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This paper presents the derivation of formal, exact expressions for "generalized response coeffIcients, "quantities which
characterize the response of a system to conservative forces of arbitrary strength and time dependence. The development
avoids all expansions of the response in powers of the driving forces. The generalized response coefBcients thus provide
the basis for calculations of nonlinear effects in those situations for which expansions in powers of the forces are not suitable.
It is shown how the linear and higher-order response functions obtained first by Kubo can be obtained in a relatively more
compact way. The expressions corresponding to static forces are considered in some detail. Generalized response coeKcients
are also derived for systems in equilibrium; the lowest order of these is just the isothermal susceptibility as usually defined.

2. QiTRODUCTION

The purpose of this article is twofold. First, we
present new formulas characterizing the response of a
system to conservative driving forces of arbitrary
strength and time dependence. These results are ob-
tained by techniques apparently not used previously
in transport theory, and are obtained without the usual
expansion in powers of the forces. The second purpose
is pedagogical: We show how expressions for the
linear and higher-order response functions obtained
previously by Kubo' and others' 4 can be derived
in a more rigorous and more compact way. We also
review brieQy, below, some aspects of response theory
in order to provide a background for the new work
of this article. The article by Bernard and Callen' is
an excellent review of the current theory of the response
to conservative driving forces, often referred to as the
"Kubo formalism. "

By "response" is meant the generally time-dependent
ensemble average of a dynamical operator, representing
a quantity such as electric current density, magnetic
moment, or electric polarization. A "response function"
is the coeKcient of an applied force in an expression
for the response. This may be illustrated with a simple
scalar example. Consider electric current density J as
the response to an applied electric field E(1). It is
often possible to describe J by expanding it in powers
of E(t), retaining only the first few terms. One can
obtain"

t

J(1)= dh, E(1,)y, (1—&,)
tp

+ dll disE(11) E($2)$2(11 12q 1 12) + ' ' ~ (1)

Here it is assumed that the field is turned on at IIO. The
quantities gi(t —ii) and Ps(1i—ts, t—ts) are the first-

'R. Knbo, J. Phys. Soc. Japan 12, 570 (1957).See also R.
Kubo, in Lectures in Theoretical Physics, W. E. Brittin and L.
G. Dunham, Eds. (Interscience Publishers, Inc., ¹w York,
1959), Vol. I, p. 120.

'R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
'W. Bernard and H. B. Callen, Rev. Mod. Phys. 31, 1017

(1959).
4 P. J. Price, Phys. Rev. 130, 1792 (1963).

and second-order response functions. Kubo' was the
first to show how to write formal, exact expressions for
such functions, in a manner which completely by-
passes the Boltzmann equation. s If E(t) is a simple
oscillating field, turned on adiabatically at tQ= —,
that is,

(2)E(t) =Ee" cased(,

where s is "small" and positive, the first-order term in

Eq. (1) can be written

$.{E exp L(iao+s) tg dri exp {
—(i~o+s) rig&i(ri) },

0

(3)

where 61{ } means "real part of { }".The quantity

J drl exp L ($M+s) rigel(ri)
0

is the linear complex conductivity (or susceptibility, or
admittance). The second-order term in Eq. (1) can
be written

', E' exp (2st) dri—drs
0 0

Xexp {—s(2ri+rs) )Ps(rs, ri+rs) cos &mrs

OO

+(R{E' exp $2(ioi+s) 1j—
2 0

dory

dT'2

0

Xexp {—(i&u+s) (2ri+rs) ]Ps(rs, ri+rs) }. (5)

From Eq. (5) it is seen, that the second-order contri-
bution to the response contains a term oscillating at
twice the driving frequency, and a "dc" term. These,
and higher-order, terms are useful in calculating the
eKciency of harmonic generation. e The development
of lasers, the radiation from which can contain very
large electric field amplitudes, has given added interest
to these higher-order terms.

In the zero-frequency limit, that is, for static forces,
the response in our example becomes

J=oiE+osP+ ..
5 J. M. Ziman, Electrons and Phonons (Oxford University

Press, London, 1960), p. 264fL
s P. Franken and J. F. Ward, Rev. Mod. Phys. 35, 23 (1963).
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The response coefficients OI, 02, ~ ~ ~, although inde-
pendent of frequency, are still not simply material
constants, for the reason that E is the applied field
(in the response theories referred to' 4) rather than the
6eld inside the sample. ~ The response coefficients
therefore generally depend upon the sample shape as
well as upon the material properties.

As the applied forces are made stronger, and the
nonlinear characteristics of the response become more
important, an expansion in powers of the forces be-
comes less suitable, particularly for static forces. Not
only does the expansion become less practical for
describing the response, it does not readily bring out
some of the physically interesting characteristics of the
response. That is, in addition to the response itself,
the rate of change of the response with respect to a
change in the forces, at arbitrary values of the forces,
is an important quantity. To a lesser extent, the
second- and higher-order derivatives are also useful.
The response coefficients mentioned above are, of
course, just such derivatives, but evaluated at zero
forces. They give the slope and curvatures of the
response vs force curves at the "origin. " It is clearly
desirable to have formulas available for computing
these same quantities at all values of the forces,
particularly when the forces are strong. The primary
purpose of this article is to supply such formulas.

We may state this from a slightly diGerent point
of view. Suppose that one wants to develop a formal
theory of response in which all expansions in powers
of the forces are avoided, since it is often true that
response vs force curves have regions of strong curva-
ture, "or possibly kinks. "One first must decide just
what the physically important quantities in such a
theory must be. The conclusion is inevitable: The
physically interesting quantities are the response and
its derivatives.

Tani" has recently developed, without using the
above-mentioned expansions, a formal expression for
the response itself. Many investigators prefer to write
Eq. (6), for example, in an Ohm's law form with a
field-dependent conductivity:

J=o(E)E.

Tani s result gives quantities such as a(E) directly.
It is clear, however, that in the nonlinear region,
J/E does not have the physical relevance that BJ/BE

7 T. Izuyama, Progr. Theoret. Phys. (Kyoto) 25, 964 (1961);
J.R. Magan, dissertation, Lehigh University, 1965 (unpublished).
These authors have shown how electrical conductivity (material
constant) can be obtained from the linear Kubo formula.

8 F. I lewellyn-Jones, Ionisati on and Breakdown in Cases
(John Wiley 8z Sons, Inc. , New York, 1957).

J. B. Gunn, in Progress in Semiconductor Physics, A. F.
Gibson, Ed. iJohn Wiley 8r Sons, Inc. , New York, 1957), Vol.
2p p. 211.' L. Esaki, Phys. Rev. Letters 8, 4 (1962); L. Esaki and J.
Beer, in Proceedkngs of the International Conference on Semi
conductor Physics, Exeter, 1962, A. C. Stickland, Ed. (The Insti-
tute of Physics and The Physical Society, London, 1962), p. 603.

"K.Tani, Progr. Theoret. Phys. (Kyoto) 32, 167 (1964).

has, although Eq. (7) has a considerable amount of
intuitive appeal because of our familiarity with the
linear form.

In this article expressions are developed for the
derivatives of the response, which we refer to as gen-

eralized resportse coePciertts Ap. recise definition is given

in Secs. 2 and 3, where forces of arbitrary strength
and time dependence are considered. In Sec. 4 we

examine further these expressions for the case of
static forces. In Sec. 5 we derive generalized response
coe%cients for systems in thermal equilibrium, ex-

tending the work of Wilcox, " who has studied the
static dielectric susceptibility of a dielectric medium in
an arbitrarily large electric field. A review and dis-
cussion of the formalism developed in this paper is
given in Sec. 6. In the Appendix, we give the derivation
and result of Tani" for the response, and examine it
in the static force case for comparison with the results
in Sec. 4.

The A; are operators corresponding to position, mag-
netic moment, etc. The response corresponding to an
operator 8; is the ensemble average of 8;:

(~')t= Tr I~'p(t) I.

Here "Tr" is the trace operation, and p(t) is the
density matrix, whose motion is described by the von
Neumann equation"

i5dp(t) /dt =Lx„p(t)]. (10)

It is readily verified by differentiation that the formal
solution to Eq. (10) can be written

p(t) = U(t, «) p(to) U'(t to)

where the time-development operator U(t, tp) satisfies
the equation of motion

iaB U (t, tp) /B t =X U (1, to),

with initial condition U(tp, tp) =1. The solution to

rs R. M. Wilcox (unpublished manuscript).
"R.C. Tolman, The Principles of Statistical Mechanics (Ox-

ford University Press, London, 1938), Chap. IX.

2. FIRST-ORDER GENERALIZED RESPONSE
COEFFICIENTS FOR TIME-DEPENDENT FORCES

For times t earlier than to, the Hamiltonian Xo of the
system of interest is assumed to be constant, charac-
terizing the kinetic energies of the particles, their
mutual interactions, and their interactions with other
systems such as thermal reservoirs and impurities.
Ko can also include the Hamiltonians of surrounding

systems, to the extent that they are not time-dependent.
At tp, one or more conservative forces F;(t) are ap-

plied, so that the Hamiltonian takes the form

X,=X,—QAtFt(t), t)t, . (8)
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en as'4Eq. (12) can be written
t

I—i/ts) X,.dt j,U(t, tp) =T exp/( —i

dt'U(t, t') U(t, p
U(t, tp) = Up(t, tp) Q(—'—i/A, )"

'
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(21)
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g p
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" Fi, ~, P; t) =8—(B;),/BP;,

, ~ ~ ~ —= BF BF,, (22)

conjuga e

~1)' ' ') n), ~ P t)=—a(B;), a
„

Hermitian j
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t
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gp

where

dt„xi(ti)~ ~ .Xi(t„),X dt's. ~
g g

~ ~ t~ ~ ~ ~

tp

NC
U(t, t,) dt'U&(t', t,)

(23)

and

«t of U(t, t,):and the unitary proper y

U(t, tp Ut («) = Ut (t, t,) U(t, t,) =1,

d s

(26)

» t, tp)g/5) =Ui(t, t,)(aA/W) U t, t—,

I the 6rst and secolid pf Eqs. n made(23) use has been maden
n o erator in an evident way.

23
of the time-ordering p

A, F,(t) Up t, p,
the second to

Xi(t)=—Up t, p, , t p,
k'

of the group pro "t
Up(t, tp) = exp

m iteration o t e iEquation m i(15) follows from i
'

e i

t t, L1—(i/5)

(2S)

U(t, t) =U, (t, t,

U 1', tp) j.dt'x, (t') Upi(t, t,) U ',

and the iscu sion fo-

tp
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) t (19) BC(t, to;, t =Ui(t t,)B;U(t, tp,B;(t, tp =—
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where

to p(tp), one can write

(20)(B;)&——(B;(t, tp) )„.
h s. Rev. 84, 108 (1951)."R.P. Feynman, Phys. ev. , 1951).
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for any operator A. We investigate the higher deriva-
tives in the following section.

The first-order generahzed response coeScient 0-;;
now follows immediately. Taking B; and p(tp) to be
independent of the F;, one finds from Eqs. (8), (20),
(21), and (26), that

o;;(F,, ~ ~, F; t)

=—(i/S) «'a (t') (LA (t', to) B'(t to) l)"
Equation (27) is the principal result of this paper.

By analogy with Eq. (1), a first-order generalized'
response fur&ction may be defined by

y,;(F„",F„;t, t', t,)

= —(i/S) ($A (t, tp), B;(t, tp) j), . (28)

In appearance, Eq. (28) is identical to the first-order
response function of Kubo. ' The difference is that the
Heisenberg operators in Eq. (28) are defined relative
to the total Hamiltonian Kt, rather than Xo as in the
response function formula. The response function may
therefore be obtained by evaluating Eq. (28) at zero
forces.

The first-order generalized response function as
de6ned here does not have the simple physical meaning
that the usual Grst-order response function has; that is,
it is not the response at time t to a delta-function
force applied at t', inasmuch as it is a functional of the
applied forces. This fact means that the generalized
response function does not possess the interesting
symmetry properties' under time-reversal that the
response function has, unless the prescribed time-
dependence of the applied forces is such that g;A; F; (t)
is invariant to the transformation t—to—+to—t. In this
special case one finds that

nfl, (—H; —t, —t', —tp) =—y '(H; t, t', tp) ~

The symbol H is used here to signify not only a dc
magnetic 6eld which may be present in 3'.o, but also
any magnetic 6eMs which are found among the forces
F; In establish. ing this relation, the reality of p;;,
which follows from Eq. (28), is used, together with the
fact that axial vectors, such as H, reverse direction
upon time-reversal. The 6rst-order response function
at zero forces is also antisyrrunetric under time-rever-
sal, ' for A, =B;. This property is not shared by the
generalized response function since the time-develop-
ment operators do not commute with p(tp) .

The expression for the usual first-order complex
frequency-dependent admittance {conductivity, sus-

ceptibility, etc. ; see Eqs. (3) and (4)g is obtained
from Eq. (27) by assuming that the forces are turned
on adiabatically at to=- —00, such that

a;(t') = exp {(ig+s) t'j, s~0+,
then dividing exp { (i&0+s)tj from the resulting ex-

pression, and evaluating it at zero forces. This readily
gives the now-familiar form'

o;;(0&) = —(i/S)

X d PL—( +) j&LA B""()j)" (29)

where B,"&(r) is the Heisenberg operator at zero
forces, given by

B,&0& (r) = exp (iXpr/S) B;exp (—iXpr/S) . (30)

i&&.n alternative form of Eq. (27) is interesting and
is referred to in Sec. 4. Using Eqs. (11), (24), and
(25), and permuting operators within the trace, one
can wnte

where P= (hT) ', h=Boltzmann's constant, and T=
absolute temperature. Then, for any operators A and 8,

(LA, Bj).,=-
X (exp (p Xp) A exp (—p Xp) B) 0/p&p

P
=iS dP'(A&0&( —iSP') B)„.

0
(33)

The 6rst equation in (33) is an obvious identity. In
the last term, the notation of Eq. (30) is used, and
the dot refers to differentiation with respect to the
argument. Equation (33) was first used by Kubo, ' and
is convenient when A is proportional to 8, as in the
electrical conductivity problem. ' The use of Eq. (33)
is not essential to the present development, and we
introduce it only when considering static electric
6elds in Sec. 4 and in the Appendix.

t

o;;(Fi, ~ ~, F„;t) = —(i/S) dt'a;(t')
tp

X» {p(t)LU(t, t') A;Ut(t, t'), B,]}. (31)

The interesting features in this form are that the
time dependence has been removed from 8;, and the
ensemble average is taken with respect to the density
matrix at the time of the rneasgrernemt This .can be a
very useful simplification for calculational purposes,
for although one should strictly evaluate p(t) according
to Eq. (11), the physics of the system and the nature
of the forces may be such that by the time of the
measurement the system will have settled into an
equilibrium condition, or a steady-state condition,
enabling one to use for p(t) an appropriate ensemble.
We discuss this further when considering static forces
in Sec. 4.

Equations (27)—(29), and the expressions for the
higher-order generalized response coefficients which
follow, can be written in another form which is some-
times convenient, if p(tp) is assumed to be canonical:

p(tp) = exp (—PX0)/Tr {exp (—PX0) }, (32)
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3. HIGHER-ORDER GENERALIZED RESPONSE
COEFFICIENTS FOR TIME-DEPENDENT FORCES

We now return to the development of the expressions
for the higher-order generalized response coefficients.

Equation (26), with X=F; and C(t, tp) =B'(t hp),
can be written 8;iC=[A,i, Cj (36)

It is straightforward to find the second derivative of
B; from Eq. (34). We will present here an alternate
method which allows a more compact notation. We
define the "super-operator" 6;& by

where

t
rhB, (t, tp)/rhF; = dti[A;i, B,(t, tp) j,

A;,—= (—s/5) a;(t,) A;(ti, tp).

(34) for any operator C. This super-operator is similar to
the Liouville operator as used by Kubo' and many
others. "With the understanding that 8~20', ;~C means
81s(e;iC), one can readily verify that

[eks, ehr]C=[[Aks, A, ij, Cj.
With the definition of the derivative of 8;~,

(rie;,/rhFk) C= [rhA;—i/BFk, Cj,
one can write, with the use of Eqs. (34), (36), and (37),

rhe;r/rhFk = dhs[eks, 8;i]. (38)

With Eqs. (34) and (38), the second derivative of B,(t, tp) can be written immediately:

t

[cj'B,(t, tp)/BFkrhF;] = dti dhs[eks, ehrjB, (h, tp)+ Chi dtse, ieirB;(t, tp)
tp tp tp tp

chl chs(eksejl+ejsekl) Bi(hq tp) ~

tp tp
(39)

The total operator acting upon B;(t, hp) is synunetric in k and j, as it must be, and has the earlier time (ts) always
standing to the left of the later time (ti) . The third derivative is obtained similarly with the aid of Eq. (38); the
total operator acting upon B;(h, tp) is then the sum of six triple products of 8 s, representing the six possible
permutations of the three derivative indices, again with the earlier times standing to the left of the later times.
This clearly indicates the form of the rth derivative. Proof by induction is straightforward.

The rth-order generalized response coefFicient is therefore

t

. ;(Fi, , F; t) =Q(p) dti ~ ~ ~ Ch, (8,„,~ ~ 8;,iB,(t, tp) )„,
tp tp

where the smnmation g(p) is over all permutations of the indices ji ~ j„.By factoring a;, (tk) from 8;,k, noting
the definition of 8;,k by Eqs. (35) and (36), we can define an rth-order generalized response function by

;„(Fi,~ ~ ~, F„;t) = (—i/tk) ([A;„(t„,tp), ' ', [A;i(hi, tp), B,(t, tp) g ~ ~ ' j ) p.

It is related to o;; (Fi, ~ ~, F„:t) by
t tp -s.

&;;(F„",F.; t) =g(P) dt, " Ch„a;,(t,) "a;,(t,)y„, ;,(F„"., F.„..; t).
tp tp

(41)

(42)

Qy evaluating Eqs. (40) and (41) at zero forces, one recovers the usual rth-order response coefficients and functions.

4. GENERALIZED RESPONSE COEFFICIENTS
FOR STATIC FORCES

We now consider the expressions for the first-order
generalized response coeflicients o,;(Fi, ~ ., F„;t) for.

forces applied as step functions or applied adiabatically,
but which otherwise are constant. The higher-order
coefficients can be discussed in a similar manner.

For purposes of exposition, we assume first that the
forces are turned on stepwise at $0. The turning-on

functions a;(t) are then unity for t)tp, and the time-
development operator U(t, tp) becomes, from Eq. (13),

U(t, t,) = exp [—sX(h—hp)/fkj,

where K is the total Hamiltonian, including the forces;

'~Liouville operators are discussed and used extensively by
U. Pano, Rev. Mod. Phys. 29, 74 (1957); and R. W. Zwanzig,
in Lectlres in Theoretical Physics, W. E. Brittin, B. W. Downs,
and J. Downs, Eds. (Interscience Publishers, Inc. , New York,
1961),Vol. III, p. 106.
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that is,
X=Xa g—A;F;.

where

p(t) = exp (—iX(t—t&&)/57p(ia) exp LiX(t—ts)/fsj,

(45)
and

A (—r) = exp ( ixr/f'1—) A, exp (iXr/5). (46)

Sin.ce X does not generally commute with p(is),
which is a function of Xo, the time dependence of A;
in Eq. (44) cannot be transferred to 8,, giving 8,(+r),
as it can be in the linear (that is, zero-force) formula.
However, if the system is such that p(t) becomes
stationary for sufhciently large t—to, and hence com-
mutes with X according to Eq. (10), then Eq. (44)
becomes identical to the response coefhcient formula
of Kubo. ' Examples for which this is true are magnetic
systems in the presence of a static magnetic Geld, and
electrically polarizable systems in the presence of a
static electric field.

For electric current induced by a static electric Geld,
however, the situation is usually quite diGerent. The
current in an isolated block of conducting material will
soon come to a stop due to the collection of charges
on the surfaces. Kohn and Luttinger" have shown,
however, that the use of periodic boundary conditions
on the charge-carrier wave functions in an isolated
cube allows a steady current. They show that this
device is equivalent to assuming that the system is in
the shape of a torus. They also point out that there
need be no physical contact between the source of the
electric Geld and the system. That is, if a magnetic
field whose strength is changed adiabatically is applied
along the axis of a toroidal conductor, a tangential
electric field will be set up in the torus, which will
induce a steady current. Bernard and Callen have also
discussed this. ' It is thus possible to apply consistently
the formalism developed here and in the earlier
theories"" to steady currents in isolated systems.

However, these techniques still do not shed much
light upon the question of how to construct a non-
equilibrium steady-state density matrix for conserva-
tive forces. Kohn and Luttinger'6 did derive implicit
expressions for steady-state density-matrix elements
to first order in the (adiabatically turned on) electric
field. These results could be used in principle in Eq.
(31), although certainly not very directly, and then
only for small fields. Further, for large fields, there will

"W. Kohn and J. M. Luttinger, Phys. Rev. 108, 590 (1957).

Using the form (31), one can write the first-order
generalized response coefficient as

o,;(Fi, "~,F„;I)
t to

= —(i/&) ar» I p(i) P (—r) Jl'lI (44)

be Joule heating, and if the system is not in contact
with a heat bath, its temperature will rise and one
would not expect a steady state. On the other hand,
Xo can certainly include interaction with a heat bath,
allowing for physical situations in which the tempera-
ture of the system can be kept constant in spite of
Joule heating. McLennan"" considers the case in
which the interaction, which allows for current fIow
between the system and the apparatus which sets
up the field, is not conservative (that is, non-Hamil-
tonian) . Purely Hamiltonian dynamics svsay not,
therefore, allow a nonequilibrium steady state, except
for those devices mentioned above in which particle
exchange between source and system is not required.
(Even then, a heat bath must be provided to dissipate
the Joule heat. ) To sum up: There is no conventionally
recognized form for a nonequilibrium steady-state
ensemble for systems exposed to conservative forces.

In these nonequilibrium cases resulting from step-
function applied forces, one would therefore ordinarily
write in place of Eq. (44) a form (identically equivalent)
derived from Eq. (27):

A, = ex, Ay=A, =O;

F„=F.=O; 8,= J',. (4g)
"J.A. McLennan, Jr. , Phys. Rev. 115, 1405 (1959) ~ Advancesil Chemical Physics, edited by I. Prigogine (Interscience Pub-

lishers, Inc. , New York, 1963), Vol. V, p. 261. In these articles,
steady-state Gibbsian ensembles are derived for systems acted
upon by nonconservative forces, such as temperature and con-
centration gradients.

'8 J. A. McI ennan, Jr. (private communication)."J.S. Langer, Phys. Rev. 120, 714 (1960); 124, 1003 (1961);
12V, 5 (1962); 128, 110 (1962).

2 J. A. Mcl ennan, Jr., and R.. J. Swenson, J. Math. Phys.
4, 1527 (1963).

o;;(Fi ~ ~ ~ F„t) = (i/h)—

(47)
where the notation of Eq. (46) is used, and ( )„
refers to the ensemble average with respect to p(is) =
f(Xs) . If a future development of nonequilibrium
steady-state statistical mechanics shows how to write
a steady-state density matrix, then one would of
course use the form (44) .The latter would undoubtedly
be the simpler to evaluate. Still, a careful evaluation
of either form is no trivial matter, as is evident from
some of the eRorts to evaluate the (zero-force) first-
order conductivity expressions. ' "@The complications
arise from the existence of interparticle interactions in
Ko. The inclusion of the interactions with external
forces would not be expected to increase the difhculty
of evaluation substantially, since these are single-
particle interactions.

As an example in electrical conductivity, consider the
formal expression for the "generalized conductivity"
o, (Z; t), corresponding to electric current in the
x direction resulting from a field E applied stepwise
at to in the g direction. Then
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If p(to) is assumed to be canonical, we can use the first
part of the identity (33) to obtain from Eq. (47)

t ta P

o.,(&; t) = (ie/fi) dr dp'
0 0

X ((d/dp') exp (p'Xo)x(r) exp (—O'Xo) J.(&
—

&o) )„.
(49)

Now
J,(l) =e dx(t)/dt

The "zeroth approximation" to the current operator
for argument —sSP' is

J,"'( ik—P') =eI dx&o&( ih—P')/d( ik—P') 5

= (ie/5) (d/dP') exp (P'Xo) x exp (—P'Xo) .
(50)

At zero electric field, the r dependence of x in Eq. (49)
can be transferred onto the J&+(t—lo) by cyclically
permuting time-development operators within the
trace. Equation (50) can then be used, giving an
autocorrelation function of the zero-order current
operators. When E&0, the simple correlation picture is
destroyed. Equation (49) can still be manipulated into
several equivalent forms, none of which has the formal
simplicity of the zero-force expression. One could
de6ne an extended current operator by

J.(—NP'
) r)

—= (ie/5) (d/dP') exp (P'Xo)x(r) exp (—P'Xo), (51)

and write Eq. (49) as
t tp P

g„(E,t) = dr dP'(J, ( i''
)
—r) J,(f—&o) ).,

0 0

(52)

However, the form of Eq. (47) with the substitution
of Eq. (48) is probably the most convenient to use
when EWO. Finally, we note the appearance of 1—to in
the expressions such as (47), (49), and (52). This is
expected since these expressions are exact. However,
for "large" systems and values of 3—to larger than the
relaxation times which characterize the system, it is an
experimental fact that the current becomes steady
when the Joule heat can be dissipated. A calculation
based upon the above equations should reAect this
if Xo allows for contact with a heat bath. However,
one cannot simply set t—to equal to in6nity in the
ietegrunds of these equations, because the time-develop-
ment operators are then undefined.

Instead of assuming the forces to be turned on
stepwise at Ip, one may take them as turned on adia-
batically at to= —oo', that is, a, (t) = exp (s1) with
s —+0+. The comments made above regarding the
possible forms the density matrix might take apply
here as well. But instead of using expressions such as
(44)-(46), one would have to go back to Eqs. (27)

or (31), that is, the expressions involving the time-
ordered operators. This is not necessarily a complica-
tion, however, since for many physical systems, some
kind of expansion technique would have to be used in
either case, for the calculation of physical properties.
There is a definite calculational advantage, in fact, in
having the factor exp (s/) present in the evaluation
of the first-order ordinary conductivities'~" (see Eq.
(29)j. Available reduction techniques are those of
Izuyama, ~ Goldstone" and Hubbard" involving dia-
gram expansion and resummation, starting with Eq.
(15) with to= —oo. Equation (15), of course might
also be used for step fields, with similar techniques. '4

5. GENERALIZED RESPONSE COEFFICIENTS
AT EQUILIBRIUM: ISOTHERMAL

SUSCEPTIBILITIES

In the preceding sections, the formal theory of the
response to time-dependent forces has been developed.
In this section we consider forces of such a nature
that the system is in equilibrium at the time of the
measurement, and described by the canonical distribu-
tion of Eq. (32). This implies that the forces are
static and that the system has been placed in contact
with a heat bath at some time in its history. The
restriction to static forces can be weakened however,
to permit slowly varying forces if contact with a heat
bath is suKciently good. The treatment here is an
extension, to arbitrary systems and derivatives of
arbitrarily high order, of a technique used by Wilcox"
in a discussion of static dielectric susceptibility.

The equilibrium response to the forces F; is just

(8;)= Tr $8; exp (—PX)/Tr Lexp (—PX) j, (53)

where X includes the forces and is defined in Eq. (43) .
The quantities of physical interest here are

x;;(Pi, ",P.) =8(B;)/aF;, —

and higher derivatives. For example, if B; is a magnetic
moment per unit volume, and Ii, is an applied mag-
netic field, then x;, is the isothermal magnetic sus-
ceptibility. "To carry out the differentiation in Eq. (54),
one needs to have an. expression for rlLexp (—pX) j/elF;.
This is readily obtained from Eq. (23) by substituting
exp (—PX) for U(l, to) and —iA'P for t, setting the
lower limit on the integral equal to zero to give the
proper "initial condition" exp (—PX)

~ s o=1. This
» M. Lax, Phys. Rev. 109, 1921 (1958).
~ J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
23 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (19/7).
24 For adiabatically turned-on forces, one must not, of course,

take the limit s—+0+ until after the formal operations, as in Eq.
(27), have been performed. Taking this limit earlier is equivalent
to using a step-function for the forces.

so H. 3. Callen, Thermodynamees (John Wiley gr Sons, Inc.,
New York, 1960), Chap. 14. In Callen's language, x;; as we
have de6ned it is called the "susceptance, " the term "suscep-
tibility"- being reserved for the derivative relative to the local
6eld. However, there seems to be no universal agreement on such
usage.
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procedure is justified because the equation of motion
(12) for U(t, tp) is identical to that for exp (—PX),
with the substitution for t= —imp. Using Eq. (43)
also, one finds

A greater similarity to Eq. (40) is obtained by letting
P=Pp, rearranging terms within the trace in Eq. (62),
and introducing AB;p in the notation of Eq. (61).
One can then write

BLexp ( PX—) g/BF; = exp (—PX) dP'A; ( N—P'),

where the notation of Eq. (46) is used.
Combining Eqs. (53)—(55), one obtains

(55)

P

x„(F,~ ~ ~, P-) = dP'I &A;( —'V') B')- &A, ) (B')I

P

dP'(dA, (—i'') AB;), (56)

where
aA, (—iSP) =A;(—i') —(A;). (57)

=xt'(Fi, ",P-). (58)

The second equation follows by rearranging terms
within the trace, and changing p' to p —p'.

The second derivative, x;;&(F&, ~ ~, F„),is similarly
obtained. The following are useful intermediate results:

BA;g/BF(,
P1

dPpLA;g, Akp7, (59)

(a(AA;ghB;)/BFg, )= dPp (LhA, g, EAI pjhB;)) (60)

where the abbreviation

A;y
—=At( —i5pg) (61)

is used. Equation (59) is the analog of Eq. (26), and

Kq. (60) follows straightforwardly. Combining Eqs.
(56) and (60), one obtains

P P1

xpk(F~, " ~
F ) = dP~ dPp

0 0

X (AA pyhA; pd B+hA;ghA pphBI ). (62)

"See the second paper of Ref. 1, p. 146.

Equation (56) is identical in appearance to the zero-
force isothermal susceptibility. "The latter is obtained
by evaluating Eq. (56) at zero forces.

The usual physical application of Eq. (56) would
be to those systems for which both A; and 8; are
dipole moment operators M;, electric or magnetic.
In this case the isothermal susceptibility tensor is
symmetric. Per unit volume, it is

P

xg(Pg, ~ ~ ., F ) =V ' dP'(dM;( i'')—hM;)
0

P= V ' dP'(hM;( i'')—d M; )

PO P1

XVI(Pg, "~,F ) = dp~ dpp
0 0

X (&B,pd AI i&A,p+&B,pd A;g&A pp ), (63)

in which all operators corresponding to larger values
of p stand to the left of those for smaller values of p.

The third and higher derivatives are similarly ob-
tained. The rth derivative, y;;,. ..;„(F&,~ ~ ~, P„),con-
sists of a sum of r! terms, representing the r! ways
of arranging AA;&( —i'~) ~ ~ AA;„( NP,—) with the
larger values of p; always appearing to the left of the
smaller values. When A;=B;, the x,;,. . .;,(P~, ~ ~, F )
are synunetric with respect to interchange of any
pair of indices, as in Eq. (58).

0. DISCUSSION

Our purpose in this article has been to present a
formal theory of nonlinear response which avoids all
expansions in powers of the driving forces. Our motiva-
tion has been to but the "Kubo formalism" on a more
rigorous and compact basis by bypassing these ex-
pansions. We have also wanted to develop formulas-
the generalized response coefficients —that have more
physical relevance in the nonlinear region than do the
usual response coeKcients and response functions. The
generalized response coefficients are the derivatives
of the response relative to the amplitudes of the
applied forces. They are analogous to the quantities of
interest in equilibrium thermodynamics. We have
shown how to write formal expressions for these
derivatives in both the equilibrium and nonequilibrium
cases.

The eth-order derivatives evaluated at certain values
of the forces are just the mth-order coeKcients in a
Taylor's series expansion of the response about those
values of the forces. The generalized response coeffi-
cients may therefore be thought of as the usual re-
sponse coefficients generalized to arbitrary values of
the force amplitudes.

The development-makes use of some properties of,
and manipulations upon, time-ordered time-develop-
ment operators. These operators are still not very
familiar to many working in statistical mechanics and
related subjects, and may appear to give a formidable
aspect to the evaluation of the generalized response
coefficients. It is true that, for example, one cannot
generally take matrix elements directly of these time-
ordered operators. However there are often cases in
which the time-ordered operators can be reexpressed
in closed form. For constant forces U(t, tp) is just
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exp L
—iR(t—is)/5]. LouiselP' shows how to write

U(t, to) in closed form for a linear harmonic oscillator
driven in an arbitrary fashion. A particle with angular
momentum in the presence of a static magnetic 6eld
and a perpendicular rotating magnetic field is another
example; the method for writing U(t, to) in closed
form has been discussed by Slichter. ~s This method
can be extended trivially to include an arbitrary
number of spin particles connected by isotropic ex-
change interaction. But whether the forces are static
or variable, in most cases of physical interest the
eMLNatioe of the generalized response coefficients will

require some form of perturbation expansion and
resummation technique, similarly to that for the zero-
force response coefficients.
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APPENDIX

We here derive a formal expression for the response,
following the method of Tani. "and examine it for the
case of static forces, and for the electric current re-
sulting from a step-function applied electric field.

As before, the forces are assumed to be turned on
at to, thereafter having arbitrary time dependence.
The density matrix is now separated as

where U(f, t') is defined by Eq. (13). The response
(8;), is then

(&') = (~')"—( /&) Z
tp

X (LA;, B,(i, t') j&„P,(t') . (A4)

This is equivalent to Tani's formal expression for the
response. Its advantage over the expression (20) is
that the "equilibrium response, " which is often zero,
or if not zero, not of direct interest, is separated out.
For developing the generalized response coefficients,
however, it is much more convenient to begin with
Eq. (20).

For static forces turned on suddenly at to, Eq. (A4)
becomes

t—tp

dr(I:~s, ~'(r) j&",

(AS)
where B,(r) is defined by Eq. (46) .

As an illustration of Eq. (AS), we consider the
same example that was considered in Sec. 4, namely
the current (J, )~ due to an applied field E in the
x-direction. Using Eq. (48), one has

t tp

(J.),=—{i/5) E dr (mesc, J.(r) $ ).„{A6)
0

since (J.)„=0.Using Eqs. (32), (33), and (SO),
one obtains

p (1) = (pp)i+p (i) . (A1)
(J*&i=& dr dP'(J, &" ( i'') J.—(r) )„.(A7)

Assuming that p(ts) =f(Xe), one obtains the equation
of motion for p'(i) from Eqs. (8) and (10):

+dp (1)/d~=j+& P'(i)3 —LZ~ P (1),p(io)7 (A2)

This has the formal solution

p o) =(i/li)f st''oo, rj
tp

XLZ~.F (~') p(io) jU'(~, 1'), (A3)

'~ W. H. I.ouisell, Radiation and Noise in Quantum Electronics
(Mcoraw-Hill Book Co., Inc., New York, 1964), pp. 119-124.

ss C. P. Siichter, Prsnccpies of Magnessc Resonance (Harper
Br Row, Inc. , New York, 1963), pp. 26, 27.

Equation (A7), which is exact, may be compared to
Eqs. (51) and (52), and to the slightly different
formula used by Miyake and Kubo, " in their attempt
to account for the "kink effect" found by Esaki. "
As t—to—+, and provided the time integral con-
verges, as one expects for sufficiently large systems,
the coeKcient of 8 in Eq. (A7) becomes the "field-
dependent conductivity" as discussed in the Intro-
duction. It is not a generalized response coefficient as
defined in the preceding sections.

"S. J. Miyake and R. Kuho, Phys. Rev. Letters 9, 62 (1962).
Although the adiabatic nature of the applied Geld E is not ex-
plicitly indicated in this paper, it was used in the calculation
(private communication from S. J. Miyake').


