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:%ate .processes in So..ic,s
H. R. GLYDE
Unioersity of Sussex, School of Mathe&natical and Physical Sciences, Fatmer, Brighton, England

The jump rate k for atomic diGusion via the vacancy mechanism in crystals is evaluated by treating a jump as the
result of a particular type of thermal Quctuation in a crystal. The occurrence rateof this fiuctuationis found (a) using
a dynamical method similar in content to that of Rice and Manley, and (b) using statistical mechanics directly as was
done by Vineyard. If the jumps are effected only when the surrounding atoms take up one single distorted configuration
(the 6rst approach being limited to describing one configuration only) then both methods are exactly equivalent and
give the same k (Sec. II).

The total k is then obtained by summing the contributions to k from the most significant configurations using a saddle
point integration (Sec. III). This is done without introducing new (incalculable) "saddle-point" frequencies which in
the Vineyard theory, leaves the pre-exponential factor inprecisely defined. In k, all parameters are well defined in terms
of the force constants and its mass dependence is always exactly m 't'PEq. (27)g.

In the discussion, contact is made with earlier forms of the frequency factor, and, by way of example, the expression
for k is used to evaluate the self-diffusion coefficient in solid argon giving a value in agreement with experiment {Sec.IV).

I. INTRODUCTION

"NTII, the late 1950's, all derivations' ' of the
jump rate k for diffusion in crystals were based

on the absolute rate theory' borrowed from chemical
reaction kinetics. In these treatments, k is expressed in
the form 0=v exp (—AF/kT), where AF is the height
of the free-energy barrier the atom must surmount to
pass to the adjacent site and v™is an effective vibration
frequency of the atom in the initial site. Although
considerable progress along semi-empirical lines has
been made using this expression, the whole approach
and final expression has a number of limitations from
a fundamental viewpoint. Two of these are, (a) that
the atom must unrealistically move infinitely slowly

up the barrier so that each intermediate state is defined
in a thermodynamic sense, and (b) the parameters 5
and 5F are inprecisely defined so that the theory
provides little insight for a fundamental calculation
of k.

Recently, however, Vineyard~ has presented a more
rigorous, many-body approach using equilibrium statis-
tics which largely eliminates these shortcomings.
Thermodynamic arguments are not used so there is
no need to specify that the jump proceed slowly. The
top of the free-energy barrier, as it was called above,
is now a clearly defined special configuration of the
crystal atoms; that specific configuration for which
the jump is eftected with the least increase in the
atomic potential energy above the static potential; the
activation energy being just this potential increase.
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Vineyard does, however, introduce a new set of lattice
frequencies for the crystal when the atoms are in this
special (minimum energy) configuration. This has two
drawbacks.

(a) These frequencies, although mathematically
definable, do not exist in real crystals as the special
configurationis instantaneous (the frequencies could be
meaningful only if the lattice stayed near the con-
figuration O(o ') or greater, where o is themaximum
lattice frequency).

(b) As the frequencies do not exist, there is no way
of evaluating them so that the frequency factor and
its mass dependence remains inprecisely defined.

As well, Rice' (and co-workers)' and Manley" have
presented a "dynamical" theory of diBusion which
emphasizes the microscopic character of the jump
process. Here k is developed by going over to normal
coordinates and using the fact that these independent
coordinates obey random variable theorems. Sy
transformation, the statistics of the atomic coordinates
can then be obtained to evaluate the probability per
unit time that the migrating and surrounding atoms
attain special amplitude displacements from their
rest positions which "allow" the migrating atom to
jump. This approach avoids the direct use of equilib-
rium statistics (employing instead, random variable
arguments for the independent normal coordinates)
and places no time restrictions during the jump. The
resulting expression is, however, difficult to simplify
and so provides little help for fundamental calculation
of k.

The above treatments assume that equilibrium
statistics properly describe the statistics of real atoms
in a crystal in which diffusion is taking place. However,
let us focus attention on the e atoms in the crystal
which have vacancies adjacent to them at time t. After

s S. A. Rice, Phys. Rev. 112, 804 (1958).' S. A. Rice and H. L. I'risch, J. Chem. Phys. 32, 1046 (1960),
and references cited therein.I O. P. Manley, J. Phys. Chem. Solids 13, 244 (1960).
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a short time bt, those atoms of this ensemble which
have had large amplitude displacements from their
rest position (large energies) and velocities in the
direction of the vacancy simultaneously will have
jumped into the adjacent vacant site. At t+Q, the
rema, ining atoms (plus average energy additions) are
now more likely to have velocities in the reverse
direction and smaller energies than would be predicted
by the original equilibrium distribution. Use of equilib-
rium methods to evaluate k for the ensemble at t+bt
would lead to error. Energy exchange effects between
atoms, going on continuously in the crystal, attempt
to restore equilibrium and if the rate of jumping,
which distorts the distribution, is small compared to
the exchange rates, the distribution always remains
close to the canonical one. The diffusion discussions of
Rockmore and Turner" and Prigogine and Sak" are
par ticularly concerned with avoiding equilibrium
methods and evaluating the effect of the disturbed
distribution on k. For the jump rates realized in real
crystals, their results show that the equilibrium k is
altered only numerically and by 10%, indicating
that the equilibrium assumption, which we use here,
introduces little error.

All of the above calculations~ " are still transition-
state treatments in the sense that each introduces an
intermediate state from which it is assumed that the
jump goes to completion. The rate calculation then
reduces to evaluating the rate at which the intermediate
state is reached, with no discussion of the process
thereafter. This should be a legitimate procedure
provided some guarantee is included that the atom does
actually jump rather than return part of the time to
the original site so that k is not over-counted (the only
real concern of a jump rate calculation) . We may then
refer to other papers" for a description of the remainder
of the process; the irreversible return of the atomic
coordinates towards their mean values which is of the
same character whichever site the atom settles in.

In this discussion, we further develop the idea that a
jump arises as a result of a Ructuation of a lattice in
equilibrium; that Ructuation in which one atom has a
large amplitude displacement and the surrounding
atoms open up a hole so that this atom can pass to the
adjacent vacant site without a tremendous potential
energy increase in the lattice. The jump rate is derived
from both a dynamical approach, identical in content
to those of Rice and Manley (Sec. IIA), and from a
straightforward application of equilibrium statistics
similarly to that of Vineyard (Sec. IIB). The two
approaches give identical results and differ only in the
treatment of the minimum potential (and other)
configurations of the lattice atoms during the jump.
This demonstrates the essential equivalence of the

"D.M. Rockmore and R. E. Turner, Physica 29, 567 (1963).
I2 I. Prigogine and T. A. Bak, J. Chem. Phys. 31, 1368 (1959)."G. W. Ford, M. Kac, and P. Mazur, J. Math. Phys. 6,

504 (1965), and references cited therein.

two methods and so, while not providing a proof of
validity, gives us more confidence in the simpler
equilibrium statistical approach. The minimum poten-
tial "hole" configuration is then considered without
introducing a new set of lattice frequencies (Sec. III)
which (a) avoids requiring that the jumps proceed
slowly, and (b) provides an explicit expression of v

for calculation and determining its mass dependence.
Calculation of J and the activation energy are discussed
in Sec. IV. The treatment is restricted to vacancy
diffusion in a lattice in equilibrium (i.e. , to self-and
impurity self-diffusion) with quantum effects neglected.

II. EVALUATION OF THE JUMP RATE

We consider diffusion in a Bravais lattice of lV atoms
having vacant sites with the lattice points given in
terms of the primitive translation sectors by a =
a~a, +spa;+npa~ We u. se these vectors to define a, co-
ordinate system i, j, k in the lattice and denote the
positions and velocities of the S atoms by r& ~ r& and
r'& ~ rz. In this lattice we wish to obtain the probability
of observing a Ructuation which results in, say, atom
labeled 1 jumping (along the i direction) into the
adjacent cell 2 which, for the moment, we simply take
to be vacant. We denote this probability by P(r&'=
ap/2; r&'&0; r&', r&, rp ~, r ) which is the probability
of observing a fluctuation such that (1) atom 1 has a
large amplitude displacement from its rest position
which carries it to the cell boundary between cell 1 and
2 (r&'= ap/2, (2) atom 1 have some positive velocity in
the direction of cell 2(rq'&0), and (3) that the sur-
rounding (m —1) atoms which are sensibly correlated
to atom 1 (and the atom 1 along the coordinates j and

k) take up positions r~', rP, rp ~ r so that the potential
energy V(rq ~ r ) associated with this displacement
is not vastly greater than the static potential energy
V(r, =a„r,=ap r„=a ) = Vp.

The velocity requirement (2) is introduced to ensure
that, with atom 1 on the cell boundary where the choice
of return to either cell 1 or cell 2 is equal, the atom
continues into cell 2. The lattice will then always
return from this Ructuation with the atom in cell 2

provided a second Ructuation does not occur which
sends the atom back to cell 1, the likelihood of which
is 0(P) . We must either treat such second fluctuations
as a second or new jurnp, which seems the most con-
sistent procedure, or concede that our jump rate k
above is in error by the fraction of times O(10 ') this
happens. Even detailed considerations of the return
from the Ructuation will not eliminate this difficulty
entirely and here we consider the second Ructuation
as a new jump.

From P(r~&=ap/2, r'q'&0, r~& , r~", rp ~ r )', the jumP
rate k, given by the rate of atomic Row into the adjacent
cell isv

P( ) r'j dry'
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where we must integrate over all positive velocities ij'
as I' will give the probability for a single velocity
and we want the probability for any positive velocity.
We now proceed to evaluate I' and k from (a)
dynamical and statistical and (b) purely statistical
considerations of the lattice. The reader interested
only in the result should omit part (a) .

A. Dynamical Approach

If we write the atomic coordinates (and velocities)
in terms of the lattice point positions a„plus some
displacement from them (r„=a„+u„), then the
Hamiltonian for the crystal is

value of (4) (H ) =3 Sk T using the equipartition
theorem. The probability W(p&, g) of observing the
coordinates pq between pl, and p3+p1, and q3 between
ql, and q~+dq3 is then

~ exp( —p~ /2o„) exp( —q"/2 a,„')
IV pl. , qa = II

3=1 (23r) o„„o,„

where o. '=kT and o '=kT/coI, 3

We now employ a theorem on Guassian distributions'4
which states that; if the independent p3 and q3 are
distributed according to (7), then coordinates such as
u„, u„, u„, ~ ~ (say s in number) which are related to
the p& and q~ by transformations of the form

II= 3 g ~44 +Vo+ 3 g +nn'unun, 'yl

nn~
(2)

3X 3X

&n = g an3q3 Or un = g an3pk,
A,

A„„.=—(83V/Br Br„.),„,,„.

where m is the atom mass and the potential V(ri ~ r~) are distributed according to
has been expanded about the static potential V(ri ——

a&' ' 'r&=a&) and terms up to the harmonic retained P(ui(1) ~ ui(2) 1 3(3), '3(4)
~ ~( —1)u~(s) )

= (23r)
—3~"

) 8 I

—' exp (—-'u+8-'u)

Transforming to normal coordinates q( f, s) using the
transformation

8% 8%

, Z exp (3«-) e.(f)q(f s) =—Z a-km (3)
1Vm'f, , k=1

8

=(23r) 3t3' l8 I

'* exp L
—

3 pb 'u u .j (8)
nnl

Here 8 is a matrix made up of elements

b- = Z -a- (q")=(u-u")

where f is the wave vector and e, ( f) the polarization
vectors for the three branches s for each f, the Hamil-
tonian becomes (taking V3=0)

b..= g a..a.'(p")= (u.u. ),
It:

b„„=Q a„3a„1,(qkp, )= (u„u„)=0,
k

(9)

H=3 g (Pl +~3 q3 ).

Here PI, 8/Bq3 ——q~ is t——he momentum conjugate to
qI, and co~' is the transform of A

with Eq. (3) defining the matrix elements of a. The
e8ect of the vacant sites on the ~I,' spectrum is assumed
to be included.

On substituting (4) into Hamilton's equations, we ob-
tain the solutions for p3 and q& from which we may obtain
the time dependence of u„(and u„by differentiation) .
The general solution for g~ gives

(where we have used the symbol n to identify elements
referring to velocities) and 3 ' and ) 8 ~

are the inverse
and determinant of this matrix 8, respectively. The
last type of elements in (9) are zero as the equal time
correlation function (u„(t), u„(t) ) =0, as can be shown
using (6) . With (8) we may now obtain the probability
of observing any fluctuation in the lattice coordinates,
and thus the probability of observing the special
Ructuation p(u, '=a,/2; u, ')0; n,~, 33,", u, ~ u„) in-
volving (3nz+1) coordinates which leads to an atomic
jump where now the u =r„—a,„are the variables.
This is

&( ) =(2~) ™+»
~
&

~ (3m+1)

u„= g a„&(ql,
' cos ~I,t+ p33/&z sin &a&t) (6)

fn fn

X exp L
——,

' P b„„,—'u„u„+ g b i u ui'], (10)
nnt'

which displays dynamically how large amplitude dis-
placements can arise.

As the normal coordinates and momentum are
independent they are, like any independent variable,
distributed Gaussianly about zero; the mean square
deviation here being obtained by taking the expectation

where we have grouped the factors involving u~' into a
separate summation. Using the co-factor definition
of the elements b„i ' and (9), we find all b„i ' ——0

'4 Ming Chen Wang and G. E. Uhlenbeck, Rev. Mod. Phys.
1'V, 323 (1945); see application in R. E. Turner, Physica 26,
274 (1960).
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except bii i (which is bii 2= (ui'2) i) so that the joint
velocity and position distribution (10) splits giving

I'( ) =(2s)—'""'
I
&

I
'(, ) exp I

—-, gb 'u„u„j
l

Q
~ (2~ (ui'2)) -l exp . . (11)2(u")

Substituting (11} into (1) and integrating over the
velocity u1' gives

,„„„,I~I '(3-) expI. ——:Zb- 'u-u-3
nnl

«, ',) I&l '*(3 )expI:—2 Zb 'uu j (12)
nnl

B(3' in this case) . This requires that

, .—IEbn" k,n' j ~n' j,ni &n"k,ni
nlj

(16)

b„;,„; '=A„"/kT. (19)

and summing over (16} (taking the trace) gives

Q b„„'„, '(u„'u„')=3Ã, (17)
ninl j

where in (17) we have used the 8 function condition
(16) to write, b„. ), ,„; ' b„;,„——, ' and the de6nition of
b„., „;.Subtracting (17) from (15) we have

Q I (A '/kT) —b.;, ;-'j(N. dm„') =0 (18)
nnli j

which must hold for arbitrary values of the (u„'u„d)
so that term for term

where the last equality is obtained using

(ui") = (&~i) ' Z "'(f)"'(f) (P(f ) )'=kT/~i
XB

(13)

In matrix notation (19) is B '=(kT) 'A. Also as
B 'B = I, we have

I
& '

I I
&

I
=1 or

I
8 '

I
=

I
&

I

so that
I
8 I

'=
I
8 '

I
'. Thus, the

I
8

I

~ of dimen-
sionality 3m is, using (19)

and where in (12) it should be remembered that Ni' is
fixed at ui'=(), o/2.

If we now specify that the vectors ui ~ u (other
than ui' which is fixed at ui'=ao/2) are adjusted so
that the potential V(ui u ) and thus the total
energy E=T+V associated with this displacement is
a minimum (so that this configuration occurs most
often), then (12) is the result obtained by Manley"

I Eq. (22) j and identical in content with the result
obtained by Rices LEq. (7)j for the jump rate.

To obtain more meaningful expressions for the
matrix elements of B ', we take the expectation value
of the Hamiltonian (2) (taking Vo ——0) which, using
the Virial and equipartition of energy theorems, gives

(II)=2(T)=2(V)= Q A„„' (N 2'I„')=3XkT.
nnl ij

(14)
Dividing by kT we have

(kT) ' g A„„"n 'I '=3K (1.3)
nnl ij

Now by definition of the inverse of a matrix B 'B=I,
where I is a unit matrix of the same dimensionality as

*'(3 )
= (k T) '" '

I
A

I
**(3

&

On substituting (19) and (20) in (12) we have

k=
I

A I'*(3„)I (22r)'~'(kT)'"-'mij *

(20)

B. Equilibrium Statistics Development

Here we divide the lattice of A atoms up into
identical sublattices (systems) containing m atoms
(m((E) so that we may treat the lattice as a canonical
ensemble of identical sublattices. A physically reason-
able choice for the independent sublattice size is such
that the range of atomic force is ~ts Qo so that cor-
relations of significance do not exist between the m
and Ã—m atoms. The statistics for each sublattice i~

then given by the canonical distribution function so
that the probability of observing the fluctuation
I'( ) is

X expI--', g A„„u„u„.]. (21)
nn/H2

We now pass on to re-derive (21) from equilibrium
statistics.

Z(r, '= ao/2; r, '&0; ridr, 'r," r„)
I'

exp L p&3-(r'-r-) ]drid ~ri—
where P=(kT) —' and H3„(r„r„) is

With the Hamiltonian (23) the integrations over the velocities in (22) may be performed directly; the integra, -

tion over each component (ni say) giving a factor (27r/m„p) '*. To integrate over the coordinates in the denominator
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we notice that —V(ri. ~ r ) appears in an exponential. Thus, nearly all the contribution to the integral will
come from near the minimum of V, which is the static potential t/0 when all r„=a„.Expanding in a Taylor's
series above Vo and keeping up to harmonic terms gives [see Eq. (2)]

exp [ P—V3 (ri' a——o/2; r~'ri"r3 ~ r )] exp ( —2Pmiri")
&( )=

2~
'

'In

exp (—PVO) ~ exp [——',P Q A„„.br„br ]d5ri "der„
miP nn~

(24)

The value of the integral in the denominator, a standard matrix integral, " is (2m.)' ~'(kT)'~~'
( A ) '&3

&
so tha«»

substituting (24) into (1) and integrating over r'i', we have

k=
} A }'*&3

&
[(2')'"+'(kT)8™1mi]='* exp I[—V(ri'= —., r&'rPr~ ~ r ) —Vo](kT) I..

If we now expand V(ri' ——aq/2; ri'ri r3 ~ r ) about
the static potential Vo we reproduce exactly expression
(21). This demonstrates the equivalence at this stage
of the dynamical and equilibrium statistical approaches.
They di8er really only in the choice of independent
units on which to base statistical arguments; the
normal coordinates and momentum in the dynamical
approach and the independent systems (sublattices),
as is usual, in the equilibrium statistical approach.
Both rest on the same two assumptions which are (1)
that the lattice is in equilibrium and (2) that the
independence of the chosen units is maintained up to
the peak of fluctuation (r,''=ao/2) during the jump
so that the statistics remain applicable. Assumption
(2) makes the dynamical approach based on mode
independence much more restrictive. The two ap-
proaches diAer only in proceeding from this point
(where the real difliculties begin) in the treatment of
the minimum energy jump con6guration which we
consider in the following section.

The only difference between the derivations of Rice
and Manley, and the present dynamical one is the use
of difFerent random variable theorems to obtain I'( )
from the normal coordinates.

III. THE COMPLETE JUMP RATE

As k stands in (21) and (25) it is incomplete. It
gives the jump rate when the surrounding atoms take
up a single particular configuration only whereas the
real jump rate is the probability per unit time of a jump
for any con6guration of the surrounding atoms. To
complete k we must include in it the contributions from
all possible configurations; each configuration being
characterized by a potential V(ri ~ r ) to appear
in (25).

Instead of summing over all configurations, Rice
postulates the existence of a minimum potential
configuration. As the potential appears exponentially
in k, this configuration will contribute much more to k
than any other and so he considers all others negligible.
However, there will be conflgurations (and thus

3m—1
=Vm; +O+-', Q A +br br„. (26)

»A. C. Aitken, Determinants and Matrices (Interscience
PubHshers, Inc. , New York, 1954)„example 25, p. 138.

energies) infinitely close to this minimum energy
configuration and these will de6nitely make some
contribution to k. Also the pre-exponential factor in
(25) depends on the temperatures a,s (k T)
which from an experimental point of view seems
incorrect. This difhculty also arises in the treatments
of Rockmore and Turner" and Prigogine and Baki2
where a single "activation" energy only is included,
with temperature dependences in the pre-exponential
factor of (kT) ' and (kT)=' appearing in their one-
and three-dimensiona1. treatments, respectively.

There is, however, no other way to proceed from (21)
which represents a drawback to the dynamical ap-
proach. Strictly, once having expanded V(ri ~ r )
about the rest positions r =a„, the minimum of
V(ri. ~ r ) will always occur with the (m —1) atoms
at their rest positions irrespective of the position of
atom i. There is thus no true second minimum about
which to make a saddle-point integration of some sort.

Vineyard, with the earlier rate calculations, also
postulates the existence of a minimum V(ri r ).
He then, expands V(ri ~ .r ) about this minimum and
includes energies near the minimum using a saddle-
point integration. He, however, introduces a new set of
lattice frequencies for vibration about this minimum,
(to do the integration) the drawbacks of which were
discussed in the introduction.

Here we also postulate the existence of (one)
minimum V(ri ~ r ) (when ri& =ri&+ ~ r =r +)'and'.
expand V(ri ~ r„) about this configuration retaining
up to 2nd derivative terms

BVI
V(ri ~ r ) =V(ri+" r +)+ P ~

br„
Br jr„+

3m—1 QQ p'
+-', g ~

5r 8r„
n~n&li ~&n~&n' j rn+, rnI+
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Substituting (26) in (25) and integrating over r&', and
ri", r3 ~. r Dollowing the integration procedure used
for the denominator of (24)] gives

X P expI (if(a„—a„)]/(m„m„) l}I or'( fs) ]—'. (29)
fa

=v exp ( DV+/k—T)

Xexp L'—(V; —V(r)/kT]

(27)

as the complete jump rate k.
It is to be emphasized that the A+„„appearing in

(27) have meaning only as their definitions as second
derivatives. They are derivatives evaluated at a special
local configuration which survives only for an instant
so that there is no possibility of determining A+ from
a macroscopic time averaged experiment on the equilib-
rium lattice. The appearance of } A

I
and }

A+
} in v

should be viewed as arising from including regions
around the static and minimum potentials, respectively,
in the integrations over the coordinates. These regions
will be included as accurately as the harmonic ap-
proximation is accurate up to the point where V is ))
than either minimum.

IV. DISCUSSION

The diagonal and off-diagonal elements of B are,
using the classical expectation values (q'( fs) )=
k T/or'( fs),

(u„u„)= (k T/iVm„) Q Lor'( fs) ]—'
fs

A. Pre-Exponential Factor

The pre-exponential factor in (27) is defined solely in

terms of the force constants A and clearly predicts a
mass dependence for k of exactly m ' for a diffusing
species of mass re however much the surrounding atoms
are displaced during the jump. (Any departure from
this dependence for the vacancy mechanism should
then represent a failure of the equilibrium statistical
approach. ) For those crystals in which the force
constants are known then both s and the activation
energy may be evaluated directly and it is for these
cases that (27) is primarily intended. There are,
however, many systems (notably metals) for which

the force constants are not known and for these systems

(27) has little advantage over earlier expressions. To
discuss these cases a simpler, approximate expression
for v which makes contact with earlier forms is useful.

If we assume that the harmonic approximation
adequately describes the displacements of all the m

atoms, then all the 2nd derivatives A@=A. Trans-
forming from the matrix A to the matrix B, A =
(kT) ~B LEq. (20)), the elements of which are the
expectation values (u u„.), v becomes

v= (kT)'(}~ }='(3 r/ I
~

I
'*(3 —ir) (2rrmi**) (28)

For any reasonable frequency spectrum for which
none of the oP( fs) =0, the off-diagonal elements must
be 0(1/E) of the diagonal elements as the exponential
factor exp }

—if(a„—a„)] sums incoherently. Thus,
we need retain only the diagonal term in B as all others
contain at least two factors 0(1/1V). If we now define
the axes j and lr J to i so that (u, 'u, r ")=0, then the
diagonal elements of

~
8 }3 and } 8 }3 i cancel leaving

only the extra element (ui'ui') in
~
8 }3 so that

v= (kT) '*(ui'ui') —l(2rrmil) '

This expresses v clearly in terms of the lattice fre-
quencies and their contribution to the displacements
of atom 1 in the jump direction i. For very light
(heavy) impurities a single local (resonance) mode"
makes the dominant contribution to the impurity
displacements so that, provided the effect of the
adjacent vacancy was included, (30) could be a useful
expression for s.

Finally, if we invoke the Einstein model, which with
(u„u„.)~(1/1V) (u u„) at high temperatures suggests
itself, then all (d2( fs) =ops' and

v=orE/2rl =vE (31)

v=~~ is the approximate expression most frequently
used to estimate v in metals.

(32)

with parameters"

(a) m=14, &=171.9X10 "ergs, ro 3 792 A. —— .

(b) m=12, a=164.3X10 "ergs, r(r=3.818 A.

With all atoms at their rest positions and site 2 vacant,

"P. G. Dawber and R. J. Elliott, Proc. Roy, Soc. (London)
A273, 222 (1963).

» G. K. Horton and J. K. Leech, Proc. Phys. Soc. (London)
82, 816 (1963).

B. Application to Self-Di8usion in Solid Argon

1. The Migration Energy E =AV+

To evaluate hV+ follov ing the procedure laid out in
Sec. III, we consider a region of fcc argon crystal
containing one vacancy. In the region each atom
interacts with its 12 first, 6 second and 24 third
neighbors through a Mie —Lennard-Jones potential
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TABLE I. The migration energy E, the vacancy creation energy E„and activation energy Q for self-diffusion in solid argon.

Ji =AV+
(cal/mole)

(6, 14) (6,12)

8„=If„
(cal/mole)

(6, 14) (6, 12) (6, 14) (6, 12)

Q= ZV++h,
(cal/mole)

(6,14) (6,»)

60
70
80

1330
1225
1115

1215
1130
1050

1958
1937
1910

1950
1933
1910

0.68
0.63
0.59

0.63
0.59
0.56

3290
3160
3025

3165
3065
2960

the crystal potential obtained using V(r) is taken as
the reference potential Vo from which AV+ is measured.

To locate the saddle configuration, we move the
migrating atom 1 a distance ae/2 towards the vacancy,
so that it sits half way between two vacancies, and
adjust the positions of the surrounding atoms so that
the crystal potential increase hV above Vo is reduced
to a minimum. This minimum AV+ was found using
an I.C.T. Atlas Computer to compute the potential of
all reasonable configurations and select the lowest
potential one. The position of up to 34 surrounding
atoms were adjusted, but adjustment of only the inner
20 significantly affected 6V+. In looking for the
minimum it was found that there was indeed only
one minimum and that potentials close to AV+ cor-
responded to atomic configurations close to that giving
AV+. This shows that, in this case at least, the assump-
tion of one minimum and the expansion of V(r, ~ r )
about it in Eq. (26) is valid.

The three-neighbor-shell binding approximation
should be a good one as the distortion is local. Thus
the binding of each atom due to distant neighbors is
nearly the same in both the saddle and rest con-
figurations.

The values of AU+ obtained using (a) the (6, 14)
and (b) the (6, 12) potential are listed in Table I. We
see that the (6, 12) gives generally lower values for
AV+. This arises physically as AV+ depends critically
on the positioning of the four nearest neighbors to the
migrating atom in the saddle configuration. The (6, 12)
provides a much wider well (almost certainly too
wide) for these atoms to move in so that they may get
well out of the way of the migrating atom to reduce
AV+ before running into the hard cores of other atoms.
The analysis of Horton and Leech" indicates that the
(6, 14) is the better potential for solid argon.

Finally, we note that d, V+ (and thus Q=AV++h, )
is significantly temperature-dependent; the crystal
temperature being fixed in each case by using the
appropriate value of ae(T), 'a the interatom spacing,
in the calculation. As the expansivity of argon is so
large ( 10' that in Cu) ao(T) changes significantly
over 20'K. The space available for the atoms to

"O. G. Peterson, D. N. Batchelder, and R. O. Simmons,
Phil. Mag. 12, 1193 (1965).

rnanoeuver themselves into a low potential saddle
configuration then changes significantly giving a
higher AV+ when there is less space to the lower
temperatures.

Z. The Frequency Factor v

To evaluate the ratio of the determinants in v we
restrict ourselves to nearest-neighbor forces which in
solid argon account for more than 95oro of the restoring
force. The determinant

~
A

j
is then of the order

3(11)X3(11). In
~

A ~, with each atom in its rest
position, there are still many zero elements and each
nonzero element is just o= V"(ao), the force constant
between nearest neighbors. In

~

A+
~, with the atoms in

the saddle position, the force between atom 1 and its
four nearest neighbors is ~10' that between 1 and any
other atom; the separation of 1 and these four neighbors
3—6 being only 0.858 ae. Thus, in ( A+~, terms containing
an element a& +. n&3—6 may be neglected. With these
approximations, the determinants may be evaluated
directly by expansion giving an effectively temperature-
independent result of

p= (2zrmi') '( )A )/) A+ )) =0.6X10'z sec ' (6, 14)

=0.9X10"sec ' (6,12).

(33)

v may be compared with the maximum and Einstein
frequencies in argoni9 of v =2.0y10iz sec—i and vz
1.3X10"sec '. From inspection of (33) it is clear that
v must correspond to a "frequency" which is less than
the average or Einstein frequency as the force constants
in

~

A+
~

refer to a, "strained" configuration and must
be generally greater than those in

~
A ~.

3. Diffusion CoePcient and Comparison with Experiment

In a, general analysis, Chandrasekhar'0 has shown
that for sperically symmetric, random jumps of equal
length /, the jump rate k is related to the diffusion
coefficient by D= 6kP. This expression may be applied
directly to homogeneous solids having cubic symmetry.

"E.R. Dobbs and G. Q. Jones, Rept. Progr. Phys. 20, 516
(1957)."S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
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(It is this sort of relation between the microscopic k to
the macroscopic D which contains an explanation of
the irreversible nature of diffusion, and not the discus-
sions on jump rate statistics in the introduction. )

For vacancy diffusion, we must introduce a cor-
relation factor f to characterize the extent to which
the jumps are not completely random due to the asym-
metry left by the vacant site. For self-diffusion this is
a constant being f=0.78146 in fcc crystals. " Also we
must include a factor p„=exp(s„/RT) exp ( h„/R—T)
giving the probability that the adjacent site is vacant
which up to now was simply assumed to be vacant,
Here s, and h, are the entropy and enthalpy change of
the perfect crystal when it contains a vacancy next to
the diffusing species. Collecting then, with P=ao', we
have

D= ekapfp, = eao'vf exp(s„/R) exp( —Q/RT), (34)

where Q and P are listed in Table I and Eq. (33),
respectively, ao~3.85&&10 s cm, and s„/R=4.0."

Since Q is temperature-dependent, some care must
be taken in comparing (34) with experiment. Expanding
Q as a power series in. T to represent this dependence
analytically, we have

Q=Q'+O'T+Q" T'+"
=4080—13.2T (6, 14)cal/mole

=3790—10.4T (6, 12)cal/mole, (35)

where we have neglected terms above Q'T and used
Fig. 1 to obtain Q' and Q' for each potential. Experi-
mentally we write D in the form

D=DO exp ( H/RT), — (36)

where Do and H, by definition, are taken to be the best
temperature-independent constants which fit the experi-
mental data in the temperature ranged considered. To
compare (34) with the experimental form we must
substitute (35) in (34) giving

the 6rst being obtained from self-diffusion measure-
ments directly in solid argon~' and the second from
measurements in solid xenon" using a corresponding
states law. (The errors in the second value are estimated
by the author to include possible errors in the cor-
responding states law. ) The theoretical result using
the better (6, 14) potential agrees well with experi-
ment justifying in a quantitative manner the use of
equilibrium methods to derive k. The theoretical eval-
uation of Q', due to errors in potential used and
location of AV+, could be in error by 100 cal/mole.
It could be in error by a further 100 cal/mole due to
the uncertainty in p„.

In previous comparisons"' of theoretical prediction"
with experiment, agreement was not found. This is
largely because H was compared directly to Q and
Do to ~eao'vf exp (s„/R), as one would expect to be
able to do if Q were constant. The previous theoretical
results" diGer from the present ones only in the
v exp (s,/R) term; being 10 ~ that found here.

+CHOO

3800

360o

34oo

D= ,'aP~f exp (s„/R-) exp (Q'/R) ~ exp ( Q'/RT)—
=4.7 exp (—4080/RT) (6, 14)cm'sec

=1.6 exp (—3790/RT) (6, 12)cm%ec (37)

& BOP

so that the parameters in the exponential and pre-
exponential positions are also temperature-independent
as in the experimental expression (36). This can then
be compared directly with two experimental values.

D= (0.3+" p.g7) exp t' —(3930&400/RTjcm'/sec

and

D = (8.1&3.0) exp P—(3830&100)/R Tg cm'/sec

(38)
"A. D. LeClaire and A. B.Lidiard, Phil. Mag. 1, 518 (1956)."H. R. Glyde, J. Phys. , Chem. Solids 27, 1659 (1966).

3000

2.0 60 80

"A. Berne, G. Boato, and M. De Paz, unpublished work and
Nnovo Cimento 24, 1179 (1962).

'4 W. M. Yen and R. E. Norberg, Phys. Rev. 131, 269 (1963).
'~ G; Boato, R. Fieschi, and G. F. Nardelli, Nuovo Cimento

Suppl. 1, No. 1 (1963)."R.Fieschi, G. F. Nardelli, and A. Rapani, Phys. Rev. 123,
141 (1963).

FIG. 1. The activation energy Q for self-diffusion in solid
argon as calculated using the (6, 14) and (6, 12) interatom
potentials.
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In comparing with experiment, we see it is important
to realize that Q (T) can depend on T so that equivalent
parameters are compared. With Q( T) =Q'( T)+
TQ'(T) in (37) a plot of log D vs 1/T would have
slope Q'(T) so that H=)Q (T). In an experiment
we might still 6nd that H=Q'(T) varies with tem-
perature. This reflects only that Q(T) is not well
represented by a two parameter fit Q(T) =Q'+Q'T
unless the parameters themselves, Q'(T) and Q'(T),
are allowed to vary with T. The chief dependence of
the activation energy Q(T) on T through the TQ'(T)
term, however, would not be observed. In solid xenon, '4

for example, log D vs 1/T is a good straight line
over the range covered indicating that Q(T) is well
represented by Q(T) =Q'+Q'T in this case. It is to
be emphasized that Q' has no physical significance
and that Q is the real activation energy of physical
interest.

A similar problem arises in the study of mixtures27
but in mixtures it is possible to obtain the true tern-
perature-dependent binding energy from a separate
experiment. In diffusion it would be possible to re-
construct Q(T) from Q(T) =Q'+Q'T if the other
parameters in the pre-exponential factor (28) were
well enough known.

We could have introduced thermodynamic functions
for comparison with experiment. Fluctuation theory'
shows that to reach AV+ the fluctuating region must
undergo a Gibbs free-energy change so that AV+=
&dG =AH —TAS with hH and 6$ de6ned by
this equation. (This correspondence is not quite exact
here as some of the entropy is already in the pre-
exponential factors. ) Should AU+ depend on T, then
only with d V+=KG will the resulting AH and AS
satisfy the usual thermodynamic relations. "Thus with
AV+= V' —V'T, AH = V' and AS V'. The intro-
duction of AG adds nothing new and as we did not
have p„ in thermodynamic form we felt it more accurate
to obtain Q as above. The dependence of AU+ on T could
be significant in metals as well. The theoretical values
for Cu' disagree with experiment" in just the way to
be expected if Q were temperature-dependent [H
(theory) (H(exptl); Do(theory) (Do(exptl) jsz and
AS is generally larger than expected in most metals.

V. CONCLUSION

1. The dynamical theories of Rice and Manley and
the equilibrium statistical theory of Vineyard are

' K. A. Guggenheim, Mixtlres (Oxford University Press,
London, 1952), p. 78."L.D. Landau and E. M. Lifahitz, Stutisticat Physics (Per-
gamon Press, Ltd. , London, 1959),p. 350.' G. S. Rushbrooke, Statistical Mechanics (Oxford University
Press, London, 1949), p. 316.

"H. B. Huntington and F. Seitz, Phys. Rev. 61, 315 (1942).
"A. Kuper, H. Letavr, L. Slifkin, and C. Tomizuka, Phys.

Rev. 98, 1870 (1955).' P. G. Shewmon, Digusioa irt Solids (McGraw-Hill Book
Co. , Inc. , Neer York, 1963),p. 68.

completely equivalent both in principle and expression
for k.

2. The mass dependence of k for a diffusing atom of
mass m predicted by equilibrium methods is always m &

for the vacancy mechanism. Any departure from this
dependence represents a failure of equilibrium methods.

3. With the expression for k given in (27) it is
possible to evaluate k on a fundamental basis from a
knowledge of the crystal force constants.

4. Vsing expression (27) for k, the self-diffusion
coefficient for solid. argon is evaluated giving a value
)when written in the experimental form D=De exp
( H/R—T) j of D=4.7 exp (—4080/R. T) . Both Do and
H agree with their experimental values demonstrating
that quantitatively correct results can be obtained
using equilibrium statistical methods.
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APPENDIX ON ISOTOPE EFFECTS

In part (i) we reconsider the equilibrium statistics
treatment of the atomic velocities during the jump
process. This is done to clarify, where the present
treatment differs from that due to Vineyard7 and why
it predicts a different mass dependence for k. In
part (ii) recent experimental evidence on isotope
effects is discussed.

(i). Velocity Considerations

The expression for 4 used by Vineyard is

Ik= —= — p(X, V) VdVds
P& P'i $ v

(A1)

which is a normalized atomic Row through a surface S
which cuts the saddle point and separates cell 1 and. 2.
It differs from expression (1) used here only in that
the total system velocity

3m

ni

is considered rather than the single velocity of the
migrating atom r'~'=eq'. In integrating over the vector

The author wishes to acknowledge with thanks the
C.I.B.A. Fellowship Trust for support, and Professor
I. Progogine for extending to the author the facilities
of his department, during 1964—65 when part of this
paper was written. The author is also indebted to Dr.
W. Schieve for valuable discussion of this paper and to
Dr. J. I. Lipson for introducing the author to the
problems in diffusion initially.

Note added irt proof The wo. rk of Berne, Boato, and
Be Paz on self-diffusion in argon has now appeared
(Nuovo Cimento 468, 182 (1966)$. They now quote

' D=4 exp( —3865&200/RT) cm'/sec.
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velocity V the condition

V dS&0 (A2)

is introduced so that integration of V from 0 to ao rather
than from —~ to ~ is taken. We now suggest that
this condition (A2) should reduce to the one used
here.

We integrated over r'~' from 0 to ~ in Eq. (1) rather
than —~ to ~ so that we include in k only those
situations in which atom 1 and the crystal reaches
the saddle point I' with atom 1 traveling toward cell 2.
We do not want to include those cases in which the
crystal is at I' but atom 1. is traveling back to cell 1.
We do not need and should not impose an equivalent
condition on the other atoms as they may have any
velocity at I'. A jump can occur with the surrounding
atom velocities at any value and to include all possibili-
ties in k we must not limit these velocities as we have
done r'q'. Thus the condition (Pr'„').dS&0 should
be just

r'' dS&0+ Qr '
a O r

p(x) v) (Q r'(t) ) dr') ~ dr'„.dS dt/r. (AS)

migrating atom and that in equilibrium statistics each
i„ fluctuates independently, which leads to k exactly
~m &. It is here that the present treatment differs

from Vineyards. Should the above argument be in-
correct then so is our prediction that an equilibrium
statistics treatment must give k ~ m '.

We may obtain a reduction of k from k~m ' as
follows. A chemist discussing the above would introduce
a reaction path of length bl along which the system
passes as atom 1 goes to cell 2.'4 We may treat the
fluctuation leading to I' as a thermodynamic one, i.e. ,
one in which the time to reach I' is much less than the
relaxation time of the system back to its mean value.
Starting 8l(t=0) at I' then, the system decays from
the fluctuation along 6l. The decay rate of each co-
ordinate along bl is some function of its value at I';
to 6rst order" i„=—Xr„+. Taking a time average
of the quantities appearing in k along N (over a time
r 8l/(r'~)) we have

Although we set no condition on i„, v&1, the
requirement that the system be at I' and i"J'&0 Inay
naturally introduce one; i.e., introduce a statistical
correlation so that &i„& d5 +0. However, with a
Hamiltonian of the form (23), the correlation functions
of i„with position or another i„ in equilibrium statistics
(equal time functions) are zero

(r'„, r„')=0

(r„, r„')=0

s —1 ~ ~ ~ 5$

e'ge, n'=1 ~ ~ ~ (m —1) . (A3)

in (A1) and integrating over all velocities except r'q'

gives

(A4)

which is (1) with the integration over S" being done
in (27) . It is this point, that we should not introduce a
condition on the velocity of atoms other than the

Thus each velocity fluctuates independently. At I' we
would observe the usual statistical values for each
'„„;('„')=0, ('„' )=t T/m„.

Using the condition

r'g* dS&0+ Q r'„

X ~ r„+
(A6)

This development is by no means exact but its
general form leads to a reduction of k from k~m~ '

depending on how much each atom is displaced at I'.
This reduction should less for light migrating atoms for
as r )0, (r'„) ——)0 and k —) ~mq l. A proper
treatment would involve double-time-correlation func-
tions which are outside the realm of equilibrium
statistics.

(ii). The Exyerimental Situation

There is now accurate evidence demonstrating that
k is not proportional to mJ '. In a recent contribution"
where all evidence is reviewed, it is suggested that the
reduction of k from exactly ~ m& ' is related to how
far the surrounding atoms must move to reach the
saddle point. An intuitive expression for this reduction
has been developed by LeCalire'~ and its relation to
experiment and correlation factors is discussed. This
evidence points to the need for treating carefully the
kinetics of the migrating atom through the saddle point.

The expectation values of the i„now appearing in k
will not be zero but proportional to the displacement
r.+Li.e., (r'„) (k T/m. ) Xr+j giving

"In the text we required r1'=-,'a0 always so that the surface
S'will be parallel to the line joining lattice points 1 and 2. It
is possible to remove this restriction so that S can have any shape
and show that the mass dependence of k is unaltered (develop-
ment available on request).

"Reference 6, p. 186.
"Reference 28, p. 377."J.N. Mundy, L. W. Barr, and F. A. Smith, Phil. Mag.

14, 785 (1966).
"A. D. LeClaire, Phil. Mag. 14, 1271 (1966).


