
REVE'EWS OF MODERN PHYSICS VOLUME 3O, NUMBER 2

'. .'. xeory o .. ..nI:rarec. Optica, . roj~erties
o: ..'..uorite Crysta. .s
WOLFGANG ZERNIK
ECA Laboratories, Princeton, Rem Jersey

This paper provides a theoretical background for, and some interpretation of, recent measurements of the infrared
optical properties of Quorite crystals particularly CaF~, Sr', BaF2, and CdF&. A quantum-mechanical derivation of the
optical properties in the harmonic approximation is given. The most reasonable procedure for the phenomenological
treatment of damping eGects is described. The physical origin of damping effects is discussed and it is shown how the per-
turbation theoretic results may be simplified in the low-frequency limit. Damping functions for the above materials are
presented as a function of frequency and temperature.

I. INTRODUCTION

Within the past few years, a good deal of accurate
data have been obtained on the infrared pptical
properties of crystals having the CaF2 structure. In
particular, Bosomworth' has carried out infrared
absorption and refractive index measurements on the
long-wavelength side of the reststrahlen band for
CaF2, SrF2, BaF2, and CdF2 at temperatures from 4'
to 300'K. Other recent measurements on these mate-
rials have been reported by Kaiser et al.2 for CaF2,
SrF2, and BaF& at 77' and 300'K, and by Fray et al.'
for CaFs at temperatures from 77' to 300'K. Refiec-
tivity measurements on CdF2 and PbF2 at 300'K have
been reported by Axe et al.4

The most natural way to analyze these data is in
terms of. a frequency- and temperature-dependent
damping function, the method used in Ref. 4. This
damping function is not simply related to the width of
the reststrahlen absorption band but is introduced into
the theory through a phenomenological generalization
of formulae which are exact for a harmonic lattice of
nondeformable ions. The pertinent theoretical expres-
sions can be derived on a classical basis' and are
quite old. It is clear from the literature, however, that
the logic of introducing damping effects in this manner
has not always been appreciated. Moreover, a variety
of nonequivalent results have been published dealing
with the eGect of damping corrections on various
theoretical expressions such as the Lyddane-Sachs—
Teller formula. ' For these reasons, and also because
of some intrinsic interest, a quantum mechanical
derivation of the theory is outlined in Sec. IIA.

~ Supported by U.S. Army Research Once, Durham, N.C.' D. R. Bosomworth (to be published}.
'%. Kaiser, W. G. Spitzer, R. H. Kaiser, and L. E. Howarth,

Phys. Rev. 127, 1950 (1962).' S. J. Fray, F. A. Johnson, and J. E. Quarrington, in Ia1ssce
Dynamics, R. F. Wallis, Ed. (Pergamon Press, Inc. , New York,
1965), p. 377.

4 J. D. Axe, J. W. Gaghanello, and J. E. Scardefield, Phys.
Rev. &.39, A1211 (1965).' M. Born and K. Huang, Dynamica/ Theory of Crystal Lat-
tices-(Clarendon Press, Oxford, Fngland, 1954},Chap. 2.

6 C.. Kittel, QNantum Theory of Solids (John Wiley Bz Sons,
Inc. , New York, 1963), Chap. 3.

'R. H. Lyddane, R. G. Sachs, and E. Teller, Phys. Rev.
59, 673 (i941).

The physical origin of the damping function consists
of two parts. The first part is the anharmonic nature of
rea1 crystals resulting in terms in the potential energy
that are of cubic and higher order in the ionic displace-
ments. The second part is the deformability of the ions
resulting in terms in the dipole moment that are of
quadratic and higher order in the ionic displacements.
These e6ects have been extensively treated in the
literature' "; a succint discussion may be found. in
Martin's recent review article. " It is a quite straight-
forward task to derive formal expressions for the
infrared absorption arising from such processes. How-
ever, it is probable that it will be some time before
knowledge of interatomic forces and ionic deforma-
bi)ities becomes precise enough to make it possible to
extract reliable numerical results from the formalism.
An indication that progress in this area is possible is
provided by the calculations of phonon dispersion
curves for CaF2 by Ganesan and Srinivasan" using a
rigid ion model, with results in good agreement with
inelastic neutron scattering data. The mclusion of
deformability eGects in this calculation by means of
the shell model has been discussed by Axe." Qn the
other hand, the recent calculations of Karo and Hardy'
of precise vibrational frequency distributions in NaCl
demonstrate the sensitivity of the two-phonon density
of states (which enters into the expression for the
infrared absorption) to the detai1ed assumptions made
about the dynamics. Furthermore, a great deal of
computation is required due to the necessity of sam-

pling a large number of points in the Brillouin zone.
Sections IIB and IIC contain discussions of the

phenomenological treatment of damping effects and
of the perturbation theoretic results, respectively.

In Sec. III, numerical values for the phenomeno-
logical damping function calculated from currently

~ M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955).'B. Szigeti, Proc. Roy. Soc. (London) A252, 217 (1959).' B. Szigeti, Proc. Roy. Soc. (London) A258, 377 (1960)."R. F. Wallis and A. 'A. Maradudin, Phys. Rev. 125, 1277
(1962).

"M.Lax, J. Phys. Chem. Solids 25, 487 (1964)."D.H. Martin, Advan. Phys. 14, 39 (1965)"S.Ganesan and R. Srinivasan, Can. J. Phys. 40, 74 (1962)."J.D. Axe, Phys. Rev. 139, A1215 (1965}.
'6A. M. Karo and J. R. Hardy, Phys. Rev. 141, 696 (1966).
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available data for CaF~, SrF~, SaF2, and CdF~, are
presented and the experimental data are briefly dis-
cussed in connection with the theory of Sec. II.

II. SOME ELEMENTARY RESULTS

rg=0, P =0.
These are the Raman-active modes. For the second
class

The CaF~ structure is described in Ref. 17. The
primitive cell contains a Ca'+ and two nonequivalent
F ions; it is a rhombohedron of volume 2ro', where
2ro is the lattice constant. The position of an ion in
the unit cell is given by

R, =rs(s —1)$111j/2, (1)

where s =1 for the metal and s =2, 4 for the Ruorines.
Only the optical vibrations of essentially zero wave
vector can interact directly with the infrared radia-
tion. The displacements of the ions from their equilib-
rium positions r, in this case satisfy'

ettottrt +rnprs+rlpr4 =0,

tttcsrl +mprs +tttp&t = 1

where ~, and mF are the masses of the calcium and
Quorine ions, respectively. The first equation is simply
the condition for the center of mass to remain at rest
and the second equation arises from the orthonormality
condition for the normal modes. The dipole moment
per primitive cell for nondeformable ions is given by

(4)

where e* is an eGective charge which may be less than
e due to covalent bonding. Equations (2) and (3)
have two classes of solution. For the first class

effects introduces considerable additional complica--
tion. '~" Furthermore, it may be assumed that the
wavelength is large compared to the lattice constant
so that the dipole approximation is valid.

The Hamiltonian for the system is

H =Hc+Hp+Hcp+Hg+Hrtt

where Bz is the Hamiltonian of the crystal in the
harmonic approximation assuming nondeformable ions,
Hp is the Hamiltonian of the electromagnetic field,
H&p represents the crystal-GeId interaction, H& repre-
sents anharmonic terms in the crystal Hamiltonian,
and B~ represents the additional interaction arising
from ionic deformability. Consideration of the last two
terms is deferred until Sec. IIC.

A. The Harmonic Ayyroximation

The Hamiltonian for the radiation represents a
monochromatic plane wave, of wave vector k and
frequency ~, propagating in the static lattice, i. e., in
a medium of dielectric constant e . This quantity is
the electronic contribution to the dielectric constant
at infrared frequencies, i.e., the limiting value of e at
high infrared frequencies but below the region of visible
dispersion. Since the dielectric constant plotted as a
function of frequency never actually becomes Rat, some
slight arbitrariness is generally involved in the choice
of a numerical value for e . At any rate, one has"

Hp = (tt gag+ s ) ate,

where a*i„ai, are photon creation and annihilation
operators, respectively.

Similarly, the Hamiltonian of the lattice vibrations
may be written as'

Hc P(b ttt~tst+s) Rtttttty

where
rn t=rrtc t+(2tnp)

(6)

These are the infrared active modes, in which the
metal ions vibrate against the cage of the Quorines.
For each class there are three directions of polariza-
tion. Infrared absorption occurs through the excitation
of the infrared active mode having the polarization of
the incident radiation.

The problem to be treated now is that of the inter-
action of a plane electromagnetic wave v ith an infinite
ionic crystal. In practice, this means that the crystal
dimensions must be large compared to a wavelength.
For smaller crystals, the need to consider boundary

'~ C. Kittel, Introduction to Solid State Physics (John Wiley @
Sons, Inc. , New York, 1957), Chap. 1.

'8 A. A. Maradudin, K. W. Montroll, and G. H. Weiss, Theory
of Lattice Dynamics in the IIarmonic Approximation (Academic
Press Inc. , New York, 1963},Chap. 2.

where b*st and bst are creation and annihilation opera-
tors for phonons of wave vector q and branch ] and
co« is the corresponding frequency.

The interaction energy is most conveniently calcu-
lated starting from the classical expression

Hop ,'(e„+2)Qe*,E——(l-, s) r(l, s),
l,s

where 8 is the electric Geld, / is a cell index, s is an ion
index, and the sum is over the entire crystal. The
factor (e +2)/3 arises from the use of a Lorentz
correction to take into account the effect of the elec-
tronic polarizability, P, on the local Geld acting on

tt R. Fuchs and K. L. Khewer, Phys. Rev. 140, A2076 (1965).
O'K. I. Kliewer and R. Fuchs, Phys. Rev. 144, 495 (1966)."K.L. Khewer and R. Fuchs, Phys. Rev. 150, 573 (1966);

R. I'uchs, K.L. Kliewer, and W. J.Pardee, ibid. 150, 589 (1966).
22 W. Heitler, The Quantum Theory of Radiation (Clarendon

Press, Oxford, England, 1954), Chap. 2.



434 REvIKw oP MQDERN PEKYsics ~ APRIL 1967

an ion in a lattice of cubic symmetry. One has-"

Zi..=E+42rI'„/3 =-,' (e„+2)E. (12)

If, instead of using Eq. (11), one starts from the
corresponding expression'4 containing the vector poten-
tial A, one of course obtains exactly the same final
results. One has to remember, however, to include the
term in A', in Grst order, when calculating the second-
order energy shift discussed below.

The expansions of E and r in terms of annihilation
and creation operators may be readily calculated from
expressions derived in the references quoted. "' The
usual normalization condition requires that in the
expansion for E one must multiply the corresponding
expression for free space by e ", since the field energy
per unit volume is multiplied by ~ . In evaluating the
expression (11), only the transverse optic branch
polarized parallel to E contributes; the sum over /

introduces 8 functions expressing conservation of wave
vector and the sum over s introduces the dipole moment
given by Eq. (6) . The final result is

&c~=2i-', (e +2) (2r52e co/2e„2mco, )o'~'

+ (f' k&k f'k~ k f —k+ k+f' —Hk) y (13)

where v is the volume of the primitive cell and coTO the
frequency of the transverse optic vibrations at zero
wave vector. The geometry of the fluorite structure
has entered into the derivation only through the use
of Eq. (6). Thus one may, for example, transcribe Eq.
(13) and all subsequent results for the NaCl lattice
by replacing e* by e*/2 and defining m as mz, mci
(mN @+mei)

One may use the above expressions to calculate the
absorption coefficient corresponding to the conversion
of a photon into an optical phonon. '4 One calculates
the corresponding transition probability 0 with first-
order time-dependent perturbation theory substracting
the induced emission rate from the total absorption
rate to obtain the net absorption rate. The absorption
coeKcient is found from the net absorption rate by
dividing by the photon Aux in the static lattice.

n =Be "2/22„C,

where e„ is the photon occupation number. The result is

~ —2 (~ +2) 2(42rg2'2/~mc2) ~
—1/2$(g —1 g

—1) (15)

where P~o ' is the wave number corresponding to the
transverse optic frequency. Actually, this result has
little significance since the harmonic model implies
merely the continual interconversion of photons and
optical phonons; true photon absorption is possible only
when the terms H~ and H~ are included. Some signifi-

"See Chap. 7 of Ref. 17.
'4R. . E. Peierls Quantum 7'heory oj' Solids (CIarendon Press

Oxford, England, 1965), Chap. 3.

cance may be attached to Eq. (15), however, if one
considers the case of a crystal that contains a very
large anharmonic term H~ so that an optical phonon
once formed. can not be reconverted into a photon
before it decays into other phonons. In this case, Kq.
(15) is applicable provided the 8 function is replaced

by an appropriate I.orentzian. The considerations in-

volved here are similar to those in the Weisskopf-
Wigner theory of line shapes. '5

A result of more immediate interest is the calcula-
tion, by second order time-independent perturbation
theory, of the energy shift arising from Hzp. In this
calculation one drops the terms corresponding to
spontaneous photon emission since these merely
correspond to a vacuum self-energy of the crystal
rather than an interaction energy with the applied
electric field. The result defines the dielectric constant
of the crystal at frequency co through

AE= —(e„—2 ) E2V/82r, (16)

The resulting expression for the dielectric constant is

e„—e„=—,
' (e„+2)'(162re*'/vm) ((pro' —aP) '. (18)

For co=0, this result is known as the Szigeti formula. "
If one formally introduces the longitudinal optic

frequency' by

~Lo'=MTo'+9 (e +2)'(162re*'/arne ),
one immediately obtains

6P cori =MLO coTO ) (20)

which is known as the I.yddane —Sachs —Teller formula. '
The symbol 6p introduced here, is defined analogously
to e as the limiting value of e at low infrared fre-
quencies. This value is generally lower than the static
or radio frequency value. At subinfrared frequencies
the motion of lattice defects may make an important
contribution to the polarizibility and the theory devel-

oped here is not applicable.
The refractive index e„and wave vector k in the

medium are given by

E =22
2 =C2$2/ru (21)

Hence one obtains the dispersion formula

A/2� ((gTO2 ~2) g ~2(~LO2 (g2) (22)

"' See Chap. 5 of Ref. 22.
26 B. Szigeti, Prana. Faraday Soc. 45, 155 (1949).

where V is the volume of the crystal and A' the rms
field strength. The energy gained by the crystal is

equal to the energy lost by the field. The field strength
is related to the photon occupation number by equating
expressions for the total photon energy in volume V

22„5cu =e„E2V/42t.
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This fundamental result is well known and can be
easily derived on an entirely classical basis. s ' An
interesting quantum mechanical derivation based on a
macroscopic description of the medium has been given
by Hopfield. ~ The present treatment presents a
quantum mechanical derivation based on an atomistic
description of the medium. Although the dielectric
constant has been derived here by perturbation theory,
the result is actually exact. For a general mechanical
system, higher-order terms in the perturbation expan-
sion would give the nonlinear terms in the dielectric
tensor. For a harmonic lattice, however, such non-
linearities can obviously not arise.

Equations (21) and (22) show that for co(&oTo or
or)orLo the refractive index is real and one has only
dispersion. For coTo(or&coLo the refractive index is
imaginary and one has only attenuation. The attenua-
tion coefficient is given by

The I..S.T. relation, on the other hand, appears
to be not inconsistent with the data. For CaF~ at
300'K, one Gnds using Bosomworth's direct measure-
ment' of ep,

e/oe = (6.63+0.07) /2. 04 =3.25+0.03. (27)

For orTo one has Cribier et ul. s direct neutron inelastic
scattering measurement of 258%2 cm ' in good agree-
ment with other determinations. "For coLo Cribier et al.
measured 478+7 cm ' while Berremanss using thin-
6lm absorption at oblique incidence, found 475&3 cm ';
a reasonable value therefore is 476&4 cm '. Thus, one
finds

(cozo/cavo) s= (476+4/258+2) =3 40+0 12 (28)

Any valid theory must give results consistent with
the Krammers —Kronig relations. " If one defines the
complex dielectric constant by

cx =2 Iiil 0 = (2(o/c) e '$(coLo' —cos) /(co —co&o') 1 t' (23)

The integrated attenuation coefficient is given by One has
Eot =6] Q7 262 M (29)

&LO

cs d(y—i) (srs/liTos) e
—i/s(e e ), (24)

+TO

Q)

ei(co) —ei(~) =sr 'E, dco',
co M —

GD

(30)

a result which can also be obtained from Eq. (15)
using Eq. (18).

All optical properties of the crystal can be calculated
in terms of the real and imaginary parts of the refrac-
tive index

n n] +zns

The reQectivity of a slab for normal incidence is given
by

R =L(ni —1) '+nss$/L(ni+1) '+n '$ (25)

and is therefore 100oro in the reststrahlen band, coTo(
~&coLo, where m~=0. The attenuation coe%cient is
given by

ot = 2con./c,

yielding again Eq. (23) .

B. Phenomenological Treatment of Damping

The harmonic approximation discussed in Sec. IIA
is inadequate for the following reasons:

(1) Experimentally, one finds some absorption out-
side the reststrahlen band and less than 100% reflec-
tivity within it.

(2) The Szigeti relation is not rigorously valid. If
one inserts experimental values of 6p, 6, and coTo one
generally finds that the corresponding value of e* is
considerably lower than that calculated from the
cohesive energy. "For instance, in CaF& at 300'K one
requires e*=0.82 e whereas the cohesive energy implies
that the ions retain essentiaHy their full formal charge. "
"J.J. Hopfield, Phys. Rev. 112, 1555 (1958).

es(co) =Ã 'I-eq co
Cco'. (31)

Q7 GO

The sign of the damping term is determined by the
sign convention used in Eq. (29). By taking the
limit y—&0 and using the usual definition of the t
function" one may easily check that Eq. (32) is correct

"D. Cribier, B. Farnoux, and B. Jacrot, Phys. Letters 1,
187 (1962)."D. W. Berreman in Ref. 2, p. 397."See, for example, C. P. Slichter, Pr7'nci pres of Magnetic
Resonance" (Harper and Row, New York, 1963), Chap. 2.

In the present application of these equations, the
quantities es(0), e&(~) are to be interpreted as asymp-
totic values for low and high infrared frequencies as
stressed in Sec. IIA. In fact, experiment indicates that
es(0) =os( oe) =0. It is easily verified that if in Eq. (18)
one makes the substitution, justified in the next
paragraph,

(coTo —co ) ~I (coTo co )

8 (co —coTo) 8 (co+coTo)
+iÃ +

co+coTo co —coTo

then Eq. (30), with co=0, is satisfied. Moreover, from
Eq. (26) one may now directly obtain Eq. (15) .

The simplest way to introduce a damping parameter
is due to Huang, ' who added a damping term propor-
tional to the velocity to the classical equation of motion
for the long-wavelength optical vibrations. This yields
instead of Eq. (22),
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for the harmonic approximation. A constant 7, however,
is inconsistent with the data for absorption or reQec-
tivity. The obvious generalization is to allow p to be
frequency-dependent, a result which can be obtained
from the classical theory by adding additional damping
terms proportional to higher odd derivatives of the
displacement. One now obtains

p~ —p =2~I (ppLo' —»o')/f(bio' —pP —zy(p1) ppg}. (34)

(ni+zn2) '

= 2 I f&Lo' —&'—zv(&) &3/f»o' —&'—z&(pp) &j} (35)

If one defines the quantities

Qg=GOLo —Gl ~ (36)

Qz' =cryo —GP (37)

(38)

One finds the following results for e~ and e2..

n fp =/2(Q 2+I'2) '/2j

P f fQzQr+P2+(P2+Q 2)1/2(P2+Q 2)1/2$}1/2 (39)

n2= fp /2(Qr2+I'2)'/2j

XIf—Q,Qr —I +(I +Q, )'/ (r+Qrp) /2j} /2. (40)

By making use of Eqs. (26) and (20), one finds the
following asymptotic results for the absorption coeK-
cient:

cx~f (Pp 2 )P (PP) /«p j(M/»o) for Pi—&0, (41)

~-f(pp —p )V(~)/« '/23(carol~)2 «r ~~~ (42)

The above results are for y(p&) in angular frequency

This formula obviously enables one to fit either
refiectivity or absorption data, though not necessarily
both. As a practical matter, absorption can only be
measured outside the reststrahlen band while the
refiectivity is most sensitive to y(pp) within the rest-
strahlen band. Accordingly, it is dificult to detect any
inconsistencies in fitting the function y(p1) to experi-
mental data.

If one sets co=0 in Eq. (34) and assumes on physical
grounds that y(0} is finite, one finds just the Szigeti
and L.S.T. relations derived previously. Since the
former is not rigorously valid, Eq. (34) must still be
regarded as unsatisfactory; it is convenient, neverthe-
less, to use it as a means of correlating the experimental
data.

The complex refractive index is determined from

units and n in cm . If y(pi) is in wave-number units,
the right-hand sides of Eqs. (41) and (42) must be
multiplied by 2xc.

The Kramers —Kronig relations impose conditions on
the function y(p1}. For instance, if one sets p1=0 in

Eq. (30) and uses Eq (3. 3} one finds the result

"r(M) dÃ 2I (pp
—P~)

2(&ro —& } +7 (&) pp 2p (ppr, o —p1ro )

For a constant p(pr), this equation merely reduces to
the L.S.T. relation, Eq. (20).

C. Perturbation Theory

The various terms in Eq. (8) lead to a variety of
diagrams in perturbation theory some of which are
illustrated in Fig. 7 of Ref. 13.The term Ho2, Eq. (13),
corresponds to vertices where a photon line meets an
optical phonon line. Hg arises from terms of cubic or
higher order in the atomic displacements and therefore
corresponds to vertices where three or more phonon lines
meet. BD arises from terms in the dipole moment of
quadratic or higher order in the atomic displacements,
it therefore corresponds to vertices where a photon line
meets two or more phonon lines. Thus, Hg leads to
phonon decay or mechanical damping while H& leads
to photon decay or electrical damping. Note that while

it is possible for mechanical damping to exist without
electrical damping if Hap=0 the presence of electrical
damping always leads to mechanical damping in higher
order. For instance, a phonon may transform into
another phonon and a photon, the latter then trans-
forming into two phonons.

The present discussion is concerned with ionic
crystals where Hz&/0. Furthermore, only the lowest-
order contributions to H~ and HD will be considered.
There are then two mechanisms for photon absorption:

(1) First order via P~.
(2) Second order via Ho2 and H~, the intermediate

state being an optica1 phonon.

Two types of processes are possible:

A. One in which two phonons of equal and opposite
k are created, i.e., a sum process.

B. One in which one phonon is destroyed and another
of higher energy but the same k, is created, i.e., a
difference process.

Process A and B lead two absorption coefficients. In
each case, the amplitudes corresponding to mechanisms
I and 2 must be added coherently since they lead to
identical Anal states.

The algebra involved at this point is quite straight-
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forward although laborious. The known results are, ' " Some elementary manipulations now lead to

a..."~ =te B(ce »—, »—;)», itet„

e*G(k, s, s') '
0) —GDTo

X(rt(», ) +rt(», ~) +1)cPk,

4' Go

««(Vt+ V~)

X &/
ce & e*G)~/(Vt+Ve) $ '

(Vi+Vt) ce &To

~s,s' =& ~(ce—»s+»")».

where

eG(h, s, s') '

TO

Xt tt(»") —tt(», )j d'k,

N(ce) =/exp (ate/kT) —1$ ',

(45)

~diff~ 4m'

Vt Vt(Vt —Vt)

X Pi
e'GC~/(Vt+Vt) 1 '

EVt —V~t' 0) —MTP

( ceVt & ceVt )X tt I (50)

~I,)=V)k, (47)

and s, s' denote phonon branches. The functions Il

and G arise from H~ and B~, respectively. As a practical
matter they are not calculable at the present time.
The factor e* is included with G as a reminder that this
term vanishes in a covalent crystal; Il is in general
still finite in such materials.

A general selection rule states that the two phonons
involved in the final state can not belong to the same
branch. Other selection rules are operative only at
special points in the Brillouin zone."

The terms in G, in Eqs. (44) and (45), become
invalid when co approaches cv». This is because the
photon-optical phonon coupling then becomes very
strong and H~g may no longer be treated as a pertur-
bation. The correct procedure in this case is to diago-
nalize Ho+Hi +Hot exactly using essentially the
procedure of Hopfield. '~ The resulting eigenstates,
called polariton states, may then be used as the basis
for a perturbation treatment of II'g and H~.

In the low-frequency limit, some approximations
which enable one to simplify Eqs. (44) and (45)
seem reasonable. In general, the acoustic and optical
phonon dispersion curves rarely cross. They do cross
sometimes, for example, in CaI"2 along the I 111j
direction. '4 In the absence of such crossing, energy
conservation requires that for co—+0 only low-energy
acoustic phonons can be involved in the final state.
For such phonons one can write

( ce & e*GPce/(Vt+ Vg) $
'

(«+Vt» '—~To'
(51&

4nkT (V t
—V ()

SV)'Vg'

( ce e*GL~/(Vt —Vg) j '
X

QF —40Tp

These expressions become invalid at T~ 0~ when three
phonon processes may become important.

As 7—+0 one finds

4xco
&Sum~

«Ve(«+«)
ce e*G)&/(eV +Vt~) 5

'
X «+Vt CO

—COTP
(53)

Thus, ce becomes large when the sum (or difference) of
the sl.opes of the phonon dispersion curves approaches
zero. This conclusion is actually valid for any ~ since
it simply expresses the requirement for the additive
(or subtractive) 2-phonon density of final states to be
large.

At high temperatures, one may expand the exponen-
tials in the Bose-Einstein factors and obtain

4rrkT(Vt+V, )

where l and t indicate the longitudinal and transverse
branches and V is the corresponding sound velocity,
V&& V&. One also assumes isotropy, so that

~diff~ 0 (54)

"S. Ganesan and E. Surstein, J. Phys. 26, 645 (1965).

Bosomworth' has carried out measurements of the
refractive index in the far infrared as a function of
frequency and temperature for CaF2, SrF2, BaF~, and
CdF~, Accurate measurements over a wide range of
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frequencies p(cd) generally decreases except for peaks
corresponding to those in the data. The damping
decreases with temperature more rapidly at low fre-
quencies than at high frequencies. CdF& is more heavily
damped than the other materials; here at 300'K the
maximum value of y (co) /co To is about s. It is reasonable
that associated with such large damping there should
be large temperature-dependent frequency shifts so
that one is not surprised to find that CdF2 shows the
largest temperature dependence of coTo and tp. In Fig.
4, the dashed curve represents the results deduced
from reRectivity data by Axe et cl.4 It is gratifying that
these results join to those deduced from the absorption
data of Ref. 1.

It is evident from the dispersion curves for CaF2'4
that the two-phonon (sum) density of states has a
cutoff at ceLo+cost. This particular phonon combination
also satisfies the momentum and symmetry-based
selection rules for infrared absorption. "The value of
this combination is about 790 cm ' and it is gratifying
to note that y(co) has a shoulder in this region. At
higher frequencies, absorption must occur via a three-

phonon process and should therefore show an enhanced
temperature dependence. Further inspection of the
dispersion curves suggests that the peak at about
45 cm ' can be assigned to a To—TA difference process
at the symmetry point X, the edge of the zone along
the (100) direction. In the same way, the peak at
about 725 cm ' can be assigned to a I.O+I A sum at
the point X.

In conclusion, we mention two very recent papers
in which anharmonic effects are treated by the power-
ful Green's function method. ""
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Attenuation processes are examined from the viewpoint of collision theory, and the optical theorem is used to connect
attenuation cross section 0 and refractive index n with diagonal elements of the T matrix. This approach provides reso-
nance prolles (for "natural" lines shapes) of the form

(1'/2) 8+ (co—cop) A
o(co) = C+

(~—~p)P+ (r/2)P
'

flic (1'/2) A —(co—pop) 8
N(co) —1=- —a

2co (co—cop)'+ (P/2)'
where the profile-parameters A, J3, C, D, I', ~0 are given in terms of atomic matrix elements.

Part I reviews the notion of resonances. Part II summarizes the relevant results of collision theory, stressing physical
interpretation, and gives a definition for excited {or resonance) states based on a simple partition of basis states into two
classes. Part III applies perturbation theory to the calculation of resonance profiles. Part IV applies these results speci-
fically to the attenuation and refraction of photons by tenuous gases, with particular attention paid to the profiles of
autoionizing lines. The efkcts of degeneracy {the extension of the bound-state Z ' expansion theory) are noted.
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