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The basic ideas of the Brueckner-Goldstone theory of nuclear matter are presented in a simple way. The treatment is
aimed at beginners and nonspecialists. It is supposed to provide the necessary background for the review article by Bethe
and Rajaraman which follows this paper. Therefore, the discussion is limited to a few important topics, and these are
considered in some detail.

The GoMstone expansion is presented (but not derived) and the construction and evaluation of the Goldstone diagrams
are explained. The reaction matrix and the correlated two-body wave function are deined, and their properties are discussed.
The reference-spectrum method for calculating the reaction matrix is derived, and its use is illustrated. Finally, the related
topics of convergence and the definition of single-particle energies are considered. The choice of the single-particle potential
energy for occupied states is treated in detail. llntermediate-state energies will be discussed by Bethe and Rajaraman. l
The reason for the divergence of the perturbation series for the binding energy is exhibited; and this series is rearranged
into a convergent expansion, for which the density plays the role of small parameter.

I. INTRODUCTION

The theory of nuclear matter, which was initiated by
Srueckner' over ten years ago, seems now to be in a
satisfactory state. The necessary many-body theory is
understood, and it appears likely that good agreement
between theory and experiment will be obtained (a cal-
culation with the best available nucleon —nucleon force
has not yet been completed, however). It is therefore
appropriate to present the methods and results of the
theory in a form which will be useful to interested
physicists who have not specialized in the study of
nuclear matter. ' This article is an attempt to explain
the basic ideas of the theory in an understandable way.

Before starting on the formalism, let us briefly
consider the relationship between the theory of nuclear
matter and nuclear physics as a whole. The main aim
of nuclear physics is to understand the structure of
nuclei in terms of their elementary constituents and
the interactions among them. Thus one should in
principle start from a fundamental theory of nucleons
and derive the existence and properties of all real nuclei.
However, no such fundamental theory is available,

* Work performed under the auspices of the U. S. Atomic
Energy Commission.

' K. A. Brueckner, C. A. Levinson, and H. M. Mahmoud,
Phys. Rev. 95, 217 (1954) .' See also R. Rajaraman and H. A. Bethe, Rev. Mod. Phys.
39, 745 (1967), following article.
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and even if it were, it would probably contain virtual
mesons, nucleon —antinucleon pairs, etc., and would be
very hard to calculate with. So in order to treat nuclei,
we have to take some sort of nonrelativistic limit of
the fundamental theory and use this as a starting point.
We do not know what this nonrelativistic limit is,
and we must therefore make a guess. The usual guess
is that the nonrelativistic limit of the fundamental
theory is the nonrelativistic Schrodinger equation for
neutrons and protons interacting through two-body
potentials. This is just an assumption; it Inay be that
an adequate description of nuclei in which the meson
degrees of freedom are suppressed is impossible. Also,
even if taking the mesons into account by means of a
nucleon —nucleon potential is justified, this potential is
not necessarily a tao-body potential. It may in addition
contain nonnegligible three-body and four-body forces.
Nevertheless, since there seems to be no good evidence
against the assumption, the nonrelativistic Schrodinger
equation with two-body forces is taken as a starting
point for calculations on nuclei. Then we can try to
answer the question: What properties does a realistic
nucleon-nucleon potential imply for nucleic

XVe have a good idea what the answer to this question
should b" it should be the shell model. That is, one
should 6nd that nuclei can be accurately described in
terms of an appropriate set of single-particle states and
an eGective interaction between the particles in these

Copyright 1967 by the American Physical Society
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zoo= up= —16 MeV. (1.2)

Similar ideas are used in the empirical determination
of po. For example, the interior density of a Gnite nucleus
tends to be reduced by the Coulomb repulsion and
increased by the surface tension, but both of these
eGects are absent in nuclear matter. These and other
eBects have been carefully considered by Brandow, '
who concludes that the equilibrium density of nuclear

3 P. A. Seeger, Nucl. Phys. 25, 1 {1961).
4 A. E. S. Green, Phys. Rev. 95, 1006 (1954).' B. H. Brandow, Ph. D. thesis, Cornell University, 1964.

states. So by starting from a realistic two-body force,
we might hope to calculate the shell-model wave func-
tions and the efI'ective interaction.

This problem is too hard at the present time, and
this is where nuclear matter enters the picture. It is a
simpli6ed problem whose solution is a first step towards
the more dificult problem of the Gnite nucleus. Nuclear
matter is a hypothetical system of equal numbers of
neutrons and protons which 611 all space at a uniform
density. Of course, the Coulomb force is assumed to
be turned o6. The translational invariance of the
system causes a tremendous simpli6cation because it
implies that the one-particle wave functions are plane
waves.

Thus the most difBcult part of a 6nite-nucleus calcu-
lation, the calculation of the single-particle wave
functions, is absent from the nuclear-matter problem.
The only problem is to calculate the energy of the
system and the effective interaction between the par-
ticles.

The result of a nuclear-matter calculation is a value
for 8/A, the energy per particle. This is to be calculated
for each value of the particle density p, and one can
therefore plot 8/A vs p. The saturation property of
nuclear forces then implies that this curve should have
a minimum value mo at some equilibrium density po,
as shown in Fig. 1.

The empirical values of mo and po are deduced by
extrapolating the observed properties of nuclei to
infinite nuclear matter. The extrapolation of energy
is carried out by means of the semiempirical mass
formula, which expresses the energy of a nucleus with
Z protons and X neutrons in the form

8= atA+asA"'+ugZ'/A'~s+a4(X —Z)'/2A. (1.1)

The erst term is the volume term, the second term is
the binding energy lost because of surface tension, the
third term is the Coulomb energy, and the last term
is the symmetry energy. For nuclear matter the last
two terms vanish because we take E=Z and neglect
Coulomb forces. Furthermore, since A is very large
for nuclear matter, the surface term is negligible com-
pared to the volume term, and we therefore have
8=a~A. Thus mo is to be identified with a~, so that its
empirical value" is

matter is
pp=0. 170 F '. (1.3)

(1.7)

In addition to being a 6rst step towards a finite-
nucleus calculation, the nuclear-matter problem has
some intrinsic interest arising from the calculation of
po and a~. Nuclear matter calculations can also be helpful
in deciding which realistic two-body force is the right
one. Two potentials that give identical scattering phase
shifts may give completely different results for nuclear
matter, and a potential that implies unreasonable
properties for nuclear matter can be discarded.

It shouM be clear from the last remark that the
problem of devising a reliable method of calculation is
distinct from the question of agreement between theory
and experiment. A reliable method of calculation means
an accurate solution of the many-body problem with an
assumed two-body potential and provides an answer
to the question: If the two-body potential were such
and such, then what would be the equilibrium values
of the density and energy per particle? The accuracy
of the calculation is determined not by comparing the
result with experiment but rather by estimating the
magnitude of the higher-order terms that have been
neglected. After a reliable method of calculation has
been obtained, one can apply this method to see whether
or not various nucleon-nucleon potentials give values
of a~ and po that agree with the empirical values.

Only the Brueckner —Goldstone theory of nuclear
rnatter will be treated in this paper. Brueckner in-
vented this theory, Goldstone provided a formal
basis for it, and most of the recent advances in physical
understanding of the theory are due to Bethe and his
collaborators.

There are other approaches to the theory of nuclear
rnatter, which is, after all, simply the theory of an
interacting Fermi gas at zero temperature. The Green's
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Fro. i. Expected be-
havior of the energy
per particle 8/A as
a function of the
particle density p
for nuclear matter.

Other useful measures of the particle density are the
interparticle spacing ro and the Fermi momentum kl:,
which are defined by

(1.4)

(1.3)

The equilibrium values of these quantities are
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function method of statistical mechanics, invented by
Martin and Schwinger, has been applied to nuclear
matter by Puff. ' Lee and Yang's theory of quantum
statistics has been developed by Mohling and applied
by him to numerous problems, including nuclear
matter. ' There is also Jastrow's method of correlated
basis functions which is a variationa1 method in which
the trial wave function is taken to be a Slater deter-
minant multiplied by a product of two-particle cor-
relation functions, one correlation function for each
pair of particles. This method has been developed' by
Feenberg, Clark, and others at Washington University,
Saint Louis. Nothing will be said here about these
theories except that mech more work has been done
with the Brueckner —Goldstone method than with any
of the others. The Srueckner-Goldstone theory has
been developed to a much higher degree than the
others, and it appears that it can now be used to
calculate accurately the properties of nuclear matter
implied by a realistic nucleon-nucleon potential.

The Goldstone expansion, which is the starting point
of the theory, is presented in Sec. II. The reaction
matrix, which is necessary because of the strong short-
range repulsion in the nucleon-nucleon potential, is
introduced in Sec. III. Section IV is concerned with
general properties of the reaction matrix, which is the
fundamental quantity of the theory. The reference-
spectrum method, which is a practical technique for
calculating the reaction matrix, is explained in Sec. V.
Section VI is a discussion of the related problems of
convergence and the choice of the single-particle
energy spectrum. Finally two short appendixes supple-
ment the material of Secs. II and III.

II. THE GOLDSTONE EXPANSION

The Brueckner —Goldstone theory is based on the
Goldstone expansion, ' which is a linked-cluster per-
turbation series for the ground-state energy of a many-
body system. This formula will not be derived, but it
will be described in a simple way, and how it is used in
calculations will be made clear. What it amounts to is
ordinary perturbation theory expressed in a form that
is convenient for the many-body problem.

The Goldstone expansion works for any number of
particles as long as the unperturbed ground state is
nondegenerate. Thus it is valid for nuclear matter and
for doubly magic finite nuclei. There is a similar for-
rnalism which works for nuclei with particles outside
closed shells, but we will not need this.

Instead of specializing to nuclear matter immediately,
therefore, we will first consider a system of a certain
number A of identical nucleons whose Hamiltonian
is the sum of the kinetic energies of all the particles

' R. D. Pn8, Ann. Phys. (N.V.) 13, 31'/ (1961).' F. Mohling, Phys. Rev. 124, 583 (1961);128, 1365 (1962).'A recent and comprehensive discussion is given by J. W.
Clark and P. Westhaus, Phys. Rev. 141, 833 (1966).' J. Goldstone, Proc. Roy. Soc. (London) A239, 26/ (1957).

H= PT;+pe;; =Hs+Ht. (2.1)

The two-body potential e;, corresponds to the realistic
nucleon-nucleon force. It contains a strong short-
range repulsion which is often approximated by an
infinitely repulsive core of radius c 0.4 F. Outside the
core, the force is predominantly attractive, with a
complicated dependence on spin, parity, and angular
momentum. It approaches the one-pion-exchange
potential at distances larger than 1.4 F.

Equation (2.1) splits P into two parts. The un-
perturbed Hamiltonian

(2.2a)

is the sum of the kinetic energy T and a one-body po-
tential operator U. The perturbation

(2.2b)

is what is left over. The introduction of the single-
particle potential U is intended to make numerical
calculation easier. Since the total Harniltonian does not
involve U, the final result should in principle be inde-
pendent of U. However, the energy is to be calculated
as an expansion in powers of II~, and the expansion will
converge more rapidly for some choices of U than for
others. Thus we must try to choose U in such a way
that the energy expansion converges rapidly enough
to be useful for practical calculations. If we were doing
an atomic problem, a good choice for U would be the
self-consistent field obtained by solving the Hartree-
Fock equations. The choice of U for nuclear matter will
be discussed in Sec. VI.

The unperturbed problem is solved by finding the
one-particle eigenfunctions Po of the operator T+U,
which satisfy

The po are assumed. to form a complete orthonormal
set of one-particle wave functions. The unperturbed
ground state is represented by a Slater determinant
Cp formed by putting particles into the A one-particle
states of lowest energy, i.e., by

The script 8 is the antisymmetrizing operator, and
Cp is normalized to unity. It is this state which is
assumed to be nondegenerate. Cp is an eigenfunction
of Hp, and the eigenvalue Gp is the sum of the one-
particle energies of the occupied states. Thus

HpC p= Gp4p, (2.5)

plus the sum of the two-body interactions between
them, i.e.,

A A
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(pq I
o

I rs& = p„*(r,)p,*(ro)v»p„(r, )4, (r,) dr, dr„

(rl Ulr) fs lr) o=s.lr.*)s ~

(2. 10)

(2.11)

aras+asar=0s ar as +as ar =0s aras +as ar mrs

(2. 12)

The a's are Fermion creation and destruction operators
that satisfy the anticommutation relations (2.12);
a, destroys a particle in the one-particle state s and

a,~ creates a particle in this state. From now on, the
one-particle state @, will be referred to simply as the
state s. The matrix elements are de6ned by Eqs.
(2.10) and (2. 11).The matrix element of v is calcu-
lated between pairs of two-particle wave functions,
each of which is a simple product of one-particle func-

tions; (p I
U ) q) is a matrix element of the one-particle

potential U. Note that in the matrix element (2.10), p
is associated with r in the sense that p~ and p„have the
same argument, and q is similarly associated with s.
The summations in (2.9) run over all one-particle
states, not over particles. It is clear that (pq I

o
I rs) =

(qp I
n

I sr), and it is understood that only one of these
two identical terms is included in the sum. This is ex-

pressed by saying that the sum runs only over distinct
matrix elements.

The A one-particle states of lowest energy make up
what is called the Fermi sea, and all states of higher
energy are said to be above the Fermi sea.

The exact ground state P satisfies

(2.6)

and it is the eigenvalue 8 that we want to calculate.
Perturbation theory gives a formal expansion for 8,
which, through third order in H», is

g= go+ (C'o
I » I

C'o)+ (C'o
I Hi(go —Ho) '~%

I 4'o)

+ (C'o
I Hi(go —Ho) PHi(go —Ho) IHi

I
sI»)

—(~o I
Hi I Co&(Co

I
Hi(g —Ho)-'&Hi

I
Co&"

(2 't)

z—= 1—
I c»)(c» I. (2.8)

The operator I' projects oB Cp and ensures that C'p

does not occur as an intermediate state in any of the
matrix elements.

The matrix elements in this formula involve many-
body operators and many-body wave functions. In
order to actually evaluate them, it is helpful to write
the perturbation 8» in the second quantized form

»= Z(pv I
o

I rs)a'a'a a Z(p I
U—

I v&a."ao
pqr8

(2.9)

Now consider the second-order term in the perturba-
tion series (2.7). We start with Co, apply Hi to get a
new state, divide by (go—Hp), and apply Hi again in

order to get back to C p. Let us consider a single term in

H» and see what it does to C'p. We take the term
(ab I

v
I

tm&as~abta~a~, and we use the convention that
indices a, b, c, ~ ~ ., at the beginning of the alphabet
label states above the Fermi sea, while k, 1, m, e, ~ ~

label states in the Fermi sea, and states p, q, r, s, ~ ~ ~,

could be either in the sea or above it.
What does (ab I

v
I

tm )a,tabta„a& do to C»? It destroys
particles in states 1 and m in the Fermi sea and creates
particles in states u and b above the Fermi sea. Thus it
produces a new Slater determinant which diGers from
4'p by having two vacancies in the Fermi sea and two
occupied states above the Fermi sea. Vacancies in the
Fermi sea are called holes, and occupied states above the
Fermi sea are called particles. So C'p is the Slater deter-
minant with no particles and no holes, and any other
Slater determinant can be specified by stating which
particles and which holes are present. Kith this in
mind we can represent the action of this operator on C p

by means of the diagram shown in Fig. 2.
In the matrix element we work from right to left;

in the diagrams, this corresponds to the upward direc-
tion. The interpretation of the diagram is that we

started with the state Cp with no particles and no holes
(represented by the blank space below the diagram),
then applied the operator (ab I

e
I lm)a, ~abaca aq and

obtained a new Slater determinant. This new Slater
determinant has particles in a and b (represented by the
upward directed lines) and it has holes in / and m

(represented by the downward directed lines). This
is an example of Rule 1 in Table I, the list of rules for
diagrams.

The dashed line stands for the matrix element

(ab I
n

I
bg). Note that the lines labeled a and b (which

are directed away from the vertex) appear on the left-
hand side of the matrix element, while lines 1 and m

(which are directed towards the vertex) appear on the
right-hand side of the matrix element, This is in accord
with Rule 2: The u~'s are associated with the left-hand
side of the matrix element and always correspond to
outgoing lines, and the a's are associated with the
right-hand side of the matrix element and always cor-
respond to incoming lines. Also, a and l meet at the
same end of the dashed line because the matrix element
associates a with /, and similarly for ns and b.

The new Slater determinant was obtained by applying
one term of H» to Cp. The next step is to operate on
this new Slater determinant with (go—H~) '. This

FIG. 2. Diagrammatic representation of

(gb ) o ) tm)a +os+a„ag
~
Cs).
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clearly gives the reciprocal of the difference in energy
between Co and the new state. Since the new Slater
determinant has particles in states t2' and b above the
Fermi sea and lacks particles in states I and m in the
Fermi sea, we can write the reciprocal energy difference
in the form —(E,+E& Eq —E)—'. This leads to
Rule 3: The energy denominator for any intermediate
state is equal to the sum of the particle energies minus
the sum of the hole energies. "

%e must next apply H& again and project onto C'p.

In this step we only need to consider those terms in H&

that will carry the state a,taste a&Cp (which has two
particles and two holes) back into Cp. One such term is
(lm t

v
t

ab)a~ta~taba, ; this destroys particles u and b

and fills up the holes l and m, thus taking us back to Cp.
%e indicate this diagrammatically by terminating
the upgoing and downgoing lines of Fig. 2 at a vertex
to get the diagram of Fig. 3. All the holes and particles
are destroyed, and we are left with the state Co, which
has no holes and no particles. Note that Rule 2 is still
obeyed; the outgoing lines at the upper vertex are l
and m, and they appear on the left-hand side of the
matrix element, while the incoming lines a and b

are on the right-hand side of the matrix element.
The contribution of this diagram to the second-order

term in the perturbation expansion is the product of
three factors: the two-body Inatrix elements, the energy
denominator, and the expectation value

(Cp ) &l ~m ~boaoa ob rsmo'l
~

Cp) ~

This expectation value is just ~1, depending on the
exact order of the anticomrnuting Fermian operators.

TAazz I. Rules for diagrams.

(1) An upward directed line represents an occupied state (par-
ticle) above the Fermi sea.

A downward directed line represents an empty state (hole)
in the Fermi sea.

(2) The matrix element (pq ~
v ) rs) is represented by a horizontal

dashed line.

At one end of the dashed line, r enters and p leaves; at the
other end, s enters and q leaves.

The final state (Pq ~
is associated with the operator oj,+os+,

which in turn corresponds to the outgoing lines.

The initial state
~
rs) is associated with the operator o.o„

which in turn corresponds to the incoming lines.

(3) The energy denominator is equal to the sum of the particle
energies minus the sum of the hole energies.

(4) The sign of the contribution of any diagram is given by
(—i)"+'+'+", where h is the number of hole lines, l is the
number of closed loops, e is the number of energy denomi-
nators, and I is the number of U interactions.

"Every energy denominator is a negative quantity. However,
it is most convenient to take the energy denominator to be posi-
tive, as is done in Rule 3. Then the minus sign is taken into ac-
count by the factor (—1)' of Rule 4.

FIG. 3. A second-order diagram that
contributes to

(c, i a, (s,—a,)-&ra,
i c,).

)4
fIl

In the present case, the expectation value is +1, and.

the contribution of the diagram to 8 is

(trN )
v ) ab)(E +Ep E( —E„)—'(ab

)

—
v

t Lsrs),

can lead from Co through a series of intermediate states
and then back to Co again.

In the nth-order matrix element of this type, the
initial eigenfunction is Co, then a particular term of H~
leads to a new Slater determinant, then another term

(2.13)

where the minus sign arises from the energy denomina-
tor. Of course, u and b can be any states above the
Fermi sea; so we must sum over all u and b above the
Fermi sea and also over all l and m in the Fermi sea.

The factor —,'comes from the restriction to distinct
matrix elements in expression (2.9). That is, it we
interchange l with m, and u with b, then both matrix
elements in (2.13) are unchanged. Therefore, the sum-
mation in (2.13) includes each pair of distinct matrix
elements twice, and the factor —', is needed in order to
correct for this. Fortunately, no such correction factors
are needed for the vast majority of diagrams. The small
number of cases in which factors of —', occur will be
pointed out when they arise.

There is a simple rule for telling whether the order of
the Fermion operators gives a plus sign or a minus
sign. ' The sign is just (—1)"+', where b is the number
of hole lines and t is the number of closed loops. There is
also a minus sign for each energy denominator, " and
there is a minus sign for each U interaction because
of the negative sign of U in the perturbation Hamil-
tonian. These considerations lead to Rule 4 in the list
of diagram rules. In Fig. 3, for example, we have k=2,
l=2, e= 1., N=O. This leads to the minus sign in ex-
pression (2.13) .

Ke have calculated the contribution to the many-
body matrix element (Cp

~
Ht(gp —Hp) 'PHt

) Cp) that
arises from choosing one particular term of H& for the
first H» interaction and another particular term of Hi
for the second H& interaction. There are many diferent
possibilities for making these choices, and each possi-
bility corresponds to a diagram. The many-body
matrix element is a sum over all possibilities, and this
is equivalent to a sum over all diagrams. Thus the
diagrams are a device for keeping track of all the pos-
sible ways in which the sequence of operators

Ht(gp —Hp) ' ~ ~ PHt(gp —Hp) 'PHt
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(a)

(cj

(b)

FIG. 4. Diagrammatic repre-
sentation of the four different
types of Fermion operator: (a)
creation of a particle. above
the Fermi sea; (b) destruction
of a particle in the Fermi sea,
i.e., creation of a hole; (c)
destruction of a particle above
the Fermi sea; (d) creation of
a particle in the Fermi sea,
i.e., destruction of a hole.

of H~ leads to another Slater determinant, etc. The
diagrams will keep track of the change in the Slater
determinant which is produced by each application
of B~. The diagrams are all constructed from four
fundamental pieces, each of which represents the effect
of one of the four diferent kinds of Fermion operator
illustrated in Fig. 4.

Further properties of the diagrams may be illustrated
by considering another possibility for the second-order
term in the energy. For the first H& we choose the term
(a ) U ( l)a, ra~. This creates a particle in state a and
a hole in state l, and is represented diagramatically by
Fig. 5, where the cross at the end of the dashed line
indicates a U interaction. Note that the outgoing line a
appears on the left-hand side of the matrix element and
the incoming line l appears on the right-hand side.
The energy denominator is (E. Eg). We —must now
choose a term from B~ which will return the system
to C'p. Let us choose the term (lm

~
s

~
am)a~ra ta a„

which is represented diagrammatically by the upper
interaction of Fig. 6. The destruction of particle a
and the filling of the hole t' are shown at the left-hand
end of the upper dashed line. At the right-hand end of
this dashed line, the u ~0 part of the operator destroys
a particle in state m in the Fermi sea and then creates
it right back again. As shown in Fig. 4, the operator a
produces an outgoing hole line, and a produces an
incoming hole line. Since the net result is to leave the
Slater determinant unchanged, we join these two
hole lines together to make a bubble. Thus Fig. 6 is
another second-order diagram that contributes to the
energy. Its contribution is the product of the matrix
elements and the energy denominator, summed over all
states a above the Fermi sea and all / and m in the
Fermi sea. What does the sign rule give for the dia-
gramP Since k=2, 3=2, e= 1, I=1, the contribution to
8 has a positive sign" and its value is

Q (lrl (
e ] aprp)(E. —Eg)

—'(a
~

U [ l). (2.14)
g&A

l,m&A

Fzo. 6. A second-order diagram that con-
tributes to (Cp [ Hi(ap —Hp) 'PHz [C'p).

expression (2.7) for the energy. Several diagrams that
contribute to this matrix element are shown in Fig. 7.
As an example, the contribution to 8 from diagram 7(e)
is given by

.,p..)g (E,+E, Eg —E„)(E—.+Es Ei —E)—
t,m,&&A

(2.15)

The plus sign in this formula follows from the fact that
&+l+&+I=3+1+2+0=6. There are many more
third-order diagrams, and they can all be evaluated by
the methods that have been described. The basic rules
for diagrams are summarized in Table I.

The perturbation series (2.7) gets more complicated
in third order. There are two terms instead of one,
and a new feature appears in the diagrams. Among
the diagrams that contribute to the first of the two
third-order matrix elements in expression (2.7) is
the one shown in Fig. 8. This is a perfectly legitimate
diagram. The first HI creates two particles and two
holes, and the second B& destroys particle e in the
Fermi sea and creates it right back again, and the same
for k. Then the last B~ takes the system back to Co.

This diagram is disconnected, and that such dia-

grams should appear is a catastrophe. The reason is

that, in the limit of a large number of particles, the
contribution of a connected diagram is proportional to
the number of particles, and the contribution of a
diagram that consists of two disjoint pieces is propor-
tional to the square of the number of particles. ""So
in third order a term arises that is proportional to the
square of the number of particles. This is nonsense
because the energy of a very large system must be pro-
portional to the number of particles. The solution to the
dHBculty lies in the second third-order term in formula

(2.7). One can show that this second term exactly
cancels all the disconnected diagrams that contribute
to the first term, and thereby leaves only connected
diagrams for the third-order contribution. One can
demonstrate the same cancellation in fourth order,

Now consider the 6rst of the two third-order terms in

(0) (b)

J, "gp I-+
U U'

(c) (e)

FIG. 5. Diagrammatic representation of

&o ~
ff

~
f)o.+o,

~
Cp).

' For the purpose of the sign rule, a bubble (such as the one
at the top of Fig. 6) contributes one hole line and one closed loop.

FIG. 7. Several of the third-order diagrams that contribute to
(@p i Ht (Sp—Hp) 'PH& (Sp —Hp) iPHx [ C'p).

"N. M. Hugenholtz, Physica 23, 481 (1957).
rP B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967), see Ap-

pendix C,



B. D. DAv Brueckner-Goldstone Theory of ÃfIcleur kfutter 725

n&A

The factor —,
' in the 6rst two terms arises from the

restriction to distinct matrix elements in expression
(2.9) for Ht. Since (mn j w

) ml )= (em (
v

I
em), surn-

ming over all m and e counts each distinct matrix
element twice, and the factor 2 corrects for this double
counting. The physical reason for the —,'is quite clear:
in summing up the interactions of pairs of particles,
each pair must be counted only once.

FIG. 8. A disconnected third-
order diagram that contributes
to

(c'o i Hi(so —Ho) '

)&EH&(so—&o) 'P&i
I co). II II

k n

'4The treatment of the exclusion principle in intermediate
states, which has not yet been specified, is discussed in Ap-
pendix A.

6fth order, etc., but the amount of work required in-
creases at a tremendous rate. Goldstone's achievement
was to show that this cancellation is exact in every
order of perturbation theory; in other words the eth-
order contribution to the energy is just the sum of all
connected eth-order diagrams. This fact leads to the
Goldstone expansion, ' which can be stated in the form"

Goldstone expansion:

g=gs+sutn of all connected diagrams. (2.16)

Thus the Goldstone expansion accomplishes two
things. First, it solves a problem that arises in all
many-body theories —the problem of isolating the
correct dependence of physical. quantities on the particle
number. The exact ground-state energy is now exhibited
as a sum of terms, each of which is proportional to the
number of particles. Secondly, the Goldstone expansion
gives a simple and explicit prescription for calculating
every order of perturbation theory. This is important
because certain classes of diagrams have to be summed
to infinite order before the expansion can be used for
nuclear matter.

Let us now write out the Goldstone result explicitly
to 6rst order. We must evaluate all the 6rst-order
diagrams and add their contributions to 80. The three
first-order diagrams are shown in Fig. 9. The 6rst
diagram comes from applying the term

(mrs[a [mrs)a a a a

from the perturbation Hamiltonian to the unperturbed
ground state Co and projecting the result back onto Co.
The second diagram is the exchange of the Grst. And
the third diagram involves the one-particle potential U.
The contributions of the diagrams to the energy are,
respectively,

mm
m, n(A

(b) tc)

FIG. 9. The first-order Goldstone diagrams. The sum of their
contributions is (Co ) H~ ( 40), the first-order term in the energy.

which is just the sum of the energies of the occupied
states. Note that the terms involving U in expressions
(2.17) and (2.18) cancel out. This cancellation is
automatic and does not depend on a particular choice
for U. Thus, to first order, the formula for the ground-
state energy is

g=Z( l2'l &

+&A

+s g ((nw
~

e j mtl, ) (ms
~

e
t
—rim)) . (2.19)

m, n&A

This expression still depends on U because the one-
particle wave functions, which are used in the calcula-
tion of the matrix elements, depend on U.

III. THE REACTION MATRIX AND THE
BRUECKNER-GOLDSTONE EXPANSION

The Goldstone expansion cannot be used in its present
form for nuclear calculations because the strong short-
range repulsion in the nucleon —nucleon potential makes
all the matrix elements very large, and the series cannot
converge. The next step is to introduce Brueckner's
reaction matrix and convert the expansion to one in
which the potential is eliminated in favor of the reaction
matrix. Since the reaction matrix is well-behaved even
for a singular two-body force, all terms in this new per-
turbation series —the Brueckner —Goldstone expansion-
are 6nite and of reasonable size.

The strong short-range repulsion causes a similar
diKculty in the problem of nucleon —nucleon scattering.
If one calculates the scattering amplitude to 6rst order
in e, that is, if one uses the Born approximation, then
one obtains a large and inaccurate result. But if one
calculates to all orders in v, which amounts to solving
the two-particle Schrodinger equation, then one ob-
tains the correct result.

The procedure followed for nuclei is analogous to the
treatment of nucleon —nucleon scattering. The diagrams
in the Goldstone expansion are rearranged in such a way
that each matrix element of e is replaced by an infinite
series which takes account of the two-body interaction
to all orders of the potential. The quantity that re-
places the two-body potential is called the reaction
matrix; and calculating the reaction matrix is equivalent
to solving a Schrodinger equation which describes the
scattering of two particles in the presence of all the
others.

To the sum of the 6rst-order diagrams we must add
the unperturbed energy 80,

vs= g Z„= g (I ~
r+U

~
~), (2.1g)

n(A a(A
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Ke illustrate the method by applying it to the dia-
gram shown in Fig. 10(a) .Let us concentrate our atten-
tion on the v interaction with the bubble at one end. The
outgoing lines are c and e, and the incoming lines are
b and n; so the matrix element is (cn [

v
[ be). This

gives the bubble interaction to 6rst order in e. To this
diagram we now add an entire infinite sequence of
diagrams, each of which is exactly the same as the
original diagram except that this 6rst-order ~ interaction
is replaced by a ladder containing two or more e inter-
actions. Figures 10(b) and 10(c) show the next two
diagrams in this sequence, and the rest are constructed
by putting in more dashed lines between the two up-
going lines.

The contribution of the first diagram contains the
factor (cn [

v [ bn), and the contribution of any other
diagram in the sequence is exactly the same except that
this matrix element is replaced by a more complicated
expression. The appropriate expressions for diagrams
10(a), (b), (c) are given, respectively, by

(cn [ v
[ bn),

—Q (cn [v [de)(Eg+E, W) '(de [v [be)—,
-

d, e&A

+ Q (cn [v [de)(Eg+E, W) '—
d, e,f,g)A

(3.1)

(3.2)

where

X (de [ v [fg)(Er+E W) '(fg [ v [
—bn), (3.3)

W=Eg+E +E„E.. —(3.4)

In the second diagram, for example, there are two
matrix elements with an energy denominator in
between, instead of the single matrix element
(cn [ v [ be). In the upper interaction, the outgoing
lines are c and e, and the incoming lines are d and e.

(c)

FIG. 10. Diagrams illustrating the summation of ladder dia-
grams to obtain the G matrix. Diagrams 10(a), (b), (c) are the
6rst three members of an infInite sequence of ladder diagrams
whose sum is diagram 10(d), in which the wiggly line represents
the G matrix.

Ql pq) (3.5)
0 otherwise,

e
[ pq)=(E +Ee W) [ pq), —(3.6)

in which [ pq) stands for pv(ri)p, (rs). The Pauli
operator Q annihilates a two-particle state unless both
particles are above the Fermi sea, and e gives the
energy of the two-particle state minus the starting
energy.

By using these operators, we can write the two-
particle operator G in the form

G(W) = v —v(Q/e) v+v(Q/e) v(Q/e) v—+ ~ ~ . (3.7)

Then there is an energy denominator, which will be
discussed in a moment. And in the lower interaction
the outgoing lines are d and e and the incoming lines
are b and e. Lines d and e can represent any states
above the Fermi sea; so we must sum over d and e.

The energy denominator for the second diagram,
at the level of lines d and e, is the sum of the particle
energies minus the sum of the hole energies and is
therefore equal to E,+Ed+E, E~—E— E„. It—is
convenient to write this in the form Ed+E. W, —
where 8' is called the starting energy and is given by
Eq. (3.4).

The second diagram has the same number of hole
lines, the same number of closed loops, and the same
number of U interactions as the first, but it has one
more energy denominator. Thus it gets a minus sign
relative to the 6rst diagram, as indicated in expres-
sion (3.2).

The contribution from the third-order ladder of
Fig. 10(c) is obtained by similar reasoning and is given
by (3.3). It is obtained by starting at the top with
(cn [ v

[ de), then going from d and e to two other states
f and g above the Fermi sea, and then 6nally returning
to b and e. Note that the rest of the diagram is not
allowed to have any interaction between the 6rst and
last interactions in the ladder. Therefore, the starting
energy 8', which depends on the rest of the diagram,
remains constant while the contributions from the
ladders are being summed.

The sum of the contributions from this in6nite se-
quence of ladders de6nes an element of the reaction
matrix, which we call G. In the diagrams, a matrix
element of G is indicated by a wiggly line as shown in
Fig. 10(d). Thus the sum of the sequence of ladder
diagrams of Fig. 10 is a single diagram 10(d) which
looks exactly like the original diagram 10(a) except
that the e-matrix bubble has become a G matrix. Note
that G depends on the starting energy 8", and that
in any ladder all the interactions (except possibly the
first and last) are dashed lines drawn between two
Ipgoing lines.

It is convenient to de6ne the two-particle operators

Q and e by the equations

'[ pq) if p) A and q) A,
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Actually, this is the definition of G; in our treatment of
Fig. 10(a) we simply noticed that the sum of ladder
contributions agrees with this definition. For example,
in the expression (3.2) representing the second-order
ladder, the effect of Q is to restrict the summation to
states d and e above the Fermi sea, and e operating on
the two-particle state

i de) just gives the energy
denominator (8,+Re W)—.

The expansion (3.7) is equivalent to the integral
e uationq

G(W) =n —e(Q/e)G(W). (3.8)

For a given starting energy 5', G is a well-de6ned
Hermitian two-particle operator. It is Hermitian be-
cause Q, e, and v are all Hermitian, and therefore
every term in the expansion (3.7) is Hermitian.

Summing the appropriate sequence of ladder dia-
grams has led to a single diagram in which one of the

(a) (b)

(d)

Fro. 11. Conversion from a v interaction to a G matrix. Dia-
grams 11(a), (b), (c) are the 6rst three ladder diagrams in the
sequence which converts the lowest v interaction of diagram
11(a) to a G matrix, as shown in diagram 11(d) .

interactions is replaced by the reaction matrix.
This is very desirable because the matrix elements of
G turn out to be well-behaved even when the strong
short-range repulsion causes the matrix elements of e
to become very large or in6nite. The next step is to
convert the rest of the s interactions in diagram 10(d)
into G matrices by the same method.

The 6rst three diagrams in the sequence that converts
the lowest v to a G are shown in Fig. 11(a), (b), (c) .
The 6rst two ladder contributions, which arise from
11(a) and 11(b), are

FIG. 12. A redundant ladder dia-
gram that does not appear in the
Brueckner —Goldstone expansion.

The criterion for choosing the correct sequence of
ladder diagrams is that the contribution from the nth-
order ladder must reproduce the matrix element of the
eth term in the expansion (3.7). For example, since
the contribution of the second-order ladder is clearly
equal to (ab j

—v(Q/e)n i lm), the second diagram in
Fig. 11 is the correct one. Note that the starting energy
W is equal to E&+E, which is just the energy of the
initial two-particle state in the matrix element. %hen
the starting energy is equal either to the energy of
the initial two-particle state or to the energy of the
6nal two-particle state, we say that the G-matrix is
calculated on the energy shell. In all other cases, G is
said to be calculated o6 the energy shell. Therefore, the
G matrix that replaces the lowest ~ interaction is on the
energy shell, but the G matrix corresponding to the
bubble interaction is off the energy shell.

Summing the sequence of Fig. 11(a), (b), (c),~ ~ ~

yields Fig. 11(d), in which the bottom n interaction is
replaced by a G matrix. If now the same treatment were
applied to each of the last two n interactions, the result
would be the diagram given in Fig. 12.But this would be
wrong. For, a typical ladder diagram of the type in-
cluded in this G-matrix diagram is as shown in Fig. 13.
The latter could be a 6rst-order ladder in the top G
matrix of Fig. 12 and a second-order ladder in the
next G matrix, or it could be a second-order ladder in
the top G matrix and first-order ladder in the next G
matrix. Therefore, Fig. 13 is included thrice in the
G-matrix diagram of Fig. 12.

We should have noticed that Fig. 11(d) is the
second-order ladder diagram in the series whose sum
is the G-matrix diagram of Fig. 14. In this last diagram,
all ladder diagrams of type 11(d) are counted exactly
once. Thus the diagram of Fig. 12 is completely un-
necessary; it is redundant and should simply be omitted.

By summation of the appropriate sequences of ladder
diagrams, the original n-matrix diagram 10(a) has
been transformed into the diagram of Fig. 14, which
contains only G matrices. The same methods can be
applied to any e-matrix diagram. Starting with an
arbitrary e-matrix diagram, one successively converts
each e to a G by summing the proper sequence of ladder

(ab i
n

i lm),

—g (ab i e i de)(E,+E, W) '(de
i

s
i
lm)—

(3.9)

d,e)A

where

= (ab i
—e(Q/e) s I lm), (3.10)

Fn. 13. A diagram that is counted
twice in the ladder diagram of
Fig. 12.

W=Z(+E . (3.11)
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FIG. 14. The G-matrix diagram
that is obtained from the e-matrix
diagram of Fig. 10(a) by ap-
propriate summation of ladders.

ground state, all states with momentum less than the
Fermi momentum ky are occupied and all others are
empty. All summations over one-particle states are
replaced by integrals in the usual way. That is,

0
(2zr) ' (4.6)

p, (r,) =0-'t' exp (zlr, rz). (4.5)

The nucleons are assumed to be contained in a very
large box of volume 0, and the wave vectors k satisfy
periodic boundary conditions. In the unperturbed

diagrams. In this way, one obtains an expansion in
which e is entirely eliminated in favor of G. (Additional
details are given in Appendix B.)

The resulting expansion is called the Brueckner-
Goldstone expansion. It tells us simply to replace e by
G in the Goldstone expansion, and to omit ladder dia-
grams such as Fig. 12 in order to avoid double counting.
In this new expansion, every term is finite and well-

behaved, even when the potential contains a strong
short-range repulsion. The Brueckner —Goldstone ex-
pansion is the starting point for nuclear calculations.

IV. PROPERTIES OF THE REACTION MATRIX

The basic quantity in the Brueckner —Goldstone
expansion is the G matrix. We must therefore learn
what its properties are and how to calculate it. G
always operates on a two-particle wave function C„,
which is just a product of one-particle functions; i.e., on

C„(rx, rz) =—y, (ri) 4, (rz) —=
~
z~). (4.&)

This is called the uzzperturbed two-body wave function,
and it is useful to define a correlated two-body wave
function 4„,by the equation

O'„.=C„—(Q/e) GC„. (4.2)

It then follows that

v%„,= Lv—n(Q/e) G/C„= GC„, (4.3)

and substituting' GC'„,=@+„into Eq. (4.2) shows that
the correlated two-particle wave function satisfies

@„=C„,—(Q/e) e%'„,. (4.4)

G is always calculated by first calculating the wave
function +„.The connection between this wave func-
tion and the wave function for nucleon —nucleon scat-
tering will be established later on in this section.

Up to this point everything has been valid for any
number of particles. From now on, however, we will

specialize to in6nite nuclear matter. So before con-

tinuing the study of the G matrix, it is useful to take
note of a number of relevant facts about nuclear matter.

It is assumed from the beginning that the system
of nuclear matter is homogeneous and isotropic. This
implies that the single-particle wave functions are plane
waves represented by

The factor 4 arises from spin-isospin degeneracy, which
implies that every spatial wave function can accom-
modate four nucleons. As an example, the particle
density p in nuclear matter is

0
p(r) = g ~

P (r) (z~4, d'k„Q '
m(A (2zr) '

a (s,
= (2/3zr') kz '. (4.7)

The density is proportional to the volume of the Fermi
sphere and is independent of position.

In a similar way one hnds that the average kinetic
energy of a particle in the Fermi sea is

2'= —,'0 kg'. (4.8)

Here, and in the rest of this paper, we use units such
that fP/M is unity, where 3f is the nucleon mass. Then
the dimensions of energy are those of kp', which is the
square of an inverse length, and the conversion factor
is 1 8~=41.5 MeV. The equilibrium value of kp for
nuclear matter is' 1.36 F ', and this gives an average
kinetic energy of 23 MeV.

The one-particle kinetic energy operator T is clearly
diagonal in the plane-wave representation, and there-
fore the one-particle potential U is also diagonal in
this representation. This is because the plane waves
must be eigenfunctions of (T+U) . Therefore the one-
particle potential operator is completely specified by
giving its diagonal matrix element as a function of
momentum. If we call this matrix element U(k),
then the energy of a plane wave state of momentum k is

E(k) = 2"(k)+U(k). (4.9)

The kinetic energy is equal to —',k', and U(k) is chosen
to depend only on the magnitude of the vector k,
not on its direction.

Since the one-particle potential is diagonal in mo-
mentum space, the many-body operator

cannot change the momentum of a many-body state.
The same is true of

for any physically reasonable nucleon —nucleon poten-
tial, and the perturbation Hamiltonian H~ therefore
conserves momentum. Thus every Slater determinant
that occurs in the perturbation expansion must have
the same total momentum as the filled Fermi sea, and
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FIG. 15. A diagram that does not con-
tribute to the energy of nuclear matter a&& &&/

because of momentum conservation.

Fro. 17. A second-order diagram in
which momentum is conserved, but which
is redundant and therefore does not
appear in the Brueckner-Goldstone ex-
pansion.

this momentum is zero. This fact has important con-
sequences for the diagrams.

For example, the diagram shown in Fig. 15 has an
intermediate state whose momentum is k,—ki. This
cannot be zero because k &kg and k~(kg, hence this
diagram cannot contribute to the energy of nuclear
matter. The top and bottom matrix elements both
vanish because each one changes the total momentum.
Thus there are many diagrams that never need to be
considered for the case of nuclear matter because they
violate the requirement of momentum conservation.

This requirement makes possible the enumeration of
the low-order diagrams for nuclear matter. The 5,rst-
order diagrams are shown in Fig. 16.They are the same
as those of Fig. 9 except that the e interactions are
replaced by G matrices. The first-order approximation
for the energy is obtained from the Goldstone result,
formula (2.19), when e is replaced by G.

Momentum conservation causes most of the second-
order diagrams to vanish. A diagram that conserves
momentum is shown in Fig. 17, but this is a ladder
diagram and all e-matrix diagrams represented by it are
included in the first-order diagram 16(a); so Fig. 17
must be omitted. The result is that there are no second-
order diagrams at all.

There are, however, several third-order diagrams,
some of which are shown in Fig. 18. There are 16 other
third-order diagrams, but each one can be considered an
exchange diagram of one of those already shown.

%hat diagrams does one actually evaluate in prac-
tice' In a detailed nuclear matter calculation, one
evaluates only the first-order G-matrix diagrams.
(The first-order U diagram cancels out as explained at
the end of Sec. II.) The effect of certain higher-order
diagrams is taken into account by the proper choice of
U. There is good reason to believe that the result ob-
tained in this way is correct to within 1—2 MeV per
particle. The proper choice of U will be discussed after
our study of the G matrix, to which we now return.

The fact that the one-particle wave functions are
plane waves means that the two-particle wave function
has only a trivial dependence on the center-of-mass
coordinate of the two interacting particles. This trivial
dependence on the center-of-mass coordinate must be
separated from the physically interesting dependence
on the relative position vector. We must also investigate

where

R=-', (ri+rg),
X'= ly—fg)

K„,=k„+k„
k,.= —', (k,—k,),

k„=-',K,.+k...

(4.11)

Here R is the center-of-mass coordinate of the two
interacting particles, r is their relative position vector,
K„ is the total momentum, and k„ is the relative
momentum. The factor —,

' in the formula for h„, occurs
because the reduced mass for two nucleons is half the
actual nucleon mass. Equation (4. 11) also contains
formulas for the individual momentum vectors k,
and k, in terms of the total and relative momenta.
Equation (4.10) explicitly isolates the dependence of
C„, on 0 and on R.

In terms of total and relative momenta, the operators
e and Q are given by

e
I pq)=t E(-,'K,+k„,)+E(-,'K,—k„,) —Wg I pq)

—=e(k-, K-) I pc), (4.12)

I kK-+koo I
& &~

Q I pv)= I
—,'K„—k„'I )a,

otherwise0

=—Q(k-, K-) I pv) (4.13)

(b)

---X

the volume dependence of the G matrix and of the two-
body wave function.

The unperturbed two-particle wave function in
nuclear matter is

C„(r„r,) =0—'exp (zk, .ri) exp (zk, r,)
=0 ' exp (zK„,.R) exp (zk„.r), (4.10)

(b)

FIG. 16. The Grst-order diagrams of the Brueckner-Goldstone
expansion.

(e)

FzG. 18. Some third-order diagrams that contribute to the
energy of nuclear matter. All other third-order diagrams are
generated by forming exchange diagrams from the ones shown
here.



REVIEWS OZ MODERN PHYSICS OCTOBER 1967

is dimensionally a length. A typical value of the diagonal
element representing the interaction of two particles
in the Fermi sea is —10 F —400 MeV-F'.

In terms of relative and center-of-mass coordinates,
Eq. (4.4) for the correlated wave function becomes

exp (iK„, R) it„,(r) = exp (iK„, R) exp (ik„r)
—(Q/e) e exp (iK„R)P„,(r) . (4.18)

(o) (b)

Formulas (4.12) and (4.13) also serve to define

e(k, K) and Q(k, K), which are simply numerical
functions of (k, K).

The operators Q, e, and e all conserve the total
momentum of a two-particle state. Hence the total
momentum of the correlated wave function +„, will be
equal to the total momentum of the unperturbed two-
particle wave function. Therefore the dependence of
0„,on R and on 0 mill be the same as that of C„, and
we can write

+„,=0-' exp (iK„, R)f„(r). (4.14)

FIG. 19. Two-particle intermediate states in momentum space,
as determined by the variable relative momentum k and the
ized total momentum K„.In 19(a},it~ lies outside the sphere of
radius kg, and k2 lies inside this sphere; hence particle 1 is above
the Fermi sea while particle 2 is in the sea. In 19{b),both particles
are above the sea.

The last term can be written

g (Q/e) ~
kK) (kK ( v exp (zK„, R) f„,(r) )

k, E&

Q(k, K) exp (iK R) exp (ik r)
i, it &(k, K) 0

exp (—iK R') exp (—ik r')
X

0

Xs(r') exp (zK„, R')P„,(r')d'r'd'R'. (4.19)

Here we have introduced the complete set of two-
particle states

~

kK)=Q ' exp (iK R+ik r) because
Q/e is diagonal in this representation. Expression
(4.19) is simplified by integrating over R' and using
the resulting Kronecker delta to perform the summa-
tion over K. Putting the result into the right-hand side
of (4.18), and converting the sum over k to an integral
leads to

All the two-body correlations are contained in the
function P„,(r), which is independent of 0 and depends
only on the relative position vector.

We can now write a useful formula for the G matrix.
Since GC„,=vC „„wehave

f„,(r) = exp (ik„, r) — E(r, r') v (r') f„(r')d'r',

where the kernel E(r, r') is given by
(4.20)

E(r, r') = exp Lik. (r—r') ). (4.21)

0-' exp (—zK„, R) exp (—zk„r)

&(w(r) 0 ' exp (zK„R)P„(r)d'rd'R. (4.15)

The integration over R gives the product of the volume
0 and a Kronecker delta function of total momentum.
The result is

(pq )
G

~

rs)=Q '5(K „K„)(k )
G [k„), (4.16)

where

(k,
~
G

~
k„,)= exp (—zk, .r)e(r)lP„(r)d'r. (4.17)

The matrix element (k„, ) G
~
k„,) is independent of

the volume and is what is usually called the G matrix.
Of course, it depends on the total momentum and on
the starting energy. To obtain the "real" G matrix,
however, it is necessary to divide this quantity by the
volume. The "real" G matrix has dimensions of energy,
i.e., the square of an inverse length; hence (kz„) G ) k„.)

In these expressions, E(r, r') is the kernel of the
operator Q/e. To see what is happening, it is helpful
to draw a picture in momentum space. Figure 19(a)
shows a sphere of radius k~, and indicates possible
values for the relative momentum vector k and the
total momentum vector K„,. When the two particles
interact, the total momentum K„, remains constant,
but the two-body potential can cause a transition from
the initial state of relative momentum k„, to an inter-
mediate state of relative momentum k, provided the
transition is not forbidden by the Pauli operator Q.
In the intermediate state, particles 1 and 2 have
momenta —,'K„,+k and —',K„—k, respectively, and the
operator Q requires that both these momenta be above
the Fermi sea.

Figure 19(a) is drawn with ki) k~ but ks(4.
Hence Q(k, K„,) =0, and Q annihilates this two-
particle intermediate state. Figure 19(b) differs from
19(a) only in the direction of k, but the resulting inter-
mediate state has both particles above the Fermi sea,
and for this state Q(k, K„)= 1. We therefore see that
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~=ko'+4Eo', (4.22)

where Ko is the total momentum. One then finds that

Q(k, Ke) =1,

e(k, Ko) = k' —ka',

and it follows that E(r, r') is given by

(4.23)

(4.24)

E(r, r') = d'k exp Lik (r—r'))
(2~) s

exp (iks
~

r—r'
) )

4n.
f
r—r'

/

The integral equation (4.20) for P(r) now becomes

P(r) =exp (iks r) ——
47r

exp (iko
I
r r I)

the value of Q(k, K„,) depends on the magnitude of k,
the magnitude of K„„and on the angle between them;
and the same is true of e(k, K„,) . Thus Q/e is a rather
complicated operator, and this is the main source of

difhculty in calculating the reaction matrix.
For a known energy spectrum (that is, for a known

dependence of the single-particle energy on momen-
tum), one can in principle evaluate expression (4.21)
for E(r, r') . Then (4.20) becomes a well-defined inte-
gral equation for P„,(r) .

It is now possible to see the connection between our
nuclear-rnatter Schrodinger equation and nucleon—
nucleon scattering. The nuclear Schrodinger equation
becomes identical with the free-particle scattering
equation when it is simplified by replacing the operator
Q by unity, and taking the energy E(k) to be pure
kinetic energy. Both of these simplifications are ap-
propriate for particles in empty space. Let the relative
momentum of the initial two-particle state be ko,
and let us calculate P(r) on the energy shell so that

built up from momentum states that have the same
energy as th& initial state of relative momentum ko.
Of course P contains components of momentum with
magnitude different from ko, but these serve only to
build up the short-range correlations that are required
by the two-body potential; they can never contribute
to the scattering.

Momentum components of magnitude ko lead to the
singularity in the integrand of expression (4.25) for
E(r, r') . This is because the operator e gives zero when
applied to such momentum states, and E(r, r') repre-
sents the operator 1/e. Thus there is an intimate con-
nection between the asymptotic scattered wave and
the singularity in the integrand of formula (4.25).
This point has been discussed in detail because one of
the most important features of nuclear matter is the
abseece of any singularity in the integrand of (4.21)
and the corresponding absence of any scattered wave
at large r.

In nuclear matter f approaches the unperturbed
plane wave so rapidly at large distances that all phase
shifts are zero, " and there is no scattering at all. This
phenomenon is called the "healing" of the two-body
wave function. "The short-range repulsion forces f 1;o

go to zero at small r, thus producing a "wound" in the
wave function. But the wound heals rapidly at larger r,
and the phase shift is zero. This healing comes about
because the integrand of formula (4.21) for E(r, r')
has no singularity. In other words, no energy-conserving
momentum components are available for scattering.

Let us look at a speci6c example in detail. Let two
particles in the Fermi sea have equal and opposite
momenta of magnitude ko, and consider their inter-
action. For this case the total momentum is zero and
the relative momentum of the unperturbed wave func-
tion has magnitude k„=ko. We assume also that 6
is to be calculated on the energy shell so that 8'=
28(ks) . The functions Q and e are clearly given by

tt(r') P(r') d'r', (4.26)
e(k, K„,=0) =2E(k) —2&(ks), (4.27)

which is the well-known integral equation for two-
particle scattering.

In (4.25) we have arbitrarily chosen to add ie-
to the denominator of the integrand in order to obtain
an oltgoieg scattered wave. In nuclear matter, how-
ever, the singularity at k=ko would be excluded from
the region of integration by the Pauli operator Q.
Consequently, for nuclear matter, there is no arbi-
trariness in the kernel E(r, r') .

The wave that determines the scattering is the
difference between P(r) and exp (iks r) and is repre-
sented by the integral in Eq. (4.26). At large r this
wave behaves like r-' exp (ik,r), a function which
contains only momentum components of magnitude kp.

This is in accord with the requirement of energy
conservation in two-particle scattering: outside the
range of the potential, the wave function must be

Q(k, K„=O)=1,

Hence E(r, r') becomes

k&kp,

k&kg. (4.28)

d'k exp [ik (r—r')]E r, r' =
s)sr (2s.)' 2E(k) —2E(ks) '

~

~

4a. k'dk sink
(
r r' )—

(2~)' .z 2E(k) —2E(ko) k
[ r r' (—

(4.29)

Since ko&kz&k, the integrand has no singularity in
+ H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)

A238, 551 (1957)."L. C. Comes, J. D. Walecka, and V. F. Weisskopf, Ann.
Phys. (X.Y.) 3, 241 (1958). This paper contains a very helpful
discussion of healing, with many interesting figures.
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the region of integration. Therefore, there can be no
energy-conserving scattering, and the wave function
must heal at large r.

To show this mathematically, we integrate by parts
to obtain the leading term of E(r, r') for large I

r—r' I.
The result is

4 k& cosk& Ir—r'[
E(r, r') =

(2s-) s 2E(kp) —2E(kp) I r—x' I'

+0(I r—r' I-'). (4.30)

Putting this result into the integral equation (4.20)
for tp shows that at large r the difference between tp
and the unperturbed plane wave behaves like an os-
cillating function divided by r . On the other hand, in
the Lth partial wave, the difference between P and
the unperturbed wave function falls off only like

rI sin Lkpr —-,'(17r)+bgj —sin Lkpr ~s (I&)j) (4 31)

where 8& is the phase shift. Clearly a contradiction can
be avoided only if the phase shift vanishes.

Healing occurs in this case because the operator Q
excludes the singular point k=ko from the region of
integration. But suppose ko had been chosen to be
greater than k&. Then the singularity would not have
been excluded, and the result would have been a non-
zero phase shift. The Qaw in this argument is that when

ko&k~, we are considering the interaction of two
particles above the Fermi sea, and such interactions are
always computed off the energy shell. The starting
energy W is no longer equal to 2E(kp) but takes a
value that guarantees that no singularity can occur.
In general, then, the healing property results from the
fact that there are no vanishing energy denominators
in the Brueckner —Goldstone expansion.

V. THE REFERENCE-SPECTRUM METHOD

How does one actually calculate tp„(r)? Because of
the strong short-range repulsion in the nucleon—
nucleon potential, it is convenient to work in coordinate
space rather than in momentum space. The short-
range repulsion is usually approximated by an infinitely
repulsive core, and then the single most important
property of the correlated wave function is that it
vanishes inside the hard core. This condition takes a
simple form in coordinate space and a complicated
form in momentum space; so coordinate space seems
preferable.

The main difficulty in calculating f„,(r) comes from
the operator Q/e, which is represented in coordinate
space by the kernel E(r, r'). Ordinarily E'(r, r') can
only be evaluated numerically. And even after it has
been evaluated, one is still faced with an integral equa-
tion for P„(r).

Nevertheless, Brueckner and GarrimeP successfully
attacked the problem in this way in their IBM cal-
culation in 1958. By making two very minor approxi-
mations, they decomposed the equation for 1t„(r)
into a set of uncoupled integral equations for the various
partial waves of tp. Each partial-wave component of
E(r, r') was evaluated numerically, and the integral
equation for the corresponding partial wave of P
was then solved by standard numerical methods.

However, a much better method of calculating the
G matrix has recently been developed. This is the refer-
ence-spectrum method, which will now be described in
some detail. All the material of this section, and much
more, can be found in the original paper by Bethe,
Brandow, and Petschek. "

The reference spectrum method has two advantages
over the Brueckner —Gammel method. (1) The refer-
ence-spectrum method gives a first approximation for
6 and a systematic way of improving this approxima-
tion until any desired accuracy is attained. The ap-
proximations of Brueckner and Gammel, '~ although
numerically accurate to less than 1 MeV per particle,
cannot easily be improved in any systematic way. (2)
The reference-spectrum method gives a first approxima-
tion which is quite accurate but is still eery easy to

comply, in contrast to the Brueckner —Gammel method
which can be carried out only on an electronic computer.
The first advantage is not very important, but the
second one is crucial because it permits a quantitative
study pf higher order djagrams ~ 9 Such a study js pI
course necessary if one is to investigate the conver-
gence of the Brueckner —Goldstone expansion.

In order to understand the reference-spectrum
method, it is helpful to return to our original equation
for the correlated wave function:

'
I P&)= I:&(k.)+&(kp) —~j

I Pv), (5.2)

where
I pg) is a product of two plane waves. Suppose

the energy spectrum E(k) for which the G matrix is to
be calculated were approximated by a "reference"
spectrum Ea(k) defined by

E~(k) =k'/2m*+A, , (3.3)

where A~ and the dimensionless eGective mass m*

' K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).' H. A. Bethe, B.H. Brandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963).This paper, and its authors, will be referred to
as BBP.' R. Rajararnan, Phys. Rev. 129, 265 (1965).

~ R. Rajaraman, Phys. Rev. 131, 1244 (1963)."H. A. Bethe, Phys. Rev. 138, B804 (1965).

%„,(r„rs) = C„,(rt, rs) —(Q/e) vl „,(r„r,) . (S.1)

The basic idea is to approximate the operator Q/e
by a simpler one. First, consider the operator e, which
is deined by
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0&k &kp.

3F '&k&5 Ii '
m*~0.6,

m*~1.0,

A2 —100 MeV,

Ay~0.
(5.6)

These are just rough values, but it is clear that the two
sets of parameters are completely different. Thus it is
important to select the particular region of k space in
which E(k) is to be fitted.

One important fact is clear: Once the starting energy
8' has been chosen, the energy spectrum of states in
the Fermi sea is completely irrelevant for the purpose
of computing the G matrix. The reason is that in Eq.
(5.1) for the correlated wave function, the presence of

600—

400—

200—

-I 00
kF

k ( INVERSE FERMI S j

Pro. 20. Typical plot of the energy spectrum E{k) used in
nuclear matter (solid curve). The dashed curve represents the
reference spectrum E~(k), which is chosen to approximate the
actual spectrum in the range 3 F ~&k&5 F '.

are constants. The corresponding reference approxima-
tion for e could then be written

P= —(2m*) '(Vi2+V22)+232 —g (5.4)

because, when applied to ) pq), this operator gives

P(2m*) '(k '+k ')+222 —Wj ) pq)

=PE (4)+E.(k,)-~llPq). (5.5)

This approximate form for e is very convenient because
it will allow us to write a differential equation for 4„,
instead of an integral equation.

However, a previous question is whether or not E(k)
can be well approximated by a quadratic function of k.
The answer to this question depends on the choice of
the potential energy U(k). The function U(k) is at
our disposal and is to be chosen in such a way that the
Srueckner —Goldstone expansion converges well. The
currently accepted choice of U(k), which will be dis-
cussed in Sec. VI, leads to an energy spectrum E(k)
similar to that given by the solid curve in Fig. 20. The
discontinuity at k = kp is in no way related to the energy
gap of superconductivity.

The energy spectrum E(k) cannot be well represented
by a quadratic over the entire range of k, but a good
Gt with a quadratic may be obtained in restricted
regions of momentum space. For two interesting regions,
the parameters m* and A2 that give a good fit to E(k)
are % n=C —(e) 'Wn (5.7)

for the reference wave function%'„, ~. The 6rst approxi-
mation of the reference-spectrum method amounts to
replacing @„,by @„P in Eq. (4.15) for the G matrix.

There are two reasons why replacing Q by unity
does not cause serious error. First of all, applying
1/P to any of the states forbidden by Q gives a rather
small result. For the on-energy-shell interaction of two
particles in the Fermi sea, this can be seen by studying
Fig. 20. Suppose the two interacting particles are
initially in the states represented by the crosses shown
in Fig. 20. Then a typical two-particle state into which
the initial state is forbidden to scatter is represented by
the two circles. The operator e gives the difference
between the reference energy of the forbidden state and
the correct energy of the initial state. As can be seen
from Fig. 20, this energy difference is likely to be fairly
large, say 100 MeV. The worst possible case is when the
two crosses are both at k=k~ and both circles are at
k=0, and even then the value of P is as large as
—2E(kr) +50 MeV.

Thus 1/P is always reasonably small. In particular,
it has no singularity and therefore the reference wave
fun. ction heals at large distances. If 1/e~ had a singu-

larity, then the reference wave function would have a
nonzero phase shift and would be qualitatively different
from the correct wave function. It is very fortunate
that fitting E"(k) to E(k) for k between 3 F ' and

the operator Q allows 1/e to operate only on two-
particle states in which both particles are outside
the Fermi sea. For a given value of lV, therefore, the
operator Q/e depends only on the behavior of the func-
tion E(k) in the region k)ki.

As will be seen later, in calculating the G matrix the
region in which it is most important to have a good rep-
resentation for E(k) is from k=3F'to -k=SF—'.
Hence the reference spectrum En(k) is chosen to fit the
true spectrum as well as possible in this important
region. "The result is the dashed curve shown in Fig. 20.

The 6rst step, then, in the reference-spectrum
method is to replace e by the operator P given by for-
mula (5.4) . In this expression the value of the starting
energy S' is to be calculated from the actual energy
spectrum, not from the reference spectrum. For a given
pair of interacting particles, lV is just a single number
and there is no need to approximate it in any way.

The reference spectrum E"(k) is clearly a very bad
approximation to the actual spectrum for states in
the Fermi sea. As was pointed out before, this fact
is not disturbing. On the contrary, it allows us to make
the tremendous simpli6cation of replacing the operator

Q by unity without introducing much additional error
into the G matrix. Replacing Q by unity, which is the
second step in the derivation of the reference-spectrum
method, leads to the equation
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5 F—' leads to an operator eR that preserves the healing
property.

The second reason why putting Q= 1 allows a good
approximation to the G matrix is that the number of
states forbidden by Q is only a small fraction of the
total number of states of importance in the calculation
of 4„. That is, Q affects only momenta less than
k&= 1.36 F ', while momenta all the way up to 5 F '
play a role in the determination of the correlated wave
function. "So the important region in phase space is a
sphere of radius 5 F ', and the volume of this region is
40 times the volume of the Fermi sphere, which is the
region of phase space affected by Q.

The reference-spectrum method can be brieRy sum-
marized as follows. The reference G matrix G is ob-
tained from the correct G matrix by replacing Q/e by
1/eR. Hence GR satisfies

way. We write

4.R =0 ' exp (iK„R) ' P„,R(r), (5.14)

t „(r)
where f,,R=&„p„—,R, and 1t„(r)=exp (1k„r). Since
e can be written

eR= —(m*) '(V'„'+r1V'R') +222—W, (5.15)

it follows that

L
—(m~) '(V"+4'V'R') +222—W)Q '

Xexp (iK„, R)t;,R(r)

=eQ ' exp (iK„, R)P,,R(r). (5.16)

GR —p p (sR) 1GR— This leads to
(5.g)

To evaluate GR, the equation

R @ (eR) —1~@ R (5 9)

&PV I
G'

I
r~) = &I'- I

~
I +-'). (5.10)

is solved for the correlated reference wave function
+„,~, which then is substituted in

where
(&,' y') f—,,R(r) =—m*eP„,R(r),

E~„'+m*(2A,—W) .

(5.17)

(5.18)

Equation (5.17) is called the reference wave equa-
tion, and solving it is no more dificult than solving the
equation for free-particle scattering. Since P„,R(r) must
vanish inside the hard core and must approach g„,
for large r, the boundary conditions for the difference
function f„,R are

After GR has been calculated, a better approximation
for G may be obtained by iterating the exact equation rs re for r(c,

G—GR+GRL (sR) —1 (Q/~) )G (5.11) as r—+~. (5.19)

where

eRg R ~@ R
rs p

g R @ + R

(5.12)

(5.13)

The volume and center-of-mass dependences of the
two-body wave functions are separated out in the usual

which is derived in Appendix A of the BBP paper.
Thus GR is the erst approximation in a systematic
expansion of G. This expansion is extremely useful
because the leading term G" is both simple and accurate.
For a central two-body potential, the diagonal matrix
element of G that describes the interaction of two
particles in the Fermi sea is given correctly by G to
within about 5%,'8 corresponding to an error of 2—3
MeV per particle. The situation is not so favorable
for a ten. sor force is, ,23 for which the error is roughly
15%

We now turn to the details of calculating G . Equa-
tion (5.9) for V,,R can be written in the form

Q(k, K) =1,

e(k, K) = (m*)—'(k'+y'),

and the kernel E(r, r') is given by

d'k exp haik (r—r') iE r, r' =m*
(2-)' ~+&

(5.20)

(5.21)

=m*, . (5.22)
exp (—y i

r—r' i)
4ir

i
r—r'

i

Putting this value of E(r, r') into the 'integral equation
(4.20) for f„,(r), and using

The constant y' is seen to be positive, and this fact
ensures healing. As r—+~, 1R falls off like exp (—yr) or
v(r), whichever decreases more slowly.

The above derivation of the reference wave equation
is the usual one, but we could just as well start from the
integral equation (4.20) for f„,(r) . When Q/e is
replaced by 1/eR, the functions Q(k, K) and e(k, K)
become

(5.23)
»D. W. L. Sprung, P. C. Bhargava, and T. K. Dahlblom,

Phys. Letters 21, 538 (1966).
'3D. W. L. Sprung and P. C. Bhargava, Ann. Phys. (N.Y.)

42, 222 (1N7). leads immediately to the reference wave equation.
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To solve the reference wave equation, we introduce
partial waves by means of

4" (r)

P,,tt(r) = QicL4v (2L+1)$'t'(kpr) ' Nr, (r) ~

d' L(X+1)
7tr, (r) = —m 'v(r) Nr, (r),

dt'

with the boundary conditions

for r&c,

as F~ao .

(5.26)

(5.27)

Although we have here assumed a spherically symmetric
potential, all the formulas can easily be modified to
include the effects of the tensor force ""

Let us now examine the behavior of the 5-wave
solutions of Eq. (5.26) . Suppose first that the potential
consists only of a hard core, with no attractive part
whatever, i.e.,

v(r) =+m
=0

for r&c,

for r) c. (5.28)

Then the solution for xp that satisfies all boundary
conditions is

xp(r) =go(r) = sin kpr for r&c,
= eIp(c) exp 1

—y(r —c)j for r) c (5.29).

A plot of gp Np and 7tp is shown in Fig. 21; the initial
relative momentum kp has been assumed to be 1.0 F ',
which is a typical value for two particles in the Fermi
sea.

A measure of the healing distance is 1/y, which is
typically about 0.7 F for the interaction of two particles
in the Fermi sea. The larger the value of y, the more
rapid is the healing. The physical reason for this is that
g —Q= (1/ea)~, and increasing y makes ea larger;
hence each virtual transition produced by e involves
a larger jump in energy. Thus p is a measure of the
"sti6ness" of the wave function against deviating from
p in response to the two-body potential. Of course, p

, Xr.(r),
X I'r, p(kp, r). (5.24)

One the right-hand side, the initial relative momentum
k„, has been denoted by kp. Although it is not explicitly
indicated, the partial-wave amplitudes Nr, (r) and
7tz, (r) depend on kp, E„„and W. The function gz(r)
is de6ned by

gz. (r) =kore(kpr), (5.25)

where jz, is a spherical Bessel function. Putting the
partial-wave expansions into the reference wave equa-
tion gives

0.5

cannot compete against the infinitely strong hard core,
and up therefore vanishes for r &c.But outside the core,
where v is weaker (in fact v=0 for r) c in the present
case), 7 produces rapid healing.

To illustrate the effect of putting in an attractive
force outside the hard core, the reference wave equa-
tion has been solved for the case of the standard
hard-core potential (SHCP) of Moszkowski and Scott/4
This potential, which has a single bound state at zero
energy and an effective range of 2.5 F, is defined by

v(r) =+op

= —vp exp L
—tt(r —c)]

for r(c,
for r) c, (5.30)

c=0.4 F, tt=2.083 F '. (5.31)

The SHCP has a hard core of about the right size, and
the attractive force in the outer region is of reasonable
strength and range. Moreover, it leads to wave func-
tions and matrix elenlents that are similar to those ob-
tained from more realistic, and therefore more compli-
cated, potentials.

When e contains an attraction outside the hard core,
Eq. (5.26) shows that d'7'/dr' will be increased in the
region r)c. This causes xp to decrease more rapidly
just outside the core, and in fact xp soon becomes nega-
tive and approaches zero through negative values when
r goes to infinity, as shown in Fig. 22. Putting in the
attractive part of v causes Np to "overshoot" gp, but the
resulting Np is not much different from that obtained
with the hard core alone. In this sense the attractive
part of the nuclear two-body force is rather weak.
We will see later that the weakness of the attractive
force is essential for the convergence of the energy
expansion.

The assertion that E"(k) should be fitted to Z(k)
in the region 3 F '&0&5 F ' can now be made plausi-

e4 S. A. Moszkowski and B.L. Scott, Ann. Phys. (N.Y.) 11, 65
(1960}.

r (FERMI S)

FxG. 21. Relative 5-wave functions for a pure hard-core po-
tential. Inside the core, X0——$0 and ~=0. The parameters used
are c=0.4 F, k0=1.0 F ' y=1.4 F '.
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l.o

ble." The point is that e(k, K) should be accurately
approximated in the region of relative momentum space
where the Fourier components of (Q/e) g(r) are large.
However, (Q/e) nP(r) is approximately equal to P(r),
and the Fourier transform of the S-wave part of P(r)
is proportional to

k'p(k) = kp 'f sin kr (kr) rk (5.32)

From the plot of xo(r) in Fig. 22, it is clear that this
integral will be near its maximum value when sin kr
has its first maximum at the core edge, i.e., when

k=v/2c 4F ' (5.33)

If the total momentum is zero, a relative momentum
of 4 F ' corresponds to the virtual excitation of two
particles with equal and opposite momenta of magni-
tude 4 F '. Thus 4 F ' is a typical single-particle
momentum for which Ee(k) should accurately ap-
proximate E(k). The repulsive core is, of course, the
feature that is responsible for exciting Fourier com-
ponents of such high energy (a nucleon of momentum
4 F—' has a kinetic energy of 330 MeV). We have con-
sidered only S waves with total momentum zero, but
for the interaction of two particles in the Fermi sea this
is sensible for the following reasons. First, the total
momentum is usually much less than 4 F '. Second,
higher partial waves have very small difference func-
tions xL, because the initial relative momentum is so
low that the centrifugal barrier prevents the unper-
turbed wave function klz(r) from "seeing" the hard
core.

After the reference wave function has been found,
Gzz is calculated from Eq. (4.17), which can be written
in terms of partial waves as

CCk

( o I
G I &o)=4~Z(2L+1) —, azvuLdr.

k0'
(5.34)

For simplicity we consider only the diagonal matrix

Xp

FIG. 22. Relative 8-wave functions for the standard hard-core
potential, with kp=i. o F ' and y=1.68 P '. Inside the hard
core, xp=gp and up=0.

element. This formula cannot be used in its present
form because v = ~, Nl. =0 inside the hard core, and it is
not clear what value should be assigned to the product
of these two quantities. SBP overcome this difBculty
by manipulating the diBerential equations

t (d'/dr') $L(—L+1)/r $+ko'I eke= 0, (5.35)

I (d'/dr') —
I L(L+1)/r'$ —y'Ixz, ———nz*vuz, (5.36)

I (d'/«') —LL(L+1)/r'3 —7'I&z=o (5 37)

The function Xz, (r) is the solution for xc for the case
of a pure-hard-core potential and can be calculated
analytically. Equations (5.35) and (5.36) are valid
for all r, but Eq. (5.37) is used only in the region r) c.

Multiplying (5.35) by xz., (5.36) by klz, and sub-
tracting gives

d diaz
QI +(| +ko )QLXL ~ JzvuI

dr dr dr

(5.38)

We integrate this from 0 to c+, using the fact that
xz ——gz, inside the hard core, and obtain

y2+k 2 c

g zzv,udr=
en* 0

gz, (c) i(d@, dxz
m* & dr dr

Since uz ——gz —xz, the last term on the right-hand side
is proportional to the slope of Nl, at the core edge. It is
convenient to write (dxz/dr), =~ in the form

g.( ) dx. a.( ) «.
Xzvuzdr, 5 40

no* dr ~ m* dr, +

which is obtained by combining Eqs. (5.36) and (5.37)
and integrating from c+ to ~.When this replacement
is made in (5.39), the reference G matrix takes the
form

4' +2 k2 c

(ko I
G'

I
l o)= —,Z(2L+1)

ko' I, fS 0

gz'dr

+, — + (yz Xz) vu, dr . (5.41)—gz (c) @z, de
sz dr dr r=c c

The first term is called the core volume term, the
second is the core boundary term, and the third is
called the outer term. For a pure hard core, only the
erst two terms contribute, and they can be calculated
analytically. For the interaction of an average pair in
the Fermi sea, the core volume term is usually less
than 1 F, the core boundary term is typically +10 F,
and the outer term might be —20 F. For the on-energy-
shell interaction of two particles in the Fermi sea, the
repulsive terms are nearly independent of the relative
momentum ko, but the magnitude of the outer term de-
creases with ko. A plot of (lzo I

Ge
I lro) vs kii, calculated
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for the SHCP, is shown in Fig. 23. (The value of
(ko ) Cr (ks) also depends on the total momentum,
but this dependence is weak. )

An interesting idea due to Brandow" is to use formula
(5.41) to obtain an effective interaction between the
pair of interacting particles. The effective interaction
gz, (r) in the Lth partial wave is defined by requiring
that

200—

I 00—

gp

r (FERMI S)

kr tXt

(ko I
G

I
k )= —,Z(2L+1) 8z'gi(r) «

kp' I, 0
(5.42)

In the reference spectrum approximation, a. function
gz, (r) which satisfies this equation is

—I 00—

~2+P 2

gz(r) =
m* for r&c,

-200—

1 ~(d cIz dBCz'I

ttt*cIz, (c) &dr dr j,=,

Kz Nz=r(r)
~

1—
otL oII,

for r=c,

for r&c.

(5.43)

-300—

FIG. 24. Brandow's eGective interaction in the relative S
state, calculated for the standard hard-core potential with ko= i.o
F ~, y=1.68 F ~. The heavy vertical line at r=c represents the
repulsive delta function at the core edge. The two-body potential
is also shown for r)c. The behavior of ge(r) is very similar for all
reasonably small values of ko.

This function is plotted in Fig. 24 for the S state, with
the two-body potential taken to be the SHCP. Clearly
go(r) is completely different from s(r) at small dis-
tances. However, bemuse of the healing property,
go(r) agrees very well with v(r) beyond r= 1 F.

The separation method for calculating 6, invented by
Moszkowski and Scott, '4 leads to a diGerent eBective
interaction. For the S state, it is given by

go(r) =o for r&d,

ko (INVERSE FERMIS)

0.5 I.O

tt - I 0
X
K
4J
u

-20

FrG. 23. The diagonal matrix element of G as a function of
the relative momentum ko. The two-body interaction was taken
to be the standard hard-core potential, acting only in relative S
states. More realistic potentials give very similar results,

"B.H. Brandow, Proceedengs of the Internatjonai School of
Physics "Enrico Fermi, " Course 36, Varenna, 1965 (to be pub-
lished).

= st(r) for r& d, (5.44)

where the separation distance d is about 1 F. This
interaction is different from formula (5.43); but this
does not mean that one of the two is wrong, because our

definition of gz, (r) is not unique. We have only re-
quired that gz, (r) lead to the correct value for the inte-
gral in Eq. (5.42), and there are obviously many
functions gz, (r) that will do this.

The separation method is especially useful for prob-
lems involving diagonal matrix elements of G for par-
ticles in the Fermi sea, e.g., the calculation of matrix
elements to be used in a shell-model calculation. But in
the higher order diagrams of the Brueckner —Goldstone
expansion, there appear off-diagonal and oG-energy-
shell matrix elements, and for these the reference-
spectrum method is indispensable. (It is also possible
and useful to combine the reference-spectrum method
with the separation method. See Refs. 2 and 18.)

One can go quite far analytically with the reference-
spectrum method. Of course, for exact numerical re-
sults a computer is still necessary. But one can make
estimates and get a feeling. , for orders of magnitude
by purely analytical methords. Many examples are
given in the BBP paper, which presents a wealth of
interesting and important material. '

VI. SINGLE-PARTICLE ENERGIES AND
CONVERGENCE

It has already been:pointed out that the single-
particle potential energy U(k) is at our disposal; it is
to be chosen with a view towards making the sum-
mation of the Brueckner —Goldstone series as easy as
possible.

Certain diagrams contain U interactions, and if
U(k) is appropriately defined, these diagrams may
cancel other diagrams. This cancellation reduces the
number of diagrams that must be explicitly evaluated.



738 REVIEWS OP MODERN PHYSICS OCTOBER 1967

(b) (c)

FIG. 25. Three Goldstone diagrams whose sum is zero when
the Hartree —Fock definition of the single-particle potential energy
is used.

(m I
s

I bm),

—g &uN I
~

I lb&,
n&A

—(aI UIb)

(6.2)

(6.3)

(6.4)

for diagrams (a), (b), and (c), respectively. LThe last
two matrix elements have negative signs because, ac-
cording to the sign rule (—1)"+'+~, diagrams (b)
and (c) have the sign opposite to that of diagram (a) .$
With the Hartree-Fock choice for U, the sum of the
three matrix elements is zero, and therefore none of
these diagrams need to be considered in summing the
Goldstone expansion.

Similarly, one sees that any diagram in which a
bubble is attached to a hole line, rather than to a par-
ticle line, is canceled by a corresponding diagram in-
volving U. In fact, the Hartree —Fock choice of U en-

This is the basic idea underlying any definition of
U(k). How one chooses U(k) therefore depends on
which diagrams one decides to cancel by this choice.

In making this decision, one should keep two points
in mind. First, only certain types of diagrams are
conveniently canceled by diagrams involving U(k).
Second, choosing U to cancel the maximum number of
diagrams is not necessarily the best procedure. One
should have an idea of which diagrams are appreciable
and which are negligible. Then U should be defined so as
to cancel as many of theimportant diagrams as possible.
We therefore see that the choice of U is closely related
to the question of the convergence of the Brueckner-
Goldstone expansion.

The most familiar example of a single-particle po-
tential is the Hartree —Fock potential UHi. . For a (not
necessarily infinite) many-body system with a non-
singular two-particle potential m, the Hartree —Fock
potential is defined by

&P I
U ~ I v&= Z (&PN I ~

I v~) &PN I
~

I

—Nv)) (6 1)
n&A

This definition arises from the requirement that the
expectation value of H in the unperturbed ground state
be stationary with respect to variation of the single-
particle wave functions.

However, this choice of U also has a simple interpre-
tation in terms of Goldstone diagrams. Consider, for
example, the three diagrams of Fig. 25. Each of these
gives exactly the same contribution except for the
matrix element of the middle interaction which is

E,+Eg—W= E,+Eg+E,+Eg Ei 2E E„,— — —
W= E +E„(E,+Eg Ei E—). — —(6.6)

Thus (mN I
G

I
mN) is off the energy shell by an amount

(E,+Eq E~ E). This is—undesi—rable because, if
U(k ) is to be a well-defined function of k, then the
starting energy W used in Eq. (6.5) can at most
depend on m and e.

(fA

b
A

pi& gl gl( r4 ii0
b

(a) (b) (c)

FIG. 26. G-matrix diagrams that occur in the Hartree —Fock
de6nition of U(k ) for nuclear matter. They are analogous to
the v-matrix diagrams of Fig. 25.

sures the exact cancellation of all diagrams containing
one or more bubble interactions, exchange bubbles, or
U interactions.

Thus the Hartree —Fock definition of U causes the
cancellation of a special class of "self-energy" diagrams.
For a finite system, this choice of U leads to the familiar
Hartree —Fock self-consistency condition. The single-
particle wave functions g~(x) which are obtained as
solutions of the equation (T+UiiF) p„(r) = E~p, (r)
must agree with the single-particle wave functions used
in the calculation of UHs from formula (6.1). For an
infinite system, on the other hand, the one-particle
wave functions are known from the beginning to be
plane waves. The self-consistency condition then be-
comes trivial, and formula (6.1) merely provides an
expression for (q I

UHF I q&= U(k, ). (Note that
(P I

UHi.
I q) vanishes because of momentum conser-

vation, if k„ is different from lr, .)
We now turn to nuclear matter and consider first

the definition of U(k) for momenta k in the Fermi
sea. Suppose that U(k ) is chosen by analogy with
Hartree —Fock theory, i.e., require the cancellation of
the three diagrams of Fig. 26. Then we get

U(k.)= g (~N IG(W) I~I&, (6.5)
n&A

where the exchange term has been omitted because all
the important ideas can be illustrated by means of the
direct term alone.

Using 6 matrices instead of e matrices raises the
question of what value should be used for the starting
energy S". To calculate lV, we draw the second-order
ladder diagram corresponding to the 6 matrix of in-
terest, as shown in Fig. 27(a) . The energy denominator
at the level indicated by the arrow is obtained by ap-
plying the operator e to

I cd) and is therefore equal to
(E,+Ez W) . But sinc—e this energy denominator must
also be equal to the sum of the particle energies minus
the sum of the hole energies, we Qnd that
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a s ouM have its on-energy-shell value (E +E„)
for the purpose of calculating the middle
nominator.

e mi e energy de- This offers the convenience of working with
ener -shellgy- G matrix, and the resulting U(k ) cancels
not just the original diagram of F' 26 bo ig. a ut rather an

in Fig. 29.
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Even thou g~ t"e single-particle wave functions in
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'
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can e applied to G-matrix diagrams, it
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, who prove the result illustrated in Fig. 28.
Diagrams 28(a) and 28(b) stand for all ossi le a-

vast col1ection of diagrams is exactl
ing he single G-matrix diagram 28(c), with the

proviso that the middle 6 matrix be calculated on the
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matrices never appear between the
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(1960).
'OK. A. Brueckner and D. Tnd D. T. Goldman, Phys. Rev. 117, 207

(b)

FIG. 29.. &ome of the G-matrix dia rams
energy denominators that come froa come from the o-matrix diagrams of

The sin le- ag -p rticle potential for states in the Fermi

(6 7)
sea is now defined by means of th
matrix that

s o e on-energy-shell 6
ma rix that appears in the diagram of I'ig. 28(c i e '7

U(k ) = g (rlrt
t
G(kV= E +E„) i ertN). (6.8)
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l( 'lt lr 0
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lf]t
yqQ i(b

by the equivalent expression

-2(palm/e)GI b)
all yg

Then, using (4.10), we note that

(6.10)

&b)

Fzc. 30. Diagrams used to calculate the ef'feet of inserting a
G matrix between particle lines. (a) An arbitrary diagram in the
Brueckner-Goldstone expansion. (b) The same diagram with a
G matrix inserted between two particle lines, thus leaving the
number of hole lines unchanged.

Another way of investigating the desirability of
canceling this particular sequence of diagrams is to
note that if the expansion in powers of G is rapidly
convergent, then the inclusion or omission of a few
fourth-order and higher terms should make little
diGerence. However, in the present case it makes a
great difference. If only the third-order diagram of
Fig. 26(a) were', included in the definition of U(k ),
then the middle 6 matrix would be oG the energy shell

by the amoun. t (Z,+E& E& E„—), w—hich is typically
600 to 800 MeV. The parameter p', defined by Kq.
(5.18), would then be about 20 F '—ten times its
typical on-energy-shell value. The core volume and
core boundary terms in Eq. (5.41) for the G matrix
would become much larger, while the attractive outer
term would not change much. As a result, U(k )
would be repulsive instead of strongly attractive. This
is an indication that the expansion in powers of 6 does
nod converge well. It will now be made plausible that
this is indeed the case.

Consider an arbitrary diagram which at some level
has two upgoing lines labeled a and b, as shown in
Fig. 30(a). The blobs in this picture are supposed to
represent the upper and lower parts of the diagram,
Sy inserting a 6 matrix between lines a and b, as shown
in Fig. 30(a), we obtain a new diagram whose order
exceeds that of the original diagram by one. To get an
idea of how well the expansion in powers of 6 con-
verges, we would like to compare the contribution of
the new diagram with the contribution of the oM one.
Because of the additional G matrix in diagram (b), the
contribution of (b) is —g.,e&~(cd I (1/e)G I ab) times
that of (a) . In addition, the upper blob of the new dia-
gram is diGerent from the upper blob of the old one
because the incoming lines a and b have been changed to
c and d. To obtain a rough estimate, we neglect this
latter difference between the diagrams and thereby
obtain

Contribution of Fig. 30(b) to energy

Contribution of Fig. 30(a) to energy

—Q (cd I
e-'G

I ab). (6.9)
c,d&A

In order to evaluate this quantity, we erst replace it

(Q/e) I
ab)= C.s—@.s——Z.s, (6.13)

we can easily evaluate expression (6.10) . The result is
—2 (pal (0/e)GI ab)

all yq

= —& exp (—iK.s R) g C„(r=O, R) (pg I
Z.s),

all pg

= —0 exp (—iK, t,R)Z,s(r = 0, R),
= —0 exp (—iK, t, R)Q ' exp (iK,t, R) f'„. (r=0),

,|(sr—= 0)= —1. (6.14)

Thus the new diagram, with the next higher power of 6,
is just as large as the oM one. It is therefore evident
that an expansion in powers of 6 is very unlikely to
converge. This result is clearly attributable to the in-
finitely repulsive core, which causes tP, |,(r) to vanish
inside the core and thus leads to t; (sr=0) = 1.

Inserting a G matrix between two particle lines does
not reduce the size of a diagram, but the situation is
diferent if one of the lines is a hole line. Consider, for
example, the effect of attaching a bubble interaction
to a particle line, as shown in Fig. 31. The ratio of the
contribution from the new diagram to that from the
old. one is exactly equal to

(br'
I (1/e) G

I b")
n&A

which can be approximated by

Z (bile-'Glb~)= Zfl-'(ls-le-'Gl& )
+&A as&A

Q 0 '(kt,„ I fgP ) (6.15).
n&A

The summation over e is carried out by multiplying

C&&/8//3 C&&/88~0
)L b

rsb

(b)

FIG. 31. Diagrams used to calculate the e6'ect of inserting a
bubble interaction into a particle line. (a) An arbitrary diagram
in the Brueckner —Goldstone expansion. (b) The same diagram
with a bubble interaction inserted into a particle line, thus in-
creasing the number of hole lines by one.

C„,(r=0, R) =0-'exp (iK~, R). (6.11)

Now, as we sum over p and g, K„s must remain con-
stant and equal to K,s. It therefore follows from (6.11)
that

0 exp ( iK—, sR) 4~,(r=0, R) = 1. (6.12)

Using this result along with the fact that



B. D. DAY Brssechrser G—ohistorse Theory of Ngclear Platter 741

by the number of particles A and replacing (kb ) ibn )
by its value for some "average state" n in the Fermi
sea. Since A/0 is equal to the particle density p, the
result is

, &On e.s.

p exp (—ikb„r) t b„sr(r) der. (6.16) (a) (c)

The integrand is unity for r(c and rapidly goes to zero
for r&c, and a typical value for the integral is 4xc'.
Therefore the insertion of a bubble into a particle line
multiplies the contribution from the diagram by the
factor

p4sc =3(c/ro)s=0. 14 (for c=0.4 F, ro ——1.12 F),
(6.17)

where the average interparticle spacing ro is defined by
Eq. (1.4).

These estimates indicate that the size of the contri-
bution from a diagram is rot determined by the number
of G matrices it contains. Rather, it depends on the
number of hole lines. Putting an extra hole line into a
diagram reduces its magnitude by the factor 3(c/rs)',
which is considerably less than one. Therefore it is
sensible to group diagrams, not according to powers of
G, but according to the number of hole lines. This
leads to an expansion in powers of the density because
the expansion parameter 3(c/ro)' is proportional to p.

As we have seen, the hard core plays the dominant
role in these estimates. The assumption of the hard
core leads to /=0 and ( i ~= 1 at small distances, and
this fact is responsible for the divergence of an ex-
pansion powers of G. However, we have also made use
of the weakness of the attractive part of the potential.
For example, in estimating the integral in formula
(6.16), it was important to know that i goes rapidly
to zero outside the repulsive core. This rapid decay of
i occurs only because the attractive part of e is not too
strong.

The grouping of diagrams according to number of
hole lines corresponds to the following very simple
physical idea. Two particles are strongly correlated,
in the sense that f differs appreciably from p, only
when the distance between them is less than some
"correlation length" which is of, the order of c or only a
little larger. Within a sphere of radius ro centered on
any particular particle, there will be on the average one
other particle. The probability that this other particle
is close enough to the 6rst one to be strongly correlated.
with it is of the order of (c/ro)' Thus th.e probability
of strong two-body correlations is proportional to
(c/ro)'. Similarly, the probability of three-body cor-
relations is of order (c/ro)', and so on. Therefore, an
expansion in which the 6rst term is the energy due to
two-body correlations, the next is from three-body
correlations, etc., is characterized by an expansion
parameter (c/ro) ' and should converge well. This is just.
the type of expansion obtained by grouping the dia-

FIG. 32. A sequence of diagrams each of which contains three
independent hole lines. Diagrams (a), (b), (c) are the iirst three
members of the sequence. The sum of this sequence is the hole-hole
diagram (d), with the middle G matrix calculated on the energy
shell.

grams according to the number of hole lines. The dia-
grams with e independent hole lines represent the
energy arising from e-body correlations.

The hole-line expansion converges because the "cor-
relation length" is much less than the interparticle
spacing ro. And this condition is satished because the
nucleon —nucleon potential fulfills two essential re-
quirements: (1) the core radius c is small compared
to rs and (2) the nuclear attraction is so weak that the
range of the strong correlations is characterized by the
core radius, not by the range of the attractive force
(which is somewhat larger than ro) .

Let us now consider in detail the classi6cation of
diagrams according to the number of hole lines. Each
of the first-order G-matrix diagrams shown in Fig. 16
has two hole lines, and all other diagrams have at
least three hole lines. So the first-order G-matrix dia-
grams represent the leading term in the expansion in
powers of density. '~

There are three distinct classes of diagrams with three
independent hole lines. One of these is the sequence of
diagrams (Fig. 29) that is canceled by our choice of
U(k ).Each of these diagrams has four hole lines, but
two of the hole lines have the same momentum, so
that only three are independent. This answers our
question about whether or not it is sensible to cancel
this particular sequence of diagrams by means of
U(k ) .It is sensible because each of these diagrams has
three independent hole lines, and they should therefore
be grouped together and treated as a single term.
This important term, which gives a positive contri-
bution of 6—8 MeV per particle, is then exactly canceled
by our choice of U(k ).

A very similar class of three-hole-line diagrams is
shown in Fig. 32 (exchange diagrams omitted). Al-

though each diagram contains four hole lines, only
three of the hole momenta are independent because
momentum conservation requires that k&+k„=k„+kI,.
The sequence of diagrams whose Grst three members
are shown in Fig. 32(a), (b), (c), is exactly summed by
evaluating the hole —hole interaction diagram of Fig.
32(d), with the middle G matrix calculated on the
energy shell —much as in the case illustrated in I ig. 29.

"This fact was first pointed out by N. M. Hugenholtz, Physica
23, 533 (1957).
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(a) (b) (c)

ht ~uv

(e)
(g)

I I(,"-. 33. Some of the three-hole-line diagrams studied by Bethe,
as explained in the text,

The contribution from diagram 32(d) is comparable
in magnitude to that from the hole —bubble diagram of
Fig. 28(c) except for three statistical factors": (1)
The contribution from diagram 32(d) contains a factor
—, from the restriction to distinct matrix elements in
formula (2.9) for Hi. LThis point was discussed in
connection with Fig. 3 and Eq. (2. 13)). (2) For a
spin-independent potential, every line in a given closed
loop, whether upgoing or downgoing, must correspond
to the same single-particle spin and isotopic spin
state. Therefore, diagram 28(c) involves three inde-
pendent spin —isospin states, but 32(d) involves only
two. Since there are four possible spin —isospin states for
a single particle, the statistical weight of diagram 32 (d)
is ~ that of 28(c). (3) Suppose that in diagram 32(d)
we decide to sum over ki, k, k„, allowing kl, to be
determined by momentum conservation. Then kl, =
ki+k„—k„must be ie the Fermi sea. Hence the pos-
sible choices of k&, k, k„are limited by the require-
ment that (ki+k„—k„~(kF. From this Rajaraman"
shows that the phase-space factor for diagram 32(d)
is 4 that for 28(c) . (Note that the three-hole momenta
in 28(c) can range independently over the Fermi sea. )
Because of these three factors, the contribution from
the hole —hole diagram is only about ~~ that from the
hole —bubble diagram, and in practice the hole-hole
diagram is ignored.

The first few members of the third class of three-
hole-line diagrams are shown in Fig. 33 (exchange
diagrams omitted). There are 2 diagrams of third
order in G, 4 diagrams of fourth order, 8 of fifth order,
etc. The general structure is illustrated by the seventh-
order diagram of Fig. 33(g). The first two interactions
produce three particle lines and three hole lines. Then
interactions are inserted in all possible ways between the
particle lines, except that two successive interactions
between the same pair of particle lines is not allowed.
Only the particle lines can participate in these inter-
actions; otherwise we would get more than three hole
lines. Finally, the last two interactions in the diagram
carry the system back to the state with no particles
and no holes.

It was in studying this sequence of diagrams that

Bethe" was led to the conclusion that the expansion in
powers of G is divergent, a result which was already
suggested by the work of Rajaraman. ' A detailed
treatment of these diagrams is given in the following
article, ' but it seems appropriate to summarize the
main results here.

Bethe" demonstrated explicitly that the contributions
from the sequence of diagrams of Fig. 33, when summed
order by order, form a divergent series. He found the
divergence of the series to be a direct result of the fact
that

~ f ~
is large for small r. In fact, the series turns out

to be divergent whenever
~ f ~)—', at small distances.

To get sensible results, one must sum the divergent
series by means of an integral equation; there is no way
to collapse this class of diagrams to a single diagram,
as was done for the other three-hole-line diagrams. The
procedure is analogous to that by which ladders of u

matrices are summed to a G matrix. When v contains
a strong repulsion, the series s—s(Q/e) s is certainly
divergent. Nevertheless, this series can be formally
summed to obtain the G matrix, which is finite and
well-defined, and which satisfies the integral equation
G=s—v(Q/e)G. In a similar way, one can write an
integral equation for the sum of the three-hole-line
diagrams, and this equation will have a finite and

meaningful solution.
Since the G matrix represents the interaction of a

pair of particles, the integral equation for G leads to a
two-body Schrodinger equation. The three-hole-line
diagrams of Fig. 33, however, represent contributions
to the energy from three-particle correlations. There-
fore the integral equation which sums these diagrams
is equivalent to a three-body Schrodinger equation.

This three-body equation is called the Bethe-
Faddeev equation. By obtaining an approximate solu-
tion to this equation, Bethe showed explicitly that the
three-body energy is smaller than the two-body energy
by a factor of order (c/ro)'. A numerical calculation,
recently completed by Kirson, ""gives —5 MeV per
particle for the three-body energy. This is satisfactorily
small in comparison with the contribution of about —35
MeV per particle from the two-hole-line diagrams, and
it is reasonable to expect the corresponding four-body
diagrams to contribute less than 1 MeU per particle.

This completes the discussion of all the diagrams that
have either two or three independent hole lines. The
two-hole-line diagrams are just the first-order G-matrix
diagrams. There are three distinct classes of diagrams
with three independent hole lines. In the first class are
the diagrams of Fig. 29, which are canceled by our
choice of U(k) for k(k~. Next there is the numerically
unimportant hole —hole interaction of Fig. 32. Finally,
there is the class of diagrams shown in Fig. 33, which
vas studied by Bethe in his work on three-body cor-
relations. There are many classes of four-hole-line

~8M. 7F. Kirson, Nucl. Phys. A99, 353 (1967).
~9A more accurate treatment may well give a three-body

energy which is much closer to zero, or even slightly positive
(private communication from H. A. Bethe).
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(a) (b) (c)

1"'IG. 34. Diagrams involved in the Hartree —Pock definition of
U(kf, ) for nuclear matter.

'0 K. A. Brueckner and K. S. Masterson, Phys. Rev. 128, 2267
(1962).

"M. Razavy, Phys. Rev. 130, 1091 (1963).
32 This procedure has been followed by N. Azziz, Nucl. Phys.

85, 15 (1966). However, Azziz did not evaluate the three-body
diagrams.

~ A very detailed treatment, which leads in first approxima-
tion to this procedure, is given by B. H. Brandow, Phys. Rev.
152, 863 i1966l.

diagrams, but they are presumably negligible, and no
one has studied them.

Let us now discuss very briefly the choice of U(k)
for k)kp. In analogy with Hartree-Pock theory, we
might try to choose U(kb) in such a way that the three
diagrams shown in Fig. 34 cancel out. But this is a bad
choice because, as we have seen, the particle —bubble
diagram 34(a) is just one of an infinite series of dia-
grams which are all equally important. The sum of this
series is —5 MeV per particle, while the particle —bubble
diagram by itself contributes roughly +5 or +6 MeV
per particle. Thus the Hartree —Fock method amounts
to splitting a term of —5 MeV into two terms of +5
and —10 MeV and canceling the +5 MeV term by an
appropriate choice of U(ko), while leaving the —10
MeV term unaccounted for. This is the procedure that
was actually used before the correct treatment of
three-body correlations was understood. "'0" As would
be expected from the preceding discussion, it gave a
binding energy that was considerably too small.

There are at least two sensible choices for U(kb) . If
the three-hole-line diagrams of Fig. 33 are calculated
explicit1. y, then all nonnegligible diagrams are taken
into account without any help from U(kb) . In this case
we may simply take U(k&) =0.""On the other hand, it
is possible to choose U(ke) in such a way that diagram
34(c) cancels tJll the three-body diagrams of Fig. 33.
Since the question of U(kb) is treated in detail in the
following article, ' the discussion will be dropped at
this point.

With these methods of calculating the energy per
particle of nuclear matter, the value implied by any
particular realistic nuclear force is believed to be ob-
tainable to high accuracy. One can calculate just the
first-order diagrams, with U(k ) defined by Eq. (6.8),
and with U(kt, ) chosen so as to cancel all the three-
body diagrams of I'ig. 33. At this point, the only terms
left out are the hole —hole diagram and diagrams with
four or more independent hole lines; the total contri-
bution of these should be less than 1 MeV per particle.

Detailed calculations have been made in this way by
Sprung, Bhargava, and Dahlblom" and by Sprung and
Bhargava. " The calculations were done with the

FIG. 35. Two diagrams that
violate the exclusion principle
when the particle lines are
labeled as shown. Their con-
tributions exactly cancel.

(b)

nucleon —nucleon potentials of Reid, '4 of Hamada and
Johnston, " and of Bressel. 'e Each of these potentials
6ts the scattering data very well up to 300 MeV. The
first two have hard cores, but the Bressel potential has
a core of 6nite height. Unfortunately the results of Ref.
22 are based on an incorrect application of Bethe's
three-body theory. " When the mistake is corrected,
the binding energy is reduced by about 6 MeV per
particle, '~ and the good agreement between theory and
experiment shown in Ref. 22 is destroyed. According
to Bethe, '~ this result makes it almost certain that a
potential with a hurd core (and which fits the scattering
data) cannot give the correct binding energy and
equilibrium density for nuclear matter.

However, several investigations" ""indicate that
better results can be obtained by using a potential
that has a more realistic repulsion of Yukawa shape.
Reid has developed a potential of this type which gives
an excellent Gt to the scattering data, "and it is planned
to use this potential in nuclear-matter calculations. ' '
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APPENDIX A. THE EXCLUSION PRINCIPLE IN
INTERMEDIATE STATES

The Pauli exclusion principle in intermediate states
was ignored for simplicity in Sec. II. But since it must
be understood by anyone who wants to apply the Gold-
stone theory, it will be briefly treated here.

Let us consider the diagram of Fig. 35 (a), restricting
our attention to the case in which both upgoing lines
represent the same single-particle state a. The rules of
Table I imply a nonzero contribution to the energy
from this diagram. On the other hand, the intermediate
Slater determinant in this diagram has two particles in
state a, and any such Slater determinant is identically
zero. So the actual contribution of Fig. 35(a) is zero.
The same result follows from the second-quantization

~4 R. V. Reid (private communication).
3' T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962).
'BC. Bressel, Ph. D. thesis, Massachusetts Institute of Tech-

nology, 1965.I H. A. Bethe (private communication) .
~This possibjtlity was first investigated by C. W. Wong,

Nucl. Phys. 56, 213 (1964); 71, 385 (1965).
ee D. W. L. Sprung (private communication).



REvJEws 0& MQDERN PHYsIcs ' OcTABER 196l

)h

(0) (b)

FIG. 36. Two exclusion-violating diagrams whose contributions
cancel. Diagram (a) is included in the Goldstone expansion, but
(b) is not.

formalism because the I'ermion operators give a factor
(Cs

~

a~to ta,a,a,ta, ta„at
~

C's), and this is zero because
a,'=0. Thus it appears that correct results can be ob-
tained only if the sum over intermediate states is
restricted so as to exclude Slater determinants that
have two particles or two holes in the same single-
particle state.

However, this problem can be handled in a more
convenient way. Consider diagram 35(b), which is
identical with 35(a) except for exchange of the two
particle lines having the same label. For 35(b) the
diagram rules give a spurious contribution that exactly
cancels the spurious contribution from 35(a). This
sort of cancellation is completely general. Thus if all
the diagrams of a given order (both connected and
disconnected) are evalua, ted according to the rules of
Table I, then all the spurious diagrams cancel out and
the final result is correct. This fact is expressed by
saying that the Pauli principle may be neglected in
intermediate states.

A more interesting aspect of this situation is illus-
trated in Fig. 36. Diagrams 36(a) and 36(b) both are
said to violate the Pauli principle because each one has
two hole lines m at the same level; their contributions
exactly cancel. But diagram 36(b) is disconnected and
therefore does not appear in the Goldstone expansion.
The question then arises of whether or not the cor-
responding connected diagram 36(a) should be included
in the Goldstone series.

/Pc ~ &c

b m

(c)
g)r Iia

fTl
J't

b &I,b

m&&

(e)
n

FIG. 37. Some examples of ladder diagrams that occur sn th
de6nition of the G matrix, as explained in Appendix

Goldstone's derivations shows that diagram 36(a)
sholld be included in the Goldstone expansion. This
diagram gives a nonzero contribution to the energy
that is determined by the rules of Table I, and its
contribution is not canceled by any other term in the
expansion.

The general result is that every connected diagram
mus t be included in the Goldstone expansion, even i

bit violates the Pauli principle and is not canceled y
any other connected diagram. Each such diagram gives
a nonzero contribution to the energy that is computed
b the methods described in Sec. II. This result is
surprising at erst sight. To see how it comes a ob ut
the reader is referred to the Goldstone' paper. A physical
interpretation of the exclusion-violating diagrams is
given in Sec. 8 of Ref. 13.

(0) (b)

it y4 ll

(4) (e)

APPENDIX 3. MORE DETAILS ON THE
TRANSFORMATION FROM v TO G

This appendix, which supplements Sec. III, gives a
number of relationships among diagrams. These are
supposed to give the reader a better understanding of
how the Brueckner —Goldstone expansion is obtained
from the Goldstone expansion.

To any v interaction corresponds a unique sequence
of ladders whose sum is a 6 interaction. The correct
sequence of ladders is the one that reproduces the terms
in expression (3.7) . In Fig. 37 are drawn a number of e

interactions, and beside each one is shown the third-
order ladder in the sequence that converts the v to a 6.

In Fig. 38, diagram a is redundant because it cor-
respon sponds to ladders of the sort shown in b, and all such
ladders are already included in (c). Diagram ( ),
however, has repeated 6-matrix interactions between
hole lines, not between particle lines. So diagram (d)
is not redundant; one of its corresponding ladder dia-

ams is diagram (e), which is not contained in anygrams is
6-matrix diagram of less than fourth order. Simi ar y,
diagram (f) is legitimate and occurs in the Brueckner-
Goldstone expansion.

FIG. 38. Illustration of the difference between the redundant
ladder diagram (a) and the legitimate diagrams (d) and (l). A
detailed discussion is given in the text of Appendix B.


