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A general theory is developed for the linear response of an interacting molecular system to an external Geld. The
exact ground state of the system is expressed in terms of the uncoupled molecule (zeroth-order) state by means of adiabatic
time-dependent perturbation theory. Including the external field to Grst order in the time-development operator leads to
an in6nite-order expansion of the linear response function for physical quantities such as current-charge density and
electric-dipole polarization. Two basic approximations involving partial decorrelation of charge motion and spatial
separability of the molecules allow the response function to be determined by a simpli6ed Dyson-type equation, which
can be put into closed form by further approximations. The approximate linear response function (susceptibility) so
obtained is given in terms of the isolated molecule susceptibility and corresponds exactly to the results of classical, local
field theory. Emphasis throughout is placed on the eGect of molecular interaction on absorption spectra. Comparisons
among theories of hypochromism show clearly that all previously reported theories are mutually compatible and are either
equivalent to, or are contained in, the theory developed here. The relation of the present theory to a coupled equivalent
oscillator model is discussed and the results are applied to a simple physical model.

I. INTRODUCTION

The eGects of electronic coupling between molecules
in geometrically ordered molecular systems on the
various electronic spectral properties of the system as a
whole is a subject of very wide interest. It is well known
that in molecular systems, such as some dimers, poly-
mers, and organic crystals, in which the monomers
maintain their identity (i.e., effects of overlap of wave
functions can be ignored) the absorption spectrum
resembles that of the monomer with certain bands
undergoing a splitting (or shift) andjor a change in
intensity depending on the geometry of the system and
the polarizations and intensities of the monomeric
bands. The splitting of absorption bands is believed to
be well understood in terms of molecular exciton theory.
On the other hand, there has been considerable diversity
of opinion in the literature regarding the theoretical
interpretation of the changes in over-all absorption
band intensity due to molecular interaction. This
effect is of interest to many people in recent years
because of the hypochromism of biological-type
helical polymers, such as polyp eptides and poly-
nucleotides, which show a pronounced decrease in
electronic absorption band (sr—+sr*) intensities upon
random coil to helix transformation.

This report develops and discusses a general theory
of the e6ect of electronic coupling between molecules
on the response of the system as a whole to an external
electromagnetic fieM. The approach used here em-
phasizes the role of linear response functions for various
physical quantities and their I'"ourier transforms, the
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corresponding susceptibilities, in determining the
spectral properties of the system. The method of using
linear response functions is not original with us but
has been developed extensively by Kubo. '

The linear response of the system to an external
Geld concerns processes involving one photon. This
includes most processes of interest, such as ordinary
light absorption and emission, light scattering, and
rotatory dispersion, but not such phenomena as
Raman scattering, biphotonic transitions, and other
multiphoton processes. More speciGcally, we are
interested here mainly in the effect of molecular inter-
actions on absorption band shapes and intensities.

In addition to presenting a somewhat broader, more
general theory than has been given in the past, we hope
to be able to demonstrate convincingly the mutual
compatibility of the various theories of hypochromism
presented so far in the literature and to show that they
are contained explicitly in the theory developed here.
Each of these theories may be placed in one of three
categories:

(1) First order pert-urbation theory was first used. by
Tinoco, ' later by Rhodes, ' and applied to helical
polymers. The oscillator strength was determined to
first order from the Grst-order wave functions of the
helix using the unperturbed monomer states as a basis.
Although exciton theory was used in the formalism, it
is clear that there is no exciton effect on oscillator
strength and that intensity changes result solely from
borrowing among monomer bands.

(2) Local field theories are based on the idea that the
electric Geld at the site of one monomer has a com-
ponent due to the induced electric-dipole moments in
neighboring monomers, the induced moment in any

' R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954);
R. Kubo, ibid. 12, 570 (1957).' I. Tinoco, Jr. , J. Am. Chem. Soc. 82, 4785 (1960).' W. Rhodes, J. Am. Chem. Soc. 83, 3609 (1961}.
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monomer arising in turn from the combined external
field and induced neighboring moments. This theory
was first proposed by Bolton and Weiss4 who predicted
a large hypochromic effect due to the induced field
arising from the electric-dipole transition moments for
a single transition in the monomer, i.e., for a two-state
problem. While such an approach is valid in principle,
the interpretations of Bolton and Weiss are grossly
erroneous and incorrectly imply that hypochromism is
primarily an exciton eRect, originating from the self-
interaction of a monomer band and leading to a viola-
tion of the Kuhn —Thomas sum rule.

Nesbet' further developed the Bolton —Weiss theory
for a molecular dimer in terms of the local scalar
potential arising from charge-density response in the
neighboring monomer in the presence of an external
6eld. Nesbet also used an approximation whereby only
one electronic transition was considered and. obtained
results corroborating those of Bolton and Weiss.
In the meantime, DeVoe' ~ has pointed out clearly that
these theories deal with point hypochromism at the
frequency of maximum absorption in the monomer and
if the shift in the absorption band. is accordingly taken
into account, there is indeed no over-all band hypo-
chromism due to excitation resonance (exciton)
interaction. DeVoe has put the local field approach
in better perspective, using purely classical methods.

Nesbet's final results predict only a decrease in
absorption intensity in the dimer, presumably, at all
frequencies. However this conclusion is based on an
approximation for the polarizability which makes it
purely imaginary. Such an approximation is valid
only at the frequency of maximum absorption and for a
nonphysical model having a single narrow absorption
band. Thierys has modified Nesbet's results to include
a more realistic complex polarizability, thereby leading
to a theory which agrees in principle with DeVoe's. 7

(3) Secomd qttarttszation methods have been applied
by Hoffmann, ' by which an approximate Hamiltonian
for the system is expressed in terms of operators for the
creation and destruction of excitations in the molecules.
With use of a further approximation in the commuta-
tion relations for the excitation operators, the Hamil-
tonian can be diagonalized (for a finite number of
excitations) by a Bogoliubov transformation, thus
leading to an independent quasi-particle description of
the excitation of the system. Hoffmann has solved the
problem for a model which contains the ground state
and two excited electronic states of the monomer. The
calculated absorption intensity agrees closely with the
first-order perturbation theory results for a double-
stranded helix model.

We begin the development with a consideration

' H, C. Bolton and J. J. Weiss, Nature 195, 666 (1962).
' R. K. Nesbet, Mol. Phys. 7, 211 (1964).
6 H. DeVoe, Nature 197, 1295 (1963).
7 H. DeVoe, J. Chem. Phys. 41, 393 (1964).
8 J. Thiery, J. Chem. Phys. 43, 553 (1965).' R. HotIniann, Radiation Res. 20, 140 (1963).

of the linear response function for a coupled molecular
system. In the 6rst part, coupling is taken through the
field, so we examine the response of the components of
the current-charge-density four-vector. Two approxi-
mations are made which put the theory in a form
equivalent with that of Nesbet as modified by Thiery.
We next examine the direct coupling model in the
dipo) e—dipole approximation. The exactly soluble
coupled harmonic oscillator model is put into the
framework of the present theory and. its equivalence
to the approximate molecular Hamiltonian in terms of
excitation operators is discussed. It is shown that
Hoffmann's results are contained implicitly in the
present theory.

The theory presented here using linear response
functions and their corresponding susceptibilities repre-
sents but one part of a general eRort in the current
literature to apply field theoretical techniques to
problems of molecular electronic interactions. This
trend has perhaps been stimulated by the appearance
of books like those of Abrikosov, Gorkov, and Dzyalo-
shinski and Nozieres, " and the works cited. therein.
McLachlan" has applied susceptibility theory ex-
tensively to the problem of dispersion forces. Closely
related work has been published recently by Herzen-
berg and Modinos, " who make use of the causal
two-particle Green's function (density fluctuation
propagator) in contrast to the linear response function
used. here, which is a retarded. Green's function.

II. THE LINEAR RESPONSE FUNCTION

A. General Considerations

In the Schrodinger representation the exact state of
the system C, at time t is determined from the Schrod-
inger equation of motion, by the system Hamiltonian
and the state at time to. However, in dealing with
problems in which the physical situation calls for the
Hamiltonian to be split into two parts

H= Br+Vs,

where H~ is time-independent and the interaction part
V& may be time-dependent, it is convenient to use the
interaction representation. " The equation of motion
for the state of the system is then

' A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Qaamtara Field Theory irt Statistical Physics (Prentice-.
Hall, Inc. , Englewood ClitIs, N.J., 1963); P. Nozieres, The
Theory of Interacting Fermi Systems (W. A. Benjamin, Inc. ,
New York, 1964).

"A. D. NIcLachlan, Proc. Roy. Soc. (London) A2TI, 387
(1963).

"A. Herzenberg and A. Modinos, Proc. Phys. Soc. (London)
87, 597 (1966)."S. S. Schweber, Introduction to Eelctivistic Quuntum Field
Theory (Harper and Row, Publishers, Inc. , New York, 1961),
Chap. 11.
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where

and
C, (t) = exp [iH,t]C, (t)

Vs'(t) = exp [iH~t]Vs(t) exp [—iH~t].

We use units in which S=c=1.The solutions of (1)
are given formally in terms of the unitary time-de-
velopment operator, which may be expressed sym-
bolically in the contracted form

showing that the response to first order depends simply
on unequal time comm utators of the j's with

j„(t)= exp[iH~t]j, exp[—iHqt]. Since C(H~) is an
eigenfunction of B~, the expectation value of the
commutator depends only on the time diRerence of the
elements. We can therefore define the linear response
function'

U(t, tp) = T exp f i Vs*'—(t') dt'],
tp.

representing the infinite order expansion of the ex-
ponential. The chronological ordering operator T
orders the operators in the expansion with increasing
time to the left.

In this section we examine the response of the
components of the current-charge density four-vector

j„ to an externally applied field. Throughout we deal
with a molecular system, at zero absolute temperature,
in which the individual molecular uni. ts are suKciently
separated so that overlap eRects can be neglected.
The case of nonzero temperature and the eRects of
overlap of molecular wave functions will be treated
later.

The total system Hamiltonian can be expressed as
the sum of B&, the Hamiltonian of the charge system
and external field not interacting with each other, and
the coupling between them

such that

E„„(r,r', 0—t') Ap" (r't') de'

Integration is carried out over all space —time. The time
limits can be extended to infinity since 8(—t') =0
for t'&0 and 1 for t'&0 and Ao" ——0 for II'&to.

The linear response function E is itself the response
of j„at r and t=O to a 8-function field at the point
(r', t'). Causality is guaranteed by 8. The Fourier
transform of E, given by

E„„(r,r', pp) = K„„(r,r', t) exp (i~t) dt,

is the corresponding generalized susceptibility and
again the 8 function (causality) demands that all poles
lie in the lower half of the complex M plane. "It has the
property that, when the external field consists of a
single-frequency component, the linear response is

Vs*'(t) = — j„(r, t) Ap" (r, t) d'r. 6(j„)= Re d'r'E„„(r, r', cu) Ap" (r', or) exP [ ilet]—

The summation convention for repeated indices and a
Lorentz gauge for the field is implied throughout.
Repeated latin indices indicate summation only over
spatial components. The four-vector scalar product is
written in covariant-contravariant form with a metric
tensor g„„such that g„„=O if p~v and g~~

——g22
——g33

——

—gpp= +1. Therefore the scalar potential y = —Ap.

The response is always taken at t=O with the external
fieM turned on at some finite t&0, and the charge
system is assumed to be in its ground state before the
interaction is turned on. Thus,

The mean rate of energy absorption by the charge
system is

W= — App(r, t) 6(j„(r, t) ) d'r
t average

which to first order for a single-frequency field, is
easily shown to be

TV((o) = (&aj2) d'r

X dsr'Ap&*(r, ~)E,„"(r,r', cv) Ap" (r', cv), (5)

~(2 )=+i dt' d'r'

= (4,(t ) I U+(0, to)j„(r, 0) U(0, t ) I
C', (to) ). (2)

If tp is taken to be prior to the interaction, C;(tp)
represents the ground state of the charge system in the
Heisenberg representation. We denote it by C(H&).
Expanding U and collecting terms to first order in Ao",
we get the linear response in j„

where IC" is the imaginary part of E and where the
components Ag are those of the external field and not
the local field. Local field contributions are contained
in E and are discussed in the next section.

B. The Decorrelation Approximation

The foregoing review of generally known results
shows that the optical properties of a molecular system
are determined, to first order, by the susceptibility

1 L. D. Landau and E. M. Lifshitz, Statistica/ Physics (Ad-
X (4'(Hx) I [j&(r 0) j~(r t )]Ap" (r t ) I C'(H1) ), (3) dison-Wesley Publ. Co., Reading, Mass. , 1958), Sec. 122.
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function E(co), of which the real part determines such
properties as refractive index dispersion and the
imaginary part the absorption spectrum of the system.
For single-photon processes the theory can be regarded
as essentially exact. This includes most processes of
interest to molecular spectroscopists, at least those
detectable in the presence of relatively weak external
fields.

The problem then is to determine E(io) .This depends
on the exact ground state in the absence of the external
field, so we must use an approximation method.
In this section an expression for E is developed in terms
of the linear response function for the isolated molecule.
The approximations to be used lead to a closed form
for E which agrees with that obtained by a purely
classical approach~ and which can be evaluated in
terms of the corresponding isolated molecular quanti-
ties. The advantages of this approach lie in the sim-
plicity and clarity of the formalism and in the fact that
the points of introduction of, and the nature of, the
approximations are clearly delineated.

The total Hamiltonian is expressed in the form

&=&o+Vi+ Vs,

where Hp is the sum of all isolated molecule and ex-
ternal field Hamiltonians, V2 is the coupling of the
molecules with the external field (as above), and Vi
is the interaction among the molecules. Since the
molecules are assumed to be spatially separated, the
field components appearing in

Vi(t) = — j„(r, t)A"(r, t) d'r

are taken to be those arising from the charges in all
molecules exclusive of the one containing the point r.
This assignment of electrons to molecules is the first,
but probably not the most serious, approximation. It is
necessary in order to transform the system X to the
isolated molecule representation; i.e., to a basis con-

sisting of eigenfunctions of Bo. To do this we allow V~

to be turned on adiabatically with a factor e", whereby
the ground state of the system is evolved out of the
ground state of the uncoupled molecule system from
the infinite past. "

YVe use an interaction representation in terms of Hp,
in which all Schrodinger operators are transformed
by the unitary operator exp[—iHotj. Hereafter, we
drop the index i. The state of the system at t= 0 in the
presence of the external field is given by

@'(0)= &i(0 —~)C"(&o)

where the prime indicates the above "molecular cell"
approximation for V~ and

Ui(0, —co) = T exp [ i— (V (t)+V (t) ) «j (8)

Here C'(Ho) is the ground state of the uncoupled system
in the Heisenberg representation, since lim (Vi+ Vs) ~0
as t—+—.

The expectation value of j„is

(J.)
=(~'(&e)

I
Ui+(0, ~)i.(r o) fbi(0, —") I C"(&o)).

V, (t) = — d'rj „(r, t) 8 (r—r') 8 (t+X)

= —j„(r', t) S(t+1~)

in (8), expanding U, and collecting terms to first order
in V2. A technique like this has been used by Mc-
Lachlan" to get the field response to third order.
This gives a rather complicated expression which can
be put into a simpler form of a commutator nest, ' "
namely,

Since E is simply the value of 6(j„)for a 8-function
external field, we obtain K directly by making the
substitution

2» ' '

X I ([[ ~ [j„(r,0), V2(ti) $, Vi(t2) $, ~ ~ .), Vi(t )])
+([L "[j.(r o) Vi(t)j V(t)3 " I Vi(t.)j)+".

+(LL ~ [j„(r,0), Vi(ti) j, Vi(4)), ~ ), V2(t )$)I (10)

in which the single V2 in each term appears pro-
gressively farther along the commutator chain. Hence-
forth the brackets indicate expectation values with
respect to the zeroth-order state 4'(Ho) .

Ke now treat the field as being quantized, meaning
that 4'(Ho) is implied to contain the state of the non-
interacting field (here the vacuum state) and the

A" are operators. Any term containing an odd number
of A' s, therefore, vanishes because of the expectation
value (the free field states are like harmonic oscillator
states and the A's are linear superpositions of photon
creation and destruction operators) . Only terms of odd
I survive in expansion (10).

Equation (10) is still very curnbersorne and almost
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impossible to handle for problems in which it is desirable
to include terms higher than third-order. In order to
obtain a simpler form we use an approximation which
partially decorrelates the motions of the electrons. This
is accomplished by replacing each commutator of the
j's, as it appears in the expansion of the commutator

nest of each term, by its zeroth-order expectation
value.

To see the effect of this, we examine the integrand
of the first of the third-order terms,

Replacing the first commutator by its average value, a number, makes the whole term vanish. Any term vanishes
identically unless the V2 part appears at the end of the commutator nest. Thus, we have the approximate ex-
pression

d)2 ~ ~ ~

The unequal time commutators of the field components are c-number functions, "
i/A~(r~, tg), Ae(rp, tg) ]=g"eR—'It) (R—t) h(R+t) I—,

where R=
~

rq —r2
~

and t= t&
—t2, and can be replaced by their expectation values. The retarded Green's function,

describing the free field linear response of A to an external current jp, is consequently given by

D() ~(rg, r„ t) —t2) = io(tg —t2) (fA (rg, tg) „A~(rs, t2) ])
=g eR 't')(R t). — (12)

Because of the time-ordered integrations in Eq. (11),each commutator may be multiplied by the corresponding
8 function of the time difference and all integrations extended to +~.This leads to

dd„„(r, r', 'k)= P d'x, f d'x, f d'x

(odd)
XK„(r ry —t))DO (ly r2 ty t2)Ke (r2 ra —

tm t3) ~ ~—
)&Dg&('(r„&, r„&, t„2—t„&)K,„'(r &, r„, t„&—t„)8(r —r') t)(t„+I)). (13)

Summation over repeated indexes is implied. We thus find that, within the deeorrelatioe approximatiom, the linear
response function of the system as a whole appears as a space —time "convolution" of free-molecule and free-field
response functions. This is equivalent to an iterative expansion of the integral equation

E„„(r,r', ).) =K„,'(r, r', ))+ d'x& d'x2K„.'(r, r&, —t&)DO (ly, r2, t~ —t2)Ee„(r~, r', t2+X). (14)

In expansion (13) X can be shifted from the last to the fu.st term by a sequential change of variables. The cor-
responding system susceptibility is the time Fourier transform of Eq. (14) and is given by a Dyson-type equation

dd„„(r, r', x) E„„r(r, r', )+ f d'r, =d'rrrd„. '(r, r, , )D, r(r, , r, , x)Ex(rr, r', ). (15)

Equations (14) and (15) are the principal results.
The only approximations are (a) the "molecular cell"
(molecul'e separability) approximation for V& in which
it is assumed that each point in space belongs to a given
molecule in order that j, and A" arise from diferent

molecules, and (b) the decorrelation approximation in
which intermediate transitions between zeroth-order
excited states of the system are neglected (Sec. IIIB) .

'5 P. A. M. Dirac, Quantum Mechanics (Clarendon Press, Ox-
ford, England, 1958), Sec. 75.
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Approximation (a) leads to a simple form for K'.
It is zero unless r and x' are in the same molecule;
hence, it is identically the isolated molecule suscepti-
bility. On the other hand, the free-Geld susceptibility,
given by the Fourier transform of Eq. (12), is

in which the interaction effects have been shifted to the
6eld susceptibility.

C. Comparison with Previous Theory

The molecule separability approximation of the
previous section implies that we are dealing with a local
field theory. This is obvious from the fact that our
theory is developed in the representation of the isolated
molecule and the molecular interaction part of the
Hamiltonian density at any point r consists of the
interaction of the current density of the molecule
"containing" the point r with the potential arising
from the rest of the system. From this and the decor-
relation approximation, the resulting system suscepti-
bility, given by expressions (14)—(19), gives a simple
picture of the interplay between the Geld and the
charges in the linear response to an externa1 6eld.
The external 6eld induces a local response in current
Quctuation which then produces an induced field in the
rest of the system. The induced field in turn produces
a current response at each point and the cycle is
repeated to in6nite order. That part of the total in-
duced current which is linear in the external field
Ao" is thus given by

Do"j'(R, (d) =g eR 'exp t»Rj (16)

and is understood to be zero unless r and r' (with
R=

~
r—r'

~) are in different molecules because of the
elimination of self-interaction of the molecules by ap-
proximation (a) .

Substituting in Eq. (15), we obtain a relatively
simple integral equation,

IZ„„(r, r', or) =K„„o(r,r', (d)

+f rd, f d'r, e„,'(r, r, , )()r,—r () 'g&

Xexp f» I ri —ro ) jKj),(ro, r', (d) (1&)

which may be solved, in many cases, in terms of the
geometry of the system and the optical properties of
the isolated molecule.

Using the same approximations and procedure, we
could have derived an expression for the susceptibility
of the Geld in the presence of the molecular system in
which the role of the field and charges are interchanged.
Thus we have symbolically,

d (j„(r) )„= (Pr'IS'„„(r, r', cd) Ao" (r', (d). (20)

D =Do+DoK'D,

where the obvious indexes and integrations have been
omitted. By comparison of Eqs. (15) and (18),
DOE= DEO and, consequently,

K=K'+K'DK',

2; (r «) = f rr'D (rr', ra)6(j.(r ), ) . (21)'

(19) Substitution of the integral from (15) into (20) gives

The total induced field linear in Ao" is determined

(1g) solely by the induced current and the free-Geld sus-
ceptibility, namely,

6(j„(r)) = d'r'(z„.'(r, r', )+ d'r& f d'r K'„,'(r, r&, )Dr (r&r, , rs)z. , (r', , r',, a) jA,"(r', ra)

(Pr'K„„o(r, r', (d) t Ao" (r', o)) +2,"(r', (d) j, (22)

showing how, within the framework of our approximations, the response depends on the net local Geld and the
unperturbed molecule susceptibility. Expressions (20) and (22) may be regarded as alternative pictures in which
the interaction eGects appear, respectively, in the molecular susceptibility and the 6eld.

In order to make comparisons with a previous theory, ' we first obtain an integral equation for the linear response
of the induced field to the external field. Substitution of Eq. (22) into Eq. (21) gives

A (r o)) = d rl d 12DQ (I' ll (d) K „(1'1 r2 o)) LAO (r2 (d) +A (r2 o)) $ (25)

The isolated molecule susceptibility can be put into the standard representation by inserting an intermediate
resolution of the identity over eigenstates of the unperturbed molecule into the commutator in K (t) .oThis leads
to the familiar form

j.(r«) oaj.(ri) ao j.(ri) oaj.(r2) «o
riro, od

a (d+(dao+&3 cd —(d«o+&3

where (d«o= E« Ep, the excitation en—ergy of the isolated molecule. The limit 8—++0 is understood throughout.
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Insertion of expressions (16) and (24) into Eq. (23) gives a detailed equation for the linear response of any
component A;" to the total external held. At this point we follow Nesbet, ' however, and consider only the response
of the scalar potential to an external vector potential, neglecting any induced vector potential effects. Thus we
have

exp [i I
r—r, I] ~ jk(r2)okp(r1)ko p(r1)okjl, (r2)ko

rcp', Cp = 1'1 12 Z . — . Ap' r2
i r rl I k co+cokp+icl co cokp+icl

p(r2) Okp(rl) kp P (rl) Okp(rp) ko
cp, r2, oo 25

co+cokp+ i~ co cokp+ iIQ

which is identical to Nesbet's Eq. (22) except for the form of the damping factors introduced arbitrarily by him.
The latter appear to have the wrong sign and lead to a violation of causality. We see that Nesbet's theory is a
local field theory with the molecule separability and the decorrelation approximations implied. The advantages of
the present method are the simplicity by which one obtains equations such as (25) from the general, forrnal
relations (14)—(19) and the fact that I& may be used directly to examine the spectral properties of the system.

In order to determine the absorption spectrum [Eq. (5)] of the coupled molecular system in terms of the
spectral properties of the isolated molecule, we seek a closed form solution of Eq. (15).This would be accomplished
if the individual terms in the iterative expansion of Eq. (15) could be arranged in such a way that we have a
power series in some determinable quantity. The problem in doing this can perhaps best be understood by in-
spection of the first-order term of E„„(r,r'),

j.(rl)okj„(r)ko j „(r)okj.(rl)ko exp (~
~

rl —r2 ~) j (r )olj.(r2) lp ja( 2r) jlO. (r ) lo
d I'y d 12 g"

cl7+cokp+'i8 co cokp+ iB '~ r1 r2
~

„cp+cplo+icl cp colo+icl

where gA, is the complex function of frequency in Eq.
(24) . Ke next assume pok(r) =pof(r) Xpk wlllch leads to

This term is the amplitude for the propagation of an
"impulse" from the point r' to the point r via all
intermediate points r~ and r2 and all intermediate
states k and l. It can be factored into a product, or a
simple sum of products (finite matrix form), only by
means of further approximations. The two approxima-
tions that are immediately obvious are (1) to limit
the number of intermediate states, and (2) to make a
multipole expansion of

~
rl —r2

~

' and consider only
leading terms; e.g., dipole —dipole interactions. The
former has been used by Nesbet' and improved by
Thiery. For the purpose of comparison we describe it
briefly here, but a greater emphasis is placed on the
latter approximation.

As above, we neglect induced vector potential eGects
and consider only coupling through the scalar held.
The external field is assumed to vary negligibly over the
space of the individual molecule, so we may express,
somewhat artihcally, the external field as a scalar
field, '

Epp'(r, r, cv) = pof (r) pfp(r ) P xpkxkpgk (oo)

This is Nesbet s single-band approximation, by which
only one electronic band (O~f) of the isolated molecule
is included and summation is over vibronic sublevels
associated with the electronic state f. Therefore, it
amounts to the Born—Oppenheimer approximation,
with XN, being the Franck —Condon factor. Expression
(28) is substituted into the expansion of E, each
ppf(r) is labeled according to the molecule in which r is
located, and integrations are taken over all inter-
mediate r's. This gives a matrix equation for E of
which a typical element is

qp(r, cp) = —r E„(co),
[E„(r, r')]„„.= g p (—1)'pof(r) V„;V,; ~ ~ V,„.

(26) 8=0 i,j, ...q

where e labels the molecule and

E„=i(vA„.

These approximations enable us to express E entirely
in terms of charge densities. The states of the un-
coupled system may be taken to be real, thus py, = p1,0

and

~pfp(r') G'+'(co) (29)

The number of V's in each term equals the order s,
and the interaction V is

exp fico ( rl —r, ~]V'f d rl d r2Ppf(r1) ' Pf0(ro) f

&oo (r, r', cd) = p pok(r)pko(r') gk(01), (27) the excitation exchange integral coupling molecules
i and j. Symbolically, K may be expressed as the
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matrix expansion

I&op= Z pof( V—G)'eoG

W(co) = (oo/2)E*(co) d'r d'r'

Xrl pof(r) (1+VG) 'Gpf, (r') $"r' E(co)

= Q (po/2)E* [rpt(1+VG) —'Grtpj„„" E. (31)
nn/

The double prime stands for the imaginary part and
roj is the electric-dipole matrix element. In this case the
two-dimensional matrix V has only two nonzero terms,
V» ——Vp~. Therefore, in the expanded form, Eq. (30),
it is easily seen that the diagonal elements of K con-
tain only even terms, while the oR-diagonal elements
contain only odd terms in powers of V (a molecule
interacts with itself only through an even number of
V's) .

Expressing the odd and even expansions in closed
form and summing the matrix elements in Eq. (31),
we obtain the result

E+'rpf rqo'E G (co)

l
&+V»G l' (32)

The numerator is exactly the absorption by two non-
interacting molecules; all interaction effects are con-
tained in the denominator term.

Equation (32) is essentially of the same form as the
result of Nesbet' using the same model. The only
difference is in the frequency term G. Since G is a
polarizability (here associated with one electronic
transition), it is necessarily a complex quantity which
can have at most isolated zeros in either the real
or imaginary part. Nesbet used an approximation for
G which makes it purely imaginary and consequently
predicts an intensity decrease (hypochromism) at all
frequencies. This is clearly an improper approximation
since it violates the requirement that the Kronig-
Kramers transformation be satisfLed (causality) .

=por(1+VG) 'pfpG. (30)

The derivation shows that the zeroth-order term is
zero unless x and r' are in the same molecule; i.e., K'
is locally diagonal. The transition densities are part of
the matrix in such a way that pof and pfo are associated
with the molecules labeling the row and column,
respectively.

For systems having simple geometry, Eq. (30) can
be handled easily. We consider, as an example, a
molecular dimer in which the molecules are trans-
lationally equivalent. The system is assumed to be
suKciently small that, at optical frequencies, the
retardation term, exp Li~R], and the variation of the
external field can be neglected. The total rate of
energy absorption is then

Examination of the denominator term in Eq. (32)
shows that the direction of intensity change, at any
frequency, depends on the sign of the real part of
V~2G. Since the sign changes somewhere in the ab-
sorption band, we have the result that the interaction
contained in Eq. (32) causes a shift and, possibly, a
change in shape, but the overall intensity remains
constant. This has been pointed out also by Thiery, s

who corrected Nesbet's theory by including an ap-
propriate G.

For translationally nonequivalent molecules the
matrix elements rof are not identical for the two
molecules. The diagonal and off-diagonal terms in
Eq. (31) must be treated separately, thus leading to a
description of "exciton splitting" of the monomer
band. The derivation of the two-term expression similar
to Eq. (32) is straightforward so is not included here.

From the above and previous' discussions we see
that excitation reasonance (exciton) interaction (more
generally, the "self interaction" of any band system,
inclusive of off-resonance interactions) does not lead
to a net change in absorption intensity In o. rder to de-
scribe over-all intensity changes within a given band
system, resulting from molecular interactions, we must
include other excited states outside the absorption
band system in question. This could be done by an
extension of the matrix formulation leading to Eq.
(31) to include more than one excited electronic state
per molecule. This is rather cumbersome, however, so
it is preferable to use another method which takes into
account, in a simple way, all states of the system.

III. POLARIZATION RESPONSE

Ke now discuss the second method for approximating
E as a power series expansion which can be put into
closed form. As above, we neglect induced vector
potential effects resulting from charge motion and
consider only charge density Quctuations caused by the
induced scalar potential, an approximation which is
probably satisfactory for small molecules in which the
electrons are highly localized. The expanded form of
Eq. (15) for Kpp, as before, may be written symbolically

&op =&oo'+ &op'Do«&oo'+ (33)

containing only transition densities, poA, and free-6eld
susceptibilities,

Dooo(r~, rp, «) =g" I exp Li« I r~—» lh/I r~ —rp lI.

Expansion in a multipole series about the center of
charge on each molecule gives for the dipole —dipole
part

Dp« ——r& (3e»e» —I) r&R» ' exp C icos»), (34)

where e~& and 8~2 are the unit vector and distance
between the charge centers of the molecules, and now
r~ and r2 are measured from the charge centers.
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Substituting into Eq. (33) and carrying out all
integrations over intermediate r, as indicated by Kq.
(15), leads to the matrix form

n- (~) =n-'(~l &- +n-'(~) d- (~)n- -'(~)
+n-'(~) d- (~)n~'(~) d - (~)n- -'(~)+" (35)

where, in anticipation of using relation (26), we have
defined the system polarizability,

The system consists of a set of harmonic oscillators
with coordinates X„and fundamental frequencies
or„, coupled linearly by the constants d„, so the in-
teraction among them may be expressed as

Vi= ——', Q XXd
nm, (num)

The total system Hamiltonian, including interaction
with an external electric field, is

a.. (p~) = d'r d'r'r Zoo(r, r', pi) r'. (36) H= Hp pQ x—~x~Am Q—xm&m. (38)

and the dipole field susceptibility

d,,= (3e,,e;;—I) R,, ' exp Li&pR,,].
In matrix form we then have

=n qn an +6 an an + ~

= no(I —ano) (37)

The matrix element a„ is the dipole response (pi

component) at molecule e to a unit electric field at
molecule e'. Each matrix element is itself a three-
dimensional tensor; therefore, we may let each index
represent both the spatial component and the molecule,
making n a 3E dimensional matrix for an E molecule
system. n' and d are then 3Ã dimensional such that
0,' is block diagonal with three-dimensional blocks and
d contains three-dimensional blocks of zeros on di-

agonal.
Equation (37) is equivalent to the result obtained by

DeVoe7 from a purely classical starting point. This
means that the molecular separability and decor-
relation approximations have made the theory es-

sentially a classical one.

A. Coupled Harmonic Oscillator Model

In order to better understand the significance of the
decorrelation approximation, we examine brieRy the
exactly soluble problem of the polarization linear
response function for a system of coupled harmonic
oscillators and show how the above results, as well as
those obtained from the usual second quantized
Hamiltonian, are equivalent to using a coupled oscil-
lator model.

Indices now label molecules. In Eq. (35) summation is
implied over repeated indices (other than m and m')

and use has been made of the fact that cP connecting
different molecules is zero.

The integrations in Eq. (36) extend only over the
space of molecules e and e'. Thus, the system polariza-
bility, defined by Eq. (36), takes the form of a matrix
of dimension equal to the number of molecules in the
system and is given in terms of the isolated molecule
polarizability,

n (M) = 8 P rpprypf(co+oipp+zB) —(co—MIp+zB)

The interaction representation is used for the Hamil-
tonian of the uncoupled system, IIO., thus, all operators
have the form

X (t) = exp LiHpt]x„exp) —iHpt].

As in Sec. II, the coupling between the oscillators is
assumed to be turned on adiabatically, while the ex-
ternal field is turned on at a finite 3&0. The response
of X„at t=0 is exactly

(x„)= (c (o) I x„(o) I
c (0) )

= (e'(Ho) I U+(0, — )x„(o)U(o, —")
I
c"(Ho)»

where 4P(Hp) is the ground-state eigenfunction of Ho
and U contains all interactions.

Ke now follow the procedure in Sec. II by consider-
ing the linear response of X„ to an impulse electric
field of unit strength at X (the interaction with the
field becomes —X 8(t+X), with X)0), expanding U
and collecting terms into a commutator nest. This
gives E„(X) directly in an expanded form exactly
like Eq. (10), the only difference being that every
commutator involves only X's. The unequal time
commutator,

(X;(t), Xp(t')]= —2i
~

Xpi ~'8,z sin pod(t —t') (39)

is not an operator, but is simply a classical function of
time and the transition matrix element between the
ground and Grst excited oscillator states. This property
makes the problem exactly soluble. The only nonzero
term in each perturbation order is the one with the
external field coupling term located at the outer
terminal position .of the commutator nest Lcf. Eq.
(10)]. All commutators are then of the form

t X,(t), Xp(t')Xi(t')], which are linear in the X's.
Therefore, without the decorrelation approximation,
each commutator may be replaced by its average
value as it appears during the expansion of the com-
mutator nest.

The uncoupled oscillator linear response function is
defined by

E,,o(t—t') =itt(t —t') (LX;(t), X,(t') ])
=+25,og(t t')

) Xpi ~P sin pop(t ——t') . (40)
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Making use of the 0 dependence in the expansion of E,
we obtain

Knm(X) —g ' ' ' dtl' ' 'dtaKnn ( tl) dnj
a=o

XK;se(tg —t2)dsI, ~ .K„„'(t, g
—t,) 8(t,+X) (41)

with summation taken over all intermediate indices.
The corresponding susceptibility for the coupled system
1s

0---
S=l

—--0————
S-B / / I

Qwa~ ~~b

; S=2
0

'~

~m~~0m m m ab

(a)

0---—II

0
(b)

—-~0----r
0

(b)

0-—--
/ /I

/ /I
( /~——0 0

(c)

K„(co)

( Sd's)

romeo= (2~~~o) 'foI„

in terms of oscillator strength, whereby 0.' for the
ground state of each molecule is that for a set of
equivalent oscillators.

The reason that E„has the simple form (42), and
a physical picture of the interaction e6ects, can best
be seen by inspection of terms in the expansion. Each
term is an expectation value taken with respect to t eh
unperturbed ground state of the uncoupled system;
and the term of order S, since it contains S inter-
actions, is composed of 2S+2 virtual transitions.
From the origin of the term in the expansion, it is c ear
that every possible sequence of 2$+2 transitions (other
than those coming from oscillator self-interaction)
which begin and end with the system in the ground
state contribute, while all others give zero identically.
Thus, each term is the total of all transition proba-
bilities mediated by S interactions.

The interesting point is that none of the terms in
expansion (42) allow an oscillator to be excited above
the 6rst excited state, i.e., all amplitudes containing
transitions to higher states cancel. This results simply
from the fact that the susceptibility of the harmonic
oscillator is independent of the state; thus, transitions
involving the ground states are sufhcient to describe the
problem.

The contribution of terms through third order are
shown schematically by the diagrams in Fig. 1. The
open circles represent oscillators, while the external
photon and the coupling between oscillators are repre-
sented by light, external and heavy, internal dashed

= Q K„„'(es)d„;K;,e((e) d;I, .K' (ee)
8=0

=- K-'(~) +K-'(~) d-sKs-(~) (42)
~ ~

This is exact. That such is the case is not surpnsrng,
since the linearly coupled harmonic oscillator problem
can be solved exactly by a normal mode transforma-
tion. However, the important thing is that the solution
is of the same form as that for the molecular system
obtained by use of the decorrelation approximation. A
comparison of Eqs. (35) and (42) shows clearly that
e is the susceptibility of a system of coupled harmonic
oscillators, provided that in o.' we make the usual
substitution,

I
I I
l I0 ~~ ~0

(d)

FIG. 1. Diagrams representing contributions of i,nteractions,
in various perturbation orders, to system susceptibility.

K„„((a)=K„„'Q ( Q d„I,KgI,ed'„K„„')'
s=o k

=E '(l —g d I,'Kgb„') '. (43)

and for a non-diagnal element is

K„„(co)=E„„'d„K '(1 gd g'Ega'K —') ',

where e refers to the given "central" oscillator. In z&g.
1 only diagram 2b contributes to E„„and only dia-
grams 1, 3b and 3c contribute to E„.The diagonal
element is equivalent to the results of Huber and
Van Vleck, "who have applied this model to a study
of line broadening using the same Green's function
but a different approach.

B. Approximate Molecular Hamiltonian

In this section we consider the Hamiltonian for an
interacting molecular system in terms of the operators
for creation and annihilation of excitations to various
states of the individual molecules of the system and

'6D. L. Huber and J. H. Van Vleck, Rev. Mod. Phys. 3S,
(f9/6)

lines, respectively. At each vertex a 6eld line causes a
transition in the oscillator to its 6rst excited state,
followed by a transition back to the ground state
with emission of a field line. Therefore each vertex,
must have an even number of 6eld lines. These are not
propagator diagrams (except in the sense that each
diagram represents a forward scattering amplitude for
the incident photon), but serve only to show the types
of interactions for each perturbation order. For ex-
ample, the 6rst-order term is nondiagonal, leading to
absorption of energy by one oscillator due to the 6eld
at another.

Equation (42) is easily solved for a model in which
every oscillator is coupled only to one "central"
oscillator. Expansion (42) then becomes a power
series, which for the diagonal element is
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& &nS'dna' &mrs (44)

where
~ (») (mo) ) is the zeroth-order (noninteracting)

state in which molecule n is in excited state s, molecule
m (and all others) is in the ground state and d „is the
dipole coupling tensor in Eq. (37) . The molecule states
are taken to be real, so that

r-=((~0) Ir l (»))=((») Ir I (~)).
The system Hamiltonian is then taken to be

H= Hs —-,'e' P P V„„'"(u„,++a„,) (a„„++a,) (45)
num r, s

in which Bo is the Hamiltonian of noninteracting
rnolecules; u+ and u create and annihilate excitations as
labeled for the molecules and states. This is the Hamil-
tonian used by Agronovich' in his extensive work on
molecular exciton theory and dispersion in molecular
crystals. As an approximation it neglects (1) "static"
interactions between molecules, (2) all transitions
between excited states of the molecules, and (3)
processes involving transfer of charge between mole-
cules. The dipole approximation (44), which neglects
overlap-exchange effects, is also included by us.
These approximations are essentially the same as
those used above in obtaining Eq. (35) .

The effect of using excitation operators is to reduce
the problem to a multifold two-state problem. They
satisfy the commutation relations

(1 0)
~ns) &mr l~nm&sr

(0 -1j
Le'ns&emr] = fans+&~mr+] =0& (46)

in a two-state space, so they may be referred to as
Pauli operators. Matrix elements connecting different
excited states of the nondiagonal type

((») ~ La„„a,+]
~

(Nr) )=—1

are not considered. Consequently, the excitations are to
be regarded as "quasi-particles" which obey neither
boson nor ferrnion type commutation relations, but
rather obey mixed relations.

In order to solve problems using Hamiltonian (45),
these commutation relations must somehow be modi-

I

D V. M. Agronovich, Zh. Eksperim. i Teor. Fiz. 37, 430 (1960),
and /English trsnsl. : Soviet Phys. —JKTP 10, 307 (1960)],
later papers.

show how its use in formulating the system suscepti-
bility is equivalent to use of the molecular separability
and decorrelation approximations.

In the point dipole —dipole approximation a typical
matrix element for the interaction of molecules m and
1Ã ls

V„„'"=((eo) (mr)
~ V„~ (») (mo) )

fied. Krugler et a/. ,
"have been able to transform them

into fermion operators for the two-state case of a
linear chain with only nearest-neighbor interactions
and cyclic boundary conditions. The resulting Hamil-
tonian can then be diagonalized by a Bogoliubov-
type transformation. On the other hand, for handling
more general cases, Agronovich" has chosen to ap-
proximate the excitation operators as boson type by
taking La„„a „+]=8„8„thereby allowing H to be
diagonalized, by a Bogoliubov transformation, for the
case in which only a, few molecular states are included.

We prefer to use the boson approximation. The error
introduced is twice the amount, q, of excited state
character in the exact ground state of the system. This
is easily seen from the identity

P,=er, (a .++a .) . (47)

In the interaction. representation for Ho these operators
become P„,(t) = exp fi Hst]P„, exp L

—iH, t] and,
with the boson approximation, have the unequal time
commutator

LP„,.(t), P „(t')]=—2ie'r„,r„„t&„, t&,„sin o&, (t t'), . (—4g)

where ~, is the excitation energy to state s. Thus, the
polarization operator has the properties of the displace-
ment coordinate of a harmonic oscillator and it becomes
obvious that the second quantized Hamiltonian (45)
leads to the results obtained in the beginning of Sec.
III.

The molecular polarization operator may be defined

P„= gP„,
and has the commutator

$P„(t), P (t') ]= 2ie' P —r„,.r„,tI„sin o&, (t—t'). (49)

When multiplied by i8 (t—t'), this becomes the polariza-
tion linear response function, the Fourier transform of
which is the isolated molecule polarizability, n (o&),

given above Eq. (37) . Using Hamiltonian (45) and the
procedure of Sec. IIB to determine the linear response
functions for P„ in the exact (interacting) ground
state of the system, we obtain Eq. (35).

'8 J. I. Krugler, C. G. Montgomery, and H. M. McConnell, J.
Chem. Phys. 41, 2421 (1964).

L+ns& +ns ]=1 2&ns &ns&

the expectation value of which is 1—2q, since a„,+a„,
is the number operator for excitation ms. In molecular
systems where the other approximations contained in
Hamiltonian (44) are reasonable, we expect this error
to be small.

For simplicity of notation we now define the dipole
polarization operator
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Therefore the approximation contained in the second
quantized Hamiltonian used by Agronovich and
others, together with the boson approximation for the
excitation of operators, are entirely equivalent to the
molecule separability and decorrelation approximations
used here. As seen in the previous section, the latter
give us a coupled equivalent oscillator picture. This is
accomplished here by the boson approximation.
The —1 appearing in [a, a+] means simply that for a
two-state problem any susceptibility of the system in
the upper state is of opposite sign to that in the ground
state. Changing this sign (boson approximation)
converts the two-state system into a fictitious oscillator,
the susceptibility of which is state-independent [Eq.
(48)]. The result is tha, t Eq. (35) is equivalent to
representing the molecular system by a system of
coupled harmonic oscillators consisting of an infinite
number of mutually uncoupled oscillators at each
molecular site (having the frequency and oscillator
strength distribution of the molecular spectrum),
each of which is coupled to the oscillators of every other
site.

Hoffmann' applied Hamiltonian (45) and the boson
approximation to a study of interaction eRects on the
absorption intensity of double-stranded helical poly-
nucleotides. He restricts consideration to three states
(i.e., two types of excitation operators) in the monomer
and, with the dipole —dipole interaction approximation,
puts the Hamiltonian in diagonal form with a Bo-
goliubov transformation. This gives a quasi-particle
(mixed exciton) picture for the electronic excitations
of the system, in which all possible multiply excited
(zeroth-order) states are mixed. It is not a perturba-
tion expansion, so it contains such mixing to infinite
order. The above discussion shows however, that limi-
tation to three states, or any finite number of states, is
not necessary. HoRmann's results are contained ex-
plicitly in Eq. (35) as a further approximation.

IV. DISCUSSION OF THE CLOSED FORM

The molecular system polarizability given by Eq.
(35) is the most applicable result of the theory. We
turn now to the problem of finding its solution for
systems with simple geometry and, in particular, of
comparing absorption intensities with those of the
isolated molecule. Equation (52) below is the classical
form obtained by DeVoe and the solutions which
follow have been discusse3 already by him. We repeat
the major features using our notation and terminology,
in order to emphasize the origin of absorption in-
tensity eRects.

From Eqs. (5), (26), and (36) the rate of energy
absorption is

II'(~) = (~/2) 2 E-*(~) n-"(~) E-(~) (5O)

where E is the external field at molecule nz. The prob-

lem of evaluating this expression is one of spatial dis-

persion, since the matrix elements depend on the
positions, R„and R, of the molecules (and their orien-
tations in space). In general, the problem is quite
complex and is best handled by examining special
cases. If the matrix elements n„"(oo) depend only on
the distance between the molecules, a solution is found

by transformation to k-space, giving

W((a) =N(~o/2)E*(k ~o) n"(k ~) E(k io) (51)

for an X molecule system. Since E is the external
photon field, W=O unless k=~. [The k-space for the
photon field is taken to be continuous, while that of
a is finite and discrete. This distinction is not im-

portant for systems containing a large number of
molecules, or for small systems in which the molecules
are closely spaced compared to the wavelength of the
photon. The simple k dependence of Eq. (51) does

imply that the basis functions for the k-spaces are of the
same type, i.e., the molecular system has periodic
boundary conditions. ]

Ry rearranging Eq. (37), we have the equivalent
form7

n '(co) =(n') '—d. (52)

As discussed in Sec. III, this is a matrix equation of
dimension 3S for an X molecule system, and the
problem consists of finding a transformation to diagonal
form.

We take as a model a linear chain of identical, trans-
lationally equivalent molecules. The coordinate system
is chosen so that 0.' is diagonal. In d the three spatial
coordinates are not coupled to one another; therefore,
the similarity transformation which puts d into diagonal
form also diagonalizes u (and, accordingly, n) .
The solution then becomes

n;, (k, o~) =n;;o(o)) [1—dPn, ,o((o)] ', (53)

where the index i labels the spatial component and d,~

is an eigenvalue of the dipole field susceptibility. Ex-
tracting the imaginary part gives

CXzz GD

n, ,"(k, ~)=, „.(54)
(1—d''n""(~) ) '+ (d'"n'*'"(~) ) '

in which the prime denotes the real part. For simplicity,
we have neglected retardation term in d, assuming that
the wavelength of the photon is large compared to the
distance of significant interaction. The identification
of the system k with the Geld k in Eq. (51) implies
periodic boundary conditions, so we have

dr"= —2i ' P rs 'cos 2srkrsN '
n&O

dr, '= 4t ' Q ss ' cos 27rkrsN ' (55)
n)0

for the transverse and longitudinal components, where
t is the distance between molecules.

Figure 2 gives the results of calculations for a linear
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FIG. 2. Calculated absorption spectra for model linear chain of

ethylene molecules. Curve (a)—imaginary part of a' for the iso-
lated molecule (from Ketteler-Helmholz formula); Curve (b)—
real part of o' corresponding to curve (a); Curve (c)—imaginary
part of a for linear chain, including contributions from only
curves (a) and (b); Curve (d) —similar to curve (c), but in-
cluding also contributions from curve (e); Curve (e)—real part
of background ~ .

l

l400
I

I800
-20-

chain of ethylene molecules in which the principal
molecular axis is perpendicular to the chain axis. The
intermolecular distance is taken to be 4.0 A.. A single
absorption band )curve (a) j is considered, having the
frequency, e(max), and bandwidth of the lowest
energy m —+x* band of ethylene, but following a Ket-
teler —Helmholtz dispersion. This enables us to separate
(ao)' into two parts, that /curve (b)$ arising from
the absorption band and a background part /curve (e) $,
taken to be constant in this region and arising from all
other transitions of the isolated molecule. Since the
wavelength is large compared to l, the value k=0 is
taken in dr". Curve (c), which includes the contribu-
tion only of curve (b) to (n')', shows that the ab-
sorption band is shifted with no change in total in-
tensity (since W has a factor co). On the other hand,
including both parts of (cr')' Lcurve (d) $ results in a
smaller band shift but a large decrease in intensity.

Figure 2 illustrates the previous conclusion, there-
fore, that over-all intensity changes arise only from
interactions with states outside of the band system in
question, and within the framework of the decorrela-
tion approximation, are determined by the real part of
the background polarizability. It is a matter of in-
tensity borrowing with conservation of total intensity
(Kuhn —Thomas sum rule), if absorption due to al/
transitions throughout the entire spectrum is con-
sidered.

The shift of curve (c) to higher frequency is in ac-

cordance with excitation resonance (exciton) inter-
action. The inclusion also of the background (rr')'
gives a shift back to lower frequency. This is the ex-
pected effect of dispersion forces and may be a factor
in explaining the observed hypochromism with small
frequency shifts in polynucleotides. ' "

These results, based on Eq. (35), are more general
than those presented earlier'' in terms of first-order
perturbation theory. However, it is easy to show~

that the first-order term in expansion (35) is identical
to the previous first-order perturbation theory results,
provided an average is taken over the orientation of the
molecular system relative to the incident field. (Such
averaging was taken also in the previous theory. )
This means that the decorrelation approximation does
not come into play until the second-order term, as is
apparent from the diagram representation in Fig. 1.
Only those diagrams having more than two field lines
connected to any one molecule are involved in the
decorrelation approximation; thus it is contained in less
than half the second-order terms (for a system of
more than three molecules) .

By way of summary, we have developed, starting
with an exact quantum-mechanical formulation, a
theory for the susceptibility of an interacting molecular
system. The approximations used enable us to express
the system susceptibility in closed form in terms of the
isolated molecule susceptibility and the coupling be-
tween the molecules. One of the advantages of using
such a Green's function approach lies in the simplicity
with which the theory can be developed in a formal way,
allowing one to keep an over-all view of the observables
in the problem and to pinpoint the places where ap-
proximations arise.

There are two basic approximations: (1) the decor-
relation approximation, which partially decouples the
motions of the electrons on different molecules, and (2)
the molecular separability approximation, which en-
ables us to assign current-charge density at each space—
time point to a particular molecule; and several less
crucial ones: (3) the neglect of induced vector potential
effects, (4) either the restriction to a few electronic
states (as in Sec. IIC) or restriction to the point
dipole —dipole term in a multiplole expansion (as in
Sec. III), and (5) (frequently) the neglect of the
retardation term, exp Li&oRj, in making numerical
calculations. The extent of validity of all but, perhaps,
the first depends greatly on the geometry of the in-
dividual molecules and their spacings in the system.
The first approximation, necessary to put the theory in
closed form, is dificult to assess. It is hoped that an
alternative approach in terms of single-particle Green's
function techniques will be helpful.

The theory developed here leads to an expression for
the absorption dispersion which entirely agrees with
earlier local field theories and. the results obtained from
second quantization with the boson approximation.
The original first-order perturbation theory for hypo-
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chromism is identical to the first-order term of the
present theory LEq. (35)j.Hoffmann's results are con-
tained, as an approximation, in the present theory.
For completeness, we point out discussions of the
hypochromism problem by McLachlan and Bal1.,"
Fowler, ' and Bullough, " whose conclusions are in
general agreement with ours.

"A. D. McLachlan and M. A. Ball, Mol. Phys. 8, 581 (1964).
» G. N. Fowler, Mol. Phys. S, 383 (1964)."R.G. Bullough, J. Chem. Phys. 43, 1927 (1965).

The theory, therefore, contains nothing which is
basically new, but does serve to coordinate previous
theories under one "theoretical roof". Ke feel that,
because of the generality, directness, and completeness
of the approa, ch, the use of linear response (retarded)
Green's functions will point the way to better approxi-
mation methods.

The same method should be readily applicable to
other optical phenomena, besides absorption, such as
rotatory dispersion and molecular crystal reQection.
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This article presents a simplified treatment of the high density, collisionless, free-electron gas, based on the ideas of a
wave number and frequency-dependent conductivity and dielectric constant. The formalism is applied to solve a number
of problems: the screening of the electrostatic potential of a foreign point charge placed in the electron gas, the rate of
energy loss of a charged particle moving through the electron gas, plasma oscillations, the reflection of electromagnetic
waves from the electron gas, and ultrasonic attenuation in metals due to the interaction of the sound waves with the
conduction electrons. In a Anal section it is indicated how the methods may be generalized. Explicit expressions for the
conductivity of the electron gas are obtained in an appendix.

INTRODUCTION

In recent years the quantum theory of the electron
gas has attracted the attention of a large number of
investigators, with the result that many features of
such a system are now well understood. Although the
power and generality of the quantum-mechanical
approach cannot be denied, there are times when a
simplified analysis is desired, if only to introduce
concepts and aid the intuition. Thus motivated, this
article presents a semiclassical treatment of a series

'
of problems, which can be classified under the heading:
the electrodynamics of an electron gas. Most of the
results have been obtained previously, and are avail-
able, for example, in the works of Lindhard, ' Rukhadze
and Silin, ' Pines, ' Kittel, 4 Ziman, ' and Pippard. ' lt is

~ This research was supported by the National Research Coun-
cil.' J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -I'ys.
Medd. 28, No. 8 (1954).

2A. A. Rukhadze and V. P. Silin, Usp. I"iz. Nauk 74, 223
(1961); 76, 79 (1962) (English transl. : Soviet Phys. —Uspekhi
4, 459 (1961);5) 37 (1962)g.

'D. Pines, The Many-Body Problem (W. A. Benjamin, Inc. ,
New York, 1961); Elementary Eacitations in Solids (W. A.
Benjamin, Inc. , New York, 1963).' C. Kittel, Quantum Theory of Solids (John Wiley tk Sons,
Inc., New York, 1963).' J. M. Ziman, Electrons and Phonons (Oxford University
Press, Oxford, England, 1960); Principles of the Theory of Solids
(Cambridge University Press, Cambridge, England, 1964).

'A. B. Pippard, Rept. Progr. Phys. 23, 176 (1960); in Lou
Temperature Physics, Les Houches, 1961, C. DeWitt, B.Dreyfus,
and P. G. DeGennes, Eds. (Gordon and Breach, Science Pub-
lishers, Inc. , New York, 1962).

hoped, however, that the following treatment will

prove a useful introduction, serving to bridge the gap
between the old-fashioned and more modern pictures.

Although the ideas can be applied to, and in some
cases derive from, the study of a low-density electron
gas at high temperatures, this article is primarily con-
cerned with the high-density electron gas at low tem-
peratures. That is, in the absence of any perturbing
electric field, the system considered consists of a gas
of electrons, moving without collisions through a uni-
form, smeared out distribution of positive charge, with
charge density equal and opposite to that of the
electrons. It is further assumed that the electrons obey
Fermi statistics, and that the temperature is zero. The
average number of electrons in a volume d'x with
velocities in the range d'v is thus (3no/4rrvr') d'xd'v for
e&vp and 0 for ~)vp. The Fermi velocity ~& is given
by ( ji/rtt) (3rr'rts) 'ts.

The results obtained are used to describe the behavior
of the conduction electrons in a metal. In most cases
this application should be regarded as a crude approxi-
mation to the true state of affairs. Firstly, the perio-
dicity of the lattice changes the unperturbed electron
states, leading, for example, to nonspherical and in
some cases multiply-connected Fermi surfaces. The
modi6cations to the theory presented here to allow
for these effects are described by Pippard. ' Secondly,
the theory is valid only if the mean Coulomb inter-

7 A. B.Pippard, Ref. 6;


