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Exchange of 7i-, g, p, or, @ mesons and a pair of pions in the relative s state can account for all the important features
of the nucleon-nucleon interaction. The method of dispersion relation is employed to calculate nucleon-nucleon phase
shifts starting from the relativistic single-particle-exchange Feynman diagrams. Validity of the method is tested in the
nonrelativistic limit where the solution of the dispersion relation is compared to the solution of the Schrodinger equation
for a superposition of Yukawa potentials. For potentials that contain a long-range attraction and a strong short-range
repulsion there is little difference between the two solutions. In the meson model, the attraction comes primarilyfrom
the w and the s-wave two-pion exchange. The exchange of co and p produces the required short-range replusive force.

Two approaches to the nucleon —nucleon scattering problem were considered. (a) The meson model was taken to be
the basis of a detailed fit to the scattering data. A total of 12 adjustable parameters were introduced and a 6t to the PP
and np data was obtained. The accuracy is comparable to that of pure phenomenological potentials with considerably
more parameters. (b) The number of parameters in the meson model is minimized using approximate symmetry con-
siderations to clarify the physical signi6cance of the model. With only four adjustable parameters, all the important
features of the phase shift are reproduced. These results lend support to the idea that the strongly correlated multimeson
systems p, co, and @ play a dominant role in the inner part ( 0.3 F) of the nucleon —nucleon potential while the exchange
of two pions in a relative s-state accounts for the gross feature of the medium-range attraction.

The discovery of strongly correlated rnultimeson
systems in high-energy experiments' has led to a meson
theory of nuclear forces that is qualitatively different
from the meson theories of the past decade. On the one
hand, the situation is now more complicated because
the meson —meson interaction must be taken into ac-
count in addition to the meson —nucleon interaction. On
the other hand, certain simplihcations can be realized
if the contribution of these strongly correlated states in
some sense dominates the nuclear forces. For example,
the exchange of a strongly correlated pair of pions may
be replaced by the exchange of a single meson. The
quantum numbers and the energy of such a meson can
be determined by various high-energy reactions, in par-
ticular, the nucleon —antinucleon annihilation process. '
Here, one examines annihilation into three or more
pions and plots the number of events versus the in-
variant mass of various two-pion combinations. The
result shows a spectrum with a distinct peak at ~750
MeV and a width of 100 MeV. Further analysis of
angular correlations determines the quantum number
of the two-pion system to be I=1, 7=1 (the p
meson). In addition to the quantum numbers and the
average mass, one also acquires the important infor-
mation that a substantial fraction of the total events
does fall within the peak of the spectrum. This shows
that not only are the pions themselves correlated to form
a p meson but this meson also couples strongly to the
nucleon. Therefore, it must play a significant role in the
nucleon —nucleon potential. One is then led to construct
models which include the exchange of a single p meson
with a given mass in the nucleon —nucleon potential. The

3 The I spin refers to that of the two-pion system, the projection
on the nucleon-nucleon system gives a ratio of —3 to 1 for I=0
and I=1, respectively.

4 There is also no experimental evidence of a strong coupling
between the nucleon and fe, Ai, or As.' Aside from the energy spectrum, the three-pion and the EX
systems can have a great variety of quantum numbers, but no
strong correlation is found.

*%'ork supported in part by the U.S. Atomic Energy Commis-
sion.

' For a brief summary, see S. Gasiorowicz, Elementary I'article
Ekyssos (John Wiley 8r Sons, Inc. , New Yorki 1966), pp. 313—334.

'In addition to Ref. 1, some relevant data on nuclear —anti-
nucleon annihilation are given by C. Baltay et a/. , Phys. Rev.
Letters 15, 532 {1965).
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coupling constant, however, cannot be obtained directly
from the annihilation experiment because physical
nucleons can only exchange virtual p mesons whose
coupling strength need not be the same as that of a real
meson. On the other hand, the phenomenological cou-
pling constant can also absorb the uncorrelated part of
the I=1 two-pion spectrum to a 6rst approximation.
Thereby, one obtains a very simple I=1 two-pion
potential. '

In addition to the sr and the p, the &o (780 MeU)
and the g (1020 MeU) mesons Lboth I=O, 7=1,
P = (—1)] are also found in nucleon —antinucleon
annihilation. The decay of co results in three pions while
the decay mode of the g is almost entirely Elt. In the
same manner as one treats the p meson, the exchange
of ro and g between two nucleons can be used to replace
the three-pion and the EIC spectra, respectively. Here,
the ro and p contribution to the nucleon —nucleon poten-
tial is repulsive in all states (similar to the Coulomb
potential between like charges). As shown later, the
strength of the repulsion is sufficiently great so that
the shielding eGect is very strong at internucleon dis-
tances smaller than the Compton wavelength of the

(~0.2 F). Therefore, it is plausible that higher
mesonic resonances such as fo, At, and As can be
neglected in the problem of nuclear forces. ' Since un-
correlated three-pion and EE systems are probably
unimportant at energies below 1 SeV, they can be
neglected for the same reason. '

Returning now to the two-pion system, we have
discussed the contribution to the nucleon —nucleon
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potential due to two pions with a total I-spin of one.
For I=O, the experimental situation on the two-pion
correlation is somewhat dubious. In the annihilation
experiment, there is no evidence of a peak in the
I=O two-pion spectrum. However, the two pious at
moderate energies are likely to be in a relative s state
(the angular momentum must be even for I=O and
odd for I=1) and s-wave correlations often do not
show a peak. In any event, the coupling of a nucleon
to an I=O xm system has a spectrum starting from
twice the pion rest mass, and the low-energy part of
this spectrum is predominantly s wave; that is, the
long-range part of the two-pion contribution to the
nuclear force comes primarily from the I=0 s-wave ~x
pair. We consider the simple model which parameterizes
the entire I=O xw spectrum by taking a single scalar
meson a whose mass and coupling constant are to be
determined phenomenologically by the nucleon —nucleon
scattering data. Such a model does not rely essentially
on the existence of the scalar meson.

A somewhat more complex way of parameterizing
the I=0 xx contribution had been considered by Scotti
and Wong. ' They took a continuous two-pion spectrum
including a xm scattering length and a cutoff as adjust-
able parameters and obtained results essentially the
same as those given by the 0. meson model. In the
treatment of the continuous spectrum, it was important
to normalize the coupling strength of the pion pair to
the nucleon by making use of experimental data on
pion —nucleon scattering. This constitutes an independ-
ent source of information on the coupling strength and
can be regarded as a supporting evidence on the neces-
sity of an I=0 vrx term in the nucleon —nucleon potential.

Finally, there is another meson, the rl (548 MeV),
which has the same quantum numbers as the pion
except for I=0. The production of g is quite prominent
in pion —nucleon reactions but is very rare in nucleon—
antinucleon annihilation. There are also theoretical
arguments that the q coupling to the nucleon should be
weak compared to that of the pion. In practice, one
finds that the g contribution to the nucleon —nucleon
potential is small even if the coupling strength is com-
parable to that of the pion. Therefore, one may choose
to neglect it altogether.

To surrimarize, we can construct a nucleon —nucleon
potential in terms of the exchange of six mesons: ~, 0.,

g, p, &u, and @.The masses of all these mesons are known
except the 0 which is introduced purely as a way of
parameterizing the exchange of two pions in a relative
s state. As for the coupling constants, they are all un-
determined except the pion. However, as shown later,
one can employ the approximate SU3 symmetry to
relate some of the coupling constants.

Let us now consider the calculation of the potential
and the methods of solving for the scattering ampli-

6 A. Scotti and D. V. %'ong, Phys. Rev. Letters 10, 142 (1963);
and Phys. Rev. 13S, 145 (1965).

tudes. Since we are replacing multimeson spectrums by
single mesons of various quantum numbers and masses,
the potential is simply the sum of the one-meson
exchange diagrams calculated according to the Feynman
rules. One can substitute this potential into the Bethe-
Salpeter equation and try to solve for the scattering
amplitudes. The solution would be the sum of ladder
graphs which are probably the most important diagrams
for nucleon —nucleon scattering in the elastic region. Un-
fortunately the Bethe —Salpeter equation has no solution
because there is a divergence due to the spin of the
vector mesons. Therefore, one must use some kind of an
approximate scheme through the introduction of a
cutoff.

Aside from the question of a cutoff, the Bethe-
Salpeter equation for nucleon —nucleon scattering is so
complex that it is not practical for obtaining a numerical
solution. A further approximation can be made by
reducing the Bethe—Salpeter equation into a nonrelativ-
istic Lippman —Schwinger equation. However, the re-
duction can be justified only if both the momentum of
the nucleon and the mass of the meson are small com-
pared to the rest mass of the nucleon. This is certainly
not the case for the vector mesons. An alternative
approximation is to keep the relativistic single-meson
exchange terms exactly and solve for the scattering
amplitude by the approximate on-shell dispersion
relation as follows.

First we consider the spin singlet partial wave ampli-
tude A q(p') (the I-spin index is suppressed) normalized
so that

Im Ag(p') =(nap/E) i
Ag(p') ~' p'&0 (1)

The quantity (mp/E) is the relativistic phase space
factor. Let us denote the contribution of the sum of
single-meson exchange terms by Bz(p') . The dispersion
relation is the following integral equation for Aq(p'):

, rmp' ~A, (p')
~

Aq(p2) =B~(p2) +s.—~ dp'2
~

. (2)
k E' p" p' ie— —

The integral on the right-hand side is constructed so
that the imaginary part of the amplitude satisfies the
unitarity condition (reality of phase shift) given by
(1). A cutoff h. is introduced because of the logarith-
matic divergence in Bq(p') due to the exchange of
vector mesons.

In terms of analytic structures, one sees that the
only singularities of the integral in (2) are two branch
points at p' =0 and p~ =A joined by a branch cut along
the positive real axis. All other singularities of Aq(p')
are contained in Bz(p'). From the analysis of the
Yukawa-type potentials, one finds that the potential
for the exchange of a meson with mass p, gives rise to
branch points in the scattering amplitude at p'=
—(Np)'/4; @=1, 2, ~ ~ ~ . The index n corresponds to
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the number of times the potential acts, in other words,
the exchange of e mesons. For a given potential, it is
implicitly assumed that the mesons themselves do not
interact.

Our model of Bz(P') clearly does not contain the
excha, nge of any meson more than once. AVhile we can
argue that the exchange of two rnesons are replaced by
p and a, we have no provision in Bq(p') for the rescat-
tering of p, 0., etc. The justi6cation for dropping such
terms is that they correspond to very short range
forces which may be effectively shielded by the repul-
sion due to cu and p exchanges. Although the rescattering
terms in B~(p') have been dropped, a certain part of
the rescattering process is included in the solution
Az(p') through the nonlinearity of the equation.

For a given potential BJ (p'), the integral equation
(2) can be solved by the X/D method 'If.the potential is
suKciently strong and attractive, the solution Az(p')
mill contain a bound state pole, The energy and residue
of the pole are entirely determined by the potential
Bz(p'). Formally, this pole must be added back into
equation (2) as an extra, singularity of Aq(p').

For the triplet L=J amplitude, the integral equation
is formally identical to (2). For the triplet amplitudes
with l.= J'&1, Ag(P') and the potential are to be
replaced by 2)& 2 matrices, but the method of solution is
essentially the same as the uncoupled cases.

Among the parameters of the potential, we ha, ve
predetermined values for the mass and the coupling
constant of the pion and the masses of g, p, co, and @.
The adjustable parameters are ns.', g', g,', gp] p gpss',

g„~, g~q'. Here, g,~' and g,. are the vector and the tensor
coupling constants of the p meson. For the co and g
mesons, the tensor couplings must be negligible, other-
wise they would contribute to a large isoscalar anomal-
ous magnetic moment of the nucleon. In addition to
the above parameters, the cutoff A must also be taken
as adjustable.

The threshold behavior of a partial wave amplitude
of orbital angular momentum l. is of the order p'~.
This behavior is satished by the potential, but in general
not satisied by the integral term of the dispersion rela-
tion. Since the threshold behavior must be the result of
the cancellation between the dispersion integral and
the rescattering terms in Bq(p'), we can add a term,
say, an Lth-order pole, to the single-meson potential
and adjust the residues to achieve the proper threshold
behavior. Although this procedure is somewhat arbi-
trary, the dispersion integral is quadratic in the scat-
tering amplitude and therefore small for higher partial
waves. Consequently the added term in Bz(p') is, in
general, small compared to the single-meson potential,
and the effect on the scattering amplitude is also small
except for restoring the threshold behavior. In any
event, the procedure described above introduces a pole
whose position is an addition parameter of the model.

One can take different views of the meson model.
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One possible viewpoint is that there are already six
mesons in the model; one should see whether they con-
tain enough degrees of freedom to form a basis for the
phenomenological analysis of the nucleon —nucleon
scattering data. This approach was taken by Scotti
and %ong during 1963—65. In addition to m ', g,', g„',
gp] gp

)'-, g„&'-, g»', they also took mp' as an adjustable
parameter because the spread of the p-meson spectrum
is quite large ( 100 MeV). Instead of using a sharp
cutoff on the dispersion integral, they multiplied each
vector meson potential by an exponential convergent
factor, thereby introducing three cutoff parameters in
the place of A. Together with the position of the pole
for the threshold behavior, they used a total of twelve
a,djustable parameters.

By varying the twelve parameters, a fit to the pp
and mp scattering data up to 400 MeV was obtained.
The results a,re shown in Figs. 1—12. . The accuracy of
the fit is comparable to those using purely phenomeno-
logical potentials. The number of parameters in the
meson model is, however, considerably smaller.

Instead of using the meson model to obtain a detailed
phenomenological 6t to the data, one can also take a
somewhat different point of view. Since the replacement
of multi-meson spectra by single mesons is an essential
part of the model, one might wish to test its validity
6rst on a more qualitative basis. To this end, one would
want to reduce the number of adjustable parameters to
a minimum, to see what is the role of each meson and
what features of the nucleon —nucleon interaction can
be reproduced by the model. This direction was pursued
by Hall, Scotti, and Wong. ~
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TAsLE I. Comparison of theoretical and experimental nuclear bar phase shifts in degrees. '

50

I.ab kinetic energy in MeV

142 210 310

PP Sp Exptl.
Theor. 42, 0 28. 6

37.7~0.6 25. 1&2.4 16.6~0.7

17.4 3.6 —15.1
5.1~0.6 —6.9&1.6

PO Exptl.
Theo r.

12.0
12.6

12.8&1.9
12.0 7.9 —0.1 —12.8

6.3~0.6 —0.7+0.6 —11.3&1.7

3p

'P2

NP 3$1

Exptl.
Theo r.

Exptl.
Theo r.

Exptl.

Theo r.

6.1~0 ~ 2

5.8
60.8+2.7

76.4

10.6~0.5

11.3
44. 5a1.7

56.4

—14.4
13.7%0.2
15.4
29.6~0.9
42.0

—18.4
15.9~0.3

18.7
17.6+2.4

25.9

16.4~0.7

20.2
—1.0~5.2

—8.0~0.3 —13.0~0.5 —17.1~0.4 —21.6~0.6 —28.5~1.3

a Parameters: ma =3.9 112~, g~2 =5.15, g„~ =1.36, cuto6 =600 Mev (Lab kinetic energy).

By using the approximate SU3 symmetry and the
theory of &o—p mixing, they introduce a single vector-
meson coupling constant g„2 with

gpss =gal = ggyy =gv .2 2 1 2 2

Furthermore, assuming the vector-meson-dominant
model of the low momentum transfer nucleon form
factor, they relate gp2 to gp] with the ratio given by
the isovector anomalous magnetic moment:

gp2 13 4gp] 13 4gv (4)

Since the contribution of the g meson is small, they
use the even cruder SU& symmetry to relate the g-cou-

pling constant to that of the pion. This gives

g„' (nz./m„) '(1—1.6) 'g.'.

Finally, a cutoff parameter for the total energy squared,
s„was used to terminate the dispersion integral
(&=4s,—nP) and the pole for the threshold behavior
was taken to be at the total energy squared equal to
—s, (p'= —-', s,—m'). In this way, the total number of
adjustable parameters was reduced to four, namely,
mo) gn) gv) andsc.2 2 2

With the four-parameter model described above, it
was found that all the important features of the pp
and Np phase shifts can be reproduced. The results of
a typical fit is shown in Table I.
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Aside from getting a moderately good 6t to the data,
the numerical values of the parameters are also phys-
ically reasonable. The value of m, =3.9m corresponds
to a two-pion spectrum with approximately one-pion
unit of kinetic energy for each pion. The coupling con-
stant g '=5.15 is quite large. It accounts for the bulk
of the medium range attraction which is not highly
spin or I-spin-dependent. The value g„'= l.36 is com-
parable to that deduced from the vector dominant
model of the electromagnetic form factor. The amount
of repulsion due to ~ and p is roughly four times g„'
which is probably high enough to give an effective

shielding for the very short range forces. The p-exchange
apparently provides enough additional spin and I-spin
dependence to account for the qualitative features of
the p and higher partial waves. As for the cutoff, 600
MeV in lab kinetic energy is roughly where the elastic
unitarity condition begins to fail substantially, and our
dispersion relation is no longer valid beyond that region.
With these results, one can feel fairly conMent that
the correlated multimeson systems do play an impor-
tant role in the nuclear forces and that the gross fea-
tures of the nucleon —nucleon interaction can be repro-
duced by a simple model where these multimeson
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systems are replaced by single mesons of given masses
and. a given set of quantum numbers. The solution given
above does contain a triplet 5=1 ep bound state, but
the binding energy is greater than the observed deu-
teron by ~8 MeV.

The major weakness of the dispersion theory is the
neglect of rescattering terms in Bq(p') . To concentrate
on this point, we construct a simple model in which
the rescattering corrections can be calculated exactly,
and compare the solution with that of the dispersion
relation. We pose the following problem: Take the

superposition of a medium-range attractive Vukawa
potential plus a short-range repulsive Vukawa po-
tential. Choose a fixed value for the s-wave scattering
length and for the effective range. Adjust the strengths
of the attraction and the repulsion to fit the predeter-
mined scattering length and effective range using (a)
the dispersion relation and (b) the Lipprnan —Schwinger
equation. Having done this, we compare the difference
of the required coupling constants for (a) and (b) and
also compare the energy dependence of the s-wave
phase shift in the two solutions.
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A typical example is as follows. We take an attractive
potential of inverse range @~=3m and a repulsive
potential with @~=6m . For a scattering length of
a= —4.0B, and an effective range of r=1.95K, the
required coupling constants in (a) and (b) are'

(a) Dispersion
relation

gg' ——10.5
gg'= 15.0

(b) I.ippman —Schwinger
equation

gg'=9. 5

g~' = 16.0.

' G. Marchesini and D. Y. Kong, Proceedings of the XIII
International Conference on IZigh Energy Physics (to be pub-
hshed).

The difference in the two sets of coupling constants
is only of the order of 10%. Furthermore, the energy
dependences of the two solutions are in fact very similar.
For example, the s-wave phase shift passes through
zero at p'=6.4K -' in case (a) and shifts slightly to
p'=6. 6K ' in case (b). These results show that for
the type of potential considered the missing rescattering
terms in the dispersion model can be simulated quite
well by the readjustment of the coupling constants to
the extent of ~10%.In other words, the neglect of the
rescattering terms can account for a 10% uncertainty
in the physical interpretation of the coupling constants,
but the semi-phenomenological fit of the scattering
amplitude is not significantly affected. Since this simple
model gives an s-wave phase shift quite similar to the
pp 'so phase shift, it is probably true that the neglect
of rescattering terms in our meson model can be justified
to the same extent.

Similar comparisons for purely attractive potentials,
show that the difference between the dispersion theory
and the I.ippman —Schwinger equation can be very
large. For example, a single Vukawa potential with the
range of X and g'=3.5 has a bound state of 10-MeV
binding energy. The same binding energy would require
a coupling constant about twice as large if one uses
the dispersion relations. This result further emphasizes
the importance of the inner repulsive force in the
application of the dispersion relation to the meson
model.

To summarize, a simple model of nuclear forces based
on the exchange of correlated mesonic systems is in
good agreement with experimental data on nucleon—
nucleon scattering. Such a model can be used as a basis
for the detailed phenomenological analysis of the data,
but perhaps more significantly, it also leads to a
qualitative understanding of the nuclear forces in
terms of meson —nucleon and meson —meson interactions.


