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chromism is identical to the first-order term of the
present theory LEq. (35)j.Hoffmann's results are con-
tained, as an approximation, in the present theory.
For completeness, we point out discussions of the
hypochromism problem by McLachlan and Bal1.,"
Fowler, ' and Bullough, " whose conclusions are in
general agreement with ours.

"A. D. McLachlan and M. A. Ball, Mol. Phys. 8, 581 (1964).
» G. N. Fowler, Mol. Phys. S, 383 (1964)."R.G. Bullough, J. Chem. Phys. 43, 1927 (1965).

The theory, therefore, contains nothing which is
basically new, but does serve to coordinate previous
theories under one "theoretical roof". Ke feel that,
because of the generality, directness, and completeness
of the approa, ch, the use of linear response (retarded)
Green's functions will point the way to better approxi-
mation methods.

The same method should be readily applicable to
other optical phenomena, besides absorption, such as
rotatory dispersion and molecular crystal reQection.
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This article presents a simplified treatment of the high density, collisionless, free-electron gas, based on the ideas of a
wave number and frequency-dependent conductivity and dielectric constant. The formalism is applied to solve a number
of problems: the screening of the electrostatic potential of a foreign point charge placed in the electron gas, the rate of
energy loss of a charged particle moving through the electron gas, plasma oscillations, the reflection of electromagnetic
waves from the electron gas, and ultrasonic attenuation in metals due to the interaction of the sound waves with the
conduction electrons. In a Anal section it is indicated how the methods may be generalized. Explicit expressions for the
conductivity of the electron gas are obtained in an appendix.

INTRODUCTION

In recent years the quantum theory of the electron
gas has attracted the attention of a large number of
investigators, with the result that many features of
such a system are now well understood. Although the
power and generality of the quantum-mechanical
approach cannot be denied, there are times when a
simplified analysis is desired, if only to introduce
concepts and aid the intuition. Thus motivated, this
article presents a semiclassical treatment of a series

'
of problems, which can be classified under the heading:
the electrodynamics of an electron gas. Most of the
results have been obtained previously, and are avail-
able, for example, in the works of Lindhard, ' Rukhadze
and Silin, ' Pines, ' Kittel, 4 Ziman, ' and Pippard. ' lt is

~ This research was supported by the National Research Coun-
cil.' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -I'ys.
Medd. 28, No. 8 (1954).

2A. A. Rukhadze and V. P. Silin, Usp. I"iz. Nauk 74, 223
(1961); 76, 79 (1962) (English transl. : Soviet Phys. —Uspekhi
4, 459 (1961);5) 37 (1962)g.

'D. Pines, The Many-Body Problem (W. A. Benjamin, Inc. ,
New York, 1961); Elementary Eacitations in Solids (W. A.
Benjamin, Inc. , New York, 1963).' C. Kittel, Quantum Theory of Solids (John Wiley tk Sons,
Inc., New York, 1963).' J. M. Ziman, Electrons and Phonons (Oxford University
Press, Oxford, England, 1960); Principles of the Theory of Solids
(Cambridge University Press, Cambridge, England, 1964).

'A. B. Pippard, Rept. Progr. Phys. 23, 176 (1960); in Lou
Temperature Physics, Les Houches, 1961, C. DeWitt, B.Dreyfus,
and P. G. DeGennes, Eds. (Gordon and Breach, Science Pub-
lishers, Inc. , New York, 1962).

hoped, however, that the following treatment will

prove a useful introduction, serving to bridge the gap
between the old-fashioned and more modern pictures.

Although the ideas can be applied to, and in some
cases derive from, the study of a low-density electron
gas at high temperatures, this article is primarily con-
cerned with the high-density electron gas at low tem-
peratures. That is, in the absence of any perturbing
electric field, the system considered consists of a gas
of electrons, moving without collisions through a uni-
form, smeared out distribution of positive charge, with
charge density equal and opposite to that of the
electrons. It is further assumed that the electrons obey
Fermi statistics, and that the temperature is zero. The
average number of electrons in a volume d'x with
velocities in the range d'v is thus (3no/4rrvr') d'xd'v for
e&vp and 0 for ~)vp. The Fermi velocity ~& is given
by ( ji/rtt) (3rr'rts) 'ts.

The results obtained are used to describe the behavior
of the conduction electrons in a metal. In most cases
this application should be regarded as a crude approxi-
mation to the true state of affairs. Firstly, the perio-
dicity of the lattice changes the unperturbed electron
states, leading, for example, to nonspherical and in
some cases multiply-connected Fermi surfaces. The
modi6cations to the theory presented here to allow
for these effects are described by Pippard. ' Secondly,
the theory is valid only if the mean Coulomb inter-

7 A. B.Pippard, Ref. 6;
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action energy between electrons, e'/r, where r is some
average distance between electrons, is small compared
to the kinetic energy of an electron, —,'mz', where ~ is
some typical velocity. Taking for r the radius of a
sphere with volume equal to the volume per electron,
r=(3/4ir)to)')', and for () the Fermi velocity i)r, this
condition gives r,«1, where r, =r/ao is r measured in
units of the Bohr radius ao ——ti'/me'. For metals, how-
ever, r, ranges from 1.8 to 5.7. Procedures for inter-
polating between the high-density (r,«1) and low-

density (r,))1) regions are discussed by Hubbards and

by Nozieres and Pines. '
With these limitations in mind let us now turn our

attention to the basic problem discussed here, the
response of an electron gas to an electric held.

I. CONDUCTIVITY TENSOR

Consider then the effects caused-by the application
of an electric field E(x, t) to the electron gas. This field
generates an electric current J&,) (x, t) which, if the field

is weak, is assumed to be linearly related to the field.
This, however, does not mean that one can simply set
J&,)'(x, t) =o.,'E'(x, t), for such relationship is not only
linear but local. That is, the electric field at a particular
space —time point determines the current density at the
same space —time point. This is not true if the mean
free path of the electrons is long compared to distances
over which the field changes appreciably, or if the mean
time between collisions is long compared to times over
which the field changes appreciably. Under these con-
ditions an electric field at (x', t') can generate a current
density at different space —time points (x, t). To allow
for such effects, one postulates the following linear but
nonlocal relationship between J&,) and E

J(,)'(x, t) = d'x'dt'K, ''(x, t; x', t')E'(x', t'). (1)

The "kernel, "K,' (x, t; x', t'), of this i'ntegral relation
is the current in the "i" direction at the space —time
point (x, t) caused by a unit impulse of electric field
in the "j"direction at the space —time point (x', t ).

In general such a nonlocal relationship between the
electric field and current density is dificult to handle.
If, however, one makes use of translational invariance
considerable simplification occurs. Firstly, the kernel
E,' becomes a function only of the differences of the

transforms of the current density and electric field

J& )'(k &o) = d'x dtJ )'(x t) exp ( i—k x+i&et)

&i '(k co) = d'x dtK '(x t) exp ( ik—x+kut) (4)

is the space —time Fourier transform of the kernel K,'.
Because of the formal similarity between Eq. (3) and
the more elementary relation J&,)'(x, t) =&r E&(x, t),
one refers to Eq. (3) as "Ohm's law, "and calls (r,'(k, cv)

the conductivity tensor at wave vector k and angular
frequency ~.

Ohm's law can be still further simplified if one makes
use of spatial isotropy. The conductivity tensor can be
written

o. '(k (u) =oi(k, (u) k'k /k'+or(k, (o) (&)
'—k'k /k') (&)

where 0~ and sr~ are the longitudinal and transverse
conductivities, and are functions only of the magnitude
of k, k, and the angular frequency. The terminology
"longitudinal" and "transverse" is appropriate, since
a purely longitudinal electric field E~, with k x K~=0,
generates a longitudinal current density

J L ~r,Er (6)

whereas a purely transverse electric held E~, with
k E=0, generates a transverse current density

J( )F ~TET

For the highly degenerate free electron gas, these
conductivities can be calculated explicitly, " with the
results

3 co Go co 3 M& Goo~= — "
0

8 vpk 'vp~k2 'vpk 4x vpk 'vpk

1 M 1 —M/()rk
X 1+ ——ln

2 'vpk 1+&e/()pk

CO 3 M& Mor= — 1—,, ~8 1 ——+i-
&6 &pk &p'k'j ~pk Sx ~pk vgk

E'(k, (o) = d'x dtE& (x, t) 'exp ( —ik x+icotl (2)

one Ands that J&,)'(k, &u) and &'(k, (0) are related by

J(,)'(k, (e) =o)&(k, (0) E&(k, co), (3)
where

space —time coordinates,

1+— ln . (8)
GO 'Vp —1 —M Vp

K'=K'(x —x'; t—t'). 2 co/()rk 1+(u/()rk

In these expressions cu„=(4irnoe'/m)"' is the plasma
Secondly, if one introduces the sPace —time Fourier frequency and 0(z) is the unit step function tt(z) =0

for x(0 and e(x) =1 for x)0. For low frequencies

8 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).
9 P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958). "See the appendix for details.
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(o)/t)rk«1) these expressions reduce to

3 GO@ (d
o-~ = —i- 1+i ', «r -+ ~ ~

4' Vpk Vpk Vpk

3 M& 4 co
o.T = —" 1+z — + ~ ~ ~ (9

16 Vpk K Vpk

whereas for high frequencies (o&/t&ek))1) they become

z (d 2 3 v@242
o- = —" 1+ — + ~ ~

471 Go 5 co

where

et =8) + (4«rz(rt /o&) . (14)

The resulting system is formally identical to that used
to describe the electromagnetic field in a medium with
dielectric constant e, '. Because of this one calls e, ' the
"dielectric constant" of the electron gas. Note, however,
that in the elementary theory e is a constant. Here e,'
is a function of k and cv.

Using spatial isotropy one can write the dielectric
constant in the form

1+- +
47t 6) 5 co

e.«(k (d) =eL(/z o&)&»«k./Pz+eT($ (c) ((&.c P«)'z. /&«z) (15)
(1o)

where
e(L,T) 1+(4«rz(r(L, T)/(d)

II. DIEI ECTRIC CONSTANT

A complete description of the average electromag-
netic behavior of the electron gas is obtained by
combining Ohm's law with Maxwell's equations. In
Gaussian units, these latter equations for the total
electric field E and magnetic field 8 read

ik x E=i (o)/c) B,

ik 3=0,
i k x B= (4«r/c) J i ( o—&/c) E,

ik E=4xp.

The variables J and p denote the total current and
charge densities. They are the sum of the current and
charge densities J(r) and p(r) due to foreign charges, or
charges which are not part of the system consisting of
the electron gas and uniform positive charge back-
ground, and the current and charge densities J(.& and

p~, ) due to deviations of the electron gas from equilib-
rium, "

are the longitudinal and transverse dielectric constants.
The physical significance of these parameters can be
appreciated by splitting Maxwell's equations into two
sets, one containing only longitudinal variables, the
other only transverse variables. For this purpose one
sets

E=EL+ET,

Ju) = J(r) +J(r) (17)

where EL=kk E/k' and J(r)L=kk. J/k' are the longi-
tudinal parts of E and J(f), and E =k x (E x k)//e
and J(r)T ——k x (J(r) x k)/0z are the transverse Parts of
E and J(t). The longitudinal electric field and current
density then satisfy

z(e(e E ) =4«rJ(r

zk' (e E ) =4«rp(r).

These equations show that e~E~ is the longitudinal
electric field EU)~ generated by the foreign charges,

J=JU)+J()
P =P(f) +P(&) (12)

Eu)'=~'E' (19)

The variables J(,&
and p(, &

can be eliminated from the
6eld equations by using the equation of continuity to
express p(,&

in terms of J(,&, and then using Ohm's law
to express J(,&

in terms of the total electric held E. The
two Maxwell equations which relate the fields to the
sources become"

(ik x B) '= (4«r/c) J(f)'—i((c/c) (e,'E')

ik, (et'Et) =4«rp(r), (13)
I' T'.~ere is also a current and charge density due to the polariz-

ability of the ion cores. This is neglected here.
'2 This method of eliminating the electron current and charge

densities from the field equations is not unique. One could equally
well write

«» (s 'B) = (4~/ )J(fc& «(~/ )("cE)
ik (e~E) =4n'p(y)

where «« '=I+(&o/ck)«(«L —«T) in place oi Eq. (13). In this
picture the influence of the electron gas on the fields is described
with the aid of a dielectric constant ~L and a permeability p.

The transverse electric field and current density satisfy

ik x ET =i((e/c) B

ik x B= (4«r/c) J(f)T i (ce/c) (e—TE ) (20)

showing that for transverse fields e~ plays the role of
dielectric constant. The magnetic field 8 can be
eliminated from Eqs. (20) to give the following rela-
tion between the total transverse electric field E~ and
the transverse current J(r)T due to the foreign charges

Lgz eT(cc/c) zjET —(4«rz(e/cz) J( T (21)

In free space a transverse current J(r& generates a
transverse electric field E(~)~, which is given by an
equation analogous to Eq. (21), the only difference
being that e~ is replaced by 1. Thus one obtains the
following relation between the transverse electric field
E(~)~ generated by the foreign charges and the total
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transverse electric field E~

pks —(~/g) qE(f)~ =pks —p'(~/e) sjEv (22)

The longitudinal and transverse dielectric constants
for the free electron gas can be computed using Eq.
(16) and the previously stated expressions for the
conductivities, Eq. (8) . One obtains

te ' 1 to 1—ee/vpk
eL =1+3 1+— ln

'vp k 2 vpk 1+%/vpk

rep' a) f+isv 8~ 1—
v 'k'v k & v~k)

3 ee s 1 (te/vpk)s —1 1—co/vpkev= 1—— 1+— In
2 vp'k' 2 (te/vpk) 1+to/v pk

where kpr=&3(ee„/vp) is the Fermi —Thomas screening
wave number. Thus, for the semi-classical free electron
gas, the potential of the foreign charge is screened out
by the electrons in a distance of the order of k&z '.
The description of the electron gas in terms of a
continuum is valid if there are many electrons in a
sphere of radius kgb ', or in other words, if kg~r&&1
where r is the radius of a sphere with volume equal to
the volume per electron. This is equivalent to the
condition r,((I derived in the introduction using a
somewhat different approach. As was stated there,
this condition is not satisfied by the conduction elec-
trons in metals. In Cu, for example, r, =2.67, r =I.41 A,
and kgb

—' ——0553 A
The induced electron charge density p&,l(r) which

causes the potential to be changed from Eq. (26) to
Eq. (29) is

M& Vpk M
isv 1— 8 1— i. (23)

vJ'k' or ~g'k' vpkj
p(,)(r) = Zekpv' e—xp ( kpvr)/k—pvr. (30)

For low frequencies (ee/vpk((1) these expressions re-
duce to

er =1+3 (ee '/vp'k') [1+j-', v. (g/vpk) +.~ .]
ev =i,'v (ee,-'/vp'k') (vpk/cu),

whereas for high frequencies (ee/vpk))1) they become

e'=1 (~p'/~') C&—+s(»'k'/~') + "3
P'=1—{z '/&')

C
] +sr (vp'k'/re') + ~ ~ .j. (25)

III. SCREENING e(k, 0) =1+ (kpv/k) 'g(k/2kp), (31)

It is infinite at the position of the foreign charge. This
disagrees with the fact that the rate of annihilation of
positrons in metals, which is proportional to the elec-
tron density at the position of the positron, is finite. "

The results are improved by a quantum-mechanical
treatment. This more sophisticated approach shows
that the static dielectric constant e~(k, 0) is given by
Eq. (24) only in the limit of small wave numbers k.
For wave numbers comparable to the Fermi wave
number kp ——(3v'no) 'l' the following expression must be
used"

@if&(r) =Ze/r

with Fourier transform"

g(f) (k) =4v Ze/ks.

(26)

(27)

As a 6rst example of the use of these ideas, let us
calculate the electrostatic potential produced by a
foreign point charge Ze placed in the electron gas. In
free space the potential a distance r away from the
charge is

where the function g($) is given by

g($) =s+L($' —1)/4$j ln
~

{1—$)/(1+$) ~. (32)

As a result of this modification to the dielectric constant
the induced electron charge density at the position of
the foreign charge becomes finite. Further, the induced
charge density falls off more slowly with distance than
1s given by Eq. (30), and oscillates, behaving approxi-
mately as"

If the charge is placed in the electron gas the electrons
cluster about the charge, setting up an electric field
which tends to cancel that due to the charge. This
effect is known as "screening. "As a result the potential
@(fl(k) is reduced to p =@lfl/e~. Using the expression
for the static dielectric constant e (k, 0) given by Eq.
(24) one finds

4 I k pk )' cos 2k r
p&,&

r)~——Ze
(kpv'+8kp' r'

at large distances from the foreign charge.

IV. ENERGY LOSS

(33)

y(k) =4v.Ze/(k'+3a)p'/vp') . (28)
The computation of the rate of energy loss of a

charged particle passing through various types of media
This is the Fourier transform of the potential'4

Q(r) =Ze exp ( kpvr) /r—(29)

»p~~(r) satisles the equation p'qb&y) ———4xp(y~. Taking the
I'ourier transform of this equation leads immediately to @(f)(k).

&4 To verify, observe that P(r) satis6es (p—k~P) P=
QrrZeb' (x), Fourier transforming this equation gives p (k) .

"For theoretical work. on positron annihilation in metals see:
R. A. Ferrell, Rev. Mod. Phys. 28, 308 (1956); S. Kahana, Phys.
Rev. 11'7, 123 (1960); 129, 1622 (1963); J. P. Carbotte and S.
Kahana Phys. Rev. 139, A213 (1965)."J.Lindhard, Ref. 1."J. S. Langer and S. H. Vosko, J. Phys, Chem. Solids 12,
196 (1959).
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has been the subject of numerous papers. 's " In this
section the rate of energy loss is found using the
dielectric constant formalism. For simplicity it is
assumed that the mass of the particle is large in com-
parison to the mass of an electron, so that one can, to
a erst approximation, neglect recoil and assume that
the particle moves with a constant velocity v. If the
charge of the particle is Ze, the foreign charge density
p(f) (x, t) at the space —time point (x, t) is then

p(t)(x, t) =Zeb(x vt)—

with Fourier transform

(34)

In attempting to screen out this 6.eld, the electrons
generate a 6eld, the Fourier transform of which is

p(t)(k, (o) =2srZei)((o —k v). (35)

The Fourier transform of the electrostatic potential
due to the foreign charge is

(I (t) (k, (o) = (47r/k') p(t) (k, (o) = (8m'Ze/ks) 5 ( (o kv—)
(36)

and the Fourier transform of its electric field is

E(t) (k, or) = —ik@(t) (k, co) = —(8sr'iZek/k') 3 (co—k v) .

(37)

integral, one obtains

F=ZeE(,)(vt, t) =
3 2/2'""k~I-, (k, k.,)g-.

(2z)' k'

(4O)

Thus the rate at which the foreign charge loses energy
5' is given by"

d'k 4mZ2e'k v

(2z)' k'

X Im Le~(k, k v)g '. (41)

This expression can be written in. the form

dS' 2 Z2e2 ~~ dk
(o d(o Im Le~(k (o)] ', (42)

cQ 7l v p k p

where k is a maximum cut-off wave number. An
appropriate choice for this parameter is discussed
presently.

The integrations over co and k can be performed
simply if the velocity of the foreign charge is either
much greater than or much less than the Fermi velocity.
Consider first the case v«vg. In this limit one can use
the low-frequency approximation to the dielectric
constant, Eq. (24), to obtain

E()(» (o) =I:(1/e ) —1jE(f)(» (o)

= —(8 iZsrek/k') L(1/e ) —1)5(co—k v) .

1, co kps'/k'
Im ———2x

e keg (1+kps'/k')' (43)

(38)

Taking the inverse Fourier transform of E(,) (k, (o) one
6nds

E()(x t) =— d'k 4sriZek

(2z)' k'

X exp tik (x—vt) j. (39)

's N. Bohr, Phil. Mag. 25, 10 (1913); 30, 581 (1915); Kgl.
Danske Videnskab. Selskab Mat. -Fys. Medd. 18, No. 8 (1948).

"H. A. Bethe, Ann. Physik 5, 325 (1930); Z. Physik 76,
293 (1932).

'0 E. Fermi, Phys. Rev. 57, 485 (1940).
+ H. A. Kramers, Physica 13, 401 (1947) .
"A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -Fys. Medd.

24, No. 19 (1948).
&3 H. Frohlich snd L. Pelzer, Proc. Phys. Soc. (London) A68,

525 (1955).
'4 L. D. Landau and E. M. Lifshitz, Electrodynamics of Contin

nous lydia (Addison-Wesley Publ. Co. , Inc., Reading, Mass. ,
1960), Chap. 12."J. D. Jackson, Classical Electrodynamics (John Wiley tk
Sons, Inc. , New York, 1962), Chap. 13.

The force which the electron gas exerts on the moving
foreign charge is the product of the charge Ze of the
particle and the electric 6eld due to the electrons,
evaluated at the instantaneous position vt of the moving
charge. Using the facts that Re (1/e~) is even in k
whereas Im (1/e~) is odd to simplify the resulting

Substituting this expression into Eq. (42) and per-
forming the integrations gives

dW 4 Z'e m't)' (' km'') "' 1 k~ /kl r'»I1+ "
I

dt 3z- ))is I ks r sj 2 1+k /kes

(44)

The wave number k is determined by requiring that
Ak be equal to the maximum momentum transferred
from the foreign charge to an electron in a collision.
The maximum momentum transfer DI' occurs in a
head-on collision, for which DE=2m(() —t)(,)), tt(, ) being
the velocity of the electron. Since the maximum value
of e~,~ is eJ and since e&&~g, this condition gives Sk =
2m', or k =2k', where k~ is the Fermi wave number.
Substituting this expression for k into Eq. (44), one
obtains

dW 4 Z'e'm' ' t)I 7r)tt)» 't' 1 scat)F/e'
lnI 1+

dt 3zP ( e' 2 1+z.5()p/e'

in agreement with Fermi and Teller. 2~ In this velocity
region the rate of energy loss is proportional to the

"This formula neglects the energy loss due to the transverse
fields; see Refs. 1 and 2.

s& E. Fermi and E. Teller, Phys. Rev. 72, 399 (194'l).
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kinetic energy of the particle, the factor of propor-
tionality being 35.1X 10'5(m/M) Z'P ]/sec, where M is
the mass of the particle and L ] is the quantity in
square brack. ets in Eq. (45). For electron densities
present in metals, L ] ranges between 0.10 and 0.35.

One can use Eq. (45) to derive an expression for the
residual resistance of metals due to point charge

impurities. Equation (45) gives the rate at which a
beam of electrons moving with velocity v past a station-
ary charge loses energy. If there are S' stationary
charges per unit volume distributed randomly through-
out the beam, the rate of energy loss is just E times
that given by Eq. (45). Equating this to (1/o.)J'=
(1/o.)eo'e'v', one finds for the dc residual resistivity
(1/~)

1 4 XZ'e'nz' m5vp '~' 1 ~hitp/e'
ln 1+ . (46)

0 3X' e' 2 1+vrkr p/e'

This expression, due originally to Mott, " gives the
approximate dependence of (1/o) on the concentration
of the impurity and valence difference Z of the impurity
and solvent atoms. The numerical value is, however,
too large. For Cu Eq. (46) gives (resistivity/atomic %
impurity) ~1.8 Z'pQ-cm compared to an observed
(resistivity/atomic % impurity) 0.4 Z pQ-cm. Theo-
ries which give better agreement with experiment are
discussed by Friedel" and Blatt."

Consider now the case v))v~. In this limit one can
use the high-frequency approximation to the dielectric
constant, Eq. (25). At first it appears that Im (1/c~)
vanishes, since e is real. This, however, is not the case,
since e~ has a zero and 1/c~ a pole at co=&~d„. To
obtain the proper expression for Im (1/c~) write c~=
cP+icP and consider the limits as cP tends to zero.
This gives

62
Im —= —lim = —vr5 (~P) (47)

e2L ~0

and, using cP 1 —co„'/co', one finds

Im (1/c ) ——~co L8(co—or ) —8(co+(g„)]. (4g)

Substituting this expression for Im (1/cr') into Eq. (42)
and performing the integrations gives

dW/dt = (47rmoZV— /mn) ln (vk„/(u, ) . (49)

The cut-off wave number k is again determined by
setting Ak equal to the maximum momentum transfer,
which, since v&)vp, is given by 2m'. One obtains

dg /dt = (47rgoZ'e'—/mi) ln (2m''/5&v„) (50)

in agreement with Kramers. "
"N. F. Mott, Proc. Cambridge Phil. Soc. 32, 281 (1936);

N. F. Mott and H. Jones, Properties of Metals and Alloys (Oxford
University Press, Oxford, England, 1936), p. 294.

'9 J. Friedel, Advances ie Physics (Taylor and Francis, Ltd. ,
London, 1954), Vol. 3, p. 446.

' F. J. Blatt, Phys. Rev. 108, 285 (1957).
"H. A. Kramers, Ref. 21.

ci(k, (u) =0. (51)
For the free-electron gas at absolute zero this condition
gives

kpr 1 M cv/vpk —11+ 1+ ——ln =0. (52)k' 2 vFk cd/vi;k+1

At long wavelengths, k«kp~, this equation reduces to

~2~~ 2+ (3/5) ~ 2k2 (53)

These oscillations in the density of the electron gas
are called "plasma oscillations. "According to quantum
theory the energy is quantized in units of Ace„, which
in metals ranges between 3.4 and 20 eV. As a result
plasma oscillations are not normally excited. They can,
however, be excited by shooting an electron beam
through a thin film of the metal. In many cases it is
found that the energy loss of the electrons occurs in
multiples of hen„, showing that the electrons lose energy
through excitation of plasma oscillations. "

At nonzero temperatures the imaginary part of the
dielectric constant is positive for all frequencies. Thus,
there does not exist any real frequency for which e~

vanishes. Regarded as a function of the complex
variable ~, however, e~ has a zero in the lower half-
plane, a&=a&i —i

~

&F21. The amplitude of the oscillation,
which contains a factor exp ( i~t), then—behaves
initia, lly in time as exp ( —~

&u2
~

t) exp ( —i~,t), and the
oscillation is damped, the rate being determined by the
imaginary part of the frequency. An approximate
expression for the imaginary part of the frequency can
be obtained as follows. For low temperatures ET(&E~
and long wavelengths k((kpz, one expects the damping
to be small, and thus a first approximation to the com-
plex frequency at which e~ vanishes is just co„. To
obtain a better estimate, expand e~ as a power series
in cv about co~

c~(k, (u) =c~(k, (o„)+[cjcr (k, ~)/g~]„„((g—~ ) +...
i Im c~ (k, co~) + (2/(d, ) ((o—~,) . (54)

The frequency at which e~ vanishes is thus shifted to

a& ~d L1—~i Im c~(k, (o,)]
and the rate at which the plasma oscillation is initially
damped is given by —', co~ Im c~(k, co„) . This problem was
first studied by Landau, '4 and the phenomenon is

"J. hubbard, Proc. Phys. Soc. (London) A68, 976 (1955).
33 D. Pines, Rev. Mod. Phys. 28, 184 (1956).
'4 L. D. Landau, J. Phys. U, S.S.R. 10, 25 (1946).

V. PLASMA OSCILLATIONS

The condition for longitudinal oscillations in the
density of the electron gas to exist in the absence of
foreign fields can be obtained using the relation (15).
If EU)~ is zero and E~ nonzero, the longitudinal dielec-
tric constant must vanish. That is, the wave number k
and frequency co of the oscillation are related by"
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known as "Landau damping". " For the highly de-
generate electron gas one has

Im a
(k )' (

Epk p')

and, as expected, the damping is small for low tempera-
tures and long wavelengths.

According to the semiclassical theory plasma oscilla-
tions can exist in the electron gas at absolute zero for
arbitrarily large wave numbers. The quantum theory,
which one must use for wave numbers comparable to
or greater than kp shows, however, that there exists a
wave number k, above which plasma oscillations can no
longer exist."The origin of this cut-off wave number
can be seen without detailed calculations. Suppose that
an electron with velocity vi, &, ~

v,
~

&vs, absorbs a
quantum of energy Aced and momentum A, k, as a result
jumping to a state with velocity vr,

~
vr

~
)v~. One

says that the quantum creates an "electron —hole pair. "
Conservation of energy and momentum requires that

heimer. " Some aspects of this problem are discussed
in this section.

Consider a plane electromagnetic wave incident
normally on a semi-infinite conducting medium which
fills the half-space s& 0. It is convenient to characterize
the medium by a surface impedance Z, defined by

Z = (4sr/c) (E/8), (60)

where E and 8 denote the (complex) amplitudes of the
electric and magnetic fields at the surface of the
medium. With the aid of this parameter one can
completely describe the reAection process. For example,
the absorption coeKcient 8,, or ratio of the energy
absorbed by the medium per unit area per unit time
to the incident energy Aux, is given by

4 Re (cZ/4sr)

( 1+(cZ/4n. ) i'

and the reRection coefficient %=1—8, or ratio of the
rejected energy Qux to the incident energy Aux, by

cu =v; lr+fiks/2m. (57)
1—(cZ/4sr)

1+( Z/ )
= —( / ) (62)

The term v,' k lies in the range —opt|: &v; k&eyk. Thus
the quantum can be absorbed creating an electron —hole
pair provided

( —vpk+Sk'/2m) 0( —vpk+5k'/2m) «&vpk+fsks/2m.

The approximate expressions for 0', and 6l. in Eqs. (61)
and (62) hold for the case of a good reflector, for which
i
cZ/4~ i &&1.
Another parameter which is often useful is the

complex skin depth 8, defined by

E/(dE/dz), — (63)

co(k,) =v~k. +5k,'/2m. (59)

For wave numbers greater than k„ the plasma oscilla-
tion is unstable and decays creating electron —hole pairs.

VI. SURFACE IMPEDANCE

The reflection of a plane electromagnetic wave by a
conducting medium is discussed in most books on
electromagnetic theory. In the usual treatment it is
assumed that the relation between the current density
and electric field is local. However, this assumption is
not valid if the mean free path A of the electrons is long
compared to the depth 8 of penetration of the electro-
magnetic wave. The detailed theory of the reQection
process, both in the normal limit 8))A and in the
anomalous limit 6&A is given by Reuter and Sond-

"For recent work see T. H. Stir, The Theory of Plasma Waves
(McGraw-Hill Book Co. , Inc. , New York, 1962), Chap. 7; S.
Gartenhaus, Elements of P/asma Physics (Holt, Rinehart, and
Winston, Inc. , New York, 1964), Chap. 6.

' R. Ferrell, Bu11. Am. Phys. Soc. 2, 146 (1957); K. Sawada
et al. , Phys. Rev. 108, 507 (1957) .

At small wave numbers the frequency co(k) of the
plasma oscillation is approximately cv„and the oscilla-
tion is stable. As the wave number is increased, how-
ever, one reaches a wave number k. at which

where E and dE/ds denote the amplitude of the electric
field and its normal derivative evaluated at the surface
of the medium. The parameter 8 serves as a measure of
the distance the electric field penetrates the medium.
By using Faraday's law to express dE/ds in terms of 8,
one finds that 5 and Z are related by

8 = —(cs/4srico) Z. (64)

' G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.
(London) A195, 336 (1948); see also A. B. Pippard, Ref. 6.

The problem now reduces to relating Z to the
properties of the medium. Because of the boundary at
s=0 one cannot immediately use the techniques devel-
oped in Secs. I and II. The special case in which the
electrons undergo specular reRection at the boundary
can, however, be treated as follows. The current density
in such a medium caused by an electric field E (s)0)
is the same as the current density in the region s&0
of an infinite medium caused by an electric field equal
to E for s&0 and to the mirror image of E for s&0.
Thus, if one solves a problem in an infinite medium
and finds that E, and E„are even functions of s and E,
is an odd function, the solution for s&0 is also the
solution to a problem in a semi-infinite medium, the
surface s=0 of which is a specular refiector of electrons.
In particular, the value of the electric field at s=0 in
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the in6nite case is the value of the electric field at the
surface of the semi-infinite medium. With this in mind
one calculates the electric field in an infinite medium
produced by a sheet of current with density Sir&(s, i) =
Re Jo&(s) exp ( io—&t) flowing in the x direction in the
s =0 plane. The amplitude JU& (s) of the current density
is

~u& (s) =&v&~(s)

with Fourier transform with respect to s

long, App„/c)1, the condition
~

8
~
))A dominates, and

shows that the frequency must satisfy the condition
p&((vvc'/A'io„s. In this region, which is the one commonly
discussed, the absorption coeQi.cient is proportional to
~1/2

At higher frequencies, ru))vvc'/Aspp„', the ordinary
skin depth is small compared to the electron mean free
path. It is reasonable to treat the electrons in the
material as a free electron gas, for which Eq. (24) gives
for the dielectric constant

~tv&(k) =&u&
er (37ri/4) (p&v'/vFkp&). (&5)

4so&K (fiEs =
C p

cos ks
dk

ks eT (co/e)
(68)

The field is even in s, and at v =0+ has the value

E(0+) = 4207E U)

C p

dk

k' —e (io/e)'
(69)

This field, which is independent of x and y, is the same
as is caused at the surface of a semi-infinite medium by
a plane electromagnetic wave with its electric vector
polarized in the x direction incident normally on the
surface. The surface impedance is now obtained by
dividing (4v./c)E(0+), given by Eq. (69), by the
magnetic field

B(0+)= —(2m/c) E v& (70)

at the surface, as given by Ampere's law. One finds
- Sior dkz=-

ks —er ((g/e) s (71)

At suKciently low frequencies the field penetrates a
considerable distance into the material and the change
in the field over distances comparable to the electron
mean free path h. is small. Further, the period of the
field is large compared to the mean time r=A/vv
between collisions for the electrons. The conductivity
reduces to the ordinary dc conductivity op=o&,sA/4v-vp,

and the dielectric constant, which is related to the
conductivity by Eq. (16), becomes

e ~4v vop/p&. (72)

In this limit the surface impedance, as given by Kq.
(71), is

Z = (2v co/opcs) 'I'(1 —i)

and the complex skin depth is

(i3)

8 =-', (c'/2v. o.pop) '"(1+i). (74)

These expressions hold so long as
~

8
~
))h., p&r&&1, and

4v.op/&o))1. If the mean free path of the electron is

By Eq. (21) the Fourier transform of the amplitude of
the electric deld produced by J(f) is

cs k' —er ((o/c) s (67)

and thus the electric field is

This approximation is valid if cv/vvk(&1. The wave
numbers in Eq. (71) which contribute most strongly
to Z are those for which k'~er (&o/c) ', or using Eq. (75),
ks~oov'~/c'vv. For the dominant wave numbers co/vvk~
(cue/co„vv) '&' and thus, as long as p&«(vv/c) p&„, one can
use Eq. (75). It is possible to satisfy both this and the
previous restriction on ru, namely cu))vvc'/Aso&v', if the
mean free path of the electrons is long, Ap&v/c))1. In
Cu at low temperatures mean free paths 3~10 4 cm
are easily obtained. For this value of the mean free
path Appo/c~55, and the restrictions on the frequency
are 8.3X 10r cps ((p&/2v. ((1.4&&10&s cps. In this region
the surface impedance is

Z = (8v-/3%3) (4' p&'/3v. c p& ') 'i'(1 —i3 (76)

and the absorption coefFicient is proportional to +'l".

VII. UX TRASONIC ATTENUATION

Experiment'8 and theory" ' show that the dominant
mechanism for the attenuation of ultrasonic waves
propagating through pure metals at low temperatures
is the interaction of the sound wave with the conduc-
tion electrons of the metal. In this section, the attenua-
tion coeKcient, or reciprocal of the distance over which
the intensity of the wave decreases to 1/eth its initial
value, is calculated on the assumption that the conduc-
tion electrons can be treated as a free-electron gas. In
particular collisions of the electrons with impurities in
the lattice are neglected.

Consider first longitudinal waves. The ions oscillate
back and forth along the direction of propagation with
velocity u&;&(x, t) = Re Nt;&(Ir/k) exp (ilr x—ip&t)

giving an ion current J&,& ———ripeui;&. The periodic
compression and rarefaction of the ion density leads
to a charge density, which generates a longitudinal

'8 H. E. Bommel, Phys. Rev. 96, 220 (1954); W. P. Mason and
H. E. Pommel, J. Acoust. Soc. Am. 28, 930 l1956l; R. W. Morse,
in Progress ie Cryogenics, K. Mendelssohn, Kd. (Heywood and
Company, Ltd. , London, 1959), Vol. 1.

39 A. B. Pippd, rd, Phil. Mag. 46, 1104 (1955); Proc. Roy. Soc.
(London) A25/, 165 (1960); see also Ref. 6."M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev.
117, 937 (1960).

I H. Stolz, Phys. Status Solidi 3, 1153 (1963);3, 1493 (1963);
3, 1957 (1963).
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electric field E(;&. Using Eqs. (18) and (19), one finds the ions to the electrons per unit volume

E(;)——(42ri/M) npeu(, &. (77)

As far as the electrons are concerned, E(,) is a foreign
electric field, and by Eqs. (6), (16), and (19), it
generates an electric current

J(,) = (p)/42ri) (1—1/p)„) E(;). (78)

As a result of this interaction, energy is transferred
from the ions to the electrons and the sound wave is
attenuated. The attenuation coefficient n~ is obtained
by dividing the time-averaged power transferred per
unit volume, namely,

—', Re J(,) E(,&* ———(p)
I
E(,& I'/82r) Im (1/c),„) (79)

by the time-averaged energy Aux 5~ of the sound wave

(~'—c'&2) '
I E(') I'

-', Re J(.) E(,) ——— Im Lp (p' —c'lP)-'
8~or

(86)

by the time-averaged energy Qux S~ of the sound wave

s'=2p:.'
I u('& I'

—2
(p v T /16~2 n2e2~2) (~2 c2$2) 2

I
E I2 (87)

then gives the attenuation coefficient u~ for transverse
sound waves

c(T — (42m 2e2(p/p v T) Im LpT(p2 c k g (88)

As in the case of longitudinal waves one can use the
low frequency approximation to the dielectric constant,
setting

=-'(p v ~(p2/162rpn 'e')
I E(,) I' (80)

"=(3~'/4) (v'/») (~ '/~')

One then finds"

(89)

where p is the mass density of the metal and v,~=(p/k
is the longitudinal sound velocity. This gives

= —(42rnppe2/p v (p) Im (1/gI, )
In typical metals and for frequencies of interest one
has ,vc((»vand (d(((v,~/vT) p)v In Cu. , for example,
v,~ 4.7X10' cm/sec, vT—1 6X10' cm/sec, and p)~
1.6X10'%ec. Thus one can use the low-frequency,
long-wavelength approximation to the dielectric con-
stant, with

(1/ „.')=—( /6) (v /v. ') ( '/ .') (82)

4 SpmVpQ7 COp

A
32I p v p)p +(p

(90)

where (pp = (32rv, '(dv'/4vt c')" In .Cu, (pp/2n 1100
Mc/sec. In most experiments the frequency is low in
comparison to ~p, and the attenuation coefficient is

nT-(4/3~) (npmv, ~/p v ") (91)

and rises linearly with frequency. At higher frequencies
the attenuation coeKcient increases less rapidly with
frequency, reaches a maximum at 3 '~4cop, and then
drops, behaving approximately as

Substituting this expression into Eq. (81) then gives
the attenuation coeKcient for longitudinal sound waves

c4T~12m'(nppe4/p mvT) (v,T/c) 4(p (92)

u~ (2r/6) (n pmvT p)/p„v, ~') . (83)

This is the expression for the attenuation coefficient
obtained by Pippard in the limit in which the mean
free path of the electrons is much longer than the
wavelength of the sound wave. In this limit the atten-
uation coefficient rises linearly with frequency.

Now consider transverse waves. The ions oscillate
with velocity u(,&(x, t) = Re u(, ) exp (ik x —i(pt)
where u(;~ is perpendicular to k, k. u(, )

——0, giving an
ion current J(,&

———npeu(;&. In this case there is no
bunching of the ions and the metal remains charge free.
However, the ion current J(,) generates a time varying
magnetic field and by induction an electric field E~;~.
Using Eqs. (21) and (22) one finds

E(,) ——I
42ri(p/((p2 —c k )f2np2eu(, ). (84)

According to Eqs. (7), (16), and (22) this field gen-
erates an electron current

~' —c%' ~' —c%'
()= . 1- — E(*) (83)

moor @~os—c2A, 2

Dividing the time-averaged power transferred from

at very high frequencies. This ultrahigh-frequency
behavior can be obtained more directly if one observes
that at high frequencies the electrons are no longer able
to keep up with the ions, and thus the field E(,) gen-
erated by the electrons is small compared to the field
E(,&

generated by the ions. Thus, in place of Eq. (85)
one has J(.)—((p/~42ri) (pT —1)E(,&. Using this relation
one arrives after a short calculation at Eq. (92) .

VIII. GENERALIZATIONS

The formalism developed in Secs. I and II can be
applied to systems of particles interacting via forces
other than Coulomb. Consider a system of particles,
of mass M and equilibrium number density Ãp, inter-
acting via a potential q (x). That is, the force which a
particle located at x' exerts on a particle located at z
is —Vp2(x —x'). If these particles are acted on by a
force, the net force acting on a particle located at
(x, t) being F(x, t), a flow of particles occurs, the
number of particles crossing a unit area per unit time
being j(x, t). Denoting the I ourier transforms of

~ H. Stolz, Z. Naturforsch. 16a, 446 (1961),
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j (k, o)) =1Vp)a(k, o)) F (k, o)), (93)

F(x, t) and j(x, t) by F(k, o)) and j(k, o)), one has via, a Coulomb potential p(x) =Z'e'/I x I. The Fourier
transform of y(x) is

where ti(k, o)) is the wave vector and frequency-
dependent mobility. For a gas of bosons at absolute
zero with distribution function 7Vp8(v), the mobility
can be calculated using the techniques described in the
appendix, with the result

q (k) =47rz'e'/k'

and the m —k relation reads

o)/k = (47rZ'e'imp/Mk') "'
ol

(103)

(104)

(105)
)a(k, o)) =i/Moi. (94)

where
F&;.)(x, t) = —vC(x, t), (95)

C (x, t) = d'x'q (x—x')1V(x', t). (96)

For a gas of fermions at absolute zero the result is
somewhat more complicated. It can be obtained for-
mally from the expression for the longitudinal conduc-
tivity, Eq. (8), by dividing o.~ by 1Vpe'. For high
frequencies (pp/p);k))1) one again obtains Eq. (94).

The force F(x, t) is the sum of the force F&,„)(x, t)
due to external agents and the force F&;„)(x, t) which
all the other particles exert on a particular particle at
(x, t). This latter force is obtained from a potential
C(x, t)

where Q~= (4~iVpz'e'/M)'i' is the plasma frequency
appropriate to the system. This is just what one could
expect on the basis of the previous calculations in-
volving electrons.

As a second example consider the following rather
naive model of a metal. Picture a metal as consisting of
two gases, an electron gas and an ion gas. If it were
not for the electrons the ions would simply interact via
Coulomb forces and the ions would undergo plasma
oscillations with frequency 0„.As was shown in Sec III,
however, the electrons act to screen out the interionic
potential and as a result the potential is changed to
p(x) =Z"' exp ( k» I

x I—)/I x
I

where k» is the
Fermi —Thomas screening wave number appropriate to
the electrons. The Fourier transform of the interionic
potential is now

where
C (k, o)) =q (k)1V(k, o)), (97)

y(k) = d'xp(x) exp ( —ik x)

Taking the Fourier transform of Eq. (96), one finds „(k)=4~Zses/(ks+k»s)

and the co —k relation reads

o)/k =Q /(k'+k»') '".
For long wavelengths, k((k», this becomes

(106)

(107)

is the Fourier transform of the interparticle potential.
The Fourier transform of F(;„) is then

Fi;.) (k, o)) = —ikC (k, pp) = —ikp (k) E(k, o)) . (99)

Using Eq. (99) and the equation of continuity, one can
eliminate Fi; ) from Eq. (93) with the result

I 1+(ilVpk'q p/o)) jj=XppF(,„). (100)

The factor in square brackets in this equation plays a
role analogous to that played by the dielectric constant.
In particular, the condition that longitudinal oscilla-
tions in the density of the system occur in the absence
of external forces is

1+(ilV pqkp/o)) =0. (101)

Using Eq. (94) for the mobility one finds that the
frequency and wave number of the oscillation are
related by4'

a)/k = ( V yi(pk)/M)" (102)

As an example of the use of this equation consider a
system of particles each having a charge Ze interacting

o)/k =Qy/kgb = (Zm/3M) '"v) . (108)

In this limit the phase velocity of the wave is inde-
pendent of the wave number. The right-hand side of
Eq. (108) can be regarded as an approximate expression
for the velocity of longitudinal sound waves in a metal. ~
Numerically, this expression is not too bad. For
example, for Cu it gives 2.7&&10' cm/sec, compared to
an observed 4.7&&10' cm/sec.

At short wavelengths Eq. (106) is no longer valid
due to quantum effects. As is pointed out in Sec. III
the short wavelength dielectric constant e~(k, 0) is
1+(k»/k) sg(k/2k);), and thus the interionic potential
becomes

y(k) =4~Z'e'/Lk'+k»'g(k/2k);) j. (109)

The expression for the longitudinal sound velocity is
then

o)/k =Q~/Lk'+k»'g (k/2k);) g. (110)

The function g(k/2k);) has a logarithmic singularity at
k =2k);. Although the phase velocity a)/k is continuous
at k=2k);, the group velocity do)/dk is infinite. As a

43 A. Vlasov, J. Phys. U.S.S.R. 9, 25 (1945); N. Hogolubov,
ibid. ll, 23 (1947).

44 D. Bohm and T. Staver, Phys. Rev. 84, 836 (1951); J.
Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
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The ~—k dispersion relation now reads

k ((u/e, i) + (ni/4) (o~/up), (112)

where e,~ is the longitudinal sound velocity as given by
Eq. (108) . Thus if one propagates a longitudinal sound
wave with amplitude proportional to exp (ikx —i&et),
the amplitude of the wave decreases exponentially
with distance along the direction of propagation. The
attenuation coefficient is given by

ni=2 Im k = (m/2) ((o/sp). (113)

One can check that this expression for the attenuation
coeS.cient is consistent with the previously derived
expression, Eq. (83), by substituting the expression
(108) for the velocity of sound into Eq. (83). The
result is Eq. (113).
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APPENDIX: CALCULATION OF THE
CONDUCTIVITY TENSOR

The calculations in this paper which refer specifically
to the degenerate electron gas are based on the expres-
sions for the longitudinal and transverse conductivities
which were stated without proof in Eq. (8) . The
purpose of this appendix is to provide a derivation of
these expressions. There are a great many ways in
which this can be done. Perhaps the most common
involves solving the Boltzmann equation for the distri-
bution function in the presence of an electric field. An
account of this method can be found in books on plasma
physics. 4' A somewhat different approach, which has
the virtue of being more closely related to the work of
Sec. I, is the following. 4'

First consider a gas of particles of charge e and
mass m in equilibrium and in the absence of any
electric 6eld. Assume that one can neglect collisions.
The number of particles at time t' in a volume d'x'
centered on the point x' with velocities in the range

4~ W. Kohn, Phys. Rev. Letters 2, 393 (1959);E. J. Woll, Jr. ,
and W. Kohn, Phys. Rev. 126, 1693 (1962).

46 For example, S. Gartenhaus, E/ements of P/asm@ Physics
(Holt, Rinehart, and Winston, Inc. , New York, 1964).

"See also R. G. Chambers, Proc. Phys. Soc. (London) 65,
458 (1952).

result the co—k dispersion curve has a kink at k=2kp.
This is known as the Kohn effect.4'

Both Eqs. (108) and (110) neglect the fact that ez

and hence p depends on the frequency. A somewhat
better approximation to e~(k, co) at long wavelengths is
(kps/k') f1+ (~s/2) (co/vpk) $, and thus

q (k, or) ~(4irZ'e'/k pr') (1—(vari/2) (co/epk) j. (111)

=eno(R/T') fo(R/T) d'x'. (A3)

However, one knows that in equilibrium the current
at any point must vanish. Thus, the current density
at x at time t due to those particles which at t' were
rot in d'x' is

5J,„r(x, t) = —enp(R/T') fo(R/T) d'x'. (A4)

Now consider the effect of applying an electric field
E(x', t') for an interval t' +t'+dt' to t—hose particles in
d'x'. The effect is to change the velocity of all the
particles in d'x' by an amount dv= (e/m) E(x', t') dt',
and thus to change the velocity distribution function
for those particles to fp)v (e/m)E(x', —t')dt'). The
current density at x at time t due to those particles
which at t' were in d'x' is thus changed to

hJ;„(x, t)

=eno(R/T4) fpc (R/T) —(e/m) E(x', t') dt'gd'x'. (AS)

Those particles which were not in d'x' at time t' are
unaffected. Thus the total electric current density at x
at time t caused by an electric field E(x', t') acting on
the particles in d'x' and lasting a time interval t' +t'+dt'—
is

8J(x, t)

=enp(R/T4)

X {fpf(R/T) —(e/m) E(x', t') dt' j fp(R/T) Id'x'—
= —(npe'/mT') vE(x', t') V,fp(v) iv=atsd'x'dt' (A6)

or, in component form

5J'(x t)

= —(npe'/mT') u'itfo/Bv' i» ats &'(x', t') d'x'dt' (A7).

d'v=v'dedQ, where dQ is an element of solid angle is

no fo(v) dsx'o'dodo. (A1)

np is the number of particles per unit volume, and fo(v)
is the equilibrium velocity distribution function, nor-
malized so that f d'vfp(v) =1. As time passes, those
particles which at time t' were in d'x' move out of the
volume, and since by assumption there are no colli-
sions, they move with their original velocities. At time t
those particles with velocities v = (x—x') /(t —t') =R/T
pass the point x. In the interval t~t+dt the number
passing the point x and traveling in the solid angle
dQ is

5n =no fo(R/T) d'x'(R/T) '(Rdt/T') d&

=no(R'/T') fo(R/T) d'x'dtdQ. (A2)

Thus the electric current density at the point x at the
time t due to those particles which at time t' were in
dx is

5J; (x, t) =eon(1/R'dQ) (1/dt) (R/R)
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The time T=L—t' in Eq. (A7) must of course be greater
than zero. That is, the current cannot precede the 6eld
which causes it. For T(0 the current hJ vanishes.
This condition of causality can be incorporated into
the theory by multiplying the right-hand side of Eq.
(A7) by the unit step function 8(T). One can then
imxnediately read oG the kernel in the integral relation
between 6eld and current, Eq. (1). It is

E,&(R, T) = —(noe'/mT') e'Bfo(v)/Bv& ~» np&(T). (A8)

where the "io" in the denominator serves to move the
pole in the integrand at ~~k. v an infinitesimal dis-
tance off the real axis into the lower half ~ plane. After
a certain amount of rearranging, Eq. (A12) can be
written in the form given by Eq. (5) with longitudinal
and transverse conductivities

inoe'cu k V„fo(v)
o = — d3V

mk2 co —Ir v+io

For a Fermi gas at absolute zero the velocity distri-
bution function is

ape' fo(v)
o = d3V

m 6&—k' v+$0
(A13)

fp(v) = (3/4mvp') 8(vp —e)

and the kernel can be written

A9
Performing the integrations over the two components
of v perpendicular to h, and using the formula

3 mpe2

J(x, f) =-
4m. mtp

, , RR LEj
R4

E,' (R, T) ='(3/4n. ) (noe'/me~) (R'E,/E4) 8(T—E/v~) .

(A10)

The relation between the electric 6eld and current
density is thus

(x+io)—'=P(x ') —s-ib(x)

where I' denotes "principal value, " one can reduce
these expressions to

inoe'~ „f'o(v") 7rnoe'~, t'co

mk' m" —cu/k mk' &k

wzoe' „ fo(n") 7rnoe' cowhere LEj=E(x', 3—2/ep) is the electric field retarded
in time an amount equal to the time required for a
particle traveling at the Fermi velocity to move from
the point x' of application of the field to the point x
at which one observes the current.

Returning now to the general case, one can compute
the conductivity tensor o, '(k, co), which is defined by
Eq. (4) as the space —time Fourier transform of the
kernel E,'(R, T). Cha'nging the integration over R to
an integration over v=R/T and performing the inte-
gration over T, one obtains

Asp8
try(k, co) =— d'v

where fo(v") =f d'v~f0(v) is the velocity distribution
function integrated over the two components of v
perpendicular to lr, and f'o(v") =df~(e")/de" is its
derivative with respect to the component of velocity
v" in the direction of k.

For a Fermi gas at absolute zero one has

f,(e") = (3/4e, 3) (v,2 —~&)S(;—.").

Substituting this expression into Eq. (A14) and per-
u&
—k v+io '

forming the integration over v", one obtains Eq. (8).


