (212) I)) (r12) +3)(r18) } d&1. (4 28)

This clearly corresponds to the very strong potential
in the core region, and hence represents all orders of
perturbation. This result is a third of Eq. (4.23) which
represents only the third-order contribution. This dimi-
nution by a factor of 3 in the core region, in going
from third order to all orders, may be partly understood
thus: When two nucleons are within a core radius
apart, the infinite core completely destroys the wave
function in that region and leads to a large f and large
energy. When three nucleons are all within each other' s
cores, an uncorrelated treatment will give three times
this energy since three such pairs are involved. This is
what happens in third order. In actuality however,
we can do no more than destroy the wave function
once when all the nucleons are close together, so that a
fully correlated treatment (full three-body energy to
all orders) will give only 3 of the third-order energy.
Actually, when all r;j(c, this solution is exact, since
under these conditions, f';;=2),;=@ g;;=1 so that the
original coupled equations (4.11) become

Z(3) —2+Z(2) +Z(l)

However, when all r;;&c, the three particles are in
identical situations and hence by symmetry Z&o =Z&"=
Z 3 This solution, simple and exact for all r;j(c&

should be remembered in the context of the Day
approximation as well.

Finally, for small f, one can expand (4.25) as

Similarly, for the full three-body energy

~=)3' g(r23) ~1(323) dr28,

where

Fl(r23) = 2) (r») Z(') (r», r23, r») d3'1. (4.29)

We will give graphs of the functions F„FI,using the
more accurate Day approximation for the Z~@, which
we will outline now.

Day's Approximation

Day approximates the action of the operator e 'g, j
by Eq. (4.18) as compared to the simpler multiplicative
approximation by Bethe in Eq. (4.19) . It is clear that
Day retains more of the operative character of e 'g,;,
and, as we shall see, his resulting solutions for the
Z&') are considerably better. As the Z&'~ are functions
only of the interparticle distances, we can rewrite the
Day approximation (4.18) as

g12Z (312 223 318) Z (r12 r28 r13)

(r12) Z ((' 228 r» ) (4 30)

where r23' and rI3' correspond to the coordinates e, y3,

Z(') =23)/(1+2'') =23) 43)/+83)t 2—16+3+ ~—. (4.27)

This series represents the contribution of three-body
diagrams, order by order. It is clearly not convergent
for t )2. For large interparticle separations, t —+0, and
hence the series converges rapidly, so that a few lower
order diagrams suKce for the pure long range part of
the force. Within the hard core, however, t =1 and the
terms in the expansion (4.27) keep increasing although
the whole series has a closed sum of 23)/3. Even for any
reasonable "soft" repulsive core, f is still a little greater
than ~ and the perturbation expansion above will not

FIo. 9. Triangle formed by
the three particles in coordinate
space.

!2

24 All these formulas are valid only if g may be written as a
function of r.& alone. For a more general treatment see Secs.
5 and 6.
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and rs in the Eq. (4.18), and their meaning can be
read from Fig. 9. The Day approximation thus diGers
from that of Bethe, in that it "shrinks" the triangle of
the particles in addition to multiplying by f'D(r»).

Note that for r»(c, Z, @&=Z"& LEq. (4.17)1 and
f'(r»)=1.

Substituting (4.30) into the coupled equations (4.11),
we get,

(«12, r,s, ris) =&&(«23) +&&(ris) —f («23)

(«12 «23 «13)

Z&'& (ris', c, ris')

if r23(c

if r23)c
—P(r»)

(«12«23«13)

Zo& (ris', r»', c)

if rg3&c

if r23) c

(431)

These equations correspond to Eq. (4.20) of the Bethe
approximation and, unlike the latter, cannot be solved
algebraically, since Z~3& at one set of points is coupled
to Z&@ and Z&" at other points on the "reduced tri-
angle. " Of course, if all r;,(c, then the solution is
Z&o=-', q. Similarly, if only r»)c, then r»' and r»' are
necessarily less than c, so that Z&'&(c, rs, ', r»') =-,»,
and this again leads to an analytical solution of (4.31).
But, for the general case where at least two of the r;;
are greater than c, one has to resort to a numerical
method. The method involves substituting for the
Z&'&(r»', c, ris') and Z»&(r»', «23', c) in Eq. (4.31)
from the other two coupled equations, which leads
to points on a smaller triangle. If this is repeated
successively, you eventually reach (in general) a

triangle where at least two of r;;(c, when the
solution is known. Day has calculated this numerical
solution for several values of r;;. However, the method
does not work for some instances such as when all
three particles are collinear, in which case you never
reach a stage when two of the distances are less than c.
In the more general case, the numerical solution is
laborious.

Consequently, Day has suggested that Eqs. (4.31)
be replaced by an approximate form which is amenable
to an analytic solution. The wave-function defects Z&'&

are large only when the r@~c, and all the f's and 2&'s

drop oG rapidly for r;;)c. But if r» is not much larger
than c, then r~e' r~3 and r23' r23. Thus, one might try
to replace Eq. (4.31) by

Z' (r12 «23 «13) = (»23«)+(»r)»f («23)

Z&'& (r,s, rss, ris)

Z&'&(ris, c, ris)

if r»(c

if r23) c

—F(r»)
Z&'&(r„, r, , «,;)

Z»& (r», rss, c)

if r»(c

if res)c

(4.32)

These equations are amenable to an analytic solution.
This simply involves substituting for Z&o and Z&') from
the other two coupled equations when you get two of
the r;; to be equal. One can then exploit symmetry
properties such as Z"&(c, rss, c) =Z'2&(c, rss, c) and
Z"'(c, c, r) =Z&'&(r, c, c) to solve the set of three
equations implied in (4.32) . The result is

Z ' (ris, r», ris) =g»(1 t»+21»f—'23)

+s&13(1 t 12+2$12$23) 'f23 $12+/»+$12t 13)

+Lf »f is+r'(t'»+f'») t 23
—xf'»f'»t'23$) (433)

with»;, =»(r;;) and f,;=t' («1).
This is Day's analytic solution to (4.32) . Day 6ndssi

that it agrees very well with the numerical solution to
his original equations (4.31). Further, Kirson» finds
that when the analytic solution (4.33) is substituted
into the right-hand side of (4.31), the resulting iterated

solution for Z»&(r», «23, ris) is very close to the analytic
solution. Two of Kirson's graphs comparing the analytic
solution (4.33) and its first iteration are given in Fig. 10.
Since the analytic solution agrees very closely with its
erst iterate and with the numerical solution to the
more exact equations (4.31) evaluated by Day for
several sets of values of r;;, and since (4.31) itself is
only an approximation, we will use Eq. (4.33) for the
Z(i).

This analytic solution by Day is considerably better
than the simpler solution (4.21) for the Z~'&. First of
all, the underlying approximation for the operator
e 'g;; in Eq. (4.18) is more accurate than the corre-
sponding Bethe approximation in Eq. (4.19) . Secondly,
the Bethe solution has drastic discontinuities which
occur sometimes when one of the r,; equals c. This may
be partly understood by considering the solution (4.21)
when all r,,~c+. Then the @=N1 f;P tend t—o vanish
and the solution approaches the indeterminate form
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(a) (b)
FzG. 10.Two graphs due to Kirson" comparing Day's analytical

solution (solid line) and its first iterate (dashed line). Graph
(a) isforalir;;=rwhilegraph (b) has«~=~ «s —«s ~

and«s=1. 5c.

used on the right-hand side of (4.31), the resulting
iterated solution is completely different, in contrast to
the behavior of the Day solution, Fig. 10.

It should be mentioned at this stage that having
obtained the Z&@ by the above methods, Kirson evalu-
ates their momentum transform and finds it peaked
at k, P~0.6/c. This was mentioned earlier in con-
nection with Eqs. (4.18) and (4.19),where the function

f had to be factored out of the integral for the Z, &'&.

This factoring was justified only if the |' was relatively
independent of k, P, which is true only if they are less
than 1/c. It is therefore gratifying that the momentum
dependence of the Z&" conforms to this requirement.
Further, Kirson finds that if k, P 0.6/c are used as
input in Eq. (4.19), the resulting Z&'& give an output
momentum dependence which agrees well with the
input.

iiz"'

.2-

!.5 c

FIG. 11.A comparison of the
Day and Bethe solutions,
exhibiting the strong discon-
tinuities of the latter {solid
line) as compared to the former
{dashed line). The graph is
drawn for r12 ——1.5c, r,3 =
I «I-«s I.

0 I. 2. 3

23]

» T. Dahlblom, Nucl. Phys. {tobe published).

0/0, whereas when all r;;(c, we know the result to be
Z&@=3 When r23 and r~3 are less than c, the Bethe
solution gives

Z&'& = (1—i)») /2N». (4.34)

If now r» approaches c from outside, the above solution
is highly sensitive to the exact behavior of rt» and f»
near the core, whereas for r»&c, it is equal to -', . There
are no such discontinuities in the Day solution.

A comparison of the Day and Bethe solutions is given
in I'ig. 11. Of course, the three-body energy and the
function Ii, and Ii~ involve imtegrals of the Z&@ and
consequently the two solutions give comparable results
since the discontinuities do not matter here. But
Dahlblom, " doing the corresponding calculation for
tensor forces (see Sec. 6), found that the Bethe pro-
cedure led to great di@.culties while the Day method
was straightforward. With central forces also the Day
solution is clearly more accurate. This is especially
clear from Kirson's work: If the solution (4.21) is

(o) (b)
E& rG. 12. An exchange diagram represented in two equivalent ways,

Exchange Diagrams

The problem of exchange diagrams may seem compli-
cated inasmuch as for every direct diagram you can
exchange any of the interactions, or "rungs of the
ladder" in the diagram. However, as is illustrated in
the example in Fig. 12, when you exchange an inter-
mediate interaction, the resulting diagram can be re-
drawn so that it looks like a direct diagram with two
of the final momenta 1 and m exchanged, as compared
to the initial ordering of the three momenta. Thus
Fig. 12 (a) and 12 (b) are equivalent. It is clear therefore
that no matter how many of the interactions are ex-
changed, the result would simply amount to permuting
the final momenta 1, m, and n. Thus, all direct and

This completes our discussion of the evaluation of
the three-body wave-function defects Z"&. The Day
solution (4.33) may be used for evaluating the function

or the more complicated expressions derived in
Secs. 5 and 6 and the three-body energy as defined

by Eqs. (4.29) and (4.12), respectively. We will quote
the results after discussing exchange diagrams.
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(a) (b)

FxG 13. Comparison of a direct diagram belonging to
(le T lmn) and an exchange diagram belonging to
(llama l T ' lrae)

exchange diagrams would be contained in (lm»
~

T
~
fme),

(tmln (
T [ le), (ln1n

~

T
( lms), (nihil [ T

~
ltsn),

(mml [ T [ lmw), and (Ntm
(
T

(
tmn) T. he exchange dia-

grams, however, carry additional statistical weights as
compared to the direct diagrams, if one uses spin-
isospin-independent forces."For such forces, each parti-
cle retains its spin —isospin values, and hence all states
on a given vertical line in the direct diagram have the
same value of s, and r„although any two vertical lines
may have different spin and isospin components. How-
ever, for an exchange diagram such as the ones in
Fig. 12, both the states 1 and m must have the same
spin —isospin since a particle from each of these states
goes into the other. Thus, the number of allowed
states, and hence the contribution to the energy, is
reduced by a factor of 4. In addition, if these diagrams
are drawn in the Goldstone Convention, it can be seen
that Fig. 12 corresponds to only two nucleon loops,
unlike the three in a direct diagram. Consequently,
according to the Goldstone rule, there is an additional
minus sign associated with Fig. 12, and altogether,
therefore, it is multiplied by ——,

' due to the above
arguments. Similarly, when all three nucleons inter-
change momenta, as in (mnl

~

T
~

/me), there is a multi-
plicative factor of +1/16 since now all three nucleons
must have the same s, and v„with only one nucleon
loop altogether. These arguments clearly have to be
modified for tensor forces.

But for these statistical factors, the matrix elements
(lcm T lme) and any one of its exchanges, say
(ham T lcm), are not very different. Compare, for
instance, the two diagrams in Fig. 13 which are corre-
sponding terms belonging to (inn

~

T
~

lmw) and
(lcm

~
T

~
lnzts), respectively. For every set of inter-

mediate momenta in Fig. 13(a) there is a term with
the same set in Fig. 13(b). The only difference is in
the Anal interaction. The Anal interaction has different
matrix elements for the two cases, since the momentum
transfer in the two cases is different by q =m —n. But

l.4 - F

LZ

4-

I I I I I I I I I —r0 I 2 3 4 5 6 7 8 9 tO 2&]

Fzo. 14. A graph of the functions F„ t~, and fs de6ned in (4.28),
(4.29), for a standard hard core potentiajn

since m and n are holes, the average value of qc=
(1.2)'l'ks c~0.6, and it was shown" in the context of
third-order diagrams that the resulting difference is
only a factor of about -', q'c', i.e., about 6%. Therefore,
up to a few percent, the direct and exchange matrix
elements of T are equal.

It was also shown by Bethe' that, in the approxi-
mation of neglecting q'c', the inclusion of all exchange
terms amounts to using even angular momentum con-
tributions only. This has no effect for a Serber-type
attractive force, which acts only on even I. states any-
way, but it cuts down the repulsive core effect to only
the even I- states, supporting such an assumption that
had been made by Brueckner and Gammel" in their
g-matrix calculations.

Several calculations have been made, using the above
method for evaluating the three-body energy by Sprung,
Bhargava, and Dahlblom, ' and by Kirson. " Kirson
uses the fuB standard hard-core potential, including
the short- and long-range parts, to obtain an energy
of —5.15 MeV for the three-body clusters. His curves
for the functions &&(r»), &,(rs,), and fs(r») defined
earlier are depicted in Fig. 14. As anticipated, for
large r»/c, all three functions approach the same value,
1. At small distances, Ii~ is about a third of F„as
expected from Eq. (4.26) . The curves have been drawn
to a scale where Fs(r»), the corresponding function for
just the third-order bubble diagram, is taken to be
unity.

The diminution from —38.35 to —5.15 MeV in going
from the two-body to the three-body contribution indi-
cates that our hopes of convergence in powers of density
appear justified. It will be seen in Sec. 7 that the long-
range part v~ contributes most of the —5 MeV in the
three-body energy, and that the energy for just the
short range part is a small positive amount. Ke there-
fore can expect a four-body energy of much less than
1 MeV for v, . It will be shown in Sec. 7 that most of

"K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

~7 D. W. L. Sprung, P. C. Shargava, and T. Dahlblom, Phys.
I.etters 21, 538 (1966).



760 REVIEWS OP MODERN PHYSICS ' OCTOBER 1967

2.0.-

I.5.

of 2 particles while "earlier" propagators correspond
to excitation of 3 particles, as explained in (4.5), (4.6) .
Equation (5.1) is somewhat more general than (4.12)
in that the momenta in initial and Anal state are not
yet put to zero. Following Kirson and the discussion
in Sec. 4, we shall assume that the three-body wave-
function operator Z~'&, operating on the unperturbed
wave function

~

E'0) =C, may be written as

I.o. I.O
0.9'5

Zo}
~
E0) =Zo}(r]g r» r3i) C'(Ep),

'

(5 3)

0.5

I.O 2.0 5.0 4.0

FIG. 15. The functions F„F1,and fq using the Reid potential' for
triplet states.

where C (E0) is the unperturbed wave function (product
of three plane waves) and the function Z"& depends
only on the distances between the three particles, not
on the directions of the vectors r~2 etc.

The problem then is the matrix element of g23. This
quantity depends appreciably on the relative mo-
mentum of particles 2 and 3 in state E~. To see this,
we write

gg}}
~
Ei) =ef', 3 ) Ei), (5.4)

the higher order effects of' ~~ can, on the other hand,
be absorbed in the single-particle potential energy U(b) .

A more recent calculation by Dahlblom of the func-
tions Fi, F„and fi, is given in Fig. 15. This calculation
uses the Reid potentiaP of 1965 for triplet states, which
has a hard core of about 0.52 F and consequently a
stronger attraction outside.

5. EFFECT OF THE MOMENTUM DEPENDENCE
OF THE g MATRXX

We now proceed to a systematic evaluation of the
three-body energy. In particular, we shall take into
account the momentum dependence of g which was
mentioned below Eq. (4.14) but was then ignored in
the remainder of Sec. 4. To do this, we must go back
to the fundamental Eq. (4.12), line before the last.
From this, or from Fig. 16 (which is just Fig. 6 with
different features emphasized), we find, in slightly
different notation,

W, (E,} fdEidEsiIC=s
~ ijm }Xii

&& (E; I g» ~

E'2)(E~
~

Z '
[ Eo). (5.1)

where i» is the two-body defect function as defined
in Sec. 3, and the operator e may be written in the
reference spectrum approximation

e =y2 —V232 (5 5)

(5.6)

g23
~
Ei) = (k23'+y') [ Ei), if r I(c, (5.7).

where k23 is the relative momentum of particles 2 and 3
in state EI. The contribution from the core surface
(Ref. 4, Eq. (5.28)] is less sensitive to the energy of
state EI, and that from the long-range, attractive

state K

As is shown in BBP, y increases with increasing excit-
ation of the state Ei. Therefore, just becalse f is very
insensitive to Ei (Ref. 6, p. 809), g is very sensitive:
it increases rapidly with increasing energy. This is
particularly true for the contribution from inside the
core; we have

~ =g (Q/), (5.2)

Here each E; stands for the momenta of all three
particles; specidcally Eo refers to the initial and the
others to the two intermediate states. The final state
is of course identical with the initial. The q, g, and Z
are operators and have therefore been denoted by a 5,.
The first operator represents

state K,

state K&

FIG. 16. A three-
body diagram. Eo,
E1, and E2 each
stand for the mo-
menta of all thre
particles at the re-
spective stages.

i.e., the last interaction and the preceding propagator.
The last interaction is separated from the rest in this
manner because the e here corresponds to the excitation 'i state K
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forces is insensitive, viz. ,

g23 I
lti&-8)(F8)

I 1~8&, &23++&. (5.8)

g28 I 1~1& f28(1828Apg r28) C (%), (5.9)

where C (Ez) is the product of three plane waves corre-
sponding to the momenta in state Ej, and g» is simply
a function of r;3. If this is assumed, the integration
over Ez and E2 in (5.1) can be done immediately and

A simple approximation was made by Kirson: He
replaced g by its value for the u~t.rage momentum k23

of the interacting particles. He justified this approxi-
mation by his finding that the distribution of the
momentum k23 in state E~ is sharply peaked around its
average value of about 0.6/c Lcf. this paper above
(4.19)].Hence Kirson puts 923 I K&=gPA(r28) c (%), (5.11)

where P and k are, respectively, the average and the
relative momentum of particles 2 and 3 in the state E~.
The function g depends on both these parameters, and
it is therefore not possible to effect "closure" with re-
spect to E~. However, closure is possible with respect
to E2, and leads to the result

gives

~3(&o) = (&() I
n*(&82) g28*(&23)~"' (F82, F8, F88) I &()&p

(5.10)
substantially equivalent to (4.12).

Because of the considerable sensitivity of g23 to k23,
the choice of k23A„ in the Kirson approximation is rather
critical, and it is Dot clear what criteria to use. Bethe
has given a more general solution. He writes

W'(Zr) e'f &i'=(r(Z& [ e&r [ E&)(Z& [

g'8&'&
[ Ee), (5.12)

(Z, [
gZ»

[
Z)= r„gf grrgre(r)Ze&(r„, r„,r) exp(( pp&&+28) r„, (5.13)

(Zo I g I Zz) = d'rid*(F82) exp i(p3 p2+—2k) r28 (5.14)

48'+V'= 4' (5.15)

neglecting kp' compared with k~'. Then, considering the
two components (5.7) and (5.8) of g and assuming
that the contribution from the core surface has an
intermediate behavior, it is reasonable to set

gP)e(&28) gl(r23) +~ g2(r23)

Here we have used both equations (5.15) .
(5.16)

Here p~, pm, p3 are the initial momenta of the three
particles in state E(), and 2k, as in (5.11), is the diEer-
ence between the momenta of particles 2 and 3 in the
intermediate state E~.

Two alternatives are now open. One is to calculate
and use the exact expression for gPA(r28); then no
further simplification of (5.13) seems possible. The
other is to find a manageable approximation to the
dependence of g on P and k; this is probably sufhcient
because the entire three-body correlation contributes
less than 20% to the total potential energy of nuclear
matter. Such an approximation is suggested by (5.7)
and (5.8), together with (4.5) and the discussion of
BBP Sec. 7. The state E~ is characterized by the
excitation of only two particles, 1 and 2. In this case,
if k8 denotes the momentum of particle 2, (4.5) shows
that in (5.7)

k„=k=',kg

and

g»(r) y(r) =s(r)y»(r), (5.17)

where &=exp (zk r) and P=g[[p —l' is the two-particle
wave function with interaction. In practice it is prob-
ably best to calculate gp& by explicit integration of the
Schrodinger equation for several values of k on both
sides of the most probable value of k determined by
Kirson (k=0.6jc), and then to deduce gi and g2 from
these. Such a program has been carried out by Dahl-
blom."

If (5.16) is accepted, integration of (5.13) over Ei
is straightforward for g&.

' The factor k' multiplying g2,
on the other hand, can be combined with the g matrix
element, if we assume

I P3 f I«2&—(5.18)

'8The asymmetry in X1 and X& is arbitrary. It would be
equally possible to let g depend on the momenta in state E'&,
then closure with respect to EI could be accomplished. However,
XI is more simply defined by the two-body function y1 while
IC requires analysis of the complicated 3-body function Z.

Before (5.16) can be used, it is still necessary to make
assumptions about the nuclear force, as follows:

(1) An ordiN(zry (nonexchange, central) force be-
tween the nucleons, which may include a repulsive
core, can be represented quite well by (5.16) . In evalu-
ating g& and g2, the definition of g should be remembered:
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)rr(rr) f=d' rrrd'rn[g'(r rr) 3 r(rrr)

——V at*(rta)ga*(ras))Z"'(ala ras 3'31) ~ (5 19)

Since both q and Z&'~ are essentially independent of
the momenta pj, y3, p3, this result may simply be multi-
plied by p' to give the energy per particle. The effect
of nonvanishing momenta p~, p2, ya can be treated
approximately, using the method of Kirson. »

Equation (5.19) can be further simplified. Since g
depends only on r23, we can integrate over the position
of particle I, i.e., over r», keeping r» Axed. This yields

&i(rr ) frPrl-rrr*( 12)8"'(rlr, rrr rrl) (5.20)

Fa(ras) = ——.
' &'ala(~'9 (312))Z (312 r28 rsl),

(5.21)

which is generally a good approximation since ps and

pa are (ks. The result is then"
fact'0" that the nucleon —nucleon potential is more
attractive in the 'S than in the 'D state.

(a) If it is assumed that the Serber force 3), acts
only for large r, we can proceed as in (5.8) and can
replace P(r) by the unperturbed wave function (t)(r) =
exp (ik r). In this case, (5.22) is replaced by'3

sr, , (rr)=-', f a'r„e'r„[ (rr„)+r (rr)"]

Xt), (ras) Z "(rra, rrs, ras) . (5.25)

Here the first term r)(rra) arises from the "direct"
term in the Serber force, ))t (r) in (5.23), while ri(rrs)
arises from the exchange term, f(—r). But Z'" is
clearly symmetric in r» and r»,' therefore the two
terms in the bracket of (5.23) give equal contributions,
and the Serber force gives exactly the same result
as an ordinary force. This is in accord with the dis-
cussion at the end of Sec. 4.

It is then possible to drop the assumption that v,
acts only at long distances r, and to assume instead

&&(&) = 'Ca. (-r)+&'a. a(r)HLER(r)+e( r) j —(5.26)

in analogy with (5.16) . The result is exactly (5.22) .
(b) The 5-state force (5.24) is somewhat more com-

plicated. Assuming, again in analogy with (5.16),
(5.22)

W(R0) (t 23Efl ( 28)F1( 23)+Ca ( 28)F2( 28) j'

'(')&0( ) =~g ( 1)+rt'g"( )jr&0(r)

(5.27)

(5.28)

F, (r1)2=3ras ' d'rraR '$][(R——ras) —X(R+aras) ]Z('),

(5.29)

F.a(ras) = («23) '

The function P» is identical with the Il introduced in
Ref. 6, Eq. (5.1), which was there shown to be small 4 (r) =i (&r),
if ras is inside the core and to increase raPidly (by about Bethe obta, ns
a factor 3) outside. The other correlation function Fa
was introduced in Ref. 29.

Dahlblom" has calculated F, and F, for the Reid, ~3 (+0) = d'as~gr("23) Fr("28)+g 2(ras) F 2(&28)j
hard-core potential of 1965. The result is given in
Fig. 17. Note that E~ is almost independent of r while
Ii2 is much smaller at small than at large r. This sup-
presses the strong part of the core repulsion which is
proportional to k~.

(2) 2 more realistic 33Ncle(Jr force may be considered,
in first approximation, as a superposition of two parts,
(a) a Serber force

(A(r) =au. (r)L4(r)+4( —r) j (5.23)
XLo) (R——2'ras) —00(R+-'2ras) )Z('), (5.30)

and (b) an additional attractive force acting in the
S state only

(5.24)

R=a j rra+rrs ~, 2 (ala +mls ) jr28

with $0 denoting the I.=O component of the wave
function (subscripts e for even I., 8 for S state). The
Serber force acts in all two-body states of even I.,
with I.=O and 2 being the only important ones, while
the need for the force (b) arises from the observed

» H. A. llethe, Phys. Rev. (to be published).

x(*)= n(y) y dy,

0) (x) =)i (x) +x(dri/dx) . (5.31)

'~ P. Noyes, Conference on Nuclear Forces and the Few-Nucleon
Problem (London, 1959); P. Noyes and T. Osborn (private
communication, 1965)."R. Reid, Cornell University thesis (1967); Phys. Rev. (to
be published) .
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6. TENSOR FORCES

The theories of Bethe, ' Day" and Kirson" assume
that the initial and final interactions in the three-
particle ladder involve central forces, including a re-
pulsive core. Dahlblom" has treated the case of a
tensor force in the initial and final interaction, with
central forces in all intermediate interactions. He as-
sumes that the initial and final particle momenta are

5.0

4Q
rs In &m

3.0

2.0

F~ in fm3

(3) The tensor force between nucleons 2 and. 3 is
conveniently replaced by the central force which results
from it" in second-order perturbation theory. This
force depends slightly on k, so that it should be a good
approximation to write

gT4 (r) = (gTi(r)+h'gT2(r) )4 (r) (5 32)

with gz & attractive and F 2 repulsive. Thereby the tensor
force is reduced to the same form as the other parts.

SNmmury. The total nuclear force may be well repre-
sented as a sum of an ordinary, a Serber, an S state,
and a tensor force. The ordinary force may be chosen
to include the eGect of the repulsive force in the 'I'
state and the repulsive core. All terms except the
s-state force reduce to a result of the type (5.20) —(5.22),
the s-state force gives (5.28)-(5.32) .

Calculu60e. Dahlblom" has calculated the 3-body
energy for the Reid, hard-core potential of 1965, and
found +1.1 MeV. This is in contrast to earlier estimates
of about —5 MeV by Kirson. » The change is partly
due to the very Qat function Ii& of Dahlblom, see Figs.
15 and 17, which is in contrast to Kirson s Ii 3, Fig. 14.
Thus for Kirson the core repulsion was largely sup-
pressed, for Dahlblom it is not. Part of the change is
due to a misinterpretation of the theory in Kirson's
paper (through no fault of his), see Appendix, which
has been corrected by Dahlblom.

zero. Then the force in the 'S-state modifies the two-
particle function. &=1 into

/=re 2J'(r) —2)TS12, (6.1)

where q' is the s-state defect function, previously called
g in Secs. 4 and 5, while the last term is the D-state
which is introduced by the tensor force. 5» is the usual
tensor operator

A A5»=3' f/2 I —
($g (j2, (6.2)

with r a unit vector in the direction r. The contribution
of the tensor force to the three-body energy is written
(apart from a numerical factor)

g»~gg3Z(»~. (6.3)

In this expression, i is the wave-function defect due
to central forces in an intermediate state, the same
as in (4.33). I'2 is the second Legendre polynomial,
and r»r» is the cosine of the angle between the vectors
named; this can be expressed in terms of the distances
r12, r», r28. Equation (6.4) contains no counterpart
to the last term in (4.33) which arose there from the
Z inside the repulsive core. The tensor force inside
the core is zero, hence this term is absent in (6.4).
Since V+=0 for r&c, the function p rises only slowly
outside the core, (see the curve 8821"1 in Ref. 4, Fig. 13) .
On the other hand, f drops rapidly for r) c (see curve
XII in the same figure). Hence products like 21,2T&18

which occur in (6.4) are rather unimportant: If r28 is
small, then r» and r» are not very different, and the
product rt (r12)f(r18) is small because we cannot make
r» large while r~3 remains of order c. If r23&&c, we may
integrate over r» essentially independently of r», then
again the term i'(r18) has little influence because it is
appreciable only over such a small volume. Thus
(6.4) reduces essentially to the simple expression

Because of the spin operators in S», 8'p is not sym-
metric in particles 2 and 3, in contrast to (4.33).
Using otherwise Day's approximation, Dahlblom finds

rt12 L1 $18+st 1st 28j
—-'&2(r12 ri8) rt18 L1—fi2+2012i 28)

2 22(r12 'r28) '928 Lf 12' 18 f 12 i lsj ~ (6.4)

l.O-

I.O
1

2.0
r (fm)

3.0 40

—912 Vs(ris'ri8) rti8 ~ (6.5)

Dahlblom has confirmed this qualitative argument
by calculating

Fro. 17. The functions IlI and F2 defined in (5.20), (5.21).
Both F& and F2 are dehned as F=—', (F('S)+F('S)7, where
F('S) means that F is calculated using g('S) and i'('S).

3' G. E. Brown and T. T. S. Kuo, Nucl. Phys. 85, 40 (1966).

+T (r28) '9 (r12)+ (r12 r28 r18) d rl (6.6)

which is analogous to (5.20) and may be used to
calculate WT in (6.3). He finds that for all values of
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2.0-

t i.s
fm&
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l.0 2.0
rpg ( fm)

3.0
I

4.0

FIG. 18. The functions F~ and Ez0 dehned in the text, evaluated
from Reid, hard-core potentials of 1965.

r», Iiz is very close to

Fro(~as) = g'(ri2) Ln'(ri2) ——,'&2(r12'r13) g (~13)jd ri,

which corresponds to the approximation (6.5). Now
this approximation does not contain t, and hence
corresponds exactly to the third order of the Goldstone
expansion. Thus, if the initial and final interaction are
both tensor, the old-fashioned third order calculation
of the three-body energy is adequate.

If (6.7) is inserted into (6.3), the first term Lg (ri2) j'
corresponds to the "bubble" diagram 3(a), the second
term to the "ring" diagram 3(b). For small r23 the
ring diagram reduces the contribution from the bubble
diagram by a factor of —', (this is exact for r,a Owhen——
I'2 1) . For large r23 t——he ring contribution is essentially
zero; explicit calculations show that it can be neglected
beyond r» ——2.5 F (see Fig. 16). The middle inter-
action g~3, which has to be calculated for both even
and odd states, therefore has a small weight for small
r23 (where the repulsive part of the odd state forces is
important) relative to larger r23 (where the attractive
part of the even states is dominant) . One can therefore
expect that the three-body energy resulting from a
tensor force in the initial and anal interaction is at-
tractive, and that the odd-state forces in the middle
interaction do not contribute greatly.

The actual calculation was done employing Reid's
hard core potential of 1965, the result being —1.7
MeV for gg~ (total) and —2.2 MeV for gmq (even).
This can be compared to +1.1 MeV if the initial
and final interactions are central (see end of Sec. 5).
The total three-body energy is then —1.7+1.1=—0.6,
MeV which is very small indeed.

The resulting Fz and Fro, defined by (6.6), (6.7)
and calculated by Dahlblom, are given in Fig. 18.

Tensor Forces at Other Levels

We have only discussed the case when tensor forces
act at the beginning and the end of the Goldstone

diagram. At any intermediate level, we can have a
tensor force act twice in succession on the same pair
of particles: this gives an effective central force which
can be treated like a central force (cf. item 3 near
the end of Sec. 5).

Two tensor interactions between two digerelt pairs
of particles, at any two levels, give only a small con-
tribution, because the average over spins give nearly
zero. An exception is the case of an initial and Anal

tensor interaction between different pairs, 12 and 13,
which contributes the term q(ria) in (6.5):as Dahlblom
has shown, the relatively large effect of this is due to
the fact that the momenta of the various particles are
strongly correlated in this simple case which is not
true in general.

Three tensor interactions, without any central ones,
have been treated by Dahlblom et al.33 using the
OPEP interaction with a cut-off at 1 F. The result
was only about 2 MeV attraction.

into the unperturbed Ho. This would clearly enhance
convergence. In diagrammatic language, the intro-
duction of U results in some additional Goldstone
diagrams besides the pure g matrix diagrams, and the
choice of U is designed to cancel some of the latter by
the former.

Thus, one choice of U(b) for "particle" states' would
be such as to cancel the third-order "particle —bubble"

diagram [Fig. 19(b)] with the corresponding diagram

T V
0

(a) (b)

FIG. 29. The third-order "bubble diagram" and the third-order
U diagram. Goldstone' suggested a choice of U(b) designed to
cancel these terms with one another.

~T. Dahlblom, K. G. Fogel, B. Quist, and A. Tom, Nucl.
Phys. 50, 277 {1964).

V. SINGLE-PARTICLE POTENTIAL ENERGIES

We will now discuss the choice of the single-particle
potential U (See A), which affects the value of the

g matrix, and consequently every diagram in the
expansion. In principle, of course, any convenient
choice of U which gives a 6nite g matrix is permitted,
but an educated choice that enhances the convergence
of the Brueckner —Goldstone expansion is clearly
preferable.

In simple physical terms, the potential U, which is
added and subtracted from the total Hamiltonian, is
supposed to reduce the size of the perturbation II~
by absorbing some of the interparticle potential energy



R. RAJARAMAN AND H. A. BETHE Three-Body Problem ie Nuclear Matter '765

involving U(b). In order to effect such a cancellation
between Fig. 19(a) and 19(b) for a given value of
momenta l, u, and m, we clearly require

U(b) = Q (be
i g(W) i be), (7.1)

where 8' is the starting energy as defined in BBP4
and in A. Now W and hence (be

~
g(W)

~
be) depend

on the states l, m, and a, so that the choice U(b)
Eq. ('7.1) is not a function of the state b alone. Thus,
the cancellation of Fig. 19(a) by Fig. 19(b) for all
/, m, and a, can be achieved only in an average sense,
by choosing U(b) as in Eq. (7.1) with some typical
values of /, m, and u. This is precisely what BBP do
in their choice of U(b) for particle states. They not
only try to cancel Fig. 19(b) on the average, but
also the diagram with the middle g matrix exchanged.
Thus, they choose

U(b) = P I(be
~
g(EE) ( be) —(be

~
g(AE)

~
eb)I,

n&kg

(7.2)

with hE corresponding to (P)= (m2) =0.6k~' and
(a) 4F ' which are typical values. This choice is
somewhat modified by including other third-order
diagrams of comparable size as shown by Rajaraman. '4

It should be noted that there is a self-consistency
requirement implied in Eq. (7.2) since the g(W) used
to define U(b) itself depends on U(b). BBP delne a
self-consistent U(b) according to the above prescription
and show that this potential can be approximated by a
quadratic form A+Bb', which agrees with the exact
U(b) in the important range of b=2 to 5 F '. This is
BBP's reference spectrum for particle states. Extensive
work goes into the calculation of U(b), ensuring self
consistency, and the reader is referred to BBP and
the subsequent work of Sprung'4 and Razavy'034 for
details. ,

The BBP choice for the hole-state potential energy
U(m) is similar to (7.2), except for the important
difference that the g matrices are on the energy shell.

U(m) = Q I(me ( g(WO) ( me) —(me ( g(Wp) ~
em)I,

n&a

(7.3)

where Wo E+E„.This choice——is simpler because it
does not depend on the other particles in the diagram,
unlike U(b) in Eq. (7.1) where such a dependence
arises because of the oG-energy-shell nature. BBP also
show, using an elegant identity generalized from an
idea of Brueckner and Goldman, " that this choice of
U(m) cancels not only the "hole—bubble" diagram, but
a whole sequence of diagrams shown in Fig. 20. There

3'M. Razavy and D. W. L. Sprung, Phys. Rev. 133, 8300
(1964}.

~ K. A. Srueckner and D. 'l'. Goldman, Phys. Rev. 117, 207
(1960).

+ ~ ~ ~

Fxo. 20. Diagrams showing the absorption of a whole sequence
of terms by the choice of the hole potential energies U(m} on
the energy shell.

is no corresponding identity for the particle energy
U(b) and the off-energy shell dependence of (7.2)
has to be retained.

We will now show that, according to our present
understanding of the subject, the choice of the particle
potential energy U(b) above should be modified.
As mentioned in Sec. 3, at the time of the BBP work,
it was hoped that the Brueckner —Goldstone expansion
converges order by order. If this were so, then the first-
order diagrams, using the BBP choice of U(b) and
U(m), should give a good approximation to the binding
energy since second-order diagrams do not exist and
third-order diagrams are cancelled by the above
potential energies. We now know from the subsequent
research described in Secs. 3—6 that there is no con-
vergence order by order in the g matrix, and that
the third-order diagrams cancelled by U(b) are the
lowest-order terms in an alternating and nonconvergent
series of three-body ladders. As Eqs. (4.23) and (4.26)
show, the third-order terms are nearly three times
the full three-body energy, and therefore, by cancelling
them off, the BBP choice of U(b) may do more harm
than good.

Qn the other hand, the choice (7.3) of the hole
energy U(m) is still good because the diagrams in
Fig. 20 that it absorbs do not belong to the three-body
ladder sequence of Sec. 4. This can be readily seen by
attempting to draw the diagrams in Fig. 18 in the
ladder notation. Thus, we will retain the BBP choice of
U(m) which absorbs Goldstone diagrams not summed
in the three-body energy, but look for alternate pre-
scriptions for the particle potential U(b) .

Several choices have been suggested in the literature.
We have mentioned, in Sec. 3, that the Coon and
Dabrowsky choice' amounts to the BBP prescrip-
tion. More recently Brandow' has suggested that
U(b) =0 be used. This is appealing not only because
of its simplicity but because it gives a sizeable energy
gap between particle and hole spectra, thus facilitating
the use of the reference method. LThe average value
of U(m) is around —90 MeV.j Moreover, the small
result obtained by Dahlblom for the complete 3-body
energy, —0.6 MeV (cf. end of Sec. 6), makes the
use of U(b) =0 probably a very good approximation.
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On the other hand, the Brandow choice does not
absorb any specific higher-order correction terms.
Thus the problem of evaluating four-body correc-
tions etc. is still left open.

Bethe' has suggested that U(b) be defined so as to
absorb the full three-body energy evaluated in Sec. 4.
In other words, U(b) should be chosen such that the
three-body energy may be written as

yb 2U1 dsb, (7 4)

where

y(b) = it(r) exp (ib r)d'r (7 5)

U(b) =~ y(b) ~

' d'r23g(b, r23)&1(r23), (7.6)

with Fi given by (5.20). At least approximately, this
should satisfy (7.4). Using this prescription, Ikirson»

and Sprung, Bhargava, and Dahlbolm'7 have calcu-
lated U(b), and the latter workers also include to
some extent the effect of tensor forces.

Equation (7.6) may be criticized on five counts:
(1) It is not established by any fundamental theory.
(2) It is not even proved to satisfy (7.4). (3) It has
a singularity if y(b) =0 for some b (4) Sprung. et ciL22

found that for b slightly greater than b&, U(b) tended
to become smaller than U(rw) for states m slightly
below k~, thus giving a "negative gap" in the energy
spectrum. They arbitrarily removed this unacceptable
negative gap. (5) In three-body ladder diagrams, all

three nucleons are interacting with each other, and it
is therefore somewhat artificial to treat this effect
as a single-particle potential on one of them.

A more systematic definition of U(b) has recently
been given by Bethe. '2 He starts from our Eq. (5.13)
and finds

U(b) =Ly(b) ]-' d'r23g~~*(r23) I'3(r»), (7 7)

Fp(r23) = d'r12 jp(br12)~ (r12 r23 r31) ~ (7 g)

For the values of b which are most important according
to Kirson, viz. b 0.6/c, r»jp(br») has its Peak at
about the same value of r12 as g(r»); then F'3(r23) is

and
~
y(b) ~2 is the probability that a pair of nucleons

is excited from a state in the Fermi sea to a state of
momenta +b and —b (the rnomenta of the initial
hole states have been neglected, and g has been assumed
independent of these momenta). Obviously (7.4) is
only one condition on the function U(b) which still

permits wide latitude in its choice. Bethe' proposed
to set

proportional to Fi, Eq. (5.20), and the new definition
(7.7) of U(b) reduces to the old one, (7.6) . On the other
hand, for small b, jp in (7.8) is 1 so that I'& is nearly
independent of r23 (while for larger b, Yp increases with
r23); therefore, for small b, the repulsive contribution
from r23&c in (7.7) is not suppressed by the factor
P&. This automatically eliminates the negative energy
gap of Sprung et al. , discussed as point 4 above. Points
1 and 2 are clearly satisfied by the new definition
(7.7); point 5 of course remains.

The problem about the denominator y(b) is removed
by remembering that the initial interaction may be
alternatively tensor or central. Then it can easily be
shown that a suitable definition is

y.'(b) U (b)+yv'(b) Ur(b)

y.'(b) +y2'(b)
(7 9)

where y, (b) and yr(b) are the expressions (7.5),
calculated, respectively, with the defect functions p.
»d qp for central and tensor forces, and U„Uz are
defined correspondingly. The denominator of (7.9)
does not vanish for any b, so that criticism 3 above is
now also tak.en care of.

Multi-Particle Clusters

Rajaraman" has emphasized the usefulness of defin-

ing a U(b) in. order to absorb the principal effect of
many-body clusters. His argument runs briefly as
follows: Consider all three-body ladders to be divided
into the three groups as suggested in Sec. 3: (i) those
involving gshop3 only, (ii) those with vi only, and (iii)
those mixed. in g, and vi. For class (i), we expect the
four-body energy to be much smaller than the three-
body energy and so on, because of the short-rangedness
of the force (pc3(1). The class (ii) diagrams are
similar to higher Born terms in e& and should be very
small since even the second Born term vi(Qv/e)1 is only
2 jc of the first Born term" "This then leaves diagrams
of class (iii) as the leading contributors to the four-

body energy and larger clusters. In fact, even for the
three-body energy of about —5 MeV, we will show that
the dominant contribution comes from a diagram of this
class.

Now, for any typical potential, such as the standard
hard-core potential, the matrix element (k

~
vi

~
kp) is

strongly dependent on the momentum transfer q=
k—kp, although the diagonal element (k

~
vi

~
k) is

relatively independent of k. A graph of (k
~

vi
~
kp) for

kp ——(0.3) "2k& is given in Fig. 21, and shows that a typi-
cal oG-diagonal matrix element is about —'„or less, of the
diagonal one. This, for instance, is the reason why the
second-order term in vi, namely, vi(Qv/e) 1, is only 2'P~

of the first-order v~. The former contains two off-diag-
onal matrix elements compared to the diagonal first-
order term. On the other hand, the dependence of g, on
the momentum transfer is not strong.
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From this, we would expect that the most important
diagrams of class (iii) should involve diagonal elements
of v~. A diagonal matrix element in a Goldstone diagram
corresponds to "bubble interactions. " Thus, we would
expect a diagram of the type in Fig. 22 (a) to be larger
than the one in 22(b), although both belong to class
(iii) and are four-body terms. In addition, a diagram
with a bubble interaction contains one less excited
particle, and hence smaller energy denominators, which
also enhances its importance. It should be noted here
that if one uses a Serber force for m~ instead of a Wigner &s

MeV-F 3 (o)

FIG. 22. Two four-body terms. Diagram (a) contains one diagonal
v matrix element while (b) has two oG-diagonal ones.
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Rajaraman" also showed that the third-order, long-
range bubble diagram of Fig. 23 gives about as much
energy (—5 MeV) as the total three-body interaction
as calculated by Kirson, "at least if the "standard hard
core potential" is used. Accordingly, Rajaraman" pro-
posed to use only the long-range bubble terms in the
definition of U(b) . However, if this were taken liters, lly,
this would enhance the trouble found by Sprung et al.
and listed as criticism, point 4 above. The new Bethe
prescription (7.7) or (7.9) also emphasizes the long-
range force, and is therefore acceptable from the point
of view of Rajaraman.

Since Rajaraman has shown that bubble interactions
involving e& give the main contribution to the many-
body energy, we may expect that the use of (7.9) for
U(b) will absorb a major part of these many-body
clusters. The prescription for nuclear matter calcula-
tions is then the same as has been used in the past by
Brueckner's group and others, viz:

Calculate the two-body g matrix from the integral
equation

FIG. 21. Dependence of the long-range force matrix elements on g i
'lee) =v

~
eve) (2s) ' d'—bv

~
ab)

the momentum transfer.

force, then the exchange of the bubble interaction is also
important. The best way to take into account diagrams
of the type in Fig. 22(a) with exchanges is to absorb
them into the single-particle energy with a potential

U~.„,(b) = P (be
~

v&
~
be) ,'(be

[ v~
~

e—b)—. (7.10)

X e(, b)

T(a)+T(b)+U(u)+U(b) —E(er) —E(e)

X(ub
~ g ~

me),

where T(a) is the kinetic and U (u) the potential energy
of the particle state a, and E(ev) the total energy of a
hole state m. Similar prescriptions hold if the initial

The factor of —
& in front of the exchange term arises

for spin-independent forces because of the statistical
weight arguments given earlier. "For Serber forces, of
course,

(be
~

v,
~
eb) = (be

~

v,
~
be)

if states b and n agree in spin and isospin.

FIG. 23. The long-range "bub-
ble" diagram which dominates the
three-body energy. b f n
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state includes one or two particles rather than two holes.
Calculate U(b) from (7.9).

Summing the diagonal elements of g, we get the total,
two-body nuclear energy. If now the denominator of
(7.11) is expanded in powers of U(a) +U(b), the term
independent of U will give the two-body energy accord-
ing to Brandow's prescription. ' The term linear in
U(a)+U(b) will give the three-body energy because
U satisfies (7.4). The remainder represents the part of
the multi-body energy which we can take into account
by our simple scheme. This remainder then is the only
term by which our prescription diGers from Brandow's
if both are consistently carried out. Simple algebra
shows that our prescription will provide more attraction
than his. This will be especially important for the low
particle states, with b slightly above kp, which are
reached mostly by the tensor force. We guess that the
effect of putting U(a)+U(b) into the denominator of
(7.11) may be about 1 MeV. This attraction is, how-
ever, already contained in calculations such as that of
Sprung et al. ," so that it cannot be invoked to give a
larger binding energy than previously found.
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APPENDIX. ERRORS IN PREVIOUS DEFINITIONS

Bethe8 originally proposed to use in (7.6) not the
factor Fi(r23) but the ratio"

f8(T28) Pl(T28)/P. (T23), (Ai)

where Ii, is the expression for Ii j in third order, which is
given by (4.28), viz. ,

P.(T23) = dry(r») b(r») +n(r») 3 (A2)

His argument was that g(b, r23) in (7.6) was calculated
originally by considering the third-order diagrams only,
that the third-order diagrams contain the factor (A2)
as explained near (4.24), and that therefore the g
should be multiplied by the factor (A1) .

This argument is wrong. '~ To see this, we consider
the third-order diagrams. A complete list of these was
given by Rajaraman. "Excluding the interaction with
the potential U Pour Fig. 19(b)$ and the hole —hole
interaction LFig. 3(d) j, there are 12 diagrams which
involve three-body interactions. Of these, ten involve
exchanges of some kind between the three particles, and
therefore contribute only if at least two particles agree

36 Our quantities Iii, F, were denoted by F and F&, respectively,
in Ref. 6. We apologize.

1 One of us (H.A.B.) is grateful to Dr. Dahlblom for discus-
sions which led directly to the discovery of this error.

in spin and isospin; hence these diagrams have smaller
statistical weight (by factors of 31 or 16) than the re-
maining two diagrams. These two are the bubble and
the ring diagrams, Fig. 3 (a) and 3 (b) of our paper, and
we shall consider only these.

The bubble diagram may be written as

8= g (r») g (r23) vl (r12) dr2dr3 (A3)

and the ring diagram as

R= g(r») g(r23) g(r») dr2dr3. (A4)

In each case, the interactions have been enumerated in
the order of their occurrence in the diagram. If I'g,~
denotes the Majorana exchange operator for particles
i and k, (A4) may be written as

R= 'g (T12)g (T23) P28 'g (T12)dr2dr3. e (AS)

Here g and E~ should be considered as operators operat-
ing on the "wave function" following them; g, for
instance, may be different for each angular momentum
state. Adding (A3) and (AS) gives

R+8= g(r») g(r23) (1+P28 )g(r») dr2dr8. (A6)

The operator 1+P23~ selects from p only the part which
is even in r23., therefore only the part of g which operates
on even angular mornenta will contribute. We may
rewrite (A6)

R+8= p(r») gevee(r28) (1+P23 )21(r»)dr2dr3. (A7)

R+8+exchange = ~1 (R+B). (A9)

We may now treat R+J3 in several different ways.
One is to integrate erst over r~, then

R++ geven(T28) dr23pe(T23) p (A10)

with &, defined by (A2) . Another method is to expand

The operator 1+P~ should, however, not be left out
(replaced by 2, as would seem natural in combination
with states even in r23) because it operates on a function
which also depends on rj, and

(1+P28 )g(r») =1t(r»)+g(r») W21n2. (A8)

Exchange terms reduce (A7) exactly to one-half, as
was shown by Rajaraman' and Bethe':
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the rt's in Fourier integrals; thus

r) (r») = (2zr) ' d'b exp Lzb(rt —rz) ly(b),

rt (r») rt (r») = (2s.) ' d'b d'b' y*(b) y(b')

)&exp $—ib (rr —rs) ) exp Lib' (rr —rs) j.
Integration over der gives (27r)'8(b —b') so that

g(r„}g(r,g}d,=(2w} 'f d'5
~
y(b} ~&exp (zl& r„}

not explicitly depend on momentum. " The exchange
term, cos b rss, decreases with increasing b, especially
for larger r23. this means that the attractive force gets
weaker while the repulsive core remains nearly at full
strength for high b.

In this way, the form (A12) reflects the properties of
the alternative form (A10) of the third-order inter-
action. As Figs. 14 and 15 show, F, has a substantial
maximum at small r, emphasizing the eGect of the
repulsive core. In G(b) likewise, at least for the larger
b, the short-range interaction has greater weight than
the long-range part.

The mistake made in Ref. 6 was based on the belief
that

(A11)
G(b) = g,„,„(r)dz (A14)

and

G(&) = d~szg (~sr) I 1+exp (zb r») j,

(A12)

As we have shown, both in (A10) and (A13), this belief
was wrong. It was then argued' that the full three-body
interaction di6'ers from the third order by the factor
fb, Eq. (A1). This is correct, but when applied to the
correct expression (A10), it gives the correct result
(correct if g does not explicitly depend on b)

(A15)

d&23g (&28) (1+cosb'rzz) . In Ref. 6, starting from the wrong third-order expres-
sion (A14), the incorrect statement was made that

In the form (A12), 2+8 may be considered as the
effect of a bubble diagram, Fig. 3(a), alone, with y(b)
representing the first and the last interaction including
the adjacent propagators, and G(b) the middle inter-
action. In G(b), the term cos b rsz comes, of course,
originally from the ring diagram 3(b), and represents
an interaction in which particles 2 and 3 exchange their
momentazs The fact that (A12) has the form of a
bubble diagram alone, is of course most useful because
it permits us to consider G(b) as an insert in a particle
line. The sum of G(b) over all states n in the Fermi sea
is then the effective potential U(b), and this in turn
may be used in the erst-order calculation of the inter-
action between the "hole states" l and m. This treat-
ment of all the third-order diagrams as inserts was
indeed the aim of Rajaraman's paper. "

The effective interaction, G(b) of (A13), will depend
on b even if the fundamental interaction, g, ,„(rss), does

Wz(Ref. 6) = g.„, (r)fs(r) dz. . (A16)

One of the authors (H.A.B.) must apologize for this
bad error which he made in Ref. 6, and which has crept
into all the following work, such as Kirson's thesis" and
Sprung and Bhargava. ' The numerical consequences
of the present correction are very serious.

Dahlblom" has calculated the three-body interaction
using the correct formulas, (5.20) to (5.22), using
Reid's hard-core potential of 1965.Taking into account
only an initial (and final) centra/ interaction, he finds
a three-body energy of +1.1 MeV. The inclusion of
initial tensor interaction reduces this result to —0.6
MeV (see end of Sec. 6). For comparison, Sprung, 4'

using the same potential, Gnds about —5 MeV for

"This result and Eq. (A13) are not new, but (A13) is exactly
the same expression as is used in BBP for a Serber force inter-
action. In BBP (7.18) this is shown to be (apart from numerical
factors)

3S To see this in more detail, we use an argument similar to
Ref. 14. The middle interactions in Figs. 3(a) and 3(b) both
start with particle 2 in state b, and 3 in state n. In Fig. 3(a),
their states remain unchanged after the interaction. But in 3(b),
particle 2 goes into state m and 3 into state c. Assuming now that
the momenta m, n of the hole states are small compared with
those of the particle states b, c, we have m=n and, because of
momentum conservation, c=b. Hence, in the middle interaction
of Fig. 3 (b), the two particles essentially exchange their momenta,
the momentum changes being approximately +b and —b.

G= r}(r)p1+jo(2kor) )dr. (a)

If in (A13) we replace g(r) by e(r), integrate over angles, and
remember that b=240, we get exactly (a). So (A12), (A13) are
in exact accord with previous calculations of the third-order
interactions. What is new is merely that an alternative way of
writing the third-order contribution is (A10).

0 T. Dahlblom (private communication) .
4' D. W. L. Sprung (private communication).
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initial central interaction alone. Thus the correct treat-
ment of three-body forces appears to reduce this part
of the binding energy by 6 MeV, destroying the ap-
proximate agreement with observation which had been
achieved by Sprung and Bhargava.

The reason for this "loss of attraction" is easy to see.
As we already pointed out, the "third-order" correlation
function F, has a strong maximum for small r (see Figs.
14, 15). Hence the ratio fb, Eq. (A1), is small at short
distances r He. nce, in the old, erroneous theory (A16),
the contribution of the core is strongly suppressed. On
the other hand, F& itself, in Fig. 15, is nearly constant
for all r; there is no appreciable core suppression; hence
the correct result (A15) is more repulsive.

This eBect is very pronounced for the Reid hard-core
potential (Fig. 15) which was used by Dahlblom and
Sprung. The standard hard-core potential, used by
Kirson, gives the results of Fig. 14: Here Ii is only 1.3
at r =0 so that the difference between using (A15) and
(A16) should be less great. Hence Kirson's estimate
8 3= —5 MeV is probably not Ioo bad for his potential.

It should be noted that there is, of course, still much
less repulsion in the correct W3, (A15), than in the pure

third-order calculation. Equation (A10) gives its result;
here the core contribution is enhanced because F has a
maximum for small r. Thus the correct theory of three-
body interactions still has a beneficial effect: It removes
the core enhancement which the third-order theory
would give.

It should also be remembered that, for a soft-core
potential, the three-body interaction should not be so
important. ' Thus the loss of binding, compared with
Sprung and Bhargava, will probably be considerably
less. There is then still hope for agreement of the calcu-
lated binding energy with observation for a soft core.4'

There is one practical advantage in these, other-
wise disturbing, new results: The three-body energy
seems to be close to zero. It is then a good approxima-
tion to set the potential energy of all intermediate
("particle" ) states to zero. The advantage ot this
procedure has been pointed out particularly by Brown
and his collaborators. 4'

~ C. W. Wong, in his thesis (Harvard University), first empha-
sized the importance of the soft core. This importance seems to
have further increased.

'3 G. E. Brown and T. T. S. Kuo, Nucl. Phys. 85, 40 (1966).


