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One-boson-exchange interactions are derived for pseudoscalar (P), vector (V), scalar (S), axial vector (A), and
antisymmetric tensor (T) mesons. The Schrodinger —Pauli —Breit limit is obtained for a combination of such Diracian
OBK interactions. We calculate the phase shifts for purely relativistic m —5' model and find it possible to fit the 5-wave
phase shifts by adjusting one coupling constant and one regularization parameter. Then by breaking this model slightly
we develop several accurate representations of the S—E interaction for all waves with a moderate number of adjustable
parameters, several of which are fixed by external considerations. We present a physical interpretation of the results
particularly the velocity-dependent interactions. Finally we discuss the results in relationship to other I'V S models.

C. INTRODUCTION

A number of groups have recently found theoretical
models involving pseudoscalar (P), vector (V), and
scalar (S) mesons which fit nucleon —nucleon scattering
data quantitatively using only 5—10 adjustable con-
stants. All of these models use (1) The one-boson-
exchange contribution (OBEC) or potential (OBEP)
of the x meson which dominates the long-range inter-
action; (2) The OBEC of the to and p mesons which

play important roles in the middle range; (3) The
OBEC of a scalar meson (s) which cancels the major
static effects of the omega meson.

There are now a large number of variations of the
pseudoscalar, vector, scalar (PVS) theme embodying
approximately the co —s cancellation feature which
achieve for p and higher waves fits which are com-
parable to the best purely phenomenological models.
These works represent a vast advance with respect to
pre-1961 models of the E—A" interaction not only in
the reduction of free parameters used (from about
20—50 to 5—10) but also in the goodness of the fits to
the data. Unfortunately, it is likely that there are so
many variations of the I VS theme that it may be
dificult in the near future to make a rational choice
between them. In view of this, it would seem ap-
propriate that we improve upon the current accomplish-
ments within the I'VS theme to the point that meson
theoretic Ã-E interactions provide a good description
of S waves which is essential for applications to nuclear
physics. To place this study in perspective, it may be

" Supported in part by the U.S. Air Force Othce of Scientific
Research.

helpful to give a brief account of how it fits into the
context of earlier work in field theory.

Viewed from the standpoint of the boson field
Lagrangian, quantum electrodynamics, the original
form of quantum fieM theory as developed in the
early 1930's by Heisenberg, Pauli, Dirac, Rosenfeld,
Fock, Fermi, Podolskv, Breit, Moiler, etc.' ' may be
characterized as one in which the photon field La-
grangian depends quadratically upon first derivatives
of the field potentials. The extension of field theory
to allow for the dependence (quadratic) upon the
meson field coordinates themselves was made in 1935
by Yukawa. "This explains the short range character
of the EE interaction; i.e., the 6=r ' Green's function
of electrodynamics goes over to I =r 'e "~ of Yukawa's
theory where a=fijmc with nt the mass of the field
bosons. Yukawa's original suggestion which was made
in conjunction with a. scalar (S) field coordinate was
extended by Proca" in 1936 to embrace vector (V)
Gelds. Then Kemmer, '~ in 1938, extended the theory
further by including pseudoscalar (P), axial vector (A),

' W. Heisenberg and W. Pauli, Z. Physik 56, 1 (1929).
'-' P. A. M. Dirac, Proc. Roy. Soc. (London) 136, 453 (1932).' P. A. M. Dirac, V. A. Fock, and B.Podolsky, Z. Phys. Sowjet-

union 2, 473 (1932).' E. Fermi, Rev. Mod, Phys. 4, 487 (1932).
~ V. A. Pock, Z. Phys. Sowjetunion 6, 449 (1934).
'V. A. Pock and B. Podolsky, Z. Phys. Sowjetunion 1, 801

(1932).' L. Rosenfeld, Z. Physik 76, 729 (1932).' G. Breit, Phys. Rev. 34, 553 (1929);36, 383 (1.930); 39, 616
(1932).

9 C. Mufller, Z. Physik 70, 786 (1931)."H. Vukawa, Proc. Phys. -Math. Soc. Japan 3, 17, 18 (1935).
"A. Proca, J. Phys. Radium (VII) 7, 347 (1936).
n N. Kemmer, Proc. Roy. Soe. (London) Alit't. 127 (19,38).
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and antisynunetric tensor (T) meson fields, allowing
for what would now be referred to as the isotopic spin
dependence of these fields and permitting both direct
and derivative-type couplings.

Kith the broad realm of possible interactions de-
rivable from such fields, the major problem became
that of coping with the highly singular nature of many
of the interactions and that of selecting particular
interactions which fit the experimental data. Ml'11er
and RosenfelcV' and Schwinger'4 made the 6rst serious
effort in these directions by using mixtures of inter-
actions. We refer the reader to the original papers and
early texts" for the details of these developments.

While this work was underway in the early 1940's,
the treatment of electrodynamics itself was extended
by Podolsky" and by Bopp" who permitted the field
Lagrangian to depend quadratical1y upon second de-
rivatives. Still further extensions of Lagrangian theory
to deal with meson 6elds by including both the po-
tentials as well as arbitrarily high derivatives were
made by Green" and others in the late 1940's. The
strength of these generalized field theories was their
freedom from infinite self-energies and short-range
singularities which plague ordinary electrodynamics
and meson theory. Their weakness was the problem
of giving physical interpretation to the subtractive
components of the boson field which arise naturally in
generalized field theories. Quite apart from this inter-
pretive problem there were the more immediate prob-
lems of choosing the tensorial character and isotopic
character of the meson field variable and the nature of
the field —particle coupling.

In 1948, Green" became involved with the EV5
theme in an attempt to deal with the auxiliary condition
problem in vector meson theory which, in certain treat-
ments, requires the introduction of a scalar field. While
examining various variations of vector —scalar combi-
nations, it became apparent that some lead to cancel-
lation of large static X—X interaction terms. This then
leads in a simple way to a very complex nuclear force
which is largely or entirely relativistic in nature. Then
the fact that the pseudoscalar —pseudosca1ar interaction
is also purely relativistic was the motivation for con-
sidering this particular interaction.

The singularities associated with relativistic inter-
actions arising in such a PVS theory would normally
present great difficulties. However when used in con-
junction with a generalized meson fieM with higher de-
rivatives in the Lagrangian, these singularity difficulties
do not arise.

"C.Mgller and L. Rosenfeld, Proc. Cop. 17, No. 8 (1940)."J.Schwinger, Phys. Rev. 61, 381 (1942).
'~ L. Rosenfeld, NNclear Forces (North-Holland Publ. Co. ,

Amsterdam, The Netherlands, 1949), p. 22.IB. Podolsky, Phys. Rev. 62, 68 (1942); B. Podolsky and P.
Schwed, Rev. Mod. Phys. 20, 40 (1948) .

~ P. Bopp, Ann. Physik 42, 573 (1942).
"A. E. S. Green, Phys. Rev. 73, 519 (1948); 75, 1926 (1949).
'-9,&, F. S. Green, Phys. Rev, 76, (g) 460 and 870L (1949),

It would be too great a digression to summarize the
trends of the main streams' of investigations on the
XÃ interaction during the intervening years other than
to point out that in the early 1960's the on&y theoretical
models which could deal reasonably well with experi-
mental observations required some 30 to 50 adjustable
constants.

Then the advances referred to in the opening para-
graph came in independent works by Bryan and Scott,"
Scotti and Kong" McKean" and Hoshizaki, Otsuki,
Sawada, Ueda, Watari, and Yonezawa'4 who found
combinations of OBEP which required only about ten
adjustable constants to fit the experimental data. While
the formalisms used by these groups are somewhat
diverse, it seems clear now that the primary reasons
for their success are the common ingredients described
at the beginning of the section.

The work of Bryan and Scott who solved Schro-
dinger equation with OBE potentials associated. with
these combinations of pseudoscalar, vector, and scalar
6elds prompted Green and Sharma" to reinvestigate the
relativistic interaction model. They found, without
availing themselves of any adjustable constants, that
both the isoscalar and isovector sets of spin —spin,
tensor, and spin —orbit interactions implicit in Green s
earlier work agreed quite well with those of Bryan
and Scott. However the relativistic model displayed
important velocity-dependent terms not contained in
the Bryan and Scott study.

Green, Sawada, and Sharma, " using a modified
version of the Bryan —Scott code, then carried out. a
preliminary study of phase shifts generated by a purely
relativistic model consisting of a generalized ~ meson
interaction and isoscalar, scalar, and vector interactions,
They obtained encouragingly good results using only
one adjustable coupling constant and two "cuto6"
parameters.

At this time the efforts of the two groups, although
they use entirely different formalisms in deriving their
Schrodinger potentials, have almost merged into one.
On the one hand, in a recent study, Green and Sawada"
follow Bryan and Scott by allowing for simultaneous
direct and derivative coupling to p vector mesons. On
the other hand, Bryan and Scott" now include the
velocity-dependent terms in the treatment of the vector

"M.J. Moravcsik, The Taboo Nucleon Interaction (Oxford Uni-
versity Press, London, 1963)."R.A. Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964)."A. Scotti, and D. ong, Phys. Rev. 138, 3145 (1965)."R.S. McKean, Jr. , Phys. Rev. 125, 1399 (1.962).

"N. Hoshizaki, S. Otsuki, S. Sawada, T. Ueda, W. Katari,
and M. Yonezawa, Progr. Theoret. Phys. (Kyoto) 27, 1199,
(1962); 28) 991 (1962); 32) 380 (1964).

"A. E. S. Green and R. D. Sharma, Phys. Rev. Letters 14,
380 (1965).

"A.E. S. Green, T. Sawada, and R. D. Sharma, in Proceedings
of the Conference on Isobaric Spin in ÃNclear Physics, J. D. Fox
and D. Robson, Eds. (Academic Press Inc. , New York, 1966).

'7 A. E. S. Green and Y. Sawada, Nucl. Phys. 32, 267 (1967)."B.L. Scott and R. A, Bryan, Bull. Am. Phys. Soc. 10, 736
(19(&5),
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k.„=(k, iv), /c) and co.'=c'(k k+$.'/a') . (2.6)

and scalar interactions. The one remaining difference A generalized Fourier solution of Eq. (2.3) is given by
relates to the use of regularized fields by Green et cl.,
which may also be interpreted as equivalent to the use Q(x„) =, (1/2s-) 31& g (Q, (k) exp (ip „x„)
of form factors for the nucleons. In practical fitting of
data this difference plays an important role, particularly
for S waves which are of greatest importance in appli-

where
cations to nuclear physics. Accordingly, let us begin by
describing how regularized fields entered our work.

2. THE GENERALIZED MESON FIELD

In this study to deal with the well-known singularity
difhculties of meson theory we use a generalized meson
field Lagrangian which embodies "regularization" in an
essential way. Thus we assume all component fields are
characterized by a quadratic Lagrangian density of the
form

We may identify $,=m, /3/I, where m, are masses associ-
ated with the field. If the masses are to be real, then
the C's in the Lagrangian must all have the same
sign. Using Eq. (2.5) we may express the energy mo-
mentum four-vector and hence the field Hamiltonian
in terms of Fourier amplitudes. For the field Hamil-
tonian we obtain

L = —(1/2a') PCpQ'+Cia'(Bg Q) '+ ~ ~

+C~(i'"(~),A," ~), Q)'1, (21)
where

(2.7)

x„=(r, ict), a), 8/Bx——)„

where a=A/Mc, the nucleon Compton wavelength, is
our unit length, the C's are dimensionless natural con-
stants. Q(x„) the field coordinate is a real or imaginary
function

v. =Z K'~( 5-') —'= I&I'/dP~ r. = (2.8)

The y, which arise naturally during this last calculation
are factors whose reciprocals weight the fields associated
with the different bosons. Thus, if we define 8,=1/y, C)v
it follows that

Here Q represents a scalar field. For other tensorial
types we append an appropriate subscript. If we identify
Co ——(m/M)' with m the meson mass, Ci ——1 and C2 ——

C3. ~ ~ ——C)v ——0, then Eq. (2.1) becomes the usual meson
field Lagrangian.

Applying the variational equation (I)JLd0=0 and as-
suming that the potential and all derivatives up to the
order E—1 are held constant on the boundaries of the
four-dimensional space, we obtain the equation of
motion

(2 2)

From our Lagrangian we can derive the energy mo-
mentum four-vector P„and the energy momentum
tensor t„„.It can be shown that B„t„„=0thus ensuring
conservation of energy and momentum and also that
the antisymmetric part of t„„is a four-divergence.

The equation of motion of the field may be written as

(2.3)

where g are the roots (dimensionless) of

~(P}= —Z C.( —8)"=o

(2 9)

where we omit v =0- in forming the product and that

pa~2=0 "
Q g ] 2(N—2) —0 (2.10)

'--~ A. Pais and g. K. Uglegbeck, Pgys. Rev. V9, 145 (19/0),

The weight factors 8, alternate in sign so that if a
realistic interpretation is given to these mesons, every
other one would act subtractively with respect to its
neighbor.

The subtractive terms which play a vital role in the
success of regularization have their direct counterparts
in other current studies of the A"E interaction. This
may be significant in view of the fact that in a quantum
Geld treatment the annihilation and creation operators
associated with such subtractive fields satisfy "wrong
sign" commutation relations. %bile there are ways to
calculate with such quantities, unfortunately, they
present serious interpretive problems and they have
varyingly been taken to imply a nonunitary theory,
negative probabilities, an indefinite metric, or anti-
Hermitian interactions. Xevertheless, despite many
critical discussions" such entities keep reappearing in
various forms, e.g. , Feynman's smearing the source
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function, 's Pauli —Villars regularization method, "Lee' s
peritization method, " Heisenberg's ghost state, " and
Frautschi's superposition of pole terms. "Since no one
has resolved the fundamental difficulties of field theory
without embodying a subtractive device, there currently
appears to be an open mindedness with respect to
equations which may be successful in relation to experi-
ment even though "3, simple physical view by which all
of the contents of the equation can be seen is still
lacking". '5 In this spirit we consider applications of
such fields.

3. QUANTIZING THE MESON FIELD

We may now quantize the meson fieM by accepting
Eq. (2.7) as a quantum-mechanical Hamiltonian and
requiring that the Geld obey the generalized Heisenberg
equation of motion

Q(r, t) =(i/&) L&, Q(r, t) l.
Expressing both sides in terms of Fourier integrals and
equating coeKcients of corresponding exponentials, we
find that the Fourier amplitudes must' satisfy

N

g (Vs —") y= 4~gb—(r) (3 g)

where a, =P/a. The static spherically symmetric so-
lution of this equation is

ponent. When nucleons are present this wave function
also depends upon the coordinates and times of the
nucleons as well.

For even values of 0. the operators b * and b satisfy
"wrong sign" commutation relations. From our present
standpoint we handle them pragmatically by identifying
for these components

b.*(k)-+b/bb. (k) b. (k)-+b.(k). (3.7)

In relationship to the present problem, a possible
insight as to the signihcance of the higher derivative
field theories may be obtained by considering the static
terms in Eq. (23) when a delta function source exists
in the Geld. The generalization of Laplace equation
becomes

$Q.*(k),Q, (k') j= ( 1) —b.,h (k k')—Acs/2co, .i y. i. (3.2)
Y,=R 'exp ( —ic.R). (3.9)

It is convenient now to introduce the operators

which then have the commutation properties

The nonsingular nature of @ as compared to I't is a

b, (k) =Q, (k) (2co,y,/Sc')'t' major factor in the success of current work using one
boson exchange potentials.

Now it is possible to look upon Eq. (3.8) and Eq.
(3.9) as equivalent to

Lb.*(k), b, (k') )= ( —1) b.,b(k —k'). (V' «ts) cb= gf—(R), (3.10)

For odd values of o- these are just the familiar commu-
tation rules for a neutral positive definite scalar Geld.
Following Fock we represent the operator b,*(k) for
0. = 1, 3, etc. by functional multiplication of the function
b, (k) and the operator b, (k) by a functional derivative
b/bb, (k) . Then it follows that the number operator

b,*(k)b.(k) dk (3.5)

has an eigenfunctional belonging to an n particle state

Xb (ki) . b.(k )dki .dk , (3.6)

where %„,,(ki ~ k„) is the wave function in momentum
space characterizing an e-meson state of the 0 com-

"R.P. Feynman, Phys. Rev. 76, 769 (1949).
"W. Pauli aud F. Villars, Rev. Mod. Phys. 21, 434 (1949).
es T. D. Lee, Phys. Rev. 95, 1329 (1954).
33%'. Heisenberg, Nucl. Phys. 4, 532 (1957)."S.C. Frautschi, Regge Pales and S Matresc Theory (W. A. -

Benjamin, Inc. , New York, 1963), p. 131.
'~ R. P. Feynman, Nobel Lecture "The Development of the

Space Time View of Quantum Electrodynamics, " Phys. Today
19, 31 {August 1966).

g2

(2sr)sC~ . dkPexp (ik„.X„)j
2(its+a s)

g2 k sin kE. g'
8, dk= 8 V,

(2sr) 'Crr, R (fe'+a ') 4srCs

(3.12)

"E. C. G. Sudarshan et a/. Phys. Rev. 123, 2183, 2193 (1961);
137) 81085 (1965).

f(R) =Q B.a.'F, ters Q B.F,. —(3.11)

Thus, in effect, we can get the same generalized po-
tential by assuming that the source of the first meson
Geld is a smeared out function with form given by the
Vukawa functions of the heavier mesons. Since nucleons
are known to have form factors characteristic of meson
Compton wavelengths, this suggests the equations
might eventually find a physical interpretation in terms '

of intrinsically nonlocal Gelds. "
It is important to keep in mind that the generalized

theory automatically eliminates ultraviolet divergences
in meson momentum space. For example, where an
ordinary meson theory would simply give the Yukawa
interaction between two particles, a generalized theory
will give



Rzviz~vs or MoDKRx PHvsics ~ Jt. r.v 7967

where X„=x„,—x„and the times are set. equal. If we
expand

g B,I 1+(a,/k)'$ '

—QB —k 'QB ~' —0 4+8,v' (3.13)

we see how the regularization conditions suppress the
initial terms in the series. Now if J occurs in rela, tivistic
interaction terms in combinations such as J'/R,
R(J'/R) ', R '(R'J') ', where prime denotes differenti-
a,tion with respect to E, additional k's will appear in
the numerator of the integrand. These would normally
lead to difficulties at E=O. However, here the par-
ticula, r regularization conditions which appear auto-
matically in a, generalized meson theory prevent such
ultl avlo1et catastrophies.

Let us view this ma, tter from the standpoint of the
behavior of the sca,ttering amplitude at 1arge energies
and momentum transfer as is done in discussions of
ma, trix theory and dispersion relations. The elastic
scattering amplitude for a weighted superposition of
Yukawa, s is"

(3 14)

At large energies and momentum transfers this would
behave like 1 '. However if g 8,=0, it behaves as
3

' and if g B,m, '=0 it behaves as t ' etc.
In the following sections we do not work explicitly

with a generalized meson field. Instead we simply
replace the ordinary Yukawa function where it would

appear in the usual form of meson theory by the well-

regula, ted combina, tion of Yuka, wa functions given by

(3.15)

where g' is the intrinsic coupling constant ~ is the
inverse Compton wavelength of the meson and A and
U are regularization parameters assigned to this meson.
This potential originally arose in our work as the
static solution of a sixth-order wave equation for a
delta-function source density. However, the corre-
sponding potential arises as the static solution of the
usual Klein Gordon equation with a source function
whose form factor has the characteristic outer length
A. ' and inner cutoff at U '.

tA'e note tha, t when U—+~ or when U ~A this goes
over to g'r 't e "" e~'$ a weakly re—gulated combination
of Yukawa functions. This then goes over to the ordi-

nary Yukawa function when A.—+~. In applications of
these well-regularized functions at this time we do not
use U as an adjustable parameter. Instead we 6x it at
a large value using plausibility arguments. Thus for
most purposes we set U to 203' which correspond to
the nomina, l mass of q and g when unbound where q

is the "ultimate" system; i.e., the urbarvon, the quark,
or ace. Vi~ith this prescription, A will soxnetimes be set
at 2M which will be referred to as our "standard"
regularization. This regularization prescription which
scarcely aGects the region from 0.2 F outward elimi-

nates the singula, rities of all the relativistic interactions
which we will encounter, even those which, in a purely
mathematical sense, are manageable singularities. This
prescription is very useful in practical numerical calcu-
lations since it minimizes the integration errors ca,used

by taking finite steps near the origin.
In most of our studies we have not fixed h. but have

treated it a,s negotiable or adjustable. By treating A as
negotiable, we mean that we use some known external
considerations as a basis for estimating its value rather
than search on the phase shifts themselves. For example,
since the p meson is a two-pion resonance and there are
indications for a 90' 5=0 and 7=0 pha, se shift in this
same mass neighborhood of the two-pion system it is not
unreasonable to set A m, . The prescription, A=2M,
is in the spirit of the nucleon and antinucleon as in-

gredients of mesons as in the original Fermi —Yang
modeP~ or the Sakata, model. 's However, for most
purposes we have treated A as adjustable, in which

case we are in effect determining a scale length for the
form factor of the meson —nucleon vertex.

4. DERIVATION OF ONE-MESON-EXCHANGE
INTERACTIONS

In this section we consider the broad picture of meson
interactions and concentrate our attention on direct
couplings between various tensorial types of meson
fields and two nucleons. Such a, study was first made

by Kemmer. "Since we are not quantizing the nucleon

field, rather than duplicate Kemmer's formalism, we

use the multitime formalism. Here the basic wave

equa, tion for each Dirac particle interacting with the
6eld at its location is

)en; y ;+P,iVc'+I. (r, , t,)+(ri, rg, tit2, t, Q) =0, (4.1)

where I is the interaction between the meson field and
the particle and 4 is the state functional which depends
upon the coordinates and times of both particles as weH

as the field coordinates. A similar equation may be
written for the second particle. In the case of direct-
coupling interactions a,ssociated with a generalized
meson field we have

where 0 is the appropria, te Dirac matrix associated
with the component of the meson field. For example,
for scalar field, 8 is P. We now add the Dirac equa, tions
for the two particles and set the times equal, then we

use Rosenfeld's transformation~ to convert the Dirac-

"E.I'ermi and C. N. Yang, Phys. Rev. 76, 1739 {1949).
"' S. Sakata, Progr. Theoret. Phys. (Kyoto) 16, 686 (1956).
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Ho =Hi+H2 and Hz =Hr, i+Hz, 2 (4 4)

Ke next assume that our wave functional has the form
given by Eq. (3.6) where each 4'„ is a function of the
coordinates of two nucleons. Using the properties of
pock operators we obtain an infinite series of coupled
integrodi8erential equations the first three members
of which are

D+,— dkG*(ki) %i(ki) =0, (4 5)

Dc'&+sr'~% —%2f dko (k)%(k, ks) —o(k,)%=0,

(4.6)

De,+f (»+~,)e,—W3 dkG(k) e, (k, k„k,)

where

—K2-'LG(ks) +(ki) +G(ks) +(ki) j=0, (4.7)

D =H„i%,a/Itt—

G(k) =g g(2w) et'8,c(fi/2co)'t' exp ( ik x—,). (4.8)

To derive the OBEP we assume in the second equation
that Ace+~ is large compared to M j., and we also drop
the amplitudes%'~. When these steps are taken it follows
that

+1(xi) x2, tp kl) ~G(k) +0(xi) x2) t) /fico (4 9)

If we insert this into Eq. (4.5) we find

(Hi+H2+VD iAB/Bt)+o(xi,—x2, t) =0, (4.10)

where V, the Dirac one-boson-exchange potential is
given by

t/'~ = —xA

Pock—Podolsky multitime wave equation into the
Heisenberg-Pauli single-time equation.

(H„+HI+Hi isa/Itt)+(Q, ri, rp, t) =0, (4.3)
where

Vs = —M2J. (5.1)

To treat the case of isovector scalar fields we would
simply identify 6 with ~P to obtain the corresponding
interaction.

This procedure may now be extended to deal with
vector —meson fields. Here we represent the meson held
by a four-vector A = (A, iAp) ~ The tirnelike component
of the four-vector field leads to a Hamiltonian which is
negative definite. We discuss possible ways of over-
coming this problem in a subsequent work. Here we
simply note that the formal consequence of such a
negative definite Hamiltonian is that the odd operators
b, 0 and b„o*now satisfy the "wrong-sign" commutation
relations and the even b, o and b„o* satisfy right-sign
commutation relations. Formally we treat this case
simply by reversing the roles of b, and b,~.

For isoscalar vector fie]d we take the interaction

The assumptions made in this derivation of OBEP
are (1) two-boson exchange and higher-order processes
are omitted; (2) nucleons are treated as point source
functions; (3) direct couplings only are treated although
later in the calculations of phase shifts we consider the
derivative coupling terms as well; and (4) it was
assumed that D4'y«4u4y.

An attempt to go beyond this one-boson-exchange
approximation by attempting to solve Eqs. (4.5), (4.6),
(4.7) and corresponding higher-order Fock equations by
successive approximations- was made earlier by one of
the writers (AESG) O' Efforts in this direction have
been recently renewed' giving considerations to closely
related studies which bear upon this problem, such as
the renormalization of the wave functional, the virtual
nucleon pair productions and the suppressions, the
existence of nucleon isobars, the correlated meson ex-
changes, and so on.4' 4'

S. RELATIVISTIC OBEP

To apply our technique for deriving OBEP, let us
first consider the case of an isoscalar scalar Geld which
is directly coupled to nucleons. To do this, we simply
identify 0 with P to obtain the scalar-scalar Dirac
potential

= —8y82J,

exp ik (x;—x,)
2 (k'+ tt')

(4.11)

F = -ga.A.(~„), (5.2)

where 8 =(e, i). The final result due to the four
fields is simply

where
Vv=(1 —ei n2)J. (5 3)

=(g'/ )( ""/)

As we indicated earlier, we shall in our detailed calcu-
lations replace this by the well regulated J given by
Eq. (3.15).

Equation (4.11) provides the basis of our derivation
of several OBEP. The same result follows from the
second-order term in usual power series perturbation
procedure and indeed from a classical treatment of the
field.

This particular vector —meson interaction is implicit in
many prior studies. 4' ~

"A. E. S, Green, Phys. Rev. '7V, 719 (1950).
«B. Chem, W'. A. Wilson, and A, K. S. Green (unpublished) .
41 D. Feldman, Phys. Rev. 98, 1456 (19SS).
4'K.. A. Brueckner, M. Gell-Mann, and M. I,. Goldberger,

Phys. Rev. 90, 476 (1953).
Pauli, IIandblck der I'hysik {Julius Springer-Verlag,

Berlin, 1933),2nd ed. , Vol. 24:1.
"H. A. Bethe and R. I'. Bacher, Rev. Mod. Phys. 8, 19]

(1936).
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Vr =Pn5, 1P2V5d' (5 5)

In a similar way we may treat the axial vector field
which intrinsically is a third rank antisymmetric tensor.
The four nonvanishing components of such a field are
A $23 A ]$4 A $34 A.$34 Thus we may represent such a
field by the pseudovector P = (&5, iA) which has three
purely imaginary components. The corresponding Dirac
matrices needed to ensure a Hermitian Hamiltonian
are 6 = (y5, id) . It follows immediately that, the direct
coupling axial vector interaction is

VA ('75,1'75,2 dl ' d2) + (s.6)

Note that the part of the OBEP corresponding to the
real field has a negative sign, whereas the parts arising
out of the imaginary field give rise to a positive sign.

We may construct one more direct coupling OBEP
interaction which in a certain sense was ignored by
Kemmer. Here we assume the 6eld to be an intrinsic
second rank antisymmetric tensor. The six nonvanishing
components of such a tensor may be identifi. ed by

p
—($12 Ijflis $23 $14 $24 @34) = (A, iB) . The associated

set of Dirac matrices which produce a Hermitian
Hamiltonian are 27 s ——(Pd, Pe) . Thus the Dirac OBEP
is

V2 ———(pip2di d2+pipsei e2) J'. (5.7)

There are several important aspects of the OBEP
interactions derived in this simple way. In the first
place they are consistent with possible interaction forms

In the nonrelativistic limit Eq. (5.1) is dominated by
the large attraction —J. On the other hand, Eq. (5.3)
is dominated by the large repulsion J. Accordingly, if
we take a direct synthesis of interactions given by
Eq. (5.1) and Eq. (5.3) using the same coupling con-
stant and mass we obtain the purely relativistic inter-
action

V5v = (1—pip2 —ei' e2)~ (5.4)

This purely relativistic interaction proposed some time
ago" has been reexamined recently, '~'~ and when used
in conjunction with pseudoscalar x meson has been
found to give a semiquantitative account of nucleon—
nucleon scattering. In addition to spin-spin and tensor
forces it accounts in a very simple way for the spin
orbit as well as velocity-dependent terms which have
been found in phenornenological studies including some
which do not explicitly state the detailed assumptions
as to the nature of the meson field.

Let us consider next the pseudoscalar field with
direct coupling. Here the field is intrinsically a fourth-
rank antisymmetric tensor with only one nonvanishing
component, AI234. For consistency we should, in view
of the presence of the fourth index, represent this field
by a purely imaginary potential, i.e., A1234 $(j52. To
ensure a Hermitian Hamiltonian the Dirac matrix
associated with the interaction is now ter iPy5 ——From.

this it follows that the pseudoscalar direct coupling
interaction is

between nucleons inferred from invariance consider-
ations prior to the discovery of meson theory as dis-
cussed by Pauli ' and Bethe and Bacher" in connection
with beta decay and by Fermi and Yang44 in connection
with the nucleon —antinucleon interaction.

In the second place they correspond in their static
limits to very simple interactions. Thus in the static
limit we have

-Vs= —J
Vg= —di dg

Vg ——0

Vp= —dg d2J (s.g)

where here the d's now correspond to the usual Pauli
matrices. It is intriguing to note that from these five
direct coupling interactions'one may, by choosing masses
and coupling constants identical, construct three purely
relativistic interactions, i.e., Vi, VB+Vi, and V~ —Vr.
The first two purely relativistic interactions have been
considered previously. In view of the discovery of 1+
mesons it appears important to consider now the V~
and V~ interactions. The fact that the OBEP is well
represented by Vp, a purely relativistic interaction and
the fact that the purely relativistic combination Vs+ Vi
also seems to characterize quite well components now
identified in the nucleon —nucleon force suggests that
serious attention be given to the third purely relativistic
interaction V~ —V~. It is interesting to note that these
three purely relativistic interactions would follow from
the three possible five dimensionally invariant combi-
nations of tensorial and spinorial fields explored by
Watanabe45 providing one uses the same masses and
coupling constants in the scalar and vector interaction
and the same pair in the axial vector and tensor inter-
actions.

The direct coupling Diracian OBKP interactions de-
rived by Kemmer' for the corresponding'scalar, vector,
pseudovector, and pseudoscalar fields are somewhat
diQerent particularly in the relativistic terms. The
differences reflect the difference in treatment in the
use of auxiliary conditions and in the selection of the
field Lagrangian. We shall consider some of these
differences in a subsequent work,

In concluding this section we might note that in
I937 Breit, ' from considerations of approximate rela-
tivistic invariance, inferred interactions due to scalar
and vector fields which are more complicated than Eq.
(5.1) or Eq. (5.3) . However the combination Vss—Viip.
is precisely the purely relativistic interaction given by
Eq. (5.4) when Breit J is identified with the Yukawa
function.

6.TWO-PARTICLE DIRAC EQUATION WITH OBEP

The Dirac equation for two nucleons 1 and 2 inter-
acting via OBEP may be written as:

f -cei pi —ce2 p2 —(Pi+P2)3Ic2+VDIQ=EO, (6.1)
4~ S. %atanabe, Phys. Rev. "/4, 1864 t', 1948}.
44 G. Breit, Phys. Rev. 51, 248 (1937).
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where E=W+2Mc' is the total energy of the system,
M =M» ——M2 is the mass of the nucleons, and p1 and y2
are their momenta. In the reductions to follow we
assume that the Diracian interaction V~ is given as a
sum of the OBEP arising from scalar (5), pseudoscalar
(P), unconstrained vector (U), axial vector (A), anti-
symmetric tensor (T) . Other interactions can be treated
in a similar way.

Thus far we have only calculated interactions medi-
ated b&T isoscalar mesons. If isovector mesons are also
involved we simply assume that each of the potentials
J„is given by the sum of an isoscalar and an isovector
part

~;=p1, 'I3&;,

dD, ;=Ip, ,0;,
P& ps, &8Id, z

(6.6)

For example,

P 'Yb, =(ps, ''8I, ') ( Pl, 8I,')'
(ps, 'pi, ~) 8 (I, ;I, ;) = —ipz, ,8I, , (6.7)

u, ; therefore p; and d; commute with each other, and a
product of two Dirac matrices can be carried out in p
matrices and in r matrices independently. From Eqs.
(6.5) and (6.7) one finds

J.=J.'( )r+~, ~,J„'(r), (6 2) Similarly,

where c, is the isospin matrix for the ith nucleon and r
is the interparticle distance, and where J„a(r) and
J„'(r) are given by Eq. (3.15).

The explicit representation of the Dirac matrices
zs, P, di&, and y; are

E~ o)'

(a 0)

E«)

(I.
E0 -I.)'

(0
'rb =—zczzczooze =

I

t,-I.
I, —

(6 3)0)

Q =Q1Q2

("'& ("l ("" """& (' "&
I81 I=I I=I I, (64)

&~1 &@2 ~~1N2, ~~1~2 g2

where I and m are the small and the large components
of the spinor Qi for the first nucleon etc. In Eq. (6.4)
the functions 1, xi, xs, and P are introduced in place
of N1u2, N1z2, m1n2, and m1m2, each of which is a 4X4
matrix. The decomposition of Eq. (6.1) into a set of
four coupled equations for t, xi, xs, and f is most
conveniently done by introducing the 2&&2 matrices4'

(0 1)
pi, '=I

I,1 0)
(1 0)
(0

(0

i 0

(1 0)
'"

Eo 1)
(6.5)

(i=1 and 2) which operate between w; and I, taking
them as single units. Thus, for example, the effect of
operating p1,; on Q1 is to switch N1 and m1. The usual
Pauli spin matrices 0; and I„; operate within m; or

where d is the Pauli spin matrix and I, is the 2)&2 unit
matrix. The wave function 0 is a j.6-component two-
particle spinor which is the direct product of 2 one-
particle spinors,

PzzlD, z
=ps, z8 zlz, Pzzrz =zpm, &8&z. (6.7b)

The effects of operating p matrices on Q are given by

('x, 0)
p, ,,I, ,,n=l

kt. , xi)

(t, xi)
ps, iI &.zQ

X2

(4, xz'l

pi, ipi, 211=I
kx, ~)'

( f, -xi)
ps, ips, s& —

I

k —x, &)

(xi,
Io ipi.fl —

I

&O, x.)'
-xi)

&x, -a)
(—4, xs)

ps, ips,B=
I

& x, f-)-
(6.8)

where

and
P, =c(&,'p~) (6.10)

V.= J8+Jv (&i &s) (J~ J—r), — —

Vb —Jp+JQ (zh les) (Jv —Js') &

V, =Js+Jv (&i.&z) (J~+Jr) &—

V„= J,+J (~, ~,) (J,+J,)—. (6.1—1)

Eliminating xi and xs from Eqs. (6.9) one finds

Expressing Eqs. (6.1) and (6.2) in terms of p matrices
and a matrices as per Eqs. (6.6) and (6.7) and applying
Eq. (6.8) to the resulting expression, we find the follow-
ing coupled equations:

(E 2IrIc' V—o)f+P—lxl+Pzx2 Vbf 0& (6 9a)

Pip+ (E V,)xi Vaxs—+Paf=—0, (6.9b)

Ps/ —Vaxi+ (E—V.)xi+Pif=0, (6.9c)

Vbf+Psxi+Pixs+—(E+2Mc' Vo) f=0, (6.9d)—

47 A. E. S. Green, unpublished notes (1948—1950). Z, (y+f) =0, Z, g —f') =0, (6.12)
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2,= L(E+h, ) (E+h, ) /4Mc'j M—c' (4—Mc') —'{(E+h, )Ps(E+h, ) 'PB—+Prh(E+h4)-'Pr&(E+h, ) },
2, = L(A+hi) (E'+h )/4Mc'$ Mc'—(4M—c') '{PP)(E+h8) 'P8(E+hg)+(E+hi) PD(E+h4) 'Po}, (6.13)

and
P.=c(& p)+~(& p), PD =C(di'Pi) —G(81()'P8) s (6.14)

hi Vcs V(s Js Jv Jp JA+(~1'~2) (JA+Jv 2JT),

h8 ———V.+Vh =Js—Jv+Jp+JA+ (4th' 81~) (JA —Jv),
h8= —&8—V4= —JS—JV+JP —JA+(&a (12) (JA+JV+2JT),

hh = —Vc+ Vd ———Js —J)s JP+JA+—(811 d'h) (JA —Jv) (61 )

Equations (6.12) and (6.13) have been derived by Breit for the case of v meson field. 4'One could solve Eq. (6.12)
formally for P. However, for our purpose, it is sufficient to insert the identities

(E+h, ) '=E—'{1—$h, /(E+h, ) j} (4=1, 2, 3, 4)

into Eq. (6.13) and to add the two equations (6.12) together. We obtain

—P''+P" —( M -)-i P 2"—'+—"'P 2+"—'P 8+P 8 —"
2M E~ E E F;

hs h4
+(hhhc') '(Ps Ps+P —P

) h
jV F

h4 h1 h1 h4 h2 fz3 hg h2" '(
h P r P+h P. 'P+h '+ 'h+h

E(E+h8) E(E+h4)

h1 h1
2

h2
2 2

h2 h4 hl hl h4—(8 h)hc'(Ps' —=Po'+ Ps' Ps' PPo —+——Po Po
E E E E E+h4 E E E+hh

h2 hg hg fzg——Ps Ps+Ps Ps —i =0 (6 16).E E+h8 E+h8 E

This is still an exa,ct expression. The separation of the terms has been done in such a, wa, y that the first curly
bracket contains all the terms up to 1/M'c an4d the remainder to 1/M'c' or higher.

'7. THE SCHRODINGER-PAULI-BREIT EQUATION

The advantage of Eq. (6.16) is that it allows us to introduce the Breit—Pauli limit in one simple step. Within
the energy regions of interest here, that is Ei,b&300 MeV, the condition W'/M8c4= (v/c) '«1 is well satisfied.
Ke shall make approximations which apply at the interparticle distances where terms like

J&„/3Pc4 WJ~/M'c 4 and J„p'/M4c4

are much smaller than unity, where J„and J stand for any of the J in Eq. (6.15).Thus we can neglect the second
and the third terms in. Eq. (6.16) compared to the first term in which we substitute 1/2Mc' for 1/E. Remembering
that in the lowest order

f={( (~i —p) (& p)+Vh)/4M~'}4
we obtain

hhc' ((6N' )'(P 'hc+—hP '—+P—'h+h )+( Ps')'h(PhhshcPs+PohPo)IP=O,(E+hi) (E+h8) P'

435C2 3E

' G. Breit, Phys. Rev. Ill, 652 (1958).
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where we have chosen the center-of-mass system so that

(pi+y2) P =0 and p =pi ———y2.
Using P=W+2Mc2 we find

(7 2)

Thus the lowest-order approximation to Eq. (7.1) becomes

(W+2 (hi+h2) )4'= (p'/M) 4.
This gives the lowest-order expression for l&V,

IV =p'/M —-', (hi+&,),
which is substituted into W2/4MC2 appearing in Eq. (7.2) . The result is given by

p p hl+h2 hl' h2 (hl+h2)
Wp + + (8M2C2) —1(p2(hl+h2) (hl+h2) p2)

M 4M'c' 2 4Mc' 16Mc'

(7.3)

(7.4)

+(16M C ) (PD hl+h1PD +PS h2+h2Ps ) —(SM c ) '(PshbPs+PDh4PD) p (7.5)

(h+h )2 Vb2

16Mc' 4Mc"

PD hl+hiPD +Ps h2+h2Ps 4C'I p'V. +—V.p'+(di p) (&2 p) Vb+Vb(&1 y) (&2 p) } (7.6b)

Psh, P,+PDh4PD =2C'{—(a, p) V.(ui p) —(112 y) V.(d2 p)+ (ai p) V&(a2'p)+(I$2'y) Vs(di p) }. (7.6c)

Using Eq. (3.6) into Eq. (3.5) we obtain

Substituting V, Vb, V„and Vs back in place of h, (i=1, 2, 3, 4) and using Eq. (6.15) we find for the fol-
lowing terms:

hg h2
(7.6a)

p2 p4 V 2 p2
WP= —— +V.+ — V, —(4M'c4) 'U P

M 43Pc' 4Mc' 2M'c' (7.7)

where we have defined

U —(111'p) (~2'p) Vb+V (4b$1'p) (~2'p) (~l p) Vc(~1'p) (~2'p) Vc(62'p) +(($1'p) Vd(I$2'p) + (62'p) V (itsy)1. (7.8)

QtQ~$2$1+ p2/2M2C2 jp. (7.9)

Therefore the "renormalized" wave function

4' = (1+p'/4M'c') 1p (7.10)

conserves the probability within our approximation.
Expressing P in terms of 4 using Eq. (7.10) and
inserting the expression into Eq. (7.7) we obtain after

The second term on the right-hand side of Eq. (7.7) is
the relativistic correction to the kinetic energy.

Due to the appearance of —(p'/2M'c') V„ in Eq.
(7.7), the effective Hamiltonian is non-Hermitian. This
corresponds to the fact that 1P is not normalized properly
and hence probability is not conserved. This is remedied

by applying a "renormalization" to P which takes
advantage of the fact that the original equation (6.1)
conserves probability. Kithin the approximation men-
tioned at the beginning of this section we have

a little arrangement

p2 p4 V 2

W@= —— V.
M 4M'c' 4Mc'

—(4M'c') '(p'V, +V p') —(4M'c') 'U %. (7.11)

The Hamiltonian corresponding to Eq. (7.11) is
Hermitian as expected.

We note in Eq. (7.11) the term Vb2/4MC2 which
appears due to the Diracian interactions (6.2) with
odd Dirac matrices. This term is similar to terms which
might be expected out of the second order of pertur-
bation theory. Ke omit this term throughout the re-
maining calculations postponing the related discussions
for Sec. 10.

All the remaining terms in Eq. (7.11) are of first
order in the interactions. Ordinarily, in an inner region
where interactions due to heavier mesons such as p and



604 REvIEws oE MQDERN PHYsIcs ' JULY 1967

TAELE I. Contribution to VT, t La2= (h/Mc)2, j&=r '(d/dr) J, J2 r——'(d/dr) j~j.

V,

t/I.S
Vg

t/g

1/~

Va

Vq

S(J=J8)

—J—-',a'(v' J)

V(J= jv)

J
6g'(v' j)
-'u' J1
—(1/12) a'r' J2
—a'J
—CS'J1

T(J= Jz)

—,'a'(v' j)
(1/12) a2(V2 j) —j——'a2 (V2J ) —J—(5/12) a2(V2 J)

—-'a' J1 4+'J1
(1/12)a2r2J2 —a2t J+(1/12)t2 J2] a2[jq+(1/12)r2 J2]

—2e'(01 u&) J
—2a'(al. a2) J1

—02J1 g2J
2(~i~)'J —2(a/r)'J

co are present, V is the major term and the rest of the
interactions is of the order v'/c' smaller than V,. How-
ever, as can be seen from the definition of t/', given by
Eq. (6.11), if we have chosen the masses and the
coupling constants of the scalar and the vector meson
interactions to be the same, and similarly for the axial
vector and the a,ntisymmetric tensor meson interactions,
then t/', becomes identically zero. Since the major
term cancels, the remaining terms which normally would
be of the order (v/c)' smaller than V, become the
zeroth-order interaction. In such highly relativistic
interactions, the effects of the velocity dependence,
spin —orbit forces, tensor forces, etc. , become very
prominent.

One can rewrite Eq. (7.11) in the form

Lp2/M+ VT.,j@= (52k'/M) 0, (7.12)

where V, and 'U are defined by Eqs. (6.11) and (7.8),
respectively.

After carrying out somewhat tedious but straight-
forward algebra involving the Pauli spin matrices and
the gradient operator appearing in VT,2, Eq. (7.14) can
be expressed in the following way:

VT.4= V.+V.(di. d2)+VLS(& S)+Vr&12

+V~(r) V'+Vv(r) (r &)+VE+12+VQQ12 (7.15)

where
1= ( r x p) /fb

SI2 ——(3/r') (di r) (d2 r) —(di d2) (7.16)

E, = (E2/4Mc2) Mc2=P'+ (JV2/4Mc2) (7.13)

is the center-of-mass energy which is related to the lab
energy EI@b by E..~.=E»b/2 and O'=ME. ./A, ' a re-
lationship which is a relativistic as well as a non-
relativistic expression. The correction to the kinetic
energy included in Eq. (7.11) is taken care this way to
the order (s/c)'. Omitting the term Vb2/4Mc2, the total
interaction is given by

VT.,=V.—(4Mc') —'(p'V. +V.p') —(4M'c4) 'U

(7.14)

is the usua, l tensor operator. The terms V' and r V are
the velocity dependence. There appear two additional
tensor operators EI2 and Q12 which are defined by

~12 (2/fb) {(di r) (d2 p) +(d2 r) (di p) I ~12 (7 17)

Q»= (r'/&') (~I p) (~2 p) (7 18)

and which arise due to the inclusion of the axial vector
and antisymmetric tensor intera, ctions. The tensor oper-
ator E» is related to the operator T,&t introduced by
Breit4' in the following manner.

The choice for R~~ is made here so that it has no diagonal
matrix elements. The operator Q12 is a new operator.
Both EI2 and Q12 contain the gradient operator p which
acts on the angular part of 4' as well as the radial part. .
Thus these operators yield additional velocity depend-
ence, spin —spin forces, and tensor forces.

Contributions to each term in t/'T„t from different
meson intera, ctions a,re given in Table I.

8. NUCLEON-NUCLEON PHASE SHIFTS

The Schrodinger equation is solved numerically uti-
lizing a program similar In most respects to that de-
veloped by Bryan and Scott but differing in a number
of important details. The numerical integrations of the
Schrodinger equations have been performed on an IBM
709 digital computer in University of Florida. The
partial wave equations for all the uncoupled states and
the coupled states at higher energies are solved by
Noumerov method, and the coupled equations at 1ower
energies (Ei,b(142 MeV) are solved by a Runge-
Kutta method where the Noumerov method shows some
instability for the case of no cutoff and one cutoff.
The use of Noumerov method speeds up the integrations
approximately three times compared to the Runge-
Kutta method. The phase shifts are obtained by match-
ing the numerical solutions to Coulomb functions for
I=1 states and to spherical Bessel functions for l=0
states at a radius r=8 F where a11 the OBEP contri-
butions become negligibly small. For the coupled states,
the reaction matrices are calculated from the numerical
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solutions and by diagonalizing the matrices the Blatt-
Siedenharn phase shifts are obtained. The nuclear bar
phase shifts are found from the Blatt—Biedenharn
phase shifts by a usual transformation.

The automatic search for the minimum y' can be
carried out for most of the parameters.

The nucleon —nucleon scattering phase shifts are cal-
culated using the isoscalar-scalar (s) and vector (to)
mesons and m meson interactions given by columns 2, 3,
and 4 in Table I. The Schrodinger equation (7.12) is
solved numerically utilizing the well-regulated poten-
tials given by Eq. (3.15). The results obtained from
the purely relativistic x —5' model for the parameters
g '=14.7 and g5„'=41.25 with A5„=2M and A =720
are shown by smooth curves in Fig. 1.

These theoretical curves are shown in relationship
to the energy-dependent phase shifts of Amdt and
MacGregor. "The S-wave phase shifts below 25 MeV
are based upon the eRective range approximation. We
see that the purely relativistic model despite its sim-
plicity of structure is realistic enough to reproduce
most of the characteristic features of the experimental
phase shifts. In this model the large central repulsion
due to the or is largely canceled by the large central
attraction due to s, leaving relativistic effects only,
including a weak attractive residual as well as the
spin —spin, tensor, spin —orbit force and the other velocity
dependent components.

Our studies indicate that g5„' can be varied from
about 15 to 150 and that the good 6t to the '$0 and
'S~ phases will be preserved providing both A and Aq„
are appropriately readjusted. We have made detailed
studies in neighborhoods characterized by g5„'=15.22,
34.25, and 137.These correspond to egs„/fi, c= s, s, and 1.
The values —', and 1 lead to the coupling constants
proposed for magnetic monopoles by Dirac" and
Schwinger. "One might speculate that these bear some
relationship to coupling constants for neutral vector
mesons. Figure 2 shows the S, I', and D phase shifts
for 3, —'„and 1 and all phase shifts for ~. It should be
clear that the 'S~ phase shifts are quite good throughout
the large range of vector meson coupling constants.
However the 'So phase shifts are good only for g5„'&50.
On the other hand, the I' wave phase shifts prefer the
range 30&g5„'&15. Our exploratory searches suggest
that this range provides many good points of departure
for "broken" relativistic models which require only
small additions to the pure x —Sco model to achieve
good 6ts to all the phase shifts.

From the standpoint of applications to nuclear
physics it would be helpful to have a simple model
which gives good S-wave phase shifts, moderately good
I'- and D-wave phase shifts and embodies the long
range pion interactions accurately. To do this we have

4'R. A. Amdt and M. H. MacGregor, Phys. Rev. 141, 8/3
(1966).

ss P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931).
sr J.Schwinger, Phys. Rev. 144, 1987 (1966).
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been guided by a separate study" on how to maintain
S-waves phase shifts in the neighborhood of that re-
quired by effective range theory at low energies and
how to lower the phase shifts at high energies by
various combinations of soft cores with velocity de-
pendence. This study has guided us in our meson

s' A. E. S. Green and G. W. Darewych (to be published)

5O 32 I (F)
I

~.O ).5 2Q k

I zo. 1. Relativistic 7I--Sco model. The smooth curves represent
the results of the purely relativistic ~-5' model with g '=14.7,
m =138 MeV, m. =m„=782 MeV, h.,„=2M ab initio and with
the adjusted constants g5„'=41.2 and A =720. The Arndt-
MacGregor energy-dependent phase-shift solutions are shown as
experimental points joined by straight-line segments. Assigned
errors less than or equal to &~ degree are shown by the same sized
bars. The lower horizontal scale is the propagation constant in
inverse fermis. The 'S» and all singlet curves are referred to the
ordinates as shown. The other curves are referred to the hori-
zontal lines indicated. The phase shifts for Ii and G waves and
e& and e3 have been doubled. The symbol codes in the lower left
corner indicate impact parameter distances according to the rule
h= (1+-',)/h. Impact distances for S waves are shown along the0' ordinate. The corresponding distances for I', D, Ii, and G
waves along the triplet reference axes. The numbers on the ex-
treme left represent impact parameter distances at 400 MeV. The
theoretical singlet curves are distinguished using the international
Morse code: S. ~ ~ I' —., D—.~, F..—- and G—.



606 REVIEWS OZ MODERN PHYSICS ' J~ JULY 1967

50 IOO ZOO 500 EIabgs 0 2 10 25 50
II I I

J
I III( I I I I Jl III[ I I I I

I
I I I I& I I II I I I I I

200—

l50

l00

almost bind the 'So state at zero energy. In the second
t body a somewhat stronger effective

e hi h-ener haserepulsion or core to bring down the high-energy p ase
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rnented. First we can reduce the scalar mass which we

mass as occasioned by the two-pion effect. Thus if we
let A =m, and furthermore we strengthen the vector—
meson coupling constant to provide an extra s ort-
range repulsion, we can accomplish a gross improvement
u on the x—Sou model. To preserve an average cancel-
lation of the vector and scalar static interactions we
should impose the relation
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I'"IG. 3. One-parameter mod&6ed model. Hel. Here we 6x m = 138.7,
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and take/the corresponding g„'=g, sn„sss,
g '=14 7
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Figure 3 gives the results of a one-parameter modified
relativistic model embodying these ideas. Here m, =
A =600 MeV is the only parameter fixed on the basis
of E—X phases. The parameter g,'=25.0 follows from
Eq. (8.1) when g s=g '=14.7 is taken IJb ini-tio as are
the remaining parameters in the model. It is seen that
this one-parameter model provides a good over-all
representation of all the partial wave shifts with the
exception of the V'» and, to a lesser extent, the 'D2 w'a, ve,
Some of the discrepancies between theory and experi-
ment, particularly at 330 MeV are probably due to
experimental errors.

It is the opinion of the authors that, pending the
clarification of very many fundamental theoretical
questions, the S—E interaction represented in Fig. 3
should serve as a reasonable meson theoretic E—E
interaction for nuclear physics.

I.et us next take a particle physicist point of view and
try to embody all the known effects which we believe
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Fxc. 5. Broken model. Here we 6x ns =138.7 MeV, m„=782.8,
m„=548 7, g,'=0..65, m, =763, and f~/g, =3.75 but search on m„
g 2, g, ', g„', g„', g, ,', A„and 4@ (a common cutoif for the remain-
ing mesons). The values obtained are g =13.5 which is with-
in the range allowed by pion nucleon experiments, g,'=13.6,
m, =599) g„'=28.1) A =1006) 4@=1189)g,'=3.83, gpg=1.32.
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Fxo. 4. Broken model with weakly coupled long-range scalar.
g~'=14.42, g„'=24.25, g,'=15.60, g,~'=2.5P m, =782, m, r =421,
g '=065) f~p/g, =3.75, g„'=, 0.816, h. =817) ha =1470.

are represented in the S—E interaction. Thus we
"break" our model to encompass both direct and
derivative coupling to the vector mesons. Here we
follow closely the work of Bryan and Scott, but embody
our well regulated potentials along with the velocity-
dependent terms (which they also now include) . We
accept, however, as constraints various auxiliary pieces
of information deduced from experiment which do not
depend directly on nucleon —nucleon scattering. For
example, electromagnetic form factor analysis" and
Sakurai's studies'4 of universal p couplings suggest that
we take g,s=0.65 and f,/g, ~3.75. Electromagnetic
form factor studies also indicate that the f/g for the oI

meson is approximately 0. The question of the scalar
mass is a critical one in this problem.

"Q. W. Akerlof et al. , Phys. Rev. 135B) 810 (1964).
54 J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966}.
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Here first we maintain m, at 782 MeU (the co meson
mass) but break the degeneracy of the coupling con-
stants. Furthermore, we incorporate a low mass scalar
s' in the spirit of the study of Amati et al. ,

55 of Furuchi
and Watari, " and of Durso' who show that the E*
resonance implies an effect in the I=O, J=0 channel.
Figure 4 represents the results of a search on g, ', g,',
g„', A, and hv (all scalar and vector mesons are given
the same form factor). We see that this simple modifi-
cation leads to a very good set of phase shifts for 5, P,
and D waves. Hence the corresponding potential should
be adequate for most nuclear physics applications. We
note that again the vector meson has reached to a higher
coupling constant. This has the effect of introducing
an extra repulsion at short ranges which helps the
velocity dependence of our potential in bringing down
the high-energy phase shifts. On the other hand, the
weakly coupled long-range scalar (s') helps bring the
'50 state closer to binding at zero energy which helps
bring up its phase shift at low energies. The gross
feature of cancellation of large effects is still preserved
on the average.

We have also searched the same five parameters with
m, 6xed at 900 MeV and at 700 MeV. We obtained
very similar phase shifts as in the case of M, =782,
the effect of the slight changes in mass being simply
taken up by rather small changes in the coupling con-
stant of s. Thus we see that a weak long-range two-pion
effect would provide just the perturbation needed to
account for the observed phase shifts providing a strong
scalar dipion is present in the mass neighborhood of
the (o.

We have also investigated the possibility that the
only one scalar effect exists by simply breaking our
x-Sco model to let m, and g, and g, search out their
optimum values. While doing so, we have also included
the q meson letting its coupling constant search. In
this respect we have come very close to the model of
Bryan and Scott except that we have embodied regular-
ized potentials and have constrained the p meson coup-
ling constants. The results of the study are shown in
Fig. 5. Th'e scalar meson in this case searches out a
lower mass value and lower coupling constant. What
seems to be preserved in these variations is the approxi-
mate equality described by Eq. (8.1) just as in our
one-parameter model. This might be expected from the
well-known VE.' ambiguity of scattering studies. One
might expect that a scalar particle at 600 MeV with
so large a coupling constant wouM be easy to find
experimentally since it is suKciently far from the p
meson peak. Accordingly we feel the evidence tends to
be somewhat more favorable to a heavier scalar meson
in conjunction with some residual long-range effects.

~50. Amati, E. Leader, and B. Vitale, Phys. Rev. 130, 'Jp'50

(&963).' S. Iuruichi and %. glatari, Progr. Theoret. Phys. (Kyoto)
34, 594 (1965).

47 J. W. Durso, Phys. Rev. 149, 1234 (1966).

9. A PHYSICAL DESCRIPTION OF THE
NUCLEON-NUCLEON FORCE
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FIG. 6. Faraday-like visualization of components of relativistic
nucleon —nucleon interactions. (a) Qux representation of velocity-
dependent interaction of two nucleons propagated by co and s
mesons. Note that Aux lines concentrate in center giving repulsive
force. (b) flux representation of spin —orbit force. Note Aux lines
associated with the left particle at the position of right particle
are upward (by the right-hand rule) .Thus the most stable orienta-
tion for the right particle is as shown, in which the parallel spin
and orbital arrangement is the most stable con6guration. (c)
representation of the spin —spin force propagated by or meson. By
analogy with magnetism, the two mesomagnets prefer the right
configuration to the left. (d) magnetic analogy of tensor inter-
action propagated by co meson showing general position and the
most stable position since the interaction favors the cigar-like
configuration.

As it. has evolved, the nucleon —nucleon interaction
as derived from field theory and inferred from experi-
ment has turned out to be such an exceedingly complex
interaction that it may appear impossible to picture it
in simple terms. Of course, we can get some help by
pictorial aids such as Feynman diagrams or pictures in
the complex momentum plane or complex angular mo-
mentum plane. However, such diagrams primarily have
appeal to mathematically sophisticated theoreticians.
What the average physicist needs is a way of visualizing
the meson 6eld in terms similar to the electromagnetic
field which all physicists have studied.

The fact that the or meson is a neutral vector meson,
similar in many respects to photons, plays a dominant
role in the middle interaction range (0.5 to 1 F)
suggests this possibility may exist. Thus on the basis
of the close correspondence of the relativistic effects
which appear in electrodynamics and in VS meson
theory, it may be possible to adapt the Faraday electro-
magnetic Aux concept as a means of visualizing the
nucleon-nucleon force.

Let us neglect the long-range pi meson interactions
and assume that the two nucleons are coupled only by
the exchange of the ~ and s mesons with approximately
the same coupling constants (g' 10'e') and masses.

We now recall from studies of electrodynamics that
two Dirac particles are automatically endowed with
spin. If we assume we are dealing with positive nucleonic
particles, it follows that this spin generates a "meso-
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magnetic" dipole moment along the axis of spin.
Further, the orbital motion of the nucleon about a
center of force, generates a "meso-magnetic" field
parallel to the direction of the orbital angular mo-
mentum. In Fig. 6 we illustrate the "meso-magnetic"
lux lines associated with two "positive" particles. Flux
lines going into the paper are denoted by crosses.
Flux 1ines coming out are denoted by circles. The
orbital vector for such a situation is coming upwards
out of the paper. Ke assume that the gv flux line density
is proportional to the effective current (gs), and that
the flux lines have the properties of the electromagnetic
flux lines, It is thus obvious that two particles circu-
lating in the fashion shown in Fig. 6 would repel each
other. The repulsion which is proportional to v' goes
up very rapidly as the distance between mesons becomes
small. These are precisely the physical consequences of
the velocity dependent terms in any of the vector plus
scalar models when large cancellation has occurred.
It would appear that this effect, which is the analogue
of current —current interaction has been attributed to a
hard core of a radially dependent static potential.

Let us next consider the spin —orbit force. This arises
because the particles are moving in the upward meso-
magnetic field occasioned by their orbital motion. We
consider the case in which both spins are parallel and
are rigidly coupled into an 5=i state. It is then clear
by analogy with electromagnetics that both dipoles
wish to orient along the Geld lines. Thus the stable
position, i.e., the minimum energy position, corresponds
to spin and orbital motion parallel in agreement with
experiment. This agrees with the nature of the spin
orbit potential generated by the ~ and s mesons as evi-
denced by the separation of the phase shifts at large
energies of the 2=1.j1 and J=L '1 triplet states. —

Let us next consider the question of two spinning
mesomagnets close together and ask what orientation
they would prefer. Here, it should be obvious that the
parallel position would concentrate the lux lines in the
center and yield a repulsive force. Accordingly, the
antipa, rallel position is the stable position exactly as it
would be in the case of two ordinary magnets in
coincidence.

Finally, let us consider the tensor force propagated
by the m meson. Here, we picture two magnets con-
strained to parallelism, but separated by a radial vector
r. It should be immediately obvious that the stable
position is the cigar-like position in which I., 5, and r
are parallel. This conforms to the fact that the coefFi-

cient of the tensor force propagated by the co meson
is a negative potential.

The over-all effects of the spin —spin and tensor force
operators are complicated by the contributions of the m

meson which is dominant at long ranges. It is simple
to extend the mesomagnetic flux line picture for isotopic
spin 1 vector Gelds by invoking analog of charges
which reverse sign for certain states. However for
pseudoscalar fields the analog becomes more compli-

cated and loses the beauty of its close relationship to
electrodynamics.

10. SUMMARY AND COÃCLUSIONS

We have presented in some detail the background
for the two major aspects of our work. (1) The use of
generalized meson fieMs which a,re intrinsically regular-
ized; and (2) The use of relativistic interactions. We
have shown that purely rela. tivistic models predict the
phase shifts moderately well and slightly broken models
do very well. The fact that this work with OBKP in
Schrodinger's equation bears a close relationship to
other recent approaches based upon substantially differ-
ent formalisms tends to support this direct. ion of at tack.

There are some di6erences in detail between. our
studies to date and these other studies. For example,
the scalar meson used in the other works tends to be in
the 400—600-MeV ra,nge whereas our original specu-
lations involved scala, r mesons with the same mass and
coupling constant as the vector meson. As of this
moment, the experimental evidence for scalar mesons
tends to be more favorable towards a scalar meson in
the 700—900-MeV range"" ra, ther than the 400—600-
MeV range. However, the final disposition of this point
must await further meson spectral analyses. Actually a,

difference in masses would not seriously alter the main
aspect of the concept of relat. ivistic or almost relativistic
interactions providing t.here is an "average" type of
cancellation of the vector repulsion by the attraction
due to a scalar meson or the attractions caused by a.

strongly coupled heavy scalar particle in conjunction
with a weak long-range effect which simulates a scalar
particle.

Because of the complexity of the velocity-dependent
tensor interactions we have omitted axial vector and
antisymmetric tensor mesons from our calculations.
Since 1++and 1+ mesons have been found, "the future
more complete analysis should include these meson
interactions as well. The occurrence of the velocity-
dependent tensor operators Ris and Qts as defined by
Eqs. (7.17) and (7.18) complicates the situation sub-
stantially for the coupled states.

We note that the quadratic term Vss/4Mc' which
appears in Eq. (7.11) and which is neglected throughout
the calculation arises from Diracian interactions with
odd Dirac matrices. A similar quadratic term a1so

appears when one treats the equation (6.12) exactly.
A similar quadratic term was discussed in the early
studies" "of fine structures of two-electron atoms with

'e L. J. Gutay et a/. , Phys. Rev. Letters 18, 142 (1967).
» W. D. Walker et al. (to be published) .

A. H. Rosenfeld, University of California, Lawrence Radia-
tion Laboratory Report, UCRL-16462 (1965).

"G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 3O,
616 (1932)."G. E.Brown and D. G. Ravenhall, Proc. Roy. Soc. (London)
A208, 552 (1951}.

"H. A. Bethe and E. E. Saipeter, Qscantrsm Mechanics of One
and Troo Electron Atom-s (Ac-ademic Press Inc. , New York, 1957).
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the interaction introduced by Breit. In the case of
m-meson interactions, if one performs the Dyson trans-
formation to the ps—ps coupling and retains the OPE
term only neglecting the meson pair term, the quadratic
term does not appear since then the interaction contains
even Dirac matrices only. More generally, if one retains
only the equation for the Fourier components of Q in
which the two nucleons are both in positive energy
states throughout the OBE processes, then no quadratic
term occurs and the resulting interactions in the Pauli
limit agree with those given in Sec. 7. The results of
Gupta~ and Bryan and Scott" also support the con-
clusion although that of BreiP" and Charaplyvy" do
not. It should be clear therefore that this question
along with other theoretical questions will have to be
resolved by further study.

A question requiring immediate attention is the prob-
lem of the forms of vector meson interaction given by
Eq. (5.3) . This is somewhat different from other forms
arising from vector field theory. ""If the scalar meson
cancels the main vector —meson interaction term then

'4 S. ¹ Gupta, Nucl. Phys. 57, 19 (1964).
"G.Breit, Rev. Mod. Phys. 34, 766 (1962)."Z. V. Chraplyvy, Phys. Rev. 91, 388 (1953);92, 1310 (1953).

one might surmise that the relativistic terms which
survive might act quite differently on the phase shifts.
This consideration is the motivation for further studies
which are underway.

In conclusion, while it should be clear that much
remains to be done, nevertheless, we have come quite
far as compared to the state of understanding as of
3 or 4 years ago when 20—50 adjustable parameters
were required in models which could be made reasonably
consistent with experiment. Indeed it woul. d appear
that we are approaching the point where our under-
standing of the 3~E interaction might be adequate for
the purposes of treating the nuclear many-body prob-
lem.
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