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This paper compares theory and experiment for behavior very near critical points. The primary experimental results
are the “critical indices” which describe singularities in various thermodynamic derivatives and correlation functions.
These indices are tabulated and compared with theory. The basic theoretical ideas are introduced via the molecular
field approach, which brings in the concept of an order parameter and suggests that there are close relations among dif-
ferent phase transition problems. Although this theory is qualitatively correct it is quantitatively wrong, it predicts the
wrong values of the critical indices. Another theoretical approach, the “scaling law” concept, which predicts relations
among these indices, is described. The experimental evidence for and against the scaling laws is assessed. It is suggested
that the scaling laws provide a promising approach to understanding phenomena near the critical point, but that they
are by no means proved or disproved by the existing experimental data.
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I. INTRODUCTION

In recent years, considerable attention has been
drawn to the phenomena which occur very near
critical points. Several recent conferences!? have
presented a wealth of new experimental data and
theoretical ideas in this area. These conferences have

broadcast the fact that there are quite marked simi-
larities between apparently very different phase
transitions. An antiferromagnet near its Néel point
behaves quite similarly to a liquid near its critical point.
The superconducting transition is not very different
from several ferroelectric transitions. In all cases, there
is an apparently rather simple behavior in the region
right around the critical point.

This simplicity and similarity among phase transi-
tions is not fully elucidated theoretically. Some of the
qualitative features of this behavior are reasonably
well understood; others remain a complete mystery.

In this paper we review the present status of theory
and experiment in this area, concentrating on the
time-independent properties of systems near 7. Thus,
we look at thermodynamic derivatives and time-
independent correlations but ignore the very interesting
work on transport coefficients and time-dependent
correlations. The particular subject is what can be
learned by comparing different phase transitions with
each other and with the existing theories. How are
different phase transitions alike? In what ways do they
differ? Why should we expect these similarities and
differences?

Because we are considering such a broad range of
phenomena, we cannot expect our readers to be experts
in any particular area we describe. Consequently, we
attempt to provide explanations and discussions which
will be comprehensible to the nonexpert. We are
hopeful that our treatment will provide some picture
of the interrelations within this broad field.

In the next section, the important theoretical ideas—
the order parameter, the choice between different
phases, long-range correlations, and fluctuations—are
introduced via the molecular field approximation.
These results are tested by comparing them with
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conclusions drawn from theoretical studies of the Ising
model, which is a model of a ferromagnetic material
that is particularly suitable for theoretical study. This
comparison shows that the molecular field approxima-
tion gives a picture of the phase transition which is, at
best, only qualitatively correct. The main quantitative
predictions of the molecular field theory are a set of
“critical indices” which turn out to have very different
values from the indices found in the Ising model. In
the third section we describe a recent theoretical
proposal that there exist relations among the critical
indices derived from the notion of “scaling laws”.

In the next sections we turn successively to magnetic
systems, critical points in classical liquids, the quantum
liquid—gas phase transition, superfluids, and ferro-
electrics. In each case, the experiments which determine
the critical indices are tabulated and analyzed. These
data are used to show many remarkable similarities
between different phase transitions and a few equally
remarkable differences. The relations among the
indices predicted by the scaling laws are tested. Most
often the theoretical ideas are supported by the experi-
ments but the few discrepancies that exist allow one to
leave open the question as to whether the scaling laws
are in fact right.

II. MOLECULAR FIELD THEORIES

A. The Order Parameter

The most fundamental idea which helps elucidate
the behavior near a critical point is the concept that
this transition is describable by an order parameter .35
This parameter, here indicated by the symbol (p(r) ),
is a numerical measure of the amount and kind of
ordering which is built up in the neighborhood of the
critical point. For example, in a single domain ferro-
magnetic crystal with an easy axis of magnetization
along the z direction, a suitable order parameter is the
statistically averaged z component of the magnetization
at the point r, {(p(r) )= (M,(r)). Besides indicating
how much spin ordering there is, the order parameter
defined in this way has the following important
properties:

(a) It may vanish above the critical point but is
must be nonzero in the region just below 7.

(b) It can approach zero continuously at T—T,
from below. (For example, at zero applied field the
magnetization vanishes as the temperature is raised
to the Curie temperature.) This condition ensures that
the transition not be of first order.

(c) Below the phase transition, the order parameter
is not fully determined by the external conditions, but
may take on two or more different values under
physically identical conditions. For example, at zero
applied magnetic field, the magnetization may point
in the plus or minus z direction with equal facility

below T,. Similarly, in the liquid-gas phase transition,
the appropriate order parameter is the density minus
the critical density, p— p.. When liquid isin contact with
vapor, this order parameter takes on two values: the
positive value appropriate to the liquid phase and the
negative value appropriate to the gaseous phase.

Table I lists a group of phase transitions which are
of higher than first order—i.e., which can take place
with zero latent heat—and gives the appropriate order
parameter for each transition. Also included in this
table are some indications of the amount of ‘“free
choice” which each (p(r)) may have below T..* For
future reference we also include in Table I a list of the
variables which are the thermodynamic conjugate to
the order parameter in each case. These conjugate
variables are indicated in general by the symbol /.

B. The Landau Theory of the Second-Order Phase
Transition—Thermodynamics

A relatively simple view of phenomena near the
critical point was provided by Landau.’ Although this
theory does not agree quantitatively with experimental
observations very close to the critical point, it does
provide a qualitatively correct view of the kinds of
things which do happen. Landau’s theory is most
easily discussed in the case of a ferromagnet with a
small magnetic field, B, and T near 7, Then the
magnetization M.(r) is necessarily small and it would
seem reasonable to expand the free energy in a power
series in this magnetization. This expansion takes the
following form

G=/d3rg(r) (2.1)
with
g(r) =go(T) —B.(r) M (r)+a(T)[M.(r) P
Fo(T)[M.(r) F4-c(T)[VM. (1) - VM (r)]. (2.2)

The first term go( 7)) represents the free energy per unit
volume which would exist were there no magnetization.
The second term B,M , represents the direct interaction
between the applied magnetic field B—assumed
parallel to the easy axis z—and the magnetic moment
of the spins within the sample. Direct spin—spin
interactions produce the remaining terms in g(r).
Because these interactions do not change when we
change the sign of M,, these terms contain no odd
powers of M,(r). This is the origin of the terms
proportional to ¢ and 6 in Eq. (2.2). The final term in
this equation is inserted to make the free energy larger
when M ,(r) varies in space. Hence this term serves to
damp out spatial variations in M ,(r).

It is a general rule in statistical mechanics that the
most probable value of any parameter is the one which
minimizes the free energy. Thus, we would determine
the most probable value of M,(r) by requiring that G
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Taste L. Partial list of transitions with critical points. In general, the symbol % denotes the conjugate to (p).

Thermodynamic conjugate

Transition Meaning of (p) Free choice in (p) of p
Liquid-gas P—pc p>0=liquid "
p<0=vapor
(2 choices)
Ferromagnetic magnetization (M) if # equivalent applied magnetic field,

Heisenberg model ferromagnet

Antiferromagnet

Ising model
Superconductors

Superfluid

Ferroelectric

Phase separation

magnetization (M)

sublattice magnetization

<¢Tr>
A (complex gap parameter)

) (condensate wave func-
tion)

lattice polarization

concentration

“easy axes” H, along easy axes
2n choices
direction of (M) H

[can choose any value on
surface of sphere. ]

if # “easy axes” not physical

2#n choices

2 choices h
phase of A not physical

phase of () not physical

finite number of choices electric field

a difference of chemical
potentials

2 choices

be stationary under the infinitesimal change
M.(r)—M,(r)46M.(r). (2.3)

The first-order change in G under this transformation is
3G [ o) (1)

X {—=B,(r) +2aM,(x) +4b[ M ,(r) P—2c VM (1) }.
(2.4)

Since this must vanish for all values of 6 ,(r), the
brace must be zero. Hence the equation for the most
probable value of M ,(r) is ‘

(204480 M, (1) —26V2} M,(x) = B,(r). (2.5)

Landau now makes the drastic assumption of neglecting
all fluctuations in the magnetization. This is equivalent
to the assertion that the most probable value of the
magnetization, as defined by Eq. (2.5), is the only
value and hence also the mean value.

The free energy is obtained by solving (2.5), and
then substituting the solution into (2.2). When there
is ambiguity arising from multiple solutions to (2.5),
this is to be resolved by choosing the solution which
actually minimizes G. For this procedure to work, &
and ¢ must both be greater than zero; otherwise thereis
no minimum for G. (If 5<0, the transition is first
order; if ¢<0 the magnetization is never uniform.)

Begin with the simplest case, that in which B.(r) is
independent of r. Then there is no reason for spatial

variation of M,(r) and (2.5) reduces to

[2a+4bM M ,=B.. (2.6)

When B,=0 this has the solutions
M.=0 (2.7a)
M= £(—a/2b)12, (2.7v)

The first solution (2.7a) actually minimizes the free
energy when a¢>0; the remaining solutions (2.7b)
minimize G when ¢<0. But since we want the magneti-
zation at B,=0 to vanish above T and to be nonzero
below T, we must have

a>0
a<0

for T>T,
for T<T..

Landau chooses the simplest form of a(7) which will
accomplish this purpose: he takes

a(T)=d(T—T,) (2.8)
near T.. He also guesses that b and ¢ approach constants
as T—T,. This choice of a(7T) ensures that at the
critical point (B,=0, T=T,) the system can produce
a nonzero magnetization with a cost in free energy
which is of fourth order in M,. Hence near T, the
system can produce large-scale fluctuations in the order
parameter with relatively little cost in free energy.
According to the best present beliefs this unusual
susceptibility to fluctuations is the cause of all the
special phenomena which appear near the critical point.
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TasLE II. Parameters describing phase transition.

Range of variables Parameter
describing
Physical quantity e=(T—T.)/T. h Behavior of quantity quantity
# >0 0 (#)=0
<0 0 (p)~=x|elf B8
0 =0 ~=| k|8 8
X=3(?)/ah !0 >0 0 ~e Y ¥
<0 0 ~Jel™ ¥
g(r, ') = (pepr)—(p)? 0 0 ~ | r—p'|dt2n 7
g=range of g(, 7') >0 0 ~e
<0 0 ~e v
Ch=specific heat at constant % >0 0 ae*+b a
<0 0 | e[+ o
or >0 0 4 loge'+B a=0
<0 0 A’ log | e|*+B’ a'=0

We now follow the thread of the Landau theory and
derive the relation between critical phenomena and
fluctuations from the free-energy formulation of Egs.
(2.2) and (2.5). The reader will recognize that there
is a physical inconsistency in this whole calculation.
Equation (2.5) was obtained by neglecting fluctuations
—and we shall finally conclude that fluctuations are
all-important! But the Landau theory, although it is
essentially inconsistent near 7%, does give a good
indication of the kind of behavior to be expected.

First, look at the temperature dependence of {p(r))
(the magnetization) at zero % (magnetic field).
According to (2.7b) and (2.8) the magnetization just
below 7 is proportional to (7°.— T)'/2. Since we shall
obtain and use several results of this type, it is con-
venient to collect them in tabular form. In the second
line of Table II, we define an index 8 by the condition
that the order parameter go to zero as (7.— 7")# when
the thermodynamic conjugate to the order parameter
h, is at its critical value.

We have just concluded that in the Landau theory
B=4%, as given in the first entry in Table III.

To continue this compilation, take Eq. (2.6) at
T—T.=0. Then a=0 so that Eq. (2.6) implies

M,={B./4b}® with 0=3.

This gives the next entries in Tables IT and III.

The susceptibility, x=(dM,/dB)r is calculated by
differentiating Eq. (2.6) with respect to B. At zero
magnetic field, the resulting susceptibility may be
evaluated above and below 7. by employing re-
spectively Eqgs. (2.7a) and (2.7b). In the end the
magnetic susceptibility is seen to diverge both above
and below T, as| T— T, | ~1. Hence the valuesy=v'=1
are recorded in Table IIT.

The final thermodynamic property which we will
obtain from the Landau theory is the specific heat at

(2.9

zero magnetic field, which is given by thermodynamics
as

T-1Cp= —32G/6T2 1 B=0.
But, at B=0, we can use (2.7) to find

(2.10)

G= [ dfe(T)]  for T>T.

=/dr[go(T)——(a2/4b)] for T<T.. (211)

This extra term in the free energy below 7. produces,
when it is twice differentiated, a constant term in the
specific heat. Thus, there is a discontinuity in the
specific heat at 7. predicted by the Landau theory.

C. Landau Theory—Fluctuations

Next consider fluctuations in the magnetization
M,(r). These fluctuations are given by [M,(r)—
(M ,(r) )]. The point to be studied is how the deviation
of M, from its average at one point in the material is
tied to the similar fluctuations in neighboring regions.
The mathematical description of this correction is
given by the correlation function g(r, r’) defined by

g(r, 1)
= ([M.(r) = (M .(r) YILM ,(x) — (M.(x) )]).

At first sight it is hard to see how g can be calculated
within the context of the Landau theory. The difficulty
arises because this theory begins by neglecting fluctua-
tions, i.e., by saying that M.(r)— (M.(1)) is very
small. Now we wish to use the theory in order to cal-
culate a first correction to this initial statement.

Fortunately there is a well-defined procedure for
calculating correlation functions starting from the
free energy. This procedure arises from a quite general

(2.12)
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TasLE III. Comparison of Landau theory and Ising models.2

Ising model
Physical Parameter Landau theory
quantity 2-D 3-D
(p) B 1/2 1/8 0.3130.004
) 3 15 5.240.15
X ¥ 1 7/4 1.2504:0.001
% 1 7/4 1.3140.05
g(r, 1) 7 0 1/4 0.0560.008
£ v 1/2 1 0.643£0.0025
v 1/2 1 ?
Ch a 0 0.0<a<0.25
discontinuity in C, log » in Gy
o 0 0 0.066+40.16, —0.04

® The values of the critical indices in this table are mostly taken from the
reviews of Fisher (Refs. 1, 15-17). In addition, the numbers for B8, ¥/, and &’
are taken from a preprint of G. A. Baker and D. S. Gaunt. We wish to thank

theorem of classical statistical mechanics. This theorem®
states that if the Hamiltonian contains the parameter
k(r) in the combination

—/drh(r)p(r) (2.13)

then if we allow %4(r) to change by adding to it the
small increment §4(r), this change induces a change in
{p(x) ), which is

3p(x) )= 1) [ar' Co(x) ~ (p())]
X[p(x) = (p () D)oh().

Here % is the Boltzmann constant. In our case 4(r)
corresponds to the magnetic field, (r) to the magneti-
zation, and (2.14) reads

(2.14)

S(M,(r))=(RT)|dr'g(r,1') 6B, (1'). (2.15)

Our equation for the average magnetization in the
Landau theory is (2.5). If we calculate the first-order
change in that equation as B,(r)—B,(r)+68B,(r) so
that M,(r)—>M,(r)+6M,(r) we find that (2.5)
implies

{20126 (M ,(r) =26 V2}6(M,(x) )=5B.(x).  (2.16)

Next, substitute (2.15) into (2.16) and move 8B,(r) to
the left-hand side of the equation to find

f dr' {[2a+126 (M, (r) Y— 2V g (x, ') — R TS (r—1') }
X8B(r) =O0.

Since 8B(r’) is arbitrary, the entire brace must vanish
and the correlation function therefore obeys the

these authors for sending us their work prior to publication. The values for
7 %le_dhv cii)l‘e taken from M. E. Fisher and R. J. Burford, Phys. Rev. (to be
published).

equation
[2a+126(M ,(x) 2—2¢V2]g(x, 1) =kTo(xr—1"). (2.17)

Equation (2.17) is easily solved when the magnetic
field is zero. In this case, for T>T, the average
magnetization vanishes and (2.17) reduces to
[2¢'(T—Te)—2cV¥]g(r, v') =kT6(r—1")

for T>T, (2.18a)

For T< T, the squared magnetization is proportional
to T.— T according to (2.7b) so that (2.17) becomes

[4d/(T.—T)—2cV*]g(r,t') =kTo(r—1’). (2.18b)
In three dimensions these equations have the solution

_ep(= |r—1'|/8) kT

g(r,7") p— - (2.19)
with
£=(c/a)VA(T—T,) 12 for T>T,
£=(c/2a") 2 (To—T)~2  for T<T, (2.20)

Before discussing the consequences of (2.19), we
must indicate why a g determined from the theorem of
classical statistical mechanics [Eq. (2.15)] is correct
for this quantum-mechanical problem. Equation (2.19)
isnot correct for all values of (r—1’), because quantum-
mechanical fluctuations do, in fact, invalidate the
derivation. But, when | r—1’| is much greater than a
lattice constant, we can replace the magnetization by
its average over several cells of the lattice. Since this
magnetization is now produced by many spins quantum
fluctuations become insignificant. Hence the result
(2.19) is a correct consequence of the Landau theory.
whenever | r—1’ | is much bigger than a lattice constant.

But the important fact is that the correlation
function (2.19) has such a very large spatial range near
T.. As T approaches T, its characteristic range £
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growsas | T'— T, | —”, where y=1 in the Landau theory.
This range measures the typical size of a region in
which a coherent fluctuation in the magnetization
occurs. As we get closer to the critical point, these
fluctuations cover more space. Finally, at the critical
point the spatial extend of the correlation functions
becomes infinite and then g drops off very slowly in
space. In three dimensions this drop-off occurs as
|r—r'|-1. In the general case of a d-dimensional
lattice, the Landau theory predicts a drop-off as
|r—r/ | —6@-D,

All of the conclusions of this and the preceding
section are consequences of the simple assumption
that the free energy is expandable in power series in
the order parameter and in (7'—T¢). A large number
of theories of phase transitions make implicit use of
this assumption. All of these approaches must neces-
sarily lead to the same conclusions as Landau’s about
behavior near the critical point. In particular, they
give the same values of the critical indices «, 8, v, 9, 7,
and ». Examples of theories which are equivalent to
Landau’s are the van der Waals’ equation for a liquid,
the Weiss molecular field theory for a ferromagnet and
its variants which have been applied to a variety of
other systems, the Ornstein—-Zernike equations for g,
many varieties of the random phase approximation,’
the Ginzburg-Landau equations for superconductors,?
etc. Many of these approaches give correct information
far from the critical point; but they all are expected
to fail as the critical point is closely approached.

D. Connections Between Correlation Functions and
Thermodynamics

All of these calculations do include some qualitatively
correct statements. One is that large-scale fluctuations
in the order parameter are the source of the singularities
in thermodynamic derivatives near the critical point.
To understand this point, refer back to Eq. (2.15)
which gives an exact formula for the change in magneti-
zation produced by a change in magnetic field in terms
of a correlation function. If the change in magnetic
field is independent of r, Eq. (2.15) then gives the
thermodynamic response of the magnetization to a
change in B,. This is precisely a definition of the

magnetic susceptibility. Hence Eq. (2.15) implies

that the susceptibility is
x=0M,/dB,| r=0M,/8B,

= (kT)- f ar'g(x, ). (2.21)

As T—T.therange of the correlation function increases.
Hence the r’ integral covers a larger and larger region
and the integral goes to infinity at 7.. Hence the
divergence in the range of correlations is the precise
cause of this and all the other singularities in thermo-
dynamic derivatives.

It is possible to follow this point explicity through in
the context of the Landau theory. Simply substitute
the form (2.19) for g into (2.21) and perform the
integral. Then, it follows that the susceptibility is, at

B=0
x=(2c)7&. (2.22)

‘This result shows directly how a divergence in the

range of correlations may produce a divergence in a
thermodynamic derivative. _

There are other useful exact correlation function
expressions for thermodynamic derivatives. For ex-
ample, if E(r) is the energy density, the specific heat
at fixed B is given by

Co= o [ a0 LB — (B EW) — (B())D)

kT?
(2.23a)
and also
T[8 (M.(1) /3T 5.
=9(B(x) /0B, | 2
= 1) [ar B — (B()]
XM, (") —(M.(r'))]). (2.23b)

E. The Ising Model

In order to investigate the correctness of the Landau
theory we quote results from theoretical investigations
of the Ising model. This is essentially a very anisotropic
ferromagnet in which only the z components of the
spins are coupled. The spins are denoted by or where
r gives the position on the lattice. Each o, can take on
the values 1. Then the Hamiltonian is given by

H/kT=—h 2, 0:—K X oo, (2.24)
T r,r/

The first term in H represents an interaction with
an external “magnetic field” %, which tends to make
the spins point up if % is positive and down if % is
nagative. The second term is an interaction among
spins which, when K is positive, tends to line up
neighboring spins with each other. To keep the inter-
action short-ranged, the second sum is carried out only
over r and r’ which are nearest neighbors.

To calculate the statistical mechanics of the Ising
model it is necessary to compute the free energy, G,
which is given by

> exp (—H/ET) = exp (—G/kT).

Here, the sum covers all possible values of the or.
That is, if there are IV sites on the lattice, the sum has
2V terms.

Some of the qualitative features of the resulting
partition function are rather easy to guess on physical
grounds. For example, consider the average‘‘magnetiza-

(2.25)



tion,” {(o,), which is proportional to (8G/dk) | 7. At
zero temperature and £=0, the aligning force repre-
sented by K wins out and the spins are perfectly
aligned. Then (see Fig. 1), (o) is either plus or minus
unity. As the temperature is increased, with % held
equal to zero, the magnitude of (o) continually
decreases until, at a critical temperature T, it disap-
pears completely. Any applied field, 4, will tend to
increase the alignment, i.e., | {or)|. This, too, is
indicated in Fig. 1.

Onsager? calculated the sum (2.25) in two dimensions
at =0 and others have extended his work to get other
physical properties.’®12 The results have been described
in review articles®® and monographs.3** This theory
gives the values of all the critical indices defined in
Table II except for 8. These theoretical values of
critical indices are listed in Table III.

In three dimensions, there is no general solution.
But there do exist numerical ways of attacking this
problem. Various physical quantities can be expanded
in power series about 7'=0 and about 7'= «. Then,
there exist numerical tricks for guessing the radius of
convergence of these power series and even their
behavior near singularities. From this emerges numeri-
cal estimates for the parameters of the two-and three-
dimensional Ising models. Table III records the values
of the critical indices obtained from these numerical
calculations. These are mostly taken from reviews of
Fisher 11517

The validity of these numerical methods may be

checked by comparing the results with the exact two- -

dimensional calculations based upon the Onsager
solution. It is found that the methods generally work
well, except that occasionally the convergence is
uncomfortably slow. The estimate of &’ is, for example,
not as accurate as we would like. On the other hand,
v is known to one part in a thousand for the sc, fcc,
bece, and diamond lattices.!® According to these numeri-
cal estimates, the values of the parameters are, as far
as we can tell, independent of the detailed nature of
the lattice.

Table III reveals that the Ising model behaves very
differently from the predictions of the Landau theory.
Thus, for example, the specific heat is discontinuous in
the Landau approach but has a logarithmic infinity in
the two-dimensional Ising model and an infinity which
is probably stronger than logarithmic in three dimen-
sions. As another example, =% in the two-dimensional
Ising model and is close to 0.31 in three dimensions;
these results are clearly different from the f=3%
predicted by the simple theory.

Because exact solutions exist for the two-dimensional
Ising model at Z=0 it is possible to calculate several
of the relevant correlation functions in this case. For
example, it is possible to show that the spin-spin
correlation function has a relatively simple form in
the case in which T is close to 7. and the spins are
separated by a large distance. To express this result
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T

NO STABLE
THERMODYNAMIC
STATES

(o] \
-l o +1 o>

F1c. 1. Magnetization vs temperature (schematic) for various
values of 4. Below the 2=0 curve, there are no stable thermo-
dynamic states.

we use the variable

e=(T—T.)/T. (2.26)

which is a dimensionless measure of the deviation from
the critical temperature and

R=|r—r'| /(lattice constant). (2.27)

When k1, R>>1, but eR arbitrary, the spin-spin
correlation function has the structure*

g(r,T') = | €| G(eR). (2.282)

The corresponding results for the energy density—
energy density correlation function and the energy
density—spin correlation function are, under the same
restrictions for e and R,8

(CE(r)—(E)YILE(r) —(E)])= | €| * Gun(eR)
(2.28b)

(Lo (r) = {)ILE(X) —(E)Y])= | e | "8 Gor(eR),
(2.28¢)

where G,z(eR) happens to vanish for all positive
values of its argument, i.e., for all 7> T..

Several interesting facts can be learned from these
correlation functions. First, consider their values for
large spatial separations between the points, i.e., for
eR>1. In this limit, each of the correlation functions
decreases exponentially. The spin-spin correlation
function behaves as

g(r, ') ~[e"/(eR)*] exp (— €| R)

for T>T,. (2.29a)
and
g(r,r')~[|e| "4/ (eR)*] exp (—2] €| R)

for T<T. (2.29b)
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while the energy density—energy density correlation

function behaves as!8

[&&/(eR)*]exp (—2|e| R) (2.29¢)

and the energy density-spin correlation function has
the behavior!® for e<0

[l e| 8 /(eR)*Jexp (—2|e| R). (2.29d)

Hence in this limit all three correlation functions go
exponentially to zero with the same characteristic
range

t~e| . (2.30)

These correlation functions each reduce to a simple
form when e—0. In this case even though R is very
large eR is very small. Hence the functions in (2.28)
are evaluated for small values of their arguments. Then
the spin—spin correlation function takes the form'

g(r,r’)~R-/4 (2.31a)

the energy density-spin correlation function becomes

proportional to
(¢)/R (2.31b)

where the energy density—energy density correlation
function becomes propertional to'®

R, (2.31¢)

By using these results, we can see again how the
divergences in thermodynamic derivatives are con-
nected with the very long range of the correlation
functions. For example, the specific heat at constant
B according to (2.23) is proportional to the spatial
intergral of the energy density-energy density cor-
relation function. In the region

1K RKL (¢/av),

where ao is the lattice constant Eq. (2.31c) gives the
appropriate form for this correlation function. Hence
this region contributes a part

[~E/ao
~1

to the specific heat. Since the correlation function
decreases very sharply as R becomes much bigger than
£, Eq. (2.32) gives a correct estimate of the temperature
dependence of the specific heat. From the fact that
¢~ e| 1, we then infer the logarithmic divergence of
the specific heat.

We expect that the long-ranged correlations are
relatively insensitive to the details of the interactions
between spins. If a correlation extends over a hundred
or a million lattice constants, this correlation should
be sensitive only to the grossest features of the inter-
action and should not be affected by a change from a
bec to a fcc lattice or to the introduction of some next-
nearest-neighbor interaction. The Ising model solu-
tions do, in fact, bear this out. The correlations in the

fae dR
d2R/R2~27r/ = ~amlog (a)  (232)
1

two-dimensional case are basically the same for square
and triangular lattices. In the three-dimensional case,
so far as we can tell, y=1.25 equally well for bec, fec,
and simple cubic lattices.

F. Range of Validity of Landau Theory

Now that we have seen that the Landau theory
does not work for Ising models, we ask when we expect
this theory to work at all. Ginzburg?® has proposed an
argument which uses the Landau theory to predict
its own range of validity. To do this, consider fluctua-
tions in the order parameter—which we assumed small.
Actual order parameters, e.g., the magnetization in a
ferromagnet, fluctuate considerably. However, some
of these fluctuations may be removed by averaging
the order parameter over a suitable region of space.
This averaging, however, cannot cover too large a
region without ruining the local nature of the Landau
theory of the second-order phase transition. The largest
range over which we can average without ruining the
theory is the coherence distance £.

Thus, for the Landau theory to be valid, fluctuations
in the order parameter over distances comparable with
£ must be relatively small. In particular, they must be
small in comparison with the order parameter itself.
We must have then,

()= )YIpE) = OOD | 1oL, (2.33)

where we are now using the symbol (p(r)) for the
order parameter. We estimate the right- and left-hand
sides of (2.33) below T, at zero magnetic field from
Egs. (2.19) and (2.7b). Theresult is that this necessary
condition for the validity of the Landau theory becomes

ET./4mect(T)<K—a/b. (2.34)

We can rewrite this in terms of more physical quantities
by using Eq. (2.20) for £(7). We then extrapolate
this expression to 7’=0, and define an extrapolated
zero temperature coherence length

A=(c/2a'T,)¥? (2.35)

so that the true correlation length of the Landau theory
is, near 7,

§T)=N]|e|l12 (2.36)

The jump in the heat capacity per unit volume (at
B=0) predicted by the Landau theory is

AC=[(a")%/20]T.. (2.37)
In terms of these physical quantities (2.34) reads
[16we(AC/R)NTIK | €| 12, (2.38)

Ginzburg?® and Levanyuk? produced somewhat more
careful versions of this argument. They came to the
conclusion that the Landau theory could only be
correct if | €| were much greater than a critical value,

€= (1/32x%) (k/ACN)2. (2.39)



When | € | Ke, fluctuations become important and the
molecular field theories all fail. For 13> ]| €| >, we
expect these theories to be valid. This calculation of
€. is just an order of magnitude argument so one should,
perhaps, not take the 327% in the denominator of Eq.
(2.39) too seriously.

The factor A in the denominator of e indicates that
as the range of the forces, and hence the range of zero
temperature correlations, gets longer and longer the
Landau theory gets better and better. This point has
been made explicitly in several recent papers?-2* which
show explicitly that the van der Waals theory (which
is equivalent to Landau’s near 7'.) follows rigorously
when you have an infinite range interaction.

Let us discuss ¢, for some examples:

Superconductors

For pure superconductors we expect A to be of the
same order as the zero temperature coherence length
£. In tin2 £=2300 A and AC=0.8X10¢ ergs/cm™?
deg™t. Therefore, Eq. (2.39) would indicate that
deviations from the molecular field theory (which is,
in this case, the Ginzburg-Landau?® theory) should not
be expected until e gets as small as 1074, This very
small value of e. arises because of the very long range
of coherence in the superconductor. Similar results for
the width of the critical region have been obtained by
several other authors, who have carried out more
detailed calculations of the dependence of specific
heat?® and electrical resistance?” upon e.

The Superfluid

In the \ transition of liquid He?, the situation is very
different. The T'=0 coherence length is quite compa-
rable with the interatomic spacing instead of the huge
number encountered in the superconducting transition.
Consequently, there appears to be no region at all in
which the molecular field theory is satisfactory.

Magnetic Transitions

In the case of iron AC is about 3X107 ergs cm™ deg™.
Here £ can be measured directly by neutron scattering
experiments. The total cross section o for momentum
ik is propertional to (&24k%)~1. The experimental
value for \ is about 2 A28 so that e,~1072,

However, there is some experimental indication that
the molecular field theory might be accurate for small
values of ¢, below 7°.2%+% This might occur because for
small ¢, the weak magnetic dipole interactions between
spins may become important. Since these interactions
have a long range, the molecular field theory might
perhaps again become correct in some range that
includes small values of e.

Since the magnetic fields produced by the spins in
an antiferromagnet tend to cancel out, the magnetic
interaction effectively has a much shorter range in an
antiferromagnet. There is, then, no reason to expect

KADANOFF ET AL. Stalic Phenomena near Critical Points 403

F1c. 2. Division of Ising model lattice into cells. L>>1 but
Laokt.

molecular field theory to be correct for small € in an
antiferromagnet.

Ferroelectrics

Ginzburg® has estimated A for BaTiO; and uses
Eq. (2.39) to find e,~10~% The reason for this small
value is that it is the smoothly varying coulomb force
which is responsible for establishing the ferroelectric
phase. Thus, in this case, the molecular field theory
is expected to work for all | €| >>10—4 However, in the
antiferroelectric, one should not expect a similar
preservation of molecular field theory. The experi-
mental data partially support this point of view since
the only observation of vy different from the molecular
field result (y=1) is in the antiferroelectric phase of
Rochelle salt.

III. SCALING LAWS
A. Formulation

Ideally, theory should predict values of the critical
parameters, a, o', 8, v, ¥/, 8, », v/, and 5. But, except
for the case of the two-dimensional Ising model, no
analytical theory exists.

A series of recent proposals®—* suggest that there
exist relations among these indices, in particular, that
there are not nine unknown quantities, but instead
that the nine critical indices can all be expressed in
terms of two fundamental unknown indices. There
have been several suggested “derivations” of these
relations among the critical indices. None really derive
all the results at hand; they are plausibility arguments.

To see one of these consider an Ising model lattice.
Imagine that we mentally divide the lattice into cells,
each side of length La,, where ao is the lattice constant.
L is chosen to be very small compared to a coherence
length, but is large enough so that the cell contains
many spin sites (see Fig. 2).

1K LKE/ ao. (3.1)

Let us assume for a moment that all the inter-
actions between different cells were turned off. Then
each cell would act independently of every other and
there would be no correlations over distances larger
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than a cell size. But, these are precisely the correla-
tions which produce the divergences in thermodynamic
derivatives which are characteristic of the critical
region. Hence correlations between different cells
must be quite crucial—the interactions among cells
must be all important.®®

We have already noted that the correlations near
the critical point should not depend upon the details
of the interaction. Let us assume that the cell size Lao
is one of these irrelevant details. Then, in each cell
there must be a variable ua, a being a label for the
cell, which behaves in an essentially identical fashion
to our original variable ;. That is, interactions among
different cells should produce correlations among the
ua’s identical in structure to the correlations in the
original Ising model problem.*

The only possible difference between the site problem
and the cell problem can be in the values of the two
parameters e and 4. Assume that the values of these
parameters for the cell problem are & and A. Since
these, respectively, describe the crucial effects of the
interactions among cells and the interaction between
each cell and the external magnetic field, they can
depend upon the size of the cell. As the magnetic
field goes to zero, the effective field in the cell problem
must also go to zero. Hence fi~k. The constant of
proportionality may depend on the cell size so we guess

h= L, (3.1a)
where x is unknown. Similarly guess
€= L, (3.1b)

so that the cell problem will become critical as the site
problem becomes critical. It follows that all nine
critical indices may be determined in terms of x and y.

B. Thermodynamic Results

First we calculate the change in the free energy as
h changes by an infinitesimal amount. Assume the
hy varies so slowly with r that the field may effectively
be considered constant in each cell. Then the change
in the free energy is

8(G/ET) =— Z (or)ohe=—D_ (ua)oha  (3.2)

This must be the same in the two problems because
this change in the free energy is a physical quantity.
But, since the variation in space is assumed to be
very slow we can replace the sum over cells r by the
number of sites per cell times a sum over cells. This
number is just L¢, where d is the dimensionality of the
system,
Thus, (3.2) implies

L3 (e Yohe= (ua)oha.
From (3.1a) and (3.3) it follows that

(3.3)

(3.4)

or=L¥ Y,

Next calculate (o) for the case in which the field %
does not depend upon r. This depends upon e and 7%,

{or)=F (e, ). (3.5a)

Since pa is supposed to describe a problem identical to
the original one except that it has new values of € and
h, {u) is the same function of the new variables

(u)=F(&h). (3.5b)
Equations (3.2), (3.4), and (3.5) now combine as
{(¢)Y=F(e, h) = L*—2F (L%, L*h). (3.6)

But the length L is only a mathematical construct
It must cancel out of the right-hand side of (3.6).
This can only happen if F(e, %) is of the form

(@)=F(e k)= (/| k]) | ]| @=0f(e/ | vF).  (3.7)

The factor 4/ | % | in (3.7) is inserted to ensure that
(o) changes sign”as the sign of the magnetic field is
changed.

The functional form of the f(z) defined by (3.7) is
not known to us. Nevertheless, (3.7) permits us to
compute critical indices in terms of x and y. For
example, if (o)~ | ¢|# for small negative ¢, it must be
true that f(— o) =const. Then (3.7) gives

B=(d—=)/y.

All other thermodynamic derivatives may be found
by differentiating or integrating (o) with respect to e
and 4. Thus «, o/, v, ¥/, and & may be expressed in
terms of x and y. The result is that the six indices in
question are expressed in terms of the two parameters,
or alternatively, the six indices obey four relations.
These are®

(3.8)

=7, (3.9a)
a=d, (3.9b)
d/y=2—a=y+28=8(5+1). (3.9¢)

The analysis which gives v, v/, 8, and & is quite
direct because it involves differentiating (o). But the
specific heat can only be found by integrating (o)
with respect to %. Even then there are no problems
except when « is an integer. The interesting case is
a=0, which gives a singularity of the form

Cp(e,h=0)=—Alog|e|+B  fore>0

=—A"log|e| +B" for e<O. (3.10)

This analysis indicates that the same coefficient
multiplies the logarithm when >0 and ¢<0:
A=4'

for a=0. (3.11)

Equation (3.11) is another conclusion drawn from the
scaling laws which is subject to experimental verifica-
tion.
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Tasze IV. Check of scaling law equalities for Ising model. The scaling laws predict that, for a given transition,
all the numbers listed in the table (except for A and y) should be the same.

2-a  2-d dv & dy/Q-nm) v+28 Y28 BGHD) vy A=2/y
Two-dimensional Ising model 2 2 2 2 2 2 2 2 1 3.75
Three-dimensional Ising 1.87 1.934+0.04, 1.93 ? 1.933 1.87 1.94 1.93 1.53 3.22
model +0.12 —0.16 +0.01 +0.008 +40.01 +0.05 +0.05 +0.01 =+0.02
C. Correlation Function Results and
The next object is the spin-spin correlation function ([E:— (E)][or— (¢ )]}
g(r, 1) =g(R, ¢, ) = ([ox— (o) ][’ = (o)1),  (3.12) =gu(r, 1)

where R is the distance between the points in question,
R=|r—1'"| /a,. We can equally well write a cor-
relation function for the u’s defined by Eq. (3.4) which
must be identical in structure to g(R, ¢, &) except that
the scales of length e and % are changed

R—R/L,
e—eé=elV,
h—h="hIz. (3.13)
It follows that
g(R, ¢ 1) = LD ([pa— (u)[ua’— ()]
=[2==Dg(R/L,eL¥, hL*)

so that g(R, ¢, &) can turn out to be independent of L,
only if it has the structure:

8(R, & 1) = | €| X (R | €| 11n,¢/ | | v2)

for R>>1, | e| <1 and & «1.

Equation (3.14) gives the critical indices », »’, and
n. It is immediately apparent that the =0 coherence
length must be proportional to | e | /v, Hence®

(3.14)

yl=p=)'=(2—a)/d. (3.15)
The last critical index is 5, defined by
g(R, e=0, h=0)~(Rd2n)—-1,
Then (3.9) and (3.13) give
dv/(2—n) =2—a. (3.16)

To conclude, we notice that arguments almost
identical to the ones which generated the form (3.14)
for the spin correlation function may be invoked to
describe correlations involving the variable E;, which
is the energy per site in the neighborhood of r. The
results are that

(LE—(E)JLE—(E)])
=gEE (ry I")

= | e|2@VIgpp(R | |V, ¢/ | B| V") (3.17a)

= | e| =g (R | e| o, ¢/ | h] ¥), (3.17b)
where §rr and §,g represent unknown functions.

D. Comparison of Ising Model Results with Scaling
Law Conclusions

The simplest conclusion from the scaling law
hypothesis is that the combinations of ‘“experimental
parameters” 2—a, 2—ao/, dv, dv', dv/(2—9), v+28,
v'+28, and B(8+1) are all just different ways of
writing the same number, d/y. To check this against
the known Ising model results, we have given in Table
IV the values of all these supposedly equal quantities
as given by the results of Table I1. The errors quoted
in these tabulations are numerical errors in the Ising
model analysis. The close equality among these numbers
in both the two-dimensional case and three-dimensional
one serves to support the scaling law hypothesis.

In the last two columns of Table IV values of y
and A=2x/y derived from the previous seven columns
are quoted. [We use A as our basic variable because
several other authors (e.g., Domb and Hunter) also
use it.] The value of y is determined by using v=1/y.
The value of A is derived from y from the scaling law
relation

A=2dv—2p (3.18)

since v and 8 are known quite accurately.

In the two-dimensional case, there are available
several other checks of the scaling law results. First
the specific heat singularity at 2=0 is logarithmic in
character (@=a’=0) so that one should expect the
coefficients 4 and A’ defined by (3.10) are equal. The
Onsager solution® shows this to be true.

Also, the scaling laws predict the following forms
for the correlation functions of the two-dimensional
Ising model at 2=0. From (3.13), (3.16), and (3.17)
it follows that at =0,

g(r, r') = | e[ G (eR), (3.18a)
gor(r, ') = | €| 183G, (eR), (3.18b)
gee(r, v') = | €| *Grr(eR). (3.18¢)



406  ReviEw oF MODERN Prvsics - ApriL 1967
All three of these scaling law conclusions have been
verified by actual calculations.!!+18

In conclusion, there is excellent evidence for the
correctness of the scaling laws for the two-dimensional
Ising model. All the correlation functions and critical
indices turn out to agree exactly with the scaling law
hypotheses. In three dimensions, the critical indices
agree quite closely with this hypothesis, but there are
small discrepancies which appear to be outside of the
statistical uncertainties in the indices. These discrep-
ancies have caused Domb® to have some doubt about
the exact validity of these scaling laws which are
derived from considerations involving the correlation
functions, namely the relations involving » and 7.
Fisher® has expressed similar reservations and also has
questioned whether the symmetry above and below T,
e.g., vy=v', Is exactly true.

E. Questions About Real Phase Transitions

Three questions about the scaling laws which the
experimental evidence can answer, in principle, are
considered in this section.

A. Are the scaling laws correct?

Experimental evaluation of the indices combined
with a comparison like that of Table IV can disprove
the scaling laws or it can be strong evidence in their
favor.

B. Assuming that the scaling laws are correct, how
many different phase transitions are there?

We started from the point of view that the details
of the interaction do not matter near the critical
point. But what is a detail and what is essential?
The dimensionality certainly matters considerably.
But, in the real, three-dimensional world would we
say all ferromagnetic transitions are essentially similar?
Are these in turn just like all liquid gas transitions?
Measurements of critical indices and deductions of
values of x and y can shed considerable light on this
point.

C. What are the values of x and y? Are they simple
numbers like 2.5 or 7/2? If so, careful thinking might
serve to predict them. Accurate experimental deter-
minations of these numbers can serve as a useful guide
to thinking about this difficult problem.

IV. MAGNETIC TRANSITIONS
A. Theoretical Models

In real magnetic materials the spins are coupled
through the strong, short-range exchange interactions
and the long-range magnetic dipolar interactions. For
the low-temperature materials, such as dysprosium
aluminum garnet (DAG) and some low-temperature
salts, these dipole interactions are of the same size or
larger than the exchange interactions.#~% In high-
temperature materials the exchange interactions are
much stronger; however, even a weak long-range

interaction may affect the delicate correlations which
occur quite close to the critical point.

No theories have been developed up to this point
which can treat the complexity of a real magnetic
material. Instead, theory deals with over-simplified
models.

Molecular Field Theory

The simplest model is the molecular field theory or
Landau theory. We discussed this extensively in Sec.
II, where we mentioned that this model gave y=1,
B=1%, 6=3, and a finite discontinuity in Cgy at the
critical temperature. This model is appropriate when-
ever the force has a very long-range. In particular, if
there are z equally interacting spins, then according
to Brout? the molecular field theory works whenever
le| =(T—1T.)/T.| >z The dipole interaction does
not have a long enough range so that one can be sure
that the Landau theory is valid for purely dipolar
forces.

Ising Model

In the Ising model, one includes only one component
of the spin. This model might be a suitable representa-
tion for highly anisotropic materials in which the
coupling of one component of the spin is much stronger
than that of the other two components.

Heisenberg Model

The Heisenberg model of the ferromagnet is, in
some sense, an opposite limit to the Ising model. Here
one assumes that the Hamiltonian contains terms of
the form JS-S’, where S and S’ are the spin operators
for neighboring particles.

This assumption of complete isotropy is stronger
than just taking the crystal to contain three easy
axes of magnetization—as in a cubic crystal. The
Heisenberg model implies that all directions in space
are equivalent. The order parameter is then the
magnetization vector. Since this is qualitatively
different from the scalar order parameter of the Ising
model, the Heisenberg model may show a critical
behavior which is qualitatively different from that of
the Ising model.

Of the critical indices we are reviewing, the only
numerical result for the three-dimensional Heisenberg
model is for the critical index v which describes the
divergence of the susceptibility just above T.. Numeri-
cal calculations give? y=1.43 for spin 1 and*® y=1.33
or® 1.36 for infinite spin. The three-dimensional Ising
model gives y=1.250. This difference between the two
models appears to be larger than the numerical errors
in the calculation.

Notice the apparent spin dependence of the Heisen-
berg model’s y. The possibility that a critical index
depends upon a specific detail of the interaction such
as the size of the spin is contrary to the assumptions
of the scaling laws. Consequently, we must count this



small spin dependence as an argument against the
scaling laws.

Antiferromagnets

An antiferromagnetic ordering consists of two
interpenetrating sublattices of equal and opposite
magnetization. In this case the order parameter,
p(r), is the magnetization on each sublattice. The
conjugate variable, %, is a magnetic field which is
positive on one sublattice and negative on the other.
There is no way of producing such a field macroscopi-
cally in the laboratory.

In the nearest-neighbor Ising model we convert a
ferromagnetic ordering into an antiferromagnetic
ordering by changing the sign of the interaction
constant, K. Since this transformation may be undone
by changing the signs of all the spin variables on one
sublattice there is an exact equality between the
partition functions of the ferromagnetic and anti-
ferromagnetic Ising models. Therefore, all the zero
field (£=0) conclusions of the Ising model apply
equally well to the ferromagnet and antiferromagnet.’

An antiferromagnetic ordering may also be produced
in the Heisenberg model by changing the sign of the
interaction constant. However, in this situation, there
is no exact correspondence between the problems for
different signs of the interaction constant except at
infinite spin. However, if the details of the interaction
do not matter, and if the value of the spin is one such
detail, then the Heisenberg model antiferromagnet
would have the same critical indices as the Heisenberg
model ferromagnet.

Because of the antiparallel sublattices, direct dipole—
dipole interactions are of much shorter effective range
than in ferromagnets. Therefore, these long-range
forces should be expected to have a much smaller
qualitative effect upon the transition in the anti-
ferromagnetic case.

B. Problems in Interpreting Experimental Data
Concept of Critical Region and Determination of T

In interpreting the data we are not particularly
interested in the absolute temperature, but in e=
AT/T,=(T—T.)/T, near a critical point. The tem-
perature difference AT can be measured much more
accurately than 7T itself.

Theoretically one assumes that the thermodynamic
functions approach a simple behavior, namely, a
power of ¢, as e—0. Thus the critical region is defined
as the region where this behavior dominates. Since
molecular field theory fails for e <1/, where z is the
number of nearest neighbors, we obtain a rough
estimate that the critical region is for ¢ <10~ In fact,
we shall show that for magnetic materials the experi-
mental evidence indicates critical regions beginning
when ¢ <1072 to 10-L [Since T, varies from 0.1° to
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1400°K in the materials studied, the critical region is
most conveniently discussed in terms of e rather than
(IT'—T,) above.] In principle, one can make cross
checks by comparing for example the regions in which
the specific heat and the susceptibility seem to show
critical behavior. In practice, there is rarely enough
data on the same material to be confident that the
various thermodynamic functions settle down to their
critical behavior at the same e.

A major experimental uncertainty is in the relative
location of T itself. In specific heat measurements, a
rounded peak is often observed, making the precise
location of 7, uncertain (see Table IX). In resonance
experiments one sometimes finds a small temperature
region where both para- and antiferromagnetic lines
exist (in external field) and overlap.®52 Measurements
in applied field require extrapolation to zero field to
fix T.. Noakes, Tornberg, and Arrott® have taken
some of this uncertainty into account by assuming a
power-law temperature dependence and then fitting to
the best value of T, as well as the critical exponent.
However, it would be most desirable to determine T

_independently of the above data, or at least through

comparison of two critical quantities, such as specific
heat and susceptibility.

An example illustrates how the choice of critical
region and 7. are interdependent and affect the
evaluation of critical indices: Heller™ plots the cube of
magnetization in MnF, vs the temperature. A linear
relationship is found for 7X1075< | ¢ | <8X 1072, and
this straight line is extrapolated to zero to give T,=
67.33640.003°K. Using his published data, however,
we plot the square of magnetization vs. temperature
and find that a straight line also fits here for | ¢ | <1073,
Extrapolation gives 7,=67.34340.004°K. Con-
sequently if we assume that the critical region is for
| €] $10~! we are forced to conclude that the cubic
law is very nearly correct; if we assume that the critical
region only includes |e| <10~ then the data equally
well permit the square and cube laws.

Domains

Ferromagnets and imperfect crystals of antiferro-
magnetic material have a tendency to break up into
domains. The domain walls serve to break up the
long-range correlations so essential to critical behavior.
Hence, if one is to compare idealized theories (like the
Heisenberg or Ising models) with experiments it is
essential that the domains be larger than the theoretical
coherence length. If this is not true there will be a
rounding of the transition which will be very difficult
to interpret.

Changes in Lattice Consianis

The interaction constants which describe the coupling
between spins depend upon the lattice parameters.



408  REviEW OoF MODERN PHySICS « APRIL 1967
GORODETSKY, SHTRIKMAN 8 TREVES
YFeOy
a - 38 Qe
b - 210«
o(T) 2 z - g:g..
o(0) | e e - 1460w
: d f - 1960w
g - 29600
" h - 3960w
o 1 1 1
1004 1.002 1.000
/T,

F16. 3. Magnetization vs temperature of single-crystal YFeOs;
with the applied magnetic field as a parameter. The broken line
is the magnetization extrapolated to H=0.

Since the internal energy of the lattice depends rela-
tively strongly upon T— T, and 7. depends upon the
lattice constants, it may be energetically favorable
for the lattice constants to change near 7,. This
effect should be included in the analysis of precise
data.’* In crude terms this is equivalent to say that
e=(T—T.(T)]/T,, i.e., for each temperature in the
critical region we need a different 7 in order to look
for a power law to compare with a theory which has
fixed lattice constants.

This connection between critical effects and lattice
size and shape can in some cases make the transition
first order.® Consequently, it is necessary, in every
case, to be convinced either that the transition is indeed
second order or that the latent heat in a first-order
transition is too small to change the effects under
study.

C. Experimental Results
Susceptibility
The experiments are of two kinds:

(1) An experimental mapping of the M-H-T
surface, such as reported by Gorodetsky, Shtrikman,
and Treves® for the weak ferromagnet YFeO; Their
curves are shown in Fig. 3. From these data one can
obtain the spontaneous magnetization, M vs H at T,
and the susceptibility above and below T%.. To find T,
and the spontaneous magnetization one must extrap-
olate such data to H=0. To find the susceptibility
below T, one must subtract the spontaneous magnetiza-
tion from the measured magnetization, which can
introduce considerable uncertainty.

(2) Neutron scattering measures a time-dependent
spin-spin correlation function from which one can
deduce the correlation length and the susceptibility.

The experimental susceptibility data are summarized
in Table V.55 Except for YFeO; all the data are for
T>T.. The effective spin is listed in each case, but
one cannot tell from these data whether the Heisenberg
model behavior of larger v for smaller spin is followed.
The effects of single crystal versus polycrystal are

more evident. Gadolinium is anisotropic, and Graham®
has pointed out that for a single-crystal susceptibility
measurements along the easy axis and along a hard
axis show different behavior. Thus Develey’s recent
v=1.16 for polycrystalline gadolinium is not
surprising.¥’ Possibly the y~1.21 for polycrystalline
cobalt has a similar explanation.® Iron and nickel each
have three easy axes of magnetization and polycrystal-
line samples show the typical y_s$.

The recent experiment by Noakes, Tornberg, and
Arrott shows that in iron the susceptibility and hence
the long-range correlations are not altered by im-
purities.® The one value for T'< T, namely v'~0.7 in
YFeO;,” violates the scaling law prediction y=+".

In experiments of Miedema, Van Kempen, and
Huiskamp* on the low-temperature salt CuK,Cly- 2H,0,
they also measured its specific heat (see Table IX).
Our analysis indicates the specific heat settles down
to its critical behavior for ¢<10! whereas the sus-
ceptibility has settled down for e<3X10-l. Com-
parative data such as this should always be an objective
of a critical phenomena experiment, for it helps estab-
lish where the critical region begins. In this case it
appears that the critical region is approximately the
same for these two thermodynamic functions.

Kouvel® has used M vs H and T data to construct
a very direct check of the scaling laws. According to
Eq. (3.7), for a given material the magnetization obeys
the relation

M/E=f(H/e), (4.1)

where f(H/e®) is an unknown function. From (4.1) we
conclude that if we knew M as a function of H for
one value of e and if we knew 3 then we could predict
M vs H for any other value of e. [Actually this is not
quite true because f(H/é®) can have two different
forms, one for >0 and the other for e<0. But as long
as we remain above T, the scaling laws predict that
one measurement of M vs H would suffice to tell
everything.]

Kouvel used the data of Weiss and Forrer® for Ni
and his own data for CrO; ® to construct a direct check
of Eq. (4.1). He plotted M /¢ as a function of H/é for
different values of e as indicated in Fig. 4. If Eq. (4.1)
is correct this plot should give a simple curve, independ-
ent of the value of e. The figure indicates that the
points do fall on one curve. This then serves as a direct
and convincing check of the scaling laws.

This analysis provides values of 3 and 88 which are
different for the two materials. In particular, we have

B6=1.76 for Ni
B6=1.91 for CrO,.

B=0.42
8=0.33 (4.2)

Equation (4.1) indicates that the critical index v is
given in terms of these as

v=B(0—-1). (4.3)
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KOUVEL AND RODBELL
Cr0p
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B =14 (2] +105(Z)

Te =386.5°K

® 390°K
© 395°K",
u 400°K
0 405°K
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Fi1c. 4. Magnetization vs field for CrO,. In our notation,
o=M, g'~ef, H'[¢'~er=eE1), Points for different e fall on the
same curve, which verifies the scaling law prediction, Eq. (4.1).

The resulting values of v have been inserted in Table
V. Also the index §, defined by

M~HY at

can be identified with the quantity § defined by Eq.
(4.1). Therefore Kouvel’s analysis gives the values
of 4. These have been inserted in Table VIII.

If we assume the scaling law conclusion that (4.1)
is equally correct for e>0 and e<0 with the same value
of 8 and 6 but a different f, then we find that

M~(—¢)f

for e<0 and H=0. This would permit us to identify
the quantity, B, determined by Xouvel’s analysis
[see Eq. (4.2)] with the critical index, 3, which
defines the behavior of the magnetization for T<T..
However, Kouvel provides no experimental evidence
for (or against) this extrapolation into the region
T<T..

T=T.

Neutron Scaltering

Magnetic systems have an anomalously large cross
section for neutron scattering near their critical
temperature. Van Hove® has shown that this is due to
the large fluctuations in magnetization near 7. An
excellent review of this subject has been written by
DeGennes.®

Passel, Blinowski, Brun, and Nielsen® have measured
the neutron scattering cross section for iron. Their
experiment can be interpreted in terms of the formula
for the cross section

d do
EENfdt exp (—iat) 3 (S0Se()) exp (ia-R).

(4.4)

Here E is the scattered neutron energy, ¢ and w are
the momentum and energy transferred from the
neutron to the magnetic material, R is a lattice site,
and S is a spin operator. Van Hove® has described

the time dependence of the correlation function by
expressing the decay of a fluctuation in the magnetiza-
tion by a diffusion equation with diffusion coefficient
A.

This implies that the correlation function in Eq.
(4.4) decays in time according to

; exp (19-R) (SoSr(2) )
= ZRj exp (ig-R—A¢%) (SoSr). (4.5)

Thus, the cross section in (4.4) can be expressed in
terms of the static correlation function (So.Sz).
According to the scaling laws, at zero magnetic field,

(SoSr)=G(R/E) /R, (4.6)

where £ is the coherence length. This is supposed to
depend upon temperature as

Em~e,
The dependence of the correlation function upon
(T—T.) is supposed to be hidden in the dependence of
the unknown function, G, upon R/%.
In analyzing the experiments, it is convenient to
guess!® the form of G as

G(R/t)=Aexp (—R/E)  for T>T, (4.7)

where 4 depends only very weakly upon e. [When
n=0, this gives the Ornstein-Zernike® result for the
correlation function

(SoSr)=A(eF*/R).] (4.8)

If we put together the results (4.5), (4.6), and (4.7)
we find the differential cross section as

do A2
a4 f Bt (P

Passel, Blinowski, Brun, and Nielsen obtained the
parameters A(7T), A, and £(T) by comparing their
data with do/dQ for various choices of 5. For =0, the
result is »=0.6440.02 in 7X103<e<6X102 For
7=0.15, the result is »=0.6440.02 in 4X 103 <e<6X
102, So 520 fits the data better for smaller e. However,
experimental uncertainty for e< 102 precludes drawing
any conclusions about the value of 7.

Above T., the susceptibility is given in terms of
the spin—spin correlation function by the relation

XNg (SOSR)

From (4.6) and (4.7) it follows that

(4.9)

x~A(T)g. (4.10)

If we express the coherence length é~e7, and if € is
small enough so that 4= constant, then x~¢ implies
v=(2—n)v. Unfortunately, this experiment did not
extend to small enough values of € for 4 to be a constant
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TasrE VI, Correlation length 7> 7.
e=AT/T, Range
Material Experimenters Ref. Method T. (°K) for fit v Comments
Iron Passell, Blinowski, 66 Neutron 1044.0 5X1073-6X10"2  0.64-4-0.02 7=0.07+0.07
Brun, Nielsen scattering
Cry0s Riste, Wanic 68 Neutron 310.0 1072-5X1072 0.6740.03 Antiferro-
a-Fe;0; scattering 998.0 5X1073-7X102 0.63+0.04 magnets
KMnF; Cooper, Nathans 69 Neutron 88.06£0.02 2X1073-107! 0.67+0.04» Antiferro-
scattering magnet
Value used for scaling law analysis 0.654:0.03 7=0.07+0.07
Molecular field theory 0.5 7=0

3-dimensional Ising model

0.64340.003 7 =0.056=0.008

® This paper reports the temperature dependence of the staggered susceptibility, which is simply related to the square of the correlation length, as dis-

cussed in our text for iron.

[A~(r?)"1 in Ref. 66], so we cannot take y= (2—1n)»
here. Nevertheless one can plot 48" vs € and obtain
an approximate fit by €7, to obtain y=1.30. This
agrees with v for iron as listed in Table V.

In antiferromagnets, (SoSr) is defined with respect
to a sublattice, and again we write £~e¢. Values of
v and 7 for three antiferromagnets, iron, and theoretical
models are listed in Table V1.66.68.69

M agnetization

The most accurate measurements of magnetization,
indeed the only ones possible for antiferromagnets,
are measurements of internal fields, e.g., at nuclei
through NMR or the Mossbauer effect. Can we be
sure that the hyperfine field H, is linearly related to
the bulk or sublattice magnetization? The data we
quote assume this, but it is not at all obvious in the
study of hyperfine interactions.” Experimental evidence
indicates nonlinearity between magnetization and
hyperfine field in some cases. In iron, the Mossbauer
measurement of Preston, Hanna, and Heberle™ agrees
with the NMR result (which is at low temperatures
only) on relative H, variation with temperature, but
is in slight disagreement with the bulk magnetization
measurement. Many authors find that smpurity
hyperfine fields are not directly proportional to bulk
magnetization.” Callen, Hone, and Heeger”® and
more recently Hone, Callen, and Walker™ deduce
theoretically nonlinear relationships between impurity
and host magnetizations. On the other hand, both
experimental and theoretical results point to a linear
relationship between H, and M as 7—7T,, even for
impurities, thus supporting the usefulness of hyper-
fine field measurement in the study of critical phe-
nomena.

The experimental results are listed in Table VII.
For the ferromagnetic materials they show g~% for
relatively high values of —¢, i.e., 3X1073 <—e <1071
However, for small values of e there are two experi-

ments, on Ni® and YFeO;® which indicate higher
values of 8, namely f~3. This apparent change in
index at (—e)~3X 1073 is perplexing. A theory due to
Callen and Callen™ predicts this kind of behavior, but
one wonders what it would predict for other critical
quantities, e.g., susceptibility and specific heat.
Recent preliminary data of Arrott™» indicate f¢ for
nickel in the same temperature region in which Ref.
29 reported 8=3.

We suggest tentatively that this change in the
value of 8 might be caused by the dipole forces in the
ferromagnet. These dipole forces are weak in compari-
son with the exchange forces so that they should not
be expected to modify the thermodynamic functions
very much under usual circumstances. However, very
near T, there are very delicate and long-range cor-
relations which might be affected materially by these
dipole fields. Since the dipole force is long-range, it
might be expected to produce qualitatively different
critical behavior from that produced by the short-
range exchange forces. Hence, as the critical point, is
approached, a change in 8 might occur at some value
of € for which the dipole forces just become important.

To estimate this critical value of (—e), assume that,
because large regions of spins fluctuate in their mag-
netization, there are fluctuations in the magnetization
just about as big as the average magnetization. This
would imply that there are fluctuations in the magnetic
field, 6B, which are of the order of the average mag-
netization:

3B~ (M). (4.11)

Now let us try to estimate how much damage these
fluctuations in B can do. When can they appreciably
modify the results that we would get from a theory
in which the magnetic forces were left out? To do this
compare the spontaneous magnetization, which is
given by

at B=0

M/ Mo~(—¢)P (4.12)
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TasLE VIII. M vs H at T..

Material Experimenters Ref. Method T, (°K) 8 Comments
Nickel Weiss, Forrer 58 Magnetocaloric effect 627.2 4.240.1=
Gadolinium Graham 60 Fluxmeter 292.5 4.040.1
YFeOs Gorodetsky, Shtrikman, 30 Vibrating sample 643.0  2.840.3 Weak ferromagnet
Treves magnetometer
CrO, Kouvel, Rodbell 62 386.5 5.75
Value used for scaling law analysis 4.1+0.1
Molecular field theory 3.0
3-dimensional Ising model 5.2£0.15

8 Recent

terials, Washington, D. C., November 1966.

with the induced magnetization
M/My~(uB/KT.)\® (4.13)

where M, is the zero temperature magnetization and
us is the Bohr magneton. From (4.11) and 4(.13),
we would guess that the fluctuations in B would
modify the magnetization by an amount of the order

(M) ~(uM/KT.)? M. (4.14)

If this modification is negligible in comparison with
the underlying magnetization given by (4.12), then
we can neglect the long-range forces. This condition is

(uM /KT (—€)P.
We substitute for M by using (4.12) and find
(—€)>(uMo/KT,)16ED

as our condition for neglecting the dipole forces.

To evaluate this condition we choose 3=3, §=4.2,
Mo=uX (density) =uX (10% atoms/cm?®), T.= 600°K
and find that the condition (4.15) has become

(—e)>102  for Ni.

From this point of view, it is not surprising that Ni
should have a change in 8 at this point.

This calculation suggests that the S~} observed in
YFeO; and Ni and the ¥'~0.7 in YFeO; might be char-
acteristic of an effect of long-range dipole forces rather
than the theoretically simpler short-range forces. If
so, perhaps specific heat and susceptibility data below
T. should also approach molecular field values. The
only applicable datum, however, is v'~0.7 in YFeQ0;.%

The experimental data for iron are not sufficiently
clear cut to support or deny the calculation just made.
Preston, Hanna, and Heberle’s result for 8 is based on
a very small number of data points™ but indicates
B4 for —e>2X1073" Potter’s data may be inter-
preted either as fitting one power law with a large error
or as gradually changing its 8, with 8 increasing as e—0.
There is clearly a need for further investigation in this
area.

ate=0,

(4.15)

ehmmary data of Arrott indicate §=~4.7 for nickel. This work was reported to the Twelfth Annual Conference on Magnetism and Magnetic Ma-

Of the antiferromagnets listed in Table VII, only
MnF, has been carefully investigated for e<10-28
In several experiments NMR lines have been observed
at the same temperature corresponding to the anti-
ferromagnetic and paramagnetic state simulta-
neously.®%2 This may be due to nonuniform TS, or
possibly to fluctuations in magnetization of sufficiently
large space and time extent.

A clear-cut picture does not emerge from these
measurements of B. However, on the basis of this
rather scanty evidence we might propose that there
are three separate behaviors here:

(a) When dipole forces are not important, 8=%% in
both ferromagnets and antiferromagnets. Hence, for
our analysis of experiments which do not seem to be
affected by these long-range forces we use §=0.33+
0.03.

(b) In high-temperature ferromagnets very close to
T, B seems to be about 3. This might be caused by the
dipole forces—which are unimportant far from To—but
which might produce important corrections very
near T..

(c) The experiments on CuCly+2 H;0® and CoCl,-
6 H,O 577 yield still other values for 8, suggesting that
these materials are more complicated than can be
accounted for by our simple picture. These are low-
temperature antiferromagnets where dipole forces are
comparable in magnitude with exchange forces.

Maos Hat T,

Molecular field theory predicts M~HY? at T,. More
generally we write M~H'%, Table VIII lists four
experimental values of 4. It is tempting to try to get
values of & for nickel,® iron,® and cobalt® from the
data of Arajs and Colvin, since they also publish
M vs H vs T, but in fact the magnetic fields they used
are too small for this purpose. To find §, one needs ¢ to
be negligible. However, a comparison of Egs. (4.12)
and (4.13) indicates that e can only be neglected if

| €| AL (uH /K T:)1s, (4.16)
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However, the uncertainty in T, precludes satisfying
Eq. (4.16). This uncertainty arises in the case of
Arajs and Colvin, because they had to extrapolate
from H>0 to determine 7. Thus their T, for cobalt
can easily be in error by =+0.05°K. Assuming =4
and BRs:, the fields H; (applied field corrected for
demagnetizing effects) are not large enough to allow a
determination of 8.

Specific Heat

The specific heat results are perhaps the most
difficult critical data to categorize and understand
In the two-dimensional Ising model, the specific heat
behaves as

Cy=—Alogle|+B for T>T,
=—A'log|le|+B  for T<T., (4.17)

with A=A’ and B=B’'. In molecular field theory,
there is a discontinuity in the specific heat. This
corresponds to the result (4.17) in the special case
A=A'=0, B#B’. However, in the analysis of the
three-dimensional Ising model, it has been suggested!®
that the specific heat diverges more strongly than
indicated in (4.17), in fact that

Cy~ae+b
~a |e|*+V

for T>T,

for T<T,, (4.18)

with a~a’~0.1. In writing Eq. (4.18), we have
included terms in & and & which are asymptotically
much smaller than the divergent terms in (4.18).
Hence they would be left out of the numerical analysis.
However, there is no theoretical reason why these
constant terms should not arise as slightly less divergent
terms in the specific heat. Finally, there have been
suggestions® that the specific heat might be less singular
than indicated in (4.17) or (4.18). This behavior could
arise, for example, if 6=%" in Eq. (4.18) and & and o’
were both negative. Then Cyp would show neither an
infinity nor a discontinuity, but just a cusp equivalent
to a third order phase transition.®

We would like to deduce the o’s from the experimental

data. This is difficult because what we wish to see is a
weakly singular term above the background of 4 and &'.
Given a bit of scatter in the experimental points, it
becomes possible to make the three-parameter (a, b, )
fit indicated in Eq. (4.18) with a whole range of o’s.
A fit of the form (4.17) emerges as just a special case
of the fit (4.18) since

lim (4/a)[e*—1]+B=—Aloget+B. (4.19)
a0

It is hard enough to take data for, say 7'> T, and
try to make a three-parameter fit as indicated in
Eq. (4.18). But, actually the problem is much harder.
One is supposed to reject all data for large values of
| €| since these data are “not in the critical region.”
This choice of which data are to be thrown out will
influence considerably the range of o’s which will fit
the experiment. Also, there is often (see Fig. 5) some
rounding of the peaks in the specific heat—which one
might guess is due to imperfections in the crystals. It
is tempting to say that this is the cause of the rounding
and reject the data in the rounded region. But, if this
is done, one more unknown parameter enters the
problem: T.. Clearly, if there is a broadening of the
specific heat maximum, we cannot use the position of
the peak to determine 7 with high precision.

Despite all this, it is possible to make some state-
ments about « and o’. Consider, for example, the data
of Skalyo and Friedberg® shown in Fig. 5. This plotting
indicates that we can get a simple result if we reject
all data for |e| >4X10"2 as “not critical,” and all
data for Cp>3.3 cal/(deg-mole) as “produced by
crystalline imperfections.” Then the figure indicates
that the remaining data—which extends over only
about one decade in e—fit a logarithmic singularity.
However, these remaining data also can be fitted by
Eq. (4.18) with all values of « in the range

0<a’ <0.11
0<a <0.19.

In Skalyo and Friedberg’s data one is somewhat free
to choose 7', because of the rounding off in the specific
heat curve. Thus they chose 7T.=2.289°K because it
gave 4’/4=1. We find T.=2.288°K gives an equally
good logarithmic fit but yields 4’/4~0.8. Thus we see
that 4’/A is extremely sensitive to our choice of T..

Our range of a’s becomes even larger if we consider
data® like that in Fig. 6. If we say that the critical
region is | e | <107, we are forced to fit the data with
a large power of (T—7T.). In particular, we find
a~0.6 for Co K»(SOy4) +6 H;O and @x0.7 for Co Cs; Cls.
However, choosing the critical region to be | e| <2X
10—2 we can fit the data for o’s between zero and roughly
0.6. In short, we cannot distinguish between a«=0 and
a=0.6 from these data.



Our experience is that at least two decades of data
are desirable to establish the specific heat behavior.
We also find that in order to fit data to a single
logarithm or low power law we must often limit the
critical region to e 1072, This often leaves only one
decade of critical data.

The rounding of the specific heat peak still may
indicate that the specific heat is not a divergent
function.

The experiment of Teaney®® on the specific heat of
MnF, best allows one to make a definite statement
about « and o/, for he obtained data over more than
two decades and down to e=2X10~* with no rounding
of the peak.

Figure 7 shows the specific heat of MnF, plotted on
semilog paper. Both the logarithm and power law seem
satisfactory over substantially the same temperature
range. Figure 8 shows the effects of introducing various
b into the data. Sublattice magnetization data for
MnF, # indicates that e $2X 1072 specifies the critical
region. If we use this cutoff to determine the range of
« allowed in the three-parameter fit, then 0 <o’ $0.18.
Similarly, for iron® the susceptibility data above 7.
indicates a critical region of e $2X 1072, leading to
0 <a 50.17.

In Table IX are listed ranges for « and o’ obtained
from three parameter fits. In these cases critical data
exist over a wide enough temperature interval to
make such an analysis meaningful. There is a reason-
able amount of data for which « <0.16. We use this
value for the purposes of checking the scaling laws.
But there are also considerable data which apparently
do not fall into this category.

This table includes a column labeled 4’/A4 which is
found by taking the logarithmic fits to the data and
finding the ratio of coefficients above and below T..
In four of the five cases this ratio agrees with the

T T T T T T
‘ MIEDEMA, WIELINGA & HUISKAMP DATA 1

T>Tec (BOTH CURVES)

16% 6
Ir-%l
Te

F16. 6. Examples of specific heat data which are apparently
fit by relatively large power laws.
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(C/R)x 1l

10 TEANEY DATA

- MaF, -

IT-7]
T

F1c. 7. Specific heat of MnF, as measured by Teaney. The
solid lines represent logarithmic fits. The dashed line is the
power law C~e0.16,

scaling law conclusion A’/A=1. However, for the
best experiment, MnF,23¢ this result fails. Either the
specific heat is not logarithmic for MnF, or this con-
clusion drawn from the scaling laws is wrong.

Specific Heat in External Fields

The second-order phase transition in an antiferro-
magnet is not destroyed upon application of an external
field, as it is in a ferromagnet. According to a theory
by Fisher® the critical temperature is lowered as
T.(H)=T,0)—aH?. Recent results for dysprosium
aluminum garnet® agree with this prediction close to
T,. Data for MnCl,-4 H,0% indicate that the specific
heat peak moves to lower 7 as H increases, but the peak
also is broadened considerably, which makes the data
difficult to interpret.

Comparison with Scaling Laws

Tables V-IX indicate the average values used in
comparing the scaling law relations. Values which
obviously contradict the chosen values are S~} in
nickel and g~1, v'~0.7, 6=2.8 in YFeO;. This is a
pattern of roughly molecular field theory behavior
which might be explained by long-range forces which
act in the presence of substantial spin alignment.
For scaling law comparisons we neglect these data, but
not because we consider them unreliable. The scaling
laws are only applicable for short-range interactions,
so that they might not apply to these data.

The comparisons are shown in Table X. Most of
the data fit the pattern, although the column involving
8 does not fit well. For antiferromagnets the scaling
laws seem all right, upon very limited evidence, so
definite conclusion cannot be drawn. For ferromagnets,
the scaling laws relate a part of the data, but another
part remains outside this framework. Further theoretical
work on the effects of the long-range force might
reconcile the apparent discrepancies.
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V. CLASSICAL LIQUID-GAS TRANSITIONS
A. Theory

A simplified theory of critical behavior in the liquid-
gas transition may be obtained from the Van der
Waals equation of state:

[P+a(N/V)?](V—bN)=NkT. (5.1)
When this equation is used in conjunction with the
Maxwell equal area construction,” results are obtained
which are equivalent to those derived from the Landau
theory of the second-order phase transition. In partic-
ular this approach implies that near the critical
point:

(a) At the critical temperature, the density minus
the critical density is given by
p—pe~(P— P)'", (5.2a)

where P— P, is the deviation of the pressure from its
critical value.

(b) On the coexistence curve (see Fig. 9), the
densities of gas and liquid are given by
Pliquia— Pe=— (pgas— pe)~(Te— T)12.  (5.2b)
(¢) When T'>T, and p=p., the isothermal com-
pressibility Kr diverages as

Kr=p"(8p/0P)p~(T—Ts)".  (5.2)

(d) There is a similar divergence for T<T, where
Ky~(T.—T)! (5.2d)
on the coexistence curve.

All these results look like the typical molecular
field approximation answers when one identifies!® the
order parameter with (p—p.) and the conjugate
variable (the analog of the magnetic field) with a
quantity proportional to the pressure minus the
critical pressure.

A further argument for the identification is provided
by the lattice gas model for classical fluids.%:*” In this

TaBLE X. Scaling law comparison.

2—a 2—a dv & dv/2—m  y+28 Y28 BGHL)  y=1/» AP

Ferromagnets 1.92 1.92 1.95 2.08 1.99 1.7 1.54 3.2
+0.08 +0.08  +0.09 +0.12 +0.09 +0.2 +0.07 +0.2

Antiferromagnets 1.92 1.92 1.95 “es .o 1.96 oo 1.54 3.2
+0.08  =+0.08 +0.09 +0.102 +0.07 +0.2

# Here we use the approximation y=~2v.

b Calculated from A=2dv—28.
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F1c. 9. Schematic pressure vs density diagram near the
liquid—gas critical point.

model, the positions of the gas molecules are assumed
to take on only discrete values, these values forming a
specified lattice. To represent the fact that, in the real
fluid, there is a short-range repulsion which keeps the
molecules from getting too close to one another, it is
assumed that each lattice site can be occupied by at
most one molecule. To represent the fact that the real
fluid exhibits an attraction between neighboring mole-
cules, the lattice gas model includes an interaction
potential which gives a negative contribution to the
energy whenever nearest-neighbor sites are occupied.

The lattice gas model has been shown by Lee and
Yang® to be mathematically identical to the Ising
model of ferromagnetic phase transitions. This identity
follows since for both models the essential features are
a lattice, a nearest-neighbor interaction, and a number
for each lattice site which can take on one of two
values, i.e., for the Ising model, the z component of
the spin

or=-+1 if the spin is up at a site,
=—1 if the spin is down at a site, (5.3)
for the lattice gas the gas density at a lattice site,
o(r)=1 if the site is occupied,
=0 if the site is unoccupied. (5.4)

According to the above, to obtain a correspondence
between the Ising model and the lattice gas model one
should make the identification

or=2[p(r)—3]

For the lattice gas model the critical density turns out
to be %, so the above statements say that the density
minus the critical density plays the role of the mag-
netization in the lattice gas case. Since there is no
difference between up and down magnetization for a
ferromagnet we thus have the important quantitative

(5.5)

conclusion that the lattice gas model will predict a
perfect symmetry between behavior on the high- and
low-density sides of the critical point. For example, if
we define 8z, and B¢ by the requirement that

Pliquid’"l’v'\’( - 5) AL

Pgas™ P~ — (_E) ba (56)
on the coexistence curve, then we know that the lattice
gas will give the result 8, =8¢

A partial list of the corresponding quantities for the
two models is given in Table XI. More detailed lists
and a derivation of the correspondences are given in
Refs. 98 and 17. Thus, a solution for the Ising model,
discussed in Sec. IIE can be transcribed into a solution
for the lattice gas model. If we then say that the
lattice gas model is like the real fluid, we have deter-
mined the critical indices for the liquid—gas transition
in terms of the indices «, 3, v, etc., for the Ising model.
This proposed correspondence between thermodynamic
derivatives for the fluid and critical indices for the
Ising model is listed in Table XII.

In looking at the experimental data which follow,
we focus on the following questions:

Are phase transitions in different fluids essentially
similar?

Do they resemble the Ising model’s critical behavior?
Do they obey the scaling laws?

B. Experiments

In our discussion of experimental data, we con-
centrate upon the fluids Cos, Xe, Ar, and O because
these are the ones which have been most extensively
investigated in the critical region.”8 In these one-
component systems, the critical point is defined as
that temperature and pressure at which the densities
of gas and liquid become identical. This point is the
top of the coexistence curve of Fig. 9. Table XIII is a
list of critical pressures, densities, and temperatures
for these four fluids.

TasLE XI. Correspondences between lattice gas model
and Ising model.

Ising model Lattice gas model

Number of up spins Number of molecules

Partition function Grand partition function

Number of spins Volume
Free energy minus magnetic Pressure
field
Magnetization Density minus critical den-

sity

Specific heat Cp Specific heat Cy




Some of the general difficulties inherent in these
measurements may be mentioned. As with second
order phase transitions in other materials in other
effects, temperature control is critical. In some of the
experiments involving the critical points in fluids, the
data do not seem to settle down to their asymptotic
critical behavior until e=(7—7,)/T. gets smaller
than 1072, A temperature control system must be
able to maintain and reproduce temperatures to
perhaps one part in 10* of 7 in order to provide
meaningful data over a two-decade range in e within
this critical region. Since this centrol is most easily
achieved near room temperature, the most complete
data are available for the classical gases Xe (7.=
289.6°K) and CO. (T,=304.0°K).

Given a good temperature control system, one must
next contend with the extremely large compressibilities
when critical conditions are approached. Due to the
weight of the fluid, critical pressure is realized only

TasrLE XII. Definitions of critical indices for liquid—gas tran-
sition. If this transition is described correctly by the lattice
gas model, a, &', B, v, 7/, and & all have the same values as in the
Ising model.

€ e=(T—T.)/T.

o Co~(—e)™ p=pc, €<0

@ Cy~e™ P=pec, €0

B (oL—pa) ~(—¢€)# €<0, coexistence curve.
¥ Kp~(—e)™ <0, coexistence curve.
Y Kp~e p=pe, >0

8 | P=Pc|~|p—pc|? r=T.

u Surface tension ~(—¢)* P=pe, €<0

over a very narrow vertical height range in a sample
bomb (in theory, of course, only at a single horizontal
plane), and what is measured in a PV T measurement
is the average condition of the fluid. This may be
quite different from the critical condition unless
special precautions are taken, and can lead to a flat top
in the coexistence curve'® (liquid—-gas density difference
as a function of temperature). One of the most elegant
methods of dealing with this was devised by
Lorentzen,!%:1% who used a long vertical tube as his
cell and measured the density of the fluid as a function
of height near the critical region by the refraction of
parallel light beams passing through the cell. All
critical exponents except o and o’ can be determined
directly from an experiment of this type.

A further complication arises from the large heat
capacity of a fluid near critical conditions,!.107.108
Equilibration times become very long near the critical
point as a result of this, necessitating waits of perhaps
days before it is reasonably certain equilibrium condi-
tions have been attained.
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Tasre XIII. Critical points of selected fluids.

Gas P, Pe T,

Xe 57.636£0.115 atm®* 1.105 gb/cm3  16.590=40.001°CP
0: 49.7 atme 0.408 gd/cm® 154.565°Kd

Ar  48.34 atme 0.5333 gf/cm® 150.71°Ke

CO, 72.82 atme 0.464 gh/cm® 31.04°Ce=

2 Reference 99.
Reference 100.
¢ Handbook of Chemistry and Physics (Chemical Rubber Publ. Co., Cleveland,
Ohio, 1961).
Reference 101.
© Reference 103.
f Reference 102.
& Reference 104.
Reference 105.

The most accurately determined parameter for the
classical gases is 3 of the coexistence curve. This is
determined from the slope of the log-log plot in Fig.
10. Plotted here are the results of four different experi-
ments on CO, and Xe over almost a five decade range
in e. There is excellent agreement between the data
and a line of slope 0.34 over the entire range and for
both gases. The data taken by Lorentzen in 1965'% was
shifted vertically to coincide with the other sets;
presumably there was a constant factor error in the
density of this measurement, for the slope of the line
is the same as the rest.

The results for 8 are summarized in Table XIV.
All of this data is consistent with the statement that
B is the same for all three fluids. We assume that this
is true and take 8=0.3464-0.01 as the value to be
used in further analysis. Notice that this is slightly
higher than the lattice gas value, 8=0.3140.01.

The indexd can be calculated directly from the PV T
data of Habgood and Schneider.®® Our analysis is
shown in Fig. 11 together with the results of Widom
and Rice’s!® analysis of the data of Ref. 104. Since
the Xe data cover a larger range, we use it to define
the “best value” of § listed in Table XV. There is a
significant deviation from the lattice gas.

SLOPE=0.342:8

@
v+
ot
=]
o
o
-
-0.2- _
© LORENTZEN (1965)
© LORENTZEN (1953) co,
O MICHELS, BLAISSE, MICHELS (1937)
-03k A HABGOOD AND SCHNEDER (1954)  Xe J
1 1 1 1 1
-60 =50 -40 -30 -20 <10 o

LOG g (-€)

F16. 10. Coexistence curve data for CO, and Xe. The critical
index B=~0.34 over almost five decades in e.
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TaBLE XIV. Summary table for 8.

Fluid B Reference Range of ¢
Xe 0.350+-0.015 99 4X1073< —e<4 X103
Ar 0.440.2 103 6X1075< —e<8X1073
Ar 0.3340.05 103 8X103< —e<101
CO. 0.3444-0.01 105 4X1078< —e<102
“Best value” 0.3464-0.01
Lattice gas 0.313+0.004 Table III

We employ three different modes of analysis to
determine v for Xe, CO,, and Ar. For Xe, we employ
the PVT data of Habgood and Schneider.”® When
these data are differentiated they give the Kr values
plotted in Fig. 12. Then, v is the slope of this curve.
Unfortunately, this evaluation of v is rather ambiguous
because of the relatively small range of e and the
apparent change in slope at ex~t10—%. However, the
data points for the higher values of ¢, e~1073, are
believed to be more reliable than those for lower
values, e~10~% If we weight the data in this way,
we would conclude y=1.34-0.2. Results for v and v’
are listed in Tables XVI and XVII.

An application of the Ornstein—Zernike theory to
the critical opalescence scattering of x rays in the
critical region'® has been used by Thomas and Schmidt!10
to calculate v for argon. The theory is probably accurate
only outside the critical region, but gives the result
that reciprocal intensity plotted against momentum
transfer at a constant temperature yields straight lines
whose zero intercept with the ordinate is proportional
to the reciprocal of the isothermal compressibility.!
These intercepts as a function of temperature are
plotted in Fig. 13.

WIDOM AND RICE
€O,

al- C0,: LiQuD ©
eAs @

P-R
g-10%g cm?
ol
T

— L i
QQ AA HABGOOD AND SCHNEIDER
3 Xe: LiQuD O

GAS A
[ ad -
o] 1 1 1 1 1 1 1
0 2 4 6 .8 10 12 L4
LOG, I =3 Bl = I
10°g cm

F1c. 11. Data from which the critical index § is determined.

For CO,, ¥ may be obtained from the data of Michels,
Blaisse, and Michels® and of Lorentzen.1%:1% [orentzen
measured the refraction R as a function of height x
for light which traversed his tube. At the critical
density, R as a function of x shows a point of inflection
and a slope tan a=dx/dR which is a function of
temperature. Since R is proportional to the density,

(tan o) ~i~dp/du=03p/3P | z(dP/dx). (5.8)

At the critical density, dP/dx=—p.g is a constant and
(5.9)

tan a~Kpl~er,

Heller' has analyzed Lorentzen’s 1953 datal® in
conjunction with the results of Michel ef al** He
concludes in CO, that y=1.374-0.2 for 10-5<e<102
and v'=1.0240.3.

Lorentzen’s more recent results'® give a rather
different answer. Figure 14 shows that tan « is quite
closely linear in e. Thus, v appears to be equal to
1.040.1 in the range 10-5<e<2X10-5. These results
tend to suggest that vy changes at e~10-% in CO,.
However, experimental difficulties are severe when ¢ is

]

m

atm ¢

T

)

9P
%

Log (

-2l

=2.5r

1 1 1 1
-45 -40 ~35 -30 -25 -20

LOG, €

F1c. 12. PVT data for Xenon from which the critical index v
can be determined.
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TaBLE XV. Summary of results for 8.
Fluid Value of § Reference Range of variables
Xe 4.4+0.4 6X1072<| (p—pe) /pe <2X 1071
CO. 4.2 109 1.4X1071< [ (p—pc) /pe| <1.8X1072
“Best value” 4.4+0.4
Lattice gas 5.240.15 Table II1
as small as 10~% and perhaps Lorentzen’s later results evaluable!!!.105,104
should be discounted for this reason. 12 -~
There is another reason for concern about using the (pe/ Pe) (0P/0p) | 110 y21d4. (5.13)

data in Fig. 14 for finding v. We want to know Kr
for a homogeneous system. But, gravitational effects
necessarily produce a pressure gradient of magnitude

dP/dx=peg. (5.10)

Can this gradient affect the measured value of Kr
appreciably? Let us assume that the long-range
correlations in the system basically average the pressure
over one coherence length. Then we might expect
that the result of the gradient (5.10) could be roughly
equivalent to producing a deviation P— P, of the
order

| P— P, | ~pgs. (5.11)

If this is large enough to push the system away from
the critical point, we can evaluate K;~! by setting
e=0. At ¢=0, the Widom and Rice'® analysis of CO,
data indicates

(P_pc)/l)c'\'[(P"’‘Pt:)/-Pc]l/'s 0~4.2.
Then
pc AP

P dp

— P\ [p,gE\\-1/5
R o

In the last step of (5.12) we have inserted the effective
pressure deviation of Eq. (5.11). If this pressure
deviation is small, we should expect that the contri-
bution (5.12) to the inverse susceptibility is much
smaller than the P=P, value which is roughly

If we are to neglect the effects of gravity gradients,
we should require that the contribution (5.12) to
dP/dp | r be much less than the contribution (5.13).
We evaluate this requirement by guessing # from the
Ising model results as

£= (M/p) e

where (M /p.)¥* is the average distance between CO,
molecules. Then our requirement for neglecting
gravitational effects in CO, becomes ’

1075, (5.14)

The same procedure applied to Xe indicates that the
gravitational pressure gradients are negligible for

e>3X10°, (5.15)

Since Eq. (5.14) indicates that pressure gradients
might be important in determining v in Fig. 14, we
omit the data of Ref. 106 from further analysis.

The variation of heat capacity with ¢ has been
measured most accurately 92190 for Ar and O,. The
data for Ar for T<T, are given in Fig. 15. In this
log-log plot, we have subtracted constants from C,/R
so that we may fit C, to a form

Cy/R=ae>+0b
=d,("—€)_"‘l+bl

The values of &’ are given on each curve together with
the value of o’ which best fits for that value of &’. A

v=0.6,

for T>T,
for T<T..

TABLE XVI. Value of v.
Fluid Value of y Reference Range of € Comments

Xe 1.3+0.2 99 3X10™<e<3 X103 <107 neglected

Ar 0.62-0.2 110 3X1073<e<6X1072 Is exirapolation procedure
right?

CO; 1.37£0.2 105,104,111  1075<e<10"2

CO. 1.040.1 106 1076<e<2 X108 Perhaps pressure gradients
are important

“Best value” 1.37+0.2

Lattice gas 1.250-+0.001 Table ITIT
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TaBLE XVII. Values of 4/,

Fluid Value of v Reference Range of € Comments

Ar 1.1+0.2 110 6X104< —e<6X10"2 Is extrapolation procedure

right?

COq 1.0+0.3 105, 104, 111 e~3X1072 If pressure gradients are im-
e~3X1075 portant, this analysis gives
e~3X1076 no information.

“Best value” 1.0+0.3 Very little information

Lattice gas 1.3140.05 Table IIT

good fit cannot be obtained for o as large as 0.37, but
any value of & in the region 0<a’<.25 can, with a
suitable value of &, fit the data. Of course, /=0
corresponds to a logarithmic singularity in C,.

For T>T., a similar plot indicates that any value
of o in the range 0<a<0.4 fits the data for O,. These
results are summarized in Tables X VIII and XIX.

We consider one more critical index, u, which is
defined by the statement that in the two-phase region
the surface tension is proportional to (—e)*. Guggen-
heim!* quotes results which tend to indicate p~1.22
but a recent analysis by Buff, Lovett, and Stillinger!'®
of the data of Atack and Rice'® on cyclohexone-aniline
and of Stansfield'” on argon and nitrogen gives u~S
1.2740.02. We use this value in our scaling law
analysis.

C. Use of Inequalities

In this analysis, ¥’ is the quantity with the largest
uncertainty. Fortunately there is an exact!#16 thermo-
dynamic inequality which we can use to tie down v'.

o T>T,
(o]

3 o T<T
}v4

2
(V)
51
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<
g -lo- 4
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=
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4 X-RAY SCATTERING
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-30 -20 -1.0
LG €|

F1c. 13. Determination of ¥ and +’ from x-ray scattering
data for Argon. However, the Ornstein—Zernike theory used in
the data analysis may not be valid,in the critical region.

This inequality is

284+'>2—d (for o/>0). (5.16)
When we substitute the known values of 8 and ', we

see that
v'>1.194-0.12.

Another exact inequality!s

B(6+1)>2—o’ (for &’>0) (5.17)

implies
6>4.45+0.4.

This does not provide any useful limitations on § but
at least it indicates that the experimental results for §
are not wildly wrong.
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F1G. 14. Lorentzen’s data near T for angle of refraction « of
light passing through CO,. Tan a~e.
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F1c. 15. Three-parameter fits
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D. Comparison with Scaling Laws

According to the discussion in Sec. III, the scaling
law approach would predict that the following combina-
tions of indices were all precisely equal: 2—a, 2—d/,
v+28, v'+28, B(6+1). Widom, in his development®
of the ideas we have called scaling laws, also proposed
that the surface tension index, u, should be equal to
d/(d—1) =% times these other combinations of indices.
In Table XX are listed the quantities which the
scaling laws would equate, and it is seen that they
are roughly equal. In fact, the results presented here
agree within experimental error with the conclusions
of the scaling law theory.

From the value of u in Table XX, we derive the
basic scaling law quantity y=»"1= (d—1)/u as

y=1.5740.03. (5.18)

The other basic parameter of the scaling law analysis

Tasre XVIII. Values of «’. The experimental numbers are
the maximum value of o’ which appear consonant with our three
parameter fit of the experimental data. Any smaller value of o/,
including o’=0 (logarithmic singularity) will also fit the data.

Fluid Value of &’ Reference Range of €
Xe <0.240.1 112 5X103< —e<3X 1072
O, <0.25 101 4X104<—e<1.4X1072
Ar <0.25 102 2X104<—e<10
CO; <0.1+0.5 113 3X1073< —e<2X 102
“Best value”  0.1240.12

. +0.16
Lattice gas 0.071 4 Table ITI

C

is A=2d/y—28, which turns out to be
A=3.1240.1. (5.19)

These values of y and A are in agreement with the
Ising model results (Table IV). However, the difference
between the experimental value of 3=0.346+0.01 and
the Ising model value of 3=0.314-0.01 indicates that
real fluids and the Ising model show slightly different
critical behavior.

VI. THE LIQUID GAS PHASE TRANSITION
IN QUANTUM LIQUIDS

A. Theory

Some experimental evidence (see Sec. VIB) tends to
indicate that the critical exponents characterizing the
liquid-gas phase transition are markedly different for
the light substances He, Hs, and D,, when compared
with the results for the heavier elements Xe, Kr, Ar,
Ns, O;, and Ne. If we assume for the moment, that
the experiments are correct in indicating this difference,
then we must look for an additional parameter which

TasrLe XIX. Values of . All the data are consistent with «
being as small as zero.

Fluid Value of &« Reference Range of €
0. «<0.4 101 3IX105<e<4X 102
Ar «<0.4 102 101 <e<2X 1072
“Best value” 0.240.2

Lattice gas 0.140.1 Table III
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Tasre XX. Comparison with scaling laws. According to the
analysis of Sec. IIT all of these numbers should be equal. The
numbers used here are the “best values” of Tables XIV-XIX.

2—a 2—a’  y+28  y+28 BG+1) 3u
1.8 1.88 2.06 1.7 1.87 1.91
+0.2 =+0.12 +0.2 +0.3 +0.14 +0.03

measures quantum behavior. It is quite reasonable
to suggest that the different behavior of light gases is
a manifestation of the quantum-mechanical dispersion'?®
in the position of the molecules, which occurs when
the kinetic energy of a molecule is comparable in
magtitude to the effective potential energy of that
molecule. To give this statement some quantitative
substance we discuss the law of corresponding states as
formulated by de Boer.® First we consider the classical
problem.

Assume that the interaction between molecules is
given by the potential energy p(7). We can apply a
law of corresponding states if, for different fluids

p(r) =4f(r/0), (6.1)

where f(x) has the same form for all fluids. Then
A and o represent the characteristic energy and length
for the fluid in question. We may compare different
fluids by using the reduced variables:

T*=kT/A, V*=V/No%, P*=Po®/A.  (6.2)

Since the potential energy function, (6.1), determines
all of the statistical properties of a classical fluid, P*
should be the very same function of V* and T* for
different fluids as long as quantum corrections are
unimportant. Table XXI indicates that the critical
reduced pressure, temperature, and specific volume
are found to be nearly the same for the heavier fluids.

However, the kinetic energy is important in quantum
statistical mechanics. If a particle is localized in a
volume of order o3, it has a kinetic energy of the order

R/ mo® (6.3)

according to the uncettainly principle. The size of the
quantum correction can be estimated by comparing

(6.3) with the typical potential energy A. The ratio
of these two energies

(A*)2=h/ma?A (6.4)

is a dimensionless measure of the importance of quan-
tum effects in the liquid—gas transition. Table XXI
shows that as A* becomes larger than unity (in H,, He?,
and He?), the critical pressure, temperature, and volume
deviate from their classical values.

The classical phase transition has been compared
with the Ising model via the lattice gas (see Sec. V).
Because, in the quantum case the Hamiltonian
contains noncommuting terms, it is attractive to
compare the quantum liquid-gas transition with a
magnetic situation in which there are spins with non-
commuting components. This has been done by
Matsubara and Matsuda,' and Zilsel.’?? These models
suggest that the quantum transition is like a ferro-
magnetic transition in an anisotropic situation, in
which the zero field magnetization can only point in
the z direction. Once more, one can identify (p—p,)
with the z component of the magnetization. Since not
very much is known about highly anisotropic ferro-
magnets near the critical point, it is difficult to judge
the correctness of these models. However one point
stands out clearly. Since the magnet shows complete
symmetry between spin up and spin down, these
quantum lattice gas models would predict a complete
symmetry between liquid and vapor.

B. Experiment

The specific heats of both helium three and helium
four have been measured by Moldover and Little.2
We have fit their data to a formula:

C=ae+b for T> T,

=d(—e)~ Y+ for T<T, (6.5)

with @, @/, b, and b’ being adjustable parameters. The
data for He* and some fits to it are shown in Fig. 16.
We would conclude that o lies between 0.0 (logarithmic
singularity) and 0.2 and « between 0.0 and 0.3. How-
ever, this conclusion does not include a possible
perturbation produced by gravitational effects. Accord-

TasrE XXI. Experimental values of Py*, Vor*, Tor¥, and A* for substances having the potential energy function (6.1).

Xe Kr Ar N: Ne H. Het Hes
Pt 0.112 0.117 0.116  0.132 0.114  0.063  0.027 0.014»
Ver* 3.10 3.10 3.12 2.88 3.25 4.29 5.74 7.2
Tor* 1.26 1.26 1.25 1.30 1.26 0.90 0.51 0.33
A* 0.064 0.102 0.187 0.225 0.591 1.73 2,64 3.052

8 Computed using present known values of Per, Tor, and por!® and the values of A and o appropriate for He3 (the same as for He9).123 All other numbers

are from Ref. 120.
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Fic. 16. Three-parameter fits to the specific heat of He! near the liquid-gas transition.

ing to a calculation based on the Landau theory,!?
using the data of Edwards and Woodbury,#1% a
19, density variation might exist in this experiment for
€<5X 107 This could cause a rounding of the specific
heat peak.

The order parameter for liquid-gas transitions is
p—pe, and therefore the analog of the magnetization
in zero field is just the coexistence curve. For this
the relevant critical exponent is 3. Edwards and
Woodbury?® measured this for He? by using a Jamin
interferometer. They measured the index of refraction
of a “slice” of helium 1 mm thick, and from this
determined the density using the Lorentz-Lorenz
equation. The correction to this equation near the
critical point has been estimated to be negligible using
a theory of Larson, Mountain, and Zwanzig.® The
results of this experiment have been fitted to many
analytical expressions,’*% but for comparison with
other data, we have considered only fits of the form

(or—pa) /pe~(—€)". (6.6)
Unfortunately, this experiment does not permit an
unambiguous conclusion about 8. By varying T, and
the assumed size of the critical region within reasonable
limits it appears possible to obtain fits for values of
B which are in the range 0.40 to 0.50.

The results of recent measurements by Roach and
Douglass™® are that B8=0.3540.01 for 4X10™<
(—e)<2X1072, They measured the dielectric con-

stant of helium between two capacitor plates, and
obtained the density using the Clausius—-Mosotti
equation. Edwards'® has also repeated his measure-
ments, and his recent result is that 8=0.37+0.02 for
2X104< (—e) <1072 Thus it appears that 8 is about
the same in He* as in the classical gases (see Table
XXII).

The coexistence curve for He® has been deter-
mined by Sherman'® by measuring the pressure of the
vapor as a function of temperature using a constant
volume bomb filled to 23 different densities. The
pressure-temperature relations obtained in this way
are nearly linear, and are extrapolated to the known
vapor—pressure curve to give temperature-density
data. This method has the advantage of giving the
shape of the entire PV T surface near the critical point,
and thus giving more information than just 8. Further-
more, the effect of gravity and the infinite compressi-
bility is avoided, since no part of the fluid is at the
critical point. However, the extrapolation to the vapor
curve is questionable, since it is not known definitely
that the isochores (constant volume) continue to be
linear in the immediate neighborhood of the critical
point.13

We fit Sherman’s data for 2.5X1072< (—e¢) <2.5X
10 with 3=0.360.02. Since his published data
include only two data points for (—e) <2.5X1072, we
do not feel justified in estimating 8 in this region.
However, the data suggest a possible increase in g
towards 0.5.
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TaBLE XXII. Comparison of quantum and classical fluids.
Classical
He? Het H, gasesh

@ <0.3= <0.3= <0.4
4X101<e<2X1072 1071<e<3 X102

o <0.2a <0.2» $0.25
2X107< —e<3X10™2 2X10< —e<3X1072

8 0.364-0.02° 0.35240.004¢ 0.3640.014 0.35+0.01
2.5%X1072< (—e) <2.5X1071 4X107< (—e) <2X1072 102< (—e)<?

y 1.09+0.05v 1.3740.2
P<e<?

7' (gas) 1.00-£0.05bP 1.0+0.3
P —e<L?

7" (liquid) 1.184:0.10 1.0+0.3
P —e<?

5 3.5+0.1e 4.2t 4.440.4
0.17< | (p—pc) /pc | <1.0 0.67< | (p—pe) /pc | <1.57

u 1.2540.02¢ 1.2740.02

4X102< (—e) <4X1071

2 Reference 124.
Reference 132.
¢ Reference 130.
Reference 135.

Fisher® proposed an explanation for the apparent
e dependence of 8 which was noted by Sherman. He
suggested that the variation in 8 might reflect the
behavior of a system in which quantum corrections
are not very large. Then relatively far from 7., for
large ¢, we should expect classical behavior—p=3.
Nearer T, the more delicate quantum effects take over
and 8 changes its value to one which is characteristic
of a quantum system.

However this apparent e¢ dependence of 8 seems
very questionable in view of the recent results for
He!, for as Roach and Douglass®® point out, 8 seems to
be independent of A* the quantum correction param-
eter, over the range 0.06<A*<2.6 (Xe to He?), so
that 8 would have to change very rapidly over the range
2.6<A*<3.1 (He* to He?) to explain the apparent!?
8~0.48 in He?.

The coexistence curve for hydrogen has been deter-
mined by the isochoric method,'® and the data can be
fit with 8=0.364-0.01 for > 102. There is an indication
that 8 becomes larger (X0.50) for e< 1072, but this
might be due to the effect of gravity.

Next consider the isothermal compressibility:

x=0(p)/0h| =3(p—p.)/Ou | e=p*Kr~e. (6.7)
The only available compressibility data are those of
Sherman,’®? who found y=1.0940.05. Below the phase
separation v’ is evaluated along the two branches of

the coexistence curve. This yields two different v

values:
ve=1.0020.05

v.=1.18+0.10

(gas)
(liquid).

€ Reference 136.
References 109, 137.

& Reference 139.

b See Tables XI-XXIT.

These values of vy are obtained from derivatives of
PV T data, so they necessarily have large uncertainty.
Also uncertain are the size of the critical region and
the extrapolation procedure to the coexistence curve.
In view of these difficulties one must conclude that a
definitive measurement of y probably requires data
closer to the coexistence curve and for smaller values
of e.

The shape of the critical isotherm is characterized
by the exponent 6.

[ (P—=P)/P.| =4|(p—ps)/pc|® ate=0. (638)
By interpolating the data to the critical isotherm to
obtain the density as a function of pressure, Sherman'?
finds §=3.4+0.2. Chase and Zimmerman®¥® measured
& more directly by measuring the dielectric constant of
He? as a function of pressure at T=3.324°K. Then
using the Clausius—Mossotti relation to find the density,
they determined §=3.540.1. Their data indicate
that the coefficient 4 in Eq. (6.8), is twice as great for
the high-density fluid as that for the low-density
fluid. The exact ratio depends on the value of the
critical density used in Eq. (6.8) but for reasonable
values of p, the ratio is near 2. This difference between
high and low density is also seen in Sherman’s deter-
mination of y¥ and . This behavior contradicts one
of the assumptions in the lattice gas model: that there
is symmetry between vapor and liquid. If we were
seeing here the true critical behavior this would be
strong evidence against the applicability of the lattice
gas model to these phase transitions. However, the
sparse data for v and the fact that measurements for



d were carried out for relatively large values of
| (o—pc)/pe | prevent the formation of firm conclusions
about these critical exponents.

The shape of the critical isotherm for H, has been
calculated from the data of Johnson, Keller, and
Friedman®® by Widom and Rice,”® who found §=4.2.
However, these data required a fairly long extrapolation
to obtain 4,38 which may therefore be unreliable.

Finally, the critical index u, which relates the surface
tension of a liquid drop to T— T, as surface tension
~(—e¢)*, has been measured for H, by Blagoi and
Pashkov.1® Their result is u=1.25 in the range 4102
< —e<4X107L

C. Summary and Comparison with Classical Fluids

The results are summarized in Table XXII. Because
of the inherent difficulties in these experiments and
because of the uncertainty in the size of the critical
region all these results, except 8 for He? and the o’s,
should perhaps be considered to be provisional.

For comparison we list in Table XXII the “best
values” for classical fluids as determined in Sec. V.
There is no strong indication that the quantum fluids
behave differently than classical fluids near the critical
point. There are not yet sufficient data to make a
scaling law comparison meaningful.

VII. SUPERFLUIDS
A. Order Parameter for this Transition

In the superfluid transition, a finite fraction of the
entire number of helium atoms all fall into the very
same quantum state.!0-1t The order parameter for this
transition is then the wave function of this special
state, which we write as (Y(7)). Since this wave
function is complex, we have here a two-component
critical order parameter. Thus, the behavior of the
superfluid might well be different from the liquid-gas
transition, in which the order parameter has but a
single component. In fact, the superfluid should be
most like a hypothetical ferromagnet in which the
magnetization can point with equal facility in an entire
plane.? Unfortunately, we know of no ferromagnet
with such an easy plane of magnetization.

Because the order parameter in the superfluid is so
special, there is an especial difficulty in learning about
this transition: we do not have experimental control
over the thermodynamic conjugate to the order param-
eter. In fact, this conjugate is always zero. Hence,
we cannot measure the derivative of the order param-
eter with respect to its conjugate—the analog to the
magnetic susceptibility—in the superfluid case. Simi-
larly, we have no experimental way of finding
the (order-parameter)—(order-parameter) correlation

function
g(r, )= WH()y(r))
which is the one-particle density matrix.

(7.1)
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F1c. 17. Experimental specific heat of liquid He* near the
superfluid (A) transition.

B. Experimental Results

Since we cannot vary the variable we have been
calling %, the conjugate to the order parameter, any
specific heat measured in helium is C at constant .
Far and away the best measurement of C, has been
done by Buckingham, Fairbank, and Kellers,* who find
Ch along the vapor pressure line for helium. Their
results, shown in Fig. 17, indicate a logarithmic
divergence in C; over four decades of e. It seems quite
plausible that the divergence is truly logarithmic,
ie., a=a’=0, so that

Cr=—Alog|e| +B
——4'log | ¢| +B

for 0
for e<0.

Also, within experimental error A= A’. This is another
piece of evidence in support of the scaling law idea,
since the scaling laws predict that when there is a
logarithmic singularity 4 must equal 4’.

Another piece of useful information is provided by a
measurement of the superfluid density p, just below ..
The definition of p, is the statement that, when the
superfluid is moving with velocity ;, the flow of mass
is given by a current

g= .V, (7.2)

The most accurate critical data for p, are provided by
the experiment of Clow and Reppy (Fig. 18) and
that of Tyson and Douglass!* which give

(7.3)
(7.4)

ps~(—e€)f

$=0.666-+0.006 for 3X105< —e $1071,

C. Scaling Law for ps

In the relevant molecular field theory, the Landau-
Ginzburg approach, p, is simply proportional to the
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(ARBITRARY UNITS)
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F1c. 18. Superfluid density of liquid He? just below 7.

order parameter squared
p~ | @) |2 (7.5)

Then, if {¢) goes to zero as (—e)f, Eq. (7.4) would
imply B=%20.003, in agreement with the value for
Man.

However, Josephson*s has argued that there is no
particular reason for believing that the molecular
field result, (7.5), should be correct near the A point.
[In particular he suggests that an extra factor pro-
portional to (—e)~’ should appear on the right-hand
side of Eq. (7.5). Then he uses the scaling laws to
replace 28—ny’ by (d—2)(2—a)/d.] He concludes, in
fact, that {=% is a direct consequence of the scaling
law arguments and the fact that the specific heat
singularity gives a=0.

His argument is based upon the fact that superfluid
flow arises from a gradient of the phase of (¢(7)). In
fact, v; is derived from this phase vial#

mvs(r) =iV (Y(r) )/ (7))

for situations in which the magnitude of (¥(7)) does
not vary in space. However, if the superfluid is moving
slowly, the free energy per unit volume has the form

g(G, 'Us) = g(ey 0) +%Pavsz, (77)

(7.6)

where the second term is just the kinetic energy of the
superfluid in motion.

Equations (7.6) and (7.7) are definitions of p, and
7. We now use these definitions in conjunction with
scaling law arguments to find {. To do this, the kinetic
energy term is rewritten with the aid of (7.3) and
(7.6) as

30’ ~ (=)L V@) )Y/ | @) (7.8)
However, under the scaling law transformations
r—r/L
e—e=eL¥ (7.9)

any singular term in the free energy density is scaled
by a factor of L? [cf. Eq. (3.3)]. In our case, the
(—e)® in (7.8) introduces a factor of Lf¥ and the
gradients introduce two factors of L when the expression
7.8 is scaled. Thus we must have

Li= J2Hy
or
§=(d—2)/y. (7.10)
But, according to Eq. (3.9¢)
d/y=2—a (7.11)
so that (7.10) reduces to
¢=[(d—2)/d](2—a). (7.12)

Since we are working in a three-dimensional system,
d=3 and from the specific heat experiments a=0.
Thus, the scaling”laws give {=2, in agreement with
experiment.

For a two-dimensional system (7.12) reduces to
the strange result { =0. This would be rather difficult to
justify were it not for the fact that there exist theoretical
arguments!¥ which tend to show that the superfluid
transition does not take"place or does not have a
finite order parameter in a two-dimensional system.

D. Perturbation Theoretic Approach

Patashinskii and Pokrovskii® have discussed the
nature of the critical singularity near the A point of
helium by attempting to sum the perturbation theory
expansion for the one-particle Green’s density matrix
(7.1). They conclude that the specific heat and
(8n/0u)r should diverge as log | €| . This conclusion
apparently agrees with experiment.® However, there
have been several objections to this theory. At many
points in their work, these authors have to guess the
form of functions. They indicate that their guesses
might be mutually consistent, but it is not clear that
the guesses are correct. Furthermore, Abe has
extended their methods to the Ising model. He obtains
results which are in clear disagreement with the known
Ising model answers.” For example, Abe finds =1 in
two dimensions and n=% in three dimensions. The
correct answers for these cases are, respectively,
n=%1 and 7=0.0562+0.008. (See Table III). This
disagreement is one more argument against the theory
of Patashinskii and Pokrovskii.

VIII. FERROELECTRIC TRANSITIONS

The ferroelectric transition is accompanied by a
drastic change of the lattice structure and thus we
always have a strong coupling between elastic, piezo-
electric and ferroelectric phenomena of the crystal.’s
Stresses due to lattice imperfections, external forces
and domain-clamping, influence the Landau theory



parameters, thus producing an uncontrollable shift and
smearing-out of the thermodynamic functions.

For these reasons one generally uses data with e> 1073
to determine the exponents «, 3, and v, obtaining
agreement with the predictions of the phenomenological
theory. Measurements of » and » are not known.

Measurements of y have been performed’ for
tri-glycine sulfate, KH,PO, and the upper Curie point
of Rochelle salt down to values for e of 2XX107%, 81074,
and 4X 107, respectively. In all cases y=1 within the
experimental uncertainties of 29,. Hence the critical
fluctuations have no influence on v even for such small
values of e.

For temperatures below the lower Curie point in
Rochelle salt, Craig®® has found for the interval
4X104< [ e| <5X107%, +'=1.23+0.02. The phase
of the crystal is antiferroelectric there, and thus we
must not expect to have the same critical region there
as for temperatures near the upper transition point.

None of the other thermodynamic functions has
been determined yet with the same accuracy as the
values for x. Thus we are not able to check the predic-
tions of the scaling laws.

There are A-shaped peaks in the specific heat of
e.g., KH,PO4»? NHHSO,% and Rochelle salt.’®* But
the reported results do not allow a qualitative con-
clusion about the details of the singularity.

After having replotted Stephenson and Hooley’s
data, Grindlay'® has pointed out that there are indica-
tions in favor of the existence of a logarithmic
singularity in the specific heat of KH,;PO, For
0.6< | T—T,| <5.3(T.=127.97°K) he obtained 4=
1.240.3 and A’=14.241.4. This statement cannot be
accepted as a disproof of (3.11) for two reasons.
Firstly, the discussed values for € are possibly too large
to get correct asymptotic data. One also would like to
have more than 5 experimental points to determine
the A’s. Secondly, if one looks very close to the “criti-
cal point,” one notices that the transition is actually
first order.!! So we have to expect a smeared out peak
in the specific heat due to the latent heat of the transi-
tion. This peak has nothing to do with critical be-
havior. Furthermore the critical temperature 7T, seen
in the normal phase, is lower than the critical tem-
perature T/, seen in the ordered state. T, is the lowest
temperature for an undercooling of the paraelectric
state, while T’ is the highest temperature for a super-
heating of the ferroelectric phase. T, is® 121.062°K;
T/ is not known. Grindlay’s fit depends sensitively
on the value of 7. The assumption that his critical
temperature is 7.’ can explain qualitatively why 4 is
too small compared with 4’.
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