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Knowledge of the two-nucleon interaction can be used as a proving ground for general theories of elementary particles.
Within this context three aspects of the nucleon —nucleon problem are examined: (1) the tests of some group theoretical
schemes through the nucleon-nucleon interaction; (2) a summary of the status of test of general conservation laws; and
(3) an attempt to investigate the general analyticity structure of the S matrix through the two-nucleon interaction.

I. INTRODUCTION

The two-nucleon interaction is a central problem in
modern physics for at least three reasons. First, it is
the oldest and best understood strong interaction
studied by man and hence it is of inherent interest.
Second, it serves as a basis for a fundamental under-
standing of nuclear structure and hence, in a sense,
is the key to a vast area of physics. Third, we can use
our extensive knowledge of the two-nucleon interaction
as a proving ground for general theories of elementary
particles.

My talk is devoted to some aspects of this third facet
of the two-nucleon interaction. To some extent supple-
menting the lecture by Elliot Leader, I address myself
in particular to three topics, which serve as examples
for the variety of uses of our knowledge of the two-
nucleon interaction. The list is not supposed to be
exhaustive, and neither can the discussion of the three
topics be exhaustive. First, I talk about the tests of
some group theoretical schemes through the nucleon—
nucleon interaction, then I summarize the status of
tests of general conservation laws, and finally I discuss
an attempt to investigate the general analyticity struc-

ture of the S-matrix through the two-nucleon inter-
action.

II. GROUP THEORETICAL SCHEMES

The two-nucleon interaction has been used recently' '
to test the validity of the SU(12) scheme and its
relatives, such as U(12), SU(12)g, and the coplanar
U(3) XU(3). These tests are based on the result that,
instead of the customary ten scattering amplitudes for
nucleon —nucleon scattering at a given energy and angle
(five each in the two isotopic spin states), in case of
SU(12) invariance, under certain assumptions, there
are only four independent amplitudes. The restrictive
assumption under which this result holds is that the
baryons belong to the 364 representation of SU(12).
In terms of SU(6) and SU(2) representations, we have

SU(12) 354 SU(6) 558 SU(2) 4Q+ SU(6) 3p8 SU (2) 2

(2 1)

and the two SU(6) representations appearing here can,
in turn, be thought of in terms of SU(3) and SU(2)
representations as

SU(6) 55 ——SU(3)38SU (2) 2Q+ SU(3) lp8 SU(2) 4 (2.2)

SU(6) rp =SU(3) l8 SU(2) 20+ SU(3)38SU(2) 20+ SU(3) lp8 SU(2) 20+ SU(3)38SU(2) 4. (2.3)

Even assuming that the assignment of the ordinary baryons to the SU(3) 3 is experimentally well established,
the assignment of these particles to SU(12) 354 cannot be regarded as unambiguously known. Assuming, never-
theless, this assignment, we can write' ' the scattering matrix of baryon —baryon scattering as

2'f'= (p'ln'l j'lp'sn'2 j'2
I

2'
I plnl jlp~2 js)

=BA E o (p ln jll)BD'E'F'(p 2n 2j 2) )ifA'" A"FF(p lp 2 plp2) BABE(plnl jl)BDEF(p2n2 j2) ~ (2.4')

Here pl, ps, p'l, and p'2, are the initial and final moinenta of the baryons, nl, ns, n'l, and n'2 their Dirac spin
indices, and jl, js, j'l, and j'2 their SU(3) quantum numbers. The quantity BAEo(plni jl) is the "spinor tensor"
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' P. Freund and S. Lo, Phys. Rev. 140, B927 (1965).
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' D. A. Akyeampong and R. Delbourgo, Phys. Rev. 140, 81013 (1965).
4 R. A. Amdt, M. J. Moravcsik, and-'R. Wright, Nuovo Cimento (to be published}.
' M. Beg, B. W. Lee, and A. Pais, Phys. Rev. Letters 13, 514 (1964).
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of the 364 representation of SU(12), and its indices A, B, and C go over 1, 2, ~ ~ ~, 12, since each represents a set
(tl, ur), where p, has four values and w has three. The quantity MA ~ ~ .F;A ~ ~ .F(P',P'„P,P,) is the M matrix for the
reaction in SU(12) space.

Equation (2.4) is quite analogous to

T'f'= &P'1~'lP'2~'2
I

2'
I pl~lp~p)

U o'1(p 143 1) Uo' 3(P 2~ 2) Mo' lo'3'olo3(p lp 2plp2) Uo1(P1421) U333(P2422) (2.5)

which is the form of the scattering matrix for nucleon —nucleon scattering in ordinary Dirac space, with U„(p, 42)

being the Dirac spinor, t4=1, 2, 3, 4. The customary way to rewrite Eq. (2.5) in a manifestly three-dimensional
way is to use the Pauli spinor X (n) which describes the spin state of the particle in its rest frame, and observe that

Uo(p ~) =Z Do-(p)X-(~), (2 6)

where

ppy2ly1, 2 (1+(d.p/pp+rrz) )
D(p)= ',

E,1—(a p/pp+332))
(2 &)

In order to rewrite Eq. (2.4) in manifestly three-dimensional notation, one uses an analog of Eq. (2.6). In
particular, assuming that the baryon spin-tensor is that of the 364 representation of SU(12) I

or any other repre-
sentation containing the SU(6) pp SU(2) 4 product) we can write

B(P3 ~3 j)olw 1o2w 2 3 o3 w2 Dolml(P) o3m(P2) Do3m3(P) B(~3j)mlw lm3w3m3w33 (2.8)
mI'tw2m3

Bmlw lm3w3mlw 3 Xmlmlmldw lwlw3+ (3V2) L(2&m lm3Xm3+&mlm3Xml) &w 1 w34wblw+ (& mlm3Xm+32& mlm3Xml) &w3w3w4bw 1 ].
(2.9)

Here x. . . is the spin--, spinor in ordinary, three-dimensional space, totally symmetric in the indices; i.e., a
spin-2 analog of X,. The tensor b„, ' and d„,„,„,are the SU(3) octet and decuplet tensors, respectively, and

, , and p, ~3 are the two- and three-dimensional Levi-Civita (totally antisymmetric) tensors.
Substituting Eq. (2.9) into Eq. (2.8), and then Eq. (2.8) into Eq. (2.4) permits us to write the last of these

in terms of only Pauli spinors as far as the spin space part of the ordinary (spin-2) baryon space is concerned.
If we assume invariance under SU(12), we can write the M of Eq. (2.4) in a diagonal form

MA'"F', A" F =P 5" (S, t, I) t!AA'8B'B ~ ~ ~ bF'F, (2.10)
(~)

where 3&» (s, t, I) is a function only of the kinematic variables s, t, 24 in ordinary momentum space and contains all
the dynamical information about the reaction, and the sum is over all 6!permutations (p) of A, ~ ~ ~ Ii

The key observation consists now of noting that the BABc denoting the 364 representation of SU(12) is com-
pletely symmetric in its indices. As a result, of the 720 permutations only those will give different terms in the
cOntraction of Eq. (2.4) in which the r4grwber of indices contracted between, say B(p'la'1 j'1) and B(p1421jl) is
di6erent. There are clearly only four such diferent possibilities, and hence wc get

Tf =F1BABc(p 142 1'j 1)BDEF(p 242 2j 2) BABc(P1421jl) BDEF (P2422 j2)

++2BABc(p 142 1j1)BDEc(p 242 2j2) BABF (P1421jl) BDEF (P2322 j2)

++28ABc(p 142 1j 1)BDBc(p 232 j22) BAEF (P1421jl) BDEF (P2422 j2)

++4BABC(p 142 1J 1)BABC(p 232 22 2) BDEF (P1421jl) BDEF (P2422 j2) ~ (2 11)

where B(n, j) is the 56 representation baryon tensor of SU(6) . This, in turn, can be written as a product of Pauli
spinor and SU(3) tensors as follows:

That only four diferent amplitudes exists can also
be seen from the decomposition

364I3364= 1Q+ 143Q+ 5940Q+ 126412. (2.12)

In fact, S~, S2, 53, and F4 are the amplitudes pertaining

to the 1-, 143-, 5940-, and 126 412-dimensional repre-
sentations of SU(12), respectively.

Having obtained Eq. (2.11), we can use Eqs. (2.9)
and (2.8) to rewrite it in terms of Pauli spinors, which
then allows us to calculate the (linear) relations be-
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tween the four F's and the hve Wolfenstein parameters
which are also amplitudes of nucleon-nucleon scattering
in the three-dimensional notation, and hence must be
some linear combinations of the 5's. In expressing the
6ve Wolfenstein parameters in terms of the four F's,
we in fact impose a linear constraint on the former.
This constraint turns out to be extremely simple,
namely,

(2.13)

where H is the amplitude of the term

a, ~ (k—k') a, (k —k') u, ~ (k+k') a, (k+k')
I
k+k'

I I
k+k'

I

In addition to Eq. (2.13), which is supposed to hold
for both proton —proton and neutron —proton scattering,
we also get a connection between the amplitudes of the
isotopic singlet and isotopic triplet part of nucleon-
nucleon scattering, since the four amplitudes of Eq.
(2.11) are supposed to describe arby «ied of nucleon—
nucleon scattering. In fact, they are supposed to describe
any kind of baryon —baryon scattering, but this pre-
diction cannot be veriied at the present since experi-

Fy($, i, N) = —P4($, N, i)

F2($) i, N) = —Pb($, Q) i) .

(2.14)

(2.15)

This imposes two further constraints among the 6ve
VVolfenstein parameters for proton —proton scattering.
These constraints are

mental information is available only on nucleon—
nucleon, and to some extent, nucleon —antinucleon
scattering. On the other hand, nucleon —nucleon scatter-
ing is in any case the most favorable testing ground,
because of the very small mass difference between the
proton and the neutron. If other baryon —baryon scatter-
ing data did not relate to the nucleon —nucleon data
according to Eq. (2.11),one could always claim reprieve
on account of the large hyperon —nucleon mass diKer-
ence, which is supposed to break all the assumed group
theoretical symmetries. In the comparison of proton—
proton and neutron —proton scattering data, however,
this excuse is much less plausible.

Finally, when we deal with baryon —baryon scattering
involving identical particles, Eq. (2.11) must change
sign under the exchange of the labels 1 and 2, which
results in

(xby8+xvyx) &+ (xby~ xvyi) G+ (—x7yi xby2) X—2—iC=0

(x4y&+xey&) J3+(x4y2 xbyg) G+ (x&y&—x4y2 1)E=0—, — (2.16)

where 8, G, X, and C are the Wolfenstein parameters deined by

M(«', «) =B(P.+C(d&+a&) kxk'+1Vg& kxk'g2 k'xkp&

+-', GLa, (k—k') a, (k—k')+a, .(k+k') a, (k+k')5+2HLa, (k—k')~, (k—k') —a, (k+k')a, (k+k') 5n'&,

(5', and (Pz are the spin singlet and triplet projection operators), and

(XQ x3)

y2=—xm/xg(x2+x, ),
yp= xa/x&(x2+x$),

xg=—(1—y'),

x,—= (1+y) (14 cos (g.—pb) —17),

x3—= (1—y) (14 cos (y.—yb) +17),

x4:—cos $g 'r cos Qbq

xb—= sin Q
—y' sin Pb,

xb—:10 cos (Q~
—Qb) Leos Q~ —'r cos Qb5+21 (cos Qb 'y cos Qg), —

xv= 10 cos (p, —pb) Lsin p, —y sin pb5+21(sin Qb —y sin p,),

~gy $2/gm

a exp(i-,'@.) =—Lrrb(E+rm) 5 'L(E+m)'-«'$"5

5 exp(Pyb) =
I Ã1 (E+m—) 5 'f (E+.rrb) '+«'~*b5
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Similar constraints also hold for neutron —proton scatter-
ing at 90' in, the. center of mass system.

Equation (2.13) has a simple interpretation, namely
the term whose coeKcient is H is the only term in the
3E matrix whose matrix elements between two states of
different total spin component in the direction per-
pendicular to the scattering plane are nonzero. Thus
IX=0 can be interpreted as SU(12) symmetry de-
manding conservation of total spin component per-
pendicular to the scattering plane.

It might be mentioned that for S waves only, at
low energies, the restriction discussed above follows
already from SU(6) symmetry. This is plausible in
view of the fact that SU(6) can be considered as a
nonrelativistic, in fact static limiting case of SU(12) .

I et us investigate now the experimental information
accumulated for nucleon —nucleon scattering agrees with
the restrictions imposed by SU(12) on the scattering
amplitudes. In doing so one can proceed in two ways.

One way is to impose the restrictions (2.13) and
(2.16) on the amplitudes and then calculate' ' from
them the experimental observables. The constraints,
(2.13) and (2.16) would then generate constraints on
these observables, which could be tested against experi-
mental data.

The other possibility is to determine the amplitudes
themselves4 from the experimental data, and then check
on the amplitudes directly whether the constraints
(2.13) and (2.16) hold or not.

In principle, there is no diGerence between the two
methods, and they should give the same results. In
practice, however, the second method is much prefer-
able. This is so because the constraints (2.13) and
(2.16) will produce simple restrictions only for a few
observables, only some of which can be measured with
existing techniques, and most of them are dificult
experiments even at that. Thus, the actual comparison
of the restrictions on the obsermbles with experimental
information will be based only on a few pieces of
relatively poorly measured data. The results of such
comparison, therefore, are not very conclusive.

In contrast, a study of the amplitudes determined
from experimental information, as to whether Eqs.
(2.13) and (2.16) are satisfied or not, utilizes all experi-
mental information on nucleon —nucleon scattering, in-
cluding datum points at isolated energies and angles.
As a result, the constraints can be studied with greater
precision and at all energies and angles.

In the 6rst method, for proton —proton scattering,
Eq. (2.13) will result in 5' —4'=9 relations among the
observables, while for neutron —proton scattering, the
number is 6' —5' = 11. We will use the notation
L(o,, b; c, d) for an experimental observable in which
the spin states of the 6rst initial, second initial, first
6nal, and second 6nal particles are described by u, b, t,,
and d, respectively. The tags, u, b, c, and d can be
0, l, m, and n, where 0 denotes an unpolarized state,
l polarized in the t direction, etc. The three directions

L(n, i 0 0) =0

L (n, n; 0, m) =0.
(2.25)

(2.26)

For neutron —proton scattering, the last two relations
are replaced by

L(zz, i; 0, 0) = L(l, n—; 0, 0),

L(n, n; 0, m) = L(l, l; 0, m),

and the following two more relations are added

I.(l, 0; 0, n) = —L(n, 0; 0, t),

L(l, m; 0, i) =L(n, m; 0, n) .

(2.25a)

(2.26a)

(2.27)

(2.28)

If we use the second method, Eq. (2.13) can be
checked directly against the experimental H. An ex-
ample of this is shown in Fig. 1, where the real and
imaginary parts of Lt are plotted at some sample
energies, for proton —proton and neutron —proton scatter-
ing, as a function of angle, indicating also the limits
of error as obtained from an energy-dependent modified-
phase-shift analysis of the experimental data. It is
clear from that figure that Eq. (2.13) is not satisfied,
not even in the forward direction, where the zz priori
somewhat more reliable versions of SU(12) are sup-

posed to hold.
A special kind of test can be carried out by looking

at the singlet and triplet scattering lengths of neutron—
proton scattering. This can be done, for instance, by
using Table II and Eq. (14) of Ref. 2, and taking the
zero energy limit. In that case n and P of Ref. 2 are
real, and equal to each other. Furthermore, for Swaves,
F~= —F4 and 52= —5'3 hold at all angles. Thus we get
from Table II of Ref. 2

B=6~oI fo hf~] =&=G-
C=O=H. (2.29)

t, ~7~, and n are dehned. by

i—=q' —q/Iq' —qI, @=a'&q/Iq'&q. I,

n=—tX~~,

where q and q' are the initial and final momenta in the
center of mass system. Ke then have for proton —proton
scattering

L(l, 0; l, 0) =I-(n, 0; n, 0),

L(0, 0; 0, 0) L(m, —0; nz, 0)

=L(0, m; m, 0) —L(0, 0; m, m), (2.19)

L(m, n; 0, i) = L(m, —i; 0, n), (2.20)

L(n, n; 0, 0) =L(l, i; 0, 0), (2.21)

L(l, 0; 0, l) =L(n, 0; 0, n), (2.22)

L(l, m; 0, n) = —L(n, m; 0, i), (2.23)

L(n, l; 0, m) = L(l, n; 0—, m), (2.24)
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Since for S waves only, we have

8=M„= (2ik) 'Pp (0) Lexp (2ib, ) —17

A'=G —X= (2ik) 'Po(8) )exp (2i8r) —17 (2.30)

and, in the zero energy limit

—2.4—

(a)

we obtain
k cot 8= —1ja, (2.31)

(2.32)

-2.8—
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
8 (CM)

I I I I I I I I I I I I I I I I I

0.8—

0.6

0.4 {b)

0.2—

0 I I I I I I I I I I I I I I I I I

0 0.2 0,4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
I9 (CM)

I I I I I I I I I I I I I I 0 I I0.8—

0.4—
0—

—0.4—

-0.8— (c)

—2,0 I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
8 (CM)

0.4—
I I I I I I I I I I I I I I I I I

0.2

-0,2

{d)

—0.4—
I I I I I I I I I I I I I I I I I

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
e (CM)

FIG. 1. The nucleon —nucleon scattering amplitude H at sample
energies, as obtained from an energy-dependent modihed-phase-
shift analysis of experimental data. The center lines are the values
obtained in the analysis, while the two lines on each side of the
values indicate the error limits. The ordinate is in arbitrary units.
The abscissa is in units of 100'.

for neutron —proton scattering. In actuality, we have

a, —4' (2.33)

C. S. Lai, Phys. Rev 147', 1136 (1966).

which hardly can be called in agreement with Eq.
(2.32). It might be mentioned again that Eq. (2.32)
actually follows already from SU(6) invariance.

The above conclusions concerning the validity of the
predictions of SU(12) invariance are quite discouraging
indeed. It is possible, however, to be somewhat more
charitable in the comparison of theory and experiment
and make explicit allowance for those facts of life which
SU(12) is a priori known to fail in explaining. For
example, SU(12) is known not to be unitary, so that
perhaps a comparison with scattering parameters de-
termined within a formalism which does satisfy uni-
tarity is unfair. Similarly, SU(12) is known to be
broken by mass differences, and in as much as nuclear
forces are due to the exchange of a variety of particles
whose masses are far from being degenerate as SU(12)
would have it, perhaps the above comparison is unfair
on that count also.

One can object, of course, that making all these
allowances is like interviewing, for the position of a
bank teller, a drug addict kleptomaniac with a previous
conviction for sex murder, to see whether otherwise he
qualified for the job. But then again, on a desert
island, being the only applicant, our kleptomaniac
friend might in fact qualify. There might be some
point, therefore, to investigate whether SU(12) con-
tains some partial, qualihed elements of the truth.

To proceed along this line, one can attempt to elimi-
nate the effect of the mass differences. ' ' This can be
tried, for example, as follows. As we have heard earlier
at this conference, one of the very promising approaches
to a fundamental theory of the two-nucleon interaction
is the one-particle exchange scheme. By 6tting such a
theory against experimental information one can de-
termine the masses and coupling constants of the vari-
ous particles contributing to nucleon —nucleon scatter-
ing. These masses and coupling constants can then be
compared with those predicted by group theoretical
symmetries. In the original, untampared form of these
theories, the masses would of course not agree at all
with the experimental values, since these theories have
no a priori way of resolving mass degeneracies. It has
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been possible, however, to use more or less ad hoc
assumptions to build mass splitting into group theo-
retical schemes. If one uses a concrete special model for
the interaction, these mass differences can then be used
to generate corresponding differences in the interaction
strengths of the various particles.

It would go beyond the purpose of this talk to
explore the details of such a procedure. It might be
useful, nevertheless, to outline brieRy an examples of it.

Consider, for example, the meson field C in an
SU(12) scheme. In terms of transformation properties
in Lorentz space, one can write such a field in general as

@'=1XS+y„8&„+pe'„.8&n.+ynyp8~n+Vp8&) (2 34)

where the 1, y„, ~ ~ ., 75 refer to the Lorentz space and
the capital script letters to SU(3) space. This field is
assumed to satisfy the equation

p Ly 881'8888' —18/ 88888')4+mC =0, (2.35)

where 8 and 6' are identity operators in SU(3) space.
According to strict SU(12) 'theory m is simply a con-
stant, the common mass. Ke can, ho~ever, modify this
equation by explicitly introducing differences in masses,
for example, by writing the ansatz

m =m. (181'8e8~')
+-',mi(&~8~.+v.vp8&.vp) 8 (~8~')

+-,'m'(18 1'+~,8~,) 8 (n8~'+~8m')
16

can be written in terms of them using the field equa-
tions. The result is

mp
2

mp m+4

mp g m++ (2.40)

and X is the singlet pseudoscalar state, which is split
from the octet pseudoscalar state by the last term in
Eq (2..36). We wrote (2.39) in terms of m„mrs*, mp,
and m, as independent mass parameters, instead of in
terms of the original mp, m', ml, and m, .

A similar procedure can be followed for the baryons%'.
Ke can then insert C and + into some over-all inter-

action Lagrangian describing vertex functions. For a
baryon —baryon —meson vertex, for example, we can
choose

I int &G+ADC@AB+BDC. (2.41)

Then, due to the various factors appearing in the
pieces of (2.39), we will also get various factors, multi-

plying the over-all coupling constant G, for the specific
vertices of the various types of baryons and mesons,
so that the effective coupling constants of these various
vertices will also be related. For example, one gets

C'=p 8'U —n .8 (& ./~) +ypXL6'+ (X'/v3) X)]

—y„yppj„8 L(P/m, ) + (X'/V3m, )5)j, (2.39)
where

where

+m (p VA8757&'Y5) 8(g ~'8~') (2 36) gNNm. QgNN g

gmlco= 3V3gs~rro et—c (2.42)

r'0 0 0

D= 0 0 0

lo o

(2.37)

mls" ——mp(mp+m'),

mp' ——mp (mp+2m')

m, ' =mp(mp —4mi),

mx' ——m, (m, —4m, +m'),

m„' =mp(mp —4mi+~m') . (238)

The meson function (2.34) can be written in an
explicit form containing only 'U and 5', since S, 8, and 3

and Z; are the SU(3) generators.
If one solves (2.35) with (2.36), one gets of course a

set of different equations for each of the pieces, in
(2.34). Correspondingly the actual physical particles
will also have different equations, and their masses
will be related to the fudge factors mp, ml, m', and m, as

mp m~ mp p

2 2 — 2

The above relations are, of course, dependent on the
values of our four fudge factors mp, ml, m', and m, .
The last one is related only to the mass of the XP

particles and hence is arbitrary. The other three, mp,

ml, and m', however, are related to the physical masses
of m„m„, m&, m&e, m, m„, and mp, through Eq. (2.38) .
The first question therefore is whether there is a set
of mp, ml, and m' that reproduces the measured masses
of these seven particles. The answer is in the afhrmative
to within a 5% accuracy. (For example, using m =1,
a satisfactory set is mp ——5.50, m'=1.88, and m 1i.33.)
This is a considerable achievement for the theory which
encourages a look at the coupling constants.

In an actual fitting" of a one-particle exchange model
to experimental data on nucleon-nucleon scattering,
the authors used exchanges of m., q, ~, p, s, and 0- parti-
cles, where the last two are somewhat hypothetical
scalar —isoscalar objects with masses of 700 and 400
MeV, respectively. Since vector mesons have two
coupling constants, one has the following ten param-

0

g '0 gN g& 1) g 27 gp 17 gp 2P g$ lP g$ 27 g„and g. This
list is reduced to seven, using nucleon form-factor

' G. Kopp and G. Kramer, Pcs. Letters 19, 593 (1965).
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information to determine the ratios g,/g„„g»/g»,
and ge,/ge, . t.'urthermore, g

' was taken fixed from
other determinations. Then one can determine the re-
maining six coupling constants from the best fit to
experimental data. On the other hand, one can also
take the g„'s, g, 's, ge's, and the g„ from the SU(12)
predictions and 6t only g, and g, to the experimental
data.

The comparison of the two sets of coupling constants
thus obtained leads to the following conclusions.

(a) If one does not a,ssume the presence of the s
particle, the fits are aH poor.

(b) With the inclusion of the s, both the phenomeno-
logical and the SU(12) sets give good 6ts to the data,
at least, as far as the 'D2, 'G4, 'P2, 'F3, 'F4, 'H4, and E4
scattering parameters are concerned.

(5) The phenomenological and SU(12) sets of coup-
ling constants are only qualitatively similar, and there
are considerable quantitative differences between them.
This, in conjunction with b, is only another expression
of the fact that for the time being the values of the
coupling constants are only poorly determined by the
experimental data, and hence such a test of SU(12)
can be at the present, at most qualitative. The general
approach, however, is an interesting one and there is
obviously much room for improvement here both experi-
mentally and theoretically.

reactions. According to tha, t, the reaction

can be factorized into

(3.1)

(3.2)

(3.3)

Mi( =)MsMs,

Mi+(=) Ms+Ms++Ms @Ms,

Mi (=)Ms+Ms +Ms Ms+,

(3.4)

(3.5)

where ( =) denotes nondynamical equality; i.e., equal-
ity except for the values of the invariant amplitudes.
Furthermore, 13 means the outer product in spin space,
and the superscripts —and + denote those parts of
the M matrix which do and do not change sign, re-
spectively, under a given transformation.

The M matrix of the constituent reaction (3.2) is'4

Ms=a&&+a d&" I+asd&" rn+asd&'& n, (3.6)

where the a s are the invariant amplitudes, and l, and
ns, and n are defined in Eq. (2.17) . Similarly

which are, in fact, identical. Denoting the 3II matrices
of these three reactions by M~, M2, and M3, we have

III. TESTS OF GENERAL CONSERVATION LAWS Ms=be+bid&s& I+bsd&s& ns+bsd&s& rs. (3 7)

The validity of general symmetries such as parity
conservation, time-reversal invariance, PT invariance,
charge conjugation invariance, and the PTC theorem
have been under intense investigation for the last
decade. In as much as we want to investigate those
symmetries in strong interaction, nucleon —nucleon (and
nucleon —antinucleon) scattering is a good reaction to
concentrate on because of its relative simplicity and
the wealth of information that is available.

In order to list the tests of conservation laws in
nucleon —nucleon scattering, it might be useful to use
the general nondynamical formalism" " for particle

The observables for the constituent reactions are given
in Ref. 14, Table II. Of the usual eight subclasses, one
(the ooo one) is empty.

From these observables we can build up the observ-
ables for Eq. (3.1). Again one of the expected sixteen
subclasses will be empty. The number of observables
in the fifteen remaining subclasses is eight, except for
the first subclass (composed of the products of two
eee-type constituent subclasses) which contains 16 ob-
servables.

The M matrix of reaction (3.1) can be written under
rotation invariance only as"

Mi ——AI&+A&&id&'& l+Aosd&" r&s+Aosd"'5+Aisd&'&. I/Aud&" ~ Ld&@ l+Aied"'ld"'r&s+Aisd'O ld"'5
+As&&d&'& m+Asid&'& rnd&s& l+Assd&u rnd&s& m+Assd&'& rnd&s&. n

+Asod&'& s+ Assd&'& nd&'& l+ Assd&'& ~ sd&'& rn+ Assd&'& ~ sd&'&. s (3.8)

containing sixteen amplitudes, which correspond to the
constituent amplitudes according to

(3.9)

' P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (¹Y.) 40, 100 (1966).

~ P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Ann.
Phys. (N.Y.) 41, 1 (1967).

"M. J. Moravcsik, Lectures on Non-Dynamical Test of Con-
servation Laws in Particle Reactions, Williamsburg, 1966 (to be
published) .

In case of rotation invariance alone, therefore, the 256
observables depend on 256 bilinear products of ampli-
tudes and hence all observables are linearly independent.

We will now list the restrictions on these observables
under the various conservation laws,

'4 P. L. Csonka, M. J. Moravcsik, and M. D. Scadron, Rev.
Mod. Phys. 39, 178 (1967).

"M. J. Moravcsik, in Proceedings of the 2' International
Conference on Po4ria~a&ion Phenomena of nucleons, Earlsrnhe,
1965, P. Huber and H. Schopper, Eds. (Burkhauser Verlag,
Basel and Stuttgart, 1966) .
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A;;=0 for i+j =odd (3.10)

if the product of the intrinsic parities of the four
particles in Eq. (3.1) is +1 (which is the case for
elastic nucleon —nucleon and nucleon —antinucleon scat-
terings) or

A,„=0 for i+j= even (3.11)

if the above-mentioned product is —1.
In either case, the number of nonzero bilinear combi-

nations of A's will now be 64 instead of 256. Thus
there will now be 192 linear relations among the 256
observables. 128 of these relations consist of

L(x, y; s, w) =0 (3.12)

for those L's in whose argument the number of l's plus
the number of rt's is odd. Equation (3.12) holds when-
ever parity is conserved, whether the product of in-
trinsic parities is +1 or —1. A measurement of any of
such L's is, therefore, a test of parity conservation.

The remaining 64 relations among the 256 observ-
ables are different depending on the product of the
intrinsic parities. The relations, however, are all of the
form

L(x, y; z, w) =qL(x', y', z', w'),

where e—+e' denotes the transformation

A. Parity Conservation

The number of invariant amplitudes reduces from
sixteen to eight. In particular we have

A01=A10=A12=A21=A13=A31 =Q. (3.17)

As a result, we will have 256—10'=156 relations among
the observables. Of these, —,'256 —-,'16=120 will be so-
called mirror relations, while ~16)&9=36 will be non-
mirror-type relations. The mirror relations are

L(cc, y; s, w) =pL(s, w; x, y), (3.18)

where p is +1 for the eee, eoe, eoo, and eeo subclasses,
and —1 for the other four subclasses. These relations
are tests of whether time reversal is partially violated or
not, but they cannot distinguish between time-reversal
invariance and total time-reversal violation (symmetric
or antisymmetric M matrix) .

The 36 nonmirror-type relations, on the other hand,
can also be used to distinguish between invariance and
total violation, and generally involve more than two
observables. They will not be hsted here, since they
will be discussed in the more relevant case when both
parity conservation and time-reversal invariance are
assumed to hold.

C. I'T Invariance'r (for the Reaction a+b~a+ b)

The number of independent invariant amplitudes is
again reduced from sixteen to ten. The restrictions now
are as follows

B. Time Reversal Invariance" (for the Reaction
a+~a+9)

The number of independent invariant amplitudes
reduces from sixteen to ten. In particular, we have

0~m l~ (3.14)
Ape=A)p=App=App=Ag =App=O. (3.19)

and rt is +1 or —1, depending on the particular ob-
servable and on whether the product of intrinsic
parities is +1 or —1. In particular, if the product of
intrinsic parities is +1, then

( 1)x+v+e/p (3.15)

where X is the number of /'s appearing in the last two
arguments of L, v is the number of e's appearing in the
6rst two arguments of L, P is the number of Ps plus
e's appearing in all four arguments of L. If the product
of the intrinsic parities is —1, we get

As a result, we will again have 156 relations among the
256 observables, of which again 120 are mirror relations
and 36 nonmirror relations. For the mirror relations e

is now +1 for the subclasses eee, ooe, eoe, oee, and —1
for the other four.

D. Parity Conservation and Time-Reversal In-
variance (for the Reaction a+5 &a+5)—

Under I'+T the number of invariant amplitudes is
reduced from sixteen to six. In particular, we have

A01 A03 A10 A12 A21 A23 A30 A32 A13 A31

( 1))+we/p (3.16)
(3.20)

These 64 relations therefore can be used not only
for checking the validity of parity conservation, but
also to establish the product of intrinsic parities of the
participating particles.

This ends a complete discussion of all general non-
dynamic tests of parity conservation in nucleon —nucleon
scattering. It might of course be possible to 6nd some
other tests which apply either in special dynamical
situations (such as very low energy scattering), or
under the assumption of speci6c dynamical models.

As a result, we will have 256—6'=220 linear relations
among the observables. Of these, 128 will be the ones
given by Eq. (3.12). This leaves 92 more relations.
Of these, —', 128——',16=56 will be mirror relations, and
64 will be of the type (3.12), with 32 overlaps, so that
Eq. (3.13) and the mirror relations together give
56+64—32=88 relations. The remaining four are of

'P P. L. Csonka and M. J. Moravcsik, Phys. Rev. 152, 1310
(1966).

'VP. L. Csonka and M. J. Moravcsik. , UCRT, -/0076; and (to
be published) .



E. Tests of the TCI' Theorem

For the previous four transformations, elastic
nucleon —nucleon scattering was a self-transforming"
reaction, and hence tests could be derived from con-
sidering that one reaction by itself. For the transfor-
mation of PTC, the type of self-transforming reaction is

(3.25)

and hence to test the PTC theorem we can consider
nucleon —antinucleon scattering such as

or
P+lI~P+P

e+p &p+n, —
(3.26)

(3.27)
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somewhat more complicated type

L(0, 0;0, 0) —L(0, m;0, m)

=L(l, l; l, l) —I.(l, I; l, I), (3.21)

L(0, l; 0, l) —L(0, ~;0, ~)

=L(l, 0; l, 0) —L(n, 0; I, 0), (3.22)

L(m, 0; 0, m) =I.(m, m; 0, 0)

+L(n, e; l, l)+L(e, l; l, n), (3.23)

L(0, ~; m, l)+L(0, i; m, ~)
=L(l, 0; I, m) +L (e, 0; l, m) . (3.24)

IV. THE ANALYTICITY STRUCTURE OF THE
S MATRIX

Another, quite different type of application of our
knowledge of the two-nucleon interaction is in con-
nection with the experimental exploration of the ana-

lyticity structure of the 5 matrix. In 5-matrix theory
certain assumptions are made about the locations of
singularities in the complex plane, and about the
residues and discontinuities associated with these singu-
larities. Some of these assumptions may be derivable
from some basic principles, while others may be based
on less firm considerations. All of them, however,
deserve experimental testing.

One of the most amenable features of the hypotesized
structure of the 5 matrix is the pole or cut (depending
on the variable) associated with the exchange of one

particle of the lightest type. Such a singularity is

usually well separated from other singularities and is
located close to the physical region so that is effect
can be well discerned for instance in terms of data nea:
0' or 180' when viewed in the momentum transfer
variable. In nucleon —nucleon scattering this closest
singularity corresponds to the one-pion exchange and
it has been utilized in the interpretation of experiments
for some years with considerable amount of success so
that one can be quite con6dent in considering one-pion

exchange an experimentally verified feature of the two-

nucleon interaction.

Apart from this difference in the reaction itself, the
observables involved in the tests and the relations
among them will be the same as for PT invariance.

It might be mentioned that one mirror relation by
itself is not enough to test a certain conservation law.
For example, for reaction (3.26), when we establish
that

L, (m, 0; 0, 0) =L(0, 0; m, 0) (3.28)

we do not know whether what we have proven is TC
invariance or TPC invariance. If in addition, we also
establish, for example, that

L(l, 0; 0, 0) =L(0, 0; l, 0) (3.29)

then we know that we are testing TCP, since for TC
Eq. (3.29) would have a —sign on the right-hand
side. Of course, if P is conserved in itself, then both
sides of Eq. (3.29) are zero.

In practice, nucleon —nucleon scattering has so far
hardly been used to test conservation laws. An investi-
gation" of the status of this problem about two years
ago indicated that joint test of parity conservation
and time-reversal invariance in proton —proton scatter-
ing are at best good to about 7%. It is evident that
much remains to be done in this field.

'8 P. L. Csonka and M. J. Moravcsik, UCRI-70052; and (to
be published) .

~ Z. H. Thomdike, Phys. Rev. 138, 8586 (1965).
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than "proper" forms. Thus the practice of representing
)eft hand cuts by polynomials does not appear to be a
sound one.

(3) A series of poles along the negative real axis
gives almost as good a fit to the data as the cuts.
Thus the practice of replacing cuts by appropriately
constructed poles is pragmatically justi6ed, at least at
the present accuracy of experimental information.

(4) If we replace the cuts along the negative real
axis by pairs of poles off the negative real axis, arranged
symmetrically on the two sides of the axis, the fit
gradually worsens as the poles get farther o6' the real
axis.

It is hardly necessary to stress the preliminary nature
of this investigation. For one thing, the procedure con-
sists of trying a substantial but not infinite number of
specific examples, and not of utilizing general consider-
ations. Second, the present work tries to test only some
rather rough features of the analyticity structure of
the S matrix (such as whether all singularities of partial
wave amplitudes lie on the real axis or not). Third,
even with these limited objectives, the superiority of
the analytically "proper" functions is only marginal.
Nevertheless, the present work may be considered a
feasibility study of the method, yielding positive results.
As such, it provides another incentive for continuing the
systematic acquisition of precision information on
nucleon —nucleon scattering.

For the present time, the results seem to indicate that
theories with the "proper" analyticity behavior are
only barely if at all superior to theories with "wrong"
analyticity behavior in explaining the information on
the two-nucleon interaction. In other words, although
nobody has undertaken such a task, it would pre-
sumably be possible to construct a theory of the two-
nucleon interaction which, in addition to the one-pion
exchange (whose necessity is established beyond doubt)
would consist of postulates which are, from the S-matrix
point of view, quite inadmissible, and such a theory
could be essentially just as successful from a practical

point of view as the S-matrix theory itself. If this can
be done for the two-nucleon interaction which is the
experimentally best known strong interaction, it could
most likely be done, u fortiori, for other, worse known,
strong interactions. One could therefore conclude that
apart from one-particle exchange terms, there is no
hard experimental evidence today that the structure
of reaction amplitudes is as prescribed by current
5-matrix theory. One could also infer from this result
that there is no hard experimental evidence today that
analyticity is in fact an important guide for the con-
struction of reaction amplitudes. To make such a claim
on a firm basis, one would have to undertake a critical
study of other consequences of analyticity also, such as
some of the forward dispersion relations which appear
to have some direct experimental basis. Furthermore,
we may, of course, have other aesthetic considerations
that might make analyticity an appealing principle for
us, and we might be able to support it also through more
or less rigorous connections established between it and
other generally held principles such as causality. But
physics, in the 6nal analysis, is an experimental science,
and therefore until we have solid experimental evidence
that consequences of analyticity provide a theory which
can correlate the experimental information much more
simply and economically than other possible theories,
it is perhaps worth maintaining an open mind.

V. CONCLUSION

As mentioned at the beginning, the three quite diGer-
ent applications of the two-nucleon interaction to
general problems of particle physics are meant to serve
only as examples of what can be done. In an age when
there might be a temptation to proliferate dynamical
theories of elementary particle processes, my purpose
was to emphasize that the two-nucleon interaction
might, in many cases, be very suitable to provide an
"instant test" of such theories against experimental
information.


