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frequencies vy (w) generally decreases except for peaks
corresponding to those in the data. The damping
decreases with temperature more rapidly at low fre-
quencies than at high frequencies. CdF; is more heavily
damped than the other materials; here at 300°K the
maximum value of v (w) /wro is about 3. It is reasonable
that associated with such large damping there should
be large temperature-dependent frequency shifts so
that one is not surprised to find that CdF,; shows the
largest temperature dependence of wro and &.! In Fig.
4, the dashed curve represents the results deduced
from reflectivity data by Axe et al. It is gratifying that
these results join to those deduced from the absorption
data of Ref. 1.

It is evident from the dispersion curves for CaF,*
that the two-phonon (sum) density of states has a
cutoff at wro+wg. This particular phonon combination
also satisfies the momentum and symmetry-based
selection rules for infrared absorption.®® The value of
this combination is about 790 cm™ and it is gratifying
to note that y(w) has a shoulder in this region. At
higher frequencies, absorption must occur via a three-
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phonon process and should therefore show an enhanced
temperature dependence. Further inspection of the
dispersion curves suggests that the peak at about
45 cm™ can be assigned to a TO—TA difference process
at the symmetry point X, the edge of the zone along
the (100) direction. In the same way, the peak at
about 725 cm™ can be assigned to a LO4LA sum at
the point X.

In conclusion, we mention two very recent papers
in which anharmonic effects are treated by the power-
ful Green’s function method.%
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Attenuation processes are examined from the viewpoint of collision theory, and the optical theorem is used to connect
attenuation cross section o and refractive index #» with diagonal elements of the 7' matrix. This approach provides reso-
nance profiles (for “natural” lines shapes) of the form

(T/2) B+ (0—wo) 4

o(w)=CH

n(w)-—~1=£

T (0—wo)+ (T/2)2

Ne[ (v/2)4— (w——wo)B_D]
(@—wo)+ (/22 [

where the profile parameters 4, B, C, D, T', wo are given in terms of atomic matrix elements.

Part I reviews the notion of resonances. Part II summarizes the relevant results of collision theory, stressing physical
interpretation, and gives a definition for excited (or resonance) states based on a simple partition of basis states into two
classes. Part IIT applies perturbation theory to the calculation of resonance profiles. Part IV applies these results speci-
fically to the attenuation and refraction of photons by tenuous gases, with particular attention paid to the profiles of
autoionizing lines. The effects of degeneracy (the extension of the bound-state Z! expansion theory) are noted.
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1. SPECTRAL LINES AS RESONANCES

A. The Nature of Resonance Observations

Rate coefficients or cross sections for collision proc-
esses, measured as a function of incident projectile
energy E, often show abrupt variations (resonances)
as the energy passes some value E, Typically, this
energy dependence or profile follows the dispersion
formula

(T/2)B+(E—Ey)A
(E—Eo)*+(1/2)2 °

where the background C(E) varies only slowly with
energy, and B, 4, Ep (the resonance energy), and T
(the resonance width) are parameters independent of
E. [Appendix A discusses several alternative param-
eterizations of Q(E).] Actual observations are in-
fluenced by effects of finite sample temperature,
density, and thickness—effects that are treated in the
discipline of radiative transfer! and are here ignored:
this paper is concerned only with the “natural” shape
of absorption lines.

For inelastic collision processes, parameter 4 usually
vanishes, and the formula?

Q(E)=C(E)+ (1.1)

(r/2)B
(E—Ey)*+(T'/2)*
applies. In observations of absorption spectra, such
resonances appear as dark absorption lines or spectral

lines. Observations of the refractive index usually re-
veal? a profile with B=0:

Q(E)=C(E)+ (12)

(E—Ey) A
(E—Eo)*+(1/2)%"

The explanation of such resonance phenomena in
the absorption and refraction of light may be traced
back? to the work of Sellmeier® and von Helmholtz®
(Lord Rayleigh? pointed out that Maxwell anticipated
these results in a Cambridge Tripos Exam in 1869).
From a more modern viewpoint, attenuation occurs

Q(E)=C(E)+ (1.3)

* This work has been supported by the National Aeronautics
and Space Administration. .

LA. Unsdld, Physik der Sternatmosphiren (Springer-Verlag,
Gottingen, 1955), 2nd ed.; also Proc. Second Harvard-Smith-
sonian Conference on Stellar Atmospheres, The Formation of
Spectrum Lines, Smithsonian Astrophysical Observatory Special
Report No. 174, May 1965. )

2 (a) Usually called a Lorentz profile [Ref. 2(b)] or, if C=0,
a Breit-Wigner profile: G. Breit and E. P. Wigner, Phys. Rev.
49, 519 (1936). (b) H. A. Lorentz, The Theory of Electrons
(Leipzig, 1900; reprinted by Dover Publications, Inc., New York,
1952).

3 This is usually expressed in frequency units: Q(w) =C(w)+
(w—wo) A /[ (w—w0)?+ (T'/2)]. L

4 Cf., G. Breit, “Dispersion” in Encyclopaedic Dictionary of
Physics, J. Thewlis, Ed. (Pergamon Press, London, 1962).

¥W. Sellmeier, Pogg. Ann. Physik. Chem. 143, 271 (1871);
145, 399, 520 (1872); 147, 386, 525 (1873).

¢ H. von Helmholtz, Pogg. Ann. Physik. Chem. 154, 582
1875).

( 7]. )W. Strutt, Phil. Mag. 48, 151 (1899) quotes Maxwell’s
cxamination question.

when an atom in state 4 absorbs a photon 7y to produce
the excited atomic state 4*:

AFy—A*,

The excited state subsequently decays by emitting
one or more photons: - '

A*—>A+.

Since few emitted photons reappear in the direction of
the incident beam, the encounter depletes the photon
beam, and an absorption line develops. (This simplified
picture applies only when the absorbing medium is cool
and optically thin.)

When the energy of 4* exceeds the first ionization
limit, decay by electron emission (aufoionizations) may
also occur:

Aty
A* .
At+e

In turn, decay by photon or electron emission may
occur through several modes or decay channels®® cor-
responding to the various possible states of the pro-
jectile and residual atom or ion.

Autoionizing states (also called compound states,
resonance states, metastable states, collision com-
plexes) can be formed either by electron bombardment
of A* or by photoexcitation of 4:

At+e At+te
N
A*

Aty Aty

Not all projectile encounters lead to formation of such
compound states: direct processes, such as photoioniza-
tion and Thomson scattering of photons, and Coulomb
scattering or potential scattering of electrons, may
compete with compound-state formation. These ex-
cited states influence such processes as®® elastic and
inelastic scattering of electrons, electron capture (di-
electronic recombination'), and photon attenuation.
Each type of observation discloses slightly different
aspects of the compound state. In Eq. (1.1), the pa-
rameters C(E), B, and 4 for a particular resonance

8 A. G. Shenstone, Phys. Rev. 38, 873 (1931); E. Majorana,
Nuovo Cimento 8, 107 (1931); A. G. Shenstone, Rept. Progr.
Phys. 5, 210 (1939); W. R. S. Garton, Proc. Phys. Soc. (London)
A65, 268 (1952). At higher energies, as initiated by x-ray pho-
tons, this decay process is known as an Auger transition: P.
Auger, J. Phys. Radium 6, 205 (1925); cf. E. H. S. Burhop,
The Auger Effect and other Radiationless Transitions (Cambridge
University Press, Cambridge, England, 1952).

9 (a) G. Breit, Phys. Rev. 58, 1068 (1940); cf. Ref. 9(b),
Chap. VIIL (b) J. Blatt and V. Weisskopf, Theoretical Nuclear
Physics (John Wiley & Sons, Inc., New York, 1952).

0P, G. Burke, Advan. Phys. 14, 521 (1965).

1H. S. W. Massey and D. R. Bates, Rept. Progr. Phys. 9,
67 (1942).
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vary with the type of projectile, scattering angle,
and type of reaction product observed. The resonance
energy [Ep and resonance width I' depend primarily
on the properties of the compound state, not on the
mode of formation or decay. Although I have ex-
plicitly described the interaction of a photon projectile
with an atomic target, the conclusions apply to other
projectiles colliding with either atoms or nuclei. To
illustrate how 4, B, and C(E) may vary while Ey and
I" remain fixed,”® Fig. 1 shows cross sections for several
processes that can form compound states of the nu-
cleus Si®. One must similarly anticipate that observa-
tions of electron-scattering cross sections will not com-
pletely determine photon-attenuation cross sections.

B. Theories of Resonance Phenomena

The conventional quantum theory of atomic ab-
sorption-line profiles’® presumes that the decay of a
compound state is not coherent with the formation
process. One may then consider the decay of a system
from a prepared initial state, the compound state. This
leads to a Lorentz profile, Eq. (1.2), with a width
equal to 7 times the decay rate of the compound state.

Such an approach is reasonable for ordinary radi-
ative decay, which proceeds quite slowly on an atomic
time scale (e.g., an electron circles the first Bohr orbit
of hydrogen in 1.5X107% sec; the mean life of the 2p
level of hydrogen is 1.6 X107 sec). However, autoioni-
zation proceeds on a much faster time scale (typically
10~ sec) than radiative decay, and it is no longer
evident that formation and decay may be treated

b W\N\l\ Al”(p,p)Al“

AL®" (p,x) Mg?*

Mg2* («,p) ALZ?

]
1
T
1
1
1
1
1
1
I
1
I
1
1
]
1
1
1

Mgz‘f(u’“) M924

2.9 3.0 a1 3.2 3.3

Projectile Energy (Mev)

Fic. 1. Relative cross sections for reactions leading to compound
states of Si?®, Projectile energy in center-of-mass system, cross
sections in arbitrary units. [Data of S. G. Kaufman, E. Gold-
berg, L. J. Koester, and F. P. Mooring, Phys. Rev. 88, 673
(1952) 1.

2 S. G. Kaufman, E. Goldberg, L. J. Koester, and F. P, Moor-
ing, Phys. Rev. 88, 673 (1952).

18 (a) P. A. M. Dirac, Z. Physik 44, 594 (1927); V. Weisskopf
and E. P. Wigner, :bid. 63, 54 (1930); cf. also Ref. 13(b) and Ref.
14, Chap. V. (b) Cf. W. Heitler, Quantum Theory of Radiation
(Oxford University Press, London, 1954), 3rd ed.
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separately. Although it is possible to predict the posi-
tion and width of resonance lines by considering the
decay of prepared states, a full description of asym-
metric profiles requires examination of the preparation
process.

The quantum theory of scattering®® provides a more
satisfactory foundation for a description of absorption-
line profiles. Such an approach ignores unobserved
processes, such as the preparation of an unstable state
at some precise time, and deals directly with scattering
amplitudes and cross sections. Energy, rather than
time, is sharply defined.

Several authors have developed general formalisms
for describing reactions and resonance processes within
the framework of quantum scattering theory.16—2¢
Although they initially directed their attention to
nuclear reactions, many of their results apply equally
to atomic collision processes. Subsequently other
workers have applied and extended these techniques
to the study of electron scattering by atoms?3 and
to the prediction of resonance energies.®:® For sum-
maries of electron-resonance observations, there are

recent comprehensive reviews by Burke® and by
Smith.3

Despite this active study of electron scattering, the
peculiarities of photon-induced processes—autoioni-
zation in particular—have not been explicitly examined
from the viewpoint of reaction theory. Current in-
vestigations of autoionization all follow the approach

“M. L. Goldberger and K. M. Watson, Collision Theory
(John Wiley & Sons, Inc., New York, 1964).

% (a) As presented, for example, by Refs. 9(b), 11-13(a),
and 15(b). This topic is also called collision theory or formal
scattering theory. A brief historical resumé of scattering theory
with reprints of several papers (in particular, Refs. 15(c) and
Ref. 18) may be found in Quantum Scattering Theory, M. Ross,
Ed. (Indiana University Press, Bloomington, Ind., 1963). (b)
G. Breit, Rev. Mod. Phys. 4, 504 (1932). (c) B. Lippmann and
J. Schwinger, Phys. Rev. 79, 469 (1950).

16 C. Bloch, Nucl. Phys. 4, 503 (1957).

17 H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).

18 W. Brenig and R. Haag, Fortschr. Physik 7, 1837(1959).
( 19616j Fonda and R. G. Newton, Ann. Phys. (N.Y.) 10, 490

1960).

® J. Humblet and L. Rosenfeld, Nucl. Phys. 26, 529 (1961);
L. Rosenfeld, ibid. 26, 579 (1961); J. Humblet, ibid. 31, 544
(1962); 50, 1 (1964); 57, 386 (1964).

2 L. S. Rodberg, Phys. Rev. 124, 210 (1961).

( 29261\1/1) H. Ross and G. L. Shaw, Ann. Phys. (N.Y.) 13, 147
1 .

% H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).

# F. A. Zhivopistsev, Yadernaya Fiz. 1, 600 (1965) [English
transl.: Soviet J. Nucl. Phys. 1, 429 (1965)].

%Y, Habn, T. O’Malley, and L. Spruch, Phys. Rev. 134,
B911 (1963).

2 A. Herzenberg, K. L. Kwok, and F. Mandl, Proc. Phys.
Soc. (London) 84, 477 (1964).

( d TS F. O’Malley and S. Geltman, Phys. Rev. 137, A1344

1965).

% P. G. Burke and D. D. McVicar, Proc. Phys. Soc. (London)
86, 989 (1965).

#Y. Hahn, Phys. Rev. 139, B212 (1965); 142, 603 (1966).

®F. 8. Levin, Phys. Rev. 140, B1099 (1965); 141, 859 (1966);
142, 33 (1966).

3 L. Lipsky and A. Russek, Phys. Rev. 142, 59 (1966).

32 W. Miller, Phys. Rev. 152, 70 (1966).

33 K. Smith, Rept. Progr. Phys. 29, 373 (1966).
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of Fano and his associates,® % who diagonalize the
Hamiltonian by mixing discrete and continuum states.
It is instructive to see how their results emerge from
collision theory.

Furthermore, the details of resonance aitenuation
(as distinguished from scattering or specific reaction
processes) have not been fully examined from the
viewpoint of the ‘“‘unified reaction theory.”” The
present article shows how this formalism, by providing
an explicit connection between profile parameters and
atomic matrix elements, aids the interpretation of
attenuation profiles.

Although nuclear and atomic collision processes
may be viewed as two aspects of a general physics of
collisions, they differ in one important respect. During
a nuclear collision, the target nucleus remains isolated
from any disturbance apart from the projectile. Atomic
collisions, on the other hand, occur while the target
atom is subjected to a variety of disturbances from
surrounding atoms. In practice, such disturbances can
significantly distort the “‘natural” attenuation profiles
of isolated atoms and any realistic theory of line
shapes must account for the influence of the surrounding
medium.? The present paper concentrates on colli-
sions with isolated target atoms. The results therefore
apply to attenuation by tenuous gases.

II. SUMMARY OF COLLISION THEORY

A. The Scattering Matrix

Scattering theory provides a useful means of visual-
izing the atomic processes that are responsible for
absorption lines. One imagines a wave packet of
known properties impinging on a stationary scattering
center.4152.15¢.40—%2 (One then examines the waves that
emerge, under the action of the time-dependent
Schriodinger equation:

h(d/0t) W (t) =HW(t). (2.1)
To describe the evolution of W*(¢), one may introduce

% . Fano, Phys. Rev. 124, 1866 (1961), an extension of O. K.
Rice, J. Chem. Phys. 1, 375 (1933) ; and U. Fano, Nuvo Cimento
12, 156 (1935).

% . Fano and F. Prats, J. Natl. Acad. Sci. India A33, 553
(1963).

<6 F.) Prats and U. Fano, in Atomic Collision Processes, M. R. C.
McDowell, Ed. (North-Holland Publ. Co., Amsterdam, 1964).

. 600.

P 7 U. Fano and J. W. Cooper, Phys. Rev. 137, A1364 (1965).

38 Reference 26 has considered the connection between the S
matrix, the K matrix, and diagonalization procedure.

3 For recent reviews of ‘pressure broadening,” consult H.
Griem, Plasma Spectroscopy (McGraw-Hill Book Co., Inc.,
New York, 1965); H. van Regemorter, Ann. Rev. Astron. As-
trophys. 3, 71 (1964); M. Baranger, in Atomic and Molecular
Processes, D. R. Bates, Ed. (Academic Press Inc., New York,
1962).

% A, Messiah, Quantum Mechanics (John Wiley & Sons, Inc.,
New York, 1962), Chap. XIX.

47T, Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice Hall, Inc., Englewood Cliffs, N.J., 1962).

2P, Roman, Advanced Quantum Theory (Addison-Wesley
Publ. Co., Inc., Reading, Mass., 1965).

some convenient set of basis states. These many-particle
states, degenerate eigenstates of an operator H°,

Se[¥a)Wel=1,  (als)=ba,
(2.2)

(HO_Ea) Ya =O;

are labeled by a set of quantities ¢ (both discrete and
continuous) that can completely describe the status of
the projectile and the target particles.®

The choice of basis states defines the perturbing
interaction V, the difference between the actual
Hamiltonian A and the operator H°:

H=H4V. (2.3)

(Conversely, a choice of V fixes the basis states.) As
defined here, V' is entirely responsible for transitions
from one basis state to another during the course of a
scattering event.

A typical scattering event begins in the remote past
(t——o0) with a wave-packet projectile moving toward
the target from a great distance. The interaction V
is assumed to vanish when the projectile is far from the
atom, so that this initial situation may be described
as a superposition of basis states representing a definite
target state and a wave-packet projectile:

W (f——o0) =8,4, exp (—iEt/h) Y

=exp (—iH%h) SedAabe.  (2.4)

As time progresses, the wave packet moves into the
scattering region and. the interaction V alters both the
wave packet and the target atom. The modified state
may be written as'® '

W (1) =S,y exp (—iLul/B)U(t, — ) (2.5)

where the time-development operator U(t, f) de-
termines the change in W' (#) caused by the interaction
V. It satisfies the integral equation,’>

t
Ul to) =1—i / @t exp GH% /K)V
to

X exp (—iHY /B)U (Y, ty). (2.6)
Ultimately, as t—, the wave packet passes out of
the scattering region. Again the solution W*(¢) becomes
expressible as a superposition of unperturbed eigen-
states of HO:

qf'(t__)oo) :bej/b exp (——’LEbt/ﬁ) SdSbaAa- (27)

4 The symbol S, denotes summation over discrete indices

(say m, n--+) and integration over continuous indices (say
x, y+-+) including energy, E,, if that is a continuous variable:

So=2 E---/dx/d)v---dea.

For convenience, I assume delta-function normalization for
continuum functions; another choice of normalization would
introduce a factor pq, the density of states, into the definition of S..



The element Sy, of the scattering, or S matrix* gives
the component ¥, of the final state ¥*(#—c0) that
emerges from the initial component y,:

Sba=(‘l’b' U(oo: —oo) l‘pa)-
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waves leads to the equation®:
v | V[ Wa*) -
‘I,a+= a S  —_—
Yat T,
(2.8) )
—1,7er 5(Ea—Eb)¢b<1ﬁb I V l ‘I’a'l"). (213)

Although the initial and final states ¥, and ¥, must
be states for which the system has a projectile at in-
finite separation (so-called open channels or continuum
states), during the collision process other states (re-
ferred to as closed channels or discrete bound states)
will become temporarily excited. These temporary
excitations are responsible for resonance processes.
The mathematical structure of U(ff) contains a
description of all such processes, although this is not
obvious from Eq. (2.6).

B. The Lippmann-Schwinger Equation

As energy measurements sharpen, one ultimately
replaces the wave-packet projectile with monochromatic
wave trains; at a large distance from the target these
trains consist of incoming plane waves and outgoing
spherical waves. These wave trains have the form, at
all times,

W (£) =S,4, exp (—iEut/f) ¥t
=exp (—iHt/h) S, 4.Y,, (2.9)
where ¥, t is.an eigenstate of the total Hamiltonian®:

(HV — E,) ¥+ =0. (2.10)

Equation (2.10)and the boundary condition, that
scattered waves should ultimately move spherically
outward from the target, are commonly combined into
the Lippmann-Schwinger equation?se:

Yt =y,+ Lim [(E.+in—HO) W, ] (2.11)
0t

This symbolic operator equation stands for an integral
equation, in which 7—0% after integration. From an
operational standpoint, such an integral means,* for
an arbitrary function F(E),

FE) _o
Eatin—FEy '

, F(Z)
E,—FE,

Lim S

70"

FirSy 6(Ee— Es)F(Es),

(2.12)

where Sy’ denotes a sum over states excluding these with
E,=E, (the Cauchy principal part of the integral over

dE). Thus the requirement for outgoing scattered -

# 7, A. Wheeler, Phys. Rev. 52, 1107 (1937); W. Heisenberg,
Z. Physik 120, 513 and 673 (1943).

4 The superscript * distinguishes the outgoing-wave solutions
v+ from incoming-wave ¥~ or standing-wave ¥!' solutions.

“P, A; M. Dirac, The Principles of Quantum Mechanics
(Oxford University Press, London, 1958), 4th ed.

These eigenstates of H preserve the orthonormality
of ¥, and ¥»*8:

Tt | Tpt) =54 (2.14)

However, unlike the eigenstates of H° these “per-
turbed” scattering states do not form a complete set,
since they do not include closed channels (i.e., bound
states).'® The wave function for a bound state is con-
centrated near the target and so cannot be observed
at large projectile separation.

Equation (2.13) provides an integral equation for
the scattering state ¥,+. It is more convenient to trans-
form that equation, using the definitions®®

G(E)=(Et*—H°-V)™,
C(B) = (B —H),
Et=E-+iy, (2.15)
and the identity
G(E) = (E*—Ho) '+ (Et—HY)\V(Et—H'—V)!
=G"+G"G, (2.16)
into the operator equation
Vot =yu+G(Es) Vi (2.17)

This formula places the disturbing influence of the
interaction V into the operator G(E) rather than into
the wavefunction ¥,*.

As a third alternative, one can introduce the reaction
operator T(E),5

T(E)=V4+VG(E)V (2.18)
and then write Eq. (2.17) as
Yot =¢u+G*(E) T (E) Y- (2.19)
T(E) has the matrix elements
Tou= | T [Ya)={o | V| ¥*).  (2.20)

The scattering description is now contained in the struc-
ture of the reaction operator T(E), a non-Hermitian
many-particle “effective interaction.”

_“7 Alternative prescriptions for the singularity at E,=E,
give incoming scattered waves and standing scattered waves;
cf. Ref. 15(c). The standing-wave equation is

‘I’al=‘ﬁu+sa’¢b(‘l’b| 14 I‘I'a+>/(Ea—Eb).

®C. C. Grosjean, Formal Theory of Scattering Phenomena.
Institut Interuniversitair des Sciences Nucleaires Monographie
No. 7 (Brusselles, 1960), p.29.

® Although G°(E), G(E), and T(E) are functions of E=E,,
this dependence will not always be shown; I write simply G°,
G, and T. The limit »—0% should be understood.

% A few authors denote this operator by the letter R; others
define T without the factor of 2x4 in Eq. (2.23). 1
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The connection between the S-matrix, and the
quantities ¥,* or G(E) or T(E), becomes apparent

when Eq. (2.9) is rewritten in terms of basis states:

W (t) =S,4, exp (—iEat/h) S (s | Tat).  (2.21)
In the limit —co this becomes'®
W(t—w) =S4, exp (—iE,t/h)
X {Ya—2miSy 8 (Ey—Ea)¥sToa}.  (2.22)

The scattering matrix of Eq. (2.8) can thus be recog-
nized as'®

(S—1)3e=—27i §( Ea—Ey) Tto. (2.23)

The delta function §(%Z,—ZE,) ensures energy conserva-
tion in the collision; only matrix elements of S between
states of equal energy are required.®

C. Observable Quantities

The physical content of the S-matrix is best dis-
played by rewriting Eq. (2.9) as

W (t—ow) =exp (—iH%/%)S.Aa
X {‘l’a[l‘l‘ (S—l)m]+$b¢a¢bsba} .

One can then see that the incident component ¥, gives
rise to a transmitted wave,

(2.24)

HbatransE‘//a[l_i_(S—l)m:l (2.25)
and scattered waves
Yoot = Sy . Spa = Sbaéa% (S—1)sa. (2.26)

The transmitted wave y,%s is altered in phase and
diminished in amplitude compared with y,. Components
of the scattered wave y 5t differ from ¢, in propaga-
tion direction or in angular momentum or in other
quantum-number labels. The requirement that S be a
unitary matrix,%
STS=SSt=1
or

S5(S1) abSe=3e, (2.27)

expresses the fact that, if probability is to be conserved,
scatterings into state ¥, must deplete the initial state

“With the aid of the formula®

8(Ea—Ey) =—% f dt exp [i(B—Eo)i/k] (2.28)
one can write the probability for a transition a—bs%a

1 The present -discussion deals with a stationary target; mo-
mentum is not conserved in such collisions. A refined treatment of
collisions between light particles gives®a factor § (P;—DPs) insuring
conservation of momentum; cf. Ref. 14.

during the collision interval (¢.——w to f—w) asle

| (S=1 12=2ﬁ—”a<Eb—Ea> Tl [ a

(2.29)
= Wab / dt.

This probability increases at the constant rate w,.s.
If F, denotes the flux of incident projectiles in state
Yo, then the cross section for the process a—bd#a,
defined as®

rate of a—b per target wa.p

b)) = 2.30
o(a=1b) flux of projectiles F, (2:30)

can be written,e.40—42,53
0(a—b) = (2w /fiFa)d(Ev—Es) | Toa |2 (2.31)

For example, if the labels ¢ and b include the direction
of projectile motion, ¢(e—b) gives the angular dis-
tribution of the scattering process.

Macroscopic descriptions™® of wave propagation
commonly employ an index of refraction (or a di-
electric constant) to express the influence of the propa-
gation medium on the incident wave. A plane wave
propagating along the z axis through vacuum has the
form

¥(2,1) =¢(0, 0) exp [i(ks—wt) J=¢/(0, ) exp (ikz).
(2.32)

When passing through a uniform medium, the propa-
gation vector % alters to nk, where 1 is the (complex)
index of refraction. A thin slab of matter, of thickness
dz, changes the incident plane wave ¢(z, ¢) to a trans-
mitted wave plus a scattered wave:
¥ (3, )—opreme(z, ) Fyonti(s, 1), (2.33)

where

yrrans(z, 1) =9 (0, 1) exp [ik(z—dz) +ink dz]. (2.34)
The intensity of this transmitted wave diminishes ex-
ponentially with a decay constant (or absorption co-
efficient) defined as No, where NV is the density of ab-
sorbers and ¢ is the attenuation cross section:

| gtmns(zt+ds, ) P=| ¥ (s, 1) |? exp (—2k dz Im §i)

=|y(z, 1) [Pexp (—Na dz). (2.35)

& Reference 9(b), p. 317.

% When Eq. (2.31) is integrated over final-state energy dEy, it
takes the familiar form o (a—b) = (27/k) (ps/Fa) | Tas |2, Where
pa is the density of states. (With the present wu. waalization,
Pa=1-

®#R. W. Ditchburn, Light (Interscience Publishers, Inc.,
New York, 1963), 2nd ed.

% M. Garbuny, Optical Physics (Academic Press Inc., New
York, 1965).
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Therefore (—1) may be written:
f—1=(n—1)~4i(No/2k). (2.36)

The real part, (n—1), is the refractivity; the complex
part, (No/2k), is proportional to the absorption co-
efficient. For a thin slab, the exponential may be ex-
panded as a power series in dz, giving

Yens (g, 1) =2y (3, 1) [1+1k(ﬁ—1) dz].  (2.37)

To connect this description with the S-matrix, one
may again use formula (2.28) and write Eq. (2.25) as

Yalrens =y, [1 _%i Toa f dt].

Here, as in Eq. (2.29), .t changes at a steady rate
over the infinite interval [ df. The infinitesimal change
of a flux F, (projectiles per cm? per sec) passing through
a medium of density N, (targets per cm®) may then
be written

[1—(/A) Toa(No/Fo) dz]=[14ik.(@,—1) dz].  (2.39)
Thus the index of refraction may be identified as%
No=1— (NoTas/Ak.Fs). (2.40)

The subscript o denotes the projectile state (e.g.,
energy and polarization) as well as the target state.
Equation (2.42) gives the refractivity

(2.38)

na—1=—(N,/fikFs) Re (Tss) (2.41)
and the attenuation cross section
o(a) =—(2/tF,) Im (Tu,). (2.42)

The conventional proof'® of Eq. (2.42), often referred
to as the optical theorem of Bohr, Peierls, and Placzek,5#
relies on the fact that attenuation is the sum of all the
processes that remove a projectile from state y,. The
attenuation cross section is therefore the sum of all
possible scattering and reaction cross sections,

o(a) =Sp0(a—D)
= (20 /HiFs) Sosa 8 (By—Ea) | Tra [ (2.43)

Equation (2.42) then obtains when one employs the
unitary relation, Eq. (2.27).

5 Previous authors have given this result in the form i—1=
27N sfa0(0) /k2, where f5,(0) is the forward scattering amplitude;
cf. E. Fermi, Nuclear Physics (University of Chicago Press,
Chicago, Ill., 1950), p. 201; J. M. Jauch and F. Robhrlich,
The Theory of Photons and Electrons (Addison-Wesley Publ.
Co., Inc.. Reading, Mass., 1955), Appendix A7; S. de Benedetti,
Nuclear Interactions (John Wiley & Sons, Inc., New York, 1963),
Sec. 3.19; Ref. 40, p. 867. The present approach also parallels
the presentation of R. P. Feynman, Lectures on Physics (Addison—-
Wesley Publ. Co., Inc., Reading, Mass., 1963), Vol. 1, Sec. 31.

5 (a) N. Bohr, R. Peierls, and G. Placzek, Nature 144, 200
(1939). The theorem was proven earlier for elastic scattering by
E. Feenberg, Phys. Rev. 40, 40 (1932). (b) M. Lax, Rev. Mod.
Phys. 23, 302 (1951); see also L. L. Foldy, Phys. Rev. 67, 107
(1945); and L. D. Landau and E. M. Lifshitz, Quantum Mechanics
Non-Relativistic Theory (Addison-Wesley Publ. Co., Inc,
Reading, Mass., 1965), 2nd ed., p. 546.
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Equations (2.40)-(2.42) apply as long as the atoms
of the medium act incoherently and alter the wave
only slightly, so that | #,—1 |1 and N.o(a)/2k<&1
Lax has pointed out® this limitation, and has shown
that Eq. (2.40) is an approximation to

(Na)2—1=2CN kT oo /FiF,, (2.40a)

where C is a coherence factor. For randomly distributed
scatterers, C=1. Thus Egs. (2.41) and (2.42) may
be viewed as approximations to the expressions

#ta—1=(CN,/hkF,) Re (Ta)
+3[(Nao(a) /2k)2— (na—1)2] (2.41a)

o(a) =—(2C/hF,) Im (T4)
X[+ m—1)T1 (2.42a)

From Eq. (2.40) it follows that, when T, has the
frequency dependence

Taa, _ B_iA 2 44
fikaFa w—woti(T/2)° (244)
the absorption coefficient is obtained from
~ (T/Z)B+(w—wo)A]
I =N, .
@)= [ e RN
and the refractivity is
o e (I‘/Z)A——(w—wo)B]
Re (n—1) =N, . (246
e v ST

These formulas provide a connection between attenu-
ation measurements and refractivity measurements,
particularly useful for autoionizing lines (for which 4
is generally not zero). They are, of course, simply
special cases of the Kramers-Kronig dispersion rela-
tions®® obtained from the real and imaginary parts
of the equation:
< —
ﬁ(w)—1=3@/ D@1, (2
™ ) wW—w
When |1 | is close to unity, the dielectric constant
¢, and polarizability o, may be obtained from®

€a—1=47N,a.=| 1, [P—1==22(0,—1).
That is,

(248)

€q— 1 = _2Na]‘aa/ﬁ'kapa)
(2.49)
Qg = — M/ZTﬁkaFa-

In practice, one usually observes a cross section or
refractivity averaged over some degenerate set of
initial states, say a, which may include projectile

% Such a connection was noted by Maxwell, Ref. 7, and von
Helmbholtz, Ref. 6.

® R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926); H. A.
Kramers, Estratto dagli Attr de Congresso Internazionale de Fisici
Como (Bologna, 1927); Ref. 54, p. 772. -

% Reference 45, Chap. XV,
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polarization and various angular-momentum quantum

numbers of the target. The relevant quantities are then
7(a) =180 (@) = — (2/hF,w) Suca Im (Taa)

(2.50)

(a) —1=— (kaFow) Suea(Na/N) Re (Twa)  (2.51)

where the statistical weight is the number of states
included in the set:

=S4l (2.52)
and N is the total number of targets
N=SsalN.. (2.53)

Hitherto, attenuation profiles have usually been
determined from Eq. (2.43). Often a particular process
dominates the scattering, and an accurate attenuation
cross section obtains from only one or two terms in
the summation. The present paper points out the use-
fulness of Eq. (2.42) as a starting point for calculations.

D. Resonances

In principle, the S-matrix (or ¥+ or G) contains
a complete description of all possible collision processes,
but practical difficulties often intervene when one
attempts to extract the information.

As Siegert® pointed out, the analytic properties of
the scattering matrix lead to cross-section profiles of
the form of Eq. (1.1). More recently, the Mitiag-Leffler
expansion® of a function in rational fractions,

F(z) =F(0)+ 2 b[(z—aw)Ha] (2.54)

has been used as the basis for an elaborate parameteriza-
tion of S(%£) by Humblet and Rosenfeld.?? While such
an approach has proven fruitful in formal investiga-
tions® it does not by itself provide a complete pre-
scription for computing the relevant parameters.

A second approach makes use of appropriate joining
conditions for wave functions at the boundary of the
interaction region.%~% Here too, the formalism has
provided a useful parameterization of nuclear reactions.

In atomic processes, where the nature of the inter-
action between particles is well known, it is more useful
to relate scattering amplitudes with matrix elements.
To describe resonance processes, it is only necessary
to partition the basis states into two classes. This
partitioning is most easily carried out with the aid

61 A, J. F. Siegert, Phys. Rev. 56, 750 (1939).

6 M. G. Mittag-Leffler, Acta Soc. Sci. Fennicae 11, 273 (1880);
cf. E. T. Whittaker and G. N. Watson, 4 Course of Modern
Analysis (Cambridge University Press, Cambridge, England,
1927), 4th ed. :

6 Lengthy discussions may be found in Refs. 14 and 42 and in
R. G. Newton, J. Math. Phys. 1, 319 (1960).

64 Reference 9(b), Chap. X.

( L A5 M. Lane and R. G. Thomas, Rev. Mod. Phys 30, 257

1958).

 G. Breit, in Handbuch der Physik, S. Fliigge, Ed. (Springer—
Verlag, Berlin, 1959), Vol. XLI/1, p. 1.

of projection operators®’ defined by

1=P+Q, P=P, (=Q,  PQ=QP=0.

(2.55)

Quite simply, Q¥ is the component of the state ¥ con-
tained in some selected subspace (to be referred to as
closed channels, resonance states, or bound states), and
P¥ is the remainder (to be called open channels or
continuum states). The essential point is that the
initial state is contained entirely in P¥; Q¥ contains
no component of this state. A precise specification
of Q¥ is discussed below. We now follow Messiah®® and
write the Hamiltonian as

H=(PHP4+QHQ)+ (PHQ+QHP)=H4+H* (2.56)
and use the identity
G=(Et—H'—H*)™!
=(Et—HY) '+ (Et—H")'H*(Et—H'— H?*)™!
=(Et—H") 4 (Et—H'—H?»)7'H*(Et—HY)".

(2.57)
It is easy to verify that® .
PGQ=Gp(PHQ) (QGQ), (2.58a)
0eP=(QGO) _(QHP) e, (2.58b)
PGP =Gp+Gr(PHQ) (QGQ) (QHP)Gp  (2.58¢)
where™
Gp=P(E*—PHP)™'P. (2.59)

Equations (2.58) express the operator G in terms of
the more restricted operators Gp and QGQ. In turn,
QPQ may be found by substituting the above expres-
sion for PGP into

Q(E—H)GQ=0 (2.60)
to obtain
LE—QHQ— (QHP)Gr(PHQ)JOGQ=Q.  (2.61)
It follows that
QGQ=QLE—QHQ—(QHP)Gr(PHQ) I'Q. (2.62)

If now we write H=H’4V, and require that basis
states be eigenstates of H°,

PHQ=QH'P =0, (2.63)
then we can write the T operator [Eq. (2.18) ] as
T=V+4V(PGP+PGQ+QGP+QGQ)V

=V+VGeV+(V+VGeV)Q
X[E—QHQ—QVGrVQTQ(V+VGeV). (2.64)

% (a) Projection operators have been used in similar context
by Refs. 40, 18, 19, 21, 23, 67(b), and numerous more recent
papers. (b) H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 (1958).

% Reference 40, p. 995.

% For example, L. Mower, Phys. Rev. 142, 799 (1966).

"G, and t depend on incident energy E and on the choice of
the partition of states into P and Q.
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This equation can be written more succinctly by intro-
ducing the operator™

t=t(P, E)=V4VGeV. (2.65)
The reaction operator is then written™:
T=t+tQ(E—H*—QtQ)'0t. (2.66)

This equation permits a useful physical interpretation
of the reaction operator T.2 The first term, t, gives
scattering in the absence of a selected collection of
states Q. Physically, this corresponds to direct re-
actions and potential scattering; t is a many-particle
generalization of the optical potential.¥® The second
term describes the influence of the states @, and it
gives rise to resonances.

To see this resonance structure most clearly, suppose
Q projects only a single bound eigenstate of HY, ¥y,
which is orthogonal to all remainlng states®:

Q=l ‘I’n)(‘#n I; (2673)
(H—e,)¥n=0. (2.67b)
Then the elements of T are
Toa= s | t(n, E) | Ya)
+<¢b | t(n, E) I 'ﬁn><\1’n | t(n, E) l Ya) . (2.68)

E—ept+n | t(n, E) | ¢n)
Since matrix elements of t are complex quantities, this
expression can be written:
B(n, E)—iA(n, E)
E—E,(E)+iTw(E)/2"
(2.69)

If the quantities 4 (», E), B(n, E), C(n, E), D(n, E),
and

Tyw=D(n, E)—iC(n, E)+

En(E) =ex+Re (n| t| ¥a), (2.70a)
IW(E)=—21Im <'I’n I t I ‘!’n); (2.70b)

vary only slowly with energy over an interval near
E=e,, then one can speak of a resonance at energy
E,(e,) with a width T',(e,).

More generally, if Q projects out several (or all)
closed channels, the T matrix has the form

Toa= (o | t| ¥u)
+> W | PO | ¥n)(¥n | QLE—HO—tT7Q | ¥m)

XWm| QP | ¥a). (2.71)

The scattering resonances contained in the second
terms of Eq. (2.66) are basically “many-channel”
resonances that exist because of the coupling between
the incident channel and other channels. Such reso-
nances include the familiar absorption lines of atoms.

n L. S. Rodberg, Ref. 21, hasgiven a similar equation but with
single-particle operators in place of the present many-particle
V and ¢,

However, another type of broad resonance-like varia-
tion in scattering amplitudes can originate in the po-
tential scattering term (¥s | t | ). Such single-channel
“resonances” or size resonances can occur at incident
energies which permit an integral number of nodes for
the projectile wave function within a complex po-
tential well. ,

Several methods might be used to evaluate Eq.
(2.71). For example, one could obtain the matrix of
(E—H®—t) in some simple basis and then invert this
matrix.® Here I shall evaluate Eq. (2.71) by obtaining”
(approximately) states that satisfy the equation

(By | Q(H'H+t)Q | Bx)=[Ex—1i(Tx/2) ] bxn==Ex dxn-

(2.72)
Then T3, becomes
Toa= s | PLP | Yu)
o | PtQ | @k )(Px | QP | ¢o
S e e
where Ex (E) and I'r(E) are given by
 Ex(E) =ex+Re (& | OtQ | &%),  (2.74a)
Tx(E)=—21Im (@& | QtQ | ).  (2.74b)

If Q includes all bound states, then each of these con-
tributes a resonance to T%. For simplicity, I shall
employ a subscript notation for matrix elements of t,

tha= <|[/b | PtP | Vo), (2.75a)
= (% [ PtQ I q’x), (275b)
kK= <‘I’K l QtQ l @K>. (275C)

Subscripts ¢ and b refer to open channels, subscript
K refers to a closed channel or resonance state. It also
proves useful to write %x and fx. as the sum of two
Hermitian parts™:

Lo = lo " ity D = Uy * ity 9F. (2.76)
With this notation, Eq. (2.73) reads:
ok il D) (tga™ i, D
Tyom ot 3 L VD) (O Fila®)
K E—6K—IKK
In particular, the diagonal elements are
Taaztaa
+Z l taK(T) lz—| taK\‘Ll) I2+iElaK(T)tKa(i)+laK(i)tKa\r):| )
K E—ex—ixx
(2.78)
Now we write this in the form
2T w0 Bx—iAg
=D—iC —_—, (2.79
7P, Y iy 2T

72 This approach was suggested in Ref. 23.
™ These two parts are determined in Sec. III. In principle,
one can let fx™ =% (fox+txe) and lr® = — (i/2) (b —txs) -
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by defining the following quantities (all dependent on
E=E,):

Ax=—(4/%F,) Re [f.xPtr.D], (2.80)
Bg = (2/0F,)[| tax® |2—| tax® 7], (2.81)
C=—(2/iF,) Im (tu), (2.82)
D= (2/#F,) Re (ta), (2.83)
Ex=ex+Re (ix), (2.84)
Tx=—2Im (ix). (2.85)
Then the attenuation cross section becomes
o BAHE S
while the refractivity is
a T'x/2)Ax— (E—Exk)B
o)1= | S )
(2.87a)

Near an isolated resonance one term dominates the
summations in Eq. (2.79) and we can write

(@) — g T/ DBt (B—F) A
N T B F) 4 (T/2)?

N, [(Tx/2) Ax+(E—Ex)Bg
"(“)-1=E{ (E—Fx)*+(T'/2)? 'DK}

where, with the assumption that all other resonance
widths T'y are much smaller than the separation be-
tween levels,

(2.86b)

An ByTw }
=C } 2.88
Ge=C+ T {EK_ENTZ(EK_EN)Q, (2.89)
BN ANFN }
Dg=D — . 2.89)
« +N§{ {EK“EN 2(Ex—En)? (

The incident energy E=FE, must be apportioned be-
tween projectile and target. Initially, the target is in
a discrete state (typically the ground state) with
energy Ej, so that E may be written

E= EI+eproieetile~ (2 90&)

The projectile energy eyrojectile takes a continuum of posi-
tive values. For reactions induced by a single incident
photon, this expression reads

E=FErt+fw.
Thus one obtains, for photons,
(FK/2) BK+ (w-—wKz) ﬁAK
ﬁz (w—-wKI) 2+ (PK/Z) 2

(2.90b)

(e, ) =Cx(w) +

(2.91)

_E.]_V.‘_‘ (I‘K/Z)AK——(w—wKI)ﬁBK_ 5
”(a, w)"l-— % { ﬁ”(w—wKz)z—l—(I‘x/Z)"’ DK( )}’
(2.92)

where Ex— Er=fwgr. The label a is retained as a re-
minder that these quantities depend on properties
other than photon frequency: they depend on initial
target-state and on photon polarization.

The matrix element of (E—H°—QtQ)~! takes the
simple form

(®x | (E—H'—QtQ) | &)= (E—ex—lxx)™

only if &, satisfies Eq. (2.72). As discussed in the follow-
ing section, this condition generally requires one to
diagonalize the matrix of V' between degenerate (or
nearly degenerate) states. If this diagonalization is
not carried out, the denominator of Eq. (2.73) no
longer retains this simple form; the matrix elements
become™

(2.93)

(% | (E—H'—QtQ)™ | @1)

__ [cofactor(E—H'—QtQ) Jxz,
* determinant(E— H'—QtQ)

(2.94)

For example, if two levels ®x and &y, lie close together,
Eq. (2.94) gives the elements

(¥ | (E—H-QtQ) | k)
=[E—ex—tgg—n1(E) txr I

(% | (E—H"—QtQ) | &)
=n(E) /[E—ex—txx—n(E)txz] (2.95b)

(2.952)

where
7(E) =tix/(E—er—tL1).

Near the resonance frequency E=eg, the correction to
ixx becomes approximately

(2.96)

1(E) txr=txrtrx/ (ex—er). (2.97)
Thus the correction #(E) cannot be neglected if the
coupling #x is large or if the resonances are closely
spaced. Mower™ discusses this point in detail.

The present approach predicts a resonance width
which is a property of the resonance state alone rather
than a width which depends on the initial state as
well. (In the Weisskopf~Wigner theory!® the observed
width is the sum of widths for initial and final states.)
This is because it is assumed that the initial state per-
sisted indefinitely in the past, i.e., has a negligible width.
A more refined approach would include the decay of
the initial state,

The task of reaction theory is twofold: first, to pro-
vide a realistic parameterization of cross sections; and
second, to offer means of predicting and interpreting
the parameters. The preceding equations are an at-
tempt to fulfill the first task and to connect observed
profiles with atomic matrix elements.

™ For example, F. B. Hildebrand, Methods of Applied Mathe-
matiﬁc: (Prentice Hall, Englewood Cliffs, N.J., 1965), 2nd ed.,
p. 16.
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III. PERTURBATION THEORY APPLIED TO
COLLISIONS

A. Formulation

While Eq. (2.78), like the Lippmann-Schwinger
equation, is an “exact” equation, actual calculations
require the introduction of approximations; the many-
body scattering problem is no more soluble then the
many-body Schrédinger equation. Perturbation theory
(suitably formulated) has proven quite accurate in
conventional calculations of atomic properties, includ-
ing radiative effects, and one expects that this accuracy
will carry over to scattering problems.

For simplicity, I shall neglect degeneracy for the
moment, and will omit the identifying subscripts on
states. In Sec. ITIC I shall reinstate the subscripts and
consider the question of degeneracy.

We seek a solution to the Schrédinger-like equation

Q(H+V+VGeV ~£) Q=0 3.0)
(where € is a complex number) in a basis of eigenstates

of HO:

(H—e)p=0. 3.2)

As a first step, the operator t=V-+VGpV must be ex-
pressed in a calculable form. This can be done by use
of the expansion

-

~ (Et—HY)

_ P

T (EF-H)
P P

tEe—m ' T—m

GeV

14

V4---. (3.3)

The application of conventional Rayleigh-Schré-
dinger perturbation theory”™ to Eq. (3.1) by use of
the expansion

B =0 4O @4 ... (3.4a)
E=eteW4e@+e® ..o, (3.4b)
and the condition (for states of the same energy)
<<P(0) l ¢(n)> —_—-60",
leads to the sequence of equations:
0= ('~ )™+ (V —e®) gD

(3.5)

+<V T V—e<2)><p("_2)

P P

+(V Et—H° 4 Et—H°

V— e<3>)¢<"—3)—|— e,

(3.6)

% For example, Ref. 40, Chap. XVI.
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It then follows that, to second order, ® is given by:

% % Q°
D=0 o4 = —el (0)
® +e-—H° Ve = (V—e) puyiL
% P (0)
+e—H° VE+—-H° Vo®, (3.7)

where ¢© is an eigenstate of the unperturbed Hamil-
tonian,

(H°—e) p©® =0, (3.8)
and Q° removes the ¢©® component of ®:
Q=1—] p®){e® |. (3.9
To second order, & is
8= (o0 | HHV | ¢@)+(p0 | VP (e—H)7QV
+VP(Et—HY)'PV | o®). (3.10)

From the discussion in part I, it is clear that interest
in the T matrix extends beyond the calculation of
positions and widths of resonances. Details of resonance
profiles depend on the elements of t between a reso-
nance state ® and a continuum state y. Equations
(3.3) and (3.7) give these, to second order, as

Wltley=w|V]e©)
+( | VO (e—E)QV | )
+ @ | VP(EF—E)7PV [¢©). (3.11)

Third-order corrections to & and (¥ | t| ®) come from
matrix elements of the operator

V[ @ y_ayp—L (3.12)
-

2
H° Et—H° V] )

B. Basis States

It is now useful to introduce a set of basis states—
eigenstates of H'—and to show how the partition into
P and Q may be made.

1 shall assume that H? is the sum of Hermitian single-
particle operators™ h(z),

H°=3_h(i) (3.13)

whose degenerate eigenstates satisfy the equation
[h (%) —eaJua(2) =0. (3.14)

The product of such single-particle states, the product-
stale

ur(Dug(2) «» cuz(N), (3.15)
is an eigenstate of H® with eigenvalue
Co=¢€xtegt 0 ter (3.16)

" Single-mode photon operators may also be included, as is
discussed in the following.



450 REviEW OF MODERN Puysics + ApriL 1967

Basis states can be constructed from linear combina-
tions of degenerate product states; an N-particle basis
state has the form

lay=2" (a]aB &) ua(1)ug(2) - -ux(IV).

I shall assume this construction has incorporated the
requirements, that |e) be symmetric in boson co-
ordinates and antisymmetric in fermion coordinates.”
The construction may also include the coupling of
single-particle angular momentum, but it does not
include configuration mixing. The label @ specifies
single-particle quantum numbers and collective quan-
tum numbers.

Single-particle states fall into two classes, distin-
guished by their single-particle energies.”® When e,
is negative, it takes only discrete values; the wave
function u,(r) then falls off exponentially at large
distances, and one has a bound single-particle state.
When ¢, is positive, it can take any value; the wave-
function #.(r) then describes a wave train at infinity,
and one has a continuum single-particle state.

Given a collection of product states, one can recog-
nize those products that are composed entirely of
bound single-particle states (to be denoted by labels
k, m, or ). I shall call this subset the closed-channel
states, and write

(3.17)

0=2_|n)nl. (3.18)

The remaining collection of states (to be denoted by
labels @, b, ¢, or d) comprises the open-channel states,

P=S.|c)c]|. (3.19)
Each open-channel state | ¢) has at least one single-
particle continuum state; each closed-channel state
| ») is built from bound single-particle states.

As discussed in Part IV the inclusion of photon pro-
jectiles introduces no fundamental difficulty. Let the
index v stand for frequency, polarization, and propaga-
tion vector. Then each free-field photon satisfies an
equation of the form

[hpnoton (7) —€y Ju, =0,

where ¢, =7w,. The Hamiltonian H° can then be written

(3.20)

H'= tharticle(i) +3S,Bpn0ton (7) = Haton?+ Hradiation
3.21)

and the preceding arguments apply. The basis states

7 For example |a) might be a determinantal function for
fermions.

% The remainder of this paragraph applies only to states for
particles with nonzero mass, not to photons. However, photons
may still be treated as projectiles, as the following discussion
shows.

must now be taken from a photon Fock space.”-80
That is, one requires product states with no photons,
one photon, two photons, *+-, etc. The label ¢ on a
basis state must now list the number of photons of each
type v that are present in the field, as well as specify
the state of the atom.

If we are concerned with processes that occur when
a single photon encounters a target, then we can define
closed channels as those product states that have no
photons; all product states that have one or more
photons are then open channels. The sum over con-
tinuum states becomes a sum over atomic states and
a sum over photon states,

Sc=st\mm S’y, (322)
while the sum over discrete states and resonance states
is simply a sum over atomic quantum numbers.

C. Resonance States

The zero-order approximation ¢©® to the resonance
state ® is, like the basis states, an eigenstate of H°.
However, it does not follow that ¢©® must be a par-
ticular basis state. The basis states in general are de-
generate. Therefore the zero-order states must be
chosen to diagonalize the matrix of ¥V between de-
generate states.®! A partial diagonalization is accom-
plished by constructing antisymmetrized angular-
momentum basis states [Eq. (3.17)], but further
configuration degeneracy may still remain.® In prin-
ciple, one can redefine the basis states to coincide
with these zero-order states. In practice, it is often
useful to retain the original basis states and introduce
mixing coefficients: '

oxO=]| K>=; | k) (% | K). (3.23)

The mixing coefficients (K |%) which connect the
zero-order resonance states | K) with the.original
basis states | k) are obtained by solving the equations

(K| V|K)=0 if K=K,

<K1VJK>=§<Klk><klVIk'><k'lK'>, (3.24)

between degenerate zero-order states. Matrix elements
to zero-order states will be denoted by capitals K, L,
M, N; elements to the undiagonalized basis states will
have lower case labels %, I, m, n.

V. Fock, Z. Physik 75, 622 (1932). Cf. S. S. Schweber,
An Introduction to Relativistic Quantum Field Theory (Harper
and Row, New York, 1961), Chap. 6.

80 K. A. Power, Iniroductory Quantum Electrodynamics (Long-
mans Green and Co., London, 1964).

81 This diagonalization excludes continuum states: they are not
components of the resonance state defined in the present paper.

8 For example, in the Z-expansion formalism of Layzer, Ref.
124, configurations having the same parity and principal quantum
number are treated as degenerate,
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The first-order correction to ¢x©@, as prescribed by Eq. (3.7), is

ex®=Y |n){n|V|K) Z Z|”><”l V‘k>(k|A) (3.25)

n €x—¢€xn €x—En

Thus the resonance state is, to first order,

<1>K—¢K<°>+¢K<D—Z (k| K) {l k>+2 Mﬂg—lf—)} (3.26)
" € 6€n
The resonance energy, to second order, is
! V]dy@|Vv]eE
() =at 3 (& |1 61 &) fae v sy B LTIE) g QLT IDELTIEN - 50,
kk! n €x—¢€n E—E,;
while the resonance width, to second order (using ¢®), is
Ix(E)=2xS.8(E — Eo) D (K |k) K | K){k|V |c)
7
€r— €y E—Ed

The appearance of E (the initial energy in the scattering problem) in these expressions for Ex(£) and I'x(E)
means that, as formulated here, the resonance parameters depend on incident energy. However, this dependence
may be neglected over a sufficiently small energy interval near E=e¢.

In turn, the perturbation equations give the direct-reaction background from the approximations

@|V]d)a|v]e)

Re [tw(E)]=2(a| V | )+S/ g, , (3.29)
Im [tw(E) 122 —7S, 8(E—E) (a | V | c){c | V | b), (3.30)
and the resonance-scattering properties from
o5 =X (k19 {01 v |0+ LT R, o GIVIDGIVIBL - (50
tax® (E) =1ga® (E)*= —7S, §(E—Fy) Ekl (K[ B){a|V]e)c|V|k) (3.322)

The preceding expressions simplify slightly if one takes matrix elements to the zero-order resonance-state | K)
rather than to the basis states | ). The equations then become:

_ JENV P o KV ]a) ]
Ex=e+(K |V | K>+; p— +S. —E (3.27b)
Tk =28, §(E—E.) (K | V| c){(c [ v | K)+2 Re Z ClVImel VK, )pes, V] dxd‘[ vl K>},
er—én E—FEq
(3.28b)
o= o | V| K43 LTI VIE) o, @[ VIDGIVIE (3:31b)
™ ex—eén E=E,;
lg@=—7S,8(E—E.){a |V |c)c|V|K). (3.32b)
To lowest order, the resonance parameters Ax and Bx of Egs. (2.80) and (2.81) are given By:
Ax=(4n/hF.) Re {{a | V | K)S. 8(E—E)(K |V |c){c |V |a)}, (3.33)

- Bx=(2/hFa){| {a| V| K) P—n* | Sc8(E—Ee){a| V[ c){c| V| K) |} (3.34)
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To lowest order, the background for an isolated level [Egs. (2.88) and (2.89) ] comes from®

Cg=(hF)™! {ZwSca(E—E,;) | (a| V]c) Iz_l_N;(

Dx=(2/hF,) {<a |V | a)+Sd

The preceding formulas, taken with Egs. (2.79)-
(2.80) of the previous section, provide a link between
observed resonance profiles and calculable matrix
elements. With the perturbation-theory approach, each
matrix element may be interpreted as the amplitude
for a particular type of process.®* Specifically:

(¢|V]a)

gives forward elastic scattering,

(a|V]e) describes potential scattering (or di-
rect reactions) from one open channel
directly to another open channel,

{(a| V| K)or describes capture from an open channel

(a| V| k) to a resonance state,
(K|V]c)or gives the decay of a resonance state
EklV]e) into an open channel.

By examining the matrix-element structure of the
quantities Ag, Bg, Ik, etc. [Eqs. (2.80)] one can
picture a sequence of elementary events that “cause”
Ag, Bk, Tk, etc.

For example, the first approximation to the resonance
width is?

Tx=27S.8(E—E.) | {c| V|K) .  (3.37)

This is the sum of terms 2m8(E—E,) | {c| V| K) |3
each of which gives the probability per unit time for
decay of the state ¢x©@ into a continuum state ¢,
conserving energy.%

The direct-reaction contribution to the attenuation
cross section is

C=(2n/liFa)S,8(E—E;) | (a|V]e) 2 (3.38)

This expression® is simply the first Born approxima-
tion for scattering from incident state ys to all possible
continuum states Y., conserving energy.%

8] assume that {a| V| 2) is real.

8 Following the pictorial approach of R. P. Feynman, Phys.
Rev. 76, 749, 769 (1949); and Theory of Fundamental Processes
(W. A. Benjamin, Inc., New York, 1961).

8% In the form 2mp(E.) | {c| V| K)|* with p the density of
states, this will be recognized as Fermi’s Famous Golden Rule for
transition probabilities (Fermi, Ref. 56, p. 142).

8 Note that this sum includes elastic scattering, in which the

rojectile changes only direction. In particular it includes the term
F(al V | a) |* which describes elastic scattering in the forward
direction.

8 As wi'ti parameter C, the summation includes elastic scat-
tering.

8 This argument was used by Blatt and Weisskopf, Ref. 9(b),

Iy|(@|V|N)P!
it (333
|l V]d)P || VIN)]
(E—EJ) + Ng{ (E—Ey) } ' (3.36)
Similarly, the first part of Bk,
(2/fFa) | | V| K) % (3.39)

gives the probability for a transition from the discrete
resonance state ¢x@ into the continuum i, (or the
probability of capture from ¢, to ¢x®). The parameter
Ak, as well as the negative part of Bg, depends on the
matrix element

8(E—E.){(a|V|c). (3.40)
This quantity vanishes unless appreciable scattering
occurs from the continuum ¢, into the continuum v,
at the same energy.¥

One can then see that a finite Ax or negative Bg in-
dicates appreciable continuum scattering. An illustra-
tive example occurs in the profiles of neutron-attenu-
ation cross sections. Only the s-wave part of an incident
neutron beam suffers appreciable elastic scattering:
the angular-momentum barrier diminishes contact
between the nucleus and higher partial waves. Hence
only s-wave resonance-profiles display the marked
asymmetry associated with a finite Ax parameter.®
Figure 2, taken from the work of Peterson, Barshall,
and Bockelman,® illustrates the striking - difference
between s-wave and higher partial-wave resonances in
the attenuation of neutrons.

IV. PHOTON COLLISIONS

A. The Hamiltonian

As a specific example of the preceding general results,
consider an atom interacting with a radiation field.®
The Hamiltonian for this system splits into four parts:

H=Hoatom+Horad+v+de~ (4.1)

p. 469 based on Eq. (2.43). The present paper simply points out
hew Eq. (2.42) offers the same conclusion.

8 R. E. Peterson, H. H. Barschall, and C. K. Bockelman, Phys.
Rev. 79, 593 (1950).

9% Many standard texts discuss this problem, e.g., H. A. Kra-
mers, Quantum Mechanics (North-Holland Publ. Co., Amster-
dam, 1957; reprinted by Dover Publications, New York, 1964);
or Ref. 40, Chap. XXI. More complete discussions will be found
in Refs. 13b, 92, and N. M. Kroll, in Quantum Optics and Elec-
tronics, C. de Witt and A. Blandin, Eds. (Gordon and Breach,
Science Publishers, New York, 1965) ; D. A. Tidman, Nucl. Phys.
2, 289 (1956); and C. A. Mead, Phys. Rev. 110, 359 (1958);
112, 1843 (1958); 120, 854 (1960); 128, 1783 (1962) have ex-
amined the quantum theories of the refractive index.
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H°,tom+Vv describes the isolated atom, H%,g describes
the free radiation field, and V;.a governs the inter-
action between radiation and the atom.

The “unperturbed” atomic Hamiltonian,

Hoatom= Z helectrou (7«) ) (42)

is implicitly defined when one chooses a set of single-
electron states or orbitals, u.(i). (Typically, these or-
bitals are hydrogenic or Hartree-Fock orbitals.) Then
v is the remainder of the isolated-atom Hamiltonian.
When magnetic interactions and other relativistic
effects can be neglected, this Hamiltonian is

12 Ze? 2
Bumtv=3 (E-Z) 5 52

T \2m 7 T i< Tij

(4.3)

In practice, v describes part or all of the inter-electron
Coulomb repulsion; with a more exact atomic Hamil-
tonian it will include spin-dependent terms.”

The radiation field is a collection of photons, each
distinguished by an index v denoting frequency, polari-
zation, and other properties. A photon is characterized
by an electric field &,(r) and a magnetic field 3¢, (1),
or a vector potential A, (r):

&,(r) = —i(wy/c) Ay(1),

The free radiation field has| &,(r) |2 equal to | 3¢,(r) |2,
and the Hamiltonian may be written®-%

3¢,(r)=curl A,(r). (44)

= (4m)1S, [ dr] 8,(x) P=S, Booon(y).  (45)

With neglect of magnetic interactions, the interaction
between photons and electrons may be described by

1 1 1 1 1 1 ! J
100 200 300 400 500 600 700 800

Neutron Fnergy (kev)

F1c. 2. Total neutron attenuation cross section for sulfur.
[From R. E. Peterson, H. H. Barschall, and C. K. Bockelman,
Phys. Rev. 79, 593 (1950).]

91 Reference 92, Sec. 38, or T. Itoh, Rev. Mod. Phys. 37,
159 (1965).

92 A. 1. Akhiezer and V. B. Berestetskii, Quantum Electrody-
namics (Interscience Publishers, Inc., New York, 1965).

453

the term®

Vesa=—2_ Syeri- &(ry). (4.6)

B. Photon Fock Space

The photon Fock space™ consists of basis states
which have no photons,

|n)=[n,0), [c)=]c,0); (4.72)
states with IV, photons of type v,
[, Ny), [ e, Ny)s (4.7b)

and states where various types of photons are present,
[#, NyoeeNyy ooe), |6 NysooNy, oo). (470)

Here, and in the following section, labels # and ¢ refer
to discrete and continuum afomic states. A state with
N, identical photons,

| Ny)y=(uy) "2/ (N,Y), (4.8)
satisfies the equation
[hphoton ('Y) —E‘Y] I N‘Y>=0 (4'9)

with e, =N fiw,.

In writing sums over possible states of the system,
one must include states of the radiation field. The pre-
vious continuum summation, Eq. (3.22), becomes a
summation over the atomic continuum and a summa-
tion over the photon states:

Sc_)sc+scsy+z S‘Y+$¢s'ys-y'+z S’Ys“t'+ ces,
(4.10)

We are concerned with collision processes that occur
to a target atom in the initial discrete state ¢;®. For
a photon projectile, the incident state ¥, of preceding
sections becomes

‘pa:l I, 11)-

One can then define the closed channels as those dis-
crete atomic states with no photons,

¥a=|n, 0,)=|n).

More generally, one may wish to consider processes
initiated by IV, identical photons®:

‘l’a=' 1, N‘y)-

It is then more appropriate to require that all closed-

(4.112)

(4.122)

(4.11b)

9 T+is choice for V;aq rather than the more Tommon expression
ep-A/mc+e2A2/2me? is discussed by Power, Ref. 80; cf. M.
Goeppert-Mayer, Ann. Physik 9, 273 (192(); J. Fuitak, Can. J.
Phys. 41, 12 (1962); N. Bloembergen in Quantum Optics and
Electronics, C. de Witt and A. Blandin ,XXds. (Gordon and Breach,
Science Publishers, 1965).

% The flux F, is now Ny times the fluxin | 7, 1,).
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channel states include a photon factor | (N —1),):
Yu=|n, (N—1),). (4.12b)

The operator H’.q is diagonal in Fock space, and
has the nonzero matrix elements®

(a, Ny | H'a | @, Ny)=Nficoy. (4.13)

(The continuum label ¢ may be replaced by a discrete
state label #.) The operator &,(r) has nonzero matrix
elements only between states that differ by the presence
of one photon®:

(b; N’YI 87(1') l a, (1v+1)“r>

= —4(N,+1) 12 2zfic%w,) 12(b | Uy(r) | @), (4.14a)
(&, (N+1), | &(1) | a, Ny)
=1(Ny+1) 12 27ficw,) V2(b | U *(r) | @), (4.14b)

(the labels @ and & may be replaced by # and m).
Here U,(r) is a solution to the vector Helmholtz
equation,

curl curl U, (r) + (w,/c)?U,(r) =0, (4.15)
normalized to satisfy the condition
f dr U, (1) U, (1) =5, (4.16)

Usually the U,(r) fields are chosen as transverse
plane waves. The label v then specifies the propagation
vector k (with |k |=w/c) and polarization £ (with
k-e=0):

Ua(r) =¢[exp (ik-1)/(2m)%2].

With this choice of normalization, the incident flux F,
(assuming one incident photon) and the summation
over photon indices become

Fa=c, Sa=3 f 1 dk f o,  (4.18)

(4.17)

where ¢ is the speed of light.

However, atomic transitions occur between states
of well-defined parity and total angular momentum.
It therefore proves useful to take the U,(r) fields as
transverse multipole fields®1% characterized by fre-
quency w, parity (& for electric multipoles, 9% for
magnetic multipoles), multipole order /, and angular-

% Conventional treatments of radiation, such as Ref. 13(b),
40, 80, and 92, derive this result with the aid of photon creation
and annihilation operators.

% G, Mie, Ann. Physik 25, 377 (1908); H. C. Corben and J.
Schwinger, Phys. Rev. 58, 953 (1940).

9 T, L. Hill, Am. J. Phys. 22, 211 (1954).

% M. E. Rose, Multipole Fields (John Wiley & Sons, Inc., New
York, 1955); M. E. Rose, Elementary Theory of Angular Mo-
mentum (John Wiley & Sons, Inc., New York, 1957), Chap. VIL

9 A. Edmonds, Angular M ¢ in Quant Mechanics
(Princeton University Press, Princeton, N.J., 1957).

100 Reference 9(b), Appendix B.

momentum component u:

U (r, Q) =[2/m(14-1) J*(w/c)ji(wr/c) LY 1,(Q) &,
(4.19a)

Uosnn (7, @) = (¢/w) curl Uapna(r, ), (4.19b)

where L is the orbital angular-momentum operator.
For such fields one has!®% (assuming a single incident
photon)

Fogy=Foguu=[w?/cr*(214-1) ],

do
-2 [ (4:20)
&M ! m 4
and also”
r'Uwimlu(r) =0, (4.21a)
1t Uagn (1) =01 [20(04-1) /7 ]2 jiwr/c) V1, (2) .
‘ (4.21b)

Near the atom, where kr<1, the electric-dipole or
&1 field predominates, and matrix elements of the
operator
(4.22)

are responsible for the major transitions. Here
{e.}=e41, €, e_1 are unit circular-polarization vec-
tors.®% To simplify the following discussion, I con-
sider only &1 photons!®?; the summation over photon
states then reduces to a summation over three polari-
zations and integration over frequency:

S.,—)?/%g.

This approximation is equivalent to setting exp (ikr) 1
with plane-wave photons.

It proves useful to introduce the atomic dipole-
moment operator

U,e1u (1) =2 — (lw/mcV3) €,

(4.23)

D=>.1r, D,=2 r;e, (4.24)
and to employ units such that
e=h=m=1, c=1/a==2137, (4.25)

where « is Sommerfeld’s fine-structure constant.!0
Only the matrix elements linking one-photon states
with two-photon and no-photon states will be required

1 K. Gottfried, Quantum Theory (W. A. Benjamin, Inc.,
New York, 1966).
102 To include higher multipoles consistently, one must include

a term
— 2y 5(2)

in the Hamiltonian where u; is the -magnetic moment of the 7th
electron.

103 T engths are measuréd in units of @o=>5.29167X10"° cm;
energies in units of 27.21070 eV, twice the ionization energy of
hydrogen; time is measured in units of a¢/ac=2.419X1071 sec.
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here; these are: bound functions satisfy the condition
<d, 1’)’ 1 Vrad l b! O‘Y>= _a(zwys/s‘lr)!/z(a I Dl‘* I b>’ /72 dr -Rnl(r) Rn’l' (7’) =6nn’) (4293‘)
(4.26a)
although orthogonality is not essential. When ¢ is posi-
(b, 0y | Vraa | @, 1,)=a(2w,%/37)2(b | D, | a), tive, it can take a continuum of values. I assume the
continuum functions satisfy the energy-normalization
(4.26b) ey
condition
(6, 24| Vraa| @, 1,)=V2(b, 0y | Vraa| @, 1,).  (4.26¢)

C. Atomic Basis States

The energies of resonance states are determined
largely by the atomic Hamiltonian H%om+V:

Ex(w) = (K | Hoom | K)+(K | v| K)

L LK I K VIR

Ea,_Ed
Radiative corrections, such as the Lamb shift, are small
and are neglected here.'® This expression applies
both to autoionizing and nonautoionizing states.

The quantity Ex(w) depends slightly on excitation
conditions (the incident-photon energy w) through the
occurrence of E,=FEr+w In the last summation. For
photons near the resonance energy w=Zwg;s, one may
substitute ex or Ex for E, in this sum, and so recover
the usual second-order perturbation expression.

In principle, the task of constructing autoionizing
states does not differ significantly from the familiar
task of constructing ordinary excited states. In an
isolated atom, the major portion of v comes from the
inter-electron Coulomb repulsion, possibly modified
by an effective central-field potential. Additional
smaller magnetic interactions, such as the spin-orbit
interaction, may also need to be considered.

These remarks suggest!® that one should choose the
atomic basis states to be eigenstates of S% the total
spin; L? the total orbital angular momentum; J?, the
total angular momentum; and J,=J,, one component
of J.

Many treatises discuss the construction of bound
many-particle angular-momentum states (coupled states)
from products of single-particle states (or orbitals).1®
T assume the orbitals have the conventional form

Uepim (1) iRel("i) Xu(89) Yim (Q2), (4.28)

where ¥;,,(Q) is a spherical harmonic, x,(s) is a spin-%
function, and R.(r) is a radial function. When ¢ is
negative (so that ueum(7) describes a bound orbital),
it takes only selected discrete values; R () may then
be written R,;(r), where » is an integer. I assume the

(4.27)

€K —E€yn

10¢ Reference 80, Chap. 9.

1 E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, Cambridge, England,
1935), Chaps. VII-VIII.

106 A, de Shalit and I. Talmi, Nuclear Shell Theory (Inter-
science Publishers, Inc., New York 1963).

/ 7% dr Ra(r) Roa(r) =5(e—€’)  (4.20b)

and that they are orthogonal to the bound functions,

f 72 dr Ra(r) Ru(r) =0. (4.30)

The expansion coefficients of Eq. (3.17), which con-
nect a coupled state with uncoupled product functions,
are products of vector-coupling (Clebsch—Gordan)
coefficients®:17; the single label K, hitherto used to

identify the set of quantum number labels, must now
be replaced by labels KSLJM:

(K| ar++B)—(KSLIM | nlmu-+-n'l'm'y). (4.31)

To first order, these states have energies given by
diagonal matrix elements of Ho%¢om+V:

Exsrou={KSLIM | H%on | KSLIM)
+(KSLIM | v| KSLIM). (4.32)

If H%:om is independent of spin and if the magnetic-
interaction contributions to v can be ignored, this
energy is the so-called “term-energy,”'% independent
of 7 as well as M:

_(KL|| H%0m || KL)

E (KSL||v]|| KSL)
KSL= (2L 1)1

(2S+1)2(2LF-1)172”
(4.33)

Here I have employed the reduced matrix!®® of a scalar
operator,!®

dllells)
(274-1)12
Howevef, when one considers excited states of heavy

atoms, the fine-structure splitting of different J levels
can no longer be ignored. One then employs the formula

Exsir=Exsi+{(KSLJ || V' || KSLT)/ (2T +1)12 ,
4

M| o|JM)= (4.34)

077 0mm".

35)

to account for effects of the spin—orbit interaction ©'.

Once one has constructed such coupled states of an
N-electron atom, one can readily construct (NV-4-1)-
electron states by coupling an additional orbital onto
a ‘“core” of N electrons. When electrostatic inter-

107 B, W. Shore, Phys. Rev. 139, A1042 (1965).
108 G, Racah, Phys. Rev. 63, 367 (1943).
109 Reference 95, p. 118.
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actions dominate, one follows the Russell-Saunders
prescription® to construct states of the form

| (SoLo)nlSLIM ), (4.36a)

where SoL, refers to the core, and #/ refers to the added
orbital.l® However, when the fine-structure splitting
of the core becomes appreciable and the added orbital
is highly excited, it is more appropriate to use the so-
called J-K coupling scheme™12 (also called JI cou-
pling™®) :

| (SoLoJo)nl[K1TM). (4.36b)

In vector language, the orbital angular-momentum /
has been coupled onto Jy to form K, then the spin %
has been coupled onto K to form J. Such a coupling
scheme becomes particularly appropriate as one ex-
amines higher terms in a Rydberg series progressing
toward a series limit in a heavy atom; for example,
the two series
(Py2)nl,  (*Pap)nl.

The construction of continuum angular-momentum
states proceeds in the same way, since continuum or-
bitals differ from bound orbitals only through their
radial function. Conventional coupling procedures then
provide a Russell-Saunders continuum,

| (SoLo)elSLIM) (4.37a)
or a J-K continuum,
| (SoLoJo) e[ K1TM). (4.37b)

The choice of a coupling scheme is largely a matter
of convenience, since the two schemes are related by
a unitary transformation 112

D. Resonance Widths

Since the perturbation Hamiltonian V= Va4V
has been separated into two contributions, the reso-
nance width T'x=—27 Im [#xx ] also splits into two
parts: a radiative-decay width I'x®2®, and an electron-
decay or autoionizing width I'g®*). To lowest order,
the radiative width for 81 transitions is [from Egs.

(4.26) ]
T rad (w) =2 Z Sy B(EI-I-w—En "w'y)

X (2a%wye/3) ] <K l D, ' ”) lz
+21rScS, 8(Ertw—E.—w,)

X (20%wye/37) | (K| Dy|c) [, (4.38)

10 These states are presumed to be properly antisymmetrized,
hence my reference to an added orbital rather than an added
electron. .

(1”%;} D. Cowan and K. L. Andrew, J. Opt. Soc. Am. 55, 502

965).

12T, B. Levinson and A. A. Nikitin, Handbook for Theoretical
Computation of Line Intensities in Atomic Spectra (translation
published by Daniel Davey, New York, 1965).

13 G, Racah, Phys. Rev. 61, 537 (1942); J. Opt. Soc. Am. 50,
408 (1960).

while the autoionizing width is
Tl (w) =278, 8 (Er+w—E,) | (K |v|c)|t.  (4.39)

As usual, | #) and | ¢) denote discrete and continuum
atomic basis-states, respectively.

The radiative width expresses the possibility that
the resonance state ox @ will decay to some other atomic
state, either discrete or continuum, with the emission
of a photon. The radiative width is finite for all excited
bound states, since it is always possible to satisfy
energy conservation in photon decay to a lower-lying
bound state, if one-accounts for higher electric- and
magnetic-multipole radiation and for multi-photon
decay.

The autoionizing width expresses the possibility
for an energy-conserving decay to an ionized state
plus a free electron; this condition can be met only
when a level lies above the first ionization limit.

1. Radiative Widths™*

To write the radiative width in a more familiar form,
we can employ angular-momentum states. The sums
over photon polarization, p=—1, 0, 41, and mag-
netic quantum number M =—J, +-+, 4J, are then
readily carried out with the aid of the Wigner-Eckart
theorem :%6-%

Z ME I (KJgMxk I D, | nJ M) 12

_(KI | D | na) P_| K| D[ m)
2Jr+1 8K '

Here I have introduced the statistical weight gx=
2Jx+1. The square of the reduced matrix element
(K || D || n) is often denoted by S(X, #), the transi-
tion strength of Condon and Shortley®:

S(K,n)=|(K[[ D |[n) " (441)
Summation over the energy of the emitted photon then
yields the formula
T (w) =§0® 2. (wmtw)® | (K[| D |[n)[*/gx
<Ertw

+30® Sp <o (wretw)? | (K || D || ¢) |?/gr.  (442)

The sums over final states |#) or | c) are such that
wrn=FEr—E, and w;.=FEr—E, are positive. The sums
include all states that lie below Ex in energy, and those
with energy up to Er+to.

The preceding results presume that the incident
state has only a single incident photon. The resonance
state px©@ then has no photons. For intense beams of
radiation, one may consider an N,-photon incident
state | I, N,). The radiative width for the resonance
state | K, (W—1),) then becomes proportional to
N,, according to Egs. (4.14). This proportionality

(4.40)

14 The S inatrix theory of natural linewidths has been given by
F. Low, Phys. Rev. 88, 53 (1952).
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expresses the fact that, in an intense field, induced
transitions as well as spontaneous transitions will
deplete an excited state. The intense radiation shortens
the lifetime of the excited state, and thereby increases
the width.

Near the resonance frequency w=uwgr, the radiative
width takes the familiar form of the sum of the Einstein
transition probabilities from discrete state ¢x©@ to
all lower-lying states, both discrete and continuum:
that is, the natural width is the inverse of the lifetime
¢ of the excited state®®®:

T'(rad) (wKI) == (TK)—-I

T sy LEIDI
En<ER 4.4
+Sg <gt (awr.)® K|ID]lc) ]2 . (443)
8k

However, away from resonance, the frequency depend-
ence of I'x(w) becomes significant.®® For example,
when ¢x©@ is the lowest-lying excited state and ¢r©@
is the ground state, the radiation width becomes

T ®ed (w) =% (aw)*| (K[| D || I) [*/gx
= (w/ wKr) Sy

(4.44)

If we introduce the oscillator strength for bound-bound
absorption!'

Jix=30r| (I || D || K} [*/gr
=—(gx/g0) fxx

and the oscillator strength for bound-free absorption,

dfre/dE;=3war | (|| D[ c) "/gr,  (4:46)

the radiative width at resonant frequency may be
written!??

(4.45)

dec

dE,
(4.47)

gk dE, )

In general, the width is the sum of oscillator strengths

to several lower-lying states. However, the radiative
width of the lowest-lying excited state, at resonant

VK= — E 20 (0wrn) Yfxn—SE.<rx 20(0wke)?
En<Eg

=2a { > (owga)? &an+sE=<Ex<°‘ch)2
En<Erg gK

115 Reference, 40, p. 998.

16 R, Ladenburg, Z. Physik 34, 408 (1925); cf. R. W. Nicholls
and A. L. Stewart, in Afomic and Molecular Processes, D. R. Bates,
Ed. (Academic Press Inc., New York, 1962), Chap. 2; or L. H.
Aller, Astrophysics,” The Atmospheres of the Sun and Stars (The
Ronald Press Co., New York, 1963), 2nd ed., p. 296. Condon and
Shortley, Ref. 105, p. 108, denote my fix as fxr; however, the
present notation has become more common.

117 The emission oscillator strengths fx» and dfx./dE. are nega-
tive, so vk is positive.
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frequency, is simply*®
vx=4(awxr)® | (K || D[ I) |
= —203(wgr) ¥xr
= —[8n%/ (\gr) Zfxr.

Far below this resonance, wwgr, the width of this
lowest state becomes

(4.48)

g () = —2(ow) ¥fxr/wkr. (4.49)
2. Electron Widths
To lowest order, the electron width is
Tglo) (w) =278, §(Ertw—Es) | (K |v|c) 2. (4.50)

In the next approximation, the width is

T () =2xS, 8 (Ertw—FE,) (K | v]c) {(c |v]|K)

|v|n)n|v|K)

€K —E€n

+Sq

Y Clvinelv )

E—E;

(4.51)

Thus, the autoionizing width is governed by the matrix
element

8(ErFo—Eo) (K | v c) (4.52a)

which describes the autoionizing transition from the
excited state px@ to a continuum state ¢, whose energy
is Ec =E1+w.

In the Russell-Saunders coupling scheme, these
elements take the form

$(Ert+w—E) (aSLIM | v | o (SoLo)iS'L'T'M").
(4.52b)

When external fields are absent, the largest part of v
comes from the inter-electron Coulomb repulsion. The
nonzero matrix elements then become

(@SL || v|| &' (SoLs)elSL)
(2841)12(204-1)2

From this expression, one obtains White’s!®® selection
rules for autoionizing transitions:

AS=0, AT =0,

8(Ertw—E,)

(4.52¢)

AL=0, A parity=0. (4.53)
That is, autoionization occurs when an excited state
can mix with a continuum state having the same values
for S, L, J, and parity.

With energy-normalized radial functions, the auto-

18 The classical radiation-damping constant [M. Planck,
Ann. Physik 60, 577 (1899) ] is 8a%x/3\¢? in present units.

19 H, E. White, Phys. Rev. 38, 2016 (1931); A. G. Shenstone,
Rept. Progr. Phys. 5, 210 (1939); cf. also Ref. 105, Sec. 3.15.
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lonizing width in Russell-Saunders coupling is
I“K(elec) ( w)

= I“K(elec) (6)

2w

= sty = ESLIvIBLodsLy P,

(4.54)

where the summation goes over barred quantum
numbers, and the continuum energy e satisfies the
condition

e=FErtw—E5 L, (4.55)

Not all of the excited states whose energy lies above
the first ionization limit can satisfy these requirements.
For example, the (3p3d) 1D° term of Mg I, observed
by Paschen,'® lies above the 3sel ionization limit.
However, there is no (3sel)'D° continuum of odd parity
with which the (3p3d)'D° can mix. Consequently, the
(3p3d)*D° has only a slight autoionizing probability,
and the widths of spectral lines originating in this
term are comparable to widths of other nonautoionizing
lines. Other examples have been given in Ref. 119.
The form of the matrix elements required for the
calculation of autoionizing widths is identical with
that of the matrix elements required for calculating
the energy of an ordinary excited state, apart from
the occurrence of a continuous index € in place of a
discrete quantum number 7. Thus the widths can be
expressed as the sum of squares of various Slater-type
integrals, including both ‘“exchange” and ‘direct”
type integrals. The coefficients of these integrals, giving
the angular dependence of the matrix element, can be

Ax(@) =87(aw) (I | Dy | K)S. 8(Ertw—E) (K | v c)e | D*| 1),
Bx(w) =dm(aw) {| (K | Dy | I) =72 | S, 8(Er+w—E) (K | v | e)e| Du| I) ).

obtained by use of standard procedures.’”

E. Resonance Parameters

Equation (2.79) gave the resonant part of the di-
agonal elements of T:

27 00 (w) _ Bx(w) —idx(w)

F.  wmto+i[Tx(w)/2]’ (4:56)
where the resonance parameters are
Ak (@) = =4{tax” () lka® (w) } /Fa, (4.57a)
Br(w) =2{| tax (@) [~ lax® (@) P}/Fac  (457b)

With incident &1 radiation, the first approximation
t0 txa® (w) is [from Eqs. (3.32) and (4.26) ]

ik (w) = (3ma2®) V2 S, 6 (Er+w—E,)
XK |v|e)e| Du*|I). (4.58)

This quantity vanishes unless the resonance state
mixes, through the matrix element (K |v|c¢), with
a continuum atomic state of energy E.=FEr+w. Near
the resonance frequency w=wgs this condition means
E.=Eg. That is, x,? vanishes unless the discrete
state ox© can autoionize.

The first approximation to k™ (w), for &1 radiation,
is

g™ (w) = (20%3/3m)2{I | D, | K).  (4.59)

This quantity expresses the amplitude for a radiative
transition between the ground state ¢;@ and the dis-
crete excited state pg©.

From these expressions, it follows that the resonance
parameters are:

(4.60a)

(4.60b)

For autoionizing transitions, in which Tk =~Tx®*?), the parameters of Fano and Cooper,” discussed in Appendix A,

are
_ k@ _ (| Dy| K)
1=k 7S, 6(Erta—E) (I | Dy )ie | v | K)’ (4.61a)
_ I||D[K)
7S, §(Ertw—E) I || D[ e){c |l v k)
=] txa® [2/[Im (txx) Im (tas)]
| S 8(Er+w—E) (K | Dy]c)lc|v]|K) 2 (461b)

S 8(Ertw—Ee) | (K | Da|d') [F Ser 8(Ertwo—Eor) [(K V[

The parameters ¢ and p? depend on frequency only through the variation of the continuum wave functions with
energy. This dependence should be slight over the resonance.

For most purposes one deals with target atoms whose magnetic sublevels are degenerate and equally populated.
One then wishes a cross section or refractivity that is summed over magnetic quantum numbers Mx of the reso-
nance states (gx =2Jx-+1 sublevels) and averaged over both the photon polarization u (3 values) and the mag-

120 F, Paschen, Sitz. Preuss. Akad. Wiss. 32, 709 (1931).
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netic quantum number M of the initial atom (gr=2J7-+1 possible values). This average yields the resonant term

(%)

where

F. Background

The resonance profiles are superposed on a continuum
background which is the combined effect of distant
resonances and direct-scattering processes [ Eqs. (2.88)—
(2.89) or (3.35)-(3.36) ]

Autoionizing lines overlie a photoionization con-
tinuum described by

Clw)= —;— Im [0 (w) ]

6 3 2 2,3
=2 S, 8(Ertw—E) —— | (I| D] c) . (4.65)
aw 3r

Averaged over p, this yields the continuum-background
cross section,

C(w) =47*(ow) Se 8 (Er+w—E.) | (I || D] ¢) [//gr
=21%aS,(dfro/dE.) . (4.66)

The background for ordinary absorption lines comes
from the second term of Eq. (3.35), which contributes

[ {I|DI|N)[*Tn(Ex)
° 2 gr(wgy)? )

The background refractivity is given by the second
and third terms of Eq. (3.36). The summation over
continuum states comprises states with no. photons
(these must therefore be continuum atomic states)
and states with two identical photons (which may
have either discrete or continuum -atomic states).
The result is'*

Cx=C+2ra (4.67)

N#K

_ N D] d)
Di(w) =4maw {Sd ——Ez-f—w—Ed
sy LD D P RALARSYS
Erto—(Eet20) ' Erto—(Ex+20)
| T Du|N) P}
—_——". (4.68
+AZ;{ Er+w—Eyx (4.68)

The single term with V=K in the third summation
contributes only a negligible portion of Dk, so it may
be dropped. The average background then becomes
the well-known Sellmeier formula,?

71(w) —1 = — (No/2aw) Dg (w)

dfra/dEq Jiv
27N, —_—,
? N#ZK (wry)?—ew?

(4.69)

=2xN,S/

(wra)?—w

121 Reference 46, p. 248 or Ref. 15(b).

Ax () =§ (n%0w/gr) Se 8(Er+w—E) (I || D [| KMK [| v || )T || D || ¢)*(gx) "
B (w) = (5mew/g) (| (T [| D || K) [P= (x%/gx) | Sed(Ertw—E) (K[| v [l e){c || D [| T) [},

_ Bx+idx
N " wix+w+i(Tk/2)

(4.62)

(4.63)
(4.64)

G. Special Cases

1. Ordinary Lines

It is instructive to apply these results to the predic-
tion of ordinary (nonautoionizing) line profiles. In
the absence of autoionization, the resonance param-
eters of Eq. (4.57) become

A (w) =0, (4.70)
By (w) =3m(aw) [ (I || D || K) [*/gr
=27ra(w/wkr) f1x- (4.71)

These expressions then yield the familiar results for
refractivity,

TN, (wgr—w) fix
7(w) —1 =—o- (472
) = (o) (Tx(@ /2 7
and for the attenuation cross section
T
5 (w) =— Wit 0 (4.73)

“oxr (oxr—w)+ (T (w) /2)2

Equations (4.72) and (4.73) describe only the portion
of 7(w) or ¢(w) that comes from a particular reso-
nance. Additional contributions come from all other
resonances, as well as from a background of direct
reactions. For the lowest-lying resonant state the
cross section may also be written

2 gf (PK/2)2
(aw)z 8r (wKI_w)2+(PK/2)2 )
Thus, the attenuation cross section for the so-called

“resonance line” of an atom, at the resonant frequency,
takes the remarkably simple value!®

(4.74)

(w) =

2 gr _ ()\Kl)z—g_f

(awrr)® &1

(4.75)

o (wgr) = @ ,
where A=27c/w is the wavelength, while the integral
over the absorption profile is approximately

/ o (w) dw=227%afix

=+(\&r)2(gx/8r) v&. (4.76)

For wavelengths much longer than the ‘“resonance
line,” wwgr and Tk (w)X2aw¥ix/wik<Lwkr, the cross
section takes the familiar Rayleigh-scattering’ fre-
Cm H. E. Moses, in a Lincoln Laboratory Preprint, 4 February
1966, has remarked on this formula.

123 J, W. Strutt, Phil. Mag. 16, 107 (1871).
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quency dependence

& (w) =4 (aftx)*(gx/gr) (w/wrx)*.
2. Double Excitations

Since autoionizing levels lie above an ionization
limit, the zero-order resonance state ¢x©® is doubly
excited: it differs from the zero-order ground state in
two orbitals. Photon transitions from the ground state
to an autoionizing state involve a two-electron jump.
If the basis orbitals are orthogonal, the matrix element
(I'| Du| K) vanishes, and Eq. (4.59) must be replaced
by the more accurate equation

(4.77)

t.x® (w) = (22%w8/3m) 12 {(I | Du| K)

I Dy|n)n | v | E)FT|v|n)n| D] K)

+>

eég—¢€n
, I Dyad)a|v|K)+{I|v|d)d|D,|K)
5 (Erte) —Ea }

(4.78)

When configuration mixing is slight, %x® is negligibly
small, and the profile parameters become

Ag=20,
Bx=—(2/F,) | tag [?

= —473(aw) | S; 8 (Er+w—E) (K |v|c)c| Du| I} |2
(4.80)

Such resonances appear as symmetrical transmission
windows.

(4.79)

3. Zero-Order Mixing

The preceding formulas were given in terms of the
zero-order states ox©@. Since these states may be mix-
tures of configurations, it is useful to rewrite the for-
mulas in terms of basis states rather than zero-order
states. The resonance quantities then become, to lowest
order:

EK=ek+; (K|k)(® | K)E | v|E),
TrD4[ (wrn)®/gx] D | Zk) (K|R) (|| D || n) 2

(4.82)
Tx©eO~27S, §(Er+w—E.) | O (K | k)| v]c) |3
k

(4.81)

(4.83)

Tre= T o9 T
I‘K(elec)=21rsc§(EI+w—' ) I (K l v | C) lz
T =$(a¥/gr) D

EN<Ertw

~—202 D (wrn)¥xn+Se>ex(wre)?(dfxe/dE:)}.

EN<ER

24 D, Layzer, Ann. Phys. (N.Y.) 8, 271 (1959).

lax 221 (2023 /3) 12 S, 8 (Er+w—Eo) (I | D, | ¢)
kaj (c|v|E)E|K), (4.84)

tax P21 (2o /3m) 12 > (K | k) (1| D, | k).
k

(4.85)

The zero-order mixing-coefficients (K | k) may sig-
nificantly affect predictions. For example, the Z-expan-
sion theory regards the 2snp and the 2pns configura-
tions of helium as degenerate to zero order. The theory
prescribes zero-order states of the form

| 2nt)=a | 2snp)EB | 2pns)  o2+B2=1, (4.86)

where « and B are the zero-order mixing coefficients.
The autoionizing widths to the 1sep continuum are

Tony @00 =21 | @(2snp | v | 15ep)+B(2pns | v | 1sep) |2
(4.87a)

T 1) =27 | a(2smp | v | 1sep)—B2pns | v| Lsep) |2
(4.87b)

This predicts a broad and a narrow series of autoionizing
lines converging to the degenerate 2s and 2p configura-
tion of Het. In the same way, three distinct series of
lines should converge to the 3s, 3p, 3d configuration
of Het; each series should maintain a characteristic
width.

Such series have been seen in helium, where the dis-
crete-state mixing has been discussed by Fano and
Cooper.?

H. Summary

In summary, the present paper provides, near the
frequency wxr of an isolated resonance, the photon
attenuation cross section

| (Tx/2) B+ (w—wkr) Ax

7 (w) =Cr(w) (o—aer) ot (T /2)? (4.88)
and the photon refractivity
_ _ cN (PK/Z)AK—(w—wKI)BK_ — ]
et 2w[ (o—em '+ T/t 5}
(4.89)

where the bar signifies an average over photon polari-
zation and atomic magnetic quantum numbers (see
Sec. IV). The resonance width is, from Egs. (4.39),

(4.42), and (4.47),
(4.90)
(4.91)
(wmv+w)? | (K || D || N) P45 (0?/81) Seo>Erie(wrtw)® | (K || D || ¢) [2
(4.92)
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The resonance energy is, from Eqgs. (3.27) or (4.27),
[(K|v|N)[? [(K|v|a)|*
Eg=ex+(K|Vv| K ! S/ 493
=K v K+ = o S G Ey e
The resonance parameters are, from Egs. (4.63) and (4.64),
Ax=3n*(aws/gr) Se $(Er+w—Eo) (L[| D[ KXI [ D[] e)(K || v || ¢) (gr) 12 (4.94)
Br=#n(aw/g) {| L[| D || K) [P~ (v*/gx) | Se 8(Ertw—E) (K || v ([ c)c || D[ I} [} (4.95)
The background is, from Egs. (4.67) and (4.69),
Ck (@) =27%S,(dfre/dEe) +-3m (aw/gr) 22T I || D || N) PTw/ (wrw)?] (4.96)
N
_ dfra/dE
Dg(w) =4mawS, -fl—d/——d—z +4raw Z' 2—fIN-——— . (4.97)
w?— (wra) ¥ w—(wrw)?
Here v is the electron-atom potential, D is the dipole with a phase shift
moment of the atom, gr is the statistical weight of the
initial atomic level, fiy denotes an oscillator strength, tan (6—&) =(I'/2)/(E—Ey). (A6)

and « is the fine structure constant (=1 in present
units). The levels I, K, N are discrete and are con-
structed to diagonalize v between degenerate levels
(see Sec. ITIC). The levels ¢, d are continuum levels.
The double bars in (I || D || V) signify reduced matrix
elements.
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APPENDIX A: PROFILE PARAMETERIZATION

Other equivalent parameterizations of the function
Q(E) of Eq. (1.1) have also been used. Nuclear physi-
cists often use the form®®

Ares 2
Q(E)=ay(E)+ |4 pot+m , (A1)
while Fano® has suggested
Q(E) =ou(E) +oa[ (e+9)%/(e+1)],  (A2)
e=(E—E,)/(T/2). (A3)

In addition, Fano and Cooper® introduced a parameter
Pz=‘7a/ (oatos). (A4)

Another common practice is to parameterize the scat-
tering matrix in the form

Ssa=exp (240) (A5)

This leads to an attenuation cross section with the
energy dependence

Q(E) =—Im Taa,= (1—COS 250)

. 31 cos 260— (E—Eo) T sin 25,
' (E—Ey)*+(1/2)*

(A7)

Since all these formulas give identical profiles, a com-
ment on the significance of parameterization (1.1) may
be in order.

When parameter A is zero, the profile Q(E) is sym-
metrical about Ey Eq. (1.2). With B positive, this
profile describes the energy dependence of the photon
absorption coefficients near an ordinary absorption
line (in the absence of significant external perturba-
tions to the atoms).

When parameter 4 is not zero, the profile Q(E) dis-
plays a dip on one side of E, and a peak on the other
side. Physically, this asymmetry arises from coherent
interference between direct processes such as potential
scattering, which provides a background varying
slowly with £, and the formation and decay of a com-
pound state, which varies sharply with E. This inter-
ference is sometimes seen in attenuation cross sections,
where the dip in Q(E) appears as a “transmission
window”’ near E, Such windows have been noted in
the attenuation spectra of s-wave neutrons, shown in
Fig. 2, and in photon transitions to autoionizing states,
shown in Fig. 3. Symmetrical windows occur if 4 =0
and B is negative.

Empirically, the parameters of Eq. (1.2) have the
following significance. The area under the profile is

f 0(E) dE=nB+ f C(E) dE. (AS)
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1 |
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0.185
Photon Fnergy (ev)

F1c. 3. Photon attenuation cross section for neutral barium.
Cross section in arbitrary units. [Data from W. R. S. Garton,
Harvard College Observatory Shock-Tube Spectroscopy Labora-
tory Scientific Report No. 6 (November 1965).]

If we define a peak height H and a dip depth D (for
a Lorentz profile, D=0) by the relationship

H=Q<Emax) —C<Emax) (Ag)
D =C(Emin) _Q<Emin) 3 (Alo)

where Enax and Enin are the energies of maximum and
minimum Q(Z), then

2B/T=H—D, A2/T*=HD. (A11)
Equations (A11) permit estimation of profile param-
eters 4 and B directly from plots of the profile. In the

limiting case 4 =0, the width T' is Emax— FEmin, while

(I|Dy| K)

in the limiting case B=0, T' is the full width at the
half-maximum of Q(E).

The parameterization of Eq. (1.1) is rea.d1ly com-
pared with that used by Fano:

o= Crt | (Tx/2) B+ (E— EK)AK~0 te (e+g)?
T (E—E)+(Tx/2)r et
(A12)
The parameters are
e=(E—Fx)/(Tx/2), (A13a)
g=—Re {t.x? /[t D}, (A13b)
= (2]\Ta/ﬁFa) [i tga® iZ/(PK/Z) :l’ (A13c)

gp=

+ (2No/HF o) {Im (faa) +[] txa® [2/(Tx/2) ]},
(A13d)

P=txa® [*/Im (fea) Im (Ixx). (Al3e)

These relations hold quite generally for the attenuation
profile near an isolated resonance; they include the
effects of a multichannel continuum and configuration
mixing. With the approximations discussed in Sec. IV,
the present paper obtains Egs. (4.61a)-(4.61b) as
the relation between ¢, p? and atomic matrix elements:

1= 1S 3 (Fito—E) I | Dy [ |V | K) (A-142)
- | S: 6(Birtw—FE) (K| Dy | )e| V| E) | T At

Sy 8(Brtw—Ew) | (K | Du| ¢’y |2 Sor 6(Ertw—Eor) | (K |[V]|)

Using comparable approximations, Fano has obtained the expressions
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The two approaches are seen to give equivalent pre-
scriptions, apart from differences in notation. Fano’s
expression for ¢ involves his ®, which is essentially my
S=pO04oW+... [Eq. (3.42)]. To obtain the exact
counterpart of Eq. (A14b), I should include the higher-
order corrections to {,x® given by Eq. (4.78) [or more
generally, Eq. (3.31)].

Each of the formulas for Q(£) involves four param-
eters, in addition to a background. This paper uses
the real numbers 4, B, Eo, T but clearly the parameters
¢, p, Eo, T' serve as well. For nonautoionizing transi-
tions 4 vanishes and B and T are tied together. (B is
essentially the oscillator strength.) Thus, two param-
eters, Fy and T, suffice to fit ordinary absorption lines.



